diff --git a/master/.buildinfo b/master/.buildinfo index 43a64855b..21ce20434 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 773b440c612d86b2988dd7a619fb4540 +config: 4f48f09f8b47f3891cc4f07acfa7ce26 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 4dac63aea..0f7529d62 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/index.doctree and b/master/.doctrees/cleanlab/benchmarking/index.doctree differ diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index ce263d7f4..b7a478586 100644 Binary files a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree and b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree differ diff --git a/master/.doctrees/cleanlab/classification.doctree b/master/.doctrees/cleanlab/classification.doctree index c0a183064..183a14a4e 100644 Binary files a/master/.doctrees/cleanlab/classification.doctree and b/master/.doctrees/cleanlab/classification.doctree differ diff --git a/master/.doctrees/cleanlab/count.doctree b/master/.doctrees/cleanlab/count.doctree index 76b2a38c9..a23d18df4 100644 Binary files a/master/.doctrees/cleanlab/count.doctree and b/master/.doctrees/cleanlab/count.doctree differ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 2d757063a..88a938588 100644 Binary files a/master/.doctrees/cleanlab/data_valuation.doctree and b/master/.doctrees/cleanlab/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index e2c874318..0c9b4031f 100644 Binary files a/master/.doctrees/cleanlab/datalab/datalab.doctree and b/master/.doctrees/cleanlab/datalab/datalab.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index 371c51744..8a8c95bc0 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree and b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 440127053..2b0f44ee6 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 952de3577..a3b94ba57 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree and b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 40c154ae7..8d9a31b26 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/index.doctree and b/master/.doctrees/cleanlab/datalab/guide/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 89acec219..1acab3ff2 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree and b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 6e44c2a3a..05da79122 100644 Binary files a/master/.doctrees/cleanlab/datalab/guide/table.doctree and b/master/.doctrees/cleanlab/datalab/guide/table.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 5a11b23ce..c6c5dfaa5 100644 Binary files a/master/.doctrees/cleanlab/datalab/index.doctree and b/master/.doctrees/cleanlab/datalab/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data.doctree b/master/.doctrees/cleanlab/datalab/internal/data.doctree index 0a6a16fbf..797361cae 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data.doctree and b/master/.doctrees/cleanlab/datalab/internal/data.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 5fe4983fa..3802dc427 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree and b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/factory.doctree b/master/.doctrees/cleanlab/datalab/internal/factory.doctree index 02b0024b4..3c08fef85 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/factory.doctree and b/master/.doctrees/cleanlab/datalab/internal/factory.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 136aa8c13..675b4fea7 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 2dd966d05..11db0f814 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index e36a597dd..cead77e86 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index f2fb93444..6e0392ef5 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 78bbc033f..83e7f865a 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 36a86eb17..cd6e306bf 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree index 7b4a1abb3..c4a71b731 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree index afe7308f2..8ed3eeaaf 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/issue_manager.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index eda4760bd..556566c0f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 79a2b87d1..98bfd5b96 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 72f2abc78..83dfb2b7c 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index c54af9583..8f1f4955e 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index ba7505334..1ced38ffc 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index e544d743e..5e0c85f74 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 893d2edd4..c6a43dbac 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 242ff3f0e..b325a3d86 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 1e999c010..cc5cd108f 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree and b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 8a4179e37..c32be8327 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree and b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index e7ec3042d..39fcc211b 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/report.doctree and b/master/.doctrees/cleanlab/datalab/internal/report.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/internal/task.doctree b/master/.doctrees/cleanlab/datalab/internal/task.doctree index 3a55493c0..06b70b181 100644 Binary files a/master/.doctrees/cleanlab/datalab/internal/task.doctree and b/master/.doctrees/cleanlab/datalab/internal/task.doctree differ diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 29205a8b8..31245665c 100644 Binary files a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree and b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree differ diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index af6f556ba..56adf7313 100644 Binary files a/master/.doctrees/cleanlab/dataset.doctree and b/master/.doctrees/cleanlab/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 6ac42bd7e..0f2d45a6b 100644 Binary files a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree and b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/coteaching.doctree b/master/.doctrees/cleanlab/experimental/coteaching.doctree index 357f16ebd..326664ae2 100644 Binary files a/master/.doctrees/cleanlab/experimental/coteaching.doctree and b/master/.doctrees/cleanlab/experimental/coteaching.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index aec3b69e5..54fb9276b 100644 Binary files a/master/.doctrees/cleanlab/experimental/index.doctree and b/master/.doctrees/cleanlab/experimental/index.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index b847ec9b8..c8e032de4 100644 Binary files a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree and b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index ea2bec150..c21429163 100644 Binary files a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree and b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree differ diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index a33274602..ef3185df5 100644 Binary files a/master/.doctrees/cleanlab/experimental/span_classification.doctree and b/master/.doctrees/cleanlab/experimental/span_classification.doctree differ diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index dc6c181b8..fe97f15c7 100644 Binary files a/master/.doctrees/cleanlab/filter.doctree and b/master/.doctrees/cleanlab/filter.doctree differ diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 208c4d1a7..2c6bb535a 100644 Binary files a/master/.doctrees/cleanlab/internal/index.doctree and b/master/.doctrees/cleanlab/internal/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 753dfd13a..15cc9dde1 100644 Binary files a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree and b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/latent_algebra.doctree b/master/.doctrees/cleanlab/internal/latent_algebra.doctree index ab94c3a8d..83e6df38f 100644 Binary files a/master/.doctrees/cleanlab/internal/latent_algebra.doctree and b/master/.doctrees/cleanlab/internal/latent_algebra.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index ed97a7b73..6b3dd3273 100644 Binary files a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree and b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree index b25225fda..3424157cc 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree and b/master/.doctrees/cleanlab/internal/multilabel_scorer.doctree differ diff --git a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree index 876f1aac5..581956593 100644 Binary files a/master/.doctrees/cleanlab/internal/multilabel_utils.doctree and b/master/.doctrees/cleanlab/internal/multilabel_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index aa4ab6479..f6ad1276c 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/index.doctree and b/master/.doctrees/cleanlab/internal/neighbor/index.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree index 58b34118b..9c14ba5c2 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree and b/master/.doctrees/cleanlab/internal/neighbor/knn_graph.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 74b7bde37..df0fd8122 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree and b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree differ diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index d873350d6..cc407c552 100644 Binary files a/master/.doctrees/cleanlab/internal/neighbor/search.doctree and b/master/.doctrees/cleanlab/internal/neighbor/search.doctree differ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 07830b0b0..6b445bf17 100644 Binary files a/master/.doctrees/cleanlab/internal/outlier.doctree and b/master/.doctrees/cleanlab/internal/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree index 1c7084978..5242e6236 100644 Binary files a/master/.doctrees/cleanlab/internal/token_classification_utils.doctree and b/master/.doctrees/cleanlab/internal/token_classification_utils.doctree differ diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 09ebdacd4..1ea6e3a18 100644 Binary files a/master/.doctrees/cleanlab/internal/util.doctree and b/master/.doctrees/cleanlab/internal/util.doctree differ diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index 482274b8e..05836fd60 100644 Binary files a/master/.doctrees/cleanlab/internal/validation.doctree and b/master/.doctrees/cleanlab/internal/validation.doctree differ diff --git a/master/.doctrees/cleanlab/models/index.doctree b/master/.doctrees/cleanlab/models/index.doctree index 3198dad84..46cfd488c 100644 Binary files a/master/.doctrees/cleanlab/models/index.doctree and b/master/.doctrees/cleanlab/models/index.doctree differ diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index fd959b91c..0998f3deb 100644 Binary files a/master/.doctrees/cleanlab/models/keras.doctree and b/master/.doctrees/cleanlab/models/keras.doctree differ diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index cec55296f..4e11c82bb 100644 Binary files a/master/.doctrees/cleanlab/multiannotator.doctree and b/master/.doctrees/cleanlab/multiannotator.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 8710d5d97..11c95fe25 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree and b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 61c6cd047..7a425eca6 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree and b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/index.doctree b/master/.doctrees/cleanlab/multilabel_classification/index.doctree index 13bf42060..75a181ff5 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/index.doctree and b/master/.doctrees/cleanlab/multilabel_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree index ce7886792..29efa3a55 100644 Binary files a/master/.doctrees/cleanlab/multilabel_classification/rank.doctree and b/master/.doctrees/cleanlab/multilabel_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index cd67e24f3..61fa2c209 100644 Binary files a/master/.doctrees/cleanlab/object_detection/filter.doctree and b/master/.doctrees/cleanlab/object_detection/filter.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/index.doctree b/master/.doctrees/cleanlab/object_detection/index.doctree index 168aa4dcb..2fe3c5367 100644 Binary files a/master/.doctrees/cleanlab/object_detection/index.doctree and b/master/.doctrees/cleanlab/object_detection/index.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 5ec664906..234674ff6 100644 Binary files a/master/.doctrees/cleanlab/object_detection/rank.doctree and b/master/.doctrees/cleanlab/object_detection/rank.doctree differ diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index dfbfebe29..379c9b9a0 100644 Binary files a/master/.doctrees/cleanlab/object_detection/summary.doctree and b/master/.doctrees/cleanlab/object_detection/summary.doctree differ diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index fc9af29c8..00c445f97 100644 Binary files a/master/.doctrees/cleanlab/outlier.doctree and b/master/.doctrees/cleanlab/outlier.doctree differ diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 8cafe28e7..38743b398 100644 Binary files a/master/.doctrees/cleanlab/rank.doctree and b/master/.doctrees/cleanlab/rank.doctree differ diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index e8cebdd7a..54b35b8d4 100644 Binary files a/master/.doctrees/cleanlab/regression/index.doctree and b/master/.doctrees/cleanlab/regression/index.doctree differ diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 2fcae44ba..d0bb50983 100644 Binary files a/master/.doctrees/cleanlab/regression/learn.doctree and b/master/.doctrees/cleanlab/regression/learn.doctree differ diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 49edffd2a..44f302adb 100644 Binary files a/master/.doctrees/cleanlab/regression/rank.doctree and b/master/.doctrees/cleanlab/regression/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/filter.doctree b/master/.doctrees/cleanlab/segmentation/filter.doctree index e005706e5..4051c71fa 100644 Binary files a/master/.doctrees/cleanlab/segmentation/filter.doctree and b/master/.doctrees/cleanlab/segmentation/filter.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/index.doctree b/master/.doctrees/cleanlab/segmentation/index.doctree index 8f215da1b..463f20e23 100644 Binary files a/master/.doctrees/cleanlab/segmentation/index.doctree and b/master/.doctrees/cleanlab/segmentation/index.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 290e3c7e1..2374b4119 100644 Binary files a/master/.doctrees/cleanlab/segmentation/rank.doctree and b/master/.doctrees/cleanlab/segmentation/rank.doctree differ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 0aa185a8f..74ba0468a 100644 Binary files a/master/.doctrees/cleanlab/segmentation/summary.doctree and b/master/.doctrees/cleanlab/segmentation/summary.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 34ee9d482..ff9665be8 100644 Binary files a/master/.doctrees/cleanlab/token_classification/filter.doctree and b/master/.doctrees/cleanlab/token_classification/filter.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index d51052e58..1f9974128 100644 Binary files a/master/.doctrees/cleanlab/token_classification/index.doctree and b/master/.doctrees/cleanlab/token_classification/index.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 2c130a789..0648e270f 100644 Binary files a/master/.doctrees/cleanlab/token_classification/rank.doctree and b/master/.doctrees/cleanlab/token_classification/rank.doctree differ diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index 2a940af1f..f00ac5367 100644 Binary files a/master/.doctrees/cleanlab/token_classification/summary.doctree and b/master/.doctrees/cleanlab/token_classification/summary.doctree differ diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index a8fbcffd3..c9ad566d0 100644 Binary files a/master/.doctrees/environment.pickle and b/master/.doctrees/environment.pickle differ diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 9808f85d1..961a2473e 100644 Binary files a/master/.doctrees/index.doctree and b/master/.doctrees/index.doctree differ diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 4ee3b0b76..6940f5451 100644 Binary files a/master/.doctrees/migrating/migrate_v2.doctree and b/master/.doctrees/migrating/migrate_v2.doctree differ diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 54baa388e..26fc7a6f6 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:25.084315Z", - "iopub.status.busy": "2024-07-09T06:06:25.083964Z", - "iopub.status.idle": "2024-07-09T06:06:26.267371Z", - "shell.execute_reply": "2024-07-09T06:06:26.266737Z" + "iopub.execute_input": "2024-07-09T06:21:39.342775Z", + "iopub.status.busy": "2024-07-09T06:21:39.342610Z", + "iopub.status.idle": "2024-07-09T06:21:40.557607Z", + "shell.execute_reply": "2024-07-09T06:21:40.556995Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.270038Z", - "iopub.status.busy": "2024-07-09T06:06:26.269730Z", - "iopub.status.idle": "2024-07-09T06:06:26.287304Z", - "shell.execute_reply": "2024-07-09T06:06:26.286864Z" + "iopub.execute_input": "2024-07-09T06:21:40.560493Z", + "iopub.status.busy": "2024-07-09T06:21:40.560042Z", + "iopub.status.idle": "2024-07-09T06:21:40.577948Z", + "shell.execute_reply": "2024-07-09T06:21:40.577491Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.289513Z", - "iopub.status.busy": "2024-07-09T06:06:26.289028Z", - "iopub.status.idle": "2024-07-09T06:06:26.433358Z", - "shell.execute_reply": "2024-07-09T06:06:26.432848Z" + "iopub.execute_input": "2024-07-09T06:21:40.580339Z", + "iopub.status.busy": "2024-07-09T06:21:40.579867Z", + "iopub.status.idle": "2024-07-09T06:21:40.741573Z", + "shell.execute_reply": "2024-07-09T06:21:40.741011Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.462697Z", - "iopub.status.busy": "2024-07-09T06:06:26.462329Z", - "iopub.status.idle": "2024-07-09T06:06:26.465925Z", - "shell.execute_reply": "2024-07-09T06:06:26.465401Z" + "iopub.execute_input": "2024-07-09T06:21:40.772745Z", + "iopub.status.busy": "2024-07-09T06:21:40.772251Z", + "iopub.status.idle": "2024-07-09T06:21:40.776261Z", + "shell.execute_reply": "2024-07-09T06:21:40.775690Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.467989Z", - "iopub.status.busy": "2024-07-09T06:06:26.467659Z", - "iopub.status.idle": "2024-07-09T06:06:26.475739Z", - "shell.execute_reply": "2024-07-09T06:06:26.475315Z" + "iopub.execute_input": "2024-07-09T06:21:40.778286Z", + "iopub.status.busy": "2024-07-09T06:21:40.777978Z", + "iopub.status.idle": "2024-07-09T06:21:40.786779Z", + "shell.execute_reply": "2024-07-09T06:21:40.786361Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.477750Z", - "iopub.status.busy": "2024-07-09T06:06:26.477428Z", - "iopub.status.idle": "2024-07-09T06:06:26.480003Z", - "shell.execute_reply": "2024-07-09T06:06:26.479567Z" + "iopub.execute_input": "2024-07-09T06:21:40.789179Z", + "iopub.status.busy": "2024-07-09T06:21:40.788741Z", + "iopub.status.idle": "2024-07-09T06:21:40.791702Z", + "shell.execute_reply": "2024-07-09T06:21:40.791239Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.481856Z", - "iopub.status.busy": "2024-07-09T06:06:26.481562Z", - "iopub.status.idle": "2024-07-09T06:06:26.996055Z", - "shell.execute_reply": "2024-07-09T06:06:26.995448Z" + "iopub.execute_input": "2024-07-09T06:21:40.793718Z", + "iopub.status.busy": "2024-07-09T06:21:40.793392Z", + "iopub.status.idle": "2024-07-09T06:21:41.315603Z", + "shell.execute_reply": "2024-07-09T06:21:41.314985Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.998478Z", - "iopub.status.busy": "2024-07-09T06:06:26.998289Z", - "iopub.status.idle": "2024-07-09T06:06:28.809978Z", - "shell.execute_reply": "2024-07-09T06:06:28.809418Z" + "iopub.execute_input": "2024-07-09T06:21:41.318231Z", + "iopub.status.busy": "2024-07-09T06:21:41.317889Z", + "iopub.status.idle": "2024-07-09T06:21:43.227263Z", + "shell.execute_reply": "2024-07-09T06:21:43.226653Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.812571Z", - "iopub.status.busy": "2024-07-09T06:06:28.812027Z", - "iopub.status.idle": "2024-07-09T06:06:28.821730Z", - "shell.execute_reply": "2024-07-09T06:06:28.821221Z" + "iopub.execute_input": "2024-07-09T06:21:43.229927Z", + "iopub.status.busy": "2024-07-09T06:21:43.229282Z", + "iopub.status.idle": "2024-07-09T06:21:43.240181Z", + "shell.execute_reply": "2024-07-09T06:21:43.239728Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.823721Z", - "iopub.status.busy": "2024-07-09T06:06:28.823421Z", - "iopub.status.idle": "2024-07-09T06:06:28.827343Z", - "shell.execute_reply": "2024-07-09T06:06:28.826871Z" + "iopub.execute_input": "2024-07-09T06:21:43.242259Z", + "iopub.status.busy": "2024-07-09T06:21:43.241975Z", + "iopub.status.idle": "2024-07-09T06:21:43.246137Z", + "shell.execute_reply": "2024-07-09T06:21:43.245712Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.829425Z", - "iopub.status.busy": "2024-07-09T06:06:28.829036Z", - "iopub.status.idle": "2024-07-09T06:06:28.836443Z", - "shell.execute_reply": "2024-07-09T06:06:28.836000Z" + "iopub.execute_input": "2024-07-09T06:21:43.248251Z", + "iopub.status.busy": "2024-07-09T06:21:43.247934Z", + "iopub.status.idle": "2024-07-09T06:21:43.255132Z", + "shell.execute_reply": "2024-07-09T06:21:43.254674Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.838340Z", - "iopub.status.busy": "2024-07-09T06:06:28.838075Z", - "iopub.status.idle": "2024-07-09T06:06:28.949448Z", - "shell.execute_reply": "2024-07-09T06:06:28.948981Z" + "iopub.execute_input": "2024-07-09T06:21:43.257227Z", + "iopub.status.busy": "2024-07-09T06:21:43.256904Z", + "iopub.status.idle": "2024-07-09T06:21:43.368112Z", + "shell.execute_reply": "2024-07-09T06:21:43.367612Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.951565Z", - "iopub.status.busy": "2024-07-09T06:06:28.951228Z", - "iopub.status.idle": "2024-07-09T06:06:28.953982Z", - "shell.execute_reply": "2024-07-09T06:06:28.953520Z" + "iopub.execute_input": "2024-07-09T06:21:43.370406Z", + "iopub.status.busy": "2024-07-09T06:21:43.370066Z", + "iopub.status.idle": "2024-07-09T06:21:43.372782Z", + "shell.execute_reply": "2024-07-09T06:21:43.372354Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.956108Z", - "iopub.status.busy": "2024-07-09T06:06:28.955684Z", - "iopub.status.idle": "2024-07-09T06:06:30.896584Z", - "shell.execute_reply": "2024-07-09T06:06:30.895896Z" + "iopub.execute_input": "2024-07-09T06:21:43.374828Z", + "iopub.status.busy": "2024-07-09T06:21:43.374407Z", + "iopub.status.idle": "2024-07-09T06:21:45.339078Z", + "shell.execute_reply": "2024-07-09T06:21:45.338438Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:30.899682Z", - "iopub.status.busy": "2024-07-09T06:06:30.898894Z", - "iopub.status.idle": "2024-07-09T06:06:30.911329Z", - "shell.execute_reply": "2024-07-09T06:06:30.910707Z" + "iopub.execute_input": "2024-07-09T06:21:45.342064Z", + "iopub.status.busy": "2024-07-09T06:21:45.341327Z", + "iopub.status.idle": "2024-07-09T06:21:45.352590Z", + "shell.execute_reply": "2024-07-09T06:21:45.352125Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:30.913543Z", - "iopub.status.busy": "2024-07-09T06:06:30.913182Z", - "iopub.status.idle": "2024-07-09T06:06:30.953207Z", - "shell.execute_reply": "2024-07-09T06:06:30.952600Z" + "iopub.execute_input": "2024-07-09T06:21:45.354672Z", + "iopub.status.busy": "2024-07-09T06:21:45.354342Z", + "iopub.status.idle": "2024-07-09T06:21:45.396625Z", + "shell.execute_reply": "2024-07-09T06:21:45.396172Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 49d0a3d6c..4b6fd48a4 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:35.079549Z", - "iopub.status.busy": "2024-07-09T06:06:35.079116Z", - "iopub.status.idle": "2024-07-09T06:06:38.019377Z", - "shell.execute_reply": "2024-07-09T06:06:38.018803Z" + "iopub.execute_input": "2024-07-09T06:21:49.240434Z", + "iopub.status.busy": "2024-07-09T06:21:49.240266Z", + "iopub.status.idle": "2024-07-09T06:21:52.341784Z", + "shell.execute_reply": "2024-07-09T06:21:52.341296Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.022045Z", - "iopub.status.busy": "2024-07-09T06:06:38.021617Z", - "iopub.status.idle": "2024-07-09T06:06:38.025035Z", - "shell.execute_reply": "2024-07-09T06:06:38.024496Z" + "iopub.execute_input": "2024-07-09T06:21:52.344435Z", + "iopub.status.busy": "2024-07-09T06:21:52.343997Z", + "iopub.status.idle": "2024-07-09T06:21:52.347958Z", + "shell.execute_reply": "2024-07-09T06:21:52.347446Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.027049Z", - "iopub.status.busy": "2024-07-09T06:06:38.026720Z", - "iopub.status.idle": "2024-07-09T06:06:38.029772Z", - "shell.execute_reply": "2024-07-09T06:06:38.029271Z" + "iopub.execute_input": "2024-07-09T06:21:52.350024Z", + "iopub.status.busy": "2024-07-09T06:21:52.349635Z", + "iopub.status.idle": "2024-07-09T06:21:52.352754Z", + "shell.execute_reply": "2024-07-09T06:21:52.352222Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.031757Z", - "iopub.status.busy": "2024-07-09T06:06:38.031434Z", - "iopub.status.idle": "2024-07-09T06:06:38.085093Z", - "shell.execute_reply": "2024-07-09T06:06:38.084605Z" + "iopub.execute_input": "2024-07-09T06:21:52.354801Z", + "iopub.status.busy": "2024-07-09T06:21:52.354380Z", + "iopub.status.idle": "2024-07-09T06:21:52.405560Z", + "shell.execute_reply": "2024-07-09T06:21:52.405035Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.087064Z", - "iopub.status.busy": "2024-07-09T06:06:38.086870Z", - "iopub.status.idle": "2024-07-09T06:06:38.090289Z", - "shell.execute_reply": "2024-07-09T06:06:38.089858Z" + "iopub.execute_input": "2024-07-09T06:21:52.407560Z", + "iopub.status.busy": "2024-07-09T06:21:52.407242Z", + "iopub.status.idle": "2024-07-09T06:21:52.410852Z", + "shell.execute_reply": "2024-07-09T06:21:52.410392Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.092235Z", - "iopub.status.busy": "2024-07-09T06:06:38.091917Z", - "iopub.status.idle": "2024-07-09T06:06:38.095330Z", - "shell.execute_reply": "2024-07-09T06:06:38.094771Z" + "iopub.execute_input": "2024-07-09T06:21:52.412798Z", + "iopub.status.busy": "2024-07-09T06:21:52.412490Z", + "iopub.status.idle": "2024-07-09T06:21:52.415836Z", + "shell.execute_reply": "2024-07-09T06:21:52.415299Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed'}\n" + "Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.097201Z", - "iopub.status.busy": "2024-07-09T06:06:38.097021Z", - "iopub.status.idle": "2024-07-09T06:06:38.100009Z", - "shell.execute_reply": "2024-07-09T06:06:38.099483Z" + "iopub.execute_input": "2024-07-09T06:21:52.417781Z", + "iopub.status.busy": "2024-07-09T06:21:52.417462Z", + "iopub.status.idle": "2024-07-09T06:21:52.420529Z", + "shell.execute_reply": "2024-07-09T06:21:52.420017Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.102116Z", - "iopub.status.busy": "2024-07-09T06:06:38.101794Z", - "iopub.status.idle": "2024-07-09T06:06:38.104967Z", - "shell.execute_reply": "2024-07-09T06:06:38.104527Z" + "iopub.execute_input": "2024-07-09T06:21:52.422617Z", + "iopub.status.busy": "2024-07-09T06:21:52.422214Z", + "iopub.status.idle": "2024-07-09T06:21:52.425416Z", + "shell.execute_reply": "2024-07-09T06:21:52.424998Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.106909Z", - "iopub.status.busy": "2024-07-09T06:06:38.106584Z", - "iopub.status.idle": "2024-07-09T06:06:43.730716Z", - "shell.execute_reply": "2024-07-09T06:06:43.730160Z" + "iopub.execute_input": "2024-07-09T06:21:52.427244Z", + "iopub.status.busy": "2024-07-09T06:21:52.427078Z", + "iopub.status.idle": "2024-07-09T06:21:56.745262Z", + "shell.execute_reply": "2024-07-09T06:21:56.744632Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "26eb168f10234c1588ad18073bbb9d24", + "model_id": "c040ce84f01d40379935c57a437135d2", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6908f28507f34ca293495da144a9ebf5", + "model_id": "c7e479504bac453bb70c779f5c0f3525", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb390d327367437688e1b2f6a2dc8c9d", + "model_id": "e38763de16664cf4b837920d4bc2ace8", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a73ef35dae948bfb3a13cced094eae0", + "model_id": "d426400e6f5f4f559bce90df2411bfab", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70dd46a3067b49b0ab8a7a6d042f9eee", + "model_id": "223652b12d77470d806f5f9b123b1cde", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dbc5896906b4403e91373c6f95c7f8a3", + "model_id": "94487f86ff8a4e3fa1c870682ab05381", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0341643702b4f93b9c82872cc026fbf", + "model_id": "ae2d10a9a0bd42468482e2cffacc15e6", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.733456Z", - "iopub.status.busy": "2024-07-09T06:06:43.733062Z", - "iopub.status.idle": "2024-07-09T06:06:43.736049Z", - "shell.execute_reply": "2024-07-09T06:06:43.735560Z" + "iopub.execute_input": "2024-07-09T06:21:56.747914Z", + "iopub.status.busy": "2024-07-09T06:21:56.747699Z", + "iopub.status.idle": "2024-07-09T06:21:56.750422Z", + "shell.execute_reply": "2024-07-09T06:21:56.749907Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.737924Z", - "iopub.status.busy": "2024-07-09T06:06:43.737747Z", - "iopub.status.idle": "2024-07-09T06:06:43.740304Z", - "shell.execute_reply": "2024-07-09T06:06:43.739878Z" + "iopub.execute_input": "2024-07-09T06:21:56.752430Z", + "iopub.status.busy": "2024-07-09T06:21:56.752042Z", + "iopub.status.idle": "2024-07-09T06:21:56.754593Z", + "shell.execute_reply": "2024-07-09T06:21:56.754165Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.742146Z", - "iopub.status.busy": "2024-07-09T06:06:43.741975Z", - "iopub.status.idle": "2024-07-09T06:06:46.363303Z", - "shell.execute_reply": "2024-07-09T06:06:46.362662Z" + "iopub.execute_input": "2024-07-09T06:21:56.756400Z", + "iopub.status.busy": "2024-07-09T06:21:56.756229Z", + "iopub.status.idle": "2024-07-09T06:21:59.390602Z", + "shell.execute_reply": "2024-07-09T06:21:59.389981Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.366416Z", - "iopub.status.busy": "2024-07-09T06:06:46.365598Z", - "iopub.status.idle": "2024-07-09T06:06:46.373329Z", - "shell.execute_reply": "2024-07-09T06:06:46.372785Z" + "iopub.execute_input": "2024-07-09T06:21:59.393398Z", + "iopub.status.busy": "2024-07-09T06:21:59.392860Z", + "iopub.status.idle": "2024-07-09T06:21:59.400402Z", + "shell.execute_reply": "2024-07-09T06:21:59.399893Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.375605Z", - "iopub.status.busy": "2024-07-09T06:06:46.375281Z", - "iopub.status.idle": "2024-07-09T06:06:46.379045Z", - "shell.execute_reply": "2024-07-09T06:06:46.378491Z" + "iopub.execute_input": "2024-07-09T06:21:59.402483Z", + "iopub.status.busy": "2024-07-09T06:21:59.402085Z", + "iopub.status.idle": "2024-07-09T06:21:59.406027Z", + "shell.execute_reply": "2024-07-09T06:21:59.405499Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.381102Z", - "iopub.status.busy": "2024-07-09T06:06:46.380806Z", - "iopub.status.idle": "2024-07-09T06:06:46.383982Z", - "shell.execute_reply": "2024-07-09T06:06:46.383448Z" + "iopub.execute_input": "2024-07-09T06:21:59.408118Z", + "iopub.status.busy": "2024-07-09T06:21:59.407818Z", + "iopub.status.idle": "2024-07-09T06:21:59.410977Z", + "shell.execute_reply": "2024-07-09T06:21:59.410424Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.385913Z", - "iopub.status.busy": "2024-07-09T06:06:46.385614Z", - "iopub.status.idle": "2024-07-09T06:06:46.388541Z", - "shell.execute_reply": "2024-07-09T06:06:46.388027Z" + "iopub.execute_input": "2024-07-09T06:21:59.413097Z", + "iopub.status.busy": "2024-07-09T06:21:59.412678Z", + "iopub.status.idle": "2024-07-09T06:21:59.415713Z", + "shell.execute_reply": "2024-07-09T06:21:59.415177Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.390536Z", - "iopub.status.busy": "2024-07-09T06:06:46.390129Z", - "iopub.status.idle": "2024-07-09T06:06:46.397248Z", - "shell.execute_reply": "2024-07-09T06:06:46.396712Z" + "iopub.execute_input": "2024-07-09T06:21:59.417737Z", + "iopub.status.busy": "2024-07-09T06:21:59.417358Z", + "iopub.status.idle": "2024-07-09T06:21:59.424003Z", + "shell.execute_reply": "2024-07-09T06:21:59.423469Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.399521Z", - "iopub.status.busy": "2024-07-09T06:06:46.399107Z", - "iopub.status.idle": "2024-07-09T06:06:46.622657Z", - "shell.execute_reply": "2024-07-09T06:06:46.622135Z" + "iopub.execute_input": "2024-07-09T06:21:59.425974Z", + "iopub.status.busy": "2024-07-09T06:21:59.425797Z", + "iopub.status.idle": "2024-07-09T06:21:59.673438Z", + "shell.execute_reply": "2024-07-09T06:21:59.672833Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.625021Z", - "iopub.status.busy": "2024-07-09T06:06:46.624624Z", - "iopub.status.idle": "2024-07-09T06:06:46.797852Z", - "shell.execute_reply": "2024-07-09T06:06:46.797313Z" + "iopub.execute_input": "2024-07-09T06:21:59.676761Z", + "iopub.status.busy": "2024-07-09T06:21:59.675669Z", + "iopub.status.idle": "2024-07-09T06:21:59.855719Z", + "shell.execute_reply": "2024-07-09T06:21:59.855182Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.801087Z", - "iopub.status.busy": "2024-07-09T06:06:46.800154Z", - "iopub.status.idle": "2024-07-09T06:06:46.805038Z", - "shell.execute_reply": "2024-07-09T06:06:46.804526Z" + "iopub.execute_input": "2024-07-09T06:21:59.859528Z", + "iopub.status.busy": "2024-07-09T06:21:59.858566Z", + "iopub.status.idle": "2024-07-09T06:21:59.863516Z", + "shell.execute_reply": "2024-07-09T06:21:59.863020Z" }, "nbsphinx": "hidden" }, @@ -1105,43 +1105,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01bdf1dfe43a4d93b1d5a846d7215f58": { + "02b94161e37b406ca4394b9eef1538df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", + "placeholder": "​", + "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 411kB/s]" } }, - "09202840b02144009b85bc9e81486cfe": { + "099c115234a74616930a360edf785b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "165f21fd1ca447ce9d79edfc85a1646e": { + "0a197c7bd153480582add67b25b8f2f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1194,7 +1197,95 @@ "width": null } }, - "1a6c425339d741d0b672365a0a6a634f": { + "0e46a040636f42ec8521fb06f931e645": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "123ee23c99d742a99e006c7f7848cb12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "1551da70235541d895b9fec440352f36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "15a6d72a11a043799df4757893a899a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "17285e4ef9524c7db1413a860ffd8f3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,7 +1338,7 @@ "width": null } }, - "1c0d84c997084ec7a7b1982850af771f": { + "173164fe2c1547519e6c06d76b0453fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1300,7 +1391,96 @@ "width": null } }, - "1c33fb4949914270b7542061aa7f5869": { + "1cf39d974f3c4a31847e7e38d1e470ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "223652b12d77470d806f5f9b123b1cde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", + "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", + "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533" + ], + "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", + "tabbable": null, + "tooltip": null + } + }, + "2b6fe019e99740eb96bba95f2db47822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", + "placeholder": "​", + "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 9.45MB/s]" + } + }, + "2bb10e84663246cb9e4f076f752038ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2e3f9444da9b4549808e0df67c27c05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1353,7 +1533,7 @@ "width": null } }, - "1c886bf965cf47cd8dad183a9a7ea37e": { + "2e72d09cf08e4ed7a0f0a490217d3b47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1369,23 +1549,25 @@ "description_width": "" } }, - "1d3698bebaea44ee81bf48d55a3da73b": { + "3be04749419a4f8eba9590fbe0ee90f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1e04214439b34bb39bd577a6b905f385": { + "3dadb3df17ab4dcb82e012b2ce2d596f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,57 +1582,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dfdd82544b204d99bf73fb297209e882", + "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", "placeholder": "​", - "style": "IPY_MODEL_3fcd103bcf444b3e9d7dacf02f7d0555", + "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "26eb168f10234c1588ad18073bbb9d24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e04214439b34bb39bd577a6b905f385", - "IPY_MODEL_d2f9ed6fa0ca4f829f4b4c9130690381", - "IPY_MODEL_53b3a3c50e68458897df10772c0c4950" - ], - "layout": "IPY_MODEL_90c4eaa9081242faa986d85fd429328c", - "tabbable": null, - "tooltip": null - } - }, - "2afee7ea53434f6d89d7c20a88feb305": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 48.0/48.0 [00:00<00:00, 8.77kB/s]" } }, - "2b31d509f412422e8332fcaf6b6c2694": { + "411b3739073b43ef84da6df0cf4aba60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,7 +1643,23 @@ "width": null } }, - "3694f2923a9e4c32bfb24bc1252e9b8f": { + "4c78b67d28c6446baefef5e6235114af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50cf7dc92d4a4dd998c121b070e7c523": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1556,23 +1712,30 @@ "width": null } }, - "37605bcf5bf54465b5b89a0177cdc60a": { + "51455100d2844aaf843bf237faae621e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", + "placeholder": "​", + "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "3fcd103bcf444b3e9d7dacf02f7d0555": { + "52e25954ff904f37a41a6faf200c6f04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1590,25 +1753,60 @@ "text_color": null } }, - "47ca90e12b40435b9fd8c5bfa1cc221d": { - "model_module": "@jupyter-widgets/controls", + "56328dda0453461194507f7896809a58": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49d02ed65af34513bf68cff2532199bc": { + "597d3b6693934a35be0907fceb4d0350": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1859,7 @@ "width": null } }, - "51bf1675356f432587b92cd14c7f82a2": { + "5a9dca54fcd34a26b3e76425f4cfc533": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1676,79 +1874,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae30011dcb26468c8b0b6b82df3ca527", + "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", "placeholder": "​", - "style": "IPY_MODEL_8775a8c91f3c4a05904fd4855d8811cf", + "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 13.6MB/s]" } }, - "527ebdd433604e84a97c498e49952e49": { + "5cdde541facd4993a93cd8eb368b2d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "53877237a70b400cb0bdef2d1e4da5e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb1cab0be90341f2a872bba3c4f5d6b1", - "placeholder": "​", - "style": "IPY_MODEL_687f08592bed4074bebe2f495d225c50", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "53b3a3c50e68458897df10772c0c4950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9269cd46d227497980a20e184df669bb", - "placeholder": "​", - "style": "IPY_MODEL_527ebdd433604e84a97c498e49952e49", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 65.3kB/s]" + "bar_color": null, + "description_width": "" } }, - "54446d6d66ed40fcb39ca2dd0e52b91d": { + "630457c365244ae1ab9ffcac69becf0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1801,41 +1951,56 @@ "width": null } }, - "58d151e1dec841068bb3e5ea2a92bf8d": { + "6601ca50f2504f04b6cfe7a18c9b4b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", + "placeholder": "​", + "style": "IPY_MODEL_913da8393f324205890c3c685524e256", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 126kB/s]" } }, - "63b95cc7b3804f828a5027882e9297fc": { + "6e292337346c488586bf3e2ac3a4a4d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "687f08592bed4074bebe2f495d225c50": { + "7069c4f7c30946f989dfcde6fa323b5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1853,31 +2018,7 @@ "text_color": null } }, - "6908f28507f34ca293495da144a9ebf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_53877237a70b400cb0bdef2d1e4da5e0", - "IPY_MODEL_ac878a5347e5407d984a6450f0782ccf", - "IPY_MODEL_6f600754a26f42428a3619804a3b3dd3" - ], - "layout": "IPY_MODEL_a2e4ed336ac942fb95366722a3fe131b", - "tabbable": null, - "tooltip": null - } - }, - "6ba2643509aa4ba28f45e6d56c26a610": { + "706af1e525724a4ea27ff6ae91e2d592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1930,30 +2071,7 @@ "width": null } }, - "6f600754a26f42428a3619804a3b3dd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ba2643509aa4ba28f45e6d56c26a610", - "placeholder": "​", - "style": "IPY_MODEL_ca1b57d86847492c9b297c02fc76cdb9", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" - } - }, - "6fdb113b1df248a19d9acd305460659f": { + "72719d99e16045d7bb4a1a75b55e01d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,31 +2124,60 @@ "width": null } }, - "70dd46a3067b49b0ab8a7a6d042f9eee": { - "model_module": "@jupyter-widgets/controls", + "7410928828ea4cb785ed34533ad7a38b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b60ae06c542046c18779ebad0e050786", - "IPY_MODEL_fb47c5e63669405d8b0f658221868569", - "IPY_MODEL_cf508e03d2364ab487717da959fbc5f6" - ], - "layout": "IPY_MODEL_ca23b68c35994190a9b183937f99bef0", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "72723446148c4e4eaf10d2bc9a5a7aa0": { + "76546dbd183d4a7e9e641657709c45c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2045,15 +2192,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c0d84c997084ec7a7b1982850af771f", + "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", "placeholder": "​", - "style": "IPY_MODEL_2afee7ea53434f6d89d7c20a88feb305", + "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": "tokenizer.json: 100%" } }, - "813a3a0872a942708cd6a9346d4eafce": { + "7bc8ca2ed8c34db6b844e1f99c112f8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2106,7 +2253,7 @@ "width": null } }, - "847b6e3d28fe47989ff071d37ae0a736": { + "7ffdf87c7ec64036b49757ac96c5536d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2124,7 +2271,7 @@ "text_color": null } }, - "8775a8c91f3c4a05904fd4855d8811cf": { + "8d9ed5fd9baa4685b3b1df7e90e11a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2142,40 +2289,16 @@ "text_color": null } }, - "8a73ef35dae948bfb3a13cced094eae0": { - "model_module": "@jupyter-widgets/controls", + "8f9ef7f1a1f74518887b8021028b126b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72723446148c4e4eaf10d2bc9a5a7aa0", - "IPY_MODEL_e0a1667bb19e41ffab1775d1cc89d2f2", - "IPY_MODEL_febb0cb6c81c4e63826fecf678c5cb82" - ], - "layout": "IPY_MODEL_bfd0773475e040f3adaeb618a404adba", - "tabbable": null, - "tooltip": null - } - }, - "90c4eaa9081242faa986d85fd429328c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -2219,60 +2342,43 @@ "width": null } }, - "9269cd46d227497980a20e184df669bb": { - "model_module": "@jupyter-widgets/base", + "913da8393f324205890c3c685524e256": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "934707dc065d4f9b89b50d33e0cbc3f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "971f3be7589f424fb59cf1afd44b5a01": { + "93ebdc142e3847ae90d0ce31029d5577": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2288,66 +2394,59 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f99a3294523546e88e70530fed3f99f6", + "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b78ee6ec02a04a198056f10b84c9c0f6", + "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", "tabbable": null, "tooltip": null, "value": 48.0 } }, - "9b13d15c1ebf4bbab634d6a5ef436130": { + "94487f86ff8a4e3fa1c870682ab05381": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b31d509f412422e8332fcaf6b6c2694", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d513be80490b4fb9a218bd185c374f60", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51455100d2844aaf843bf237faae621e", + "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", + "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f" + ], + "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", "tabbable": null, - "tooltip": null, - "value": 231508.0 + "tooltip": null } }, - "9c5fb5a31e9f4d389fd58cc6bf03ee2d": { + "94c15cadc74a4c81a5adb003090f1d31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6fdb113b1df248a19d9acd305460659f", - "placeholder": "​", - "style": "IPY_MODEL_cd8bce3acd8043d99418cf1e98c1ffd3", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 119kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a16e8e1cc73e44bd8b38739fc3f7349e": { + "9a5e0536f69540db9b1730bd6d61ea81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2400,7 +2499,48 @@ "width": null } }, - "a2e4ed336ac942fb95366722a3fe131b": { + "a066253245154949a867510c4f4ca674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2a9d5d37de04498978de14e105cf28b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", + "placeholder": "​", + "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.8kB/s]" + } + }, + "a5729edb12634053b4bf3c1bf046eded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2453,128 +2593,147 @@ "width": null } }, - "a6454eb33f0747e5941afecdf65c31ca": { + "ae2d10a9a0bd42468482e2cffacc15e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", + "IPY_MODEL_15a6d72a11a043799df4757893a899a0", + "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822" + ], + "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", + "tabbable": null, + "tooltip": null } }, - "ac878a5347e5407d984a6450f0782ccf": { + "b5d24981d5e842e399fcf3e5da26ef85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3694f2923a9e4c32bfb24bc1252e9b8f", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1d3698bebaea44ee81bf48d55a3da73b", + "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", + "placeholder": "​", + "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": "README.md: 100%" } }, - "adf9f85cadca4af3b40ebf03eba16fa7": { + "b8db1c5c0aea469698bab78a92251cea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c65afacf969543d192a5d2494cc1c534", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37605bcf5bf54465b5b89a0177cdc60a", + "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", + "placeholder": "​", + "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "vocab.txt: 100%" } }, - "ae30011dcb26468c8b0b6b82df3ca527": { - "model_module": "@jupyter-widgets/base", + "c040ce84f01d40379935c57a437135d2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", + "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", + "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b" + ], + "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", + "tabbable": null, + "tooltip": null + } + }, + "c0f39ccef0bc464cb68eed457c4b8878": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", + "placeholder": "​", + "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "c17f319f7c23417c9a96df1d497a5396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", + "placeholder": "​", + "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "b3f20f2c522c44e99afe7b665f90476a": { + "c512fd4195da47a7a6905726b34e5e3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,46 +2786,49 @@ "width": null } }, - "b60ae06c542046c18779ebad0e050786": { + "c6f873e46ffd45dca333eca1e6c1e98b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ebda3f8c7f4441939a8f25ada957bda9", - "placeholder": "​", - "style": "IPY_MODEL_01bdf1dfe43a4d93b1d5a846d7215f58", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b78ee6ec02a04a198056f10b84c9c0f6": { + "c7e479504bac453bb70c779f5c0f3525": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", + "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", + "IPY_MODEL_02b94161e37b406ca4394b9eef1538df" + ], + "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", + "tabbable": null, + "tooltip": null } }, - "bfd0773475e040f3adaeb618a404adba": { + "cd106c03eda44df88946464b5e303d19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2719,7 +2881,7 @@ "width": null } }, - "c65afacf969543d192a5d2494cc1c534": { + "d1d88dae8067491696275aca69858030": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,7 +2934,7 @@ "width": null } }, - "ca1b57d86847492c9b297c02fc76cdb9": { + "d24b7d8cbfdc460e8b4363433bab3e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2790,7 +2952,7 @@ "text_color": null } }, - "ca23b68c35994190a9b183937f99bef0": { + "d2bc83af02974b4997b26d27c8043218": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,83 +3005,31 @@ "width": null } }, - "cb1cab0be90341f2a872bba3c4f5d6b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cc704a8505d043a78e762cb092fbf583": { + "d426400e6f5f4f559bce90df2411bfab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e8e17c5187f94971b594066cb042052e", - "placeholder": "​", - "style": "IPY_MODEL_d73ca9d21de341c1b49acece38eb3a86", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", + "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", + "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558" + ], + "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.51kB/s]" + "tooltip": null } }, - "cd8bce3acd8043d99418cf1e98c1ffd3": { + "d60ecde8bd1144dea8b8174f951c1ac9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2937,30 +3047,60 @@ "text_color": null } }, - "cf508e03d2364ab487717da959fbc5f6": { - "model_module": "@jupyter-widgets/controls", + "de3971382db3445da34fe599b2fd18c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3f20f2c522c44e99afe7b665f90476a", - "placeholder": "​", - "style": "IPY_MODEL_63b95cc7b3804f828a5027882e9297fc", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 16.2MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cf623252efaa4cadbfbcc762f85bb14f": { + "de9073d79ed24b348d5dcbd2cda64aaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3013,31 +3153,7 @@ "width": null } }, - "d0341643702b4f93b9c82872cc026fbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3a35ea4124b44ef9df6e0dae4a35972", - "IPY_MODEL_9b13d15c1ebf4bbab634d6a5ef436130", - "IPY_MODEL_f98d6ded2c7945df810ca80e9bd7a4a2" - ], - "layout": "IPY_MODEL_1a6c425339d741d0b672365a0a6a634f", - "tabbable": null, - "tooltip": null - } - }, - "d19a720fd38e43d9a44c01e6b604e36f": { + "debf497c726c49c19699637de9ea5396": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3090,91 +3206,70 @@ "width": null } }, - "d2f9ed6fa0ca4f829f4b4c9130690381": { + "e38763de16664cf4b837920d4bc2ace8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a16e8e1cc73e44bd8b38739fc3f7349e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6454eb33f0747e5941afecdf65c31ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", + "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", + "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20" + ], + "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", "tabbable": null, - "tooltip": null, - "value": 391.0 + "tooltip": null } }, - "d513be80490b4fb9a218bd185c374f60": { + "e914425948fb4ee4aeae1d90e350d558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", + "placeholder": "​", + "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 272MB/s]" } }, - "d73ca9d21de341c1b49acece38eb3a86": { + "e9d6ec450b2e48dcb5295b0addb03a08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dbc5896906b4403e91373c6f95c7f8a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e9ab3e84bf9c4f5e8e81eef5bd3fe849", - "IPY_MODEL_971f3be7589f424fb59cf1afd44b5a01", - "IPY_MODEL_cc704a8505d043a78e762cb092fbf583" - ], - "layout": "IPY_MODEL_813a3a0872a942708cd6a9346d4eafce", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "dfdd82544b204d99bf73fb297209e882": { + "f18185f7bfb34126ae47151814798ae9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3227,7 +3322,7 @@ "width": null } }, - "e0a1667bb19e41ffab1775d1cc89d2f2": { + "f28aab9da31b46fb80c0504babe16527": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3243,17 +3338,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf623252efaa4cadbfbcc762f85bb14f", + "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_58d151e1dec841068bb3e5ea2a92bf8d", + "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "e8e17c5187f94971b594066cb042052e": { + "f3ae141956064ff593c8324cddc63a9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f3d7b3156603425383cb4b2911ba3193": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3306,30 +3417,7 @@ "width": null } }, - "e9ab3e84bf9c4f5e8e81eef5bd3fe849": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_165f21fd1ca447ce9d79edfc85a1646e", - "placeholder": "​", - "style": "IPY_MODEL_847b6e3d28fe47989ff071d37ae0a736", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "ebda3f8c7f4441939a8f25ada957bda9": { + "f549e9ac8a50477798f2e9234e06003d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3382,48 +3470,56 @@ "width": null } }, - "ee015b6a5dd54462901d4fb785310f8f": { + "f5517afea1ad41e8ae488f9341fe54ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", + "placeholder": "​", + "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "f3a35ea4124b44ef9df6e0dae4a35972": { + "f5d710bb5f824ac6a960165532df517a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54446d6d66ed40fcb39ca2dd0e52b91d", - "placeholder": "​", - "style": "IPY_MODEL_47ca90e12b40435b9fd8c5bfa1cc221d", + "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 466062.0 } }, - "f57ceb2a8d51416491d48e1b29e3dfcb": { + "f7269a835d6543bb94a6753b3052198e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3476,30 +3572,7 @@ "width": null } }, - "f98d6ded2c7945df810ca80e9bd7a4a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d02ed65af34513bf68cff2532199bc", - "placeholder": "​", - "style": "IPY_MODEL_ee015b6a5dd54462901d4fb785310f8f", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 36.5MB/s]" - } - }, - "f99a3294523546e88e70530fed3f99f6": { + "fbabc79ad62741eeb0adf64606e0278c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3551,79 +3624,6 @@ "visibility": null, "width": null } - }, - "fb390d327367437688e1b2f6a2dc8c9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51bf1675356f432587b92cd14c7f82a2", - "IPY_MODEL_adf9f85cadca4af3b40ebf03eba16fa7", - "IPY_MODEL_9c5fb5a31e9f4d389fd58cc6bf03ee2d" - ], - "layout": "IPY_MODEL_d19a720fd38e43d9a44c01e6b604e36f", - "tabbable": null, - "tooltip": null - } - }, - "fb47c5e63669405d8b0f658221868569": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f57ceb2a8d51416491d48e1b29e3dfcb", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1c886bf965cf47cd8dad183a9a7ea37e", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "febb0cb6c81c4e63826fecf678c5cb82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c33fb4949914270b7542061aa7f5869", - "placeholder": "​", - "style": "IPY_MODEL_09202840b02144009b85bc9e81486cfe", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 33.7MB/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 11569e3e3..dc2c54cfa 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:49.864043Z", - "iopub.status.busy": "2024-07-09T06:06:49.863867Z", - "iopub.status.idle": "2024-07-09T06:06:54.860734Z", - "shell.execute_reply": "2024-07-09T06:06:54.860126Z" + "iopub.execute_input": "2024-07-09T06:22:03.233428Z", + "iopub.status.busy": "2024-07-09T06:22:03.232964Z", + "iopub.status.idle": "2024-07-09T06:22:08.850474Z", + "shell.execute_reply": "2024-07-09T06:22:08.849914Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.863462Z", - "iopub.status.busy": "2024-07-09T06:06:54.863090Z", - "iopub.status.idle": "2024-07-09T06:06:54.866371Z", - "shell.execute_reply": "2024-07-09T06:06:54.865843Z" + "iopub.execute_input": "2024-07-09T06:22:08.853152Z", + "iopub.status.busy": "2024-07-09T06:22:08.852690Z", + "iopub.status.idle": "2024-07-09T06:22:08.855934Z", + "shell.execute_reply": "2024-07-09T06:22:08.855477Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.868423Z", - "iopub.status.busy": "2024-07-09T06:06:54.868116Z", - "iopub.status.idle": "2024-07-09T06:06:54.872674Z", - "shell.execute_reply": "2024-07-09T06:06:54.872145Z" + "iopub.execute_input": "2024-07-09T06:22:08.857959Z", + "iopub.status.busy": "2024-07-09T06:22:08.857632Z", + "iopub.status.idle": "2024-07-09T06:22:08.861976Z", + "shell.execute_reply": "2024-07-09T06:22:08.861565Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.874945Z", - "iopub.status.busy": "2024-07-09T06:06:54.874555Z", - "iopub.status.idle": "2024-07-09T06:06:56.580748Z", - "shell.execute_reply": "2024-07-09T06:06:56.579989Z" + "iopub.execute_input": "2024-07-09T06:22:08.864012Z", + "iopub.status.busy": "2024-07-09T06:22:08.863632Z", + "iopub.status.idle": "2024-07-09T06:22:10.501197Z", + "shell.execute_reply": "2024-07-09T06:22:10.500598Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.583790Z", - "iopub.status.busy": "2024-07-09T06:06:56.583297Z", - "iopub.status.idle": "2024-07-09T06:06:56.593857Z", - "shell.execute_reply": "2024-07-09T06:06:56.593338Z" + "iopub.execute_input": "2024-07-09T06:22:10.503804Z", + "iopub.status.busy": "2024-07-09T06:22:10.503416Z", + "iopub.status.idle": "2024-07-09T06:22:10.513980Z", + "shell.execute_reply": "2024-07-09T06:22:10.513523Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.596127Z", - "iopub.status.busy": "2024-07-09T06:06:56.595810Z", - "iopub.status.idle": "2024-07-09T06:06:56.601311Z", - "shell.execute_reply": "2024-07-09T06:06:56.600761Z" + "iopub.execute_input": "2024-07-09T06:22:10.516180Z", + "iopub.status.busy": "2024-07-09T06:22:10.515850Z", + "iopub.status.idle": "2024-07-09T06:22:10.521399Z", + "shell.execute_reply": "2024-07-09T06:22:10.520894Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.603390Z", - "iopub.status.busy": "2024-07-09T06:06:56.602982Z", - "iopub.status.idle": "2024-07-09T06:06:57.047045Z", - "shell.execute_reply": "2024-07-09T06:06:57.046468Z" + "iopub.execute_input": "2024-07-09T06:22:10.523550Z", + "iopub.status.busy": "2024-07-09T06:22:10.523111Z", + "iopub.status.idle": "2024-07-09T06:22:10.966866Z", + "shell.execute_reply": "2024-07-09T06:22:10.966371Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:57.049476Z", - "iopub.status.busy": "2024-07-09T06:06:57.049058Z", - "iopub.status.idle": "2024-07-09T06:06:58.055039Z", - "shell.execute_reply": "2024-07-09T06:06:58.054558Z" + "iopub.execute_input": "2024-07-09T06:22:10.969003Z", + "iopub.status.busy": "2024-07-09T06:22:10.968716Z", + "iopub.status.idle": "2024-07-09T06:22:11.621713Z", + "shell.execute_reply": "2024-07-09T06:22:11.621235Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.057389Z", - "iopub.status.busy": "2024-07-09T06:06:58.057042Z", - "iopub.status.idle": "2024-07-09T06:06:58.075363Z", - "shell.execute_reply": "2024-07-09T06:06:58.074904Z" + "iopub.execute_input": "2024-07-09T06:22:11.624138Z", + "iopub.status.busy": "2024-07-09T06:22:11.623795Z", + "iopub.status.idle": "2024-07-09T06:22:11.641645Z", + "shell.execute_reply": "2024-07-09T06:22:11.641200Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.077543Z", - "iopub.status.busy": "2024-07-09T06:06:58.077109Z", - "iopub.status.idle": "2024-07-09T06:06:58.080313Z", - "shell.execute_reply": "2024-07-09T06:06:58.079788Z" + "iopub.execute_input": "2024-07-09T06:22:11.643659Z", + "iopub.status.busy": "2024-07-09T06:22:11.643333Z", + "iopub.status.idle": "2024-07-09T06:22:11.646457Z", + "shell.execute_reply": "2024-07-09T06:22:11.645916Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.082226Z", - "iopub.status.busy": "2024-07-09T06:06:58.081919Z", - "iopub.status.idle": "2024-07-09T06:07:12.215902Z", - "shell.execute_reply": "2024-07-09T06:07:12.215321Z" + "iopub.execute_input": "2024-07-09T06:22:11.648482Z", + "iopub.status.busy": "2024-07-09T06:22:11.648101Z", + "iopub.status.idle": "2024-07-09T06:22:26.104216Z", + "shell.execute_reply": "2024-07-09T06:22:26.103596Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.218512Z", - "iopub.status.busy": "2024-07-09T06:07:12.218295Z", - "iopub.status.idle": "2024-07-09T06:07:12.221837Z", - "shell.execute_reply": "2024-07-09T06:07:12.221338Z" + "iopub.execute_input": "2024-07-09T06:22:26.106855Z", + "iopub.status.busy": "2024-07-09T06:22:26.106613Z", + "iopub.status.idle": "2024-07-09T06:22:26.110484Z", + "shell.execute_reply": "2024-07-09T06:22:26.109922Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.223870Z", - "iopub.status.busy": "2024-07-09T06:07:12.223561Z", - "iopub.status.idle": "2024-07-09T06:07:12.934288Z", - "shell.execute_reply": "2024-07-09T06:07:12.933709Z" + "iopub.execute_input": "2024-07-09T06:22:26.112655Z", + "iopub.status.busy": "2024-07-09T06:22:26.112225Z", + "iopub.status.idle": "2024-07-09T06:22:26.806714Z", + "shell.execute_reply": "2024-07-09T06:22:26.806127Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.938010Z", - "iopub.status.busy": "2024-07-09T06:07:12.937076Z", - "iopub.status.idle": "2024-07-09T06:07:12.943726Z", - "shell.execute_reply": "2024-07-09T06:07:12.943251Z" + "iopub.execute_input": "2024-07-09T06:22:26.809582Z", + "iopub.status.busy": "2024-07-09T06:22:26.809200Z", + "iopub.status.idle": "2024-07-09T06:22:26.813988Z", + "shell.execute_reply": "2024-07-09T06:22:26.813500Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.947206Z", - "iopub.status.busy": "2024-07-09T06:07:12.946282Z", - "iopub.status.idle": "2024-07-09T06:07:13.044938Z", - "shell.execute_reply": "2024-07-09T06:07:13.044401Z" + "iopub.execute_input": "2024-07-09T06:22:26.817256Z", + "iopub.status.busy": "2024-07-09T06:22:26.816338Z", + "iopub.status.idle": "2024-07-09T06:22:26.913005Z", + "shell.execute_reply": "2024-07-09T06:22:26.912463Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.047402Z", - "iopub.status.busy": "2024-07-09T06:07:13.046885Z", - "iopub.status.idle": "2024-07-09T06:07:13.058728Z", - "shell.execute_reply": "2024-07-09T06:07:13.058266Z" + "iopub.execute_input": "2024-07-09T06:22:26.915328Z", + "iopub.status.busy": "2024-07-09T06:22:26.914958Z", + "iopub.status.idle": "2024-07-09T06:22:26.927202Z", + "shell.execute_reply": "2024-07-09T06:22:26.926711Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.060668Z", - "iopub.status.busy": "2024-07-09T06:07:13.060408Z", - "iopub.status.idle": "2024-07-09T06:07:13.068309Z", - "shell.execute_reply": "2024-07-09T06:07:13.067858Z" + "iopub.execute_input": "2024-07-09T06:22:26.929241Z", + "iopub.status.busy": "2024-07-09T06:22:26.928921Z", + "iopub.status.idle": "2024-07-09T06:22:26.936556Z", + "shell.execute_reply": "2024-07-09T06:22:26.936102Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.070443Z", - "iopub.status.busy": "2024-07-09T06:07:13.070120Z", - "iopub.status.idle": "2024-07-09T06:07:13.074136Z", - "shell.execute_reply": "2024-07-09T06:07:13.073600Z" + "iopub.execute_input": "2024-07-09T06:22:26.938661Z", + "iopub.status.busy": "2024-07-09T06:22:26.938342Z", + "iopub.status.idle": "2024-07-09T06:22:26.942738Z", + "shell.execute_reply": "2024-07-09T06:22:26.942303Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.076148Z", - "iopub.status.busy": "2024-07-09T06:07:13.075822Z", - "iopub.status.idle": "2024-07-09T06:07:13.081201Z", - "shell.execute_reply": "2024-07-09T06:07:13.080730Z" + "iopub.execute_input": "2024-07-09T06:22:26.944805Z", + "iopub.status.busy": "2024-07-09T06:22:26.944495Z", + "iopub.status.idle": "2024-07-09T06:22:26.949937Z", + "shell.execute_reply": "2024-07-09T06:22:26.949446Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.083236Z", - "iopub.status.busy": "2024-07-09T06:07:13.082820Z", - "iopub.status.idle": "2024-07-09T06:07:13.194939Z", - "shell.execute_reply": "2024-07-09T06:07:13.194383Z" + "iopub.execute_input": "2024-07-09T06:22:26.951973Z", + "iopub.status.busy": "2024-07-09T06:22:26.951651Z", + "iopub.status.idle": "2024-07-09T06:22:27.069852Z", + "shell.execute_reply": "2024-07-09T06:22:27.069287Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.197176Z", - "iopub.status.busy": "2024-07-09T06:07:13.196823Z", - "iopub.status.idle": "2024-07-09T06:07:13.304107Z", - "shell.execute_reply": "2024-07-09T06:07:13.303548Z" + "iopub.execute_input": "2024-07-09T06:22:27.072192Z", + "iopub.status.busy": "2024-07-09T06:22:27.071729Z", + "iopub.status.idle": "2024-07-09T06:22:27.179313Z", + "shell.execute_reply": "2024-07-09T06:22:27.178807Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.306217Z", - "iopub.status.busy": "2024-07-09T06:07:13.305912Z", - "iopub.status.idle": "2024-07-09T06:07:13.409689Z", - "shell.execute_reply": "2024-07-09T06:07:13.409121Z" + "iopub.execute_input": "2024-07-09T06:22:27.181419Z", + "iopub.status.busy": "2024-07-09T06:22:27.181072Z", + "iopub.status.idle": "2024-07-09T06:22:27.284684Z", + "shell.execute_reply": "2024-07-09T06:22:27.284186Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.411687Z", - "iopub.status.busy": "2024-07-09T06:07:13.411504Z", - "iopub.status.idle": "2024-07-09T06:07:13.513457Z", - "shell.execute_reply": "2024-07-09T06:07:13.512985Z" + "iopub.execute_input": "2024-07-09T06:22:27.286639Z", + "iopub.status.busy": "2024-07-09T06:22:27.286466Z", + "iopub.status.idle": "2024-07-09T06:22:27.389984Z", + "shell.execute_reply": "2024-07-09T06:22:27.389427Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.515573Z", - "iopub.status.busy": "2024-07-09T06:07:13.515239Z", - "iopub.status.idle": "2024-07-09T06:07:13.518447Z", - "shell.execute_reply": "2024-07-09T06:07:13.517912Z" + "iopub.execute_input": "2024-07-09T06:22:27.392223Z", + "iopub.status.busy": "2024-07-09T06:22:27.391882Z", + "iopub.status.idle": "2024-07-09T06:22:27.395109Z", + "shell.execute_reply": "2024-07-09T06:22:27.394562Z" }, "nbsphinx": "hidden" }, @@ -1392,23 +1392,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0449d39929844d5da948a065a35aeafc": { + "030f1aa243f74fa89a56e4a7afd62228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0712b5725fb444f6b11533e1aeb7e0d9": { + "0378871c4f2e413ea8000172dab79c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,7 +1463,7 @@ "width": null } }, - "0b47da1d6d3545c9963557edea183fed": { + "07f71655f74d435e83d929c621c5fa4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1476,31 +1478,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30ef09eb9ae7482faf1bdf6f05e62bbc", + "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", "placeholder": "​", - "style": "IPY_MODEL_194b5e6a002d4e1ea093db6cc3b04171", + "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "0fccfd304e924a65b05ce79e773c1b54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "label_encoder.txt: 100%" } }, - "123fcf3742424688a13533cede820c84": { + "13ce66a6db5846b19c327782fc330062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1553,7 +1539,53 @@ "width": null } }, - "13c388d3c4fd49ecb28abaf90751ecde": { + "184d81198c9f44339286502f77c93c88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", + "placeholder": "​", + "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 308MB/s]" + } + }, + "1a71755eaad3434f8376750eb9e21dca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", + "placeholder": "​", + "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "1ae5dfdbfc244f20b5e6a0872942a6b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,25 +1638,7 @@ "width": null } }, - "194b5e6a002d4e1ea093db6cc3b04171": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "195a6822a9d34059bfa57fa7dc2ea08a": { + "1b0ceb5f33ac4b4db24eb1efc0185a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1677,30 +1691,7 @@ "width": null } }, - "20865132107248018abd462fe8cb3cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2150fa8e732943099d5831902db8f05d", - "placeholder": "​", - "style": "IPY_MODEL_c6bf7d77f5a84f6880ec30d9f0e0221f", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 231MB/s]" - } - }, - "2150fa8e732943099d5831902db8f05d": { + "1bc0bb9f226044e2879bd45c2c9361b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1744,7 @@ "width": null } }, - "22a24b2c2ee44a4e92a3d4a384dda5fc": { + "2301b773af73470cb4968e5546eedca9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1768,42 +1759,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_54cf50f88da84bffa7c85bfec67a7e76", - "IPY_MODEL_be3b22f2a8d24e5fbc993ff804b948c4", - "IPY_MODEL_f05f7401b7ca48d39ce3f36de43cdf9f" + "IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", + "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", + "IPY_MODEL_184d81198c9f44339286502f77c93c88" ], - "layout": "IPY_MODEL_0712b5725fb444f6b11533e1aeb7e0d9", + "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", "tabbable": null, "tooltip": null } }, - "267c1283364b495e946ce40cc2e6c806": { + "2585d650431e4e389f7c2cb8af3ba22a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_615bae4fcc4b4def9e73b5dacc94cbf8", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_637271f5d4814034a20ed354b1562d5f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2843461d0fe54d07aa7c7464d5d97e6f": { + "25e28f77411f4b358cd7cb1316e7612d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,7 +1837,93 @@ "width": null } }, - "2a17845087ce4fb3bbf3f5361d27da45": { + "2d8898b4bffa4ce2b6f9d1610b45d2d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30534447f05f4c18b825551758a727d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_335c2445e0c0490f9984409ca39867c4", + "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", + "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890" + ], + "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", + "tabbable": null, + "tooltip": null + } + }, + "3231f300a42b4b8b99131e14ee8de6fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", + "placeholder": "​", + "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 7.45MB/s]" + } + }, + "335c2445e0c0490f9984409ca39867c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", + "placeholder": "​", + "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "3a0699a91dd3428f82bdfb374fb55e76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1872,17 +1939,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6641399ed52c4fab995e3dc94bbf4259", - "max": 128619.0, + "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0449d39929844d5da948a065a35aeafc", + "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 16887676.0 } }, - "2a18010cbd624cd48e9f02d08aaa10b9": { + "3ce9242cc785425291f31afd9dfc53a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1935,7 +2002,7 @@ "width": null } }, - "2a67df8bf81140f6a7d6468fddb34306": { + "3cea818f8d7f4614aa0ad2ec7b5348af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1953,7 +2020,7 @@ "text_color": null } }, - "2ec4c5dfe0504a16be106752751957ac": { + "482e270b3b2347b69272e33a3b7fe67a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,113 +2073,67 @@ "width": null } }, - "30ef09eb9ae7482faf1bdf6f05e62bbc": { - "model_module": "@jupyter-widgets/base", + "4c7ed89197a84102acf6416893e2d15b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "4ea3400f8dfa41de89365044c0f8cb8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a8a38a009f545a8944469f67a622d68": { - "model_module": "@jupyter-widgets/base", + "524d49fe9932444b9e6f4ad40ee2b836": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f4b565a51d24d85a9ea442bcfffae19": { + "548b97dd6b2146f6a9d554e5016ead75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2130,60 +2151,7 @@ "text_color": null } }, - "456321c963d040b38655d316d4a4add5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c19af69d62042f9b12a2bd44b9b4160": { + "5977ad08502f404892f9c3a89a020623": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2198,34 +2166,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0b47da1d6d3545c9963557edea183fed", - "IPY_MODEL_267c1283364b495e946ce40cc2e6c806", - "IPY_MODEL_93cddea59dd04f8fa3866059fe250a88" + "IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", + "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", + "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350" ], - "layout": "IPY_MODEL_195a6822a9d34059bfa57fa7dc2ea08a", + "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", "tabbable": null, "tooltip": null } }, - "4c64103fc4704d84a0b363bc803074fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "54cf50f88da84bffa7c85bfec67a7e76": { + "5b76f8ffb6354f24af0b35f6de244350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2240,84 +2190,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2843461d0fe54d07aa7c7464d5d97e6f", + "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", "placeholder": "​", - "style": "IPY_MODEL_4c64103fc4704d84a0b363bc803074fa", + "style": "IPY_MODEL_6398640d39d74482925348e964477d91", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 799kB/s]" } }, - "615bae4fcc4b4def9e73b5dacc94cbf8": { - "model_module": "@jupyter-widgets/base", + "5f7d007ea0b342b4a93dafc5282e07b1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "637271f5d4814034a20ed354b1562d5f": { + "6398640d39d74482925348e964477d91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "63942fab728d45799bfc2eefc024a7a4": { + "678f7e339f5149e181d689627ef3a751": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2370,7 +2287,7 @@ "width": null } }, - "6641399ed52c4fab995e3dc94bbf4259": { + "6a19b58ad5ac45dab732546ed937e951": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2423,33 +2340,30 @@ "width": null } }, - "70187e117f274ba7be34ee5a90087194": { + "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a8a38a009f545a8944469f67a622d68", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e11e60943fb4e2a9e9b14f836623a69", + "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", + "placeholder": "​", + "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "hyperparams.yaml: 100%" } }, - "788e28d38e2c400babcb0d314178f05f": { + "7515de987da94ef9a2d5455c30f1c2a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2464,31 +2378,63 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b7ea56d4b66546b38668ab8d80c352bd", + "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", "placeholder": "​", - "style": "IPY_MODEL_c90423f88db44167a1af99e50e8c0910", + "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 783kB/s]" + "value": "classifier.ckpt: 100%" } }, - "7e11e60943fb4e2a9e9b14f836623a69": { + "8cdbf19960b9483e9551e22643732a3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", + "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", + "IPY_MODEL_f72f986090fb419b8286e7286897e414" + ], + "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", + "tabbable": null, + "tooltip": null } }, - "939e1338c4514c3995a25094689cac39": { + "9234ebf1cac34261acd10dca3480e239": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", + "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", + "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe" + ], + "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", + "tabbable": null, + "tooltip": null + } + }, + "9b8c3f610f304fec945b68d663dc6f1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2541,30 +2487,7 @@ "width": null } }, - "93cddea59dd04f8fa3866059fe250a88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97c23900ef8b4bda83e2deb33f286e96", - "placeholder": "​", - "style": "IPY_MODEL_a4ee50184cd04a398f50ea40231b48f5", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 185MB/s]" - } - }, - "97c23900ef8b4bda83e2deb33f286e96": { + "9d721b1baf0c4e31970159ee84bcb8b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2617,57 +2540,23 @@ "width": null } }, - "a037f28a17554d22ae65d83ae3cb1295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_63942fab728d45799bfc2eefc024a7a4", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce1e2432d0004fffb3a515990af2e883", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "a11ca78e63eb4beeaa82f3e24c7dda66": { + "9eabbbb13d5e47fca4e356bee0501603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_facfb0cddea846c28095adc63697d300", - "IPY_MODEL_2a17845087ce4fb3bbf3f5361d27da45", - "IPY_MODEL_bcf4d70b1b41401ebb167cd30923698e" - ], - "layout": "IPY_MODEL_2a18010cbd624cd48e9f02d08aaa10b9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a4ee50184cd04a398f50ea40231b48f5": { + "a337d23527c34d92b63a1ecf6707124c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2685,49 +2574,113 @@ "text_color": null } }, - "a4ef0c0a14fa48d5a66728f16010ab81": { - "model_module": "@jupyter-widgets/controls", + "a3d79d00b77e420fb3bba762b3d9a0b6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b24547478f104455bc3f0621eb0ef31d": { - "model_module": "@jupyter-widgets/controls", + "a63baebd86ae43c990c6edc598a4879b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d75488175f804c07a186b79fbdfbb0b9", - "IPY_MODEL_a037f28a17554d22ae65d83ae3cb1295", - "IPY_MODEL_20865132107248018abd462fe8cb3cb6" - ], - "layout": "IPY_MODEL_939e1338c4514c3995a25094689cac39", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b7ea56d4b66546b38668ab8d80c352bd": { + "a962521435da44439fc8023f973b16bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2780,7 +2733,7 @@ "width": null } }, - "bcf4d70b1b41401ebb167cd30923698e": { + "b56b7a0332dc4e1c84a140c42ac16890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2795,83 +2748,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da7d96a45d7249f5857c4b5b6e2f6781", + "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", "placeholder": "​", - "style": "IPY_MODEL_f121cf50447e4cd1b84e10660f4c6858", + "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 8.45MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 193MB/s]" } }, - "be3b22f2a8d24e5fbc993ff804b948c4": { + "ca119d618680421aa4275a9c3bc6ada4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9e3d1ea843b4dd08836724ceb2184ff", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0fccfd304e924a65b05ce79e773c1b54", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c14b346779ea4cb3920d9eef5802fbd6": { + "da2148b68dd645dd98ed41c8058bb817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e16eb6da1ebc41ca80ca339c7037d837", - "IPY_MODEL_70187e117f274ba7be34ee5a90087194", - "IPY_MODEL_788e28d38e2c400babcb0d314178f05f" - ], - "layout": "IPY_MODEL_13c388d3c4fd49ecb28abaf90751ecde", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", "tabbable": null, - "tooltip": null - } - }, - "c6bf7d77f5a84f6880ec30d9f0e0221f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 3201.0 } }, - "c90423f88db44167a1af99e50e8c0910": { + "dce66522f3ac4607beae79e69e93745d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2889,7 +2818,7 @@ "text_color": null } }, - "c9e3d1ea843b4dd08836724ceb2184ff": { + "e0a6be03adc34387b1154d4540a2cc94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2942,7 +2871,33 @@ "width": null } }, - "ce1e2432d0004fffb3a515990af2e883": { + "e79c27b29e1c44bf9369d333f8526228": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "e7c617a65a6045ee945688614263ebc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2958,30 +2913,33 @@ "description_width": "" } }, - "d75488175f804c07a186b79fbdfbb0b9": { + "e9afc86b1d7747a8a5ffc78856b7be99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ec4c5dfe0504a16be106752751957ac", - "placeholder": "​", - "style": "IPY_MODEL_a4ef0c0a14fa48d5a66728f16010ab81", + "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "da7d96a45d7249f5857c4b5b6e2f6781": { + "eae9e35f11f747b58461317babdc3291": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3034,30 +2992,60 @@ "width": null } }, - "e16eb6da1ebc41ca80ca339c7037d837": { - "model_module": "@jupyter-widgets/controls", + "f39fc7e456254975882ada6d5b90254c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee674df35f7341e9a94912143a281079", - "placeholder": "​", - "style": "IPY_MODEL_e5b7443a6873473f92d8003c993c8774", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e5b7443a6873473f92d8003c993c8774": { + "f416c4b535bc4e10bf36f83830f8a6fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3075,7 +3063,7 @@ "text_color": null } }, - "ee674df35f7341e9a94912143a281079": { + "f47e6197a8974dacb497edf4211afa8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3128,7 +3116,7 @@ "width": null } }, - "f05f7401b7ca48d39ce3f36de43cdf9f": { + "f72f986090fb419b8286e7286897e414": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3143,53 +3131,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_123fcf3742424688a13533cede820c84", + "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", "placeholder": "​", - "style": "IPY_MODEL_3f4b565a51d24d85a9ea442bcfffae19", + "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 472kB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" } }, - "f121cf50447e4cd1b84e10660f4c6858": { - "model_module": "@jupyter-widgets/controls", + "fdbd1eb302114bcc85c0208f1bf7e7db": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "facfb0cddea846c28095adc63697d300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_456321c963d040b38655d316d4a4add5", - "placeholder": "​", - "style": "IPY_MODEL_2a67df8bf81140f6a7d6468fddb34306", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index d8c1583bb..73ef9d94b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:17.104713Z", - "iopub.status.busy": "2024-07-09T06:07:17.104537Z", - "iopub.status.idle": "2024-07-09T06:07:18.265236Z", - "shell.execute_reply": "2024-07-09T06:07:18.264675Z" + "iopub.execute_input": "2024-07-09T06:22:31.204629Z", + "iopub.status.busy": "2024-07-09T06:22:31.204447Z", + "iopub.status.idle": "2024-07-09T06:22:32.372754Z", + "shell.execute_reply": "2024-07-09T06:22:32.372127Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.267865Z", - "iopub.status.busy": "2024-07-09T06:07:18.267429Z", - "iopub.status.idle": "2024-07-09T06:07:18.270517Z", - "shell.execute_reply": "2024-07-09T06:07:18.270070Z" + "iopub.execute_input": "2024-07-09T06:22:32.375331Z", + "iopub.status.busy": "2024-07-09T06:22:32.374890Z", + "iopub.status.idle": "2024-07-09T06:22:32.377978Z", + "shell.execute_reply": "2024-07-09T06:22:32.377441Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.272623Z", - "iopub.status.busy": "2024-07-09T06:07:18.272315Z", - "iopub.status.idle": "2024-07-09T06:07:18.280981Z", - "shell.execute_reply": "2024-07-09T06:07:18.280528Z" + "iopub.execute_input": "2024-07-09T06:22:32.380095Z", + "iopub.status.busy": "2024-07-09T06:22:32.379830Z", + "iopub.status.idle": "2024-07-09T06:22:32.388412Z", + "shell.execute_reply": "2024-07-09T06:22:32.387959Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.282961Z", - "iopub.status.busy": "2024-07-09T06:07:18.282658Z", - "iopub.status.idle": "2024-07-09T06:07:18.287681Z", - "shell.execute_reply": "2024-07-09T06:07:18.287134Z" + "iopub.execute_input": "2024-07-09T06:22:32.390372Z", + "iopub.status.busy": "2024-07-09T06:22:32.390051Z", + "iopub.status.idle": "2024-07-09T06:22:32.394799Z", + "shell.execute_reply": "2024-07-09T06:22:32.394245Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.289696Z", - "iopub.status.busy": "2024-07-09T06:07:18.289396Z", - "iopub.status.idle": "2024-07-09T06:07:18.471428Z", - "shell.execute_reply": "2024-07-09T06:07:18.470899Z" + "iopub.execute_input": "2024-07-09T06:22:32.396873Z", + "iopub.status.busy": "2024-07-09T06:22:32.396576Z", + "iopub.status.idle": "2024-07-09T06:22:32.582697Z", + "shell.execute_reply": "2024-07-09T06:22:32.582077Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.473985Z", - "iopub.status.busy": "2024-07-09T06:07:18.473651Z", - "iopub.status.idle": "2024-07-09T06:07:18.848606Z", - "shell.execute_reply": "2024-07-09T06:07:18.847988Z" + "iopub.execute_input": "2024-07-09T06:22:32.585043Z", + "iopub.status.busy": "2024-07-09T06:22:32.584844Z", + "iopub.status.idle": "2024-07-09T06:22:32.959426Z", + "shell.execute_reply": "2024-07-09T06:22:32.958831Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.850909Z", - "iopub.status.busy": "2024-07-09T06:07:18.850607Z", - "iopub.status.idle": "2024-07-09T06:07:18.874812Z", - "shell.execute_reply": "2024-07-09T06:07:18.874352Z" + "iopub.execute_input": "2024-07-09T06:22:32.961607Z", + "iopub.status.busy": "2024-07-09T06:22:32.961418Z", + "iopub.status.idle": "2024-07-09T06:22:32.984249Z", + "shell.execute_reply": "2024-07-09T06:22:32.983819Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.877306Z", - "iopub.status.busy": "2024-07-09T06:07:18.876942Z", - "iopub.status.idle": "2024-07-09T06:07:18.888512Z", - "shell.execute_reply": "2024-07-09T06:07:18.887949Z" + "iopub.execute_input": "2024-07-09T06:22:32.986453Z", + "iopub.status.busy": "2024-07-09T06:22:32.986022Z", + "iopub.status.idle": "2024-07-09T06:22:32.997152Z", + "shell.execute_reply": "2024-07-09T06:22:32.996629Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.890878Z", - "iopub.status.busy": "2024-07-09T06:07:18.890562Z", - "iopub.status.idle": "2024-07-09T06:07:20.924393Z", - "shell.execute_reply": "2024-07-09T06:07:20.923804Z" + "iopub.execute_input": "2024-07-09T06:22:32.999567Z", + "iopub.status.busy": "2024-07-09T06:22:32.999237Z", + "iopub.status.idle": "2024-07-09T06:22:35.072126Z", + "shell.execute_reply": "2024-07-09T06:22:35.071432Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.926686Z", - "iopub.status.busy": "2024-07-09T06:07:20.926410Z", - "iopub.status.idle": "2024-07-09T06:07:20.949428Z", - "shell.execute_reply": "2024-07-09T06:07:20.948894Z" + "iopub.execute_input": "2024-07-09T06:22:35.074948Z", + "iopub.status.busy": "2024-07-09T06:22:35.074462Z", + "iopub.status.idle": "2024-07-09T06:22:35.096631Z", + "shell.execute_reply": "2024-07-09T06:22:35.096147Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.951661Z", - "iopub.status.busy": "2024-07-09T06:07:20.951461Z", - "iopub.status.idle": "2024-07-09T06:07:20.970546Z", - "shell.execute_reply": "2024-07-09T06:07:20.970043Z" + "iopub.execute_input": "2024-07-09T06:22:35.098742Z", + "iopub.status.busy": "2024-07-09T06:22:35.098472Z", + "iopub.status.idle": "2024-07-09T06:22:35.116671Z", + "shell.execute_reply": "2024-07-09T06:22:35.116210Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.972589Z", - "iopub.status.busy": "2024-07-09T06:07:20.972401Z", - "iopub.status.idle": "2024-07-09T06:07:20.987323Z", - "shell.execute_reply": "2024-07-09T06:07:20.986871Z" + "iopub.execute_input": "2024-07-09T06:22:35.118721Z", + "iopub.status.busy": "2024-07-09T06:22:35.118381Z", + "iopub.status.idle": "2024-07-09T06:22:35.132562Z", + "shell.execute_reply": "2024-07-09T06:22:35.132113Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.989414Z", - "iopub.status.busy": "2024-07-09T06:07:20.989082Z", - "iopub.status.idle": "2024-07-09T06:07:21.008745Z", - "shell.execute_reply": "2024-07-09T06:07:21.008145Z" + "iopub.execute_input": "2024-07-09T06:22:35.134629Z", + "iopub.status.busy": "2024-07-09T06:22:35.134293Z", + "iopub.status.idle": "2024-07-09T06:22:35.152969Z", + "shell.execute_reply": "2024-07-09T06:22:35.152458Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1a2d9de663414b3197830208500bd4c4", + "model_id": "74c24ad981f147efb352816e9dafec11", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.010907Z", - "iopub.status.busy": "2024-07-09T06:07:21.010568Z", - "iopub.status.idle": "2024-07-09T06:07:21.026290Z", - "shell.execute_reply": "2024-07-09T06:07:21.025716Z" + "iopub.execute_input": "2024-07-09T06:22:35.154841Z", + "iopub.status.busy": "2024-07-09T06:22:35.154670Z", + "iopub.status.idle": "2024-07-09T06:22:35.169134Z", + "shell.execute_reply": "2024-07-09T06:22:35.168685Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.028755Z", - "iopub.status.busy": "2024-07-09T06:07:21.028398Z", - "iopub.status.idle": "2024-07-09T06:07:21.034384Z", - "shell.execute_reply": "2024-07-09T06:07:21.033940Z" + "iopub.execute_input": "2024-07-09T06:22:35.170991Z", + "iopub.status.busy": "2024-07-09T06:22:35.170807Z", + "iopub.status.idle": "2024-07-09T06:22:35.176614Z", + "shell.execute_reply": "2024-07-09T06:22:35.176098Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.036570Z", - "iopub.status.busy": "2024-07-09T06:07:21.036166Z", - "iopub.status.idle": "2024-07-09T06:07:21.054691Z", - "shell.execute_reply": "2024-07-09T06:07:21.054210Z" + "iopub.execute_input": "2024-07-09T06:22:35.178580Z", + "iopub.status.busy": "2024-07-09T06:22:35.178328Z", + "iopub.status.idle": "2024-07-09T06:22:35.196553Z", + "shell.execute_reply": "2024-07-09T06:22:35.196112Z" } }, "outputs": [ @@ -1447,54 +1447,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0ca28b9c23f6452c95c38d0043efadcc": { + "00d78c11cb114efca0b0c49d7e0cb9be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7456c78e6a0f4d568c70ed7a6535115d", - "placeholder": "​", - "style": "IPY_MODEL_fe301e732a514ec286d6c27d70994344", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13017.52 examples/s]" - } - }, - "1a2d9de663414b3197830208500bd4c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55a34ec37114452c9d8c054c182cbc52", - "IPY_MODEL_d0bd7cf6b2524951ac939fb65399ac64", - "IPY_MODEL_0ca28b9c23f6452c95c38d0043efadcc" - ], - "layout": "IPY_MODEL_d5c5823e33414b1f899751731a81a142", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "35c38181cf4b4429a72e3b23df75ccbe": { + "110ab4d837414033a320250c8a01f402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1547,7 +1518,23 @@ "width": null } }, - "54de8bdcfc254280ad482cd4c4ba0ed9": { + "1b9a95ea9570469c89df3c913719453d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "39e9da6fa70e44bea4cd6db6fbb2a1b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1600,30 +1587,7 @@ "width": null } }, - "55a34ec37114452c9d8c054c182cbc52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35c38181cf4b4429a72e3b23df75ccbe", - "placeholder": "​", - "style": "IPY_MODEL_fbc6c2a9ffc3454292e17169e84293d9", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "7456c78e6a0f4d568c70ed7a6535115d": { + "4f663e6b17ca4c42bf50adc567d16ba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,49 +1640,7 @@ "width": null } }, - "98ecc16b617a454daf4d29b486be43d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d0bd7cf6b2524951ac939fb65399ac64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54de8bdcfc254280ad482cd4c4ba0ed9", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_98ecc16b617a454daf4d29b486be43d2", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "d5c5823e33414b1f899751731a81a142": { + "53f5526f4be149a09e57d6eddb464297": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,25 +1693,103 @@ "width": null } }, - "fbc6c2a9ffc3454292e17169e84293d9": { + "74c24ad981f147efb352816e9dafec11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", + "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", + "IPY_MODEL_9c62609186764ad4b5447a66b1294674" + ], + "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", + "tabbable": null, + "tooltip": null + } + }, + "9c62609186764ad4b5447a66b1294674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", + "placeholder": "​", + "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13749.43 examples/s]" + } + }, + "cb3e52e8971843afb00d0a4e915483f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", + "placeholder": "​", + "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "ce349bf1dbe749ccb7ed3c31e8593c0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "fe301e732a514ec286d6c27d70994344": { + "f0a497561f9e46278d786855f5eaad3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 94ecb8df7..ce137ebae 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:23.680348Z", - "iopub.status.busy": "2024-07-09T06:07:23.679942Z", - "iopub.status.idle": "2024-07-09T06:07:24.840040Z", - "shell.execute_reply": "2024-07-09T06:07:24.839424Z" + "iopub.execute_input": "2024-07-09T06:22:37.993129Z", + "iopub.status.busy": "2024-07-09T06:22:37.992951Z", + "iopub.status.idle": "2024-07-09T06:22:39.161512Z", + "shell.execute_reply": "2024-07-09T06:22:39.160977Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.842750Z", - "iopub.status.busy": "2024-07-09T06:07:24.842323Z", - "iopub.status.idle": "2024-07-09T06:07:24.845243Z", - "shell.execute_reply": "2024-07-09T06:07:24.844804Z" + "iopub.execute_input": "2024-07-09T06:22:39.163953Z", + "iopub.status.busy": "2024-07-09T06:22:39.163675Z", + "iopub.status.idle": "2024-07-09T06:22:39.167013Z", + "shell.execute_reply": "2024-07-09T06:22:39.166442Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.847453Z", - "iopub.status.busy": "2024-07-09T06:07:24.847128Z", - "iopub.status.idle": "2024-07-09T06:07:24.855930Z", - "shell.execute_reply": "2024-07-09T06:07:24.855505Z" + "iopub.execute_input": "2024-07-09T06:22:39.169075Z", + "iopub.status.busy": "2024-07-09T06:22:39.168891Z", + "iopub.status.idle": "2024-07-09T06:22:39.178038Z", + "shell.execute_reply": "2024-07-09T06:22:39.177537Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.857929Z", - "iopub.status.busy": "2024-07-09T06:07:24.857595Z", - "iopub.status.idle": "2024-07-09T06:07:24.862104Z", - "shell.execute_reply": "2024-07-09T06:07:24.861695Z" + "iopub.execute_input": "2024-07-09T06:22:39.180209Z", + "iopub.status.busy": "2024-07-09T06:22:39.179770Z", + "iopub.status.idle": "2024-07-09T06:22:39.185024Z", + "shell.execute_reply": "2024-07-09T06:22:39.184472Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.864146Z", - "iopub.status.busy": "2024-07-09T06:07:24.863823Z", - "iopub.status.idle": "2024-07-09T06:07:25.049949Z", - "shell.execute_reply": "2024-07-09T06:07:25.049442Z" + "iopub.execute_input": "2024-07-09T06:22:39.187067Z", + "iopub.status.busy": "2024-07-09T06:22:39.186875Z", + "iopub.status.idle": "2024-07-09T06:22:39.372545Z", + "shell.execute_reply": "2024-07-09T06:22:39.372057Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.052422Z", - "iopub.status.busy": "2024-07-09T06:07:25.052091Z", - "iopub.status.idle": "2024-07-09T06:07:25.423667Z", - "shell.execute_reply": "2024-07-09T06:07:25.423083Z" + "iopub.execute_input": "2024-07-09T06:22:39.375070Z", + "iopub.status.busy": "2024-07-09T06:22:39.374695Z", + "iopub.status.idle": "2024-07-09T06:22:39.746103Z", + "shell.execute_reply": "2024-07-09T06:22:39.745532Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.426087Z", - "iopub.status.busy": "2024-07-09T06:07:25.425645Z", - "iopub.status.idle": "2024-07-09T06:07:25.428553Z", - "shell.execute_reply": "2024-07-09T06:07:25.428031Z" + "iopub.execute_input": "2024-07-09T06:22:39.748354Z", + "iopub.status.busy": "2024-07-09T06:22:39.747948Z", + "iopub.status.idle": "2024-07-09T06:22:39.750850Z", + "shell.execute_reply": "2024-07-09T06:22:39.750287Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.430704Z", - "iopub.status.busy": "2024-07-09T06:07:25.430393Z", - "iopub.status.idle": "2024-07-09T06:07:25.464950Z", - "shell.execute_reply": "2024-07-09T06:07:25.464317Z" + "iopub.execute_input": "2024-07-09T06:22:39.752967Z", + "iopub.status.busy": "2024-07-09T06:22:39.752650Z", + "iopub.status.idle": "2024-07-09T06:22:39.786581Z", + "shell.execute_reply": "2024-07-09T06:22:39.786005Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.467723Z", - "iopub.status.busy": "2024-07-09T06:07:25.467379Z", - "iopub.status.idle": "2024-07-09T06:07:27.572119Z", - "shell.execute_reply": "2024-07-09T06:07:27.571460Z" + "iopub.execute_input": "2024-07-09T06:22:39.788986Z", + "iopub.status.busy": "2024-07-09T06:22:39.788562Z", + "iopub.status.idle": "2024-07-09T06:22:41.833490Z", + "shell.execute_reply": "2024-07-09T06:22:41.832904Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.574872Z", - "iopub.status.busy": "2024-07-09T06:07:27.574321Z", - "iopub.status.idle": "2024-07-09T06:07:27.593711Z", - "shell.execute_reply": "2024-07-09T06:07:27.593214Z" + "iopub.execute_input": "2024-07-09T06:22:41.836099Z", + "iopub.status.busy": "2024-07-09T06:22:41.835607Z", + "iopub.status.idle": "2024-07-09T06:22:41.853902Z", + "shell.execute_reply": "2024-07-09T06:22:41.853447Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.595950Z", - "iopub.status.busy": "2024-07-09T06:07:27.595603Z", - "iopub.status.idle": "2024-07-09T06:07:27.602371Z", - "shell.execute_reply": "2024-07-09T06:07:27.601951Z" + "iopub.execute_input": "2024-07-09T06:22:41.855942Z", + "iopub.status.busy": "2024-07-09T06:22:41.855674Z", + "iopub.status.idle": "2024-07-09T06:22:41.862009Z", + "shell.execute_reply": "2024-07-09T06:22:41.861577Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.604397Z", - "iopub.status.busy": "2024-07-09T06:07:27.604145Z", - "iopub.status.idle": "2024-07-09T06:07:27.609899Z", - "shell.execute_reply": "2024-07-09T06:07:27.609354Z" + "iopub.execute_input": "2024-07-09T06:22:41.864048Z", + "iopub.status.busy": "2024-07-09T06:22:41.863746Z", + "iopub.status.idle": "2024-07-09T06:22:41.869497Z", + "shell.execute_reply": "2024-07-09T06:22:41.869049Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.612024Z", - "iopub.status.busy": "2024-07-09T06:07:27.611722Z", - "iopub.status.idle": "2024-07-09T06:07:27.622179Z", - "shell.execute_reply": "2024-07-09T06:07:27.621619Z" + "iopub.execute_input": "2024-07-09T06:22:41.871525Z", + "iopub.status.busy": "2024-07-09T06:22:41.871197Z", + "iopub.status.idle": "2024-07-09T06:22:41.881508Z", + "shell.execute_reply": "2024-07-09T06:22:41.881073Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.624399Z", - "iopub.status.busy": "2024-07-09T06:07:27.624005Z", - "iopub.status.idle": "2024-07-09T06:07:27.633408Z", - "shell.execute_reply": "2024-07-09T06:07:27.632881Z" + "iopub.execute_input": "2024-07-09T06:22:41.883405Z", + "iopub.status.busy": "2024-07-09T06:22:41.883229Z", + "iopub.status.idle": "2024-07-09T06:22:41.892315Z", + "shell.execute_reply": "2024-07-09T06:22:41.891876Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.635347Z", - "iopub.status.busy": "2024-07-09T06:07:27.635173Z", - "iopub.status.idle": "2024-07-09T06:07:27.642142Z", - "shell.execute_reply": "2024-07-09T06:07:27.641593Z" + "iopub.execute_input": "2024-07-09T06:22:41.894287Z", + "iopub.status.busy": "2024-07-09T06:22:41.894105Z", + "iopub.status.idle": "2024-07-09T06:22:41.900998Z", + "shell.execute_reply": "2024-07-09T06:22:41.900471Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.644222Z", - "iopub.status.busy": "2024-07-09T06:07:27.643908Z", - "iopub.status.idle": "2024-07-09T06:07:27.653100Z", - "shell.execute_reply": "2024-07-09T06:07:27.652566Z" + "iopub.execute_input": "2024-07-09T06:22:41.903078Z", + "iopub.status.busy": "2024-07-09T06:22:41.902737Z", + "iopub.status.idle": "2024-07-09T06:22:41.912055Z", + "shell.execute_reply": "2024-07-09T06:22:41.911568Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.655280Z", - "iopub.status.busy": "2024-07-09T06:07:27.654836Z", - "iopub.status.idle": "2024-07-09T06:07:27.669689Z", - "shell.execute_reply": "2024-07-09T06:07:27.669228Z" + "iopub.execute_input": "2024-07-09T06:22:41.914091Z", + "iopub.status.busy": "2024-07-09T06:22:41.913764Z", + "iopub.status.idle": "2024-07-09T06:22:41.929676Z", + "shell.execute_reply": "2024-07-09T06:22:41.929121Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 40dc490de..7643450d8 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:30.416656Z", - "iopub.status.busy": "2024-07-09T06:07:30.416476Z", - "iopub.status.idle": "2024-07-09T06:07:33.393782Z", - "shell.execute_reply": "2024-07-09T06:07:33.393218Z" + "iopub.execute_input": "2024-07-09T06:22:44.582459Z", + "iopub.status.busy": "2024-07-09T06:22:44.582285Z", + "iopub.status.idle": "2024-07-09T06:22:47.462723Z", + "shell.execute_reply": "2024-07-09T06:22:47.462156Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.396250Z", - "iopub.status.busy": "2024-07-09T06:07:33.395935Z", - "iopub.status.idle": "2024-07-09T06:07:33.399661Z", - "shell.execute_reply": "2024-07-09T06:07:33.399144Z" + "iopub.execute_input": "2024-07-09T06:22:47.465496Z", + "iopub.status.busy": "2024-07-09T06:22:47.464992Z", + "iopub.status.idle": "2024-07-09T06:22:47.468609Z", + "shell.execute_reply": "2024-07-09T06:22:47.468171Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.401587Z", - "iopub.status.busy": "2024-07-09T06:07:33.401397Z", - "iopub.status.idle": "2024-07-09T06:07:45.169276Z", - "shell.execute_reply": "2024-07-09T06:07:45.168703Z" + "iopub.execute_input": "2024-07-09T06:22:47.470675Z", + "iopub.status.busy": "2024-07-09T06:22:47.470354Z", + "iopub.status.idle": "2024-07-09T06:22:59.043271Z", + "shell.execute_reply": "2024-07-09T06:22:59.042771Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd4605541b5149cd9d1ad54f08320d7b", + "model_id": "06dcb12093be456cb352de6ce861659f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "196041f8fc64445d902757f8bc0461b5", + "model_id": "790aee9705fa42f79ce0f8850fc28992", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2bba1ab8083649288982f535f9854291", + "model_id": "215e8fef035f4d37a36a704de452b760", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b922928633d406296c2f7f4a11c363c", + "model_id": "e74d0f623f774aa5a1554c10228f1654", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "65b19b2b747d4d5281997036b3117f72", + "model_id": "f85257acca8547839184b5f056eac10e", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d5400b6588744d192a0e142668a676a", + "model_id": "e9632dad724b4651afed5367d50e22c4", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8d5e4eb0eb4406c95b64e0c2246c01b", + "model_id": "f9b540e1a55a4d16ad1b5a90f594ee47", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4b166c77d384273866541f5ccf30e60", + "model_id": "22b9600afaf14805a96622049f592034", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.171479Z", - "iopub.status.busy": "2024-07-09T06:07:45.171278Z", - "iopub.status.idle": "2024-07-09T06:07:45.175170Z", - "shell.execute_reply": "2024-07-09T06:07:45.174637Z" + "iopub.execute_input": "2024-07-09T06:22:59.045398Z", + "iopub.status.busy": "2024-07-09T06:22:59.045117Z", + "iopub.status.idle": "2024-07-09T06:22:59.048809Z", + "shell.execute_reply": "2024-07-09T06:22:59.048389Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.177179Z", - "iopub.status.busy": "2024-07-09T06:07:45.176847Z", - "iopub.status.idle": "2024-07-09T06:07:56.743400Z", - "shell.execute_reply": "2024-07-09T06:07:56.742700Z" + "iopub.execute_input": "2024-07-09T06:22:59.050786Z", + "iopub.status.busy": "2024-07-09T06:22:59.050475Z", + "iopub.status.idle": "2024-07-09T06:23:10.550360Z", + "shell.execute_reply": "2024-07-09T06:23:10.549830Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e4710c1045041a7af16f0ee012a9646", + "model_id": "4dc3098204c343329173882a90c17240", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:56.746074Z", - "iopub.status.busy": "2024-07-09T06:07:56.745817Z", - "iopub.status.idle": "2024-07-09T06:08:15.057962Z", - "shell.execute_reply": "2024-07-09T06:08:15.057324Z" + "iopub.execute_input": "2024-07-09T06:23:10.553016Z", + "iopub.status.busy": "2024-07-09T06:23:10.552718Z", + "iopub.status.idle": "2024-07-09T06:23:28.623727Z", + "shell.execute_reply": "2024-07-09T06:23:28.623090Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.060710Z", - "iopub.status.busy": "2024-07-09T06:08:15.060486Z", - "iopub.status.idle": "2024-07-09T06:08:15.065482Z", - "shell.execute_reply": "2024-07-09T06:08:15.065002Z" + "iopub.execute_input": "2024-07-09T06:23:28.626614Z", + "iopub.status.busy": "2024-07-09T06:23:28.626243Z", + "iopub.status.idle": "2024-07-09T06:23:28.631908Z", + "shell.execute_reply": "2024-07-09T06:23:28.631461Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.067609Z", - "iopub.status.busy": "2024-07-09T06:08:15.067259Z", - "iopub.status.idle": "2024-07-09T06:08:15.071263Z", - "shell.execute_reply": "2024-07-09T06:08:15.070812Z" + "iopub.execute_input": "2024-07-09T06:23:28.633766Z", + "iopub.status.busy": "2024-07-09T06:23:28.633587Z", + "iopub.status.idle": "2024-07-09T06:23:28.637822Z", + "shell.execute_reply": "2024-07-09T06:23:28.637289Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.073356Z", - "iopub.status.busy": "2024-07-09T06:08:15.072969Z", - "iopub.status.idle": "2024-07-09T06:08:15.081979Z", - "shell.execute_reply": "2024-07-09T06:08:15.081440Z" + "iopub.execute_input": "2024-07-09T06:23:28.640034Z", + "iopub.status.busy": "2024-07-09T06:23:28.639708Z", + "iopub.status.idle": "2024-07-09T06:23:28.648404Z", + "shell.execute_reply": "2024-07-09T06:23:28.647970Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.083945Z", - "iopub.status.busy": "2024-07-09T06:08:15.083772Z", - "iopub.status.idle": "2024-07-09T06:08:15.110709Z", - "shell.execute_reply": "2024-07-09T06:08:15.110077Z" + "iopub.execute_input": "2024-07-09T06:23:28.650474Z", + "iopub.status.busy": "2024-07-09T06:23:28.650156Z", + "iopub.status.idle": "2024-07-09T06:23:28.677896Z", + "shell.execute_reply": "2024-07-09T06:23:28.677458Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.113263Z", - "iopub.status.busy": "2024-07-09T06:08:15.112899Z", - "iopub.status.idle": "2024-07-09T06:08:48.018465Z", - "shell.execute_reply": "2024-07-09T06:08:48.017880Z" + "iopub.execute_input": "2024-07-09T06:23:28.679944Z", + "iopub.status.busy": "2024-07-09T06:23:28.679632Z", + "iopub.status.idle": "2024-07-09T06:24:00.730609Z", + "shell.execute_reply": "2024-07-09T06:24:00.729889Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.828\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.752\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.643\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.660\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6b554b734a6e4e3d9fb6f3ff5d0940c2", + "model_id": "2d1e313f048a4f3a8de23b028b96ac30", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7b6edba21c23485a95c2c8d3aab79786", + "model_id": "2fc5c7705c8a411696033cba51b98414", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.772\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.676\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.618\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.516\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "891956e6cdf34df29d3132aa55b99817", + "model_id": "2441a271713941f58f78b8fda33f4ac6", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "39f435f587fd4607806141736054b6df", + "model_id": "3e2096230a38431c8485c89adab185e8", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.851\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.705\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.922\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.374\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62c3c15d8c074e74816c7b8d0fba7678", + "model_id": "e85162633bd84b0c8065890dd355820b", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6cbd56b47e648efb6391b45895679f0", + "model_id": "b587a2728e9640d8a9ca1b92d99742fb", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.020876Z", - "iopub.status.busy": "2024-07-09T06:08:48.020635Z", - "iopub.status.idle": "2024-07-09T06:08:48.034832Z", - "shell.execute_reply": "2024-07-09T06:08:48.034409Z" + "iopub.execute_input": "2024-07-09T06:24:00.733259Z", + "iopub.status.busy": "2024-07-09T06:24:00.732863Z", + "iopub.status.idle": "2024-07-09T06:24:00.747461Z", + "shell.execute_reply": "2024-07-09T06:24:00.746842Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.036973Z", - "iopub.status.busy": "2024-07-09T06:08:48.036566Z", - "iopub.status.idle": "2024-07-09T06:08:48.515541Z", - "shell.execute_reply": "2024-07-09T06:08:48.514904Z" + "iopub.execute_input": "2024-07-09T06:24:00.750028Z", + "iopub.status.busy": "2024-07-09T06:24:00.749413Z", + "iopub.status.idle": "2024-07-09T06:24:01.220584Z", + "shell.execute_reply": "2024-07-09T06:24:01.220037Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.518205Z", - "iopub.status.busy": "2024-07-09T06:08:48.518003Z", - "iopub.status.idle": "2024-07-09T06:10:24.891504Z", - "shell.execute_reply": "2024-07-09T06:10:24.890865Z" + "iopub.execute_input": "2024-07-09T06:24:01.222996Z", + "iopub.status.busy": "2024-07-09T06:24:01.222634Z", + "iopub.status.idle": "2024-07-09T06:25:37.104449Z", + "shell.execute_reply": "2024-07-09T06:25:37.103860Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1e3abfce0184ef19c5c108ae494316b", + "model_id": "6a90dd6a6a2443a98bde0d45de0efdde", "version_major": 2, "version_minor": 0 }, @@ -1144,10 +1144,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:24.894040Z", - "iopub.status.busy": "2024-07-09T06:10:24.893621Z", - "iopub.status.idle": "2024-07-09T06:10:25.338187Z", - "shell.execute_reply": "2024-07-09T06:10:25.337650Z" + "iopub.execute_input": "2024-07-09T06:25:37.106884Z", + "iopub.status.busy": "2024-07-09T06:25:37.106446Z", + "iopub.status.idle": "2024-07-09T06:25:37.555548Z", + "shell.execute_reply": "2024-07-09T06:25:37.554986Z" } }, "outputs": [ @@ -1293,10 +1293,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.341041Z", - "iopub.status.busy": "2024-07-09T06:10:25.340571Z", - "iopub.status.idle": "2024-07-09T06:10:25.402746Z", - "shell.execute_reply": "2024-07-09T06:10:25.402151Z" + "iopub.execute_input": "2024-07-09T06:25:37.558429Z", + "iopub.status.busy": "2024-07-09T06:25:37.557965Z", + "iopub.status.idle": "2024-07-09T06:25:37.620886Z", + "shell.execute_reply": "2024-07-09T06:25:37.620404Z" } }, "outputs": [ @@ -1400,10 +1400,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.405453Z", - "iopub.status.busy": "2024-07-09T06:10:25.405037Z", - "iopub.status.idle": "2024-07-09T06:10:25.413465Z", - "shell.execute_reply": "2024-07-09T06:10:25.413028Z" + "iopub.execute_input": "2024-07-09T06:25:37.623179Z", + "iopub.status.busy": "2024-07-09T06:25:37.622863Z", + "iopub.status.idle": "2024-07-09T06:25:37.632155Z", + "shell.execute_reply": "2024-07-09T06:25:37.631723Z" } }, "outputs": [ @@ -1533,10 +1533,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.415625Z", - "iopub.status.busy": "2024-07-09T06:10:25.415232Z", - "iopub.status.idle": "2024-07-09T06:10:25.419976Z", - "shell.execute_reply": "2024-07-09T06:10:25.419444Z" + "iopub.execute_input": "2024-07-09T06:25:37.634200Z", + "iopub.status.busy": "2024-07-09T06:25:37.633914Z", + "iopub.status.idle": "2024-07-09T06:25:37.638563Z", + "shell.execute_reply": "2024-07-09T06:25:37.638106Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1582,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.421866Z", - "iopub.status.busy": "2024-07-09T06:10:25.421691Z", - "iopub.status.idle": "2024-07-09T06:10:25.930458Z", - "shell.execute_reply": "2024-07-09T06:10:25.929824Z" + "iopub.execute_input": "2024-07-09T06:25:37.640623Z", + "iopub.status.busy": "2024-07-09T06:25:37.640325Z", + "iopub.status.idle": "2024-07-09T06:25:38.149293Z", + "shell.execute_reply": "2024-07-09T06:25:38.148744Z" } }, "outputs": [ @@ -1620,10 +1620,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.932930Z", - "iopub.status.busy": "2024-07-09T06:10:25.932562Z", - "iopub.status.idle": "2024-07-09T06:10:25.941214Z", - "shell.execute_reply": "2024-07-09T06:10:25.940770Z" + "iopub.execute_input": "2024-07-09T06:25:38.151396Z", + "iopub.status.busy": "2024-07-09T06:25:38.151125Z", + "iopub.status.idle": "2024-07-09T06:25:38.159704Z", + "shell.execute_reply": "2024-07-09T06:25:38.159246Z" } }, "outputs": [ @@ -1790,10 +1790,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.943232Z", - "iopub.status.busy": "2024-07-09T06:10:25.942999Z", - "iopub.status.idle": "2024-07-09T06:10:25.950325Z", - "shell.execute_reply": "2024-07-09T06:10:25.949767Z" + "iopub.execute_input": "2024-07-09T06:25:38.161796Z", + "iopub.status.busy": "2024-07-09T06:25:38.161530Z", + "iopub.status.idle": "2024-07-09T06:25:38.168634Z", + "shell.execute_reply": "2024-07-09T06:25:38.168169Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1869,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.952276Z", - "iopub.status.busy": "2024-07-09T06:10:25.952098Z", - "iopub.status.idle": "2024-07-09T06:10:26.694503Z", - "shell.execute_reply": "2024-07-09T06:10:26.693947Z" + "iopub.execute_input": "2024-07-09T06:25:38.170647Z", + "iopub.status.busy": "2024-07-09T06:25:38.170331Z", + "iopub.status.idle": "2024-07-09T06:25:38.896076Z", + "shell.execute_reply": "2024-07-09T06:25:38.895490Z" } }, "outputs": [ @@ -1909,10 +1909,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.697087Z", - "iopub.status.busy": "2024-07-09T06:10:26.696892Z", - "iopub.status.idle": "2024-07-09T06:10:26.712697Z", - "shell.execute_reply": "2024-07-09T06:10:26.712178Z" + "iopub.execute_input": "2024-07-09T06:25:38.898304Z", + "iopub.status.busy": "2024-07-09T06:25:38.897893Z", + "iopub.status.idle": "2024-07-09T06:25:38.913887Z", + "shell.execute_reply": "2024-07-09T06:25:38.913315Z" } }, "outputs": [ @@ -2069,10 +2069,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.714884Z", - "iopub.status.busy": "2024-07-09T06:10:26.714554Z", - "iopub.status.idle": "2024-07-09T06:10:26.720001Z", - "shell.execute_reply": "2024-07-09T06:10:26.719578Z" + "iopub.execute_input": "2024-07-09T06:25:38.916427Z", + "iopub.status.busy": "2024-07-09T06:25:38.916013Z", + "iopub.status.idle": "2024-07-09T06:25:38.921757Z", + "shell.execute_reply": "2024-07-09T06:25:38.921224Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2117,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.721955Z", - "iopub.status.busy": "2024-07-09T06:10:26.721631Z", - "iopub.status.idle": "2024-07-09T06:10:27.109651Z", - "shell.execute_reply": "2024-07-09T06:10:27.109044Z" + "iopub.execute_input": "2024-07-09T06:25:38.924037Z", + "iopub.status.busy": "2024-07-09T06:25:38.923722Z", + "iopub.status.idle": "2024-07-09T06:25:39.389398Z", + "shell.execute_reply": "2024-07-09T06:25:39.388872Z" } }, "outputs": [ @@ -2202,10 +2202,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.112053Z", - "iopub.status.busy": "2024-07-09T06:10:27.111865Z", - "iopub.status.idle": "2024-07-09T06:10:27.121489Z", - "shell.execute_reply": "2024-07-09T06:10:27.120936Z" + "iopub.execute_input": "2024-07-09T06:25:39.392016Z", + "iopub.status.busy": "2024-07-09T06:25:39.391689Z", + "iopub.status.idle": "2024-07-09T06:25:39.400809Z", + "shell.execute_reply": "2024-07-09T06:25:39.400322Z" } }, "outputs": [ @@ -2230,47 +2230,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2333,10 +2333,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.123756Z", - "iopub.status.busy": "2024-07-09T06:10:27.123578Z", - "iopub.status.idle": "2024-07-09T06:10:27.128344Z", - "shell.execute_reply": "2024-07-09T06:10:27.127804Z" + "iopub.execute_input": "2024-07-09T06:25:39.403252Z", + "iopub.status.busy": "2024-07-09T06:25:39.402932Z", + "iopub.status.idle": "2024-07-09T06:25:39.408523Z", + "shell.execute_reply": "2024-07-09T06:25:39.408038Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2373,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.130472Z", - "iopub.status.busy": "2024-07-09T06:10:27.130300Z", - "iopub.status.idle": "2024-07-09T06:10:27.307299Z", - "shell.execute_reply": "2024-07-09T06:10:27.306712Z" + "iopub.execute_input": "2024-07-09T06:25:39.410787Z", + "iopub.status.busy": "2024-07-09T06:25:39.410472Z", + "iopub.status.idle": "2024-07-09T06:25:39.613099Z", + "shell.execute_reply": "2024-07-09T06:25:39.612513Z" } }, "outputs": [ @@ -2418,10 +2418,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.309453Z", - "iopub.status.busy": "2024-07-09T06:10:27.309267Z", - "iopub.status.idle": "2024-07-09T06:10:27.317287Z", - "shell.execute_reply": "2024-07-09T06:10:27.316770Z" + "iopub.execute_input": "2024-07-09T06:25:39.615178Z", + "iopub.status.busy": "2024-07-09T06:25:39.615000Z", + "iopub.status.idle": "2024-07-09T06:25:39.623056Z", + "shell.execute_reply": "2024-07-09T06:25:39.622584Z" } }, "outputs": [ @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.319255Z", - "iopub.status.busy": "2024-07-09T06:10:27.319003Z", - "iopub.status.idle": "2024-07-09T06:10:27.489162Z", - "shell.execute_reply": "2024-07-09T06:10:27.488581Z" + "iopub.execute_input": "2024-07-09T06:25:39.624851Z", + "iopub.status.busy": "2024-07-09T06:25:39.624680Z", + "iopub.status.idle": "2024-07-09T06:25:39.818392Z", + "shell.execute_reply": "2024-07-09T06:25:39.817872Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.491411Z", - "iopub.status.busy": "2024-07-09T06:10:27.491227Z", - "iopub.status.idle": "2024-07-09T06:10:27.495468Z", - "shell.execute_reply": "2024-07-09T06:10:27.494923Z" + "iopub.execute_input": "2024-07-09T06:25:39.820461Z", + "iopub.status.busy": "2024-07-09T06:25:39.820284Z", + "iopub.status.idle": "2024-07-09T06:25:39.824833Z", + "shell.execute_reply": "2024-07-09T06:25:39.824377Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2590,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00bb56c3f68a4c468fa0c17bd9c4777a": { + "0048ce4822394612977d54522f371396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03645e2db82a48cea591a8ecc43409ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "048da9b24b0844fdaaadce1da85d3915": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2679,72 @@ "width": null } }, - "00d54377b2e443bdb88c0393deaac935": { + "04cca25384c24b1c94d911de385adc2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7175568282174c17aabd5b48f20140b2", + "placeholder": "​", + "style": "IPY_MODEL_803df58ad8f246a7aa7af05b01bbbdd2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0640dc756fe54e39ba89546a15f279be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06dcb12093be456cb352de6ce861659f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8381331e81c54cd79cb929ba488eab91", + "IPY_MODEL_a81bc963e07b4ca2a4b8dde6b946165b", + "IPY_MODEL_4886dc2baffe47ecb690143c953f17a9" + ], + "layout": "IPY_MODEL_fd9234c25dae4c37a35f1e4d52af48c6", + "tabbable": null, + "tooltip": null + } + }, + "07de4e87697443a892880c15d1e511c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,30 +2797,23 @@ "width": null } }, - "01d6ba701f1e47b693b47938240dfc44": { + "086f6f5b94bf449da8bf7c1157f5c8a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4eb9a8fc2a49139695cf9c6270a915", - "placeholder": "​", - "style": "IPY_MODEL_dc13e0ad81f143a2b5d4c0a44532f5b5", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1312.46it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "01ecc56aeeab431f9b9070473e2195df": { + "0a5df6da0ddb43b7937c82e97c6d8d54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,33 +2866,7 @@ "width": null } }, - "03823f9501e94f56beacf1613576e9dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132dc7af6bdb48ac9a6f0c3fd813002f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5f09acaac394bb5bdceb2dc492585cb", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "04be2e19fc3542cba1d0cb7b9b407a95": { + "0b18d70977e84a5b881906cb08d32a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2816,7 +2884,60 @@ "text_color": null } }, - "069041277d62430c89d63c6ea9627b6a": { + "0b3fb420b49940f589e153c0d5c3fdec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d1066339f76479d8d58e5ae35748f5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2831,15 +2952,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e416714bbcb4438b9179a39662ae3c9d", + "layout": "IPY_MODEL_15c58bf8ec2c41c58fdc7ce58a27b6fd", "placeholder": "​", - "style": "IPY_MODEL_5c28da92a87748afb024889018deb170", + "style": "IPY_MODEL_5a7bae3cefc94a02b58e9ad0e52aacfa", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.37MB/s]" + "value": "Downloading data: 100%" } }, - "075db8536d174c2c9ea47cd94e70d981": { + "13c0b9289c5e4e8f92a21c0307aae6db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2857,7 +2978,7 @@ "text_color": null } }, - "0f8c591a5a474389ba8bdbce5f559954": { + "140978469fad46c2b6b98809eddb12e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2910,23 +3031,30 @@ "width": null } }, - "131b0789bcf143a599cbd6e57b98a768": { + "1524351aaa084a11ad505c11404bdbea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8df85e649d6248f69af1b8b2c06dc535", + "placeholder": "​", + "style": "IPY_MODEL_2b0a6e80cee24c8d92776690977c796c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.34it/s]" } }, - "132dc7af6bdb48ac9a6f0c3fd813002f": { + "15c58bf8ec2c41c58fdc7ce58a27b6fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2979,30 +3107,7 @@ "width": null } }, - "1347b08ce056434db43829c852acae6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df1f220280f9444e97bb1f2206036724", - "placeholder": "​", - "style": "IPY_MODEL_228decf3fc7b4b14998553b0f2546e6d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 107MB/s]" - } - }, - "1706e87bbedf4666b19fb67afd605807": { + "160801910dde40a3bc9f92bb4e901944": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3055,7 +3160,23 @@ "width": null } }, - "17bfd66f1c9b453f99645c87eb6daec1": { + "19246b6d91f14aaa9f10d7cb83049531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19a410fe62c9469fbbfdb218f3a51fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3070,55 +3191,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2fc5097f7a2449695b74f340b163dbd", + "layout": "IPY_MODEL_508d1420c3244c5c83b9ed16155ada6e", "placeholder": "​", - "style": "IPY_MODEL_d596fca544e54787848bb610c63e3218", + "style": "IPY_MODEL_336fcd5623114b3099304ef7c8d0fd99", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + "value": " 4/4 [00:00<00:00, 1277.68it/s]" } }, - "18c247743d574b23859f998162e74050": { + "1a69c5c720624a26a9ef7b1cf11811fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "196041f8fc64445d902757f8bc0461b5": { + "1a70726215b842018678da6d06100009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9a72ec9f2e6549f79a8b592fdf22dc2e", - "IPY_MODEL_a9cebeca318244728411d7a1bbbcfdcd", - "IPY_MODEL_55bf2248b3bc475c842bccc8c8152be0" - ], - "layout": "IPY_MODEL_cb4004f3b5e94f01b3f04c2f61489f80", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "19d308a458ec4a08b9d2bad00f5870f3": { + "1c78106bc0d64791b1920a0bba595880": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,47 +3286,7 @@ "width": null } }, - "1bc1f27f582a448a8c9266309f30be75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1d5400b6588744d192a0e142668a676a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c3da49dd6970428a9727fd888d6a07ee", - "IPY_MODEL_ebf23d88069d459aae84207ff5363fab", - "IPY_MODEL_17bfd66f1c9b453f99645c87eb6daec1" - ], - "layout": "IPY_MODEL_4ebecbf20fe3449fba89b686ed581905", - "tabbable": null, - "tooltip": null - } - }, - "1df9db75114848a59f7fdd0ce91a687a": { + "1d30818e74e74811938c25e51402dba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,96 +3339,46 @@ "width": null } }, - "21206f0ccea44b46b11d0821d3cdadbe": { + "1e43c58cbb0d4962913d5ebbcdf1554a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2eb285ef00d8424b940fcd52e171abf0", + "placeholder": "​", + "style": "IPY_MODEL_d5a9c110896c475face60d8f33b9046c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "228decf3fc7b4b14998553b0f2546e6d": { + "1f62a32153e44d988bd8265c95d6522b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "240c2ebe5dc54104a1f10d985ffba975": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "bar_color": null, + "description_width": "" } }, - "2449bbbcd46a43e6aae3c8afbb81bdb3": { + "209c42932bea4cfc866adc42d1e0bc34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3371,7 +3396,7 @@ "text_color": null } }, - "2574510c0f7f417e8dfc009e4994bec3": { + "20a3b73248e646e4993c7afc88dc3bb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3386,74 +3411,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ea5cb47ef6f4603b0653421aab46523", + "layout": "IPY_MODEL_9954def9bc864f319508e65fe36fe98b", "placeholder": "​", - "style": "IPY_MODEL_66c810aedffc439696fd6bacef156446", + "style": "IPY_MODEL_1a69c5c720624a26a9ef7b1cf11811fb", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "26b1a5eb544f41938059bcde43ece5ec": { + "215e8fef035f4d37a36a704de452b760": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1706e87bbedf4666b19fb67afd605807", - "placeholder": "​", - "style": "IPY_MODEL_88cbcf1a55e0425d8c8c3c335d271c37", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e89a1ca0e0b746b0b9349efd7a426e3f", + "IPY_MODEL_5bf0bcb594a046af91590125b69df952", + "IPY_MODEL_4d61ebc6154b44ea91518cfb38cf00b9" + ], + "layout": "IPY_MODEL_7eb94f5f7a9746bfbb719504013c7326", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.87it/s]" - } - }, - "28443daff12b402baed64f1b5d0fc8e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "28f8261f18b84882ba428c63eace54e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "29170a403a424dcfacc506b91190a1dc": { + "2183a55cd7d345069c3ac605305b0edb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3471,7 +3461,7 @@ "text_color": null } }, - "298221d0cc1446ce993bdb7c7803efb8": { + "21e26b29d83741a0ac17ca8718fb5ef5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3524,71 +3514,7 @@ "width": null } }, - "2a2dc27f67c34e2982043a2f79c14de3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2bba1ab8083649288982f535f9854291": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7517aec27ff84cf4adb25156adf9883c", - "IPY_MODEL_54c6bc5d398440fe8ad2de672c36b9ae", - "IPY_MODEL_1347b08ce056434db43829c852acae6f" - ], - "layout": "IPY_MODEL_00d54377b2e443bdb88c0393deaac935", - "tabbable": null, - "tooltip": null - } - }, - "2e4710c1045041a7af16f0ee012a9646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b385c56f713245438f036b829b7057eb", - "IPY_MODEL_a9e6164c82aa48da9b7f39e1e8611e10", - "IPY_MODEL_4aaa65f93be449728c2f251b5174dd7d" - ], - "layout": "IPY_MODEL_79d18d37893e49a38abd5c29b0b4f81e", - "tabbable": null, - "tooltip": null - } - }, - "2f4eb9a8fc2a49139695cf9c6270a915": { + "2221768dfac3448cabb0bbf2bb0d5d7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3641,7 +3567,31 @@ "width": null } }, - "2fa3f38780ca4859b7969d5d2a4fcd61": { + "22b9600afaf14805a96622049f592034": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d81d5ebb400493cbbee965c4f1d82c3", + "IPY_MODEL_c25be99949354d9b93261eb01cd7f371", + "IPY_MODEL_3f09c19718b949a48059dec191d9df88" + ], + "layout": "IPY_MODEL_2a8e473785f54b5380a3af0bd5ee8ec5", + "tabbable": null, + "tooltip": null + } + }, + "2397a262e2ab4faaa19c65aadd199f4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3656,15 +3606,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ad393e55e6bf45c8b5e243058a28d53f", + "layout": "IPY_MODEL_7c7a25483bae4f619cfe4afba2815a1e", "placeholder": "​", - "style": "IPY_MODEL_6fb209a0dcd9424dbd5459259cf91e81", + "style": "IPY_MODEL_24343e388fcd48f38c917201d72dce78", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.91it/s]" + "value": " 40/40 [00:00<00:00, 66.55it/s]" } }, - "3174d80e40c24cac9b15db890d599220": { + "24133d82571542d193f42c0273b76a7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3717,91 +3667,67 @@ "width": null } }, - "325cae4479044735a8d7717951188993": { + "24343e388fcd48f38c917201d72dce78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "33cdba775984444396b1d4c9f0a95c94": { + "2441a271713941f58f78b8fda33f4ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39a6f7c0982449d28b821be6784720b2", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44680a52cd6e4c6aa0004d8a0bd638a8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49f26873e5144310b3a59d54e3402106", + "IPY_MODEL_fe504683f63741bdac7f7f37aacf03d2", + "IPY_MODEL_8c5b91a2c962426c9d74153961b3f44d" + ], + "layout": "IPY_MODEL_b391fb64df85406aa863198b38de27eb", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "3522c629e18843719c6dbc2cad7d7fc4": { + "273c6aaed1d14c19893916ddb87297a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "359b79f7c9b0473b9551b61fbe8b7e7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e02cdb3570024c49bb96ffcbc8948970", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6feb8a8c3d3a4938bea5e24915a122fb", - "tabbable": null, - "tooltip": null, - "value": 29515.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "368cc0e1d6734409878e33ca4d54012a": { + "2a8e473785f54b5380a3af0bd5ee8ec5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3780,49 @@ "width": null } }, - "38b582305d03499a81383d2c820015ba": { + "2b0a6e80cee24c8d92776690977c796c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2d1e313f048a4f3a8de23b028b96ac30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01a831193cb480fa8538ccac1625826", + "IPY_MODEL_7c16646bae234611b7eed4f389c43a78", + "IPY_MODEL_1524351aaa084a11ad505c11404bdbea" + ], + "layout": "IPY_MODEL_5e63e2472a434921a76445a39db78557", + "tabbable": null, + "tooltip": null + } + }, + "2eb285ef00d8424b940fcd52e171abf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,7 +3875,31 @@ "width": null } }, - "39a6f7c0982449d28b821be6784720b2": { + "2fc5c7705c8a411696033cba51b98414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_380f5576d14c4aa3957661b21a817720", + "IPY_MODEL_c5e5cf9a26c0498cbbbc47b2b513a358", + "IPY_MODEL_67bcc9c1c8ee40d6910452f187311cd2" + ], + "layout": "IPY_MODEL_512f0fdef9fd429cad8c5f4ed2059739", + "tabbable": null, + "tooltip": null + } + }, + "3352d2afb83f411eb34ef57cd4914610": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3960,31 +3952,7 @@ "width": null } }, - "39f435f587fd4607806141736054b6df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e1e3e01b912477595f0702fa3d3043b", - "IPY_MODEL_be3f3fec721448b1942e5f66a28630e9", - "IPY_MODEL_2fa3f38780ca4859b7969d5d2a4fcd61" - ], - "layout": "IPY_MODEL_3174d80e40c24cac9b15db890d599220", - "tabbable": null, - "tooltip": null - } - }, - "3b6fd5946d154ca3b3c1477ecd5510ab": { + "336fcd5623114b3099304ef7c8d0fd99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4002,31 +3970,7 @@ "text_color": null } }, - "3b922928633d406296c2f7f4a11c363c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd5289f0713644e7a085dd0fa5a5b4a7", - "IPY_MODEL_359b79f7c9b0473b9551b61fbe8b7e7d", - "IPY_MODEL_069041277d62430c89d63c6ea9627b6a" - ], - "layout": "IPY_MODEL_6a1e82417b0d4e5bb80cf02543cd79ff", - "tabbable": null, - "tooltip": null - } - }, - "3bf0b89a3d92407d832df29196d61ea2": { + "3382045b67e54a7092879295b3f663f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4079,7 +4023,7 @@ "width": null } }, - "3cc740083d8443cba7eb914038225918": { + "345c5ca93fa94badbbf86dcc2fde77a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4094,33 +4038,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b6286c3ea93414bb16571506e25d347", + "layout": "IPY_MODEL_408df73b367a48808418e0ac16815aef", "placeholder": "​", - "style": "IPY_MODEL_eb2f621f64a84dc8bd2155d241bd5e62", + "style": "IPY_MODEL_fd5d6bff1fad4857abafef9b11b3dfe4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.56it/s]" + "value": " 40/40 [00:00<00:00, 60.26it/s]" } }, - "3e69f9cf29d34cc381b10a6789979acf": { + "36e9f11e672e4c928d6b86537f21d20f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "426a8afc214b479baaeb9e8377e0f0d4": { + "380f5576d14c4aa3957661b21a817720": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4135,57 +4077,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1df9db75114848a59f7fdd0ce91a687a", + "layout": "IPY_MODEL_3a15e0a1dbb8487daf29b7db56d34511", "placeholder": "​", - "style": "IPY_MODEL_21206f0ccea44b46b11d0821d3cdadbe", + "style": "IPY_MODEL_b0b21430f5b9446195933039b4632b6f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8649.10 examples/s]" + "value": "100%" } }, - "44680a52cd6e4c6aa0004d8a0bd638a8": { + "3956333acd4649dd8a66f905633d9a1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "44f00a50f1674a53a847ced00a1a1aa8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4aae17914634179ba6ea992729761fb", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_18c247743d574b23859f998162e74050", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "470825afc5e34409afa12f9805c6eba9": { + "3a15e0a1dbb8487daf29b7db56d34511": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4238,25 +4156,7 @@ "width": null } }, - "49cd0886c40048d5b78db2aa719fc1d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4aaa65f93be449728c2f251b5174dd7d": { + "3a97aab207204e0fb9a0b492587021ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4271,54 +4171,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcec722d627145cf96d7bad0f67e25d9", + "layout": "IPY_MODEL_a8ef0954dcca4870a833eda0e973e2a0", "placeholder": "​", - "style": "IPY_MODEL_8a076d7eb59e4537abfac89fa37372e4", + "style": "IPY_MODEL_6a37073f2b7d4c349bb87cb4719c587d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 4855.77 examples/s]" + "value": "Downloading data: 100%" } }, - "4ab3adf0bd104266a806b7d828f8ca0b": { + "3c579cf673fd400b97b03f32b9b95e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4b257b19650e432a91a32e404b137423": { + "3cf5000751a1413faba426291a215dff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c6d8c2c52594f15b9ce9a2fff3b28d0", - "placeholder": "​", - "style": "IPY_MODEL_d5b1e2ede532485f989cdd9654c0c392", + "layout": "IPY_MODEL_a035588db59040fda6d47042d64418a5", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8995f1250ad74a90bfc13b5eff00a2fd", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 29515.0 + } + }, + "3e2096230a38431c8485c89adab185e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5970145c544541c3a0c064690e3b8bc8", + "IPY_MODEL_dde263477419437a9af2ca03171dadcd", + "IPY_MODEL_2397a262e2ab4faaa19c65aadd199f4d" + ], + "layout": "IPY_MODEL_634d98e457d644a884fc562b0b5d877b", + "tabbable": null, + "tooltip": null } }, - "4b27bedd5f134f52a7334e3638e784cb": { + "3e9e0a7872664289907ea9b2a0c0f428": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4371,8 +4300,31 @@ "width": null } }, - "4b6286c3ea93414bb16571506e25d347": { - "model_module": "@jupyter-widgets/base", + "3f09c19718b949a48059dec191d9df88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6ef56fd6db2466da0273fed8540bed9", + "placeholder": "​", + "style": "IPY_MODEL_5edfca35fc1e45d7850bbe3d5ac2afb4", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8732.57 examples/s]" + } + }, + "3f14c7dcb14b4ff9b9a6110a6ebeea9a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -4424,7 +4376,23 @@ "width": null } }, - "4c10d499b1454a9db990b1eee7d30416": { + "3faa0e46f82e4e81b929be6c700311ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "408df73b367a48808418e0ac16815aef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4477,7 +4445,7 @@ "width": null } }, - "4ebecbf20fe3449fba89b686ed581905": { + "436dcfd1d6524d58997ebd20abd27ac3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4530,7 +4498,67 @@ "width": null } }, - "50962242a0be4c5fb1f19bd9ba3796a1": { + "440697a08c6346efa46be2fb03bac8e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4586a50b001c47b39290a335d19b949d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a5df6da0ddb43b7937c82e97c6d8d54", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a70726215b842018678da6d06100009", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "4803cfdca0f84916a50f60b8c4611a48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48054868536d4802a306884dbdf93ced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4546,7 +4574,100 @@ "description_width": "" } }, - "50b772c22a484ec39d88b6aca3ce2b03": { + "4886dc2baffe47ecb690143c953f17a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21e26b29d83741a0ac17ca8718fb5ef5", + "placeholder": "​", + "style": "IPY_MODEL_0048ce4822394612977d54522f371396", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 627kB/s]" + } + }, + "49f26873e5144310b3a59d54e3402106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3382045b67e54a7092879295b3f663f8", + "placeholder": "​", + "style": "IPY_MODEL_dc05e2e419574abb89ddec85c5fcc81d", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4d61ebc6154b44ea91518cfb38cf00b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c670dd237db04ca9a6e63e4d35cecdb4", + "placeholder": "​", + "style": "IPY_MODEL_0b18d70977e84a5b881906cb08d32a0b", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 105MB/s]" + } + }, + "4dc3098204c343329173882a90c17240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e43c58cbb0d4962913d5ebbcdf1554a", + "IPY_MODEL_6968618e0c5047b4ace24b3be9d82b40", + "IPY_MODEL_5522e860260648818409cb45e8e8fe97" + ], + "layout": "IPY_MODEL_d83e3a00a6514bd7867d7bbbe2edf9f5", + "tabbable": null, + "tooltip": null + } + }, + "508d1420c3244c5c83b9ed16155ada6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4599,7 +4720,7 @@ "width": null } }, - "52ea11b6adb8407e88b4de65546300dd": { + "512f0fdef9fd429cad8c5f4ed2059739": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4652,7 +4773,7 @@ "width": null } }, - "54c6bc5d398440fe8ad2de672c36b9ae": { + "51598d19ee6b4333a63b1d6da5fa14e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4668,40 +4789,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01ecc56aeeab431f9b9070473e2195df", - "max": 26421880.0, + "layout": "IPY_MODEL_a7643f32743c4af6897aa249c9d0be2f", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3522c629e18843719c6dbc2cad7d7fc4", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "55bf2248b3bc475c842bccc8c8152be0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58285b3b0ec3462d94bb77a7c7b43914", - "placeholder": "​", - "style": "IPY_MODEL_b8a9635845a942c4b071429b568defb1", + "style": "IPY_MODEL_36e9f11e672e4c928d6b86537f21d20f", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.39MB/s]" + "value": 60000.0 } }, - "57b1914593884597ab649943b81cf1e8": { + "517e9a88dd474cac8c7f7723d261a5fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4754,7 +4852,56 @@ "width": null } }, - "581b0a844bed446d8fcd2fd92a517bb6": { + "5522e860260648818409cb45e8e8fe97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5aee2c22e48477b9f398e4ad03d9e34", + "placeholder": "​", + "style": "IPY_MODEL_dd31c22f11524a368f9eb1cd18be16f2", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7326.12 examples/s]" + } + }, + "5789650eb64d4dbab1f8c667a5fd4cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed9503bde9bc41e0912e3c94c2a43266", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3faa0e46f82e4e81b929be6c700311ef", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "59346cab1ea9483584b6020a911d0be8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4807,86 +4954,30 @@ "width": null } }, - "58285b3b0ec3462d94bb77a7c7b43914": { - "model_module": "@jupyter-widgets/base", + "5970145c544541c3a0c064690e3b8bc8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5aa1f846986f48738dc22ad6b5fc5eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e6d9becff77b42d59be635fa6580a8e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_325cae4479044735a8d7717951188993", + "layout": "IPY_MODEL_6c31a58fa1bb416c8d82c1038eab5edc", + "placeholder": "​", + "style": "IPY_MODEL_9266dd3df82b430c88bf828066284aab", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "5c28da92a87748afb024889018deb170": { + "5a7bae3cefc94a02b58e9ad0e52aacfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4904,60 +4995,33 @@ "text_color": null } }, - "5f5ef63b6a614a69883bfa94a9302743": { - "model_module": "@jupyter-widgets/base", + "5bf0bcb594a046af91590125b69df952": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d2d50b86148485fb3e3884e2b2bbf34", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6cdfc2ba48ab4f3a9a18b3b28c17641a", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "609338d8355747b9bd1491ce89b327f5": { + "5d4e96503b8040e196dd68f00001b30a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5010,31 +5074,23 @@ "width": null } }, - "62c3c15d8c074e74816c7b8d0fba7678": { + "5dcfa0777e6540998053e4a29b29b806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df585fd875034d5cae08c4684ad20c2f", - "IPY_MODEL_ff5dd94e778e4a3a9a4f34a8b29844b2", - "IPY_MODEL_3cc740083d8443cba7eb914038225918" - ], - "layout": "IPY_MODEL_891a944220b3422db752100ab9244125", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "630337ea4da741c9ae70a52fa0e78a29": { + "5e63e2472a434921a76445a39db78557": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5087,31 +5143,33 @@ "width": null } }, - "65b19b2b747d4d5281997036b3117f72": { + "5ea8be39dce64842a42fe020b19fc090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_71842d6d22e64009a0383929004a685e", - "IPY_MODEL_ec65d1696272499aae2176b681d4abeb", - "IPY_MODEL_873b3e16fd5c47d1ac1a455bab6f19c9" - ], - "layout": "IPY_MODEL_c5b34df732014977a42409332881088e", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f537f948c654bed919b428785993db0", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_76b1d6ca14ca4c4d962e620e94507dff", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "66c810aedffc439696fd6bacef156446": { + "5edfca35fc1e45d7850bbe3d5ac2afb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5129,30 +5187,25 @@ "text_color": null } }, - "678ad1f4e5ca473e8370433fa2fc17b1": { + "612489c1401e49c9bb846fee02bd9f6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00bb56c3f68a4c468fa0c17bd9c4777a", - "placeholder": "​", - "style": "IPY_MODEL_9bfbe5f7520948028e0423e3a007e614", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68f7c63cc3134dab9aed0bfa7436f944": { + "6198d3b6f1a04ba4a34a5d2018c9b155": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5205,7 +5258,7 @@ "width": null } }, - "6a1e82417b0d4e5bb80cf02543cd79ff": { + "634d98e457d644a884fc562b0b5d877b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5258,75 +5311,106 @@ "width": null } }, - "6b5517a69839448db9d026068acf99a3": { + "63ef519d04dc4bbd9c67f568f10d54d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82cb4f38207f47d5b97c3ecb4462795c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_131b0789bcf143a599cbd6e57b98a768", + "layout": "IPY_MODEL_24133d82571542d193f42c0273b76a7d", + "placeholder": "​", + "style": "IPY_MODEL_801840cd919742fdbe5c2e8072b678cd", "tabbable": null, "tooltip": null, - "value": 4.0 + "value": "Downloading readme: 100%" } }, - "6b554b734a6e4e3d9fb6f3ff5d0940c2": { - "model_module": "@jupyter-widgets/controls", + "66f7cb4e6bf441a09c4dc48e13bc4fc0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2574510c0f7f417e8dfc009e4994bec3", - "IPY_MODEL_5aa1f846986f48738dc22ad6b5fc5eb9", - "IPY_MODEL_26b1a5eb544f41938059bcde43ece5ec" - ], - "layout": "IPY_MODEL_630337ea4da741c9ae70a52fa0e78a29", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6d04fdcfce89428dbf6319ffe1ba350f": { + "67bcc9c1c8ee40d6910452f187311cd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa87a07117a74232955cb6e2e8b66aa9", + "placeholder": "​", + "style": "IPY_MODEL_3c579cf673fd400b97b03f32b9b95e1d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.84it/s]" } }, - "6d5c548246bf4bdbb636d3a3766345a4": { + "6968618e0c5047b4ace24b3be9d82b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5342,17 +5426,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_733bc7ecc3ea4fc398ecd2611d214af7", + "layout": "IPY_MODEL_59346cab1ea9483584b6020a911d0be8", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1bc1f27f582a448a8c9266309f30be75", + "style": "IPY_MODEL_4803cfdca0f84916a50f60b8c4611a48", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "6e6489c700d54df69ff90b573c906911": { + "6a0d54aeee9e43a2a6613a32708b583c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5405,65 +5489,12 @@ "width": null } }, - "6ea5cb47ef6f4603b0653421aab46523": { - "model_module": "@jupyter-widgets/base", + "6a37073f2b7d4c349bb87cb4719c587d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6fb209a0dcd9424dbd5459259cf91e81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, @@ -5476,46 +5507,31 @@ "text_color": null } }, - "6feb8a8c3d3a4938bea5e24915a122fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "71842d6d22e64009a0383929004a685e": { + "6a90dd6a6a2443a98bde0d45de0efdde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68f7c63cc3134dab9aed0bfa7436f944", - "placeholder": "​", - "style": "IPY_MODEL_bf849ce1955e49498468867578cb2b82", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_702d10c13f464c7f9144c3ec519a43d5", + "IPY_MODEL_51598d19ee6b4333a63b1d6da5fa14e0", + "IPY_MODEL_f8b91b2b5043498da2181511d46d09c8" + ], + "layout": "IPY_MODEL_6ff8decb43474cec8270bc1aef096a09", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "721e1e458b6f49229779a9de4609ca92": { + "6c31a58fa1bb416c8d82c1038eab5edc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5568,7 +5584,7 @@ "width": null } }, - "733bc7ecc3ea4fc398ecd2611d214af7": { + "6cd8c1cd5f2447968f787deb71aa5bd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5621,30 +5637,7 @@ "width": null } }, - "7517aec27ff84cf4adb25156adf9883c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c436f7262e954289901a6f4e89035f4d", - "placeholder": "​", - "style": "IPY_MODEL_92f6dc8906c04997862913bc427ad476", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "7556d3f58c814407862942b3f781e8a6": { + "6cdfc2ba48ab4f3a9a18b3b28c17641a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5660,7 +5653,7 @@ "description_width": "" } }, - "77ba2f60a09d41d3a6e43c6821ec0634": { + "6f537f948c654bed919b428785993db0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5713,7 +5706,7 @@ "width": null } }, - "7816d15cde184da3b4900d3062e666d2": { + "6ff8decb43474cec8270bc1aef096a09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5766,25 +5759,30 @@ "width": null } }, - "79c09ae007724b7da175f15e77c939b5": { + "702d10c13f464c7f9144c3ec519a43d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc0cfa74fd9b478baa3776548265f98f", + "placeholder": "​", + "style": "IPY_MODEL_273c6aaed1d14c19893916ddb87297a8", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "79d18d37893e49a38abd5c29b0b4f81e": { + "7175568282174c17aabd5b48f20140b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5837,7 +5835,91 @@ "width": null } }, - "79e3577f86234a258c9acd26c706e0ff": { + "76b1d6ca14ca4c4d962e620e94507dff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "76d4d52a162a40a6aad6c51613675dd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "790aee9705fa42f79ce0f8850fc28992": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63ef519d04dc4bbd9c67f568f10d54d8", + "IPY_MODEL_7dbb1c566226438c82092b5954494254", + "IPY_MODEL_91cb9b53980c47cd817c545014defd09" + ], + "layout": "IPY_MODEL_9fa40d4368164452af5dec4576e541a7", + "tabbable": null, + "tooltip": null + } + }, + "7c16646bae234611b7eed4f389c43a78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9afd660dbeb04470a375320dc78c044c", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_48054868536d4802a306884dbdf93ced", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "7c7a25483bae4f619cfe4afba2815a1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5890,31 +5972,23 @@ "width": null } }, - "7b6edba21c23485a95c2c8d3aab79786": { + "7d3d1214cad84f609b2ae65551813ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba73c157fdb94c65b92dba1069f61646", - "IPY_MODEL_81c0397a4d694cb2b7b9202a67b12054", - "IPY_MODEL_a07c4d7451e740a3b7cfc737ab615ac9" - ], - "layout": "IPY_MODEL_be7e225c537c47daaef5f0ac239d1f05", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "80c62a5efa2b42ce85de10d4f9638e15": { + "7d81d5ebb400493cbbee965c4f1d82c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5929,33 +6003,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed87086cfa9c41729602000b60ca20f5", + "layout": "IPY_MODEL_f74501f2cd3a424a9fd976bc8add6990", "placeholder": "​", - "style": "IPY_MODEL_a262c4ae9287449fa95c34bde946bb1d", + "style": "IPY_MODEL_8689ad17b83c46c1ab297ec243208f64", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.48it/s]" - } - }, - "81af3bb4d3be46abb3e8fec013b0ab4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating test split: 100%" } }, - "81c0397a4d694cb2b7b9202a67b12054": { + "7dbb1c566226438c82092b5954494254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5971,17 +6027,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_470825afc5e34409afa12f9805c6eba9", - "max": 40.0, + "layout": "IPY_MODEL_6cd8c1cd5f2447968f787deb71aa5bd8", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4ab3adf0bd104266a806b7d828f8ca0b", + "style": "IPY_MODEL_e73b799b5ff64804a99810863c6f0533", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 8845.0 } }, - "8253cf2e395646f0a170750f8c426d62": { + "7eb94f5f7a9746bfbb719504013c7326": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6034,83 +6090,59 @@ "width": null } }, - "82cb4f38207f47d5b97c3ecb4462795c": { - "model_module": "@jupyter-widgets/base", + "801840cd919742fdbe5c2e8072b678cd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "833c213f3dfb4616b0ac1c52e439ec3e": { + "803df58ad8f246a7aa7af05b01bbbdd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff23c9d5761b436eb1d73a55e8f32ea8", - "placeholder": "​", - "style": "IPY_MODEL_8dfdad83c03f4aa08bc19fe37e73bb03", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "805ea7e6fe75453dab92e83969f8fe93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "873b3e16fd5c47d1ac1a455bab6f19c9": { + "82fc78533dbc46d08a781919716d2335": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6125,57 +6157,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f5ef63b6a614a69883bfa94a9302743", + "layout": "IPY_MODEL_5d4e96503b8040e196dd68f00001b30a", "placeholder": "​", - "style": "IPY_MODEL_075db8536d174c2c9ea47cd94e70d981", + "style": "IPY_MODEL_0640dc756fe54e39ba89546a15f279be", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 68.4MB/s]" - } - }, - "88cbcf1a55e0425d8c8c3c335d271c37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating train split: 100%" } }, - "891956e6cdf34df29d3132aa55b99817": { + "8381331e81c54cd79cb929ba488eab91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4b257b19650e432a91a32e404b137423", - "IPY_MODEL_cf2c1748546e4ac4918f44c9de22b1d4", - "IPY_MODEL_a9fbbe85922f431a91157ec285ca35be" - ], - "layout": "IPY_MODEL_9608c18d1d874f2a9e8d6ff6a53ac7ef", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_048da9b24b0844fdaaadce1da85d3915", + "placeholder": "​", + "style": "IPY_MODEL_612489c1401e49c9bb846fee02bd9f6d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "891a944220b3422db752100ab9244125": { + "85ab7c6aa7b341d69b9dc923ebdfa7c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6228,7 +6241,25 @@ "width": null } }, - "89b3cf05a743439f91b59abfd6f0b25b": { + "8689ad17b83c46c1ab297ec243208f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8739c6ff8d994ba4be0b2287de3e0173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6281,7 +6312,7 @@ "width": null } }, - "8a076d7eb59e4537abfac89fa37372e4": { + "888473885a6149dd8b3df8549f631e20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6299,7 +6330,23 @@ "text_color": null } }, - "8bdc65fac0044ed3a719c0c1889ba9d6": { + "8995f1250ad74a90bfc13b5eff00a2fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8acff64b052e48dc9e676ca2f1f20446": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6315,7 +6362,30 @@ "description_width": "" } }, - "8c6d8c2c52594f15b9ce9a2fff3b28d0": { + "8c5b91a2c962426c9d74153961b3f44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e9e0a7872664289907ea9b2a0c0f428", + "placeholder": "​", + "style": "IPY_MODEL_888473885a6149dd8b3df8549f631e20", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.73it/s]" + } + }, + "8df85e649d6248f69af1b8b2c06dc535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6368,79 +6438,7 @@ "width": null } }, - "8dfdad83c03f4aa08bc19fe37e73bb03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8fc9906f7a0341708627692f8489b35b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "92f6dc8906c04997862913bc427ad476": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95485d5b8522435ea8f08eb2d854a336": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9608c18d1d874f2a9e8d6ff6a53ac7ef": { + "9141cd35031b41548bc5618a17448a0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6493,23 +6491,7 @@ "width": null } }, - "999494066dab42bbb02dd47224780e98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a72ec9f2e6549f79a8b592fdf22dc2e": { + "91cb9b53980c47cd817c545014defd09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6524,15 +6506,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4db64e04ecf453bb64e410e92717688", + "layout": "IPY_MODEL_2221768dfac3448cabb0bbf2bb0d5d7c", "placeholder": "​", - "style": "IPY_MODEL_79c09ae007724b7da175f15e77c939b5", + "style": "IPY_MODEL_2183a55cd7d345069c3ac605305b0edb", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 8.85k/8.85k [00:00<00:00, 1.44MB/s]" } }, - "9bfbe5f7520948028e0423e3a007e614": { + "9266dd3df82b430c88bf828066284aab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6550,7 +6532,7 @@ "text_color": null } }, - "9e1e3e01b912477595f0702fa3d3043b": { + "94f306cf8ec749379c45de871b0e7b5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6565,194 +6547,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bf0b89a3d92407d832df29196d61ea2", + "layout": "IPY_MODEL_a859e810938d4055a256a729f8d389ce", "placeholder": "​", - "style": "IPY_MODEL_81af3bb4d3be46abb3e8fec013b0ab4c", + "style": "IPY_MODEL_bcdb721a85b449cd9eaf7819dc3550dc", "tabbable": null, "tooltip": null, "value": "100%" } }, - "a07c4d7451e740a3b7cfc737ab615ac9": { - "model_module": "@jupyter-widgets/controls", + "9954def9bc864f319508e65fe36fe98b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_609338d8355747b9bd1491ce89b327f5", - "placeholder": "​", - "style": "IPY_MODEL_ac3a48d859e24de49589b8e6fcbf6e56", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.12it/s]" - } - }, - "a262c4ae9287449fa95c34bde946bb1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a6cbd56b47e648efb6391b45895679f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3158013f4864de583ab980afefd55af", - "IPY_MODEL_03823f9501e94f56beacf1613576e9dc", - "IPY_MODEL_80c62a5efa2b42ce85de10d4f9638e15" - ], - "layout": "IPY_MODEL_f60c654fb5a84d09a6d3b2f8c92cc4c5", - "tabbable": null, - "tooltip": null - } - }, - "a71dfc2757d34c75bb330c1eb6ea11e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7816d15cde184da3b4900d3062e666d2", - "placeholder": "​", - "style": "IPY_MODEL_28443daff12b402baed64f1b5d0fc8e2", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "a84982db10294fb58f5db219f440a873": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9cebeca318244728411d7a1bbbcfdcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57b1914593884597ab649943b81cf1e8", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7556d3f58c814407862942b3f781e8a6", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "a9e6164c82aa48da9b7f39e1e8611e10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d308a458ec4a08b9d2bad00f5870f3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc71489cf7d84e93b1534d74c859b3fa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "a9fbbe85922f431a91157ec285ca35be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_581b0a844bed446d8fcd2fd92a517bb6", - "placeholder": "​", - "style": "IPY_MODEL_29170a403a424dcfacc506b91190a1dc", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.75it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ab7bf39143554ffc9ed393ecb6bf2fe4": { + "9afd660dbeb04470a375320dc78c044c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6805,25 +6661,7 @@ "width": null } }, - "ac3a48d859e24de49589b8e6fcbf6e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ad393e55e6bf45c8b5e243058a28d53f": { + "9d2d50b86148485fb3e3884e2b2bbf34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6876,48 +6714,7 @@ "width": null } }, - "b0d76730d77645b19085de29499a07e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b385c56f713245438f036b829b7057eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_79e3577f86234a258c9acd26c706e0ff", - "placeholder": "​", - "style": "IPY_MODEL_6d04fdcfce89428dbf6319ffe1ba350f", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "b5f09acaac394bb5bdceb2dc492585cb": { + "9d6e31ccf4dd4aceabf442d6436fa02c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6933,71 +6730,113 @@ "description_width": "" } }, - "b8a9635845a942c4b071429b568defb1": { - "model_module": "@jupyter-widgets/controls", + "9fa40d4368164452af5dec4576e541a7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ba73c157fdb94c65b92dba1069f61646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b27bedd5f134f52a7334e3638e784cb", - "placeholder": "​", - "style": "IPY_MODEL_c274e57ac9594c50af93c3bf8136acce", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bbe3d4342b5941289611bd0fc91aa385": { - "model_module": "@jupyter-widgets/controls", + "a035588db59040fda6d47042d64418a5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_298221d0cc1446ce993bdb7c7803efb8", - "placeholder": "​", - "style": "IPY_MODEL_95485d5b8522435ea8f08eb2d854a336", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8715.25 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc002711d08c4670abb04d02bc7b008a": { + "a07fabe6cd554c4281f06c189fb7f17a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7050,7 +6889,7 @@ "width": null } }, - "bcec722d627145cf96d7bad0f67e25d9": { + "a7643f32743c4af6897aa249c9d0be2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7103,7 +6942,7 @@ "width": null } }, - "be3f3fec721448b1942e5f66a28630e9": { + "a81bc963e07b4ca2a4b8dde6b946165b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7119,17 +6958,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c10d499b1454a9db990b1eee7d30416", - "max": 40.0, + "layout": "IPY_MODEL_66f7cb4e6bf441a09c4dc48e13bc4fc0", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8bdc65fac0044ed3a719c0c1889ba9d6", + "style": "IPY_MODEL_086f6f5b94bf449da8bf7c1157f5c8a3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 4833.0 } }, - "be7e225c537c47daaef5f0ac239d1f05": { + "a859e810938d4055a256a729f8d389ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7182,25 +7021,60 @@ "width": null } }, - "bf849ce1955e49498468867578cb2b82": { - "model_module": "@jupyter-widgets/controls", + "a8ef0954dcca4870a833eda0e973e2a0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c274e57ac9594c50af93c3bf8136acce": { + "b0b21430f5b9446195933039b4632b6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7218,7 +7092,7 @@ "text_color": null } }, - "c2fc5097f7a2449695b74f340b163dbd": { + "b391fb64df85406aa863198b38de27eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7271,30 +7145,31 @@ "width": null } }, - "c3da49dd6970428a9727fd888d6a07ee": { + "b587a2728e9640d8a9ca1b92d99742fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fabf70fcbd2f415f93e6e8b9c17f4861", - "placeholder": "​", - "style": "IPY_MODEL_b0d76730d77645b19085de29499a07e9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04cca25384c24b1c94d911de385adc2e", + "IPY_MODEL_ed241b0fef474a6687201441ac67dd74", + "IPY_MODEL_ea9573c409424d8a8bac15fff0b2b7d0" + ], + "layout": "IPY_MODEL_cad3cae7738f47d5bf0f64d262df886c", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "c436f7262e954289901a6f4e89035f4d": { + "b6ef56fd6db2466da0273fed8540bed9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7347,31 +7222,7 @@ "width": null } }, - "c4b166c77d384273866541f5ccf30e60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_833c213f3dfb4616b0ac1c52e439ec3e", - "IPY_MODEL_e724d9b3e35a45acb354091fe5c23aeb", - "IPY_MODEL_bbe3d4342b5941289611bd0fc91aa385" - ], - "layout": "IPY_MODEL_77ba2f60a09d41d3a6e43c6821ec0634", - "tabbable": null, - "tooltip": null - } - }, - "c5b34df732014977a42409332881088e": { + "b75b2dcda03043c19e92f21428536acc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7424,47 +7275,7 @@ "width": null } }, - "c764ea439fb0433c9474557f8e8c6684": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c8d5e4eb0eb4406c95b64e0c2246c01b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cab1ddd99c6a471290bfd2b4f876e7a2", - "IPY_MODEL_6d5c548246bf4bdbb636d3a3766345a4", - "IPY_MODEL_426a8afc214b479baaeb9e8377e0f0d4" - ], - "layout": "IPY_MODEL_0f8c591a5a474389ba8bdbce5f559954", - "tabbable": null, - "tooltip": null - } - }, - "cab1ddd99c6a471290bfd2b4f876e7a2": { + "bbad93a33def4b229788aa20849516bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7479,15 +7290,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_240c2ebe5dc54104a1f10d985ffba975", + "layout": "IPY_MODEL_0b3fb420b49940f589e153c0d5c3fdec", "placeholder": "​", - "style": "IPY_MODEL_8fc9906f7a0341708627692f8489b35b", + "style": "IPY_MODEL_209c42932bea4cfc866adc42d1e0bc34", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 60000/60000 [00:07<00:00, 8701.18 examples/s]" } }, - "cb4004f3b5e94f01b3f04c2f61489f80": { + "bc0cfa74fd9b478baa3776548265f98f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7540,23 +7351,25 @@ "width": null } }, - "cc71489cf7d84e93b1534d74c859b3fa": { + "bcdb721a85b449cd9eaf7819dc3550dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cca83903b79f4db49ff544e07d3fffbd": { + "bf1ddb949cc4482ba290bb117f55ea82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7609,53 +7422,86 @@ "width": null } }, - "cd5289f0713644e7a085dd0fa5a5b4a7": { - "model_module": "@jupyter-widgets/controls", + "c1a678c9161a478e8d2196917db2dad8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52ea11b6adb8407e88b4de65546300dd", - "placeholder": "​", - "style": "IPY_MODEL_3e69f9cf29d34cc381b10a6789979acf", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ce6dcb58e792427c8f87d9ed29b4f0a9": { + "c25be99949354d9b93261eb01cd7f371": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38b582305d03499a81383d2c820015ba", - "placeholder": "​", - "style": "IPY_MODEL_28f8261f18b84882ba428c63eace54e3", + "layout": "IPY_MODEL_a07fabe6cd554c4281f06c189fb7f17a", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_805ea7e6fe75453dab92e83969f8fe93", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 10000.0 } }, - "cf2c1748546e4ac4918f44c9de22b1d4": { + "c5e5cf9a26c0498cbbbc47b2b513a358": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7671,41 +7517,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_721e1e458b6f49229779a9de4609ca92", + "layout": "IPY_MODEL_9141cd35031b41548bc5618a17448a0e", "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2a2dc27f67c34e2982043a2f79c14de3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "cf7b401abca245b48479f04da4bf569b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_678ad1f4e5ca473e8370433fa2fc17b1", - "IPY_MODEL_6b5517a69839448db9d026068acf99a3", - "IPY_MODEL_01d6ba701f1e47b693b47938240dfc44" - ], - "layout": "IPY_MODEL_50b772c22a484ec39d88b6aca3ce2b03", + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d3d1214cad84f609b2ae65551813ff8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "d4aae17914634179ba6ea992729761fb": { + "c670dd237db04ca9a6e63e4d35cecdb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7758,7 +7580,7 @@ "width": null } }, - "d4db64e04ecf453bb64e410e92717688": { + "cad3cae7738f47d5bf0f64d262df886c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7811,7 +7633,7 @@ "width": null } }, - "d596fca544e54787848bb610c63e3218": { + "cf54f0b1ea01482a8a59acd889c89c88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7829,48 +7651,51 @@ "text_color": null } }, - "d5b1e2ede532485f989cdd9654c0c392": { + "d2d061b68a1d431fa7d7e4082cdce543": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_160801910dde40a3bc9f92bb4e901944", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f62a32153e44d988bd8265c95d6522b", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 } }, - "d645a9bbf7dd4b8889a99d24f9a5908b": { + "d5a9c110896c475face60d8f33b9046c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da92e7e27e6440389d193937e123694c", - "placeholder": "​", - "style": "IPY_MODEL_2449bbbcd46a43e6aae3c8afbb81bdb3", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1698.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "da92e7e27e6440389d193937e123694c": { + "d5aee2c22e48477b9f398e4ad03d9e34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7923,7 +7748,7 @@ "width": null } }, - "db6c9d2e8a9344f28325f582fc86210b": { + "d83e3a00a6514bd7867d7bbbe2edf9f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7976,7 +7801,43 @@ "width": null } }, - "dc13e0ad81f143a2b5d4c0a44532f5b5": { + "d9809a0d4cae4531973e9be895c2f08e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc05e2e419574abb89ddec85c5fcc81d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd31c22f11524a368f9eb1cd18be16f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7994,7 +7855,33 @@ "text_color": null } }, - "dd4605541b5149cd9d1ad54f08320d7b": { + "dde263477419437a9af2ca03171dadcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b75b2dcda03043c19e92f21428536acc", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8acff64b052e48dc9e676ca2f1f20446", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "de21539b01914576913a0b51a048b56f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8009,16 +7896,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a71dfc2757d34c75bb330c1eb6ea11e6", - "IPY_MODEL_33cdba775984444396b1d4c9f0a95c94", - "IPY_MODEL_fc047f3aaf0b4e4a871a8806135acc87" + "IPY_MODEL_e40aeb47074d4ecb90098770f4839946", + "IPY_MODEL_4586a50b001c47b39290a335d19b949d", + "IPY_MODEL_19a410fe62c9469fbbfdb218f3a51fc8" ], - "layout": "IPY_MODEL_ab7bf39143554ffc9ed393ecb6bf2fe4", + "layout": "IPY_MODEL_3352d2afb83f411eb34ef57cd4914610", "tabbable": null, "tooltip": null } }, - "df1f220280f9444e97bb1f2206036724": { + "df295f854e794a6dacc9fe1281979049": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c78106bc0d64791b1920a0bba595880", + "placeholder": "​", + "style": "IPY_MODEL_03645e2db82a48cea591a8ecc43409ac", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + } + }, + "dfc1a61d6aca4ccca4fce1f46c9b016e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8071,7 +7981,7 @@ "width": null } }, - "df585fd875034d5cae08c4684ad20c2f": { + "e31270e184e04922b08349a65c597693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8086,68 +7996,143 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cca83903b79f4db49ff544e07d3fffbd", + "layout": "IPY_MODEL_517e9a88dd474cac8c7f7723d261a5fe", "placeholder": "​", - "style": "IPY_MODEL_49cd0886c40048d5b78db2aa719fc1d0", + "style": "IPY_MODEL_d9809a0d4cae4531973e9be895c2f08e", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" } }, - "e02cdb3570024c49bb96ffcbc8948970": { - "model_module": "@jupyter-widgets/base", + "e40aeb47074d4ecb90098770f4839946": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a0d54aeee9e43a2a6613a32708b583c", + "placeholder": "​", + "style": "IPY_MODEL_76d4d52a162a40a6aad6c51613675dd9", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e716b663d19a4155af04eb17f142c03c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e73b799b5ff64804a99810863c6f0533": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e74d0f623f774aa5a1554c10228f1654": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3a97aab207204e0fb9a0b492587021ad", + "IPY_MODEL_3cf5000751a1413faba426291a215dff", + "IPY_MODEL_e31270e184e04922b08349a65c597693" + ], + "layout": "IPY_MODEL_436dcfd1d6524d58997ebd20abd27ac3", + "tabbable": null, + "tooltip": null + } + }, + "e85162633bd84b0c8065890dd355820b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94f306cf8ec749379c45de871b0e7b5e", + "IPY_MODEL_fa1df74fd9f543a1bcb1d473ae793b1c", + "IPY_MODEL_345c5ca93fa94badbbf86dcc2fde77a6" + ], + "layout": "IPY_MODEL_f061db9de67c4b4c92b189d2906d780c", + "tabbable": null, + "tooltip": null + } + }, + "e89a1ca0e0b746b0b9349efd7a426e3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8739c6ff8d994ba4be0b2287de3e0173", + "placeholder": "​", + "style": "IPY_MODEL_3956333acd4649dd8a66f905633d9a1e", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e1e3abfce0184ef19c5c108ae494316b": { + "e9632dad724b4651afed5367d50e22c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8162,69 +8147,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ce6dcb58e792427c8f87d9ed29b4f0a9", - "IPY_MODEL_44f00a50f1674a53a847ced00a1a1aa8", - "IPY_MODEL_d645a9bbf7dd4b8889a99d24f9a5908b" + "IPY_MODEL_20a3b73248e646e4993c7afc88dc3bb7", + "IPY_MODEL_5789650eb64d4dbab1f8c667a5fd4cf6", + "IPY_MODEL_df295f854e794a6dacc9fe1281979049" ], - "layout": "IPY_MODEL_edc3d19afcb14bf9a3ec0e41f62a44b4", + "layout": "IPY_MODEL_ec3cdb9f36064f85ac05856111e8b6e8", "tabbable": null, "tooltip": null } }, - "e416714bbcb4438b9179a39662ae3c9d": { - "model_module": "@jupyter-widgets/base", + "ea9573c409424d8a8bac15fff0b2b7d0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1a678c9161a478e8d2196917db2dad8", + "placeholder": "​", + "style": "IPY_MODEL_cf54f0b1ea01482a8a59acd889c89c88", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.52it/s]" } }, - "e6d9becff77b42d59be635fa6580a8e8": { + "ec3cdb9f36064f85ac05856111e8b6e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8277,77 +8232,7 @@ "width": null } }, - "e724d9b3e35a45acb354091fe5c23aeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_368cc0e1d6734409878e33ca4d54012a", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c764ea439fb0433c9474557f8e8c6684", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "eb2f621f64a84dc8bd2155d241bd5e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ebf23d88069d459aae84207ff5363fab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e6489c700d54df69ff90b573c906911", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_50962242a0be4c5fb1f19bd9ba3796a1", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "ec65d1696272499aae2176b681d4abeb": { + "ed241b0fef474a6687201441ac67dd74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8363,17 +8248,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc002711d08c4670abb04d02bc7b008a", - "max": 4422102.0, + "layout": "IPY_MODEL_dfc1a61d6aca4ccca4fce1f46c9b016e", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a84982db10294fb58f5db219f440a873", + "style": "IPY_MODEL_19246b6d91f14aaa9f10d7cb83049531", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 40.0 } }, - "ed87086cfa9c41729602000b60ca20f5": { + "ed9503bde9bc41e0912e3c94c2a43266": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8426,7 +8311,30 @@ "width": null } }, - "edc3d19afcb14bf9a3ec0e41f62a44b4": { + "f01a831193cb480fa8538ccac1625826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_140978469fad46c2b6b98809eddb12e7", + "placeholder": "​", + "style": "IPY_MODEL_13c0b9289c5e4e8f92a21c0307aae6db", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f061db9de67c4b4c92b189d2906d780c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8479,7 +8387,7 @@ "width": null } }, - "f3158013f4864de583ab980afefd55af": { + "f512ea72b63a45489078a0f45d052131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8494,15 +8402,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db6c9d2e8a9344f28325f582fc86210b", + "layout": "IPY_MODEL_85ab7c6aa7b341d69b9dc923ebdfa7c4", "placeholder": "​", - "style": "IPY_MODEL_04be2e19fc3542cba1d0cb7b9b407a95", + "style": "IPY_MODEL_e716b663d19a4155af04eb17f142c03c", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4.42M/4.42M [00:00<00:00, 70.5MB/s]" } }, - "f60c654fb5a84d09a6d3b2f8c92cc4c5": { + "f74501f2cd3a424a9fd976bc8add6990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8555,7 +8463,104 @@ "width": null } }, - "fabf70fcbd2f415f93e6e8b9c17f4861": { + "f85257acca8547839184b5f056eac10e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0d1066339f76479d8d58e5ae35748f5b", + "IPY_MODEL_d2d061b68a1d431fa7d7e4082cdce543", + "IPY_MODEL_f512ea72b63a45489078a0f45d052131" + ], + "layout": "IPY_MODEL_6198d3b6f1a04ba4a34a5d2018c9b155", + "tabbable": null, + "tooltip": null + } + }, + "f8b91b2b5043498da2181511d46d09c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_07de4e87697443a892880c15d1e511c6", + "placeholder": "​", + "style": "IPY_MODEL_440697a08c6346efa46be2fb03bac8e0", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1657.88it/s]" + } + }, + "f9b540e1a55a4d16ad1b5a90f594ee47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82fc78533dbc46d08a781919716d2335", + "IPY_MODEL_5ea8be39dce64842a42fe020b19fc090", + "IPY_MODEL_bbad93a33def4b229788aa20849516bd" + ], + "layout": "IPY_MODEL_1d30818e74e74811938c25e51402dba7", + "tabbable": null, + "tooltip": null + } + }, + "fa1df74fd9f543a1bcb1d473ae793b1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf1ddb949cc4482ba290bb117f55ea82", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5dcfa0777e6540998053e4a29b29b806", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fa87a07117a74232955cb6e2e8b66aa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8608,30 +8613,25 @@ "width": null } }, - "fc047f3aaf0b4e4a871a8806135acc87": { + "fd5d6bff1fad4857abafef9b11b3dfe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_89b3cf05a743439f91b59abfd6f0b25b", - "placeholder": "​", - "style": "IPY_MODEL_3b6fd5946d154ca3b3c1477ecd5510ab", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 617kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ff23c9d5761b436eb1d73a55e8f32ea8": { + "fd9234c25dae4c37a35f1e4d52af48c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8684,7 +8684,7 @@ "width": null } }, - "ff5dd94e778e4a3a9a4f34a8b29844b2": { + "fe504683f63741bdac7f7f37aacf03d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8700,11 +8700,11 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8253cf2e395646f0a170750f8c426d62", + "layout": "IPY_MODEL_3f14c7dcb14b4ff9b9a6110a6ebeea9a", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_999494066dab42bbb02dd47224780e98", + "style": "IPY_MODEL_9d6e31ccf4dd4aceabf442d6436fa02c", "tabbable": null, "tooltip": null, "value": 40.0 diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index b258b462c..49189d5a3 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:31.954471Z", - "iopub.status.busy": "2024-07-09T06:10:31.954063Z", - "iopub.status.idle": "2024-07-09T06:10:33.062774Z", - "shell.execute_reply": "2024-07-09T06:10:33.062218Z" + "iopub.execute_input": "2024-07-09T06:25:43.397675Z", + "iopub.status.busy": "2024-07-09T06:25:43.397521Z", + "iopub.status.idle": "2024-07-09T06:25:44.500416Z", + "shell.execute_reply": "2024-07-09T06:25:44.499930Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.065325Z", - "iopub.status.busy": "2024-07-09T06:10:33.064874Z", - "iopub.status.idle": "2024-07-09T06:10:33.082725Z", - "shell.execute_reply": "2024-07-09T06:10:33.082160Z" + "iopub.execute_input": "2024-07-09T06:25:44.503054Z", + "iopub.status.busy": "2024-07-09T06:25:44.502594Z", + "iopub.status.idle": "2024-07-09T06:25:44.520286Z", + "shell.execute_reply": "2024-07-09T06:25:44.519788Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.085238Z", - "iopub.status.busy": "2024-07-09T06:10:33.084866Z", - "iopub.status.idle": "2024-07-09T06:10:33.122428Z", - "shell.execute_reply": "2024-07-09T06:10:33.121889Z" + "iopub.execute_input": "2024-07-09T06:25:44.522768Z", + "iopub.status.busy": "2024-07-09T06:25:44.522335Z", + "iopub.status.idle": "2024-07-09T06:25:44.561412Z", + "shell.execute_reply": "2024-07-09T06:25:44.560787Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.124701Z", - "iopub.status.busy": "2024-07-09T06:10:33.124258Z", - "iopub.status.idle": "2024-07-09T06:10:33.127662Z", - "shell.execute_reply": "2024-07-09T06:10:33.127234Z" + "iopub.execute_input": "2024-07-09T06:25:44.563603Z", + "iopub.status.busy": "2024-07-09T06:25:44.563330Z", + "iopub.status.idle": "2024-07-09T06:25:44.566773Z", + "shell.execute_reply": "2024-07-09T06:25:44.566347Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.129795Z", - "iopub.status.busy": "2024-07-09T06:10:33.129342Z", - "iopub.status.idle": "2024-07-09T06:10:33.137253Z", - "shell.execute_reply": "2024-07-09T06:10:33.136681Z" + "iopub.execute_input": "2024-07-09T06:25:44.568882Z", + "iopub.status.busy": "2024-07-09T06:25:44.568557Z", + "iopub.status.idle": "2024-07-09T06:25:44.576133Z", + "shell.execute_reply": "2024-07-09T06:25:44.575666Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.139475Z", - "iopub.status.busy": "2024-07-09T06:10:33.139068Z", - "iopub.status.idle": "2024-07-09T06:10:33.141754Z", - "shell.execute_reply": "2024-07-09T06:10:33.141219Z" + "iopub.execute_input": "2024-07-09T06:25:44.578213Z", + "iopub.status.busy": "2024-07-09T06:25:44.577888Z", + "iopub.status.idle": "2024-07-09T06:25:44.580359Z", + "shell.execute_reply": "2024-07-09T06:25:44.579938Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.143704Z", - "iopub.status.busy": "2024-07-09T06:10:33.143398Z", - "iopub.status.idle": "2024-07-09T06:10:36.054194Z", - "shell.execute_reply": "2024-07-09T06:10:36.053560Z" + "iopub.execute_input": "2024-07-09T06:25:44.582404Z", + "iopub.status.busy": "2024-07-09T06:25:44.582006Z", + "iopub.status.idle": "2024-07-09T06:25:47.496435Z", + "shell.execute_reply": "2024-07-09T06:25:47.495884Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.057163Z", - "iopub.status.busy": "2024-07-09T06:10:36.056695Z", - "iopub.status.idle": "2024-07-09T06:10:36.066132Z", - "shell.execute_reply": "2024-07-09T06:10:36.065594Z" + "iopub.execute_input": "2024-07-09T06:25:47.499186Z", + "iopub.status.busy": "2024-07-09T06:25:47.498702Z", + "iopub.status.idle": "2024-07-09T06:25:47.508351Z", + "shell.execute_reply": "2024-07-09T06:25:47.507924Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.068240Z", - "iopub.status.busy": "2024-07-09T06:10:36.067922Z", - "iopub.status.idle": "2024-07-09T06:10:37.919153Z", - "shell.execute_reply": "2024-07-09T06:10:37.918499Z" + "iopub.execute_input": "2024-07-09T06:25:47.510494Z", + "iopub.status.busy": "2024-07-09T06:25:47.510083Z", + "iopub.status.idle": "2024-07-09T06:25:49.420464Z", + "shell.execute_reply": "2024-07-09T06:25:49.419867Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.921685Z", - "iopub.status.busy": "2024-07-09T06:10:37.921227Z", - "iopub.status.idle": "2024-07-09T06:10:37.939600Z", - "shell.execute_reply": "2024-07-09T06:10:37.939159Z" + "iopub.execute_input": "2024-07-09T06:25:49.423063Z", + "iopub.status.busy": "2024-07-09T06:25:49.422479Z", + "iopub.status.idle": "2024-07-09T06:25:49.441395Z", + "shell.execute_reply": "2024-07-09T06:25:49.440922Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.941611Z", - "iopub.status.busy": "2024-07-09T06:10:37.941224Z", - "iopub.status.idle": "2024-07-09T06:10:37.949046Z", - "shell.execute_reply": "2024-07-09T06:10:37.948512Z" + "iopub.execute_input": "2024-07-09T06:25:49.443532Z", + "iopub.status.busy": "2024-07-09T06:25:49.443194Z", + "iopub.status.idle": "2024-07-09T06:25:49.451051Z", + "shell.execute_reply": "2024-07-09T06:25:49.450614Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.950940Z", - "iopub.status.busy": "2024-07-09T06:10:37.950650Z", - "iopub.status.idle": "2024-07-09T06:10:37.959497Z", - "shell.execute_reply": "2024-07-09T06:10:37.958941Z" + "iopub.execute_input": "2024-07-09T06:25:49.453099Z", + "iopub.status.busy": "2024-07-09T06:25:49.452774Z", + "iopub.status.idle": "2024-07-09T06:25:49.461948Z", + "shell.execute_reply": "2024-07-09T06:25:49.461497Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.961570Z", - "iopub.status.busy": "2024-07-09T06:10:37.961245Z", - "iopub.status.idle": "2024-07-09T06:10:37.968825Z", - "shell.execute_reply": "2024-07-09T06:10:37.968376Z" + "iopub.execute_input": "2024-07-09T06:25:49.463968Z", + "iopub.status.busy": "2024-07-09T06:25:49.463653Z", + "iopub.status.idle": "2024-07-09T06:25:49.471593Z", + "shell.execute_reply": "2024-07-09T06:25:49.471011Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.970802Z", - "iopub.status.busy": "2024-07-09T06:10:37.970481Z", - "iopub.status.idle": "2024-07-09T06:10:37.978940Z", - "shell.execute_reply": "2024-07-09T06:10:37.978487Z" + "iopub.execute_input": "2024-07-09T06:25:49.473529Z", + "iopub.status.busy": "2024-07-09T06:25:49.473356Z", + "iopub.status.idle": "2024-07-09T06:25:49.482335Z", + "shell.execute_reply": "2024-07-09T06:25:49.481895Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.980895Z", - "iopub.status.busy": "2024-07-09T06:10:37.980578Z", - "iopub.status.idle": "2024-07-09T06:10:37.987894Z", - "shell.execute_reply": "2024-07-09T06:10:37.987444Z" + "iopub.execute_input": "2024-07-09T06:25:49.484408Z", + "iopub.status.busy": "2024-07-09T06:25:49.484080Z", + "iopub.status.idle": "2024-07-09T06:25:49.491499Z", + "shell.execute_reply": "2024-07-09T06:25:49.491016Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.989860Z", - "iopub.status.busy": "2024-07-09T06:10:37.989565Z", - "iopub.status.idle": "2024-07-09T06:10:37.996677Z", - "shell.execute_reply": "2024-07-09T06:10:37.996133Z" + "iopub.execute_input": "2024-07-09T06:25:49.493531Z", + "iopub.status.busy": "2024-07-09T06:25:49.493203Z", + "iopub.status.idle": "2024-07-09T06:25:49.500767Z", + "shell.execute_reply": "2024-07-09T06:25:49.500318Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.998801Z", - "iopub.status.busy": "2024-07-09T06:10:37.998404Z", - "iopub.status.idle": "2024-07-09T06:10:38.006720Z", - "shell.execute_reply": "2024-07-09T06:10:38.006170Z" + "iopub.execute_input": "2024-07-09T06:25:49.502816Z", + "iopub.status.busy": "2024-07-09T06:25:49.502476Z", + "iopub.status.idle": "2024-07-09T06:25:49.511060Z", + "shell.execute_reply": "2024-07-09T06:25:49.510478Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 79b7e466e..007861577 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:40.535594Z", - "iopub.status.busy": "2024-07-09T06:10:40.535117Z", - "iopub.status.idle": "2024-07-09T06:10:43.126940Z", - "shell.execute_reply": "2024-07-09T06:10:43.126369Z" + "iopub.execute_input": "2024-07-09T06:25:52.110367Z", + "iopub.status.busy": "2024-07-09T06:25:52.110187Z", + "iopub.status.idle": "2024-07-09T06:25:54.784149Z", + "shell.execute_reply": "2024-07-09T06:25:54.783592Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.129363Z", - "iopub.status.busy": "2024-07-09T06:10:43.129085Z", - "iopub.status.idle": "2024-07-09T06:10:43.132156Z", - "shell.execute_reply": "2024-07-09T06:10:43.131728Z" + "iopub.execute_input": "2024-07-09T06:25:54.786763Z", + "iopub.status.busy": "2024-07-09T06:25:54.786450Z", + "iopub.status.idle": "2024-07-09T06:25:54.790234Z", + "shell.execute_reply": "2024-07-09T06:25:54.789808Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.134177Z", - "iopub.status.busy": "2024-07-09T06:10:43.133850Z", - "iopub.status.idle": "2024-07-09T06:10:43.136808Z", - "shell.execute_reply": "2024-07-09T06:10:43.136399Z" + "iopub.execute_input": "2024-07-09T06:25:54.792282Z", + "iopub.status.busy": "2024-07-09T06:25:54.791960Z", + "iopub.status.idle": "2024-07-09T06:25:54.795130Z", + "shell.execute_reply": "2024-07-09T06:25:54.794637Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.138812Z", - "iopub.status.busy": "2024-07-09T06:10:43.138552Z", - "iopub.status.idle": "2024-07-09T06:10:43.177660Z", - "shell.execute_reply": "2024-07-09T06:10:43.177223Z" + "iopub.execute_input": "2024-07-09T06:25:54.797237Z", + "iopub.status.busy": "2024-07-09T06:25:54.796891Z", + "iopub.status.idle": "2024-07-09T06:25:54.839838Z", + "shell.execute_reply": "2024-07-09T06:25:54.839268Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.179619Z", - "iopub.status.busy": "2024-07-09T06:10:43.179241Z", - "iopub.status.idle": "2024-07-09T06:10:43.182896Z", - "shell.execute_reply": "2024-07-09T06:10:43.182371Z" + "iopub.execute_input": "2024-07-09T06:25:54.842013Z", + "iopub.status.busy": "2024-07-09T06:25:54.841618Z", + "iopub.status.idle": "2024-07-09T06:25:54.845269Z", + "shell.execute_reply": "2024-07-09T06:25:54.844799Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n" + "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.184918Z", - "iopub.status.busy": "2024-07-09T06:10:43.184590Z", - "iopub.status.idle": "2024-07-09T06:10:43.187433Z", - "shell.execute_reply": "2024-07-09T06:10:43.186872Z" + "iopub.execute_input": "2024-07-09T06:25:54.847533Z", + "iopub.status.busy": "2024-07-09T06:25:54.847103Z", + "iopub.status.idle": "2024-07-09T06:25:54.850442Z", + "shell.execute_reply": "2024-07-09T06:25:54.849920Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.189544Z", - "iopub.status.busy": "2024-07-09T06:10:43.189224Z", - "iopub.status.idle": "2024-07-09T06:10:46.827935Z", - "shell.execute_reply": "2024-07-09T06:10:46.827389Z" + "iopub.execute_input": "2024-07-09T06:25:54.852582Z", + "iopub.status.busy": "2024-07-09T06:25:54.852188Z", + "iopub.status.idle": "2024-07-09T06:25:59.138875Z", + "shell.execute_reply": "2024-07-09T06:25:59.138241Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:46.830697Z", - "iopub.status.busy": "2024-07-09T06:10:46.830289Z", - "iopub.status.idle": "2024-07-09T06:10:47.705352Z", - "shell.execute_reply": "2024-07-09T06:10:47.704778Z" + "iopub.execute_input": "2024-07-09T06:25:59.141607Z", + "iopub.status.busy": "2024-07-09T06:25:59.141219Z", + "iopub.status.idle": "2024-07-09T06:26:00.038840Z", + "shell.execute_reply": "2024-07-09T06:26:00.038252Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.709046Z", - "iopub.status.busy": "2024-07-09T06:10:47.708102Z", - "iopub.status.idle": "2024-07-09T06:10:47.712144Z", - "shell.execute_reply": "2024-07-09T06:10:47.711648Z" + "iopub.execute_input": "2024-07-09T06:26:00.041846Z", + "iopub.status.busy": "2024-07-09T06:26:00.041473Z", + "iopub.status.idle": "2024-07-09T06:26:00.044333Z", + "shell.execute_reply": "2024-07-09T06:26:00.043847Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.715606Z", - "iopub.status.busy": "2024-07-09T06:10:47.714676Z", - "iopub.status.idle": "2024-07-09T06:10:49.613175Z", - "shell.execute_reply": "2024-07-09T06:10:49.612550Z" + "iopub.execute_input": "2024-07-09T06:26:00.046828Z", + "iopub.status.busy": "2024-07-09T06:26:00.046455Z", + "iopub.status.idle": "2024-07-09T06:26:02.001666Z", + "shell.execute_reply": "2024-07-09T06:26:02.000979Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.617209Z", - "iopub.status.busy": "2024-07-09T06:10:49.615926Z", - "iopub.status.idle": "2024-07-09T06:10:49.641459Z", - "shell.execute_reply": "2024-07-09T06:10:49.640965Z" + "iopub.execute_input": "2024-07-09T06:26:02.005648Z", + "iopub.status.busy": "2024-07-09T06:26:02.004357Z", + "iopub.status.idle": "2024-07-09T06:26:02.029990Z", + "shell.execute_reply": "2024-07-09T06:26:02.029487Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.644905Z", - "iopub.status.busy": "2024-07-09T06:10:49.644000Z", - "iopub.status.idle": "2024-07-09T06:10:49.655340Z", - "shell.execute_reply": "2024-07-09T06:10:49.654769Z" + "iopub.execute_input": "2024-07-09T06:26:02.033668Z", + "iopub.status.busy": "2024-07-09T06:26:02.032688Z", + "iopub.status.idle": "2024-07-09T06:26:02.043061Z", + "shell.execute_reply": "2024-07-09T06:26:02.042510Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.657493Z", - "iopub.status.busy": "2024-07-09T06:10:49.657322Z", - "iopub.status.idle": "2024-07-09T06:10:49.662434Z", - "shell.execute_reply": "2024-07-09T06:10:49.661886Z" + "iopub.execute_input": "2024-07-09T06:26:02.045235Z", + "iopub.status.busy": "2024-07-09T06:26:02.044844Z", + "iopub.status.idle": "2024-07-09T06:26:02.049066Z", + "shell.execute_reply": "2024-07-09T06:26:02.048544Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.664404Z", - "iopub.status.busy": "2024-07-09T06:10:49.664233Z", - "iopub.status.idle": "2024-07-09T06:10:49.671717Z", - "shell.execute_reply": "2024-07-09T06:10:49.671181Z" + "iopub.execute_input": "2024-07-09T06:26:02.050976Z", + "iopub.status.busy": "2024-07-09T06:26:02.050656Z", + "iopub.status.idle": "2024-07-09T06:26:02.056885Z", + "shell.execute_reply": "2024-07-09T06:26:02.056368Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.673760Z", - "iopub.status.busy": "2024-07-09T06:10:49.673436Z", - "iopub.status.idle": "2024-07-09T06:10:49.679943Z", - "shell.execute_reply": "2024-07-09T06:10:49.679422Z" + "iopub.execute_input": "2024-07-09T06:26:02.058842Z", + "iopub.status.busy": "2024-07-09T06:26:02.058553Z", + "iopub.status.idle": "2024-07-09T06:26:02.064989Z", + "shell.execute_reply": "2024-07-09T06:26:02.064469Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.681898Z", - "iopub.status.busy": "2024-07-09T06:10:49.681599Z", - "iopub.status.idle": "2024-07-09T06:10:49.687322Z", - "shell.execute_reply": "2024-07-09T06:10:49.686783Z" + "iopub.execute_input": "2024-07-09T06:26:02.067209Z", + "iopub.status.busy": "2024-07-09T06:26:02.066773Z", + "iopub.status.idle": "2024-07-09T06:26:02.072793Z", + "shell.execute_reply": "2024-07-09T06:26:02.072374Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.689368Z", - "iopub.status.busy": "2024-07-09T06:10:49.688972Z", - "iopub.status.idle": "2024-07-09T06:10:49.697716Z", - "shell.execute_reply": "2024-07-09T06:10:49.697194Z" + "iopub.execute_input": "2024-07-09T06:26:02.074940Z", + "iopub.status.busy": "2024-07-09T06:26:02.074490Z", + "iopub.status.idle": "2024-07-09T06:26:02.083051Z", + "shell.execute_reply": "2024-07-09T06:26:02.082510Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.699771Z", - "iopub.status.busy": "2024-07-09T06:10:49.699457Z", - "iopub.status.idle": "2024-07-09T06:10:49.704782Z", - "shell.execute_reply": "2024-07-09T06:10:49.704251Z" + "iopub.execute_input": "2024-07-09T06:26:02.085157Z", + "iopub.status.busy": "2024-07-09T06:26:02.084826Z", + "iopub.status.idle": "2024-07-09T06:26:02.090319Z", + "shell.execute_reply": "2024-07-09T06:26:02.089787Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.706759Z", - "iopub.status.busy": "2024-07-09T06:10:49.706448Z", - "iopub.status.idle": "2024-07-09T06:10:49.711619Z", - "shell.execute_reply": "2024-07-09T06:10:49.711154Z" + "iopub.execute_input": "2024-07-09T06:26:02.092426Z", + "iopub.status.busy": "2024-07-09T06:26:02.092121Z", + "iopub.status.idle": "2024-07-09T06:26:02.097472Z", + "shell.execute_reply": "2024-07-09T06:26:02.096931Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.713635Z", - "iopub.status.busy": "2024-07-09T06:10:49.713315Z", - "iopub.status.idle": "2024-07-09T06:10:49.716766Z", - "shell.execute_reply": "2024-07-09T06:10:49.716331Z" + "iopub.execute_input": "2024-07-09T06:26:02.099674Z", + "iopub.status.busy": "2024-07-09T06:26:02.099271Z", + "iopub.status.idle": "2024-07-09T06:26:02.103221Z", + "shell.execute_reply": "2024-07-09T06:26:02.102687Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.718751Z", - "iopub.status.busy": "2024-07-09T06:10:49.718428Z", - "iopub.status.idle": "2024-07-09T06:10:49.723391Z", - "shell.execute_reply": "2024-07-09T06:10:49.722940Z" + "iopub.execute_input": "2024-07-09T06:26:02.105280Z", + "iopub.status.busy": "2024-07-09T06:26:02.104977Z", + "iopub.status.idle": "2024-07-09T06:26:02.110409Z", + "shell.execute_reply": "2024-07-09T06:26:02.109860Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 0177ed6a5..8fba9ce06 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:52.942544Z", - "iopub.status.busy": "2024-07-09T06:10:52.942073Z", - "iopub.status.idle": "2024-07-09T06:10:53.345681Z", - "shell.execute_reply": "2024-07-09T06:10:53.345198Z" + "iopub.execute_input": "2024-07-09T06:26:06.359120Z", + "iopub.status.busy": "2024-07-09T06:26:06.358944Z", + "iopub.status.idle": "2024-07-09T06:26:06.770440Z", + "shell.execute_reply": "2024-07-09T06:26:06.769872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.348217Z", - "iopub.status.busy": "2024-07-09T06:10:53.347881Z", - "iopub.status.idle": "2024-07-09T06:10:53.473155Z", - "shell.execute_reply": "2024-07-09T06:10:53.472597Z" + "iopub.execute_input": "2024-07-09T06:26:06.772937Z", + "iopub.status.busy": "2024-07-09T06:26:06.772696Z", + "iopub.status.idle": "2024-07-09T06:26:06.900862Z", + "shell.execute_reply": "2024-07-09T06:26:06.900374Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.475525Z", - "iopub.status.busy": "2024-07-09T06:10:53.475127Z", - "iopub.status.idle": "2024-07-09T06:10:53.497388Z", - "shell.execute_reply": "2024-07-09T06:10:53.496815Z" + "iopub.execute_input": "2024-07-09T06:26:06.903167Z", + "iopub.status.busy": "2024-07-09T06:26:06.902756Z", + "iopub.status.idle": "2024-07-09T06:26:06.925318Z", + "shell.execute_reply": "2024-07-09T06:26:06.924766Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.499731Z", - "iopub.status.busy": "2024-07-09T06:10:53.499527Z", - "iopub.status.idle": "2024-07-09T06:10:56.136141Z", - "shell.execute_reply": "2024-07-09T06:10:56.135492Z" + "iopub.execute_input": "2024-07-09T06:26:06.927949Z", + "iopub.status.busy": "2024-07-09T06:26:06.927455Z", + "iopub.status.idle": "2024-07-09T06:26:09.660674Z", + "shell.execute_reply": "2024-07-09T06:26:09.660045Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", + " 0.356959\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", + "2 outlier 0.356959 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:56.138887Z", - "iopub.status.busy": "2024-07-09T06:10:56.138378Z", - "iopub.status.idle": "2024-07-09T06:11:04.045173Z", - "shell.execute_reply": "2024-07-09T06:11:04.044648Z" + "iopub.execute_input": "2024-07-09T06:26:09.663103Z", + "iopub.status.busy": "2024-07-09T06:26:09.662695Z", + "iopub.status.idle": "2024-07-09T06:26:17.697818Z", + "shell.execute_reply": "2024-07-09T06:26:17.697224Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.047461Z", - "iopub.status.busy": "2024-07-09T06:11:04.047110Z", - "iopub.status.idle": "2024-07-09T06:11:04.191376Z", - "shell.execute_reply": "2024-07-09T06:11:04.190647Z" + "iopub.execute_input": "2024-07-09T06:26:17.700276Z", + "iopub.status.busy": "2024-07-09T06:26:17.699925Z", + "iopub.status.idle": "2024-07-09T06:26:17.841746Z", + "shell.execute_reply": "2024-07-09T06:26:17.841256Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.194109Z", - "iopub.status.busy": "2024-07-09T06:11:04.193645Z", - "iopub.status.idle": "2024-07-09T06:11:05.510979Z", - "shell.execute_reply": "2024-07-09T06:11:05.510497Z" + "iopub.execute_input": "2024-07-09T06:26:17.844287Z", + "iopub.status.busy": "2024-07-09T06:26:17.843913Z", + "iopub.status.idle": "2024-07-09T06:26:19.164893Z", + "shell.execute_reply": "2024-07-09T06:26:19.164379Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.513170Z", - "iopub.status.busy": "2024-07-09T06:11:05.512973Z", - "iopub.status.idle": "2024-07-09T06:11:05.957490Z", - "shell.execute_reply": "2024-07-09T06:11:05.956884Z" + "iopub.execute_input": "2024-07-09T06:26:19.167019Z", + "iopub.status.busy": "2024-07-09T06:26:19.166813Z", + "iopub.status.idle": "2024-07-09T06:26:19.597782Z", + "shell.execute_reply": "2024-07-09T06:26:19.597208Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.959868Z", - "iopub.status.busy": "2024-07-09T06:11:05.959401Z", - "iopub.status.idle": "2024-07-09T06:11:05.968391Z", - "shell.execute_reply": "2024-07-09T06:11:05.967953Z" + "iopub.execute_input": "2024-07-09T06:26:19.600017Z", + "iopub.status.busy": "2024-07-09T06:26:19.599671Z", + "iopub.status.idle": "2024-07-09T06:26:19.608754Z", + "shell.execute_reply": "2024-07-09T06:26:19.608320Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.970302Z", - "iopub.status.busy": "2024-07-09T06:11:05.970122Z", - "iopub.status.idle": "2024-07-09T06:11:05.987977Z", - "shell.execute_reply": "2024-07-09T06:11:05.987543Z" + "iopub.execute_input": "2024-07-09T06:26:19.610758Z", + "iopub.status.busy": "2024-07-09T06:26:19.610582Z", + "iopub.status.idle": "2024-07-09T06:26:19.629174Z", + "shell.execute_reply": "2024-07-09T06:26:19.628714Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.989813Z", - "iopub.status.busy": "2024-07-09T06:11:05.989642Z", - "iopub.status.idle": "2024-07-09T06:11:06.209533Z", - "shell.execute_reply": "2024-07-09T06:11:06.208915Z" + "iopub.execute_input": "2024-07-09T06:26:19.631274Z", + "iopub.status.busy": "2024-07-09T06:26:19.630949Z", + "iopub.status.idle": "2024-07-09T06:26:19.855473Z", + "shell.execute_reply": "2024-07-09T06:26:19.854937Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.212253Z", - "iopub.status.busy": "2024-07-09T06:11:06.211863Z", - "iopub.status.idle": "2024-07-09T06:11:06.230982Z", - "shell.execute_reply": "2024-07-09T06:11:06.230519Z" + "iopub.execute_input": "2024-07-09T06:26:19.857897Z", + "iopub.status.busy": "2024-07-09T06:26:19.857717Z", + "iopub.status.idle": "2024-07-09T06:26:19.876254Z", + "shell.execute_reply": "2024-07-09T06:26:19.875785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.232972Z", - "iopub.status.busy": "2024-07-09T06:11:06.232702Z", - "iopub.status.idle": "2024-07-09T06:11:06.397652Z", - "shell.execute_reply": "2024-07-09T06:11:06.397123Z" + "iopub.execute_input": "2024-07-09T06:26:19.878330Z", + "iopub.status.busy": "2024-07-09T06:26:19.878123Z", + "iopub.status.idle": "2024-07-09T06:26:20.020972Z", + "shell.execute_reply": "2024-07-09T06:26:20.020418Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.399867Z", - "iopub.status.busy": "2024-07-09T06:11:06.399536Z", - "iopub.status.idle": "2024-07-09T06:11:06.409014Z", - "shell.execute_reply": "2024-07-09T06:11:06.408593Z" + "iopub.execute_input": "2024-07-09T06:26:20.023234Z", + "iopub.status.busy": "2024-07-09T06:26:20.023054Z", + "iopub.status.idle": "2024-07-09T06:26:20.033881Z", + "shell.execute_reply": "2024-07-09T06:26:20.033455Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.411108Z", - "iopub.status.busy": "2024-07-09T06:11:06.410779Z", - "iopub.status.idle": "2024-07-09T06:11:06.419899Z", - "shell.execute_reply": "2024-07-09T06:11:06.419375Z" + "iopub.execute_input": "2024-07-09T06:26:20.036017Z", + "iopub.status.busy": "2024-07-09T06:26:20.035683Z", + "iopub.status.idle": "2024-07-09T06:26:20.045307Z", + "shell.execute_reply": "2024-07-09T06:26:20.044756Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.421833Z", - "iopub.status.busy": "2024-07-09T06:11:06.421517Z", - "iopub.status.idle": "2024-07-09T06:11:06.463296Z", - "shell.execute_reply": "2024-07-09T06:11:06.462727Z" + "iopub.execute_input": "2024-07-09T06:26:20.047404Z", + "iopub.status.busy": "2024-07-09T06:26:20.047075Z", + "iopub.status.idle": "2024-07-09T06:26:20.077571Z", + "shell.execute_reply": "2024-07-09T06:26:20.077104Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.465213Z", - "iopub.status.busy": "2024-07-09T06:11:06.464909Z", - "iopub.status.idle": "2024-07-09T06:11:06.467608Z", - "shell.execute_reply": "2024-07-09T06:11:06.467074Z" + "iopub.execute_input": "2024-07-09T06:26:20.079806Z", + "iopub.status.busy": "2024-07-09T06:26:20.079460Z", + "iopub.status.idle": "2024-07-09T06:26:20.082272Z", + "shell.execute_reply": "2024-07-09T06:26:20.081824Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.469481Z", - "iopub.status.busy": "2024-07-09T06:11:06.469198Z", - "iopub.status.idle": "2024-07-09T06:11:06.487639Z", - "shell.execute_reply": "2024-07-09T06:11:06.487096Z" + "iopub.execute_input": "2024-07-09T06:26:20.084214Z", + "iopub.status.busy": "2024-07-09T06:26:20.083951Z", + "iopub.status.idle": "2024-07-09T06:26:20.103369Z", + "shell.execute_reply": "2024-07-09T06:26:20.102920Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.489617Z", - "iopub.status.busy": "2024-07-09T06:11:06.489312Z", - "iopub.status.idle": "2024-07-09T06:11:06.493367Z", - "shell.execute_reply": "2024-07-09T06:11:06.492952Z" + "iopub.execute_input": "2024-07-09T06:26:20.105637Z", + "iopub.status.busy": "2024-07-09T06:26:20.105313Z", + "iopub.status.idle": "2024-07-09T06:26:20.109592Z", + "shell.execute_reply": "2024-07-09T06:26:20.109129Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.495289Z", - "iopub.status.busy": "2024-07-09T06:11:06.495116Z", - "iopub.status.idle": "2024-07-09T06:11:06.522255Z", - "shell.execute_reply": "2024-07-09T06:11:06.521808Z" + "iopub.execute_input": "2024-07-09T06:26:20.111735Z", + "iopub.status.busy": "2024-07-09T06:26:20.111418Z", + "iopub.status.idle": "2024-07-09T06:26:20.140670Z", + "shell.execute_reply": "2024-07-09T06:26:20.140161Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.524284Z", - "iopub.status.busy": "2024-07-09T06:11:06.523987Z", - "iopub.status.idle": "2024-07-09T06:11:06.892253Z", - "shell.execute_reply": "2024-07-09T06:11:06.891794Z" + "iopub.execute_input": "2024-07-09T06:26:20.143010Z", + "iopub.status.busy": "2024-07-09T06:26:20.142558Z", + "iopub.status.idle": "2024-07-09T06:26:20.467470Z", + "shell.execute_reply": "2024-07-09T06:26:20.466812Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.894473Z", - "iopub.status.busy": "2024-07-09T06:11:06.894138Z", - "iopub.status.idle": "2024-07-09T06:11:06.897200Z", - "shell.execute_reply": "2024-07-09T06:11:06.896678Z" + "iopub.execute_input": "2024-07-09T06:26:20.469860Z", + "iopub.status.busy": "2024-07-09T06:26:20.469461Z", + "iopub.status.idle": "2024-07-09T06:26:20.472834Z", + "shell.execute_reply": "2024-07-09T06:26:20.472304Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.899347Z", - "iopub.status.busy": "2024-07-09T06:11:06.899013Z", - "iopub.status.idle": "2024-07-09T06:11:06.911828Z", - "shell.execute_reply": "2024-07-09T06:11:06.911372Z" + "iopub.execute_input": "2024-07-09T06:26:20.474846Z", + "iopub.status.busy": "2024-07-09T06:26:20.474545Z", + "iopub.status.idle": "2024-07-09T06:26:20.487539Z", + "shell.execute_reply": "2024-07-09T06:26:20.487103Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.913860Z", - "iopub.status.busy": "2024-07-09T06:11:06.913532Z", - "iopub.status.idle": "2024-07-09T06:11:06.926512Z", - "shell.execute_reply": "2024-07-09T06:11:06.926088Z" + "iopub.execute_input": "2024-07-09T06:26:20.489598Z", + "iopub.status.busy": "2024-07-09T06:26:20.489254Z", + "iopub.status.idle": "2024-07-09T06:26:20.502494Z", + "shell.execute_reply": "2024-07-09T06:26:20.502059Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.928478Z", - "iopub.status.busy": "2024-07-09T06:11:06.928157Z", - "iopub.status.idle": "2024-07-09T06:11:06.937772Z", - "shell.execute_reply": "2024-07-09T06:11:06.937343Z" + "iopub.execute_input": "2024-07-09T06:26:20.504650Z", + "iopub.status.busy": "2024-07-09T06:26:20.504262Z", + "iopub.status.idle": "2024-07-09T06:26:20.514526Z", + "shell.execute_reply": "2024-07-09T06:26:20.513953Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.939820Z", - "iopub.status.busy": "2024-07-09T06:11:06.939507Z", - "iopub.status.idle": "2024-07-09T06:11:06.948609Z", - "shell.execute_reply": "2024-07-09T06:11:06.948081Z" + "iopub.execute_input": "2024-07-09T06:26:20.516777Z", + "iopub.status.busy": "2024-07-09T06:26:20.516378Z", + "iopub.status.idle": "2024-07-09T06:26:20.525636Z", + "shell.execute_reply": "2024-07-09T06:26:20.525158Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.950589Z", - "iopub.status.busy": "2024-07-09T06:11:06.950273Z", - "iopub.status.idle": "2024-07-09T06:11:06.953656Z", - "shell.execute_reply": "2024-07-09T06:11:06.953231Z" + "iopub.execute_input": "2024-07-09T06:26:20.527730Z", + "iopub.status.busy": "2024-07-09T06:26:20.527427Z", + "iopub.status.idle": "2024-07-09T06:26:20.531215Z", + "shell.execute_reply": "2024-07-09T06:26:20.530643Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.955684Z", - "iopub.status.busy": "2024-07-09T06:11:06.955363Z", - "iopub.status.idle": "2024-07-09T06:11:07.005178Z", - "shell.execute_reply": "2024-07-09T06:11:07.004737Z" + "iopub.execute_input": "2024-07-09T06:26:20.533369Z", + "iopub.status.busy": "2024-07-09T06:26:20.532978Z", + "iopub.status.idle": "2024-07-09T06:26:20.584716Z", + "shell.execute_reply": "2024-07-09T06:26:20.584160Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.007278Z", - "iopub.status.busy": "2024-07-09T06:11:07.006978Z", - "iopub.status.idle": "2024-07-09T06:11:07.012518Z", - "shell.execute_reply": "2024-07-09T06:11:07.012098Z" + "iopub.execute_input": "2024-07-09T06:26:20.587026Z", + "iopub.status.busy": "2024-07-09T06:26:20.586732Z", + "iopub.status.idle": "2024-07-09T06:26:20.592456Z", + "shell.execute_reply": "2024-07-09T06:26:20.592020Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.014465Z", - "iopub.status.busy": "2024-07-09T06:11:07.014161Z", - "iopub.status.idle": "2024-07-09T06:11:07.024669Z", - "shell.execute_reply": "2024-07-09T06:11:07.024221Z" + "iopub.execute_input": "2024-07-09T06:26:20.594421Z", + "iopub.status.busy": "2024-07-09T06:26:20.594113Z", + "iopub.status.idle": "2024-07-09T06:26:20.604649Z", + "shell.execute_reply": "2024-07-09T06:26:20.604215Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.026593Z", - "iopub.status.busy": "2024-07-09T06:11:07.026273Z", - "iopub.status.idle": "2024-07-09T06:11:07.237791Z", - "shell.execute_reply": "2024-07-09T06:11:07.237173Z" + "iopub.execute_input": "2024-07-09T06:26:20.606620Z", + "iopub.status.busy": "2024-07-09T06:26:20.606292Z", + "iopub.status.idle": "2024-07-09T06:26:20.783133Z", + "shell.execute_reply": "2024-07-09T06:26:20.782497Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.239996Z", - "iopub.status.busy": "2024-07-09T06:11:07.239645Z", - "iopub.status.idle": "2024-07-09T06:11:07.246938Z", - "shell.execute_reply": "2024-07-09T06:11:07.246490Z" + "iopub.execute_input": "2024-07-09T06:26:20.785456Z", + "iopub.status.busy": "2024-07-09T06:26:20.785275Z", + "iopub.status.idle": "2024-07-09T06:26:20.793330Z", + "shell.execute_reply": "2024-07-09T06:26:20.792773Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.249025Z", - "iopub.status.busy": "2024-07-09T06:11:07.248700Z", - "iopub.status.idle": "2024-07-09T06:11:13.254461Z", - "shell.execute_reply": "2024-07-09T06:11:13.253971Z" + "iopub.execute_input": "2024-07-09T06:26:20.795475Z", + "iopub.status.busy": "2024-07-09T06:26:20.795196Z", + "iopub.status.idle": "2024-07-09T06:26:26.499101Z", + "shell.execute_reply": "2024-07-09T06:26:26.498454Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:20, 8397815.81it/s]" + " 0%| | 851968/170498071 [00:00<00:22, 7672499.19it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9797632/170498071 [00:00<00:02, 53891570.80it/s]" + " 6%|▌ | 10125312/170498071 [00:00<00:02, 55503706.90it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18186240/170498071 [00:00<00:02, 67271366.92it/s]" + " 12%|█▏ | 20086784/170498071 [00:00<00:02, 75141107.06it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26836992/170498071 [00:00<00:01, 74765057.23it/s]" + " 18%|█▊ | 30867456/170498071 [00:00<00:01, 87824521.95it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35782656/170498071 [00:00<00:01, 79953812.72it/s]" + " 24%|██▍ | 40960000/170498071 [00:00<00:01, 92491731.79it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44433408/170498071 [00:00<00:01, 82133729.89it/s]" + " 30%|███ | 51609600/170498071 [00:00<00:01, 97114538.99it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 53313536/170498071 [00:00<00:01, 84295199.10it/s]" + " 36%|███▋ | 61898752/170498071 [00:00<00:01, 98927626.10it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61800448/170498071 [00:00<00:01, 83129927.83it/s]" + " 42%|████▏ | 71860224/170498071 [00:00<00:01, 98135286.77it/s]" ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71041024/170498071 [00:00<00:01, 85883974.57it/s]" + " 48%|████▊ | 82149376/170498071 [00:00<00:00, 99557055.65it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 79659008/170498071 [00:01<00:01, 84046894.98it/s]" + " 54%|█████▍ | 92143616/170498071 [00:01<00:00, 99457801.69it/s]" ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88113152/170498071 [00:01<00:01, 81203827.56it/s]" + " 60%|██████ | 102531072/170498071 [00:01<00:00, 100788217.51it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 74533497.60it/s]" + " 66%|██████▌ | 112918528/170498071 [00:01<00:00, 101593672.45it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 104792064/170498071 [00:01<00:00, 77401455.40it/s]" + " 72%|███████▏ | 123273216/170498071 [00:01<00:00, 102077027.78it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 112984064/170498071 [00:01<00:00, 78643113.14it/s]" + " 78%|███████▊ | 133496832/170498071 [00:01<00:00, 101792169.97it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121143296/170498071 [00:01<00:00, 79360199.69it/s]" + " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 102376551.47it/s]" ] }, { @@ -3907,7 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129138688/170498071 [00:01<00:00, 76918262.43it/s]" + " 90%|█████████ | 154140672/170498071 [00:01<00:00, 100826537.56it/s]" ] }, { @@ -3915,7 +3915,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 137920512/170498071 [00:01<00:00, 80018807.83it/s]" + " 97%|█████████▋| 164593664/170498071 [00:01<00:00, 101825649.23it/s]" ] }, { @@ -3923,31 +3923,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 145981440/170498071 [00:01<00:00, 77133636.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 154402816/170498071 [00:01<00:00, 79111347.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 162365440/170498071 [00:02<00:00, 76269291.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 77333951.88it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s] " ] }, { @@ -4021,10 +3997,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.257185Z", - "iopub.status.busy": "2024-07-09T06:11:13.256590Z", - "iopub.status.idle": "2024-07-09T06:11:13.323923Z", - "shell.execute_reply": "2024-07-09T06:11:13.323486Z" + "iopub.execute_input": "2024-07-09T06:26:26.501872Z", + "iopub.status.busy": "2024-07-09T06:26:26.501334Z", + "iopub.status.idle": "2024-07-09T06:26:26.568877Z", + "shell.execute_reply": "2024-07-09T06:26:26.568264Z" } }, "outputs": [], @@ -4046,10 +4022,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.326012Z", - "iopub.status.busy": "2024-07-09T06:11:13.325680Z", - "iopub.status.idle": "2024-07-09T06:11:13.366116Z", - "shell.execute_reply": "2024-07-09T06:11:13.365711Z" + "iopub.execute_input": "2024-07-09T06:26:26.571436Z", + "iopub.status.busy": "2024-07-09T06:26:26.571213Z", + "iopub.status.idle": "2024-07-09T06:26:26.612980Z", + "shell.execute_reply": "2024-07-09T06:26:26.612387Z" } }, "outputs": [], @@ -4083,10 +4059,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.368146Z", - "iopub.status.busy": "2024-07-09T06:11:13.367823Z", - "iopub.status.idle": "2024-07-09T06:11:14.824593Z", - "shell.execute_reply": "2024-07-09T06:11:14.824054Z" + "iopub.execute_input": "2024-07-09T06:26:26.615590Z", + "iopub.status.busy": "2024-07-09T06:26:26.615223Z", + "iopub.status.idle": "2024-07-09T06:26:28.007434Z", + "shell.execute_reply": "2024-07-09T06:26:28.006820Z" } }, "outputs": [ @@ -4160,10 +4136,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:14.826794Z", - "iopub.status.busy": "2024-07-09T06:11:14.826486Z", - "iopub.status.idle": "2024-07-09T06:11:15.661596Z", - "shell.execute_reply": "2024-07-09T06:11:15.661072Z" + "iopub.execute_input": "2024-07-09T06:26:28.009673Z", + "iopub.status.busy": "2024-07-09T06:26:28.009331Z", + "iopub.status.idle": "2024-07-09T06:26:28.820192Z", + "shell.execute_reply": "2024-07-09T06:26:28.819683Z" } }, "outputs": [ @@ -4178,7 +4154,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "391d66fc80844e98a6b7127eea20e3ba", + "model_id": "716f2c676ad44e9fb6218d0b8625a9c5", "version_major": 2, "version_minor": 0 }, @@ -4202,7 +4178,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03ddc5e5c2af4ed382e0c99cc2aa646b", + "model_id": "ea4f3639cd404344b740181a60e6dfe1", "version_major": 2, "version_minor": 0 }, @@ -4452,54 +4428,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03ddc5e5c2af4ed382e0c99cc2aa646b": { - "model_module": "@jupyter-widgets/controls", + "0f799df441bb4d05a6a28c61f333f046": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3f8a482431f34e2faae193d10e76980a", - "IPY_MODEL_c325cd32b1d14cc4b5ca8e321dc31d90", - "IPY_MODEL_1a09c3aa59a94a799c0b7a82b5718e4d" - ], - "layout": "IPY_MODEL_57556e8423424a75b5760334a13aa4a6", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1a09c3aa59a94a799c0b7a82b5718e4d": { - "model_module": "@jupyter-widgets/controls", + "294a1c481a4c46e5bc9df718d9565bc7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9a1aba8237e45ea957d852a6d53dcc4", - "placeholder": "​", - "style": "IPY_MODEL_65a45dea02f74c5bbcacb4916148fb86", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 691.49it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1f06ca8d0f284b2faa6dfcacfef924f4": { + "2b6cc201cb424f5298894e3085cf6d74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4517,23 +4552,7 @@ "text_color": null } }, - "309173506dba4f15b8b7213882a655e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3150f0f2d0bf48d380ee22cb6a6ec59c": { + "31bd0ebee4be4b6995b1299029dfd4ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4548,55 +4567,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4faae3cf9dec4bff8d6b153958974cb0", + "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", "placeholder": "​", - "style": "IPY_MODEL_1f06ca8d0f284b2faa6dfcacfef924f4", + "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", "tabbable": null, "tooltip": null, "value": "100%" } }, - "351acb9554dd4c3b842bf386e04513a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "391d66fc80844e98a6b7127eea20e3ba": { + "37549aa8f96049628f56685e9b488f6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3150f0f2d0bf48d380ee22cb6a6ec59c", - "IPY_MODEL_8bd3259d18d64ab0a7ab19d9a309e286", - "IPY_MODEL_bfa11543be8f43068f62cfed9db531cd" - ], - "layout": "IPY_MODEL_887298b3add949feb4bb13ea5dee1afe", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "3f8a482431f34e2faae193d10e76980a": { + "43460e1d74ff44b6bdf8b3639d60c64c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4611,15 +4616,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7522155776ea4756a28dddb027c64cce", + "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", "placeholder": "​", - "style": "IPY_MODEL_6d00dcfbb71a473cbf9e476243985f81", + "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", "tabbable": null, "tooltip": null, "value": "100%" } }, - "4faae3cf9dec4bff8d6b153958974cb0": { + "4550b40c93134694b00bc701007e4553": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,7 +4677,23 @@ "width": null } }, - "57556e8423424a75b5760334a13aa4a6": { + "58c201af515141f191ad32c13265a546": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "59f5cfbd0629486ba546f97d01ea7fed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4725,7 +4746,47 @@ "width": null } }, - "5f942cc81ac44594bd238162231ac7ac": { + "716f2c676ad44e9fb6218d0b8625a9c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", + "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", + "IPY_MODEL_df74cf1241974d8dba64d522788976ea" + ], + "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", + "tabbable": null, + "tooltip": null + } + }, + "75e04c762f744d54adf55d90a052c562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75f430393fb34cad87ddab50d62eb686": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4778,7 +4839,30 @@ "width": null } }, - "65a45dea02f74c5bbcacb4916148fb86": { + "a58aa13dc64e47faa0cc93bb6652151b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", + "placeholder": "​", + "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 681.83it/s]" + } + }, + "b3b4bdc005f14648a26d1a16f3cf9fbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4796,7 +4880,7 @@ "text_color": null } }, - "66f3914610164bc59a81d0274162760b": { + "cdbb5130f8d045468526e3f842f2ee28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4849,7 +4933,7 @@ "width": null } }, - "6d00dcfbb71a473cbf9e476243985f81": { + "d12154805bed4fff8e2d01bf4f786af1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,113 +4951,48 @@ "text_color": null } }, - "7522155776ea4756a28dddb027c64cce": { - "model_module": "@jupyter-widgets/base", + "dee7e34112e0456e8e72f2a3ac0efa77": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "887298b3add949feb4bb13ea5dee1afe": { - "model_module": "@jupyter-widgets/base", + "df74cf1241974d8dba64d522788976ea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", + "placeholder": "​", + "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 800.04it/s]" } }, - "8bd3259d18d64ab0a7ab19d9a309e286": { + "e56f4d7332994f4e8edf32b758ca794d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4989,17 +5008,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f942cc81ac44594bd238162231ac7ac", + "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_309173506dba4f15b8b7213882a655e4", + "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "b9a1aba8237e45ea957d852a6d53dcc4": { + "ea4f3639cd404344b740181a60e6dfe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", + "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", + "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b" + ], + "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", + "tabbable": null, + "tooltip": null + } + }, + "ef0ce0626f2f42ccab835c3082d23f11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5052,30 +5095,7 @@ "width": null } }, - "bfa11543be8f43068f62cfed9db531cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66f3914610164bc59a81d0274162760b", - "placeholder": "​", - "style": "IPY_MODEL_ed6f32f260df411fabc8f0fbfee24aec", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 737.31it/s]" - } - }, - "c10a765f9e4f4c4cbaaba7f898a15d5b": { + "f9df9fb0ad7f4fe6b179e8db8621c60f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5127,50 +5147,6 @@ "visibility": null, "width": null } - }, - "c325cd32b1d14cc4b5ca8e321dc31d90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c10a765f9e4f4c4cbaaba7f898a15d5b", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_351acb9554dd4c3b842bf386e04513a3", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ed6f32f260df411fabc8f0fbfee24aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index f5cecb764..b7c82c939 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:19.727862Z", - "iopub.status.busy": "2024-07-09T06:11:19.727411Z", - "iopub.status.idle": "2024-07-09T06:11:20.814659Z", - "shell.execute_reply": "2024-07-09T06:11:20.814067Z" + "iopub.execute_input": "2024-07-09T06:26:32.925528Z", + "iopub.status.busy": "2024-07-09T06:26:32.925364Z", + "iopub.status.idle": "2024-07-09T06:26:34.040278Z", + "shell.execute_reply": "2024-07-09T06:26:34.039721Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.817130Z", - "iopub.status.busy": "2024-07-09T06:11:20.816860Z", - "iopub.status.idle": "2024-07-09T06:11:20.819597Z", - "shell.execute_reply": "2024-07-09T06:11:20.819174Z" + "iopub.execute_input": "2024-07-09T06:26:34.042937Z", + "iopub.status.busy": "2024-07-09T06:26:34.042544Z", + "iopub.status.idle": "2024-07-09T06:26:34.045384Z", + "shell.execute_reply": "2024-07-09T06:26:34.044944Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.821615Z", - "iopub.status.busy": "2024-07-09T06:11:20.821440Z", - "iopub.status.idle": "2024-07-09T06:11:20.832707Z", - "shell.execute_reply": "2024-07-09T06:11:20.832259Z" + "iopub.execute_input": "2024-07-09T06:26:34.047662Z", + "iopub.status.busy": "2024-07-09T06:26:34.047230Z", + "iopub.status.idle": "2024-07-09T06:26:34.058799Z", + "shell.execute_reply": "2024-07-09T06:26:34.058355Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.834603Z", - "iopub.status.busy": "2024-07-09T06:11:20.834431Z", - "iopub.status.idle": "2024-07-09T06:11:25.081972Z", - "shell.execute_reply": "2024-07-09T06:11:25.081390Z" + "iopub.execute_input": "2024-07-09T06:26:34.060975Z", + "iopub.status.busy": "2024-07-09T06:26:34.060630Z", + "iopub.status.idle": "2024-07-09T06:26:39.033668Z", + "shell.execute_reply": "2024-07-09T06:26:39.033084Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 139cbc83e..593067553 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:27.310302Z", - "iopub.status.busy": "2024-07-09T06:11:27.310136Z", - "iopub.status.idle": "2024-07-09T06:11:28.393086Z", - "shell.execute_reply": "2024-07-09T06:11:28.392489Z" + "iopub.execute_input": "2024-07-09T06:26:41.303187Z", + "iopub.status.busy": "2024-07-09T06:26:41.302823Z", + "iopub.status.idle": "2024-07-09T06:26:42.450257Z", + "shell.execute_reply": "2024-07-09T06:26:42.449747Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.395722Z", - "iopub.status.busy": "2024-07-09T06:11:28.395447Z", - "iopub.status.idle": "2024-07-09T06:11:28.398796Z", - "shell.execute_reply": "2024-07-09T06:11:28.398282Z" + "iopub.execute_input": "2024-07-09T06:26:42.453168Z", + "iopub.status.busy": "2024-07-09T06:26:42.452624Z", + "iopub.status.idle": "2024-07-09T06:26:42.456109Z", + "shell.execute_reply": "2024-07-09T06:26:42.455577Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.400817Z", - "iopub.status.busy": "2024-07-09T06:11:28.400506Z", - "iopub.status.idle": "2024-07-09T06:11:31.516039Z", - "shell.execute_reply": "2024-07-09T06:11:31.515428Z" + "iopub.execute_input": "2024-07-09T06:26:42.458324Z", + "iopub.status.busy": "2024-07-09T06:26:42.457999Z", + "iopub.status.idle": "2024-07-09T06:26:45.758135Z", + "shell.execute_reply": "2024-07-09T06:26:45.757518Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.519139Z", - "iopub.status.busy": "2024-07-09T06:11:31.518418Z", - "iopub.status.idle": "2024-07-09T06:11:31.550351Z", - "shell.execute_reply": "2024-07-09T06:11:31.549782Z" + "iopub.execute_input": "2024-07-09T06:26:45.761341Z", + "iopub.status.busy": "2024-07-09T06:26:45.760502Z", + "iopub.status.idle": "2024-07-09T06:26:45.799809Z", + "shell.execute_reply": "2024-07-09T06:26:45.799118Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.553016Z", - "iopub.status.busy": "2024-07-09T06:11:31.552724Z", - "iopub.status.idle": "2024-07-09T06:11:31.580753Z", - "shell.execute_reply": "2024-07-09T06:11:31.580187Z" + "iopub.execute_input": "2024-07-09T06:26:45.802392Z", + "iopub.status.busy": "2024-07-09T06:26:45.802142Z", + "iopub.status.idle": "2024-07-09T06:26:45.837536Z", + "shell.execute_reply": "2024-07-09T06:26:45.836818Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.583249Z", - "iopub.status.busy": "2024-07-09T06:11:31.582857Z", - "iopub.status.idle": "2024-07-09T06:11:31.585897Z", - "shell.execute_reply": "2024-07-09T06:11:31.585452Z" + "iopub.execute_input": "2024-07-09T06:26:45.840174Z", + "iopub.status.busy": "2024-07-09T06:26:45.839915Z", + "iopub.status.idle": "2024-07-09T06:26:45.842992Z", + "shell.execute_reply": "2024-07-09T06:26:45.842523Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.587847Z", - "iopub.status.busy": "2024-07-09T06:11:31.587536Z", - "iopub.status.idle": "2024-07-09T06:11:31.589987Z", - "shell.execute_reply": "2024-07-09T06:11:31.589558Z" + "iopub.execute_input": "2024-07-09T06:26:45.845075Z", + "iopub.status.busy": "2024-07-09T06:26:45.844811Z", + "iopub.status.idle": "2024-07-09T06:26:45.847393Z", + "shell.execute_reply": "2024-07-09T06:26:45.846951Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.592096Z", - "iopub.status.busy": "2024-07-09T06:11:31.591837Z", - "iopub.status.idle": "2024-07-09T06:11:31.616513Z", - "shell.execute_reply": "2024-07-09T06:11:31.615966Z" + "iopub.execute_input": "2024-07-09T06:26:45.849512Z", + "iopub.status.busy": "2024-07-09T06:26:45.849230Z", + "iopub.status.idle": "2024-07-09T06:26:45.873850Z", + "shell.execute_reply": "2024-07-09T06:26:45.873252Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a882aeebfb54110a2ffcfd1c2a492d4", + "model_id": "3e1a0cbaae1e45e19806d88ecdce7389", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b7cd48702a2947cfbce95f0292f5ba90", + "model_id": "684088a7b56b4b3aa39b109dfa860ac6", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.622436Z", - "iopub.status.busy": "2024-07-09T06:11:31.622223Z", - "iopub.status.idle": "2024-07-09T06:11:31.628767Z", - "shell.execute_reply": "2024-07-09T06:11:31.628236Z" + "iopub.execute_input": "2024-07-09T06:26:45.880372Z", + "iopub.status.busy": "2024-07-09T06:26:45.879962Z", + "iopub.status.idle": "2024-07-09T06:26:45.886615Z", + "shell.execute_reply": "2024-07-09T06:26:45.886081Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.630960Z", - "iopub.status.busy": "2024-07-09T06:11:31.630707Z", - "iopub.status.idle": "2024-07-09T06:11:31.634055Z", - "shell.execute_reply": "2024-07-09T06:11:31.633635Z" + "iopub.execute_input": "2024-07-09T06:26:45.888785Z", + "iopub.status.busy": "2024-07-09T06:26:45.888399Z", + "iopub.status.idle": "2024-07-09T06:26:45.891884Z", + "shell.execute_reply": "2024-07-09T06:26:45.891348Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.636034Z", - "iopub.status.busy": "2024-07-09T06:11:31.635717Z", - "iopub.status.idle": "2024-07-09T06:11:31.641760Z", - "shell.execute_reply": "2024-07-09T06:11:31.641333Z" + "iopub.execute_input": "2024-07-09T06:26:45.893965Z", + "iopub.status.busy": "2024-07-09T06:26:45.893580Z", + "iopub.status.idle": "2024-07-09T06:26:45.899933Z", + "shell.execute_reply": "2024-07-09T06:26:45.899439Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.643818Z", - "iopub.status.busy": "2024-07-09T06:11:31.643504Z", - "iopub.status.idle": "2024-07-09T06:11:31.673492Z", - "shell.execute_reply": "2024-07-09T06:11:31.672940Z" + "iopub.execute_input": "2024-07-09T06:26:45.901957Z", + "iopub.status.busy": "2024-07-09T06:26:45.901564Z", + "iopub.status.idle": "2024-07-09T06:26:45.938412Z", + "shell.execute_reply": "2024-07-09T06:26:45.937735Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.675988Z", - "iopub.status.busy": "2024-07-09T06:11:31.675744Z", - "iopub.status.idle": "2024-07-09T06:11:31.705573Z", - "shell.execute_reply": "2024-07-09T06:11:31.705028Z" + "iopub.execute_input": "2024-07-09T06:26:45.941344Z", + "iopub.status.busy": "2024-07-09T06:26:45.940842Z", + "iopub.status.idle": "2024-07-09T06:26:45.977181Z", + "shell.execute_reply": "2024-07-09T06:26:45.976594Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.708142Z", - "iopub.status.busy": "2024-07-09T06:11:31.707852Z", - "iopub.status.idle": "2024-07-09T06:11:31.825928Z", - "shell.execute_reply": "2024-07-09T06:11:31.825339Z" + "iopub.execute_input": "2024-07-09T06:26:45.979821Z", + "iopub.status.busy": "2024-07-09T06:26:45.979575Z", + "iopub.status.idle": "2024-07-09T06:26:46.104854Z", + "shell.execute_reply": "2024-07-09T06:26:46.104267Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.828701Z", - "iopub.status.busy": "2024-07-09T06:11:31.828028Z", - "iopub.status.idle": "2024-07-09T06:11:34.791968Z", - "shell.execute_reply": "2024-07-09T06:11:34.791331Z" + "iopub.execute_input": "2024-07-09T06:26:46.107771Z", + "iopub.status.busy": "2024-07-09T06:26:46.106984Z", + "iopub.status.idle": "2024-07-09T06:26:49.148445Z", + "shell.execute_reply": "2024-07-09T06:26:49.147812Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.794094Z", - "iopub.status.busy": "2024-07-09T06:11:34.793894Z", - "iopub.status.idle": "2024-07-09T06:11:34.852114Z", - "shell.execute_reply": "2024-07-09T06:11:34.851633Z" + "iopub.execute_input": "2024-07-09T06:26:49.150871Z", + "iopub.status.busy": "2024-07-09T06:26:49.150502Z", + "iopub.status.idle": "2024-07-09T06:26:49.209147Z", + "shell.execute_reply": "2024-07-09T06:26:49.208576Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.853981Z", - "iopub.status.busy": "2024-07-09T06:11:34.853803Z", - "iopub.status.idle": "2024-07-09T06:11:34.893549Z", - "shell.execute_reply": "2024-07-09T06:11:34.893064Z" + "iopub.execute_input": "2024-07-09T06:26:49.211500Z", + "iopub.status.busy": "2024-07-09T06:26:49.211164Z", + "iopub.status.idle": "2024-07-09T06:26:49.251723Z", + "shell.execute_reply": "2024-07-09T06:26:49.251225Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "7247e540", + "id": "a54c40cb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "da879a50", + "id": "bab2f717", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "c4df3634", + "id": "4a53b370", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9d690d9d", + "id": "209659fa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.895567Z", - "iopub.status.busy": "2024-07-09T06:11:34.895385Z", - "iopub.status.idle": "2024-07-09T06:11:34.902785Z", - "shell.execute_reply": "2024-07-09T06:11:34.902359Z" + "iopub.execute_input": "2024-07-09T06:26:49.253937Z", + "iopub.status.busy": "2024-07-09T06:26:49.253593Z", + "iopub.status.idle": "2024-07-09T06:26:49.261348Z", + "shell.execute_reply": "2024-07-09T06:26:49.260803Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ff01b6f9", + "id": "c433c793", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7c1cad4d", + "id": "74646b5a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.904752Z", - "iopub.status.busy": "2024-07-09T06:11:34.904575Z", - "iopub.status.idle": "2024-07-09T06:11:34.922778Z", - "shell.execute_reply": "2024-07-09T06:11:34.922347Z" + "iopub.execute_input": "2024-07-09T06:26:49.263459Z", + "iopub.status.busy": "2024-07-09T06:26:49.263127Z", + "iopub.status.idle": "2024-07-09T06:26:49.282109Z", + "shell.execute_reply": "2024-07-09T06:26:49.281556Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "33e36c44", + "id": "9a0f1590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.924880Z", - "iopub.status.busy": "2024-07-09T06:11:34.924490Z", - "iopub.status.idle": "2024-07-09T06:11:34.927841Z", - "shell.execute_reply": "2024-07-09T06:11:34.927308Z" + "iopub.execute_input": "2024-07-09T06:26:49.284265Z", + "iopub.status.busy": "2024-07-09T06:26:49.283854Z", + "iopub.status.idle": "2024-07-09T06:26:49.287329Z", + "shell.execute_reply": "2024-07-09T06:26:49.286782Z" } }, "outputs": [ @@ -1622,85 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "074f2bcc255940edb9bdaf05c41c3bb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d927b738e5b476e8416885f23d1cceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "114f58093d9047e5ba3e39df4eb4657c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12829dee5c694554b8d985bb46ff443b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132060852c5a493ea0001fec443ca1d2", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d927b738e5b476e8416885f23d1cceb", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "132060852c5a493ea0001fec443ca1d2": { + "06e039af78aa4922a7a5727f3929196b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1675,25 @@ "width": null } }, - "29ef3629c9a64dd1af78acbfcd298cef": { + "24abf0a07e174ecfb6ec768926bd9a35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2b835234c6594eaa9d659e33328d4ec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,23 +1746,7 @@ "width": null } }, - "3f162310e387401b85497edaa975d469": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4a882aeebfb54110a2ffcfd1c2a492d4": { + "3e1a0cbaae1e45e19806d88ecdce7389": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1837,16 +1761,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d64f4fd144a4d2da78ee7005e80a4f2", - "IPY_MODEL_58dcac96496e467aae9cf8175b1c353f", - "IPY_MODEL_7faa44b6c17e453eb485bbbb6e97570d" + "IPY_MODEL_ea0eb1e345874ebda4377832a5d148a1", + "IPY_MODEL_d3065c15065244f0a790856a85909914", + "IPY_MODEL_7420a4a93f6b475c9704a92f12d85f23" ], - "layout": "IPY_MODEL_d5d1c5ea3e5d482f94bf0d53fc4a1ad4", + "layout": "IPY_MODEL_66c7a500b9334da2b1849d287af9b402", "tabbable": null, "tooltip": null } }, - "5170546b7aec4a93b276eaea8d93cd04": { + "49c52b91517445ea95a2cdd6bcf7b607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1861,15 +1785,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ef3629c9a64dd1af78acbfcd298cef", + "layout": "IPY_MODEL_bf6180ca73df49bea8de92466f822aab", "placeholder": "​", - "style": "IPY_MODEL_b1b635c929d044d28128d92d893544bb", + "style": "IPY_MODEL_24abf0a07e174ecfb6ec768926bd9a35", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1448409.42it/s]" + "value": " 10000/? [00:00<00:00, 1540041.86it/s]" } }, - "58dcac96496e467aae9cf8175b1c353f": { + "4a2ecebbfc494ed9b2bada7d47085eaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1885,17 +1809,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d66327ec2a19429dae4bba06ae275a22", + "layout": "IPY_MODEL_4fbbfa9cd03647f4813a04fc8a4abc42", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f162310e387401b85497edaa975d469", + "style": "IPY_MODEL_e22f6064eadd4807ae9f756d8590121c", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "64218fdf8f77412189de02f82f9cd88a": { + "4fbbfa9cd03647f4813a04fc8a4abc42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1948,7 +1872,7 @@ "width": null } }, - "6869b651699240d3891714e1dfe045e5": { + "5fcc8c6298f24a3fbf1ca1a58c292bd3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2001,7 +1925,7 @@ "width": null } }, - "68cb1231213f4268acd070c5795648f7": { + "66c7a500b9334da2b1849d287af9b402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2054,53 +1978,49 @@ "width": null } }, - "6d64f4fd144a4d2da78ee7005e80a4f2": { + "684088a7b56b4b3aa39b109dfa860ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6cde3bfe98640e49abbf66bcb38b16d", - "placeholder": "​", - "style": "IPY_MODEL_e3811b0ca1b54da2a8ec0b7be16c3b75", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2ae6b9df4f8490b96524164e46e65fc", + "IPY_MODEL_4a2ecebbfc494ed9b2bada7d47085eaa", + "IPY_MODEL_49c52b91517445ea95a2cdd6bcf7b607" + ], + "layout": "IPY_MODEL_7ec4490b5e064efd8d912a372922e930", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "7faa44b6c17e453eb485bbbb6e97570d": { + "6a7594e4ad2a4a2f97e56b5e1a6a9890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_64218fdf8f77412189de02f82f9cd88a", - "placeholder": "​", - "style": "IPY_MODEL_074f2bcc255940edb9bdaf05c41c3bb6", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1094289.96it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2af7ceec77b462294a589dbc36ef86f": { + "7420a4a93f6b475c9704a92f12d85f23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2115,33 +2035,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68cb1231213f4268acd070c5795648f7", + "layout": "IPY_MODEL_b618cbdb66e74802ac612b08fdd271ca", "placeholder": "​", - "style": "IPY_MODEL_114f58093d9047e5ba3e39df4eb4657c", + "style": "IPY_MODEL_6a7594e4ad2a4a2f97e56b5e1a6a9890", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "b1b635c929d044d28128d92d893544bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 10000/? [00:00<00:00, 1046300.30it/s]" } }, - "b6cde3bfe98640e49abbf66bcb38b16d": { + "7ec4490b5e064efd8d912a372922e930": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2194,31 +2096,23 @@ "width": null } }, - "b7cd48702a2947cfbce95f0292f5ba90": { + "8d038adf74b94c00ba237beeafd03a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2af7ceec77b462294a589dbc36ef86f", - "IPY_MODEL_12829dee5c694554b8d985bb46ff443b", - "IPY_MODEL_5170546b7aec4a93b276eaea8d93cd04" - ], - "layout": "IPY_MODEL_6869b651699240d3891714e1dfe045e5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d5d1c5ea3e5d482f94bf0d53fc4a1ad4": { + "b618cbdb66e74802ac612b08fdd271ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2271,7 +2165,7 @@ "width": null } }, - "d66327ec2a19429dae4bba06ae275a22": { + "bf6180ca73df49bea8de92466f822aab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,7 +2218,113 @@ "width": null } }, - "e3811b0ca1b54da2a8ec0b7be16c3b75": { + "c26ba877617a46b5983aa98f97f6f4e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3065c15065244f0a790856a85909914": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b835234c6594eaa9d659e33328d4ec6", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d038adf74b94c00ba237beeafd03a45", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "e22f6064eadd4807ae9f756d8590121c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2ae6b9df4f8490b96524164e46e65fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_06e039af78aa4922a7a5727f3929196b", + "placeholder": "​", + "style": "IPY_MODEL_ecb5b9b407b34ccdac02fdba74200b01", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "ea0eb1e345874ebda4377832a5d148a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fcc8c6298f24a3fbf1ca1a58c292bd3", + "placeholder": "​", + "style": "IPY_MODEL_c26ba877617a46b5983aa98f97f6f4e6", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "ecb5b9b407b34ccdac02fdba74200b01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index d8338a1c7..1a1804c33 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -62,10 +62,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:38.074917Z", - "iopub.status.busy": "2024-07-09T06:11:38.074738Z", - "iopub.status.idle": "2024-07-09T06:11:39.177755Z", - "shell.execute_reply": "2024-07-09T06:11:39.177136Z" + "iopub.execute_input": "2024-07-09T06:26:53.572917Z", + "iopub.status.busy": "2024-07-09T06:26:53.572738Z", + "iopub.status.idle": "2024-07-09T06:26:54.710376Z", + "shell.execute_reply": "2024-07-09T06:26:54.709717Z" }, "nbsphinx": "hidden" }, @@ -75,7 +75,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -101,10 +101,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.180393Z", - "iopub.status.busy": "2024-07-09T06:11:39.180112Z", - "iopub.status.idle": "2024-07-09T06:11:39.183849Z", - "shell.execute_reply": "2024-07-09T06:11:39.183327Z" + "iopub.execute_input": "2024-07-09T06:26:54.713150Z", + "iopub.status.busy": "2024-07-09T06:26:54.712711Z", + "iopub.status.idle": "2024-07-09T06:26:54.717207Z", + "shell.execute_reply": "2024-07-09T06:26:54.716666Z" } }, "outputs": [], @@ -142,10 +142,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.185853Z", - "iopub.status.busy": "2024-07-09T06:11:39.185471Z", - "iopub.status.idle": "2024-07-09T06:11:39.421540Z", - "shell.execute_reply": "2024-07-09T06:11:39.420989Z" + "iopub.execute_input": "2024-07-09T06:26:54.719478Z", + "iopub.status.busy": "2024-07-09T06:26:54.719131Z", + "iopub.status.idle": "2024-07-09T06:26:54.915038Z", + "shell.execute_reply": "2024-07-09T06:26:54.914515Z" } }, "outputs": [ @@ -275,10 +275,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.423563Z", - "iopub.status.busy": "2024-07-09T06:11:39.423353Z", - "iopub.status.idle": "2024-07-09T06:11:39.429110Z", - "shell.execute_reply": "2024-07-09T06:11:39.428591Z" + "iopub.execute_input": "2024-07-09T06:26:54.917264Z", + "iopub.status.busy": "2024-07-09T06:26:54.916924Z", + "iopub.status.idle": "2024-07-09T06:26:54.922778Z", + "shell.execute_reply": "2024-07-09T06:26:54.922239Z" } }, "outputs": [], @@ -314,10 +314,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.431253Z", - "iopub.status.busy": "2024-07-09T06:11:39.430930Z", - "iopub.status.idle": "2024-07-09T06:11:39.437847Z", - "shell.execute_reply": "2024-07-09T06:11:39.437407Z" + "iopub.execute_input": "2024-07-09T06:26:54.925001Z", + "iopub.status.busy": "2024-07-09T06:26:54.924597Z", + "iopub.status.idle": "2024-07-09T06:26:54.931679Z", + "shell.execute_reply": "2024-07-09T06:26:54.931113Z" } }, "outputs": [ @@ -420,10 +420,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.439692Z", - "iopub.status.busy": "2024-07-09T06:11:39.439519Z", - "iopub.status.idle": "2024-07-09T06:11:39.444051Z", - "shell.execute_reply": "2024-07-09T06:11:39.443626Z" + "iopub.execute_input": "2024-07-09T06:26:54.933695Z", + "iopub.status.busy": "2024-07-09T06:26:54.933374Z", + "iopub.status.idle": "2024-07-09T06:26:54.937844Z", + "shell.execute_reply": "2024-07-09T06:26:54.937411Z" } }, "outputs": [], @@ -451,10 +451,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.445820Z", - "iopub.status.busy": "2024-07-09T06:11:39.445641Z", - "iopub.status.idle": "2024-07-09T06:11:39.451360Z", - "shell.execute_reply": "2024-07-09T06:11:39.450923Z" + "iopub.execute_input": "2024-07-09T06:26:54.939828Z", + "iopub.status.busy": "2024-07-09T06:26:54.939504Z", + "iopub.status.idle": "2024-07-09T06:26:54.945245Z", + "shell.execute_reply": "2024-07-09T06:26:54.944792Z" } }, "outputs": [], @@ -490,10 +490,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.453310Z", - "iopub.status.busy": "2024-07-09T06:11:39.453005Z", - "iopub.status.idle": "2024-07-09T06:11:39.457095Z", - "shell.execute_reply": "2024-07-09T06:11:39.456561Z" + "iopub.execute_input": "2024-07-09T06:26:54.947250Z", + "iopub.status.busy": "2024-07-09T06:26:54.946896Z", + "iopub.status.idle": "2024-07-09T06:26:54.950932Z", + "shell.execute_reply": "2024-07-09T06:26:54.950488Z" } }, "outputs": [], @@ -508,10 +508,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.459051Z", - "iopub.status.busy": "2024-07-09T06:11:39.458713Z", - "iopub.status.idle": "2024-07-09T06:11:39.521965Z", - "shell.execute_reply": "2024-07-09T06:11:39.521403Z" + "iopub.execute_input": "2024-07-09T06:26:54.952888Z", + "iopub.status.busy": "2024-07-09T06:26:54.952594Z", + "iopub.status.idle": "2024-07-09T06:26:55.016618Z", + "shell.execute_reply": "2024-07-09T06:26:55.015980Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.524898Z", - "iopub.status.busy": "2024-07-09T06:11:39.524546Z", - "iopub.status.idle": "2024-07-09T06:11:39.537157Z", - "shell.execute_reply": "2024-07-09T06:11:39.536649Z" + "iopub.execute_input": "2024-07-09T06:26:55.019431Z", + "iopub.status.busy": "2024-07-09T06:26:55.018865Z", + "iopub.status.idle": "2024-07-09T06:26:55.029533Z", + "shell.execute_reply": "2024-07-09T06:26:55.029057Z" } }, "outputs": [ @@ -726,10 +726,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.540541Z", - "iopub.status.busy": "2024-07-09T06:11:39.539543Z", - "iopub.status.idle": "2024-07-09T06:11:39.560886Z", - "shell.execute_reply": "2024-07-09T06:11:39.560377Z" + "iopub.execute_input": "2024-07-09T06:26:55.032677Z", + "iopub.status.busy": "2024-07-09T06:26:55.031768Z", + "iopub.status.idle": "2024-07-09T06:26:55.053007Z", + "shell.execute_reply": "2024-07-09T06:26:55.052525Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.563641Z", - "iopub.status.busy": "2024-07-09T06:11:39.563221Z", - "iopub.status.idle": "2024-07-09T06:11:39.568664Z", - "shell.execute_reply": "2024-07-09T06:11:39.568157Z" + "iopub.execute_input": "2024-07-09T06:26:55.056439Z", + "iopub.status.busy": "2024-07-09T06:26:55.055527Z", + "iopub.status.idle": "2024-07-09T06:26:55.061337Z", + "shell.execute_reply": "2024-07-09T06:26:55.060850Z" } }, "outputs": [ @@ -970,10 +970,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.571166Z", - "iopub.status.busy": "2024-07-09T06:11:39.570962Z", - "iopub.status.idle": "2024-07-09T06:11:39.576330Z", - "shell.execute_reply": "2024-07-09T06:11:39.575803Z" + "iopub.execute_input": "2024-07-09T06:26:55.064742Z", + "iopub.status.busy": "2024-07-09T06:26:55.063844Z", + "iopub.status.idle": "2024-07-09T06:26:55.069832Z", + "shell.execute_reply": "2024-07-09T06:26:55.069351Z" } }, "outputs": [ @@ -1007,10 +1007,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.579222Z", - "iopub.status.busy": "2024-07-09T06:11:39.578978Z", - "iopub.status.idle": "2024-07-09T06:11:39.589987Z", - "shell.execute_reply": "2024-07-09T06:11:39.589598Z" + "iopub.execute_input": "2024-07-09T06:26:55.073279Z", + "iopub.status.busy": "2024-07-09T06:26:55.072375Z", + "iopub.status.idle": "2024-07-09T06:26:55.083605Z", + "shell.execute_reply": "2024-07-09T06:26:55.083211Z" } }, "outputs": [ @@ -1207,10 +1207,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.591768Z", - "iopub.status.busy": "2024-07-09T06:11:39.591603Z", - "iopub.status.idle": "2024-07-09T06:11:39.595987Z", - "shell.execute_reply": "2024-07-09T06:11:39.595574Z" + "iopub.execute_input": "2024-07-09T06:26:55.086287Z", + "iopub.status.busy": "2024-07-09T06:26:55.085572Z", + "iopub.status.idle": "2024-07-09T06:26:55.090541Z", + "shell.execute_reply": "2024-07-09T06:26:55.090006Z" } }, "outputs": [], @@ -1236,10 +1236,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.597998Z", - "iopub.status.busy": "2024-07-09T06:11:39.597671Z", - "iopub.status.idle": "2024-07-09T06:11:39.701510Z", - "shell.execute_reply": "2024-07-09T06:11:39.700999Z" + "iopub.execute_input": "2024-07-09T06:26:55.092949Z", + "iopub.status.busy": "2024-07-09T06:26:55.092629Z", + "iopub.status.idle": "2024-07-09T06:26:55.197433Z", + "shell.execute_reply": "2024-07-09T06:26:55.196909Z" } }, "outputs": [ @@ -1713,10 +1713,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.703592Z", - "iopub.status.busy": "2024-07-09T06:11:39.703317Z", - "iopub.status.idle": "2024-07-09T06:11:39.709189Z", - "shell.execute_reply": "2024-07-09T06:11:39.708705Z" + "iopub.execute_input": "2024-07-09T06:26:55.199599Z", + "iopub.status.busy": "2024-07-09T06:26:55.199328Z", + "iopub.status.idle": "2024-07-09T06:26:55.205311Z", + "shell.execute_reply": "2024-07-09T06:26:55.204815Z" } }, "outputs": [], @@ -1740,10 +1740,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.711392Z", - "iopub.status.busy": "2024-07-09T06:11:39.711064Z", - "iopub.status.idle": "2024-07-09T06:11:41.651348Z", - "shell.execute_reply": "2024-07-09T06:11:41.650672Z" + "iopub.execute_input": "2024-07-09T06:26:55.207624Z", + "iopub.status.busy": "2024-07-09T06:26:55.207315Z", + "iopub.status.idle": "2024-07-09T06:26:57.128251Z", + "shell.execute_reply": "2024-07-09T06:26:57.127642Z" } }, "outputs": [ @@ -1955,10 +1955,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.655133Z", - "iopub.status.busy": "2024-07-09T06:11:41.654057Z", - "iopub.status.idle": "2024-07-09T06:11:41.668625Z", - "shell.execute_reply": "2024-07-09T06:11:41.668134Z" + "iopub.execute_input": "2024-07-09T06:26:57.131390Z", + "iopub.status.busy": "2024-07-09T06:26:57.130806Z", + "iopub.status.idle": "2024-07-09T06:26:57.144118Z", + "shell.execute_reply": "2024-07-09T06:26:57.143599Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.672036Z", - "iopub.status.busy": "2024-07-09T06:11:41.671132Z", - "iopub.status.idle": "2024-07-09T06:11:41.674984Z", - "shell.execute_reply": "2024-07-09T06:11:41.674508Z" + "iopub.execute_input": "2024-07-09T06:26:57.146831Z", + "iopub.status.busy": "2024-07-09T06:26:57.146463Z", + "iopub.status.idle": "2024-07-09T06:26:57.149377Z", + "shell.execute_reply": "2024-07-09T06:26:57.148891Z" } }, "outputs": [], @@ -2092,10 +2092,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.678357Z", - "iopub.status.busy": "2024-07-09T06:11:41.677451Z", - "iopub.status.idle": "2024-07-09T06:11:41.682864Z", - "shell.execute_reply": "2024-07-09T06:11:41.682375Z" + "iopub.execute_input": "2024-07-09T06:26:57.151654Z", + "iopub.status.busy": "2024-07-09T06:26:57.151283Z", + "iopub.status.idle": "2024-07-09T06:26:57.155840Z", + "shell.execute_reply": "2024-07-09T06:26:57.155317Z" } }, "outputs": [], @@ -2119,10 +2119,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.686265Z", - "iopub.status.busy": "2024-07-09T06:11:41.685365Z", - "iopub.status.idle": "2024-07-09T06:11:41.714433Z", - "shell.execute_reply": "2024-07-09T06:11:41.713889Z" + "iopub.execute_input": "2024-07-09T06:26:57.158157Z", + "iopub.status.busy": "2024-07-09T06:26:57.157788Z", + "iopub.status.idle": "2024-07-09T06:26:57.167772Z", + "shell.execute_reply": "2024-07-09T06:26:57.167300Z" } }, "outputs": [ @@ -2162,10 +2162,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.716900Z", - "iopub.status.busy": "2024-07-09T06:11:41.716509Z", - "iopub.status.idle": "2024-07-09T06:11:42.186387Z", - "shell.execute_reply": "2024-07-09T06:11:42.185860Z" + "iopub.execute_input": "2024-07-09T06:26:57.170046Z", + "iopub.status.busy": "2024-07-09T06:26:57.169694Z", + "iopub.status.idle": "2024-07-09T06:26:57.642079Z", + "shell.execute_reply": "2024-07-09T06:26:57.641537Z" } }, "outputs": [], @@ -2196,10 +2196,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.189028Z", - "iopub.status.busy": "2024-07-09T06:11:42.188720Z", - "iopub.status.idle": "2024-07-09T06:11:42.313557Z", - "shell.execute_reply": "2024-07-09T06:11:42.312910Z" + "iopub.execute_input": "2024-07-09T06:26:57.644886Z", + "iopub.status.busy": "2024-07-09T06:26:57.644506Z", + "iopub.status.idle": "2024-07-09T06:26:57.765208Z", + "shell.execute_reply": "2024-07-09T06:26:57.764592Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.317275Z", - "iopub.status.busy": "2024-07-09T06:11:42.316163Z", - "iopub.status.idle": "2024-07-09T06:11:42.324825Z", - "shell.execute_reply": "2024-07-09T06:11:42.324349Z" + "iopub.execute_input": "2024-07-09T06:26:57.767934Z", + "iopub.status.busy": "2024-07-09T06:26:57.767539Z", + "iopub.status.idle": "2024-07-09T06:26:57.774227Z", + "shell.execute_reply": "2024-07-09T06:26:57.773733Z" } }, "outputs": [ @@ -2443,10 +2443,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.328314Z", - "iopub.status.busy": "2024-07-09T06:11:42.327266Z", - "iopub.status.idle": "2024-07-09T06:11:42.335221Z", - "shell.execute_reply": "2024-07-09T06:11:42.334720Z" + "iopub.execute_input": "2024-07-09T06:26:57.777381Z", + "iopub.status.busy": "2024-07-09T06:26:57.776332Z", + "iopub.status.idle": "2024-07-09T06:26:57.784838Z", + "shell.execute_reply": "2024-07-09T06:26:57.784346Z" } }, "outputs": [ @@ -2479,10 +2479,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.338646Z", - "iopub.status.busy": "2024-07-09T06:11:42.337607Z", - "iopub.status.idle": "2024-07-09T06:11:42.344830Z", - "shell.execute_reply": "2024-07-09T06:11:42.344359Z" + "iopub.execute_input": "2024-07-09T06:26:57.788740Z", + "iopub.status.busy": "2024-07-09T06:26:57.787559Z", + "iopub.status.idle": "2024-07-09T06:26:57.795543Z", + "shell.execute_reply": "2024-07-09T06:26:57.795055Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.348222Z", - "iopub.status.busy": "2024-07-09T06:11:42.347202Z", - "iopub.status.idle": "2024-07-09T06:11:42.353201Z", - "shell.execute_reply": "2024-07-09T06:11:42.352734Z" + "iopub.execute_input": "2024-07-09T06:26:57.799183Z", + "iopub.status.busy": "2024-07-09T06:26:57.798006Z", + "iopub.status.idle": "2024-07-09T06:26:57.804472Z", + "shell.execute_reply": "2024-07-09T06:26:57.803989Z" } }, "outputs": [ @@ -2544,10 +2544,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.356588Z", - "iopub.status.busy": "2024-07-09T06:11:42.355570Z", - "iopub.status.idle": "2024-07-09T06:11:42.360784Z", - "shell.execute_reply": "2024-07-09T06:11:42.360243Z" + "iopub.execute_input": "2024-07-09T06:26:57.808096Z", + "iopub.status.busy": "2024-07-09T06:26:57.807195Z", + "iopub.status.idle": "2024-07-09T06:26:57.812308Z", + "shell.execute_reply": "2024-07-09T06:26:57.811777Z" } }, "outputs": [], @@ -2571,10 +2571,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.362781Z", - "iopub.status.busy": "2024-07-09T06:11:42.362457Z", - "iopub.status.idle": "2024-07-09T06:11:42.432148Z", - "shell.execute_reply": "2024-07-09T06:11:42.431625Z" + "iopub.execute_input": "2024-07-09T06:26:57.814541Z", + "iopub.status.busy": "2024-07-09T06:26:57.814291Z", + "iopub.status.idle": "2024-07-09T06:26:57.894429Z", + "shell.execute_reply": "2024-07-09T06:26:57.893893Z" } }, "outputs": [ @@ -3054,10 +3054,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.434389Z", - "iopub.status.busy": "2024-07-09T06:11:42.433972Z", - "iopub.status.idle": "2024-07-09T06:11:42.442830Z", - "shell.execute_reply": "2024-07-09T06:11:42.442287Z" + "iopub.execute_input": "2024-07-09T06:26:57.896631Z", + "iopub.status.busy": "2024-07-09T06:26:57.896354Z", + "iopub.status.idle": "2024-07-09T06:26:57.906205Z", + "shell.execute_reply": "2024-07-09T06:26:57.905633Z" } }, "outputs": [ @@ -3113,10 +3113,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.445160Z", - "iopub.status.busy": "2024-07-09T06:11:42.444683Z", - "iopub.status.idle": "2024-07-09T06:11:42.447719Z", - "shell.execute_reply": "2024-07-09T06:11:42.447244Z" + "iopub.execute_input": "2024-07-09T06:26:57.910159Z", + "iopub.status.busy": "2024-07-09T06:26:57.909684Z", + "iopub.status.idle": "2024-07-09T06:26:57.912488Z", + "shell.execute_reply": "2024-07-09T06:26:57.912033Z" } }, "outputs": [], @@ -3152,10 +3152,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.449643Z", - "iopub.status.busy": "2024-07-09T06:11:42.449346Z", - "iopub.status.idle": "2024-07-09T06:11:42.458347Z", - "shell.execute_reply": "2024-07-09T06:11:42.457952Z" + "iopub.execute_input": "2024-07-09T06:26:57.914998Z", + "iopub.status.busy": "2024-07-09T06:26:57.914575Z", + "iopub.status.idle": "2024-07-09T06:26:57.923907Z", + "shell.execute_reply": "2024-07-09T06:26:57.923469Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.460548Z", - "iopub.status.busy": "2024-07-09T06:11:42.460124Z", - "iopub.status.idle": "2024-07-09T06:11:42.466711Z", - "shell.execute_reply": "2024-07-09T06:11:42.466317Z" + "iopub.execute_input": "2024-07-09T06:26:57.925928Z", + "iopub.status.busy": "2024-07-09T06:26:57.925621Z", + "iopub.status.idle": "2024-07-09T06:26:57.932179Z", + "shell.execute_reply": "2024-07-09T06:26:57.931737Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.468698Z", - "iopub.status.busy": "2024-07-09T06:11:42.468382Z", - "iopub.status.idle": "2024-07-09T06:11:42.471498Z", - "shell.execute_reply": "2024-07-09T06:11:42.471070Z" + "iopub.execute_input": "2024-07-09T06:26:57.934245Z", + "iopub.status.busy": "2024-07-09T06:26:57.933861Z", + "iopub.status.idle": "2024-07-09T06:26:57.937104Z", + "shell.execute_reply": "2024-07-09T06:26:57.936671Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.473490Z", - "iopub.status.busy": "2024-07-09T06:11:42.473168Z", - "iopub.status.idle": "2024-07-09T06:11:46.154478Z", - "shell.execute_reply": "2024-07-09T06:11:46.153968Z" + "iopub.execute_input": "2024-07-09T06:26:57.938975Z", + "iopub.status.busy": "2024-07-09T06:26:57.938647Z", + "iopub.status.idle": "2024-07-09T06:27:01.641872Z", + "shell.execute_reply": "2024-07-09T06:27:01.641360Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.156899Z", - "iopub.status.busy": "2024-07-09T06:11:46.156558Z", - "iopub.status.idle": "2024-07-09T06:11:46.159512Z", - "shell.execute_reply": "2024-07-09T06:11:46.159123Z" + "iopub.execute_input": "2024-07-09T06:27:01.644959Z", + "iopub.status.busy": "2024-07-09T06:27:01.644089Z", + "iopub.status.idle": "2024-07-09T06:27:01.648019Z", + "shell.execute_reply": "2024-07-09T06:27:01.647564Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.161459Z", - "iopub.status.busy": "2024-07-09T06:11:46.161146Z", - "iopub.status.idle": "2024-07-09T06:11:46.164332Z", - "shell.execute_reply": "2024-07-09T06:11:46.163782Z" + "iopub.execute_input": "2024-07-09T06:27:01.649958Z", + "iopub.status.busy": "2024-07-09T06:27:01.649677Z", + "iopub.status.idle": "2024-07-09T06:27:01.652295Z", + "shell.execute_reply": "2024-07-09T06:27:01.651802Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 2996d7ede..e7571dfc6 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:49.091711Z", - "iopub.status.busy": "2024-07-09T06:11:49.091553Z", - "iopub.status.idle": "2024-07-09T06:11:50.232481Z", - "shell.execute_reply": "2024-07-09T06:11:50.231945Z" + "iopub.execute_input": "2024-07-09T06:27:04.830463Z", + "iopub.status.busy": "2024-07-09T06:27:04.830294Z", + "iopub.status.idle": "2024-07-09T06:27:06.025206Z", + "shell.execute_reply": "2024-07-09T06:27:06.024596Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.235078Z", - "iopub.status.busy": "2024-07-09T06:11:50.234645Z", - "iopub.status.idle": "2024-07-09T06:11:50.408424Z", - "shell.execute_reply": "2024-07-09T06:11:50.407907Z" + "iopub.execute_input": "2024-07-09T06:27:06.027800Z", + "iopub.status.busy": "2024-07-09T06:27:06.027471Z", + "iopub.status.idle": "2024-07-09T06:27:06.212766Z", + "shell.execute_reply": "2024-07-09T06:27:06.212206Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.410863Z", - "iopub.status.busy": "2024-07-09T06:11:50.410584Z", - "iopub.status.idle": "2024-07-09T06:11:50.421585Z", - "shell.execute_reply": "2024-07-09T06:11:50.421178Z" + "iopub.execute_input": "2024-07-09T06:27:06.215365Z", + "iopub.status.busy": "2024-07-09T06:27:06.215033Z", + "iopub.status.idle": "2024-07-09T06:27:06.226517Z", + "shell.execute_reply": "2024-07-09T06:27:06.226088Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.423540Z", - "iopub.status.busy": "2024-07-09T06:11:50.423276Z", - "iopub.status.idle": "2024-07-09T06:11:50.658194Z", - "shell.execute_reply": "2024-07-09T06:11:50.657603Z" + "iopub.execute_input": "2024-07-09T06:27:06.228721Z", + "iopub.status.busy": "2024-07-09T06:27:06.228284Z", + "iopub.status.idle": "2024-07-09T06:27:06.463202Z", + "shell.execute_reply": "2024-07-09T06:27:06.462603Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.660770Z", - "iopub.status.busy": "2024-07-09T06:11:50.660310Z", - "iopub.status.idle": "2024-07-09T06:11:50.686483Z", - "shell.execute_reply": "2024-07-09T06:11:50.686061Z" + "iopub.execute_input": "2024-07-09T06:27:06.465737Z", + "iopub.status.busy": "2024-07-09T06:27:06.465380Z", + "iopub.status.idle": "2024-07-09T06:27:06.491353Z", + "shell.execute_reply": "2024-07-09T06:27:06.490841Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.688646Z", - "iopub.status.busy": "2024-07-09T06:11:50.688370Z", - "iopub.status.idle": "2024-07-09T06:11:52.702920Z", - "shell.execute_reply": "2024-07-09T06:11:52.702319Z" + "iopub.execute_input": "2024-07-09T06:27:06.493408Z", + "iopub.status.busy": "2024-07-09T06:27:06.493075Z", + "iopub.status.idle": "2024-07-09T06:27:08.559484Z", + "shell.execute_reply": "2024-07-09T06:27:08.558857Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.705397Z", - "iopub.status.busy": "2024-07-09T06:11:52.705057Z", - "iopub.status.idle": "2024-07-09T06:11:52.722879Z", - "shell.execute_reply": "2024-07-09T06:11:52.722437Z" + "iopub.execute_input": "2024-07-09T06:27:08.561982Z", + "iopub.status.busy": "2024-07-09T06:27:08.561454Z", + "iopub.status.idle": "2024-07-09T06:27:08.579506Z", + "shell.execute_reply": "2024-07-09T06:27:08.578938Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.724954Z", - "iopub.status.busy": "2024-07-09T06:11:52.724772Z", - "iopub.status.idle": "2024-07-09T06:11:54.183986Z", - "shell.execute_reply": "2024-07-09T06:11:54.183375Z" + "iopub.execute_input": "2024-07-09T06:27:08.581768Z", + "iopub.status.busy": "2024-07-09T06:27:08.581433Z", + "iopub.status.idle": "2024-07-09T06:27:10.041147Z", + "shell.execute_reply": "2024-07-09T06:27:10.040535Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.186907Z", - "iopub.status.busy": "2024-07-09T06:11:54.186075Z", - "iopub.status.idle": "2024-07-09T06:11:54.200134Z", - "shell.execute_reply": "2024-07-09T06:11:54.199558Z" + "iopub.execute_input": "2024-07-09T06:27:10.043766Z", + "iopub.status.busy": "2024-07-09T06:27:10.043148Z", + "iopub.status.idle": "2024-07-09T06:27:10.056923Z", + "shell.execute_reply": "2024-07-09T06:27:10.056388Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.202306Z", - "iopub.status.busy": "2024-07-09T06:11:54.202000Z", - "iopub.status.idle": "2024-07-09T06:11:54.277250Z", - "shell.execute_reply": "2024-07-09T06:11:54.276637Z" + "iopub.execute_input": "2024-07-09T06:27:10.059184Z", + "iopub.status.busy": "2024-07-09T06:27:10.058724Z", + "iopub.status.idle": "2024-07-09T06:27:10.131352Z", + "shell.execute_reply": "2024-07-09T06:27:10.130748Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.279643Z", - "iopub.status.busy": "2024-07-09T06:11:54.279420Z", - "iopub.status.idle": "2024-07-09T06:11:54.491334Z", - "shell.execute_reply": "2024-07-09T06:11:54.490753Z" + "iopub.execute_input": "2024-07-09T06:27:10.133987Z", + "iopub.status.busy": "2024-07-09T06:27:10.133447Z", + "iopub.status.idle": "2024-07-09T06:27:10.342019Z", + "shell.execute_reply": "2024-07-09T06:27:10.341476Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.493562Z", - "iopub.status.busy": "2024-07-09T06:11:54.493205Z", - "iopub.status.idle": "2024-07-09T06:11:54.509795Z", - "shell.execute_reply": "2024-07-09T06:11:54.509342Z" + "iopub.execute_input": "2024-07-09T06:27:10.344306Z", + "iopub.status.busy": "2024-07-09T06:27:10.343957Z", + "iopub.status.idle": "2024-07-09T06:27:10.361242Z", + "shell.execute_reply": "2024-07-09T06:27:10.360779Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.511753Z", - "iopub.status.busy": "2024-07-09T06:11:54.511488Z", - "iopub.status.idle": "2024-07-09T06:11:54.520675Z", - "shell.execute_reply": "2024-07-09T06:11:54.520247Z" + "iopub.execute_input": "2024-07-09T06:27:10.363517Z", + "iopub.status.busy": "2024-07-09T06:27:10.363117Z", + "iopub.status.idle": "2024-07-09T06:27:10.372893Z", + "shell.execute_reply": "2024-07-09T06:27:10.372453Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.522665Z", - "iopub.status.busy": "2024-07-09T06:11:54.522333Z", - "iopub.status.idle": "2024-07-09T06:11:54.604475Z", - "shell.execute_reply": "2024-07-09T06:11:54.603871Z" + "iopub.execute_input": "2024-07-09T06:27:10.375119Z", + "iopub.status.busy": "2024-07-09T06:27:10.374773Z", + "iopub.status.idle": "2024-07-09T06:27:10.461355Z", + "shell.execute_reply": "2024-07-09T06:27:10.460793Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.606814Z", - "iopub.status.busy": "2024-07-09T06:11:54.606624Z", - "iopub.status.idle": "2024-07-09T06:11:54.727974Z", - "shell.execute_reply": "2024-07-09T06:11:54.727317Z" + "iopub.execute_input": "2024-07-09T06:27:10.463772Z", + "iopub.status.busy": "2024-07-09T06:27:10.463410Z", + "iopub.status.idle": "2024-07-09T06:27:10.595934Z", + "shell.execute_reply": "2024-07-09T06:27:10.595287Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.730454Z", - "iopub.status.busy": "2024-07-09T06:11:54.730077Z", - "iopub.status.idle": "2024-07-09T06:11:54.733732Z", - "shell.execute_reply": "2024-07-09T06:11:54.733202Z" + "iopub.execute_input": "2024-07-09T06:27:10.598470Z", + "iopub.status.busy": "2024-07-09T06:27:10.598089Z", + "iopub.status.idle": "2024-07-09T06:27:10.601819Z", + "shell.execute_reply": "2024-07-09T06:27:10.601299Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.735775Z", - "iopub.status.busy": "2024-07-09T06:11:54.735487Z", - "iopub.status.idle": "2024-07-09T06:11:54.739241Z", - "shell.execute_reply": "2024-07-09T06:11:54.738694Z" + "iopub.execute_input": "2024-07-09T06:27:10.603912Z", + "iopub.status.busy": "2024-07-09T06:27:10.603638Z", + "iopub.status.idle": "2024-07-09T06:27:10.607432Z", + "shell.execute_reply": "2024-07-09T06:27:10.606860Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.741323Z", - "iopub.status.busy": "2024-07-09T06:11:54.740932Z", - "iopub.status.idle": "2024-07-09T06:11:54.777496Z", - "shell.execute_reply": "2024-07-09T06:11:54.776969Z" + "iopub.execute_input": "2024-07-09T06:27:10.609489Z", + "iopub.status.busy": "2024-07-09T06:27:10.609167Z", + "iopub.status.idle": "2024-07-09T06:27:10.645674Z", + "shell.execute_reply": "2024-07-09T06:27:10.645104Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.779687Z", - "iopub.status.busy": "2024-07-09T06:11:54.779360Z", - "iopub.status.idle": "2024-07-09T06:11:54.820499Z", - "shell.execute_reply": "2024-07-09T06:11:54.820015Z" + "iopub.execute_input": "2024-07-09T06:27:10.647737Z", + "iopub.status.busy": "2024-07-09T06:27:10.647426Z", + "iopub.status.idle": "2024-07-09T06:27:10.688357Z", + "shell.execute_reply": "2024-07-09T06:27:10.687867Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.822731Z", - "iopub.status.busy": "2024-07-09T06:11:54.822374Z", - "iopub.status.idle": "2024-07-09T06:11:54.940268Z", - "shell.execute_reply": "2024-07-09T06:11:54.939702Z" + "iopub.execute_input": "2024-07-09T06:27:10.690497Z", + "iopub.status.busy": "2024-07-09T06:27:10.690152Z", + "iopub.status.idle": "2024-07-09T06:27:10.784906Z", + "shell.execute_reply": "2024-07-09T06:27:10.784195Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.942914Z", - "iopub.status.busy": "2024-07-09T06:11:54.942544Z", - "iopub.status.idle": "2024-07-09T06:11:55.028728Z", - "shell.execute_reply": "2024-07-09T06:11:55.028139Z" + "iopub.execute_input": "2024-07-09T06:27:10.787438Z", + "iopub.status.busy": "2024-07-09T06:27:10.787205Z", + "iopub.status.idle": "2024-07-09T06:27:10.875324Z", + "shell.execute_reply": "2024-07-09T06:27:10.874533Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.031345Z", - "iopub.status.busy": "2024-07-09T06:11:55.030861Z", - "iopub.status.idle": "2024-07-09T06:11:55.242842Z", - "shell.execute_reply": "2024-07-09T06:11:55.242258Z" + "iopub.execute_input": "2024-07-09T06:27:10.877938Z", + "iopub.status.busy": "2024-07-09T06:27:10.877489Z", + "iopub.status.idle": "2024-07-09T06:27:11.089399Z", + "shell.execute_reply": "2024-07-09T06:27:11.088722Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.245126Z", - "iopub.status.busy": "2024-07-09T06:11:55.244793Z", - "iopub.status.idle": "2024-07-09T06:11:55.420459Z", - "shell.execute_reply": "2024-07-09T06:11:55.419832Z" + "iopub.execute_input": "2024-07-09T06:27:11.091873Z", + "iopub.status.busy": "2024-07-09T06:27:11.091658Z", + "iopub.status.idle": "2024-07-09T06:27:11.278736Z", + "shell.execute_reply": "2024-07-09T06:27:11.278122Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.422976Z", - "iopub.status.busy": "2024-07-09T06:11:55.422514Z", - "iopub.status.idle": "2024-07-09T06:11:55.428850Z", - "shell.execute_reply": "2024-07-09T06:11:55.428412Z" + "iopub.execute_input": "2024-07-09T06:27:11.281105Z", + "iopub.status.busy": "2024-07-09T06:27:11.280730Z", + "iopub.status.idle": "2024-07-09T06:27:11.286566Z", + "shell.execute_reply": "2024-07-09T06:27:11.286117Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.431061Z", - "iopub.status.busy": "2024-07-09T06:11:55.430598Z", - "iopub.status.idle": "2024-07-09T06:11:55.646899Z", - "shell.execute_reply": "2024-07-09T06:11:55.646337Z" + "iopub.execute_input": "2024-07-09T06:27:11.288560Z", + "iopub.status.busy": "2024-07-09T06:27:11.288235Z", + "iopub.status.idle": "2024-07-09T06:27:11.502240Z", + "shell.execute_reply": "2024-07-09T06:27:11.501640Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.649268Z", - "iopub.status.busy": "2024-07-09T06:11:55.648816Z", - "iopub.status.idle": "2024-07-09T06:11:56.713232Z", - "shell.execute_reply": "2024-07-09T06:11:56.712681Z" + "iopub.execute_input": "2024-07-09T06:27:11.504499Z", + "iopub.status.busy": "2024-07-09T06:27:11.504154Z", + "iopub.status.idle": "2024-07-09T06:27:12.558282Z", + "shell.execute_reply": "2024-07-09T06:27:12.557776Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 4649d4e78..345a175cf 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:59.986964Z", - "iopub.status.busy": "2024-07-09T06:11:59.986785Z", - "iopub.status.idle": "2024-07-09T06:12:01.075285Z", - "shell.execute_reply": "2024-07-09T06:12:01.074633Z" + "iopub.execute_input": "2024-07-09T06:27:15.909512Z", + "iopub.status.busy": "2024-07-09T06:27:15.909333Z", + "iopub.status.idle": "2024-07-09T06:27:17.025416Z", + "shell.execute_reply": "2024-07-09T06:27:17.024860Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.077824Z", - "iopub.status.busy": "2024-07-09T06:12:01.077551Z", - "iopub.status.idle": "2024-07-09T06:12:01.080727Z", - "shell.execute_reply": "2024-07-09T06:12:01.080279Z" + "iopub.execute_input": "2024-07-09T06:27:17.028078Z", + "iopub.status.busy": "2024-07-09T06:27:17.027788Z", + "iopub.status.idle": "2024-07-09T06:27:17.031022Z", + "shell.execute_reply": "2024-07-09T06:27:17.030547Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.082717Z", - "iopub.status.busy": "2024-07-09T06:12:01.082412Z", - "iopub.status.idle": "2024-07-09T06:12:01.090048Z", - "shell.execute_reply": "2024-07-09T06:12:01.089520Z" + "iopub.execute_input": "2024-07-09T06:27:17.033112Z", + "iopub.status.busy": "2024-07-09T06:27:17.032789Z", + "iopub.status.idle": "2024-07-09T06:27:17.040343Z", + "shell.execute_reply": "2024-07-09T06:27:17.039908Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.091972Z", - "iopub.status.busy": "2024-07-09T06:12:01.091665Z", - "iopub.status.idle": "2024-07-09T06:12:01.138589Z", - "shell.execute_reply": "2024-07-09T06:12:01.138119Z" + "iopub.execute_input": "2024-07-09T06:27:17.042282Z", + "iopub.status.busy": "2024-07-09T06:27:17.041970Z", + "iopub.status.idle": "2024-07-09T06:27:17.094153Z", + "shell.execute_reply": "2024-07-09T06:27:17.093528Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.140553Z", - "iopub.status.busy": "2024-07-09T06:12:01.140222Z", - "iopub.status.idle": "2024-07-09T06:12:01.156429Z", - "shell.execute_reply": "2024-07-09T06:12:01.156000Z" + "iopub.execute_input": "2024-07-09T06:27:17.096794Z", + "iopub.status.busy": "2024-07-09T06:27:17.096411Z", + "iopub.status.idle": "2024-07-09T06:27:17.113492Z", + "shell.execute_reply": "2024-07-09T06:27:17.113050Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.158339Z", - "iopub.status.busy": "2024-07-09T06:12:01.158075Z", - "iopub.status.idle": "2024-07-09T06:12:01.161727Z", - "shell.execute_reply": "2024-07-09T06:12:01.161308Z" + "iopub.execute_input": "2024-07-09T06:27:17.115656Z", + "iopub.status.busy": "2024-07-09T06:27:17.115325Z", + "iopub.status.idle": "2024-07-09T06:27:17.119055Z", + "shell.execute_reply": "2024-07-09T06:27:17.118574Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.163745Z", - "iopub.status.busy": "2024-07-09T06:12:01.163423Z", - "iopub.status.idle": "2024-07-09T06:12:01.176542Z", - "shell.execute_reply": "2024-07-09T06:12:01.176139Z" + "iopub.execute_input": "2024-07-09T06:27:17.121058Z", + "iopub.status.busy": "2024-07-09T06:27:17.120762Z", + "iopub.status.idle": "2024-07-09T06:27:17.134516Z", + "shell.execute_reply": "2024-07-09T06:27:17.134084Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.178481Z", - "iopub.status.busy": "2024-07-09T06:12:01.178099Z", - "iopub.status.idle": "2024-07-09T06:12:01.203843Z", - "shell.execute_reply": "2024-07-09T06:12:01.203299Z" + "iopub.execute_input": "2024-07-09T06:27:17.136707Z", + "iopub.status.busy": "2024-07-09T06:27:17.136279Z", + "iopub.status.idle": "2024-07-09T06:27:17.162081Z", + "shell.execute_reply": "2024-07-09T06:27:17.161647Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.206126Z", - "iopub.status.busy": "2024-07-09T06:12:01.205741Z", - "iopub.status.idle": "2024-07-09T06:12:03.063366Z", - "shell.execute_reply": "2024-07-09T06:12:03.062689Z" + "iopub.execute_input": "2024-07-09T06:27:17.164409Z", + "iopub.status.busy": "2024-07-09T06:27:17.163994Z", + "iopub.status.idle": "2024-07-09T06:27:19.093254Z", + "shell.execute_reply": "2024-07-09T06:27:19.092676Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.065913Z", - "iopub.status.busy": "2024-07-09T06:12:03.065623Z", - "iopub.status.idle": "2024-07-09T06:12:03.072446Z", - "shell.execute_reply": "2024-07-09T06:12:03.071908Z" + "iopub.execute_input": "2024-07-09T06:27:19.095800Z", + "iopub.status.busy": "2024-07-09T06:27:19.095336Z", + "iopub.status.idle": "2024-07-09T06:27:19.102192Z", + "shell.execute_reply": "2024-07-09T06:27:19.101750Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.074438Z", - "iopub.status.busy": "2024-07-09T06:12:03.074140Z", - "iopub.status.idle": "2024-07-09T06:12:03.086651Z", - "shell.execute_reply": "2024-07-09T06:12:03.086112Z" + "iopub.execute_input": "2024-07-09T06:27:19.104190Z", + "iopub.status.busy": "2024-07-09T06:27:19.103866Z", + "iopub.status.idle": "2024-07-09T06:27:19.116533Z", + "shell.execute_reply": "2024-07-09T06:27:19.116058Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.088655Z", - "iopub.status.busy": "2024-07-09T06:12:03.088360Z", - "iopub.status.idle": "2024-07-09T06:12:03.094477Z", - "shell.execute_reply": "2024-07-09T06:12:03.093962Z" + "iopub.execute_input": "2024-07-09T06:27:19.118619Z", + "iopub.status.busy": "2024-07-09T06:27:19.118287Z", + "iopub.status.idle": "2024-07-09T06:27:19.124788Z", + "shell.execute_reply": "2024-07-09T06:27:19.124346Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.096562Z", - "iopub.status.busy": "2024-07-09T06:12:03.096263Z", - "iopub.status.idle": "2024-07-09T06:12:03.098957Z", - "shell.execute_reply": "2024-07-09T06:12:03.098421Z" + "iopub.execute_input": "2024-07-09T06:27:19.126835Z", + "iopub.status.busy": "2024-07-09T06:27:19.126514Z", + "iopub.status.idle": "2024-07-09T06:27:19.129039Z", + "shell.execute_reply": "2024-07-09T06:27:19.128622Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.100872Z", - "iopub.status.busy": "2024-07-09T06:12:03.100570Z", - "iopub.status.idle": "2024-07-09T06:12:03.104053Z", - "shell.execute_reply": "2024-07-09T06:12:03.103519Z" + "iopub.execute_input": "2024-07-09T06:27:19.131096Z", + "iopub.status.busy": "2024-07-09T06:27:19.130774Z", + "iopub.status.idle": "2024-07-09T06:27:19.134005Z", + "shell.execute_reply": "2024-07-09T06:27:19.133516Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.106062Z", - "iopub.status.busy": "2024-07-09T06:12:03.105700Z", - "iopub.status.idle": "2024-07-09T06:12:03.108276Z", - "shell.execute_reply": "2024-07-09T06:12:03.107858Z" + "iopub.execute_input": "2024-07-09T06:27:19.136079Z", + "iopub.status.busy": "2024-07-09T06:27:19.135766Z", + "iopub.status.idle": "2024-07-09T06:27:19.138223Z", + "shell.execute_reply": "2024-07-09T06:27:19.137811Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.110307Z", - "iopub.status.busy": "2024-07-09T06:12:03.109902Z", - "iopub.status.idle": "2024-07-09T06:12:03.113725Z", - "shell.execute_reply": "2024-07-09T06:12:03.113303Z" + "iopub.execute_input": "2024-07-09T06:27:19.140207Z", + "iopub.status.busy": "2024-07-09T06:27:19.139883Z", + "iopub.status.idle": "2024-07-09T06:27:19.144100Z", + "shell.execute_reply": "2024-07-09T06:27:19.143647Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.115691Z", - "iopub.status.busy": "2024-07-09T06:12:03.115395Z", - "iopub.status.idle": "2024-07-09T06:12:03.144399Z", - "shell.execute_reply": "2024-07-09T06:12:03.143867Z" + "iopub.execute_input": "2024-07-09T06:27:19.146159Z", + "iopub.status.busy": "2024-07-09T06:27:19.145854Z", + "iopub.status.idle": "2024-07-09T06:27:19.174449Z", + "shell.execute_reply": "2024-07-09T06:27:19.173890Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.146446Z", - "iopub.status.busy": "2024-07-09T06:12:03.146148Z", - "iopub.status.idle": "2024-07-09T06:12:03.150634Z", - "shell.execute_reply": "2024-07-09T06:12:03.150114Z" + "iopub.execute_input": "2024-07-09T06:27:19.177021Z", + "iopub.status.busy": "2024-07-09T06:27:19.176539Z", + "iopub.status.idle": "2024-07-09T06:27:19.181309Z", + "shell.execute_reply": "2024-07-09T06:27:19.180812Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 940de2088..9c34ac22c 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:06.009775Z", - "iopub.status.busy": "2024-07-09T06:12:06.009294Z", - "iopub.status.idle": "2024-07-09T06:12:07.146220Z", - "shell.execute_reply": "2024-07-09T06:12:07.145677Z" + "iopub.execute_input": "2024-07-09T06:27:22.153886Z", + "iopub.status.busy": "2024-07-09T06:27:22.153426Z", + "iopub.status.idle": "2024-07-09T06:27:23.311889Z", + "shell.execute_reply": "2024-07-09T06:27:23.311338Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.148904Z", - "iopub.status.busy": "2024-07-09T06:12:07.148494Z", - "iopub.status.idle": "2024-07-09T06:12:07.339029Z", - "shell.execute_reply": "2024-07-09T06:12:07.338432Z" + "iopub.execute_input": "2024-07-09T06:27:23.314428Z", + "iopub.status.busy": "2024-07-09T06:27:23.313980Z", + "iopub.status.idle": "2024-07-09T06:27:23.508688Z", + "shell.execute_reply": "2024-07-09T06:27:23.508123Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.341669Z", - "iopub.status.busy": "2024-07-09T06:12:07.341302Z", - "iopub.status.idle": "2024-07-09T06:12:07.354860Z", - "shell.execute_reply": "2024-07-09T06:12:07.354382Z" + "iopub.execute_input": "2024-07-09T06:27:23.511393Z", + "iopub.status.busy": "2024-07-09T06:27:23.510929Z", + "iopub.status.idle": "2024-07-09T06:27:23.524862Z", + "shell.execute_reply": "2024-07-09T06:27:23.524396Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.356939Z", - "iopub.status.busy": "2024-07-09T06:12:07.356615Z", - "iopub.status.idle": "2024-07-09T06:12:10.024538Z", - "shell.execute_reply": "2024-07-09T06:12:10.023896Z" + "iopub.execute_input": "2024-07-09T06:27:23.527208Z", + "iopub.status.busy": "2024-07-09T06:27:23.526603Z", + "iopub.status.idle": "2024-07-09T06:27:26.126394Z", + "shell.execute_reply": "2024-07-09T06:27:26.125810Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:10.026913Z", - "iopub.status.busy": "2024-07-09T06:12:10.026490Z", - "iopub.status.idle": "2024-07-09T06:12:11.384283Z", - "shell.execute_reply": "2024-07-09T06:12:11.383744Z" + "iopub.execute_input": "2024-07-09T06:27:26.128599Z", + "iopub.status.busy": "2024-07-09T06:27:26.128270Z", + "iopub.status.idle": "2024-07-09T06:27:27.468768Z", + "shell.execute_reply": "2024-07-09T06:27:27.468127Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.386832Z", - "iopub.status.busy": "2024-07-09T06:12:11.386489Z", - "iopub.status.idle": "2024-07-09T06:12:11.390443Z", - "shell.execute_reply": "2024-07-09T06:12:11.389901Z" + "iopub.execute_input": "2024-07-09T06:27:27.471344Z", + "iopub.status.busy": "2024-07-09T06:27:27.471010Z", + "iopub.status.idle": "2024-07-09T06:27:27.475004Z", + "shell.execute_reply": "2024-07-09T06:27:27.474434Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.392453Z", - "iopub.status.busy": "2024-07-09T06:12:11.392156Z", - "iopub.status.idle": "2024-07-09T06:12:13.350265Z", - "shell.execute_reply": "2024-07-09T06:12:13.349664Z" + "iopub.execute_input": "2024-07-09T06:27:27.477072Z", + "iopub.status.busy": "2024-07-09T06:27:27.476759Z", + "iopub.status.idle": "2024-07-09T06:27:29.490391Z", + "shell.execute_reply": "2024-07-09T06:27:29.489818Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.352635Z", - "iopub.status.busy": "2024-07-09T06:12:13.352287Z", - "iopub.status.idle": "2024-07-09T06:12:13.360007Z", - "shell.execute_reply": "2024-07-09T06:12:13.359539Z" + "iopub.execute_input": "2024-07-09T06:27:29.492995Z", + "iopub.status.busy": "2024-07-09T06:27:29.492468Z", + "iopub.status.idle": "2024-07-09T06:27:29.500292Z", + "shell.execute_reply": "2024-07-09T06:27:29.499734Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.362027Z", - "iopub.status.busy": "2024-07-09T06:12:13.361726Z", - "iopub.status.idle": "2024-07-09T06:12:15.951530Z", - "shell.execute_reply": "2024-07-09T06:12:15.950920Z" + "iopub.execute_input": "2024-07-09T06:27:29.502433Z", + "iopub.status.busy": "2024-07-09T06:27:29.502113Z", + "iopub.status.idle": "2024-07-09T06:27:32.049416Z", + "shell.execute_reply": "2024-07-09T06:27:32.048812Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.953826Z", - "iopub.status.busy": "2024-07-09T06:12:15.953477Z", - "iopub.status.idle": "2024-07-09T06:12:15.956917Z", - "shell.execute_reply": "2024-07-09T06:12:15.956384Z" + "iopub.execute_input": "2024-07-09T06:27:32.051592Z", + "iopub.status.busy": "2024-07-09T06:27:32.051401Z", + "iopub.status.idle": "2024-07-09T06:27:32.055077Z", + "shell.execute_reply": "2024-07-09T06:27:32.054480Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.958940Z", - "iopub.status.busy": "2024-07-09T06:12:15.958612Z", - "iopub.status.idle": "2024-07-09T06:12:15.961923Z", - "shell.execute_reply": "2024-07-09T06:12:15.961492Z" + "iopub.execute_input": "2024-07-09T06:27:32.057199Z", + "iopub.status.busy": "2024-07-09T06:27:32.056870Z", + "iopub.status.idle": "2024-07-09T06:27:32.060234Z", + "shell.execute_reply": "2024-07-09T06:27:32.059802Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.963899Z", - "iopub.status.busy": "2024-07-09T06:12:15.963576Z", - "iopub.status.idle": "2024-07-09T06:12:15.967078Z", - "shell.execute_reply": "2024-07-09T06:12:15.966654Z" + "iopub.execute_input": "2024-07-09T06:27:32.062198Z", + "iopub.status.busy": "2024-07-09T06:27:32.061876Z", + "iopub.status.idle": "2024-07-09T06:27:32.065020Z", + "shell.execute_reply": "2024-07-09T06:27:32.064573Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 552c5a63a..949e5b545 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:18.540918Z", - "iopub.status.busy": "2024-07-09T06:12:18.540757Z", - "iopub.status.idle": "2024-07-09T06:12:19.680849Z", - "shell.execute_reply": "2024-07-09T06:12:19.680297Z" + "iopub.execute_input": "2024-07-09T06:27:34.654632Z", + "iopub.status.busy": "2024-07-09T06:27:34.654465Z", + "iopub.status.idle": "2024-07-09T06:27:35.815092Z", + "shell.execute_reply": "2024-07-09T06:27:35.814455Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:19.683207Z", - "iopub.status.busy": "2024-07-09T06:12:19.682952Z", - "iopub.status.idle": "2024-07-09T06:12:20.782328Z", - "shell.execute_reply": "2024-07-09T06:12:20.781710Z" + "iopub.execute_input": "2024-07-09T06:27:35.817596Z", + "iopub.status.busy": "2024-07-09T06:27:35.817178Z", + "iopub.status.idle": "2024-07-09T06:27:37.096670Z", + "shell.execute_reply": "2024-07-09T06:27:37.095921Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.784972Z", - "iopub.status.busy": "2024-07-09T06:12:20.784608Z", - "iopub.status.idle": "2024-07-09T06:12:20.787687Z", - "shell.execute_reply": "2024-07-09T06:12:20.787270Z" + "iopub.execute_input": "2024-07-09T06:27:37.099444Z", + "iopub.status.busy": "2024-07-09T06:27:37.099077Z", + "iopub.status.idle": "2024-07-09T06:27:37.102193Z", + "shell.execute_reply": "2024-07-09T06:27:37.101773Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.789706Z", - "iopub.status.busy": "2024-07-09T06:12:20.789390Z", - "iopub.status.idle": "2024-07-09T06:12:20.795637Z", - "shell.execute_reply": "2024-07-09T06:12:20.795205Z" + "iopub.execute_input": "2024-07-09T06:27:37.104293Z", + "iopub.status.busy": "2024-07-09T06:27:37.103979Z", + "iopub.status.idle": "2024-07-09T06:27:37.110147Z", + "shell.execute_reply": "2024-07-09T06:27:37.109740Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.797653Z", - "iopub.status.busy": "2024-07-09T06:12:20.797314Z", - "iopub.status.idle": "2024-07-09T06:12:21.282480Z", - "shell.execute_reply": "2024-07-09T06:12:21.281912Z" + "iopub.execute_input": "2024-07-09T06:27:37.112184Z", + "iopub.status.busy": "2024-07-09T06:27:37.111923Z", + "iopub.status.idle": "2024-07-09T06:27:37.598528Z", + "shell.execute_reply": "2024-07-09T06:27:37.597913Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.285356Z", - "iopub.status.busy": "2024-07-09T06:12:21.285011Z", - "iopub.status.idle": "2024-07-09T06:12:21.290021Z", - "shell.execute_reply": "2024-07-09T06:12:21.289526Z" + "iopub.execute_input": "2024-07-09T06:27:37.601014Z", + "iopub.status.busy": "2024-07-09T06:27:37.600572Z", + "iopub.status.idle": "2024-07-09T06:27:37.605747Z", + "shell.execute_reply": "2024-07-09T06:27:37.605308Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.292135Z", - "iopub.status.busy": "2024-07-09T06:12:21.291713Z", - "iopub.status.idle": "2024-07-09T06:12:21.295440Z", - "shell.execute_reply": "2024-07-09T06:12:21.295008Z" + "iopub.execute_input": "2024-07-09T06:27:37.607641Z", + "iopub.status.busy": "2024-07-09T06:27:37.607468Z", + "iopub.status.idle": "2024-07-09T06:27:37.611290Z", + "shell.execute_reply": "2024-07-09T06:27:37.610844Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.297473Z", - "iopub.status.busy": "2024-07-09T06:12:21.297149Z", - "iopub.status.idle": "2024-07-09T06:12:22.149730Z", - "shell.execute_reply": "2024-07-09T06:12:22.149063Z" + "iopub.execute_input": "2024-07-09T06:27:37.613342Z", + "iopub.status.busy": "2024-07-09T06:27:37.613034Z", + "iopub.status.idle": "2024-07-09T06:27:38.555539Z", + "shell.execute_reply": "2024-07-09T06:27:38.555016Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.152147Z", - "iopub.status.busy": "2024-07-09T06:12:22.151777Z", - "iopub.status.idle": "2024-07-09T06:12:22.372019Z", - "shell.execute_reply": "2024-07-09T06:12:22.371560Z" + "iopub.execute_input": "2024-07-09T06:27:38.557847Z", + "iopub.status.busy": "2024-07-09T06:27:38.557649Z", + "iopub.status.idle": "2024-07-09T06:27:38.851691Z", + "shell.execute_reply": "2024-07-09T06:27:38.851100Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.374207Z", - "iopub.status.busy": "2024-07-09T06:12:22.373800Z", - "iopub.status.idle": "2024-07-09T06:12:22.378360Z", - "shell.execute_reply": "2024-07-09T06:12:22.377817Z" + "iopub.execute_input": "2024-07-09T06:27:38.853964Z", + "iopub.status.busy": "2024-07-09T06:27:38.853618Z", + "iopub.status.idle": "2024-07-09T06:27:38.858060Z", + "shell.execute_reply": "2024-07-09T06:27:38.857615Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.380601Z", - "iopub.status.busy": "2024-07-09T06:12:22.380269Z", - "iopub.status.idle": "2024-07-09T06:12:22.827294Z", - "shell.execute_reply": "2024-07-09T06:12:22.826799Z" + "iopub.execute_input": "2024-07-09T06:27:38.860047Z", + "iopub.status.busy": "2024-07-09T06:27:38.859765Z", + "iopub.status.idle": "2024-07-09T06:27:39.310110Z", + "shell.execute_reply": "2024-07-09T06:27:39.309501Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.829350Z", - "iopub.status.busy": "2024-07-09T06:12:22.829090Z", - "iopub.status.idle": "2024-07-09T06:12:23.159105Z", - "shell.execute_reply": "2024-07-09T06:12:23.158480Z" + "iopub.execute_input": "2024-07-09T06:27:39.312865Z", + "iopub.status.busy": "2024-07-09T06:27:39.312462Z", + "iopub.status.idle": "2024-07-09T06:27:39.647092Z", + "shell.execute_reply": "2024-07-09T06:27:39.646475Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.161413Z", - "iopub.status.busy": "2024-07-09T06:12:23.161230Z", - "iopub.status.idle": "2024-07-09T06:12:23.525420Z", - "shell.execute_reply": "2024-07-09T06:12:23.524856Z" + "iopub.execute_input": "2024-07-09T06:27:39.649619Z", + "iopub.status.busy": "2024-07-09T06:27:39.649296Z", + "iopub.status.idle": "2024-07-09T06:27:40.011855Z", + "shell.execute_reply": "2024-07-09T06:27:40.011238Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.528578Z", - "iopub.status.busy": "2024-07-09T06:12:23.528384Z", - "iopub.status.idle": "2024-07-09T06:12:23.963657Z", - "shell.execute_reply": "2024-07-09T06:12:23.963056Z" + "iopub.execute_input": "2024-07-09T06:27:40.014685Z", + "iopub.status.busy": "2024-07-09T06:27:40.014328Z", + "iopub.status.idle": "2024-07-09T06:27:40.429827Z", + "shell.execute_reply": "2024-07-09T06:27:40.429292Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.967971Z", - "iopub.status.busy": "2024-07-09T06:12:23.967513Z", - "iopub.status.idle": "2024-07-09T06:12:24.415572Z", - "shell.execute_reply": "2024-07-09T06:12:24.414915Z" + "iopub.execute_input": "2024-07-09T06:27:40.434217Z", + "iopub.status.busy": "2024-07-09T06:27:40.433815Z", + "iopub.status.idle": "2024-07-09T06:27:40.880331Z", + "shell.execute_reply": "2024-07-09T06:27:40.879705Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.418819Z", - "iopub.status.busy": "2024-07-09T06:12:24.418433Z", - "iopub.status.idle": "2024-07-09T06:12:24.633283Z", - "shell.execute_reply": "2024-07-09T06:12:24.632674Z" + "iopub.execute_input": "2024-07-09T06:27:40.882426Z", + "iopub.status.busy": "2024-07-09T06:27:40.882229Z", + "iopub.status.idle": "2024-07-09T06:27:41.097056Z", + "shell.execute_reply": "2024-07-09T06:27:41.096510Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.635545Z", - "iopub.status.busy": "2024-07-09T06:12:24.635179Z", - "iopub.status.idle": "2024-07-09T06:12:24.835048Z", - "shell.execute_reply": "2024-07-09T06:12:24.834421Z" + "iopub.execute_input": "2024-07-09T06:27:41.099352Z", + "iopub.status.busy": "2024-07-09T06:27:41.098978Z", + "iopub.status.idle": "2024-07-09T06:27:41.279647Z", + "shell.execute_reply": "2024-07-09T06:27:41.279135Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.837392Z", - "iopub.status.busy": "2024-07-09T06:12:24.837055Z", - "iopub.status.idle": "2024-07-09T06:12:24.839948Z", - "shell.execute_reply": "2024-07-09T06:12:24.839511Z" + "iopub.execute_input": "2024-07-09T06:27:41.282138Z", + "iopub.status.busy": "2024-07-09T06:27:41.281802Z", + "iopub.status.idle": "2024-07-09T06:27:41.284795Z", + "shell.execute_reply": "2024-07-09T06:27:41.284347Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.842025Z", - "iopub.status.busy": "2024-07-09T06:12:24.841705Z", - "iopub.status.idle": "2024-07-09T06:12:25.813473Z", - "shell.execute_reply": "2024-07-09T06:12:25.812857Z" + "iopub.execute_input": "2024-07-09T06:27:41.286727Z", + "iopub.status.busy": "2024-07-09T06:27:41.286354Z", + "iopub.status.idle": "2024-07-09T06:27:42.233918Z", + "shell.execute_reply": "2024-07-09T06:27:42.233305Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.816037Z", - "iopub.status.busy": "2024-07-09T06:12:25.815657Z", - "iopub.status.idle": "2024-07-09T06:12:25.972932Z", - "shell.execute_reply": "2024-07-09T06:12:25.972181Z" + "iopub.execute_input": "2024-07-09T06:27:42.236357Z", + "iopub.status.busy": "2024-07-09T06:27:42.236129Z", + "iopub.status.idle": "2024-07-09T06:27:42.414922Z", + "shell.execute_reply": "2024-07-09T06:27:42.414319Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.975551Z", - "iopub.status.busy": "2024-07-09T06:12:25.975177Z", - "iopub.status.idle": "2024-07-09T06:12:26.197045Z", - "shell.execute_reply": "2024-07-09T06:12:26.196445Z" + "iopub.execute_input": "2024-07-09T06:27:42.417052Z", + "iopub.status.busy": "2024-07-09T06:27:42.416742Z", + "iopub.status.idle": "2024-07-09T06:27:42.567516Z", + "shell.execute_reply": "2024-07-09T06:27:42.566950Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.199182Z", - "iopub.status.busy": "2024-07-09T06:12:26.198971Z", - "iopub.status.idle": "2024-07-09T06:12:26.909973Z", - "shell.execute_reply": "2024-07-09T06:12:26.909345Z" + "iopub.execute_input": "2024-07-09T06:27:42.569723Z", + "iopub.status.busy": "2024-07-09T06:27:42.569386Z", + "iopub.status.idle": "2024-07-09T06:27:43.238504Z", + "shell.execute_reply": "2024-07-09T06:27:43.237885Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.912306Z", - "iopub.status.busy": "2024-07-09T06:12:26.912113Z", - "iopub.status.idle": "2024-07-09T06:12:26.915710Z", - "shell.execute_reply": "2024-07-09T06:12:26.915268Z" + "iopub.execute_input": "2024-07-09T06:27:43.240966Z", + "iopub.status.busy": "2024-07-09T06:27:43.240541Z", + "iopub.status.idle": "2024-07-09T06:27:43.244348Z", + "shell.execute_reply": "2024-07-09T06:27:43.243899Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index ef13a6be5..5a34daff0 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:29.114173Z", - "iopub.status.busy": "2024-07-09T06:12:29.114013Z", - "iopub.status.idle": "2024-07-09T06:12:31.813402Z", - "shell.execute_reply": "2024-07-09T06:12:31.812863Z" + "iopub.execute_input": "2024-07-09T06:27:45.444339Z", + "iopub.status.busy": "2024-07-09T06:27:45.443934Z", + "iopub.status.idle": "2024-07-09T06:27:48.220490Z", + "shell.execute_reply": "2024-07-09T06:27:48.219850Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:31.816019Z", - "iopub.status.busy": "2024-07-09T06:12:31.815566Z", - "iopub.status.idle": "2024-07-09T06:12:32.129315Z", - "shell.execute_reply": "2024-07-09T06:12:32.128775Z" + "iopub.execute_input": "2024-07-09T06:27:48.223134Z", + "iopub.status.busy": "2024-07-09T06:27:48.222782Z", + "iopub.status.idle": "2024-07-09T06:27:48.551328Z", + "shell.execute_reply": "2024-07-09T06:27:48.550787Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.131878Z", - "iopub.status.busy": "2024-07-09T06:12:32.131486Z", - "iopub.status.idle": "2024-07-09T06:12:32.135688Z", - "shell.execute_reply": "2024-07-09T06:12:32.135276Z" + "iopub.execute_input": "2024-07-09T06:27:48.553939Z", + "iopub.status.busy": "2024-07-09T06:27:48.553405Z", + "iopub.status.idle": "2024-07-09T06:27:48.557550Z", + "shell.execute_reply": "2024-07-09T06:27:48.557027Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.137627Z", - "iopub.status.busy": "2024-07-09T06:12:32.137303Z", - "iopub.status.idle": "2024-07-09T06:12:38.133619Z", - "shell.execute_reply": "2024-07-09T06:12:38.133066Z" + "iopub.execute_input": "2024-07-09T06:27:48.559562Z", + "iopub.status.busy": "2024-07-09T06:27:48.559266Z", + "iopub.status.idle": "2024-07-09T06:27:53.022684Z", + "shell.execute_reply": "2024-07-09T06:27:53.022093Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 753664/170498071 [00:00<00:22, 7533055.14it/s]" + " 1%| | 884736/170498071 [00:00<00:20, 8089244.09it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3440640/170498071 [00:00<00:08, 18808186.49it/s]" + " 6%|▌ | 10289152/170498071 [00:00<00:02, 56739816.87it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6324224/170498071 [00:00<00:07, 23199285.68it/s]" + " 12%|█▏ | 20709376/170498071 [00:00<00:01, 77845103.95it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9666560/170498071 [00:00<00:05, 27197953.48it/s]" + " 18%|█▊ | 31522816/170498071 [00:00<00:01, 89510002.96it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13664256/170498071 [00:00<00:04, 31743822.23it/s]" + " 25%|██▍ | 42237952/170498071 [00:00<00:01, 95784414.02it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 19103744/170498071 [00:00<00:03, 39286747.61it/s]" + " 31%|███ | 53182464/170498071 [00:00<00:01, 100337282.40it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 24346624/170498071 [00:00<00:03, 43433867.11it/s]" + " 37%|███▋ | 63504384/170498071 [00:00<00:01, 101255669.81it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29786112/170498071 [00:00<00:03, 46673827.94it/s]" + " 43%|████▎ | 74022912/170498071 [00:00<00:00, 102422137.80it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35094528/170498071 [00:00<00:02, 48663639.53it/s]" + " 50%|████▉ | 84574208/170498071 [00:00<00:00, 103317034.01it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41123840/170498071 [00:01<00:02, 52228428.18it/s]" + " 56%|█████▌ | 94928896/170498071 [00:01<00:00, 103108871.70it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 46661632/170498071 [00:01<00:02, 53081926.67it/s]" + " 62%|██████▏ | 106004480/170498071 [00:01<00:00, 105346208.26it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:01<00:02, 52946728.47it/s]" + " 68%|██████▊ | 116654080/170498071 [00:01<00:00, 105629779.29it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 57311232/170498071 [00:01<00:02, 52526789.19it/s]" + " 75%|███████▍ | 127434752/170498071 [00:01<00:00, 106225044.57it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62619648/170498071 [00:01<00:02, 52620946.91it/s]" + " 81%|████████ | 138084352/170498071 [00:01<00:00, 105442269.14it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67928064/170498071 [00:01<00:01, 52748561.88it/s]" + " 87%|████████▋ | 148799488/170498071 [00:01<00:00, 105804424.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 52564510.79it/s]" + " 94%|█████████▎| 159744000/170498071 [00:01<00:00, 106833768.32it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78479360/170498071 [00:01<00:01, 52150842.99it/s]" + "100%|█████████▉| 170491904/170498071 [00:01<00:00, 107010972.25it/s]" ] }, { @@ -388,119 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 83722240/170498071 [00:01<00:01, 52125723.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88997888/170498071 [00:01<00:01, 52299811.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 94273536/170498071 [00:02<00:01, 52413230.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 99516416/170498071 [00:02<00:01, 52173520.09it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 104759296/170498071 [00:02<00:01, 52218238.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 110034944/170498071 [00:02<00:01, 52258499.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 115343360/170498071 [00:02<00:01, 52472747.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121339904/170498071 [00:02<00:00, 54675432.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 128352256/170498071 [00:02<00:00, 59232462.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 135004160/170498071 [00:02<00:00, 61391731.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 142835712/170498071 [00:02<00:00, 66388150.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 151289856/170498071 [00:02<00:00, 71709682.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 158760960/170498071 [00:03<00:00, 72569444.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 166035456/170498071 [00:03<00:00, 63066107.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 52539309.75it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s] " ] }, { @@ -618,10 +506,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.135847Z", - "iopub.status.busy": "2024-07-09T06:12:38.135509Z", - "iopub.status.idle": "2024-07-09T06:12:38.140271Z", - "shell.execute_reply": "2024-07-09T06:12:38.139735Z" + "iopub.execute_input": "2024-07-09T06:27:53.024946Z", + "iopub.status.busy": "2024-07-09T06:27:53.024611Z", + "iopub.status.idle": "2024-07-09T06:27:53.029364Z", + "shell.execute_reply": "2024-07-09T06:27:53.028817Z" }, "nbsphinx": "hidden" }, @@ -672,10 +560,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.142240Z", - "iopub.status.busy": "2024-07-09T06:12:38.141970Z", - "iopub.status.idle": "2024-07-09T06:12:38.683191Z", - "shell.execute_reply": "2024-07-09T06:12:38.682615Z" + "iopub.execute_input": "2024-07-09T06:27:53.031408Z", + "iopub.status.busy": "2024-07-09T06:27:53.031096Z", + "iopub.status.idle": "2024-07-09T06:27:53.577241Z", + "shell.execute_reply": "2024-07-09T06:27:53.576593Z" } }, "outputs": [ @@ -708,10 +596,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.685213Z", - "iopub.status.busy": "2024-07-09T06:12:38.685033Z", - "iopub.status.idle": "2024-07-09T06:12:39.190392Z", - "shell.execute_reply": "2024-07-09T06:12:39.189791Z" + "iopub.execute_input": "2024-07-09T06:27:53.579601Z", + "iopub.status.busy": "2024-07-09T06:27:53.579322Z", + "iopub.status.idle": "2024-07-09T06:27:54.102985Z", + "shell.execute_reply": "2024-07-09T06:27:54.102360Z" } }, "outputs": [ @@ -749,10 +637,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.192564Z", - "iopub.status.busy": "2024-07-09T06:12:39.192364Z", - "iopub.status.idle": "2024-07-09T06:12:39.195681Z", - "shell.execute_reply": "2024-07-09T06:12:39.195250Z" + "iopub.execute_input": "2024-07-09T06:27:54.105484Z", + "iopub.status.busy": "2024-07-09T06:27:54.105073Z", + "iopub.status.idle": "2024-07-09T06:27:54.108602Z", + "shell.execute_reply": "2024-07-09T06:27:54.108156Z" } }, "outputs": [], @@ -775,17 +663,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.197505Z", - "iopub.status.busy": "2024-07-09T06:12:39.197332Z", - "iopub.status.idle": "2024-07-09T06:12:51.543036Z", - "shell.execute_reply": "2024-07-09T06:12:51.542330Z" + "iopub.execute_input": "2024-07-09T06:27:54.110579Z", + "iopub.status.busy": "2024-07-09T06:27:54.110395Z", + "iopub.status.idle": "2024-07-09T06:28:06.643708Z", + "shell.execute_reply": "2024-07-09T06:28:06.643176Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca6046bdc6394abb8a985e631993257b", + "model_id": "17e3dce4b40a4cb8a2b240ec353e0eae", "version_major": 2, "version_minor": 0 }, @@ -844,10 +732,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:51.545576Z", - "iopub.status.busy": "2024-07-09T06:12:51.545155Z", - "iopub.status.idle": "2024-07-09T06:12:53.675656Z", - "shell.execute_reply": "2024-07-09T06:12:53.674998Z" + "iopub.execute_input": "2024-07-09T06:28:06.646239Z", + "iopub.status.busy": "2024-07-09T06:28:06.645832Z", + "iopub.status.idle": "2024-07-09T06:28:08.702608Z", + "shell.execute_reply": "2024-07-09T06:28:08.701924Z" } }, "outputs": [ @@ -891,10 +779,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.678465Z", - "iopub.status.busy": "2024-07-09T06:12:53.678008Z", - "iopub.status.idle": "2024-07-09T06:12:53.932263Z", - "shell.execute_reply": "2024-07-09T06:12:53.931720Z" + "iopub.execute_input": "2024-07-09T06:28:08.705102Z", + "iopub.status.busy": "2024-07-09T06:28:08.704635Z", + "iopub.status.idle": "2024-07-09T06:28:08.961907Z", + "shell.execute_reply": "2024-07-09T06:28:08.960875Z" } }, "outputs": [ @@ -930,10 +818,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.935174Z", - "iopub.status.busy": "2024-07-09T06:12:53.934820Z", - "iopub.status.idle": "2024-07-09T06:12:54.601757Z", - "shell.execute_reply": "2024-07-09T06:12:54.601178Z" + "iopub.execute_input": "2024-07-09T06:28:08.965548Z", + "iopub.status.busy": "2024-07-09T06:28:08.964610Z", + "iopub.status.idle": "2024-07-09T06:28:09.623328Z", + "shell.execute_reply": "2024-07-09T06:28:09.622779Z" } }, "outputs": [ @@ -983,10 +871,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.604780Z", - "iopub.status.busy": "2024-07-09T06:12:54.604444Z", - "iopub.status.idle": "2024-07-09T06:12:54.941815Z", - "shell.execute_reply": "2024-07-09T06:12:54.941333Z" + "iopub.execute_input": "2024-07-09T06:28:09.627057Z", + "iopub.status.busy": "2024-07-09T06:28:09.626207Z", + "iopub.status.idle": "2024-07-09T06:28:09.967511Z", + "shell.execute_reply": "2024-07-09T06:28:09.966954Z" } }, "outputs": [ @@ -1034,10 +922,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.943967Z", - "iopub.status.busy": "2024-07-09T06:12:54.943776Z", - "iopub.status.idle": "2024-07-09T06:12:55.187139Z", - "shell.execute_reply": "2024-07-09T06:12:55.186558Z" + "iopub.execute_input": "2024-07-09T06:28:09.969885Z", + "iopub.status.busy": "2024-07-09T06:28:09.969463Z", + "iopub.status.idle": "2024-07-09T06:28:10.214869Z", + "shell.execute_reply": "2024-07-09T06:28:10.214223Z" } }, "outputs": [ @@ -1093,10 +981,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.189615Z", - "iopub.status.busy": "2024-07-09T06:12:55.189398Z", - "iopub.status.idle": "2024-07-09T06:12:55.284535Z", - "shell.execute_reply": "2024-07-09T06:12:55.284038Z" + "iopub.execute_input": "2024-07-09T06:28:10.217596Z", + "iopub.status.busy": "2024-07-09T06:28:10.217139Z", + "iopub.status.idle": "2024-07-09T06:28:10.308655Z", + "shell.execute_reply": "2024-07-09T06:28:10.308107Z" } }, "outputs": [], @@ -1117,10 +1005,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.286976Z", - "iopub.status.busy": "2024-07-09T06:12:55.286581Z", - "iopub.status.idle": "2024-07-09T06:13:05.614875Z", - "shell.execute_reply": "2024-07-09T06:13:05.614249Z" + "iopub.execute_input": "2024-07-09T06:28:10.310977Z", + "iopub.status.busy": "2024-07-09T06:28:10.310791Z", + "iopub.status.idle": "2024-07-09T06:28:20.594421Z", + "shell.execute_reply": "2024-07-09T06:28:20.593788Z" } }, "outputs": [ @@ -1157,10 +1045,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:05.617192Z", - "iopub.status.busy": "2024-07-09T06:13:05.616989Z", - "iopub.status.idle": "2024-07-09T06:13:07.827467Z", - "shell.execute_reply": "2024-07-09T06:13:07.826891Z" + "iopub.execute_input": "2024-07-09T06:28:20.596810Z", + "iopub.status.busy": "2024-07-09T06:28:20.596554Z", + "iopub.status.idle": "2024-07-09T06:28:22.741544Z", + "shell.execute_reply": "2024-07-09T06:28:22.741042Z" } }, "outputs": [ @@ -1191,10 +1079,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:07.830162Z", - "iopub.status.busy": "2024-07-09T06:13:07.829583Z", - "iopub.status.idle": "2024-07-09T06:13:08.038042Z", - "shell.execute_reply": "2024-07-09T06:13:08.037537Z" + "iopub.execute_input": "2024-07-09T06:28:22.744305Z", + "iopub.status.busy": "2024-07-09T06:28:22.743745Z", + "iopub.status.idle": "2024-07-09T06:28:22.953993Z", + "shell.execute_reply": "2024-07-09T06:28:22.953376Z" } }, "outputs": [], @@ -1208,10 +1096,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.040467Z", - "iopub.status.busy": "2024-07-09T06:13:08.040116Z", - "iopub.status.idle": "2024-07-09T06:13:08.043191Z", - "shell.execute_reply": "2024-07-09T06:13:08.042744Z" + "iopub.execute_input": "2024-07-09T06:28:22.956589Z", + "iopub.status.busy": "2024-07-09T06:28:22.956213Z", + "iopub.status.idle": "2024-07-09T06:28:22.959468Z", + "shell.execute_reply": "2024-07-09T06:28:22.958900Z" } }, "outputs": [], @@ -1233,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.045228Z", - "iopub.status.busy": "2024-07-09T06:13:08.044834Z", - "iopub.status.idle": "2024-07-09T06:13:08.052977Z", - "shell.execute_reply": "2024-07-09T06:13:08.052453Z" + "iopub.execute_input": "2024-07-09T06:28:22.961611Z", + "iopub.status.busy": "2024-07-09T06:28:22.961200Z", + "iopub.status.idle": "2024-07-09T06:28:22.969422Z", + "shell.execute_reply": "2024-07-09T06:28:22.968855Z" }, "nbsphinx": "hidden" }, @@ -1281,7 +1169,54 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07e9815832504753931806b6d58f0b58": { + "0bf96112dc8a4e0ca41d5e7ae1ebcf56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83246a4b1973465e91e701740cd527e6", + "placeholder": "​", + "style": "IPY_MODEL_aaff29c1d12b464a90fcdf95eeb1a265", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 287MB/s]" + } + }, + "17e3dce4b40a4cb8a2b240ec353e0eae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce4ca1db437c42df9608894483bf3780", + "IPY_MODEL_f925fed948884b0e9a39e8a060169585", + "IPY_MODEL_0bf96112dc8a4e0ca41d5e7ae1ebcf56" + ], + "layout": "IPY_MODEL_64e12728195f4391b6280124850b845f", + "tabbable": null, + "tooltip": null + } + }, + "64e12728195f4391b6280124850b845f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1334,41 +1269,7 @@ "width": null } }, - "26725f9df2f94d3ea6293ec28ead7c10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c1e61197b9041c2979207dbd79421ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f3f248148ef4e539a3ca4f9afbd62ae": { + "83246a4b1973465e91e701740cd527e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1421,98 +1322,7 @@ "width": null } }, - "aedd690df73d48378ef4e0ccedca1f2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6116745dca947648a98ff8dddef3db4", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26725f9df2f94d3ea6293ec28ead7c10", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "c6fbd30ad1b64135acf648295aae87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c843c3709f5d465786f56b6c642b06be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07e9815832504753931806b6d58f0b58", - "placeholder": "​", - "style": "IPY_MODEL_c6fbd30ad1b64135acf648295aae87b4", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 282MB/s]" - } - }, - "ca6046bdc6394abb8a985e631993257b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eeba128ad2734250a58229daf256d2be", - "IPY_MODEL_aedd690df73d48378ef4e0ccedca1f2f", - "IPY_MODEL_c843c3709f5d465786f56b6c642b06be" - ], - "layout": "IPY_MODEL_f7b6602f97fb4af9a7103ad7383ccc0b", - "tabbable": null, - "tooltip": null - } - }, - "e6116745dca947648a98ff8dddef3db4": { + "847a0080121d45e79b430fce2ac8676d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1565,7 +1375,41 @@ "width": null } }, - "eeba128ad2734250a58229daf256d2be": { + "aaff29c1d12b464a90fcdf95eeb1a265": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "afec228371694b259b4beb453ed5662e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce4ca1db437c42df9608894483bf3780": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1580,15 +1424,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f3f248148ef4e539a3ca4f9afbd62ae", + "layout": "IPY_MODEL_847a0080121d45e79b430fce2ac8676d", "placeholder": "​", - "style": "IPY_MODEL_2c1e61197b9041c2979207dbd79421ed", + "style": "IPY_MODEL_f68e78a7cc7d408cb71b2a049145349d", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "f7b6602f97fb4af9a7103ad7383ccc0b": { + "f68e78a7cc7d408cb71b2a049145349d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f839052ce8de441fa54a98bf191b0352": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1640,6 +1502,32 @@ "visibility": null, "width": null } + }, + "f925fed948884b0e9a39e8a060169585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f839052ce8de441fa54a98bf191b0352", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_afec228371694b259b4beb453ed5662e", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index fc3d493cb..9a21f3bf0 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:12.198906Z", - "iopub.status.busy": "2024-07-09T06:13:12.198717Z", - "iopub.status.idle": "2024-07-09T06:13:13.395705Z", - "shell.execute_reply": "2024-07-09T06:13:13.395147Z" + "iopub.execute_input": "2024-07-09T06:28:27.147640Z", + "iopub.status.busy": "2024-07-09T06:28:27.147460Z", + "iopub.status.idle": "2024-07-09T06:28:28.302447Z", + "shell.execute_reply": "2024-07-09T06:28:28.301888Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.398528Z", - "iopub.status.busy": "2024-07-09T06:13:13.397970Z", - "iopub.status.idle": "2024-07-09T06:13:13.416454Z", - "shell.execute_reply": "2024-07-09T06:13:13.415844Z" + "iopub.execute_input": "2024-07-09T06:28:28.304997Z", + "iopub.status.busy": "2024-07-09T06:28:28.304730Z", + "iopub.status.idle": "2024-07-09T06:28:28.321957Z", + "shell.execute_reply": "2024-07-09T06:28:28.321531Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.419243Z", - "iopub.status.busy": "2024-07-09T06:13:13.418769Z", - "iopub.status.idle": "2024-07-09T06:13:13.422066Z", - "shell.execute_reply": "2024-07-09T06:13:13.421519Z" + "iopub.execute_input": "2024-07-09T06:28:28.324137Z", + "iopub.status.busy": "2024-07-09T06:28:28.323717Z", + "iopub.status.idle": "2024-07-09T06:28:28.326748Z", + "shell.execute_reply": "2024-07-09T06:28:28.326302Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.424342Z", - "iopub.status.busy": "2024-07-09T06:13:13.424031Z", - "iopub.status.idle": "2024-07-09T06:13:13.502698Z", - "shell.execute_reply": "2024-07-09T06:13:13.502157Z" + "iopub.execute_input": "2024-07-09T06:28:28.328783Z", + "iopub.status.busy": "2024-07-09T06:28:28.328478Z", + "iopub.status.idle": "2024-07-09T06:28:28.398404Z", + "shell.execute_reply": "2024-07-09T06:28:28.397873Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.505024Z", - "iopub.status.busy": "2024-07-09T06:13:13.504684Z", - "iopub.status.idle": "2024-07-09T06:13:13.692827Z", - "shell.execute_reply": "2024-07-09T06:13:13.692311Z" + "iopub.execute_input": "2024-07-09T06:28:28.400685Z", + "iopub.status.busy": "2024-07-09T06:28:28.400280Z", + "iopub.status.idle": "2024-07-09T06:28:28.580610Z", + "shell.execute_reply": "2024-07-09T06:28:28.580004Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.695582Z", - "iopub.status.busy": "2024-07-09T06:13:13.695101Z", - "iopub.status.idle": "2024-07-09T06:13:13.913575Z", - "shell.execute_reply": "2024-07-09T06:13:13.912963Z" + "iopub.execute_input": "2024-07-09T06:28:28.583196Z", + "iopub.status.busy": "2024-07-09T06:28:28.582842Z", + "iopub.status.idle": "2024-07-09T06:28:28.825147Z", + "shell.execute_reply": "2024-07-09T06:28:28.824546Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.916022Z", - "iopub.status.busy": "2024-07-09T06:13:13.915716Z", - "iopub.status.idle": "2024-07-09T06:13:13.920472Z", - "shell.execute_reply": "2024-07-09T06:13:13.919999Z" + "iopub.execute_input": "2024-07-09T06:28:28.827512Z", + "iopub.status.busy": "2024-07-09T06:28:28.827171Z", + "iopub.status.idle": "2024-07-09T06:28:28.831561Z", + "shell.execute_reply": "2024-07-09T06:28:28.831115Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.922631Z", - "iopub.status.busy": "2024-07-09T06:13:13.922302Z", - "iopub.status.idle": "2024-07-09T06:13:13.928584Z", - "shell.execute_reply": "2024-07-09T06:13:13.928040Z" + "iopub.execute_input": "2024-07-09T06:28:28.833597Z", + "iopub.status.busy": "2024-07-09T06:28:28.833194Z", + "iopub.status.idle": "2024-07-09T06:28:28.839457Z", + "shell.execute_reply": "2024-07-09T06:28:28.838888Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.930747Z", - "iopub.status.busy": "2024-07-09T06:13:13.930457Z", - "iopub.status.idle": "2024-07-09T06:13:13.933055Z", - "shell.execute_reply": "2024-07-09T06:13:13.932620Z" + "iopub.execute_input": "2024-07-09T06:28:28.841676Z", + "iopub.status.busy": "2024-07-09T06:28:28.841286Z", + "iopub.status.idle": "2024-07-09T06:28:28.843833Z", + "shell.execute_reply": "2024-07-09T06:28:28.843413Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.934875Z", - "iopub.status.busy": "2024-07-09T06:13:13.934702Z", - "iopub.status.idle": "2024-07-09T06:13:22.688532Z", - "shell.execute_reply": "2024-07-09T06:13:22.687882Z" + "iopub.execute_input": "2024-07-09T06:28:28.845847Z", + "iopub.status.busy": "2024-07-09T06:28:28.845459Z", + "iopub.status.idle": "2024-07-09T06:28:37.416310Z", + "shell.execute_reply": "2024-07-09T06:28:37.415785Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.691605Z", - "iopub.status.busy": "2024-07-09T06:13:22.691183Z", - "iopub.status.idle": "2024-07-09T06:13:22.699311Z", - "shell.execute_reply": "2024-07-09T06:13:22.698788Z" + "iopub.execute_input": "2024-07-09T06:28:37.419117Z", + "iopub.status.busy": "2024-07-09T06:28:37.418506Z", + "iopub.status.idle": "2024-07-09T06:28:37.425880Z", + "shell.execute_reply": "2024-07-09T06:28:37.425420Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.701375Z", - "iopub.status.busy": "2024-07-09T06:13:22.701132Z", - "iopub.status.idle": "2024-07-09T06:13:22.705382Z", - "shell.execute_reply": "2024-07-09T06:13:22.704977Z" + "iopub.execute_input": "2024-07-09T06:28:37.427928Z", + "iopub.status.busy": "2024-07-09T06:28:37.427621Z", + "iopub.status.idle": "2024-07-09T06:28:37.431159Z", + "shell.execute_reply": "2024-07-09T06:28:37.430715Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.707406Z", - "iopub.status.busy": "2024-07-09T06:13:22.707081Z", - "iopub.status.idle": "2024-07-09T06:13:22.710090Z", - "shell.execute_reply": "2024-07-09T06:13:22.709573Z" + "iopub.execute_input": "2024-07-09T06:28:37.433108Z", + "iopub.status.busy": "2024-07-09T06:28:37.432812Z", + "iopub.status.idle": "2024-07-09T06:28:37.436103Z", + "shell.execute_reply": "2024-07-09T06:28:37.435676Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.712167Z", - "iopub.status.busy": "2024-07-09T06:13:22.711850Z", - "iopub.status.idle": "2024-07-09T06:13:22.714709Z", - "shell.execute_reply": "2024-07-09T06:13:22.714294Z" + "iopub.execute_input": "2024-07-09T06:28:37.437855Z", + "iopub.status.busy": "2024-07-09T06:28:37.437689Z", + "iopub.status.idle": "2024-07-09T06:28:37.440738Z", + "shell.execute_reply": "2024-07-09T06:28:37.440200Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.716596Z", - "iopub.status.busy": "2024-07-09T06:13:22.716303Z", - "iopub.status.idle": "2024-07-09T06:13:22.724381Z", - "shell.execute_reply": "2024-07-09T06:13:22.723941Z" + "iopub.execute_input": "2024-07-09T06:28:37.442722Z", + "iopub.status.busy": "2024-07-09T06:28:37.442340Z", + "iopub.status.idle": "2024-07-09T06:28:37.450065Z", + "shell.execute_reply": "2024-07-09T06:28:37.449543Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.726307Z", - "iopub.status.busy": "2024-07-09T06:13:22.725983Z", - "iopub.status.idle": "2024-07-09T06:13:22.728617Z", - "shell.execute_reply": "2024-07-09T06:13:22.728073Z" + "iopub.execute_input": "2024-07-09T06:28:37.452147Z", + "iopub.status.busy": "2024-07-09T06:28:37.451829Z", + "iopub.status.idle": "2024-07-09T06:28:37.454273Z", + "shell.execute_reply": "2024-07-09T06:28:37.453859Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.730747Z", - "iopub.status.busy": "2024-07-09T06:13:22.730427Z", - "iopub.status.idle": "2024-07-09T06:13:22.850115Z", - "shell.execute_reply": "2024-07-09T06:13:22.849630Z" + "iopub.execute_input": "2024-07-09T06:28:37.456308Z", + "iopub.status.busy": "2024-07-09T06:28:37.455998Z", + "iopub.status.idle": "2024-07-09T06:28:37.574042Z", + "shell.execute_reply": "2024-07-09T06:28:37.573412Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.852276Z", - "iopub.status.busy": "2024-07-09T06:13:22.852104Z", - "iopub.status.idle": "2024-07-09T06:13:22.957693Z", - "shell.execute_reply": "2024-07-09T06:13:22.957175Z" + "iopub.execute_input": "2024-07-09T06:28:37.576401Z", + "iopub.status.busy": "2024-07-09T06:28:37.576035Z", + "iopub.status.idle": "2024-07-09T06:28:37.676628Z", + "shell.execute_reply": "2024-07-09T06:28:37.676092Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.959831Z", - "iopub.status.busy": "2024-07-09T06:13:22.959658Z", - "iopub.status.idle": "2024-07-09T06:13:23.439329Z", - "shell.execute_reply": "2024-07-09T06:13:23.438815Z" + "iopub.execute_input": "2024-07-09T06:28:37.678829Z", + "iopub.status.busy": "2024-07-09T06:28:37.678655Z", + "iopub.status.idle": "2024-07-09T06:28:38.159157Z", + "shell.execute_reply": "2024-07-09T06:28:38.158544Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.441676Z", - "iopub.status.busy": "2024-07-09T06:13:23.441277Z", - "iopub.status.idle": "2024-07-09T06:13:23.530814Z", - "shell.execute_reply": "2024-07-09T06:13:23.530253Z" + "iopub.execute_input": "2024-07-09T06:28:38.161651Z", + "iopub.status.busy": "2024-07-09T06:28:38.161475Z", + "iopub.status.idle": "2024-07-09T06:28:38.250789Z", + "shell.execute_reply": "2024-07-09T06:28:38.250230Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.533156Z", - "iopub.status.busy": "2024-07-09T06:13:23.532707Z", - "iopub.status.idle": "2024-07-09T06:13:23.541181Z", - "shell.execute_reply": "2024-07-09T06:13:23.540639Z" + "iopub.execute_input": "2024-07-09T06:28:38.252951Z", + "iopub.status.busy": "2024-07-09T06:28:38.252776Z", + "iopub.status.idle": "2024-07-09T06:28:38.261091Z", + "shell.execute_reply": "2024-07-09T06:28:38.260672Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.543142Z", - "iopub.status.busy": "2024-07-09T06:13:23.542832Z", - "iopub.status.idle": "2024-07-09T06:13:23.545507Z", - "shell.execute_reply": "2024-07-09T06:13:23.544989Z" + "iopub.execute_input": "2024-07-09T06:28:38.262975Z", + "iopub.status.busy": "2024-07-09T06:28:38.262781Z", + "iopub.status.idle": "2024-07-09T06:28:38.265296Z", + "shell.execute_reply": "2024-07-09T06:28:38.264887Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.547414Z", - "iopub.status.busy": "2024-07-09T06:13:23.547118Z", - "iopub.status.idle": "2024-07-09T06:13:28.999446Z", - "shell.execute_reply": "2024-07-09T06:13:28.998830Z" + "iopub.execute_input": "2024-07-09T06:28:38.267254Z", + "iopub.status.busy": "2024-07-09T06:28:38.266967Z", + "iopub.status.idle": "2024-07-09T06:28:43.570047Z", + "shell.execute_reply": "2024-07-09T06:28:43.569491Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.002183Z", - "iopub.status.busy": "2024-07-09T06:13:29.001812Z", - "iopub.status.idle": "2024-07-09T06:13:29.010474Z", - "shell.execute_reply": "2024-07-09T06:13:29.010043Z" + "iopub.execute_input": "2024-07-09T06:28:43.572470Z", + "iopub.status.busy": "2024-07-09T06:28:43.572094Z", + "iopub.status.idle": "2024-07-09T06:28:43.580386Z", + "shell.execute_reply": "2024-07-09T06:28:43.579870Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.012589Z", - "iopub.status.busy": "2024-07-09T06:13:29.012252Z", - "iopub.status.idle": "2024-07-09T06:13:29.076214Z", - "shell.execute_reply": "2024-07-09T06:13:29.075749Z" + "iopub.execute_input": "2024-07-09T06:28:43.582347Z", + "iopub.status.busy": "2024-07-09T06:28:43.582046Z", + "iopub.status.idle": "2024-07-09T06:28:43.650473Z", + "shell.execute_reply": "2024-07-09T06:28:43.649884Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 35fcbdb46..ae5ebc560 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:32.263903Z", - "iopub.status.busy": "2024-07-09T06:13:32.263444Z", - "iopub.status.idle": "2024-07-09T06:13:33.822952Z", - "shell.execute_reply": "2024-07-09T06:13:33.822301Z" + "iopub.execute_input": "2024-07-09T06:28:46.574289Z", + "iopub.status.busy": "2024-07-09T06:28:46.574108Z", + "iopub.status.idle": "2024-07-09T06:28:48.491596Z", + "shell.execute_reply": "2024-07-09T06:28:48.490918Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:33.825573Z", - "iopub.status.busy": "2024-07-09T06:13:33.825207Z", - "iopub.status.idle": "2024-07-09T06:14:27.650668Z", - "shell.execute_reply": "2024-07-09T06:14:27.649954Z" + "iopub.execute_input": "2024-07-09T06:28:48.494276Z", + "iopub.status.busy": "2024-07-09T06:28:48.493843Z", + "iopub.status.idle": "2024-07-09T06:29:39.569009Z", + "shell.execute_reply": "2024-07-09T06:29:39.568435Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:27.653222Z", - "iopub.status.busy": "2024-07-09T06:14:27.653011Z", - "iopub.status.idle": "2024-07-09T06:14:28.771581Z", - "shell.execute_reply": "2024-07-09T06:14:28.771057Z" + "iopub.execute_input": "2024-07-09T06:29:39.571515Z", + "iopub.status.busy": "2024-07-09T06:29:39.571138Z", + "iopub.status.idle": "2024-07-09T06:29:40.663339Z", + "shell.execute_reply": "2024-07-09T06:29:40.662734Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.774053Z", - "iopub.status.busy": "2024-07-09T06:14:28.773695Z", - "iopub.status.idle": "2024-07-09T06:14:28.776783Z", - "shell.execute_reply": "2024-07-09T06:14:28.776354Z" + "iopub.execute_input": "2024-07-09T06:29:40.665937Z", + "iopub.status.busy": "2024-07-09T06:29:40.665611Z", + "iopub.status.idle": "2024-07-09T06:29:40.669025Z", + "shell.execute_reply": "2024-07-09T06:29:40.668588Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.778806Z", - "iopub.status.busy": "2024-07-09T06:14:28.778477Z", - "iopub.status.idle": "2024-07-09T06:14:28.782186Z", - "shell.execute_reply": "2024-07-09T06:14:28.781759Z" + "iopub.execute_input": "2024-07-09T06:29:40.671153Z", + "iopub.status.busy": "2024-07-09T06:29:40.670839Z", + "iopub.status.idle": "2024-07-09T06:29:40.674594Z", + "shell.execute_reply": "2024-07-09T06:29:40.674175Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.784027Z", - "iopub.status.busy": "2024-07-09T06:14:28.783855Z", - "iopub.status.idle": "2024-07-09T06:14:28.787452Z", - "shell.execute_reply": "2024-07-09T06:14:28.786991Z" + "iopub.execute_input": "2024-07-09T06:29:40.676662Z", + "iopub.status.busy": "2024-07-09T06:29:40.676404Z", + "iopub.status.idle": "2024-07-09T06:29:40.679978Z", + "shell.execute_reply": "2024-07-09T06:29:40.679552Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.789360Z", - "iopub.status.busy": "2024-07-09T06:14:28.789019Z", - "iopub.status.idle": "2024-07-09T06:14:28.791733Z", - "shell.execute_reply": "2024-07-09T06:14:28.791313Z" + "iopub.execute_input": "2024-07-09T06:29:40.681969Z", + "iopub.status.busy": "2024-07-09T06:29:40.681683Z", + "iopub.status.idle": "2024-07-09T06:29:40.684443Z", + "shell.execute_reply": "2024-07-09T06:29:40.684006Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.793686Z", - "iopub.status.busy": "2024-07-09T06:14:28.793292Z", - "iopub.status.idle": "2024-07-09T06:15:02.604368Z", - "shell.execute_reply": "2024-07-09T06:15:02.603753Z" + "iopub.execute_input": "2024-07-09T06:29:40.686418Z", + "iopub.status.busy": "2024-07-09T06:29:40.686015Z", + "iopub.status.idle": "2024-07-09T06:30:13.548442Z", + "shell.execute_reply": "2024-07-09T06:30:13.547829Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fa6ffbf69764ada9bcdda240d9f5c3f", + "model_id": "6cc3388bab2643c8b90c9272aea123fd", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f569c0971e0640b980797b7457fa4061", + "model_id": "c10054699f0e464a82009f0a5e0c578c", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:02.606910Z", - "iopub.status.busy": "2024-07-09T06:15:02.606698Z", - "iopub.status.idle": "2024-07-09T06:15:03.279409Z", - "shell.execute_reply": "2024-07-09T06:15:03.278841Z" + "iopub.execute_input": "2024-07-09T06:30:13.551052Z", + "iopub.status.busy": "2024-07-09T06:30:13.550744Z", + "iopub.status.idle": "2024-07-09T06:30:14.218934Z", + "shell.execute_reply": "2024-07-09T06:30:14.218385Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:03.282056Z", - "iopub.status.busy": "2024-07-09T06:15:03.281412Z", - "iopub.status.idle": "2024-07-09T06:15:06.180396Z", - "shell.execute_reply": "2024-07-09T06:15:06.179922Z" + "iopub.execute_input": "2024-07-09T06:30:14.221301Z", + "iopub.status.busy": "2024-07-09T06:30:14.220857Z", + "iopub.status.idle": "2024-07-09T06:30:17.059729Z", + "shell.execute_reply": "2024-07-09T06:30:17.059140Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:06.182583Z", - "iopub.status.busy": "2024-07-09T06:15:06.182401Z", - "iopub.status.idle": "2024-07-09T06:15:38.554360Z", - "shell.execute_reply": "2024-07-09T06:15:38.553782Z" + "iopub.execute_input": "2024-07-09T06:30:17.061913Z", + "iopub.status.busy": "2024-07-09T06:30:17.061694Z", + "iopub.status.idle": "2024-07-09T06:30:49.094226Z", + "shell.execute_reply": "2024-07-09T06:30:49.093651Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf5249d5bbbf4d75b55c111b8b11a61a", + "model_id": "7019068b213142edb33e86d2e73ee210", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:38.556564Z", - "iopub.status.busy": "2024-07-09T06:15:38.556234Z", - "iopub.status.idle": "2024-07-09T06:15:53.166671Z", - "shell.execute_reply": "2024-07-09T06:15:53.166045Z" + "iopub.execute_input": "2024-07-09T06:30:49.096361Z", + "iopub.status.busy": "2024-07-09T06:30:49.096022Z", + "iopub.status.idle": "2024-07-09T06:31:03.308031Z", + "shell.execute_reply": "2024-07-09T06:31:03.307471Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:53.169302Z", - "iopub.status.busy": "2024-07-09T06:15:53.168958Z", - "iopub.status.idle": "2024-07-09T06:15:56.853260Z", - "shell.execute_reply": "2024-07-09T06:15:56.852720Z" + "iopub.execute_input": "2024-07-09T06:31:03.310669Z", + "iopub.status.busy": "2024-07-09T06:31:03.310203Z", + "iopub.status.idle": "2024-07-09T06:31:07.123611Z", + "shell.execute_reply": "2024-07-09T06:31:07.123110Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:56.855531Z", - "iopub.status.busy": "2024-07-09T06:15:56.855184Z", - "iopub.status.idle": "2024-07-09T06:15:58.250274Z", - "shell.execute_reply": "2024-07-09T06:15:58.249712Z" + "iopub.execute_input": "2024-07-09T06:31:07.125567Z", + "iopub.status.busy": "2024-07-09T06:31:07.125390Z", + "iopub.status.idle": "2024-07-09T06:31:08.517470Z", + "shell.execute_reply": "2024-07-09T06:31:08.516908Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c948217428084bd496b3f2a49594566f", + "model_id": "fd89a714f4bd4881ac3bcdde2e818698", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.252845Z", - "iopub.status.busy": "2024-07-09T06:15:58.252506Z", - "iopub.status.idle": "2024-07-09T06:15:58.281395Z", - "shell.execute_reply": "2024-07-09T06:15:58.280832Z" + "iopub.execute_input": "2024-07-09T06:31:08.519948Z", + "iopub.status.busy": "2024-07-09T06:31:08.519605Z", + "iopub.status.idle": "2024-07-09T06:31:08.546961Z", + "shell.execute_reply": "2024-07-09T06:31:08.546404Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.284015Z", - "iopub.status.busy": "2024-07-09T06:15:58.283595Z", - "iopub.status.idle": "2024-07-09T06:16:04.233068Z", - "shell.execute_reply": "2024-07-09T06:16:04.232567Z" + "iopub.execute_input": "2024-07-09T06:31:08.549370Z", + "iopub.status.busy": "2024-07-09T06:31:08.549025Z", + "iopub.status.idle": "2024-07-09T06:31:14.598098Z", + "shell.execute_reply": "2024-07-09T06:31:14.597530Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:04.235360Z", - "iopub.status.busy": "2024-07-09T06:16:04.234853Z", - "iopub.status.idle": "2024-07-09T06:16:04.290105Z", - "shell.execute_reply": "2024-07-09T06:16:04.289560Z" + "iopub.execute_input": "2024-07-09T06:31:14.600337Z", + "iopub.status.busy": "2024-07-09T06:31:14.600147Z", + "iopub.status.idle": "2024-07-09T06:31:14.656339Z", + "shell.execute_reply": "2024-07-09T06:31:14.655805Z" }, "nbsphinx": "hidden" }, @@ -1038,31 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1fa6ffbf69764ada9bcdda240d9f5c3f": { + "02d9a746ed0046739aa78a6ce0085ff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493c9eefef1b48dab54e40072abd5f34", - "IPY_MODEL_cfd0057aa0524fdabff5f5ef309b8944", - "IPY_MODEL_de3dc131ede549fc9a4eab8ed54190fa" - ], - "layout": "IPY_MODEL_3e770c86a7ed47528817561e0996c8f8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", + "placeholder": "​", + "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 30/30 [00:20<00:00,  1.44it/s]" } }, - "25c74ae19d60408e99632f175a792eaa": { + "0b2d6256d1c542d285214e15fc92fe65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,43 +1114,7 @@ "width": null } }, - "2616637ba3464f08933830c12d469b83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "27c16fceefe04f7ea1c6208a3b02d91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31c0461c7cc145fba8fc1a686d641734": { + "0c20fddef0b54b239fafa2cc41c63236": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1204,25 +1167,7 @@ "width": null } }, - "3dd8300efe074538b752b933fe4dccd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3e770c86a7ed47528817561e0996c8f8": { + "0dd5218cedde49baa055e8096ed30926": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1275,7 +1220,69 @@ "width": null } }, - "3feb2ecf671242cfa780179115940fac": { + "14896ca89fcc44339c2b6527f1f9f9dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "176760f869904a7fa39445bdd88719b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d504401538154719844d7826ee272589", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "228b0d40b0924b7a97e4d0957e103746": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "22fe02c2e99045d8821cfc15a94e4936": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1328,53 +1335,7 @@ "width": null } }, - "493c9eefef1b48dab54e40072abd5f34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3feb2ecf671242cfa780179115940fac", - "placeholder": "​", - "style": "IPY_MODEL_54ca08a32df543b592283e0378c9fcfe", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "4c9d0984d39a4f0e881a09e0550d87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fdf393fca40427f8a2bd92d317d3dae", - "placeholder": "​", - "style": "IPY_MODEL_85a0fa984b144cfa898831e10209e74d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "4ccbc45f2aeb4c9c85627198b276be79": { + "279d7517839d43c89b15e2c5c84c7be9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1427,7 +1388,7 @@ "width": null } }, - "4e9c5d98329c476daf5bb5ab626f75ea": { + "2abe5ecefb664d2bafb6bfe15ea93d0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1480,7 +1441,7 @@ "width": null } }, - "51e9e889a46e4f308aff8141e478e0b2": { + "32a85d515d9e4eaba06dcc77490cad82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1498,23 +1459,7 @@ "text_color": null } }, - "542ef1339f3c4f27a392d3e6f794359f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "54ca08a32df543b592283e0378c9fcfe": { + "3f51ef64ff6b45ebb8b941ba2ee62b5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1532,7 +1477,7 @@ "text_color": null } }, - "573a0e4f1aa3447bbec12012eaef0dc3": { + "403d955a5e56429185a7d79c76b3f942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1547,15 +1492,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aacd42748d294de29a7979f5b0d21f14", + "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", "placeholder": "​", - "style": "IPY_MODEL_8e68f9ece6dd446bbcea41ee789d666e", + "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 810.84it/s]" } }, - "58a5fd3630694826904227c50dce4a58": { + "44a6a6e2aca946a1a5360a07e3b508d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,7 +1553,7 @@ "width": null } }, - "606739628a3c43e188dfb8e4ab4161c1": { + "5330888ec41a4abab567527c6e1ffd41": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1606,25 @@ "width": null } }, - "6483135474b1449087c991fb32524a5d": { + "57f13be2c99544fb9cc14d43a41b2771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5b9e311328344481b090157819e78c90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1677,7 +1640,7 @@ "description_width": "" } }, - "7da8b6c3ea2a4772a5fe093e05addc72": { + "6483735a58b043b6b18bce9fcea7af01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1693,70 +1656,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d509507d60244ddcba41140131d9be1f", - "max": 4997683.0, + "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fd786bb433b84b77bb5a3892748ee7a8", + "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", "tabbable": null, "tooltip": null, - "value": 4997683.0 - } - }, - "7fdf393fca40427f8a2bd92d317d3dae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 30.0 } }, - "85a0fa984b144cfa898831e10209e74d": { + "6584bb27a7154628a8d459aca88dc035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1774,94 +1684,101 @@ "text_color": null } }, - "8aad8f225cf6422eb201fc5ce1fc9f8e": { - "model_module": "@jupyter-widgets/base", + "6cc3388bab2643c8b90c9272aea123fd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", + "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", + "IPY_MODEL_403d955a5e56429185a7d79c76b3f942" + ], + "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", + "tabbable": null, + "tooltip": null } }, - "8e68f9ece6dd446bbcea41ee789d666e": { + "7019068b213142edb33e86d2e73ee210": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", + "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", + "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108" + ], + "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", + "tabbable": null, + "tooltip": null } }, - "a211fbc91ad7428f88de83462ce179b1": { + "7b951463c2014d63996109b04919b6f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", + "placeholder": "​", + "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.76it/s]" + } + }, + "7f68c4f29617499499ee2c05c5a6a108": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", + "placeholder": "​", + "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 157127.94it/s]" } }, - "a28f14e157a54c3bb2ba09f5232ee9c6": { + "83e9f786fc2e45a789ee9639166df7d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1914,33 +1831,7 @@ "width": null } }, - "a8b97972238e423b884d9df90c31735c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25c74ae19d60408e99632f175a792eaa", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6483135474b1449087c991fb32524a5d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "aacd42748d294de29a7979f5b0d21f14": { + "855c64f84945411a9db3c53deb7492c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1993,30 +1884,7 @@ "width": null } }, - "b49ea13e3a12486a97be815b76759ed6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e0fbe3dac5a0495f8995783e2dd80711", - "placeholder": "​", - "style": "IPY_MODEL_27c16fceefe04f7ea1c6208a3b02d91a", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155973.49it/s]" - } - }, - "b931d7f32e6b41668d503c6a2ff41333": { + "95f6f8f5058e4a999e52cf9ee97471a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2069,7 +1937,7 @@ "width": null } }, - "beaa3af60b7746888d20c45dbdce9842": { + "97c988acb93f44548e72b7e6785373ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2122,73 +1990,49 @@ "width": null } }, - "bf5249d5bbbf4d75b55c111b8b11a61a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_573a0e4f1aa3447bbec12012eaef0dc3", - "IPY_MODEL_7da8b6c3ea2a4772a5fe093e05addc72", - "IPY_MODEL_b49ea13e3a12486a97be815b76759ed6" - ], - "layout": "IPY_MODEL_58a5fd3630694826904227c50dce4a58", - "tabbable": null, - "tooltip": null - } - }, - "c5ef52d1a9d646df84e1139d4d1089db": { + "9af440153d4e4cdf94b2cf7fabd36183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c948217428084bd496b3f2a49594566f": { + "a35e0222d4f14c66bf3c3a5aa2572142": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d07a9489d84e4b4880dfa0c9d8716d8c", - "IPY_MODEL_a8b97972238e423b884d9df90c31735c", - "IPY_MODEL_e6bc426565cb49ba80b9007e05438975" - ], - "layout": "IPY_MODEL_606739628a3c43e188dfb8e4ab4161c1", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "cfd0057aa0524fdabff5f5ef309b8944": { + "ae57c0974e774c6890338ba8b17d0191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2204,17 +2048,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31c0461c7cc145fba8fc1a686d641734", - "max": 30.0, + "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_542ef1339f3c4f27a392d3e6f794359f", + "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "d07a9489d84e4b4880dfa0c9d8716d8c": { + "b6e063e50c2b4445910ce5e867fbd918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2229,15 +2073,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_beaa3af60b7746888d20c45dbdce9842", + "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", "placeholder": "​", - "style": "IPY_MODEL_51e9e889a46e4f308aff8141e478e0b2", + "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": "number of examples processed for checking labels: 100%" + } + }, + "c10054699f0e464a82009f0a5e0c578c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", + "IPY_MODEL_176760f869904a7fa39445bdd88719b2", + "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9" + ], + "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", + "tabbable": null, + "tooltip": null } }, - "d509507d60244ddcba41140131d9be1f": { + "c498db02e0b04391a5861cb923082075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2290,30 +2158,131 @@ "width": null } }, - "d67f58d8b5b14e59b0b843789281945d": { + "c9163ef783e742f3acc05346e5afcb64": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce1dd22f0d6b4012a51c48ad29dcaa8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce3e640376574f9e8d585bcb85603e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b931d7f32e6b41668d503c6a2ff41333", - "placeholder": "​", - "style": "IPY_MODEL_2616637ba3464f08933830c12d469b83", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "de3dc131ede549fc9a4eab8ed54190fa": { + "cf3b18d1306748afa8e938ecd97912de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2328,15 +2297,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ccbc45f2aeb4c9c85627198b276be79", + "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", "placeholder": "​", - "style": "IPY_MODEL_c5ef52d1a9d646df84e1139d4d1089db", + "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 819.82it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e0fbe3dac5a0495f8995783e2dd80711": { + "d1f1c3debd3a4626adf70f52c88e15f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2389,7 +2358,23 @@ "width": null } }, - "e6bc426565cb49ba80b9007e05438975": { + "d504401538154719844d7826ee272589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d8a1c7ffaa334c438eb48081a604d215": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2404,41 +2389,72 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e9c5d98329c476daf5bb5ab626f75ea", + "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", "placeholder": "​", - "style": "IPY_MODEL_3dd8300efe074538b752b933fe4dccd5", + "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.71it/s]" + "value": "100%" } }, - "f0e42a3ba88a4b12846e1d20b351a59e": { + "db6c02d349084e498c97e2e6ed714f28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2897f5daefd4d14a83b5100fa9e108f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fade87555302435dbdddd0ecd183f382": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8aad8f225cf6422eb201fc5ce1fc9f8e", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a211fbc91ad7428f88de83462ce179b1", + "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", + "placeholder": "​", + "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "f569c0971e0640b980797b7457fa4061": { + "fd89a714f4bd4881ac3bcdde2e818698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2453,30 +2469,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4c9d0984d39a4f0e881a09e0550d87b4", - "IPY_MODEL_f0e42a3ba88a4b12846e1d20b351a59e", - "IPY_MODEL_d67f58d8b5b14e59b0b843789281945d" + "IPY_MODEL_fade87555302435dbdddd0ecd183f382", + "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", + "IPY_MODEL_7b951463c2014d63996109b04919b6f0" ], - "layout": "IPY_MODEL_a28f14e157a54c3bb2ba09f5232ee9c6", + "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", "tabbable": null, "tooltip": null } - }, - "fd786bb433b84b77bb5a3892748ee7a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index ad51fe8e1..f95fb9e96 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:06.596442Z", - "iopub.status.busy": "2024-07-09T06:16:06.596270Z", - "iopub.status.idle": "2024-07-09T06:16:07.602980Z", - "shell.execute_reply": "2024-07-09T06:16:07.602333Z" + "iopub.execute_input": "2024-07-09T06:31:16.799869Z", + "iopub.status.busy": "2024-07-09T06:31:16.799691Z", + "iopub.status.idle": "2024-07-09T06:31:17.988936Z", + "shell.execute_reply": "2024-07-09T06:31:17.988319Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:06-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-09 06:31:16-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,7 +94,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.97, 2400:52e0:1a00::941:1\r\n", + "169.150.236.97, 2400:52e0:1a00::1029:1\r\n", "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " ] }, @@ -123,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.04MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.22MB/s in 0.2s \r\n", "\r\n", - "2024-07-09 06:16:06 (5.04 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-09 06:31:17 (5.22 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:07-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.224.233, 3.5.25.180, 52.216.58.97, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.224.233|:443... connected.\r\n", + "--2024-07-09 06:31:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.171.25, 54.231.130.41, 52.216.52.217, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.171.25|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -170,7 +170,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", "\r\n", - "2024-07-09 06:16:07 (174 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-09 06:31:17 (179 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:07.605304Z", - "iopub.status.busy": "2024-07-09T06:16:07.605103Z", - "iopub.status.idle": "2024-07-09T06:16:08.819007Z", - "shell.execute_reply": "2024-07-09T06:16:08.818469Z" + "iopub.execute_input": "2024-07-09T06:31:17.991436Z", + "iopub.status.busy": "2024-07-09T06:31:17.991070Z", + "iopub.status.idle": "2024-07-09T06:31:19.289852Z", + "shell.execute_reply": "2024-07-09T06:31:19.289351Z" }, "nbsphinx": "hidden" }, @@ -201,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.821606Z", - "iopub.status.busy": "2024-07-09T06:16:08.821202Z", - "iopub.status.idle": "2024-07-09T06:16:08.824585Z", - "shell.execute_reply": "2024-07-09T06:16:08.824057Z" + "iopub.execute_input": "2024-07-09T06:31:19.292366Z", + "iopub.status.busy": "2024-07-09T06:31:19.291931Z", + "iopub.status.idle": "2024-07-09T06:31:19.295209Z", + "shell.execute_reply": "2024-07-09T06:31:19.294745Z" } }, "outputs": [], @@ -280,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.826607Z", - "iopub.status.busy": "2024-07-09T06:16:08.826214Z", - "iopub.status.idle": "2024-07-09T06:16:08.829147Z", - "shell.execute_reply": "2024-07-09T06:16:08.828713Z" + "iopub.execute_input": "2024-07-09T06:31:19.297359Z", + "iopub.status.busy": "2024-07-09T06:31:19.297049Z", + "iopub.status.idle": "2024-07-09T06:31:19.300013Z", + "shell.execute_reply": "2024-07-09T06:31:19.299557Z" }, "nbsphinx": "hidden" }, @@ -301,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.831190Z", - "iopub.status.busy": "2024-07-09T06:16:08.830751Z", - "iopub.status.idle": "2024-07-09T06:16:17.805664Z", - "shell.execute_reply": "2024-07-09T06:16:17.805113Z" + "iopub.execute_input": "2024-07-09T06:31:19.302022Z", + "iopub.status.busy": "2024-07-09T06:31:19.301697Z", + "iopub.status.idle": "2024-07-09T06:31:28.335757Z", + "shell.execute_reply": "2024-07-09T06:31:28.335203Z" } }, "outputs": [], @@ -378,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.808345Z", - "iopub.status.busy": "2024-07-09T06:16:17.807911Z", - "iopub.status.idle": "2024-07-09T06:16:17.813277Z", - "shell.execute_reply": "2024-07-09T06:16:17.812858Z" + "iopub.execute_input": "2024-07-09T06:31:28.338200Z", + "iopub.status.busy": "2024-07-09T06:31:28.337845Z", + "iopub.status.idle": "2024-07-09T06:31:28.343280Z", + "shell.execute_reply": "2024-07-09T06:31:28.342837Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.815382Z", - "iopub.status.busy": "2024-07-09T06:16:17.814963Z", - "iopub.status.idle": "2024-07-09T06:16:18.150000Z", - "shell.execute_reply": "2024-07-09T06:16:18.149429Z" + "iopub.execute_input": "2024-07-09T06:31:28.345254Z", + "iopub.status.busy": "2024-07-09T06:31:28.344923Z", + "iopub.status.idle": "2024-07-09T06:31:28.685882Z", + "shell.execute_reply": "2024-07-09T06:31:28.685329Z" } }, "outputs": [], @@ -461,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.152493Z", - "iopub.status.busy": "2024-07-09T06:16:18.152061Z", - "iopub.status.idle": "2024-07-09T06:16:18.156514Z", - "shell.execute_reply": "2024-07-09T06:16:18.155980Z" + "iopub.execute_input": "2024-07-09T06:31:28.688450Z", + "iopub.status.busy": "2024-07-09T06:31:28.688108Z", + "iopub.status.idle": "2024-07-09T06:31:28.692422Z", + "shell.execute_reply": "2024-07-09T06:31:28.691913Z" } }, "outputs": [ @@ -536,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.158568Z", - "iopub.status.busy": "2024-07-09T06:16:18.158265Z", - "iopub.status.idle": "2024-07-09T06:16:20.671476Z", - "shell.execute_reply": "2024-07-09T06:16:20.670677Z" + "iopub.execute_input": "2024-07-09T06:31:28.694566Z", + "iopub.status.busy": "2024-07-09T06:31:28.694154Z", + "iopub.status.idle": "2024-07-09T06:31:31.218610Z", + "shell.execute_reply": "2024-07-09T06:31:31.217915Z" } }, "outputs": [], @@ -561,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.674624Z", - "iopub.status.busy": "2024-07-09T06:16:20.674042Z", - "iopub.status.idle": "2024-07-09T06:16:20.678383Z", - "shell.execute_reply": "2024-07-09T06:16:20.677819Z" + "iopub.execute_input": "2024-07-09T06:31:31.221635Z", + "iopub.status.busy": "2024-07-09T06:31:31.220890Z", + "iopub.status.idle": "2024-07-09T06:31:31.224904Z", + "shell.execute_reply": "2024-07-09T06:31:31.224377Z" } }, "outputs": [ @@ -600,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.680295Z", - "iopub.status.busy": "2024-07-09T06:16:20.680123Z", - "iopub.status.idle": "2024-07-09T06:16:20.685724Z", - "shell.execute_reply": "2024-07-09T06:16:20.685271Z" + "iopub.execute_input": "2024-07-09T06:31:31.226850Z", + "iopub.status.busy": "2024-07-09T06:31:31.226675Z", + "iopub.status.idle": "2024-07-09T06:31:31.232224Z", + "shell.execute_reply": "2024-07-09T06:31:31.231711Z" } }, "outputs": [ @@ -781,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.687532Z", - "iopub.status.busy": "2024-07-09T06:16:20.687366Z", - "iopub.status.idle": "2024-07-09T06:16:20.713548Z", - "shell.execute_reply": "2024-07-09T06:16:20.713113Z" + "iopub.execute_input": "2024-07-09T06:31:31.234195Z", + "iopub.status.busy": "2024-07-09T06:31:31.233868Z", + "iopub.status.idle": "2024-07-09T06:31:31.260501Z", + "shell.execute_reply": "2024-07-09T06:31:31.260037Z" } }, "outputs": [ @@ -886,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.715379Z", - "iopub.status.busy": "2024-07-09T06:16:20.715213Z", - "iopub.status.idle": "2024-07-09T06:16:20.719260Z", - "shell.execute_reply": "2024-07-09T06:16:20.718723Z" + "iopub.execute_input": "2024-07-09T06:31:31.262698Z", + "iopub.status.busy": "2024-07-09T06:31:31.262368Z", + "iopub.status.idle": "2024-07-09T06:31:31.266471Z", + "shell.execute_reply": "2024-07-09T06:31:31.265953Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.721189Z", - "iopub.status.busy": "2024-07-09T06:16:20.721015Z", - "iopub.status.idle": "2024-07-09T06:16:22.122879Z", - "shell.execute_reply": "2024-07-09T06:16:22.122387Z" + "iopub.execute_input": "2024-07-09T06:31:31.268473Z", + "iopub.status.busy": "2024-07-09T06:31:31.268157Z", + "iopub.status.idle": "2024-07-09T06:31:32.664554Z", + "shell.execute_reply": "2024-07-09T06:31:32.664039Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:22.124941Z", - "iopub.status.busy": "2024-07-09T06:16:22.124756Z", - "iopub.status.idle": "2024-07-09T06:16:22.128748Z", - "shell.execute_reply": "2024-07-09T06:16:22.128306Z" + "iopub.execute_input": "2024-07-09T06:31:32.666738Z", + "iopub.status.busy": "2024-07-09T06:31:32.666392Z", + "iopub.status.idle": "2024-07-09T06:31:32.670504Z", + "shell.execute_reply": "2024-07-09T06:31:32.670046Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 39a8006d6..446a917b6 100644 Binary files a/master/.doctrees/tutorials/clean_learning/index.doctree and b/master/.doctrees/tutorials/clean_learning/index.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index c8fa15559..d0b8a46a8 100644 Binary files a/master/.doctrees/tutorials/clean_learning/tabular.doctree and b/master/.doctrees/tutorials/clean_learning/tabular.doctree differ diff --git a/master/.doctrees/tutorials/clean_learning/text.doctree b/master/.doctrees/tutorials/clean_learning/text.doctree index c4b561b24..73668f570 100644 Binary files a/master/.doctrees/tutorials/clean_learning/text.doctree and b/master/.doctrees/tutorials/clean_learning/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index feb436053..37ee7fac6 100644 Binary files a/master/.doctrees/tutorials/datalab/audio.doctree and b/master/.doctrees/tutorials/datalab/audio.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index 5b5ce5d2a..95aa70fb1 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree and b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree differ diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 79c9337f8..929792ffc 100644 Binary files a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree and b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree differ diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index a1b17aecf..a03fc50a1 100644 Binary files a/master/.doctrees/tutorials/datalab/image.doctree and b/master/.doctrees/tutorials/datalab/image.doctree differ diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index f48c4879e..c97012d4a 100644 Binary files a/master/.doctrees/tutorials/datalab/index.doctree and b/master/.doctrees/tutorials/datalab/index.doctree differ diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index e7e64be99..28f8227a5 100644 Binary files a/master/.doctrees/tutorials/datalab/tabular.doctree and b/master/.doctrees/tutorials/datalab/tabular.doctree differ diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 8d70b36e8..92a3bcb73 100644 Binary files a/master/.doctrees/tutorials/datalab/text.doctree and b/master/.doctrees/tutorials/datalab/text.doctree differ diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index b95d5a25d..57cf4807f 100644 Binary files a/master/.doctrees/tutorials/datalab/workflows.doctree and b/master/.doctrees/tutorials/datalab/workflows.doctree differ diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index 8e9d81529..ccb44bd67 100644 Binary files a/master/.doctrees/tutorials/dataset_health.doctree and b/master/.doctrees/tutorials/dataset_health.doctree differ diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 5234aaf49..a2479d799 100644 Binary files a/master/.doctrees/tutorials/faq.doctree and b/master/.doctrees/tutorials/faq.doctree differ diff --git a/master/.doctrees/tutorials/improving_ml_performance.doctree b/master/.doctrees/tutorials/improving_ml_performance.doctree index b9f9102e9..0d7cba060 100644 Binary files a/master/.doctrees/tutorials/improving_ml_performance.doctree and b/master/.doctrees/tutorials/improving_ml_performance.doctree differ diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 6f44d1d18..e5cf9f95a 100644 Binary files a/master/.doctrees/tutorials/indepth_overview.doctree and b/master/.doctrees/tutorials/indepth_overview.doctree differ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 669a4eed2..0f911f20b 100644 Binary files a/master/.doctrees/tutorials/index.doctree and b/master/.doctrees/tutorials/index.doctree differ diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 03c8795cc..98ed264b0 100644 Binary files a/master/.doctrees/tutorials/multiannotator.doctree and b/master/.doctrees/tutorials/multiannotator.doctree differ diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index eec52b4cd..56da7a842 100644 Binary files a/master/.doctrees/tutorials/multilabel_classification.doctree and b/master/.doctrees/tutorials/multilabel_classification.doctree differ diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index e14416902..d7a6ab65b 100644 Binary files a/master/.doctrees/tutorials/object_detection.doctree and b/master/.doctrees/tutorials/object_detection.doctree differ diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 6dbd87250..8f41ee7b8 100644 Binary files a/master/.doctrees/tutorials/outliers.doctree and b/master/.doctrees/tutorials/outliers.doctree differ diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 516fd5081..e5db8463d 100644 Binary files a/master/.doctrees/tutorials/pred_probs_cross_val.doctree and b/master/.doctrees/tutorials/pred_probs_cross_val.doctree differ diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index 7672494f2..de97281fd 100644 Binary files a/master/.doctrees/tutorials/regression.doctree and b/master/.doctrees/tutorials/regression.doctree differ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 63c8a10a4..7152536e5 100644 Binary files a/master/.doctrees/tutorials/segmentation.doctree and b/master/.doctrees/tutorials/segmentation.doctree differ diff --git a/master/.doctrees/tutorials/token_classification.doctree b/master/.doctrees/tutorials/token_classification.doctree index b94efbe79..281c628ab 100644 Binary files a/master/.doctrees/tutorials/token_classification.doctree and b/master/.doctrees/tutorials/token_classification.doctree differ diff --git a/master/_modules/cleanlab/count.html b/master/_modules/cleanlab/count.html index 2590524b1..28c86b10a 100644 --- a/master/_modules/cleanlab/count.html +++ b/master/_modules/cleanlab/count.html @@ -1211,6 +1211,7 @@

Source code for cleanlab.count

     # size num_classes, with True if the example confidently belongs to that class and False if not.
     pred_probs_bool = pred_probs >= thresholds - 1e-6
     num_confident_bins = pred_probs_bool.sum(axis=1)
+    # The indices where this is false, are often outliers (not confident of any label)
     at_least_one_confident = num_confident_bins > 0
     more_than_one_confident = num_confident_bins > 1
     pred_probs_argmax = pred_probs.argmax(axis=1)
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb
index 8792ed47e..15c5dbe31 100644
--- a/master/_sources/tutorials/clean_learning/tabular.ipynb
+++ b/master/_sources/tutorials/clean_learning/tabular.ipynb
@@ -120,7 +120,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb
index b8d823a49..6537a391b 100644
--- a/master/_sources/tutorials/clean_learning/text.ipynb
+++ b/master/_sources/tutorials/clean_learning/text.ipynb
@@ -129,7 +129,7 @@
     "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"  # disable parallelism to avoid deadlocks with huggingface\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb
index 3f45e8bca..9d8c490e7 100644
--- a/master/_sources/tutorials/datalab/audio.ipynb
+++ b/master/_sources/tutorials/datalab/audio.ipynb
@@ -91,7 +91,7 @@
     "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index b83bf9406..353b90c7f 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index c9f8ccf3b..b6aa5b6be 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 90bd88e48..6c92a4647 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -80,7 +80,7 @@
     "dependencies = [\"cleanlab\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index bc0c99125..a8ff70845 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
     "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"  # disable parallelism to avoid deadlocks with huggingface\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index 056f3e1f7..cb9b315db 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -79,7 +79,7 @@
     "dependencies = [\"cleanlab\", \"requests\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb
index 60996f9ec..dcadf17c5 100644
--- a/master/_sources/tutorials/improving_ml_performance.ipynb
+++ b/master/_sources/tutorials/improving_ml_performance.ipynb
@@ -69,7 +69,7 @@
     "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index a0ed5b4bd..519a9fac7 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index 0f17cef80..7f887265c 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -95,7 +95,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index de30986bf..411006923 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -73,7 +73,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 842047cfe..f29a7bca5 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index a296b3a66..8bc9378d4 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
     "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index a52fa9f00..0b1327d70 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -110,7 +110,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index cccc312c7..ec451ac65 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index cb1b14626..ac75f390c 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/searchindex.js b/master/searchindex.js
index 8aaf8d063..a51677165 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 95, 96, 98, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 95, 96, 103, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 95, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 95, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 95, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 95, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 95, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 95, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 95, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 95, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91, 95], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 98], "show_all_issu": [5, 34, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103, 108], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 95, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 107], "bright": [10, 95, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 95, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 95, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": [37, 95], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91, 95], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42, 95], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 95, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 95, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": [61, 95], "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 95, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 95, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 95, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 104, 108], "04": [81, 93, 95, 103, 108], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 95, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": [86, 108], "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "change_pin": [87, 94], "supported_cards_and_curr": [87, 94], "card_about_to_expir": [87, 94], "getting_spare_card": [87, 94], "apple_pay_or_google_pai": [87, 94], "visa_or_mastercard": [87, 94], "lost_or_stolen_phon": [87, 94], "card_payment_fee_charg": [87, 94], "beneficiary_not_allow": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 95, 104], "gz": [88, 95, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 95, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 95, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 95, 104], "set_titl": [89, 90, 91, 95, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 103, 108], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": [91, 95], "60000": 91, "transformed_dataset": [91, 95], "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": [91, 95], "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "828": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 98], "643": 91, "493": 91, "060": 91, "772": 91, "330": [91, 98, 103], "505": 91, "618": 91, "476": [91, 98], "340": [91, 98], "851": 91, "328": [91, 103], "310": 91, "922": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 95, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": 91, "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": [93, 108], "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "alter": [95, 97, 98], "darken": 95, "blurry_scor": 95, "odd_aspect_ratio_scor": 95, "setup": 95, "cifar10": 95, "markdown": 95, "root": [95, 104], "selected_class": 95, "convert_to_png_imag": 95, "bytesio": [95, 96], "seek": 95, "max_num_imag": 95, "list_imag": 95, "list_label": 95, "num_imag": 95, "img": [95, 104, 106], "toronto": [95, 104], "edu": [95, 104], "kriz": [95, 104], "170498071": [95, 104], "77333951": 95, "88it": 95, "dataset_dict": 95, "from_dict": [95, 97], "apply_dark": 95, "transformed_list_imag": 95, "transformed_dataset_dict": 95, "plot_imag": [95, 104], "num_images_to_plot": 95, "num_col": 95, "hide": 95, "get_property_scor": 95, "_spurious_correl": 95, "get_specific_property_scor": 95, "property_scores_df": 95, "property_nam": 95, "standard_property_scor": 95, "transformed_property_scor": 95, "295": [95, 98, 103], "light_scor": 95, "415": 95, "325": 95, "odd_size_scor": 95, "grayscale_scor": 95, "015": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 104], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106, 108], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "196": [98, 99, 103], "224": [98, 103, 108], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "153": [98, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "199": [98, 103], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": [99, 108], "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "52539309": 104, "75it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "04mb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "kb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 95, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 95, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 95, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": [91, 95], "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "pass": 95, "relat": 95, "transform": 95, "imageenh": 95, "induc": 95, "properti": 95, "origin": [95, 98], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[95, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[95, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[95, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[95, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[95, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[95, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 95, 96, 98, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 95, 96, 103, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 95, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 95, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 95, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 95, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 95, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 95, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 95, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 95, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91, 95], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 98], "show_all_issu": [5, 34, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 95, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 107], "bright": [10, 95, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 95, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 95, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": [37, 95], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91, 95], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42, 95], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 95, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 95, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": [61, 95], "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 95, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 95, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 95, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 95, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "supported_cards_and_curr": [87, 94], "getting_spare_card": [87, 94], "lost_or_stolen_phon": [87, 94], "visa_or_mastercard": [87, 94], "change_pin": [87, 94], "card_about_to_expir": [87, 94], "beneficiary_not_allow": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_payment_fee_charg": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 95, 104], "gz": [88, 95, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 95, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 91, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 95, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 95, 104], "set_titl": [89, 90, 91, 95, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90, 108], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": [91, 95], "60000": 91, "transformed_dataset": [91, 95], "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": [91, 95], "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "752": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 98], "660": 91, "493": 91, "060": 91, "676": 91, "330": [91, 98, 103], "505": 91, "476": [91, 98], "340": [91, 98], "705": 91, "328": [91, 103], "310": 91, "374": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 95, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": 91, "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103, 108], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356959": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "alter": [95, 97, 98], "darken": 95, "blurry_scor": 95, "odd_aspect_ratio_scor": 95, "setup": 95, "cifar10": 95, "markdown": 95, "root": [95, 104], "selected_class": 95, "convert_to_png_imag": 95, "bytesio": [95, 96], "seek": 95, "max_num_imag": 95, "list_imag": 95, "list_label": 95, "num_imag": 95, "img": [95, 104, 106], "toronto": [95, 104], "edu": [95, 104], "kriz": [95, 104], "170498071": [95, 104], "95733745": 95, "71it": 95, "dataset_dict": 95, "from_dict": [95, 97], "apply_dark": 95, "transformed_list_imag": 95, "transformed_dataset_dict": 95, "plot_imag": [95, 104], "num_images_to_plot": 95, "num_col": 95, "hide": 95, "get_property_scor": 95, "_spurious_correl": 95, "get_specific_property_scor": 95, "property_scores_df": 95, "property_nam": 95, "standard_property_scor": 95, "transformed_property_scor": 95, "295": [95, 98, 103], "light_scor": 95, "415": 95, "325": 95, "odd_size_scor": 95, "grayscale_scor": 95, "015": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 104], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106, 108], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "196": [98, 99, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "153": [98, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "199": [98, 103], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": [102, 108], "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "99299872": 104, "36it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "1029": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "22mb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "kb": 108, "179": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 95, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 95, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 95, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": [91, 95], "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "pass": 95, "relat": 95, "transform": 95, "imageenh": 95, "induc": 95, "properti": 95, "origin": [95, 98], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[95, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[95, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[95, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[95, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[95, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[95, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb
index 54baa388e..26fc7a6f6 100644
--- a/master/tutorials/clean_learning/tabular.ipynb
+++ b/master/tutorials/clean_learning/tabular.ipynb
@@ -113,10 +113,10 @@
    "execution_count": 1,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:25.084315Z",
-     "iopub.status.busy": "2024-07-09T06:06:25.083964Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.267371Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.266737Z"
+     "iopub.execute_input": "2024-07-09T06:21:39.342775Z",
+     "iopub.status.busy": "2024-07-09T06:21:39.342610Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.557607Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.556995Z"
     },
     "nbsphinx": "hidden"
    },
@@ -126,7 +126,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -151,10 +151,10 @@
    "execution_count": 2,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.270038Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.269730Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.287304Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.286864Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.560493Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.560042Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.577948Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.577491Z"
     }
    },
    "outputs": [],
@@ -195,10 +195,10 @@
    "execution_count": 3,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.289513Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.289028Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.433358Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.432848Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.580339Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.579867Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.741573Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.741011Z"
     }
    },
    "outputs": [
@@ -305,10 +305,10 @@
    "execution_count": 4,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.462697Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.462329Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.465925Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.465401Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.772745Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.772251Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.776261Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.775690Z"
     }
    },
    "outputs": [],
@@ -329,10 +329,10 @@
    "execution_count": 5,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.467989Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.467659Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.475739Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.475315Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.778286Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.777978Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.786779Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.786361Z"
     }
    },
    "outputs": [],
@@ -384,10 +384,10 @@
    "execution_count": 6,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.477750Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.477428Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.480003Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.479567Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.789179Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.788741Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.791702Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.791239Z"
     }
    },
    "outputs": [],
@@ -409,10 +409,10 @@
    "execution_count": 7,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.481856Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.481562Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.996055Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.995448Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.793718Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.793392Z",
+     "iopub.status.idle": "2024-07-09T06:21:41.315603Z",
+     "shell.execute_reply": "2024-07-09T06:21:41.314985Z"
     }
    },
    "outputs": [],
@@ -446,10 +446,10 @@
    "execution_count": 8,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.998478Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.998289Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.809978Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.809418Z"
+     "iopub.execute_input": "2024-07-09T06:21:41.318231Z",
+     "iopub.status.busy": "2024-07-09T06:21:41.317889Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.227263Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.226653Z"
     }
    },
    "outputs": [
@@ -481,10 +481,10 @@
    "execution_count": 9,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.812571Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.812027Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.821730Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.821221Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.229927Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.229282Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.240181Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.239728Z"
     }
    },
    "outputs": [
@@ -605,10 +605,10 @@
    "execution_count": 10,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.823721Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.823421Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.827343Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.826871Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.242259Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.241975Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.246137Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.245712Z"
     }
    },
    "outputs": [],
@@ -633,10 +633,10 @@
    "execution_count": 11,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.829425Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.829036Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.836443Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.836000Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.248251Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.247934Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.255132Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.254674Z"
     }
    },
    "outputs": [],
@@ -658,10 +658,10 @@
    "execution_count": 12,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.838340Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.838075Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.949448Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.948981Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.257227Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.256904Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.368112Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.367612Z"
     }
    },
    "outputs": [
@@ -691,10 +691,10 @@
    "execution_count": 13,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.951565Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.951228Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.953982Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.953520Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.370406Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.370066Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.372782Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.372354Z"
     }
    },
    "outputs": [],
@@ -715,10 +715,10 @@
    "execution_count": 14,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.956108Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.955684Z",
-     "iopub.status.idle": "2024-07-09T06:06:30.896584Z",
-     "shell.execute_reply": "2024-07-09T06:06:30.895896Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.374828Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.374407Z",
+     "iopub.status.idle": "2024-07-09T06:21:45.339078Z",
+     "shell.execute_reply": "2024-07-09T06:21:45.338438Z"
     }
    },
    "outputs": [],
@@ -738,10 +738,10 @@
    "execution_count": 15,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:30.899682Z",
-     "iopub.status.busy": "2024-07-09T06:06:30.898894Z",
-     "iopub.status.idle": "2024-07-09T06:06:30.911329Z",
-     "shell.execute_reply": "2024-07-09T06:06:30.910707Z"
+     "iopub.execute_input": "2024-07-09T06:21:45.342064Z",
+     "iopub.status.busy": "2024-07-09T06:21:45.341327Z",
+     "iopub.status.idle": "2024-07-09T06:21:45.352590Z",
+     "shell.execute_reply": "2024-07-09T06:21:45.352125Z"
     }
    },
    "outputs": [
@@ -771,10 +771,10 @@
    "execution_count": 16,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:30.913543Z",
-     "iopub.status.busy": "2024-07-09T06:06:30.913182Z",
-     "iopub.status.idle": "2024-07-09T06:06:30.953207Z",
-     "shell.execute_reply": "2024-07-09T06:06:30.952600Z"
+     "iopub.execute_input": "2024-07-09T06:21:45.354672Z",
+     "iopub.status.busy": "2024-07-09T06:21:45.354342Z",
+     "iopub.status.idle": "2024-07-09T06:21:45.396625Z",
+     "shell.execute_reply": "2024-07-09T06:21:45.396172Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html
index b0265340e..480d4d2ea 100644
--- a/master/tutorials/clean_learning/text.html
+++ b/master/tutorials/clean_learning/text.html
@@ -817,7 +817,7 @@ 

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed'}
+Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}
 

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1213,7 +1213,7 @@

4. Train a more robust model from noisy labels -{"state": {"a16e8e1cc73e44bd8b38739fc3f7349e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6454eb33f0747e5941afecdf65c31ca": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d2f9ed6fa0ca4f829f4b4c9130690381": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a16e8e1cc73e44bd8b38739fc3f7349e", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a6454eb33f0747e5941afecdf65c31ca", "tabbable": null, "tooltip": null, "value": 391.0}}, "dfdd82544b204d99bf73fb297209e882": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3fcd103bcf444b3e9d7dacf02f7d0555": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1e04214439b34bb39bd577a6b905f385": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dfdd82544b204d99bf73fb297209e882", "placeholder": "\u200b", "style": "IPY_MODEL_3fcd103bcf444b3e9d7dacf02f7d0555", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "9269cd46d227497980a20e184df669bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "527ebdd433604e84a97c498e49952e49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53b3a3c50e68458897df10772c0c4950": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9269cd46d227497980a20e184df669bb", "placeholder": "\u200b", "style": "IPY_MODEL_527ebdd433604e84a97c498e49952e49", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200765.3kB/s]"}}, "90c4eaa9081242faa986d85fd429328c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26eb168f10234c1588ad18073bbb9d24": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1e04214439b34bb39bd577a6b905f385", "IPY_MODEL_d2f9ed6fa0ca4f829f4b4c9130690381", "IPY_MODEL_53b3a3c50e68458897df10772c0c4950"], "layout": "IPY_MODEL_90c4eaa9081242faa986d85fd429328c", "tabbable": null, "tooltip": null}}, "3694f2923a9e4c32bfb24bc1252e9b8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d3698bebaea44ee81bf48d55a3da73b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ac878a5347e5407d984a6450f0782ccf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3694f2923a9e4c32bfb24bc1252e9b8f", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1d3698bebaea44ee81bf48d55a3da73b", "tabbable": null, "tooltip": null, "value": 2211.0}}, "cb1cab0be90341f2a872bba3c4f5d6b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "687f08592bed4074bebe2f495d225c50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53877237a70b400cb0bdef2d1e4da5e0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cb1cab0be90341f2a872bba3c4f5d6b1", "placeholder": "\u200b", "style": "IPY_MODEL_687f08592bed4074bebe2f495d225c50", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "6ba2643509aa4ba28f45e6d56c26a610": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca1b57d86847492c9b297c02fc76cdb9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6f600754a26f42428a3619804a3b3dd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6ba2643509aa4ba28f45e6d56c26a610", "placeholder": "\u200b", "style": "IPY_MODEL_ca1b57d86847492c9b297c02fc76cdb9", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007387kB/s]"}}, "a2e4ed336ac942fb95366722a3fe131b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6908f28507f34ca293495da144a9ebf5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_53877237a70b400cb0bdef2d1e4da5e0", "IPY_MODEL_ac878a5347e5407d984a6450f0782ccf", "IPY_MODEL_6f600754a26f42428a3619804a3b3dd3"], "layout": "IPY_MODEL_a2e4ed336ac942fb95366722a3fe131b", "tabbable": null, "tooltip": null}}, "c65afacf969543d192a5d2494cc1c534": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37605bcf5bf54465b5b89a0177cdc60a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "adf9f85cadca4af3b40ebf03eba16fa7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c65afacf969543d192a5d2494cc1c534", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_37605bcf5bf54465b5b89a0177cdc60a", "tabbable": null, "tooltip": null, "value": 665.0}}, "ae30011dcb26468c8b0b6b82df3ca527": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8775a8c91f3c4a05904fd4855d8811cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "51bf1675356f432587b92cd14c7f82a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae30011dcb26468c8b0b6b82df3ca527", "placeholder": "\u200b", "style": "IPY_MODEL_8775a8c91f3c4a05904fd4855d8811cf", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "6fdb113b1df248a19d9acd305460659f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd8bce3acd8043d99418cf1e98c1ffd3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c5fb5a31e9f4d389fd58cc6bf03ee2d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fdb113b1df248a19d9acd305460659f", "placeholder": "\u200b", "style": "IPY_MODEL_cd8bce3acd8043d99418cf1e98c1ffd3", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007119kB/s]"}}, "d19a720fd38e43d9a44c01e6b604e36f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb390d327367437688e1b2f6a2dc8c9d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_51bf1675356f432587b92cd14c7f82a2", "IPY_MODEL_adf9f85cadca4af3b40ebf03eba16fa7", "IPY_MODEL_9c5fb5a31e9f4d389fd58cc6bf03ee2d"], "layout": "IPY_MODEL_d19a720fd38e43d9a44c01e6b604e36f", "tabbable": null, "tooltip": null}}, "cf623252efaa4cadbfbcc762f85bb14f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58d151e1dec841068bb3e5ea2a92bf8d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e0a1667bb19e41ffab1775d1cc89d2f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf623252efaa4cadbfbcc762f85bb14f", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_58d151e1dec841068bb3e5ea2a92bf8d", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "1c0d84c997084ec7a7b1982850af771f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2afee7ea53434f6d89d7c20a88feb305": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "72723446148c4e4eaf10d2bc9a5a7aa0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c0d84c997084ec7a7b1982850af771f", "placeholder": "\u200b", "style": "IPY_MODEL_2afee7ea53434f6d89d7c20a88feb305", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "1c33fb4949914270b7542061aa7f5869": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09202840b02144009b85bc9e81486cfe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "febb0cb6c81c4e63826fecf678c5cb82": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c33fb4949914270b7542061aa7f5869", "placeholder": "\u200b", "style": "IPY_MODEL_09202840b02144009b85bc9e81486cfe", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200733.7MB/s]"}}, "bfd0773475e040f3adaeb618a404adba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a73ef35dae948bfb3a13cced094eae0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_72723446148c4e4eaf10d2bc9a5a7aa0", "IPY_MODEL_e0a1667bb19e41ffab1775d1cc89d2f2", "IPY_MODEL_febb0cb6c81c4e63826fecf678c5cb82"], "layout": "IPY_MODEL_bfd0773475e040f3adaeb618a404adba", "tabbable": null, "tooltip": null}}, "f57ceb2a8d51416491d48e1b29e3dfcb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c886bf965cf47cd8dad183a9a7ea37e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fb47c5e63669405d8b0f658221868569": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f57ceb2a8d51416491d48e1b29e3dfcb", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1c886bf965cf47cd8dad183a9a7ea37e", "tabbable": null, "tooltip": null, "value": 466062.0}}, "ebda3f8c7f4441939a8f25ada957bda9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01bdf1dfe43a4d93b1d5a846d7215f58": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b60ae06c542046c18779ebad0e050786": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ebda3f8c7f4441939a8f25ada957bda9", "placeholder": "\u200b", "style": "IPY_MODEL_01bdf1dfe43a4d93b1d5a846d7215f58", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "b3f20f2c522c44e99afe7b665f90476a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63b95cc7b3804f828a5027882e9297fc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf508e03d2364ab487717da959fbc5f6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b3f20f2c522c44e99afe7b665f90476a", "placeholder": "\u200b", "style": "IPY_MODEL_63b95cc7b3804f828a5027882e9297fc", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200716.2MB/s]"}}, "ca23b68c35994190a9b183937f99bef0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70dd46a3067b49b0ab8a7a6d042f9eee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b60ae06c542046c18779ebad0e050786", "IPY_MODEL_fb47c5e63669405d8b0f658221868569", "IPY_MODEL_cf508e03d2364ab487717da959fbc5f6"], "layout": "IPY_MODEL_ca23b68c35994190a9b183937f99bef0", "tabbable": null, "tooltip": null}}, "f99a3294523546e88e70530fed3f99f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b78ee6ec02a04a198056f10b84c9c0f6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "971f3be7589f424fb59cf1afd44b5a01": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f99a3294523546e88e70530fed3f99f6", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b78ee6ec02a04a198056f10b84c9c0f6", "tabbable": null, "tooltip": null, "value": 48.0}}, "165f21fd1ca447ce9d79edfc85a1646e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "847b6e3d28fe47989ff071d37ae0a736": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e9ab3e84bf9c4f5e8e81eef5bd3fe849": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_165f21fd1ca447ce9d79edfc85a1646e", "placeholder": "\u200b", "style": "IPY_MODEL_847b6e3d28fe47989ff071d37ae0a736", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "e8e17c5187f94971b594066cb042052e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d73ca9d21de341c1b49acece38eb3a86": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cc704a8505d043a78e762cb092fbf583": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e8e17c5187f94971b594066cb042052e", "placeholder": "\u200b", "style": "IPY_MODEL_d73ca9d21de341c1b49acece38eb3a86", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.51kB/s]"}}, "813a3a0872a942708cd6a9346d4eafce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dbc5896906b4403e91373c6f95c7f8a3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e9ab3e84bf9c4f5e8e81eef5bd3fe849", "IPY_MODEL_971f3be7589f424fb59cf1afd44b5a01", "IPY_MODEL_cc704a8505d043a78e762cb092fbf583"], "layout": "IPY_MODEL_813a3a0872a942708cd6a9346d4eafce", "tabbable": null, "tooltip": null}}, "2b31d509f412422e8332fcaf6b6c2694": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d513be80490b4fb9a218bd185c374f60": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9b13d15c1ebf4bbab634d6a5ef436130": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b31d509f412422e8332fcaf6b6c2694", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d513be80490b4fb9a218bd185c374f60", "tabbable": null, "tooltip": null, "value": 231508.0}}, "54446d6d66ed40fcb39ca2dd0e52b91d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47ca90e12b40435b9fd8c5bfa1cc221d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f3a35ea4124b44ef9df6e0dae4a35972": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_54446d6d66ed40fcb39ca2dd0e52b91d", "placeholder": "\u200b", "style": "IPY_MODEL_47ca90e12b40435b9fd8c5bfa1cc221d", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "49d02ed65af34513bf68cff2532199bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee015b6a5dd54462901d4fb785310f8f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f98d6ded2c7945df810ca80e9bd7a4a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49d02ed65af34513bf68cff2532199bc", "placeholder": "\u200b", "style": "IPY_MODEL_ee015b6a5dd54462901d4fb785310f8f", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200736.5MB/s]"}}, "1a6c425339d741d0b672365a0a6a634f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0341643702b4f93b9c82872cc026fbf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f3a35ea4124b44ef9df6e0dae4a35972", "IPY_MODEL_9b13d15c1ebf4bbab634d6a5ef436130", "IPY_MODEL_f98d6ded2c7945df810ca80e9bd7a4a2"], "layout": "IPY_MODEL_1a6c425339d741d0b672365a0a6a634f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"411b3739073b43ef84da6df0cf4aba60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9d6ec450b2e48dcb5295b0addb03a08": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "123ee23c99d742a99e006c7f7848cb12": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", "tabbable": null, "tooltip": null, "value": 391.0}}, "f3d7b3156603425383cb4b2911ba3193": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94c15cadc74a4c81a5adb003090f1d31": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f5517afea1ad41e8ae488f9341fe54ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", "placeholder": "\u200b", "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f7269a835d6543bb94a6753b3052198e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ffdf87c7ec64036b49757ac96c5536d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a2a9d5d37de04498978de14e105cf28b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", "placeholder": "\u200b", "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200766.8kB/s]"}}, "f549e9ac8a50477798f2e9234e06003d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c040ce84f01d40379935c57a437135d2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b"], "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", "tabbable": null, "tooltip": null}}, "cd106c03eda44df88946464b5e303d19": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c78b67d28c6446baefef5e6235114af": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1cf39d974f3c4a31847e7e38d1e470ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", "tabbable": null, "tooltip": null, "value": 2211.0}}, "173164fe2c1547519e6c06d76b0453fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1551da70235541d895b9fec440352f36": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5d24981d5e842e399fcf3e5da26ef85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", "placeholder": "\u200b", "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "706af1e525724a4ea27ff6ae91e2d592": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52e25954ff904f37a41a6faf200c6f04": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02b94161e37b406ca4394b9eef1538df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", "placeholder": "\u200b", "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007411kB/s]"}}, "de3971382db3445da34fe599b2fd18c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7e479504bac453bb70c779f5c0f3525": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", "IPY_MODEL_02b94161e37b406ca4394b9eef1538df"], "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", "tabbable": null, "tooltip": null}}, "debf497c726c49c19699637de9ea5396": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cdde541facd4993a93cd8eb368b2d0e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6e292337346c488586bf3e2ac3a4a4d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", "tabbable": null, "tooltip": null, "value": 665.0}}, "d1d88dae8067491696275aca69858030": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a066253245154949a867510c4f4ca674": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0f39ccef0bc464cb68eed457c4b8878": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", "placeholder": "\u200b", "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "597d3b6693934a35be0907fceb4d0350": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "913da8393f324205890c3c685524e256": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6601ca50f2504f04b6cfe7a18c9b4b20": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", "placeholder": "\u200b", "style": "IPY_MODEL_913da8393f324205890c3c685524e256", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007126kB/s]"}}, "7410928828ea4cb785ed34533ad7a38b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e38763de16664cf4b837920d4bc2ace8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20"], "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", "tabbable": null, "tooltip": null}}, "de9073d79ed24b348d5dcbd2cda64aaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2bb10e84663246cb9e4f076f752038ee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f28aab9da31b46fb80c0504babe16527": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "7bc8ca2ed8c34db6b844e1f99c112f8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e46a040636f42ec8521fb06f931e645": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c17f319f7c23417c9a96df1d497a5396": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", "placeholder": "\u200b", "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "0a197c7bd153480582add67b25b8f2f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d60ecde8bd1144dea8b8174f951c1ac9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e914425948fb4ee4aeae1d90e350d558": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", "placeholder": "\u200b", "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007272MB/s]"}}, "50cf7dc92d4a4dd998c121b070e7c523": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d426400e6f5f4f559bce90df2411bfab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558"], "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", "tabbable": null, "tooltip": null}}, "d2bc83af02974b4997b26d27c8043218": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e72d09cf08e4ed7a0f0a490217d3b47": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f5d710bb5f824ac6a960165532df517a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", "tabbable": null, "tooltip": null, "value": 466062.0}}, "fbabc79ad62741eeb0adf64606e0278c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6f873e46ffd45dca333eca1e6c1e98b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "76546dbd183d4a7e9e641657709c45c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", "placeholder": "\u200b", "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "c512fd4195da47a7a6905726b34e5e3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d24b7d8cbfdc460e8b4363433bab3e91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a9dca54fcd34a26b3e76425f4cfc533": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", "placeholder": "\u200b", "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200713.6MB/s]"}}, "9a5e0536f69540db9b1730bd6d61ea81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "223652b12d77470d806f5f9b123b1cde": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533"], "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", "tabbable": null, "tooltip": null}}, "a5729edb12634053b4bf3c1bf046eded": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "099c115234a74616930a360edf785b2b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "93ebdc142e3847ae90d0ce31029d5577": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", "tabbable": null, "tooltip": null, "value": 48.0}}, "8f9ef7f1a1f74518887b8021028b126b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3be04749419a4f8eba9590fbe0ee90f1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "51455100d2844aaf843bf237faae621e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", "placeholder": "\u200b", "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "2e3f9444da9b4549808e0df67c27c05a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "934707dc065d4f9b89b50d33e0cbc3f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3dadb3df17ab4dcb82e012b2ce2d596f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", "placeholder": "\u200b", "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.77kB/s]"}}, "72719d99e16045d7bb4a1a75b55e01d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94487f86ff8a4e3fa1c870682ab05381": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_51455100d2844aaf843bf237faae621e", "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f"], "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", "tabbable": null, "tooltip": null}}, "f18185f7bfb34126ae47151814798ae9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3ae141956064ff593c8324cddc63a9e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "15a6d72a11a043799df4757893a899a0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", "tabbable": null, "tooltip": null, "value": 231508.0}}, "56328dda0453461194507f7896809a58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7069c4f7c30946f989dfcde6fa323b5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8db1c5c0aea469698bab78a92251cea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", "placeholder": "\u200b", "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "630457c365244ae1ab9ffcac69becf0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d9ed5fd9baa4685b3b1df7e90e11a1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2b6fe019e99740eb96bba95f2db47822": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", "placeholder": "\u200b", "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20079.45MB/s]"}}, "17285e4ef9524c7db1413a860ffd8f3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae2d10a9a0bd42468482e2cffacc15e6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", "IPY_MODEL_15a6d72a11a043799df4757893a899a0", "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822"], "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 49d0a3d6c..4b6fd48a4 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:35.079549Z", - "iopub.status.busy": "2024-07-09T06:06:35.079116Z", - "iopub.status.idle": "2024-07-09T06:06:38.019377Z", - "shell.execute_reply": "2024-07-09T06:06:38.018803Z" + "iopub.execute_input": "2024-07-09T06:21:49.240434Z", + "iopub.status.busy": "2024-07-09T06:21:49.240266Z", + "iopub.status.idle": "2024-07-09T06:21:52.341784Z", + "shell.execute_reply": "2024-07-09T06:21:52.341296Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.022045Z", - "iopub.status.busy": "2024-07-09T06:06:38.021617Z", - "iopub.status.idle": "2024-07-09T06:06:38.025035Z", - "shell.execute_reply": "2024-07-09T06:06:38.024496Z" + "iopub.execute_input": "2024-07-09T06:21:52.344435Z", + "iopub.status.busy": "2024-07-09T06:21:52.343997Z", + "iopub.status.idle": "2024-07-09T06:21:52.347958Z", + "shell.execute_reply": "2024-07-09T06:21:52.347446Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.027049Z", - "iopub.status.busy": "2024-07-09T06:06:38.026720Z", - "iopub.status.idle": "2024-07-09T06:06:38.029772Z", - "shell.execute_reply": "2024-07-09T06:06:38.029271Z" + "iopub.execute_input": "2024-07-09T06:21:52.350024Z", + "iopub.status.busy": "2024-07-09T06:21:52.349635Z", + "iopub.status.idle": "2024-07-09T06:21:52.352754Z", + "shell.execute_reply": "2024-07-09T06:21:52.352222Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.031757Z", - "iopub.status.busy": "2024-07-09T06:06:38.031434Z", - "iopub.status.idle": "2024-07-09T06:06:38.085093Z", - "shell.execute_reply": "2024-07-09T06:06:38.084605Z" + "iopub.execute_input": "2024-07-09T06:21:52.354801Z", + "iopub.status.busy": "2024-07-09T06:21:52.354380Z", + "iopub.status.idle": "2024-07-09T06:21:52.405560Z", + "shell.execute_reply": "2024-07-09T06:21:52.405035Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.087064Z", - "iopub.status.busy": "2024-07-09T06:06:38.086870Z", - "iopub.status.idle": "2024-07-09T06:06:38.090289Z", - "shell.execute_reply": "2024-07-09T06:06:38.089858Z" + "iopub.execute_input": "2024-07-09T06:21:52.407560Z", + "iopub.status.busy": "2024-07-09T06:21:52.407242Z", + "iopub.status.idle": "2024-07-09T06:21:52.410852Z", + "shell.execute_reply": "2024-07-09T06:21:52.410392Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.092235Z", - "iopub.status.busy": "2024-07-09T06:06:38.091917Z", - "iopub.status.idle": "2024-07-09T06:06:38.095330Z", - "shell.execute_reply": "2024-07-09T06:06:38.094771Z" + "iopub.execute_input": "2024-07-09T06:21:52.412798Z", + "iopub.status.busy": "2024-07-09T06:21:52.412490Z", + "iopub.status.idle": "2024-07-09T06:21:52.415836Z", + "shell.execute_reply": "2024-07-09T06:21:52.415299Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed'}\n" + "Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.097201Z", - "iopub.status.busy": "2024-07-09T06:06:38.097021Z", - "iopub.status.idle": "2024-07-09T06:06:38.100009Z", - "shell.execute_reply": "2024-07-09T06:06:38.099483Z" + "iopub.execute_input": "2024-07-09T06:21:52.417781Z", + "iopub.status.busy": "2024-07-09T06:21:52.417462Z", + "iopub.status.idle": "2024-07-09T06:21:52.420529Z", + "shell.execute_reply": "2024-07-09T06:21:52.420017Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.102116Z", - "iopub.status.busy": "2024-07-09T06:06:38.101794Z", - "iopub.status.idle": "2024-07-09T06:06:38.104967Z", - "shell.execute_reply": "2024-07-09T06:06:38.104527Z" + "iopub.execute_input": "2024-07-09T06:21:52.422617Z", + "iopub.status.busy": "2024-07-09T06:21:52.422214Z", + "iopub.status.idle": "2024-07-09T06:21:52.425416Z", + "shell.execute_reply": "2024-07-09T06:21:52.424998Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.106909Z", - "iopub.status.busy": "2024-07-09T06:06:38.106584Z", - "iopub.status.idle": "2024-07-09T06:06:43.730716Z", - "shell.execute_reply": "2024-07-09T06:06:43.730160Z" + "iopub.execute_input": "2024-07-09T06:21:52.427244Z", + "iopub.status.busy": "2024-07-09T06:21:52.427078Z", + "iopub.status.idle": "2024-07-09T06:21:56.745262Z", + "shell.execute_reply": "2024-07-09T06:21:56.744632Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "26eb168f10234c1588ad18073bbb9d24", + "model_id": "c040ce84f01d40379935c57a437135d2", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6908f28507f34ca293495da144a9ebf5", + "model_id": "c7e479504bac453bb70c779f5c0f3525", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb390d327367437688e1b2f6a2dc8c9d", + "model_id": "e38763de16664cf4b837920d4bc2ace8", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a73ef35dae948bfb3a13cced094eae0", + "model_id": "d426400e6f5f4f559bce90df2411bfab", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70dd46a3067b49b0ab8a7a6d042f9eee", + "model_id": "223652b12d77470d806f5f9b123b1cde", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dbc5896906b4403e91373c6f95c7f8a3", + "model_id": "94487f86ff8a4e3fa1c870682ab05381", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0341643702b4f93b9c82872cc026fbf", + "model_id": "ae2d10a9a0bd42468482e2cffacc15e6", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.733456Z", - "iopub.status.busy": "2024-07-09T06:06:43.733062Z", - "iopub.status.idle": "2024-07-09T06:06:43.736049Z", - "shell.execute_reply": "2024-07-09T06:06:43.735560Z" + "iopub.execute_input": "2024-07-09T06:21:56.747914Z", + "iopub.status.busy": "2024-07-09T06:21:56.747699Z", + "iopub.status.idle": "2024-07-09T06:21:56.750422Z", + "shell.execute_reply": "2024-07-09T06:21:56.749907Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.737924Z", - "iopub.status.busy": "2024-07-09T06:06:43.737747Z", - "iopub.status.idle": "2024-07-09T06:06:43.740304Z", - "shell.execute_reply": "2024-07-09T06:06:43.739878Z" + "iopub.execute_input": "2024-07-09T06:21:56.752430Z", + "iopub.status.busy": "2024-07-09T06:21:56.752042Z", + "iopub.status.idle": "2024-07-09T06:21:56.754593Z", + "shell.execute_reply": "2024-07-09T06:21:56.754165Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.742146Z", - "iopub.status.busy": "2024-07-09T06:06:43.741975Z", - "iopub.status.idle": "2024-07-09T06:06:46.363303Z", - "shell.execute_reply": "2024-07-09T06:06:46.362662Z" + "iopub.execute_input": "2024-07-09T06:21:56.756400Z", + "iopub.status.busy": "2024-07-09T06:21:56.756229Z", + "iopub.status.idle": "2024-07-09T06:21:59.390602Z", + "shell.execute_reply": "2024-07-09T06:21:59.389981Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.366416Z", - "iopub.status.busy": "2024-07-09T06:06:46.365598Z", - "iopub.status.idle": "2024-07-09T06:06:46.373329Z", - "shell.execute_reply": "2024-07-09T06:06:46.372785Z" + "iopub.execute_input": "2024-07-09T06:21:59.393398Z", + "iopub.status.busy": "2024-07-09T06:21:59.392860Z", + "iopub.status.idle": "2024-07-09T06:21:59.400402Z", + "shell.execute_reply": "2024-07-09T06:21:59.399893Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.375605Z", - "iopub.status.busy": "2024-07-09T06:06:46.375281Z", - "iopub.status.idle": "2024-07-09T06:06:46.379045Z", - "shell.execute_reply": "2024-07-09T06:06:46.378491Z" + "iopub.execute_input": "2024-07-09T06:21:59.402483Z", + "iopub.status.busy": "2024-07-09T06:21:59.402085Z", + "iopub.status.idle": "2024-07-09T06:21:59.406027Z", + "shell.execute_reply": "2024-07-09T06:21:59.405499Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.381102Z", - "iopub.status.busy": "2024-07-09T06:06:46.380806Z", - "iopub.status.idle": "2024-07-09T06:06:46.383982Z", - "shell.execute_reply": "2024-07-09T06:06:46.383448Z" + "iopub.execute_input": "2024-07-09T06:21:59.408118Z", + "iopub.status.busy": "2024-07-09T06:21:59.407818Z", + "iopub.status.idle": "2024-07-09T06:21:59.410977Z", + "shell.execute_reply": "2024-07-09T06:21:59.410424Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.385913Z", - "iopub.status.busy": "2024-07-09T06:06:46.385614Z", - "iopub.status.idle": "2024-07-09T06:06:46.388541Z", - "shell.execute_reply": "2024-07-09T06:06:46.388027Z" + "iopub.execute_input": "2024-07-09T06:21:59.413097Z", + "iopub.status.busy": "2024-07-09T06:21:59.412678Z", + "iopub.status.idle": "2024-07-09T06:21:59.415713Z", + "shell.execute_reply": "2024-07-09T06:21:59.415177Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.390536Z", - "iopub.status.busy": "2024-07-09T06:06:46.390129Z", - "iopub.status.idle": "2024-07-09T06:06:46.397248Z", - "shell.execute_reply": "2024-07-09T06:06:46.396712Z" + "iopub.execute_input": "2024-07-09T06:21:59.417737Z", + "iopub.status.busy": "2024-07-09T06:21:59.417358Z", + "iopub.status.idle": "2024-07-09T06:21:59.424003Z", + "shell.execute_reply": "2024-07-09T06:21:59.423469Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.399521Z", - "iopub.status.busy": "2024-07-09T06:06:46.399107Z", - "iopub.status.idle": "2024-07-09T06:06:46.622657Z", - "shell.execute_reply": "2024-07-09T06:06:46.622135Z" + "iopub.execute_input": "2024-07-09T06:21:59.425974Z", + "iopub.status.busy": "2024-07-09T06:21:59.425797Z", + "iopub.status.idle": "2024-07-09T06:21:59.673438Z", + "shell.execute_reply": "2024-07-09T06:21:59.672833Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.625021Z", - "iopub.status.busy": "2024-07-09T06:06:46.624624Z", - "iopub.status.idle": "2024-07-09T06:06:46.797852Z", - "shell.execute_reply": "2024-07-09T06:06:46.797313Z" + "iopub.execute_input": "2024-07-09T06:21:59.676761Z", + "iopub.status.busy": "2024-07-09T06:21:59.675669Z", + "iopub.status.idle": "2024-07-09T06:21:59.855719Z", + "shell.execute_reply": "2024-07-09T06:21:59.855182Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.801087Z", - "iopub.status.busy": "2024-07-09T06:06:46.800154Z", - "iopub.status.idle": "2024-07-09T06:06:46.805038Z", - "shell.execute_reply": "2024-07-09T06:06:46.804526Z" + "iopub.execute_input": "2024-07-09T06:21:59.859528Z", + "iopub.status.busy": "2024-07-09T06:21:59.858566Z", + "iopub.status.idle": "2024-07-09T06:21:59.863516Z", + "shell.execute_reply": "2024-07-09T06:21:59.863020Z" }, "nbsphinx": "hidden" }, @@ -1105,43 +1105,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01bdf1dfe43a4d93b1d5a846d7215f58": { + "02b94161e37b406ca4394b9eef1538df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", + "placeholder": "​", + "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 411kB/s]" } }, - "09202840b02144009b85bc9e81486cfe": { + "099c115234a74616930a360edf785b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "165f21fd1ca447ce9d79edfc85a1646e": { + "0a197c7bd153480582add67b25b8f2f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1194,7 +1197,95 @@ "width": null } }, - "1a6c425339d741d0b672365a0a6a634f": { + "0e46a040636f42ec8521fb06f931e645": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "123ee23c99d742a99e006c7f7848cb12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "1551da70235541d895b9fec440352f36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "15a6d72a11a043799df4757893a899a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "17285e4ef9524c7db1413a860ffd8f3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,7 +1338,7 @@ "width": null } }, - "1c0d84c997084ec7a7b1982850af771f": { + "173164fe2c1547519e6c06d76b0453fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1300,7 +1391,96 @@ "width": null } }, - "1c33fb4949914270b7542061aa7f5869": { + "1cf39d974f3c4a31847e7e38d1e470ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "223652b12d77470d806f5f9b123b1cde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", + "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", + "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533" + ], + "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", + "tabbable": null, + "tooltip": null + } + }, + "2b6fe019e99740eb96bba95f2db47822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", + "placeholder": "​", + "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 9.45MB/s]" + } + }, + "2bb10e84663246cb9e4f076f752038ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2e3f9444da9b4549808e0df67c27c05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1353,7 +1533,7 @@ "width": null } }, - "1c886bf965cf47cd8dad183a9a7ea37e": { + "2e72d09cf08e4ed7a0f0a490217d3b47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1369,23 +1549,25 @@ "description_width": "" } }, - "1d3698bebaea44ee81bf48d55a3da73b": { + "3be04749419a4f8eba9590fbe0ee90f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1e04214439b34bb39bd577a6b905f385": { + "3dadb3df17ab4dcb82e012b2ce2d596f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,57 +1582,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dfdd82544b204d99bf73fb297209e882", + "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", "placeholder": "​", - "style": "IPY_MODEL_3fcd103bcf444b3e9d7dacf02f7d0555", + "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "26eb168f10234c1588ad18073bbb9d24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e04214439b34bb39bd577a6b905f385", - "IPY_MODEL_d2f9ed6fa0ca4f829f4b4c9130690381", - "IPY_MODEL_53b3a3c50e68458897df10772c0c4950" - ], - "layout": "IPY_MODEL_90c4eaa9081242faa986d85fd429328c", - "tabbable": null, - "tooltip": null - } - }, - "2afee7ea53434f6d89d7c20a88feb305": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 48.0/48.0 [00:00<00:00, 8.77kB/s]" } }, - "2b31d509f412422e8332fcaf6b6c2694": { + "411b3739073b43ef84da6df0cf4aba60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,7 +1643,23 @@ "width": null } }, - "3694f2923a9e4c32bfb24bc1252e9b8f": { + "4c78b67d28c6446baefef5e6235114af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50cf7dc92d4a4dd998c121b070e7c523": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1556,23 +1712,30 @@ "width": null } }, - "37605bcf5bf54465b5b89a0177cdc60a": { + "51455100d2844aaf843bf237faae621e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", + "placeholder": "​", + "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "3fcd103bcf444b3e9d7dacf02f7d0555": { + "52e25954ff904f37a41a6faf200c6f04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1590,25 +1753,60 @@ "text_color": null } }, - "47ca90e12b40435b9fd8c5bfa1cc221d": { - "model_module": "@jupyter-widgets/controls", + "56328dda0453461194507f7896809a58": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49d02ed65af34513bf68cff2532199bc": { + "597d3b6693934a35be0907fceb4d0350": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1859,7 @@ "width": null } }, - "51bf1675356f432587b92cd14c7f82a2": { + "5a9dca54fcd34a26b3e76425f4cfc533": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1676,79 +1874,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae30011dcb26468c8b0b6b82df3ca527", + "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", "placeholder": "​", - "style": "IPY_MODEL_8775a8c91f3c4a05904fd4855d8811cf", + "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 13.6MB/s]" } }, - "527ebdd433604e84a97c498e49952e49": { + "5cdde541facd4993a93cd8eb368b2d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "53877237a70b400cb0bdef2d1e4da5e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb1cab0be90341f2a872bba3c4f5d6b1", - "placeholder": "​", - "style": "IPY_MODEL_687f08592bed4074bebe2f495d225c50", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "53b3a3c50e68458897df10772c0c4950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9269cd46d227497980a20e184df669bb", - "placeholder": "​", - "style": "IPY_MODEL_527ebdd433604e84a97c498e49952e49", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 65.3kB/s]" + "bar_color": null, + "description_width": "" } }, - "54446d6d66ed40fcb39ca2dd0e52b91d": { + "630457c365244ae1ab9ffcac69becf0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1801,41 +1951,56 @@ "width": null } }, - "58d151e1dec841068bb3e5ea2a92bf8d": { + "6601ca50f2504f04b6cfe7a18c9b4b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", + "placeholder": "​", + "style": "IPY_MODEL_913da8393f324205890c3c685524e256", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 126kB/s]" } }, - "63b95cc7b3804f828a5027882e9297fc": { + "6e292337346c488586bf3e2ac3a4a4d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "687f08592bed4074bebe2f495d225c50": { + "7069c4f7c30946f989dfcde6fa323b5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1853,31 +2018,7 @@ "text_color": null } }, - "6908f28507f34ca293495da144a9ebf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_53877237a70b400cb0bdef2d1e4da5e0", - "IPY_MODEL_ac878a5347e5407d984a6450f0782ccf", - "IPY_MODEL_6f600754a26f42428a3619804a3b3dd3" - ], - "layout": "IPY_MODEL_a2e4ed336ac942fb95366722a3fe131b", - "tabbable": null, - "tooltip": null - } - }, - "6ba2643509aa4ba28f45e6d56c26a610": { + "706af1e525724a4ea27ff6ae91e2d592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1930,30 +2071,7 @@ "width": null } }, - "6f600754a26f42428a3619804a3b3dd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ba2643509aa4ba28f45e6d56c26a610", - "placeholder": "​", - "style": "IPY_MODEL_ca1b57d86847492c9b297c02fc76cdb9", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" - } - }, - "6fdb113b1df248a19d9acd305460659f": { + "72719d99e16045d7bb4a1a75b55e01d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,31 +2124,60 @@ "width": null } }, - "70dd46a3067b49b0ab8a7a6d042f9eee": { - "model_module": "@jupyter-widgets/controls", + "7410928828ea4cb785ed34533ad7a38b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b60ae06c542046c18779ebad0e050786", - "IPY_MODEL_fb47c5e63669405d8b0f658221868569", - "IPY_MODEL_cf508e03d2364ab487717da959fbc5f6" - ], - "layout": "IPY_MODEL_ca23b68c35994190a9b183937f99bef0", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "72723446148c4e4eaf10d2bc9a5a7aa0": { + "76546dbd183d4a7e9e641657709c45c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2045,15 +2192,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c0d84c997084ec7a7b1982850af771f", + "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", "placeholder": "​", - "style": "IPY_MODEL_2afee7ea53434f6d89d7c20a88feb305", + "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": "tokenizer.json: 100%" } }, - "813a3a0872a942708cd6a9346d4eafce": { + "7bc8ca2ed8c34db6b844e1f99c112f8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2106,7 +2253,7 @@ "width": null } }, - "847b6e3d28fe47989ff071d37ae0a736": { + "7ffdf87c7ec64036b49757ac96c5536d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2124,7 +2271,7 @@ "text_color": null } }, - "8775a8c91f3c4a05904fd4855d8811cf": { + "8d9ed5fd9baa4685b3b1df7e90e11a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2142,40 +2289,16 @@ "text_color": null } }, - "8a73ef35dae948bfb3a13cced094eae0": { - "model_module": "@jupyter-widgets/controls", + "8f9ef7f1a1f74518887b8021028b126b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72723446148c4e4eaf10d2bc9a5a7aa0", - "IPY_MODEL_e0a1667bb19e41ffab1775d1cc89d2f2", - "IPY_MODEL_febb0cb6c81c4e63826fecf678c5cb82" - ], - "layout": "IPY_MODEL_bfd0773475e040f3adaeb618a404adba", - "tabbable": null, - "tooltip": null - } - }, - "90c4eaa9081242faa986d85fd429328c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -2219,60 +2342,43 @@ "width": null } }, - "9269cd46d227497980a20e184df669bb": { - "model_module": "@jupyter-widgets/base", + "913da8393f324205890c3c685524e256": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "934707dc065d4f9b89b50d33e0cbc3f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "971f3be7589f424fb59cf1afd44b5a01": { + "93ebdc142e3847ae90d0ce31029d5577": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2288,66 +2394,59 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f99a3294523546e88e70530fed3f99f6", + "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b78ee6ec02a04a198056f10b84c9c0f6", + "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", "tabbable": null, "tooltip": null, "value": 48.0 } }, - "9b13d15c1ebf4bbab634d6a5ef436130": { + "94487f86ff8a4e3fa1c870682ab05381": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b31d509f412422e8332fcaf6b6c2694", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d513be80490b4fb9a218bd185c374f60", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51455100d2844aaf843bf237faae621e", + "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", + "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f" + ], + "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", "tabbable": null, - "tooltip": null, - "value": 231508.0 + "tooltip": null } }, - "9c5fb5a31e9f4d389fd58cc6bf03ee2d": { + "94c15cadc74a4c81a5adb003090f1d31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6fdb113b1df248a19d9acd305460659f", - "placeholder": "​", - "style": "IPY_MODEL_cd8bce3acd8043d99418cf1e98c1ffd3", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 119kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a16e8e1cc73e44bd8b38739fc3f7349e": { + "9a5e0536f69540db9b1730bd6d61ea81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2400,7 +2499,48 @@ "width": null } }, - "a2e4ed336ac942fb95366722a3fe131b": { + "a066253245154949a867510c4f4ca674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2a9d5d37de04498978de14e105cf28b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", + "placeholder": "​", + "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.8kB/s]" + } + }, + "a5729edb12634053b4bf3c1bf046eded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2453,128 +2593,147 @@ "width": null } }, - "a6454eb33f0747e5941afecdf65c31ca": { + "ae2d10a9a0bd42468482e2cffacc15e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", + "IPY_MODEL_15a6d72a11a043799df4757893a899a0", + "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822" + ], + "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", + "tabbable": null, + "tooltip": null } }, - "ac878a5347e5407d984a6450f0782ccf": { + "b5d24981d5e842e399fcf3e5da26ef85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3694f2923a9e4c32bfb24bc1252e9b8f", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1d3698bebaea44ee81bf48d55a3da73b", + "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", + "placeholder": "​", + "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": "README.md: 100%" } }, - "adf9f85cadca4af3b40ebf03eba16fa7": { + "b8db1c5c0aea469698bab78a92251cea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c65afacf969543d192a5d2494cc1c534", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37605bcf5bf54465b5b89a0177cdc60a", + "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", + "placeholder": "​", + "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "vocab.txt: 100%" } }, - "ae30011dcb26468c8b0b6b82df3ca527": { - "model_module": "@jupyter-widgets/base", + "c040ce84f01d40379935c57a437135d2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", + "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", + "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b" + ], + "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", + "tabbable": null, + "tooltip": null + } + }, + "c0f39ccef0bc464cb68eed457c4b8878": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", + "placeholder": "​", + "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "c17f319f7c23417c9a96df1d497a5396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", + "placeholder": "​", + "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "b3f20f2c522c44e99afe7b665f90476a": { + "c512fd4195da47a7a6905726b34e5e3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,46 +2786,49 @@ "width": null } }, - "b60ae06c542046c18779ebad0e050786": { + "c6f873e46ffd45dca333eca1e6c1e98b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ebda3f8c7f4441939a8f25ada957bda9", - "placeholder": "​", - "style": "IPY_MODEL_01bdf1dfe43a4d93b1d5a846d7215f58", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b78ee6ec02a04a198056f10b84c9c0f6": { + "c7e479504bac453bb70c779f5c0f3525": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", + "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", + "IPY_MODEL_02b94161e37b406ca4394b9eef1538df" + ], + "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", + "tabbable": null, + "tooltip": null } }, - "bfd0773475e040f3adaeb618a404adba": { + "cd106c03eda44df88946464b5e303d19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2719,7 +2881,7 @@ "width": null } }, - "c65afacf969543d192a5d2494cc1c534": { + "d1d88dae8067491696275aca69858030": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,7 +2934,7 @@ "width": null } }, - "ca1b57d86847492c9b297c02fc76cdb9": { + "d24b7d8cbfdc460e8b4363433bab3e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2790,7 +2952,7 @@ "text_color": null } }, - "ca23b68c35994190a9b183937f99bef0": { + "d2bc83af02974b4997b26d27c8043218": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,83 +3005,31 @@ "width": null } }, - "cb1cab0be90341f2a872bba3c4f5d6b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cc704a8505d043a78e762cb092fbf583": { + "d426400e6f5f4f559bce90df2411bfab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e8e17c5187f94971b594066cb042052e", - "placeholder": "​", - "style": "IPY_MODEL_d73ca9d21de341c1b49acece38eb3a86", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", + "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", + "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558" + ], + "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.51kB/s]" + "tooltip": null } }, - "cd8bce3acd8043d99418cf1e98c1ffd3": { + "d60ecde8bd1144dea8b8174f951c1ac9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2937,30 +3047,60 @@ "text_color": null } }, - "cf508e03d2364ab487717da959fbc5f6": { - "model_module": "@jupyter-widgets/controls", + "de3971382db3445da34fe599b2fd18c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3f20f2c522c44e99afe7b665f90476a", - "placeholder": "​", - "style": "IPY_MODEL_63b95cc7b3804f828a5027882e9297fc", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 16.2MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cf623252efaa4cadbfbcc762f85bb14f": { + "de9073d79ed24b348d5dcbd2cda64aaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3013,31 +3153,7 @@ "width": null } }, - "d0341643702b4f93b9c82872cc026fbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3a35ea4124b44ef9df6e0dae4a35972", - "IPY_MODEL_9b13d15c1ebf4bbab634d6a5ef436130", - "IPY_MODEL_f98d6ded2c7945df810ca80e9bd7a4a2" - ], - "layout": "IPY_MODEL_1a6c425339d741d0b672365a0a6a634f", - "tabbable": null, - "tooltip": null - } - }, - "d19a720fd38e43d9a44c01e6b604e36f": { + "debf497c726c49c19699637de9ea5396": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3090,91 +3206,70 @@ "width": null } }, - "d2f9ed6fa0ca4f829f4b4c9130690381": { + "e38763de16664cf4b837920d4bc2ace8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a16e8e1cc73e44bd8b38739fc3f7349e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6454eb33f0747e5941afecdf65c31ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", + "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", + "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20" + ], + "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", "tabbable": null, - "tooltip": null, - "value": 391.0 + "tooltip": null } }, - "d513be80490b4fb9a218bd185c374f60": { + "e914425948fb4ee4aeae1d90e350d558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", + "placeholder": "​", + "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 272MB/s]" } }, - "d73ca9d21de341c1b49acece38eb3a86": { + "e9d6ec450b2e48dcb5295b0addb03a08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dbc5896906b4403e91373c6f95c7f8a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e9ab3e84bf9c4f5e8e81eef5bd3fe849", - "IPY_MODEL_971f3be7589f424fb59cf1afd44b5a01", - "IPY_MODEL_cc704a8505d043a78e762cb092fbf583" - ], - "layout": "IPY_MODEL_813a3a0872a942708cd6a9346d4eafce", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "dfdd82544b204d99bf73fb297209e882": { + "f18185f7bfb34126ae47151814798ae9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3227,7 +3322,7 @@ "width": null } }, - "e0a1667bb19e41ffab1775d1cc89d2f2": { + "f28aab9da31b46fb80c0504babe16527": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3243,17 +3338,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf623252efaa4cadbfbcc762f85bb14f", + "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_58d151e1dec841068bb3e5ea2a92bf8d", + "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "e8e17c5187f94971b594066cb042052e": { + "f3ae141956064ff593c8324cddc63a9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f3d7b3156603425383cb4b2911ba3193": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3306,30 +3417,7 @@ "width": null } }, - "e9ab3e84bf9c4f5e8e81eef5bd3fe849": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_165f21fd1ca447ce9d79edfc85a1646e", - "placeholder": "​", - "style": "IPY_MODEL_847b6e3d28fe47989ff071d37ae0a736", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "ebda3f8c7f4441939a8f25ada957bda9": { + "f549e9ac8a50477798f2e9234e06003d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3382,48 +3470,56 @@ "width": null } }, - "ee015b6a5dd54462901d4fb785310f8f": { + "f5517afea1ad41e8ae488f9341fe54ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", + "placeholder": "​", + "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "f3a35ea4124b44ef9df6e0dae4a35972": { + "f5d710bb5f824ac6a960165532df517a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54446d6d66ed40fcb39ca2dd0e52b91d", - "placeholder": "​", - "style": "IPY_MODEL_47ca90e12b40435b9fd8c5bfa1cc221d", + "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 466062.0 } }, - "f57ceb2a8d51416491d48e1b29e3dfcb": { + "f7269a835d6543bb94a6753b3052198e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3476,30 +3572,7 @@ "width": null } }, - "f98d6ded2c7945df810ca80e9bd7a4a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d02ed65af34513bf68cff2532199bc", - "placeholder": "​", - "style": "IPY_MODEL_ee015b6a5dd54462901d4fb785310f8f", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 36.5MB/s]" - } - }, - "f99a3294523546e88e70530fed3f99f6": { + "fbabc79ad62741eeb0adf64606e0278c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3551,79 +3624,6 @@ "visibility": null, "width": null } - }, - "fb390d327367437688e1b2f6a2dc8c9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51bf1675356f432587b92cd14c7f82a2", - "IPY_MODEL_adf9f85cadca4af3b40ebf03eba16fa7", - "IPY_MODEL_9c5fb5a31e9f4d389fd58cc6bf03ee2d" - ], - "layout": "IPY_MODEL_d19a720fd38e43d9a44c01e6b604e36f", - "tabbable": null, - "tooltip": null - } - }, - "fb47c5e63669405d8b0f658221868569": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f57ceb2a8d51416491d48e1b29e3dfcb", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1c886bf965cf47cd8dad183a9a7ea37e", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "febb0cb6c81c4e63826fecf678c5cb82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c33fb4949914270b7542061aa7f5869", - "placeholder": "​", - "style": "IPY_MODEL_09202840b02144009b85bc9e81486cfe", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 33.7MB/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index dae36fcda..fe6c1ed1b 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"c9e3d1ea843b4dd08836724ceb2184ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fccfd304e924a65b05ce79e773c1b54": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "be3b22f2a8d24e5fbc993ff804b948c4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9e3d1ea843b4dd08836724ceb2184ff", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0fccfd304e924a65b05ce79e773c1b54", "tabbable": null, "tooltip": null, "value": 2041.0}}, "2843461d0fe54d07aa7c7464d5d97e6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c64103fc4704d84a0b363bc803074fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54cf50f88da84bffa7c85bfec67a7e76": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2843461d0fe54d07aa7c7464d5d97e6f", "placeholder": "\u200b", "style": "IPY_MODEL_4c64103fc4704d84a0b363bc803074fa", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "123fcf3742424688a13533cede820c84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f4b565a51d24d85a9ea442bcfffae19": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f05f7401b7ca48d39ce3f36de43cdf9f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_123fcf3742424688a13533cede820c84", "placeholder": "\u200b", "style": "IPY_MODEL_3f4b565a51d24d85a9ea442bcfffae19", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007472kB/s]"}}, "0712b5725fb444f6b11533e1aeb7e0d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22a24b2c2ee44a4e92a3d4a384dda5fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_54cf50f88da84bffa7c85bfec67a7e76", "IPY_MODEL_be3b22f2a8d24e5fbc993ff804b948c4", "IPY_MODEL_f05f7401b7ca48d39ce3f36de43cdf9f"], "layout": "IPY_MODEL_0712b5725fb444f6b11533e1aeb7e0d9", "tabbable": null, "tooltip": null}}, "615bae4fcc4b4def9e73b5dacc94cbf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "637271f5d4814034a20ed354b1562d5f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "267c1283364b495e946ce40cc2e6c806": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_615bae4fcc4b4def9e73b5dacc94cbf8", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_637271f5d4814034a20ed354b1562d5f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "30ef09eb9ae7482faf1bdf6f05e62bbc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "194b5e6a002d4e1ea093db6cc3b04171": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0b47da1d6d3545c9963557edea183fed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30ef09eb9ae7482faf1bdf6f05e62bbc", "placeholder": "\u200b", "style": "IPY_MODEL_194b5e6a002d4e1ea093db6cc3b04171", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "97c23900ef8b4bda83e2deb33f286e96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4ee50184cd04a398f50ea40231b48f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93cddea59dd04f8fa3866059fe250a88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97c23900ef8b4bda83e2deb33f286e96", "placeholder": "\u200b", "style": "IPY_MODEL_a4ee50184cd04a398f50ea40231b48f5", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007185MB/s]"}}, "195a6822a9d34059bfa57fa7dc2ea08a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c19af69d62042f9b12a2bd44b9b4160": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0b47da1d6d3545c9963557edea183fed", "IPY_MODEL_267c1283364b495e946ce40cc2e6c806", "IPY_MODEL_93cddea59dd04f8fa3866059fe250a88"], "layout": "IPY_MODEL_195a6822a9d34059bfa57fa7dc2ea08a", "tabbable": null, "tooltip": null}}, "3a8a38a009f545a8944469f67a622d68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e11e60943fb4e2a9e9b14f836623a69": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "70187e117f274ba7be34ee5a90087194": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a8a38a009f545a8944469f67a622d68", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7e11e60943fb4e2a9e9b14f836623a69", "tabbable": null, "tooltip": null, "value": 3201.0}}, "ee674df35f7341e9a94912143a281079": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5b7443a6873473f92d8003c993c8774": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e16eb6da1ebc41ca80ca339c7037d837": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ee674df35f7341e9a94912143a281079", "placeholder": "\u200b", "style": "IPY_MODEL_e5b7443a6873473f92d8003c993c8774", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "b7ea56d4b66546b38668ab8d80c352bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c90423f88db44167a1af99e50e8c0910": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "788e28d38e2c400babcb0d314178f05f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b7ea56d4b66546b38668ab8d80c352bd", "placeholder": "\u200b", "style": "IPY_MODEL_c90423f88db44167a1af99e50e8c0910", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007783kB/s]"}}, "13c388d3c4fd49ecb28abaf90751ecde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c14b346779ea4cb3920d9eef5802fbd6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e16eb6da1ebc41ca80ca339c7037d837", "IPY_MODEL_70187e117f274ba7be34ee5a90087194", "IPY_MODEL_788e28d38e2c400babcb0d314178f05f"], "layout": "IPY_MODEL_13c388d3c4fd49ecb28abaf90751ecde", "tabbable": null, "tooltip": null}}, "63942fab728d45799bfc2eefc024a7a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce1e2432d0004fffb3a515990af2e883": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a037f28a17554d22ae65d83ae3cb1295": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63942fab728d45799bfc2eefc024a7a4", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ce1e2432d0004fffb3a515990af2e883", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "2ec4c5dfe0504a16be106752751957ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4ef0c0a14fa48d5a66728f16010ab81": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d75488175f804c07a186b79fbdfbb0b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ec4c5dfe0504a16be106752751957ac", "placeholder": "\u200b", "style": "IPY_MODEL_a4ef0c0a14fa48d5a66728f16010ab81", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "2150fa8e732943099d5831902db8f05d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6bf7d77f5a84f6880ec30d9f0e0221f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20865132107248018abd462fe8cb3cb6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2150fa8e732943099d5831902db8f05d", "placeholder": "\u200b", "style": "IPY_MODEL_c6bf7d77f5a84f6880ec30d9f0e0221f", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007231MB/s]"}}, "939e1338c4514c3995a25094689cac39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b24547478f104455bc3f0621eb0ef31d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d75488175f804c07a186b79fbdfbb0b9", "IPY_MODEL_a037f28a17554d22ae65d83ae3cb1295", "IPY_MODEL_20865132107248018abd462fe8cb3cb6"], "layout": "IPY_MODEL_939e1338c4514c3995a25094689cac39", "tabbable": null, "tooltip": null}}, "6641399ed52c4fab995e3dc94bbf4259": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0449d39929844d5da948a065a35aeafc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2a17845087ce4fb3bbf3f5361d27da45": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6641399ed52c4fab995e3dc94bbf4259", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0449d39929844d5da948a065a35aeafc", "tabbable": null, "tooltip": null, "value": 128619.0}}, "456321c963d040b38655d316d4a4add5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a67df8bf81140f6a7d6468fddb34306": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "facfb0cddea846c28095adc63697d300": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_456321c963d040b38655d316d4a4add5", "placeholder": "\u200b", "style": "IPY_MODEL_2a67df8bf81140f6a7d6468fddb34306", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "da7d96a45d7249f5857c4b5b6e2f6781": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f121cf50447e4cd1b84e10660f4c6858": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bcf4d70b1b41401ebb167cd30923698e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da7d96a45d7249f5857c4b5b6e2f6781", "placeholder": "\u200b", "style": "IPY_MODEL_f121cf50447e4cd1b84e10660f4c6858", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20078.45MB/s]"}}, "2a18010cbd624cd48e9f02d08aaa10b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a11ca78e63eb4beeaa82f3e24c7dda66": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_facfb0cddea846c28095adc63697d300", "IPY_MODEL_2a17845087ce4fb3bbf3f5361d27da45", "IPY_MODEL_bcf4d70b1b41401ebb167cd30923698e"], "layout": "IPY_MODEL_2a18010cbd624cd48e9f02d08aaa10b9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"13ce66a6db5846b19c327782fc330062": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2585d650431e4e389f7c2cb8af3ba22a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e9afc86b1d7747a8a5ffc78856b7be99": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", "tabbable": null, "tooltip": null, "value": 2041.0}}, "9b8c3f610f304fec945b68d663dc6f1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "548b97dd6b2146f6a9d554e5016ead75": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", "placeholder": "\u200b", "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "0378871c4f2e413ea8000172dab79c64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a337d23527c34d92b63a1ecf6707124c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f72f986090fb419b8286e7286897e414": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", "placeholder": "\u200b", "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007476kB/s]"}}, "f39fc7e456254975882ada6d5b90254c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8cdbf19960b9483e9551e22643732a3c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", "IPY_MODEL_f72f986090fb419b8286e7286897e414"], "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", "tabbable": null, "tooltip": null}}, "eae9e35f11f747b58461317babdc3291": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9eabbbb13d5e47fca4e356bee0501603": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3a0699a91dd3428f82bdfb374fb55e76": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "a63baebd86ae43c990c6edc598a4879b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cea818f8d7f4614aa0ad2ec7b5348af": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "335c2445e0c0490f9984409ca39867c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", "placeholder": "\u200b", "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "1bc0bb9f226044e2879bd45c2c9361b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f416c4b535bc4e10bf36f83830f8a6fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b56b7a0332dc4e1c84a140c42ac16890": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", "placeholder": "\u200b", "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007193MB/s]"}}, "3ce9242cc785425291f31afd9dfc53a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30534447f05f4c18b825551758a727d5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_335c2445e0c0490f9984409ca39867c4", "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890"], "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", "tabbable": null, "tooltip": null}}, "e0a6be03adc34387b1154d4540a2cc94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7c617a65a6045ee945688614263ebc7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "da2148b68dd645dd98ed41c8058bb817": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", "tabbable": null, "tooltip": null, "value": 3201.0}}, "678f7e339f5149e181d689627ef3a751": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f7d007ea0b342b4a93dafc5282e07b1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1a71755eaad3434f8376750eb9e21dca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", "placeholder": "\u200b", "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "25e28f77411f4b358cd7cb1316e7612d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6398640d39d74482925348e964477d91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5b76f8ffb6354f24af0b35f6de244350": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", "placeholder": "\u200b", "style": "IPY_MODEL_6398640d39d74482925348e964477d91", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007799kB/s]"}}, "fdbd1eb302114bcc85c0208f1bf7e7db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5977ad08502f404892f9c3a89a020623": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350"], "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", "tabbable": null, "tooltip": null}}, "f47e6197a8974dacb497edf4211afa8b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "524d49fe9932444b9e6f4ad40ee2b836": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e79c27b29e1c44bf9369d333f8526228": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "1b0ceb5f33ac4b4db24eb1efc0185a90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "030f1aa243f74fa89a56e4a7afd62228": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7515de987da94ef9a2d5455c30f1c2a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", "placeholder": "\u200b", "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "a962521435da44439fc8023f973b16bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dce66522f3ac4607beae79e69e93745d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "184d81198c9f44339286502f77c93c88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", "placeholder": "\u200b", "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007308MB/s]"}}, "9d721b1baf0c4e31970159ee84bcb8b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2301b773af73470cb4968e5546eedca9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", "IPY_MODEL_184d81198c9f44339286502f77c93c88"], "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", "tabbable": null, "tooltip": null}}, "1ae5dfdbfc244f20b5e6a0872942a6b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d8898b4bffa4ce2b6f9d1610b45d2d5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4c7ed89197a84102acf6416893e2d15b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", "tabbable": null, "tooltip": null, "value": 128619.0}}, "a3d79d00b77e420fb3bba762b3d9a0b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca119d618680421aa4275a9c3bc6ada4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07f71655f74d435e83d929c621c5fa4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", "placeholder": "\u200b", "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "482e270b3b2347b69272e33a3b7fe67a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ea3400f8dfa41de89365044c0f8cb8a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3231f300a42b4b8b99131e14ee8de6fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", "placeholder": "\u200b", "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.45MB/s]"}}, "6a19b58ad5ac45dab732546ed937e951": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9234ebf1cac34261acd10dca3480e239": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe"], "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 11569e3e3..dc2c54cfa 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:49.864043Z", - "iopub.status.busy": "2024-07-09T06:06:49.863867Z", - "iopub.status.idle": "2024-07-09T06:06:54.860734Z", - "shell.execute_reply": "2024-07-09T06:06:54.860126Z" + "iopub.execute_input": "2024-07-09T06:22:03.233428Z", + "iopub.status.busy": "2024-07-09T06:22:03.232964Z", + "iopub.status.idle": "2024-07-09T06:22:08.850474Z", + "shell.execute_reply": "2024-07-09T06:22:08.849914Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.863462Z", - "iopub.status.busy": "2024-07-09T06:06:54.863090Z", - "iopub.status.idle": "2024-07-09T06:06:54.866371Z", - "shell.execute_reply": "2024-07-09T06:06:54.865843Z" + "iopub.execute_input": "2024-07-09T06:22:08.853152Z", + "iopub.status.busy": "2024-07-09T06:22:08.852690Z", + "iopub.status.idle": "2024-07-09T06:22:08.855934Z", + "shell.execute_reply": "2024-07-09T06:22:08.855477Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.868423Z", - "iopub.status.busy": "2024-07-09T06:06:54.868116Z", - "iopub.status.idle": "2024-07-09T06:06:54.872674Z", - "shell.execute_reply": "2024-07-09T06:06:54.872145Z" + "iopub.execute_input": "2024-07-09T06:22:08.857959Z", + "iopub.status.busy": "2024-07-09T06:22:08.857632Z", + "iopub.status.idle": "2024-07-09T06:22:08.861976Z", + "shell.execute_reply": "2024-07-09T06:22:08.861565Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.874945Z", - "iopub.status.busy": "2024-07-09T06:06:54.874555Z", - "iopub.status.idle": "2024-07-09T06:06:56.580748Z", - "shell.execute_reply": "2024-07-09T06:06:56.579989Z" + "iopub.execute_input": "2024-07-09T06:22:08.864012Z", + "iopub.status.busy": "2024-07-09T06:22:08.863632Z", + "iopub.status.idle": "2024-07-09T06:22:10.501197Z", + "shell.execute_reply": "2024-07-09T06:22:10.500598Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.583790Z", - "iopub.status.busy": "2024-07-09T06:06:56.583297Z", - "iopub.status.idle": "2024-07-09T06:06:56.593857Z", - "shell.execute_reply": "2024-07-09T06:06:56.593338Z" + "iopub.execute_input": "2024-07-09T06:22:10.503804Z", + "iopub.status.busy": "2024-07-09T06:22:10.503416Z", + "iopub.status.idle": "2024-07-09T06:22:10.513980Z", + "shell.execute_reply": "2024-07-09T06:22:10.513523Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.596127Z", - "iopub.status.busy": "2024-07-09T06:06:56.595810Z", - "iopub.status.idle": "2024-07-09T06:06:56.601311Z", - "shell.execute_reply": "2024-07-09T06:06:56.600761Z" + "iopub.execute_input": "2024-07-09T06:22:10.516180Z", + "iopub.status.busy": "2024-07-09T06:22:10.515850Z", + "iopub.status.idle": "2024-07-09T06:22:10.521399Z", + "shell.execute_reply": "2024-07-09T06:22:10.520894Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.603390Z", - "iopub.status.busy": "2024-07-09T06:06:56.602982Z", - "iopub.status.idle": "2024-07-09T06:06:57.047045Z", - "shell.execute_reply": "2024-07-09T06:06:57.046468Z" + "iopub.execute_input": "2024-07-09T06:22:10.523550Z", + "iopub.status.busy": "2024-07-09T06:22:10.523111Z", + "iopub.status.idle": "2024-07-09T06:22:10.966866Z", + "shell.execute_reply": "2024-07-09T06:22:10.966371Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:57.049476Z", - "iopub.status.busy": "2024-07-09T06:06:57.049058Z", - "iopub.status.idle": "2024-07-09T06:06:58.055039Z", - "shell.execute_reply": "2024-07-09T06:06:58.054558Z" + "iopub.execute_input": "2024-07-09T06:22:10.969003Z", + "iopub.status.busy": "2024-07-09T06:22:10.968716Z", + "iopub.status.idle": "2024-07-09T06:22:11.621713Z", + "shell.execute_reply": "2024-07-09T06:22:11.621235Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.057389Z", - "iopub.status.busy": "2024-07-09T06:06:58.057042Z", - "iopub.status.idle": "2024-07-09T06:06:58.075363Z", - "shell.execute_reply": "2024-07-09T06:06:58.074904Z" + "iopub.execute_input": "2024-07-09T06:22:11.624138Z", + "iopub.status.busy": "2024-07-09T06:22:11.623795Z", + "iopub.status.idle": "2024-07-09T06:22:11.641645Z", + "shell.execute_reply": "2024-07-09T06:22:11.641200Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.077543Z", - "iopub.status.busy": "2024-07-09T06:06:58.077109Z", - "iopub.status.idle": "2024-07-09T06:06:58.080313Z", - "shell.execute_reply": "2024-07-09T06:06:58.079788Z" + "iopub.execute_input": "2024-07-09T06:22:11.643659Z", + "iopub.status.busy": "2024-07-09T06:22:11.643333Z", + "iopub.status.idle": "2024-07-09T06:22:11.646457Z", + "shell.execute_reply": "2024-07-09T06:22:11.645916Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.082226Z", - "iopub.status.busy": "2024-07-09T06:06:58.081919Z", - "iopub.status.idle": "2024-07-09T06:07:12.215902Z", - "shell.execute_reply": "2024-07-09T06:07:12.215321Z" + "iopub.execute_input": "2024-07-09T06:22:11.648482Z", + "iopub.status.busy": "2024-07-09T06:22:11.648101Z", + "iopub.status.idle": "2024-07-09T06:22:26.104216Z", + "shell.execute_reply": "2024-07-09T06:22:26.103596Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.218512Z", - "iopub.status.busy": "2024-07-09T06:07:12.218295Z", - "iopub.status.idle": "2024-07-09T06:07:12.221837Z", - "shell.execute_reply": "2024-07-09T06:07:12.221338Z" + "iopub.execute_input": "2024-07-09T06:22:26.106855Z", + "iopub.status.busy": "2024-07-09T06:22:26.106613Z", + "iopub.status.idle": "2024-07-09T06:22:26.110484Z", + "shell.execute_reply": "2024-07-09T06:22:26.109922Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.223870Z", - "iopub.status.busy": "2024-07-09T06:07:12.223561Z", - "iopub.status.idle": "2024-07-09T06:07:12.934288Z", - "shell.execute_reply": "2024-07-09T06:07:12.933709Z" + "iopub.execute_input": "2024-07-09T06:22:26.112655Z", + "iopub.status.busy": "2024-07-09T06:22:26.112225Z", + "iopub.status.idle": "2024-07-09T06:22:26.806714Z", + "shell.execute_reply": "2024-07-09T06:22:26.806127Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.938010Z", - "iopub.status.busy": "2024-07-09T06:07:12.937076Z", - "iopub.status.idle": "2024-07-09T06:07:12.943726Z", - "shell.execute_reply": "2024-07-09T06:07:12.943251Z" + "iopub.execute_input": "2024-07-09T06:22:26.809582Z", + "iopub.status.busy": "2024-07-09T06:22:26.809200Z", + "iopub.status.idle": "2024-07-09T06:22:26.813988Z", + "shell.execute_reply": "2024-07-09T06:22:26.813500Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.947206Z", - "iopub.status.busy": "2024-07-09T06:07:12.946282Z", - "iopub.status.idle": "2024-07-09T06:07:13.044938Z", - "shell.execute_reply": "2024-07-09T06:07:13.044401Z" + "iopub.execute_input": "2024-07-09T06:22:26.817256Z", + "iopub.status.busy": "2024-07-09T06:22:26.816338Z", + "iopub.status.idle": "2024-07-09T06:22:26.913005Z", + "shell.execute_reply": "2024-07-09T06:22:26.912463Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.047402Z", - "iopub.status.busy": "2024-07-09T06:07:13.046885Z", - "iopub.status.idle": "2024-07-09T06:07:13.058728Z", - "shell.execute_reply": "2024-07-09T06:07:13.058266Z" + "iopub.execute_input": "2024-07-09T06:22:26.915328Z", + "iopub.status.busy": "2024-07-09T06:22:26.914958Z", + "iopub.status.idle": "2024-07-09T06:22:26.927202Z", + "shell.execute_reply": "2024-07-09T06:22:26.926711Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.060668Z", - "iopub.status.busy": "2024-07-09T06:07:13.060408Z", - "iopub.status.idle": "2024-07-09T06:07:13.068309Z", - "shell.execute_reply": "2024-07-09T06:07:13.067858Z" + "iopub.execute_input": "2024-07-09T06:22:26.929241Z", + "iopub.status.busy": "2024-07-09T06:22:26.928921Z", + "iopub.status.idle": "2024-07-09T06:22:26.936556Z", + "shell.execute_reply": "2024-07-09T06:22:26.936102Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.070443Z", - "iopub.status.busy": "2024-07-09T06:07:13.070120Z", - "iopub.status.idle": "2024-07-09T06:07:13.074136Z", - "shell.execute_reply": "2024-07-09T06:07:13.073600Z" + "iopub.execute_input": "2024-07-09T06:22:26.938661Z", + "iopub.status.busy": "2024-07-09T06:22:26.938342Z", + "iopub.status.idle": "2024-07-09T06:22:26.942738Z", + "shell.execute_reply": "2024-07-09T06:22:26.942303Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.076148Z", - "iopub.status.busy": "2024-07-09T06:07:13.075822Z", - "iopub.status.idle": "2024-07-09T06:07:13.081201Z", - "shell.execute_reply": "2024-07-09T06:07:13.080730Z" + "iopub.execute_input": "2024-07-09T06:22:26.944805Z", + "iopub.status.busy": "2024-07-09T06:22:26.944495Z", + "iopub.status.idle": "2024-07-09T06:22:26.949937Z", + "shell.execute_reply": "2024-07-09T06:22:26.949446Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.083236Z", - "iopub.status.busy": "2024-07-09T06:07:13.082820Z", - "iopub.status.idle": "2024-07-09T06:07:13.194939Z", - "shell.execute_reply": "2024-07-09T06:07:13.194383Z" + "iopub.execute_input": "2024-07-09T06:22:26.951973Z", + "iopub.status.busy": "2024-07-09T06:22:26.951651Z", + "iopub.status.idle": "2024-07-09T06:22:27.069852Z", + "shell.execute_reply": "2024-07-09T06:22:27.069287Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.197176Z", - "iopub.status.busy": "2024-07-09T06:07:13.196823Z", - "iopub.status.idle": "2024-07-09T06:07:13.304107Z", - "shell.execute_reply": "2024-07-09T06:07:13.303548Z" + "iopub.execute_input": "2024-07-09T06:22:27.072192Z", + "iopub.status.busy": "2024-07-09T06:22:27.071729Z", + "iopub.status.idle": "2024-07-09T06:22:27.179313Z", + "shell.execute_reply": "2024-07-09T06:22:27.178807Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.306217Z", - "iopub.status.busy": "2024-07-09T06:07:13.305912Z", - "iopub.status.idle": "2024-07-09T06:07:13.409689Z", - "shell.execute_reply": "2024-07-09T06:07:13.409121Z" + "iopub.execute_input": "2024-07-09T06:22:27.181419Z", + "iopub.status.busy": "2024-07-09T06:22:27.181072Z", + "iopub.status.idle": "2024-07-09T06:22:27.284684Z", + "shell.execute_reply": "2024-07-09T06:22:27.284186Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.411687Z", - "iopub.status.busy": "2024-07-09T06:07:13.411504Z", - "iopub.status.idle": "2024-07-09T06:07:13.513457Z", - "shell.execute_reply": "2024-07-09T06:07:13.512985Z" + "iopub.execute_input": "2024-07-09T06:22:27.286639Z", + "iopub.status.busy": "2024-07-09T06:22:27.286466Z", + "iopub.status.idle": "2024-07-09T06:22:27.389984Z", + "shell.execute_reply": "2024-07-09T06:22:27.389427Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.515573Z", - "iopub.status.busy": "2024-07-09T06:07:13.515239Z", - "iopub.status.idle": "2024-07-09T06:07:13.518447Z", - "shell.execute_reply": "2024-07-09T06:07:13.517912Z" + "iopub.execute_input": "2024-07-09T06:22:27.392223Z", + "iopub.status.busy": "2024-07-09T06:22:27.391882Z", + "iopub.status.idle": "2024-07-09T06:22:27.395109Z", + "shell.execute_reply": "2024-07-09T06:22:27.394562Z" }, "nbsphinx": "hidden" }, @@ -1392,23 +1392,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0449d39929844d5da948a065a35aeafc": { + "030f1aa243f74fa89a56e4a7afd62228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0712b5725fb444f6b11533e1aeb7e0d9": { + "0378871c4f2e413ea8000172dab79c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,7 +1463,7 @@ "width": null } }, - "0b47da1d6d3545c9963557edea183fed": { + "07f71655f74d435e83d929c621c5fa4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1476,31 +1478,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30ef09eb9ae7482faf1bdf6f05e62bbc", + "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", "placeholder": "​", - "style": "IPY_MODEL_194b5e6a002d4e1ea093db6cc3b04171", + "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "0fccfd304e924a65b05ce79e773c1b54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "label_encoder.txt: 100%" } }, - "123fcf3742424688a13533cede820c84": { + "13ce66a6db5846b19c327782fc330062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1553,7 +1539,53 @@ "width": null } }, - "13c388d3c4fd49ecb28abaf90751ecde": { + "184d81198c9f44339286502f77c93c88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", + "placeholder": "​", + "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 308MB/s]" + } + }, + "1a71755eaad3434f8376750eb9e21dca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", + "placeholder": "​", + "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "1ae5dfdbfc244f20b5e6a0872942a6b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,25 +1638,7 @@ "width": null } }, - "194b5e6a002d4e1ea093db6cc3b04171": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "195a6822a9d34059bfa57fa7dc2ea08a": { + "1b0ceb5f33ac4b4db24eb1efc0185a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1677,30 +1691,7 @@ "width": null } }, - "20865132107248018abd462fe8cb3cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2150fa8e732943099d5831902db8f05d", - "placeholder": "​", - "style": "IPY_MODEL_c6bf7d77f5a84f6880ec30d9f0e0221f", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 231MB/s]" - } - }, - "2150fa8e732943099d5831902db8f05d": { + "1bc0bb9f226044e2879bd45c2c9361b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1744,7 @@ "width": null } }, - "22a24b2c2ee44a4e92a3d4a384dda5fc": { + "2301b773af73470cb4968e5546eedca9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1768,42 +1759,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_54cf50f88da84bffa7c85bfec67a7e76", - "IPY_MODEL_be3b22f2a8d24e5fbc993ff804b948c4", - "IPY_MODEL_f05f7401b7ca48d39ce3f36de43cdf9f" + "IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", + "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", + "IPY_MODEL_184d81198c9f44339286502f77c93c88" ], - "layout": "IPY_MODEL_0712b5725fb444f6b11533e1aeb7e0d9", + "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", "tabbable": null, "tooltip": null } }, - "267c1283364b495e946ce40cc2e6c806": { + "2585d650431e4e389f7c2cb8af3ba22a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_615bae4fcc4b4def9e73b5dacc94cbf8", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_637271f5d4814034a20ed354b1562d5f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2843461d0fe54d07aa7c7464d5d97e6f": { + "25e28f77411f4b358cd7cb1316e7612d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,7 +1837,93 @@ "width": null } }, - "2a17845087ce4fb3bbf3f5361d27da45": { + "2d8898b4bffa4ce2b6f9d1610b45d2d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30534447f05f4c18b825551758a727d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_335c2445e0c0490f9984409ca39867c4", + "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", + "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890" + ], + "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", + "tabbable": null, + "tooltip": null + } + }, + "3231f300a42b4b8b99131e14ee8de6fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", + "placeholder": "​", + "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 7.45MB/s]" + } + }, + "335c2445e0c0490f9984409ca39867c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", + "placeholder": "​", + "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "3a0699a91dd3428f82bdfb374fb55e76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1872,17 +1939,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6641399ed52c4fab995e3dc94bbf4259", - "max": 128619.0, + "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0449d39929844d5da948a065a35aeafc", + "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 16887676.0 } }, - "2a18010cbd624cd48e9f02d08aaa10b9": { + "3ce9242cc785425291f31afd9dfc53a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1935,7 +2002,7 @@ "width": null } }, - "2a67df8bf81140f6a7d6468fddb34306": { + "3cea818f8d7f4614aa0ad2ec7b5348af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1953,7 +2020,7 @@ "text_color": null } }, - "2ec4c5dfe0504a16be106752751957ac": { + "482e270b3b2347b69272e33a3b7fe67a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,113 +2073,67 @@ "width": null } }, - "30ef09eb9ae7482faf1bdf6f05e62bbc": { - "model_module": "@jupyter-widgets/base", + "4c7ed89197a84102acf6416893e2d15b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "4ea3400f8dfa41de89365044c0f8cb8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a8a38a009f545a8944469f67a622d68": { - "model_module": "@jupyter-widgets/base", + "524d49fe9932444b9e6f4ad40ee2b836": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f4b565a51d24d85a9ea442bcfffae19": { + "548b97dd6b2146f6a9d554e5016ead75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2130,60 +2151,7 @@ "text_color": null } }, - "456321c963d040b38655d316d4a4add5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c19af69d62042f9b12a2bd44b9b4160": { + "5977ad08502f404892f9c3a89a020623": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2198,34 +2166,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0b47da1d6d3545c9963557edea183fed", - "IPY_MODEL_267c1283364b495e946ce40cc2e6c806", - "IPY_MODEL_93cddea59dd04f8fa3866059fe250a88" + "IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", + "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", + "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350" ], - "layout": "IPY_MODEL_195a6822a9d34059bfa57fa7dc2ea08a", + "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", "tabbable": null, "tooltip": null } }, - "4c64103fc4704d84a0b363bc803074fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "54cf50f88da84bffa7c85bfec67a7e76": { + "5b76f8ffb6354f24af0b35f6de244350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2240,84 +2190,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2843461d0fe54d07aa7c7464d5d97e6f", + "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", "placeholder": "​", - "style": "IPY_MODEL_4c64103fc4704d84a0b363bc803074fa", + "style": "IPY_MODEL_6398640d39d74482925348e964477d91", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 799kB/s]" } }, - "615bae4fcc4b4def9e73b5dacc94cbf8": { - "model_module": "@jupyter-widgets/base", + "5f7d007ea0b342b4a93dafc5282e07b1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "637271f5d4814034a20ed354b1562d5f": { + "6398640d39d74482925348e964477d91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "63942fab728d45799bfc2eefc024a7a4": { + "678f7e339f5149e181d689627ef3a751": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2370,7 +2287,7 @@ "width": null } }, - "6641399ed52c4fab995e3dc94bbf4259": { + "6a19b58ad5ac45dab732546ed937e951": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2423,33 +2340,30 @@ "width": null } }, - "70187e117f274ba7be34ee5a90087194": { + "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a8a38a009f545a8944469f67a622d68", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e11e60943fb4e2a9e9b14f836623a69", + "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", + "placeholder": "​", + "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "hyperparams.yaml: 100%" } }, - "788e28d38e2c400babcb0d314178f05f": { + "7515de987da94ef9a2d5455c30f1c2a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2464,31 +2378,63 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b7ea56d4b66546b38668ab8d80c352bd", + "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", "placeholder": "​", - "style": "IPY_MODEL_c90423f88db44167a1af99e50e8c0910", + "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 783kB/s]" + "value": "classifier.ckpt: 100%" } }, - "7e11e60943fb4e2a9e9b14f836623a69": { + "8cdbf19960b9483e9551e22643732a3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", + "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", + "IPY_MODEL_f72f986090fb419b8286e7286897e414" + ], + "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", + "tabbable": null, + "tooltip": null } }, - "939e1338c4514c3995a25094689cac39": { + "9234ebf1cac34261acd10dca3480e239": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", + "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", + "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe" + ], + "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", + "tabbable": null, + "tooltip": null + } + }, + "9b8c3f610f304fec945b68d663dc6f1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2541,30 +2487,7 @@ "width": null } }, - "93cddea59dd04f8fa3866059fe250a88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97c23900ef8b4bda83e2deb33f286e96", - "placeholder": "​", - "style": "IPY_MODEL_a4ee50184cd04a398f50ea40231b48f5", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 185MB/s]" - } - }, - "97c23900ef8b4bda83e2deb33f286e96": { + "9d721b1baf0c4e31970159ee84bcb8b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2617,57 +2540,23 @@ "width": null } }, - "a037f28a17554d22ae65d83ae3cb1295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_63942fab728d45799bfc2eefc024a7a4", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce1e2432d0004fffb3a515990af2e883", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "a11ca78e63eb4beeaa82f3e24c7dda66": { + "9eabbbb13d5e47fca4e356bee0501603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_facfb0cddea846c28095adc63697d300", - "IPY_MODEL_2a17845087ce4fb3bbf3f5361d27da45", - "IPY_MODEL_bcf4d70b1b41401ebb167cd30923698e" - ], - "layout": "IPY_MODEL_2a18010cbd624cd48e9f02d08aaa10b9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a4ee50184cd04a398f50ea40231b48f5": { + "a337d23527c34d92b63a1ecf6707124c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2685,49 +2574,113 @@ "text_color": null } }, - "a4ef0c0a14fa48d5a66728f16010ab81": { - "model_module": "@jupyter-widgets/controls", + "a3d79d00b77e420fb3bba762b3d9a0b6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b24547478f104455bc3f0621eb0ef31d": { - "model_module": "@jupyter-widgets/controls", + "a63baebd86ae43c990c6edc598a4879b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d75488175f804c07a186b79fbdfbb0b9", - "IPY_MODEL_a037f28a17554d22ae65d83ae3cb1295", - "IPY_MODEL_20865132107248018abd462fe8cb3cb6" - ], - "layout": "IPY_MODEL_939e1338c4514c3995a25094689cac39", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b7ea56d4b66546b38668ab8d80c352bd": { + "a962521435da44439fc8023f973b16bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2780,7 +2733,7 @@ "width": null } }, - "bcf4d70b1b41401ebb167cd30923698e": { + "b56b7a0332dc4e1c84a140c42ac16890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2795,83 +2748,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da7d96a45d7249f5857c4b5b6e2f6781", + "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", "placeholder": "​", - "style": "IPY_MODEL_f121cf50447e4cd1b84e10660f4c6858", + "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 8.45MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 193MB/s]" } }, - "be3b22f2a8d24e5fbc993ff804b948c4": { + "ca119d618680421aa4275a9c3bc6ada4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9e3d1ea843b4dd08836724ceb2184ff", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0fccfd304e924a65b05ce79e773c1b54", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c14b346779ea4cb3920d9eef5802fbd6": { + "da2148b68dd645dd98ed41c8058bb817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e16eb6da1ebc41ca80ca339c7037d837", - "IPY_MODEL_70187e117f274ba7be34ee5a90087194", - "IPY_MODEL_788e28d38e2c400babcb0d314178f05f" - ], - "layout": "IPY_MODEL_13c388d3c4fd49ecb28abaf90751ecde", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", "tabbable": null, - "tooltip": null - } - }, - "c6bf7d77f5a84f6880ec30d9f0e0221f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 3201.0 } }, - "c90423f88db44167a1af99e50e8c0910": { + "dce66522f3ac4607beae79e69e93745d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2889,7 +2818,7 @@ "text_color": null } }, - "c9e3d1ea843b4dd08836724ceb2184ff": { + "e0a6be03adc34387b1154d4540a2cc94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2942,7 +2871,33 @@ "width": null } }, - "ce1e2432d0004fffb3a515990af2e883": { + "e79c27b29e1c44bf9369d333f8526228": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "e7c617a65a6045ee945688614263ebc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2958,30 +2913,33 @@ "description_width": "" } }, - "d75488175f804c07a186b79fbdfbb0b9": { + "e9afc86b1d7747a8a5ffc78856b7be99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ec4c5dfe0504a16be106752751957ac", - "placeholder": "​", - "style": "IPY_MODEL_a4ef0c0a14fa48d5a66728f16010ab81", + "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "da7d96a45d7249f5857c4b5b6e2f6781": { + "eae9e35f11f747b58461317babdc3291": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3034,30 +2992,60 @@ "width": null } }, - "e16eb6da1ebc41ca80ca339c7037d837": { - "model_module": "@jupyter-widgets/controls", + "f39fc7e456254975882ada6d5b90254c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee674df35f7341e9a94912143a281079", - "placeholder": "​", - "style": "IPY_MODEL_e5b7443a6873473f92d8003c993c8774", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e5b7443a6873473f92d8003c993c8774": { + "f416c4b535bc4e10bf36f83830f8a6fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3075,7 +3063,7 @@ "text_color": null } }, - "ee674df35f7341e9a94912143a281079": { + "f47e6197a8974dacb497edf4211afa8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3128,7 +3116,7 @@ "width": null } }, - "f05f7401b7ca48d39ce3f36de43cdf9f": { + "f72f986090fb419b8286e7286897e414": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3143,53 +3131,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_123fcf3742424688a13533cede820c84", + "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", "placeholder": "​", - "style": "IPY_MODEL_3f4b565a51d24d85a9ea442bcfffae19", + "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 472kB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" } }, - "f121cf50447e4cd1b84e10660f4c6858": { - "model_module": "@jupyter-widgets/controls", + "fdbd1eb302114bcc85c0208f1bf7e7db": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "facfb0cddea846c28095adc63697d300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_456321c963d040b38655d316d4a4add5", - "placeholder": "​", - "style": "IPY_MODEL_2a67df8bf81140f6a7d6468fddb34306", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index b484262ed..687422936 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"54de8bdcfc254280ad482cd4c4ba0ed9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98ecc16b617a454daf4d29b486be43d2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d0bd7cf6b2524951ac939fb65399ac64": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_54de8bdcfc254280ad482cd4c4ba0ed9", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_98ecc16b617a454daf4d29b486be43d2", "tabbable": null, "tooltip": null, "value": 132.0}}, "35c38181cf4b4429a72e3b23df75ccbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbc6c2a9ffc3454292e17169e84293d9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55a34ec37114452c9d8c054c182cbc52": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35c38181cf4b4429a72e3b23df75ccbe", "placeholder": "\u200b", "style": "IPY_MODEL_fbc6c2a9ffc3454292e17169e84293d9", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "7456c78e6a0f4d568c70ed7a6535115d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe301e732a514ec286d6c27d70994344": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ca28b9c23f6452c95c38d0043efadcc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7456c78e6a0f4d568c70ed7a6535115d", "placeholder": "\u200b", "style": "IPY_MODEL_fe301e732a514ec286d6c27d70994344", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713017.52\u2007examples/s]"}}, "d5c5823e33414b1f899751731a81a142": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a2d9de663414b3197830208500bd4c4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_55a34ec37114452c9d8c054c182cbc52", "IPY_MODEL_d0bd7cf6b2524951ac939fb65399ac64", "IPY_MODEL_0ca28b9c23f6452c95c38d0043efadcc"], "layout": "IPY_MODEL_d5c5823e33414b1f899751731a81a142", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"4f663e6b17ca4c42bf50adc567d16ba7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b9a95ea9570469c89df3c913719453d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ce349bf1dbe749ccb7ed3c31e8593c0e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", "tabbable": null, "tooltip": null, "value": 132.0}}, "110ab4d837414033a320250c8a01f402": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00d78c11cb114efca0b0c49d7e0cb9be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cb3e52e8971843afb00d0a4e915483f5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", "placeholder": "\u200b", "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "53f5526f4be149a09e57d6eddb464297": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0a497561f9e46278d786855f5eaad3a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c62609186764ad4b5447a66b1294674": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", "placeholder": "\u200b", "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713749.43\u2007examples/s]"}}, "39e9da6fa70e44bea4cd6db6fbb2a1b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74c24ad981f147efb352816e9dafec11": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", "IPY_MODEL_9c62609186764ad4b5447a66b1294674"], "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index d8c1583bb..73ef9d94b 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:17.104713Z", - "iopub.status.busy": "2024-07-09T06:07:17.104537Z", - "iopub.status.idle": "2024-07-09T06:07:18.265236Z", - "shell.execute_reply": "2024-07-09T06:07:18.264675Z" + "iopub.execute_input": "2024-07-09T06:22:31.204629Z", + "iopub.status.busy": "2024-07-09T06:22:31.204447Z", + "iopub.status.idle": "2024-07-09T06:22:32.372754Z", + "shell.execute_reply": "2024-07-09T06:22:32.372127Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.267865Z", - "iopub.status.busy": "2024-07-09T06:07:18.267429Z", - "iopub.status.idle": "2024-07-09T06:07:18.270517Z", - "shell.execute_reply": "2024-07-09T06:07:18.270070Z" + "iopub.execute_input": "2024-07-09T06:22:32.375331Z", + "iopub.status.busy": "2024-07-09T06:22:32.374890Z", + "iopub.status.idle": "2024-07-09T06:22:32.377978Z", + "shell.execute_reply": "2024-07-09T06:22:32.377441Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.272623Z", - "iopub.status.busy": "2024-07-09T06:07:18.272315Z", - "iopub.status.idle": "2024-07-09T06:07:18.280981Z", - "shell.execute_reply": "2024-07-09T06:07:18.280528Z" + "iopub.execute_input": "2024-07-09T06:22:32.380095Z", + "iopub.status.busy": "2024-07-09T06:22:32.379830Z", + "iopub.status.idle": "2024-07-09T06:22:32.388412Z", + "shell.execute_reply": "2024-07-09T06:22:32.387959Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.282961Z", - "iopub.status.busy": "2024-07-09T06:07:18.282658Z", - "iopub.status.idle": "2024-07-09T06:07:18.287681Z", - "shell.execute_reply": "2024-07-09T06:07:18.287134Z" + "iopub.execute_input": "2024-07-09T06:22:32.390372Z", + "iopub.status.busy": "2024-07-09T06:22:32.390051Z", + "iopub.status.idle": "2024-07-09T06:22:32.394799Z", + "shell.execute_reply": "2024-07-09T06:22:32.394245Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.289696Z", - "iopub.status.busy": "2024-07-09T06:07:18.289396Z", - "iopub.status.idle": "2024-07-09T06:07:18.471428Z", - "shell.execute_reply": "2024-07-09T06:07:18.470899Z" + "iopub.execute_input": "2024-07-09T06:22:32.396873Z", + "iopub.status.busy": "2024-07-09T06:22:32.396576Z", + "iopub.status.idle": "2024-07-09T06:22:32.582697Z", + "shell.execute_reply": "2024-07-09T06:22:32.582077Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.473985Z", - "iopub.status.busy": "2024-07-09T06:07:18.473651Z", - "iopub.status.idle": "2024-07-09T06:07:18.848606Z", - "shell.execute_reply": "2024-07-09T06:07:18.847988Z" + "iopub.execute_input": "2024-07-09T06:22:32.585043Z", + "iopub.status.busy": "2024-07-09T06:22:32.584844Z", + "iopub.status.idle": "2024-07-09T06:22:32.959426Z", + "shell.execute_reply": "2024-07-09T06:22:32.958831Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.850909Z", - "iopub.status.busy": "2024-07-09T06:07:18.850607Z", - "iopub.status.idle": "2024-07-09T06:07:18.874812Z", - "shell.execute_reply": "2024-07-09T06:07:18.874352Z" + "iopub.execute_input": "2024-07-09T06:22:32.961607Z", + "iopub.status.busy": "2024-07-09T06:22:32.961418Z", + "iopub.status.idle": "2024-07-09T06:22:32.984249Z", + "shell.execute_reply": "2024-07-09T06:22:32.983819Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.877306Z", - "iopub.status.busy": "2024-07-09T06:07:18.876942Z", - "iopub.status.idle": "2024-07-09T06:07:18.888512Z", - "shell.execute_reply": "2024-07-09T06:07:18.887949Z" + "iopub.execute_input": "2024-07-09T06:22:32.986453Z", + "iopub.status.busy": "2024-07-09T06:22:32.986022Z", + "iopub.status.idle": "2024-07-09T06:22:32.997152Z", + "shell.execute_reply": "2024-07-09T06:22:32.996629Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.890878Z", - "iopub.status.busy": "2024-07-09T06:07:18.890562Z", - "iopub.status.idle": "2024-07-09T06:07:20.924393Z", - "shell.execute_reply": "2024-07-09T06:07:20.923804Z" + "iopub.execute_input": "2024-07-09T06:22:32.999567Z", + "iopub.status.busy": "2024-07-09T06:22:32.999237Z", + "iopub.status.idle": "2024-07-09T06:22:35.072126Z", + "shell.execute_reply": "2024-07-09T06:22:35.071432Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.926686Z", - "iopub.status.busy": "2024-07-09T06:07:20.926410Z", - "iopub.status.idle": "2024-07-09T06:07:20.949428Z", - "shell.execute_reply": "2024-07-09T06:07:20.948894Z" + "iopub.execute_input": "2024-07-09T06:22:35.074948Z", + "iopub.status.busy": "2024-07-09T06:22:35.074462Z", + "iopub.status.idle": "2024-07-09T06:22:35.096631Z", + "shell.execute_reply": "2024-07-09T06:22:35.096147Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.951661Z", - "iopub.status.busy": "2024-07-09T06:07:20.951461Z", - "iopub.status.idle": "2024-07-09T06:07:20.970546Z", - "shell.execute_reply": "2024-07-09T06:07:20.970043Z" + "iopub.execute_input": "2024-07-09T06:22:35.098742Z", + "iopub.status.busy": "2024-07-09T06:22:35.098472Z", + "iopub.status.idle": "2024-07-09T06:22:35.116671Z", + "shell.execute_reply": "2024-07-09T06:22:35.116210Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.972589Z", - "iopub.status.busy": "2024-07-09T06:07:20.972401Z", - "iopub.status.idle": "2024-07-09T06:07:20.987323Z", - "shell.execute_reply": "2024-07-09T06:07:20.986871Z" + "iopub.execute_input": "2024-07-09T06:22:35.118721Z", + "iopub.status.busy": "2024-07-09T06:22:35.118381Z", + "iopub.status.idle": "2024-07-09T06:22:35.132562Z", + "shell.execute_reply": "2024-07-09T06:22:35.132113Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.989414Z", - "iopub.status.busy": "2024-07-09T06:07:20.989082Z", - "iopub.status.idle": "2024-07-09T06:07:21.008745Z", - "shell.execute_reply": "2024-07-09T06:07:21.008145Z" + "iopub.execute_input": "2024-07-09T06:22:35.134629Z", + "iopub.status.busy": "2024-07-09T06:22:35.134293Z", + "iopub.status.idle": "2024-07-09T06:22:35.152969Z", + "shell.execute_reply": "2024-07-09T06:22:35.152458Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1a2d9de663414b3197830208500bd4c4", + "model_id": "74c24ad981f147efb352816e9dafec11", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.010907Z", - "iopub.status.busy": "2024-07-09T06:07:21.010568Z", - "iopub.status.idle": "2024-07-09T06:07:21.026290Z", - "shell.execute_reply": "2024-07-09T06:07:21.025716Z" + "iopub.execute_input": "2024-07-09T06:22:35.154841Z", + "iopub.status.busy": "2024-07-09T06:22:35.154670Z", + "iopub.status.idle": "2024-07-09T06:22:35.169134Z", + "shell.execute_reply": "2024-07-09T06:22:35.168685Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.028755Z", - "iopub.status.busy": "2024-07-09T06:07:21.028398Z", - "iopub.status.idle": "2024-07-09T06:07:21.034384Z", - "shell.execute_reply": "2024-07-09T06:07:21.033940Z" + "iopub.execute_input": "2024-07-09T06:22:35.170991Z", + "iopub.status.busy": "2024-07-09T06:22:35.170807Z", + "iopub.status.idle": "2024-07-09T06:22:35.176614Z", + "shell.execute_reply": "2024-07-09T06:22:35.176098Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.036570Z", - "iopub.status.busy": "2024-07-09T06:07:21.036166Z", - "iopub.status.idle": "2024-07-09T06:07:21.054691Z", - "shell.execute_reply": "2024-07-09T06:07:21.054210Z" + "iopub.execute_input": "2024-07-09T06:22:35.178580Z", + "iopub.status.busy": "2024-07-09T06:22:35.178328Z", + "iopub.status.idle": "2024-07-09T06:22:35.196553Z", + "shell.execute_reply": "2024-07-09T06:22:35.196112Z" } }, "outputs": [ @@ -1447,54 +1447,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0ca28b9c23f6452c95c38d0043efadcc": { + "00d78c11cb114efca0b0c49d7e0cb9be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7456c78e6a0f4d568c70ed7a6535115d", - "placeholder": "​", - "style": "IPY_MODEL_fe301e732a514ec286d6c27d70994344", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13017.52 examples/s]" - } - }, - "1a2d9de663414b3197830208500bd4c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55a34ec37114452c9d8c054c182cbc52", - "IPY_MODEL_d0bd7cf6b2524951ac939fb65399ac64", - "IPY_MODEL_0ca28b9c23f6452c95c38d0043efadcc" - ], - "layout": "IPY_MODEL_d5c5823e33414b1f899751731a81a142", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "35c38181cf4b4429a72e3b23df75ccbe": { + "110ab4d837414033a320250c8a01f402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1547,7 +1518,23 @@ "width": null } }, - "54de8bdcfc254280ad482cd4c4ba0ed9": { + "1b9a95ea9570469c89df3c913719453d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "39e9da6fa70e44bea4cd6db6fbb2a1b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1600,30 +1587,7 @@ "width": null } }, - "55a34ec37114452c9d8c054c182cbc52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35c38181cf4b4429a72e3b23df75ccbe", - "placeholder": "​", - "style": "IPY_MODEL_fbc6c2a9ffc3454292e17169e84293d9", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "7456c78e6a0f4d568c70ed7a6535115d": { + "4f663e6b17ca4c42bf50adc567d16ba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,49 +1640,7 @@ "width": null } }, - "98ecc16b617a454daf4d29b486be43d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d0bd7cf6b2524951ac939fb65399ac64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54de8bdcfc254280ad482cd4c4ba0ed9", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_98ecc16b617a454daf4d29b486be43d2", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "d5c5823e33414b1f899751731a81a142": { + "53f5526f4be149a09e57d6eddb464297": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,25 +1693,103 @@ "width": null } }, - "fbc6c2a9ffc3454292e17169e84293d9": { + "74c24ad981f147efb352816e9dafec11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", + "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", + "IPY_MODEL_9c62609186764ad4b5447a66b1294674" + ], + "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", + "tabbable": null, + "tooltip": null + } + }, + "9c62609186764ad4b5447a66b1294674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", + "placeholder": "​", + "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13749.43 examples/s]" + } + }, + "cb3e52e8971843afb00d0a4e915483f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", + "placeholder": "​", + "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "ce349bf1dbe749ccb7ed3c31e8593c0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "fe301e732a514ec286d6c27d70994344": { + "f0a497561f9e46278d786855f5eaad3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 94ecb8df7..ce137ebae 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:23.680348Z", - "iopub.status.busy": "2024-07-09T06:07:23.679942Z", - "iopub.status.idle": "2024-07-09T06:07:24.840040Z", - "shell.execute_reply": "2024-07-09T06:07:24.839424Z" + "iopub.execute_input": "2024-07-09T06:22:37.993129Z", + "iopub.status.busy": "2024-07-09T06:22:37.992951Z", + "iopub.status.idle": "2024-07-09T06:22:39.161512Z", + "shell.execute_reply": "2024-07-09T06:22:39.160977Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.842750Z", - "iopub.status.busy": "2024-07-09T06:07:24.842323Z", - "iopub.status.idle": "2024-07-09T06:07:24.845243Z", - "shell.execute_reply": "2024-07-09T06:07:24.844804Z" + "iopub.execute_input": "2024-07-09T06:22:39.163953Z", + "iopub.status.busy": "2024-07-09T06:22:39.163675Z", + "iopub.status.idle": "2024-07-09T06:22:39.167013Z", + "shell.execute_reply": "2024-07-09T06:22:39.166442Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.847453Z", - "iopub.status.busy": "2024-07-09T06:07:24.847128Z", - "iopub.status.idle": "2024-07-09T06:07:24.855930Z", - "shell.execute_reply": "2024-07-09T06:07:24.855505Z" + "iopub.execute_input": "2024-07-09T06:22:39.169075Z", + "iopub.status.busy": "2024-07-09T06:22:39.168891Z", + "iopub.status.idle": "2024-07-09T06:22:39.178038Z", + "shell.execute_reply": "2024-07-09T06:22:39.177537Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.857929Z", - "iopub.status.busy": "2024-07-09T06:07:24.857595Z", - "iopub.status.idle": "2024-07-09T06:07:24.862104Z", - "shell.execute_reply": "2024-07-09T06:07:24.861695Z" + "iopub.execute_input": "2024-07-09T06:22:39.180209Z", + "iopub.status.busy": "2024-07-09T06:22:39.179770Z", + "iopub.status.idle": "2024-07-09T06:22:39.185024Z", + "shell.execute_reply": "2024-07-09T06:22:39.184472Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.864146Z", - "iopub.status.busy": "2024-07-09T06:07:24.863823Z", - "iopub.status.idle": "2024-07-09T06:07:25.049949Z", - "shell.execute_reply": "2024-07-09T06:07:25.049442Z" + "iopub.execute_input": "2024-07-09T06:22:39.187067Z", + "iopub.status.busy": "2024-07-09T06:22:39.186875Z", + "iopub.status.idle": "2024-07-09T06:22:39.372545Z", + "shell.execute_reply": "2024-07-09T06:22:39.372057Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.052422Z", - "iopub.status.busy": "2024-07-09T06:07:25.052091Z", - "iopub.status.idle": "2024-07-09T06:07:25.423667Z", - "shell.execute_reply": "2024-07-09T06:07:25.423083Z" + "iopub.execute_input": "2024-07-09T06:22:39.375070Z", + "iopub.status.busy": "2024-07-09T06:22:39.374695Z", + "iopub.status.idle": "2024-07-09T06:22:39.746103Z", + "shell.execute_reply": "2024-07-09T06:22:39.745532Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.426087Z", - "iopub.status.busy": "2024-07-09T06:07:25.425645Z", - "iopub.status.idle": "2024-07-09T06:07:25.428553Z", - "shell.execute_reply": "2024-07-09T06:07:25.428031Z" + "iopub.execute_input": "2024-07-09T06:22:39.748354Z", + "iopub.status.busy": "2024-07-09T06:22:39.747948Z", + "iopub.status.idle": "2024-07-09T06:22:39.750850Z", + "shell.execute_reply": "2024-07-09T06:22:39.750287Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.430704Z", - "iopub.status.busy": "2024-07-09T06:07:25.430393Z", - "iopub.status.idle": "2024-07-09T06:07:25.464950Z", - "shell.execute_reply": "2024-07-09T06:07:25.464317Z" + "iopub.execute_input": "2024-07-09T06:22:39.752967Z", + "iopub.status.busy": "2024-07-09T06:22:39.752650Z", + "iopub.status.idle": "2024-07-09T06:22:39.786581Z", + "shell.execute_reply": "2024-07-09T06:22:39.786005Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.467723Z", - "iopub.status.busy": "2024-07-09T06:07:25.467379Z", - "iopub.status.idle": "2024-07-09T06:07:27.572119Z", - "shell.execute_reply": "2024-07-09T06:07:27.571460Z" + "iopub.execute_input": "2024-07-09T06:22:39.788986Z", + "iopub.status.busy": "2024-07-09T06:22:39.788562Z", + "iopub.status.idle": "2024-07-09T06:22:41.833490Z", + "shell.execute_reply": "2024-07-09T06:22:41.832904Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.574872Z", - "iopub.status.busy": "2024-07-09T06:07:27.574321Z", - "iopub.status.idle": "2024-07-09T06:07:27.593711Z", - "shell.execute_reply": "2024-07-09T06:07:27.593214Z" + "iopub.execute_input": "2024-07-09T06:22:41.836099Z", + "iopub.status.busy": "2024-07-09T06:22:41.835607Z", + "iopub.status.idle": "2024-07-09T06:22:41.853902Z", + "shell.execute_reply": "2024-07-09T06:22:41.853447Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.595950Z", - "iopub.status.busy": "2024-07-09T06:07:27.595603Z", - "iopub.status.idle": "2024-07-09T06:07:27.602371Z", - "shell.execute_reply": "2024-07-09T06:07:27.601951Z" + "iopub.execute_input": "2024-07-09T06:22:41.855942Z", + "iopub.status.busy": "2024-07-09T06:22:41.855674Z", + "iopub.status.idle": "2024-07-09T06:22:41.862009Z", + "shell.execute_reply": "2024-07-09T06:22:41.861577Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.604397Z", - "iopub.status.busy": "2024-07-09T06:07:27.604145Z", - "iopub.status.idle": "2024-07-09T06:07:27.609899Z", - "shell.execute_reply": "2024-07-09T06:07:27.609354Z" + "iopub.execute_input": "2024-07-09T06:22:41.864048Z", + "iopub.status.busy": "2024-07-09T06:22:41.863746Z", + "iopub.status.idle": "2024-07-09T06:22:41.869497Z", + "shell.execute_reply": "2024-07-09T06:22:41.869049Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.612024Z", - "iopub.status.busy": "2024-07-09T06:07:27.611722Z", - "iopub.status.idle": "2024-07-09T06:07:27.622179Z", - "shell.execute_reply": "2024-07-09T06:07:27.621619Z" + "iopub.execute_input": "2024-07-09T06:22:41.871525Z", + "iopub.status.busy": "2024-07-09T06:22:41.871197Z", + "iopub.status.idle": "2024-07-09T06:22:41.881508Z", + "shell.execute_reply": "2024-07-09T06:22:41.881073Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.624399Z", - "iopub.status.busy": "2024-07-09T06:07:27.624005Z", - "iopub.status.idle": "2024-07-09T06:07:27.633408Z", - "shell.execute_reply": "2024-07-09T06:07:27.632881Z" + "iopub.execute_input": "2024-07-09T06:22:41.883405Z", + "iopub.status.busy": "2024-07-09T06:22:41.883229Z", + "iopub.status.idle": "2024-07-09T06:22:41.892315Z", + "shell.execute_reply": "2024-07-09T06:22:41.891876Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.635347Z", - "iopub.status.busy": "2024-07-09T06:07:27.635173Z", - "iopub.status.idle": "2024-07-09T06:07:27.642142Z", - "shell.execute_reply": "2024-07-09T06:07:27.641593Z" + "iopub.execute_input": "2024-07-09T06:22:41.894287Z", + "iopub.status.busy": "2024-07-09T06:22:41.894105Z", + "iopub.status.idle": "2024-07-09T06:22:41.900998Z", + "shell.execute_reply": "2024-07-09T06:22:41.900471Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.644222Z", - "iopub.status.busy": "2024-07-09T06:07:27.643908Z", - "iopub.status.idle": "2024-07-09T06:07:27.653100Z", - "shell.execute_reply": "2024-07-09T06:07:27.652566Z" + "iopub.execute_input": "2024-07-09T06:22:41.903078Z", + "iopub.status.busy": "2024-07-09T06:22:41.902737Z", + "iopub.status.idle": "2024-07-09T06:22:41.912055Z", + "shell.execute_reply": "2024-07-09T06:22:41.911568Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.655280Z", - "iopub.status.busy": "2024-07-09T06:07:27.654836Z", - "iopub.status.idle": "2024-07-09T06:07:27.669689Z", - "shell.execute_reply": "2024-07-09T06:07:27.669228Z" + "iopub.execute_input": "2024-07-09T06:22:41.914091Z", + "iopub.status.busy": "2024-07-09T06:22:41.913764Z", + "iopub.status.idle": "2024-07-09T06:22:41.929676Z", + "shell.execute_reply": "2024-07-09T06:22:41.929121Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index ed81ecff3..957106402 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,49 +727,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1082,7 +1082,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1114,7 +1114,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1146,7 +1146,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1937,35 +1937,35 @@

Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2115,7 +2115,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 40dc490de..7643450d8 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:30.416656Z", - "iopub.status.busy": "2024-07-09T06:07:30.416476Z", - "iopub.status.idle": "2024-07-09T06:07:33.393782Z", - "shell.execute_reply": "2024-07-09T06:07:33.393218Z" + "iopub.execute_input": "2024-07-09T06:22:44.582459Z", + "iopub.status.busy": "2024-07-09T06:22:44.582285Z", + "iopub.status.idle": "2024-07-09T06:22:47.462723Z", + "shell.execute_reply": "2024-07-09T06:22:47.462156Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.396250Z", - "iopub.status.busy": "2024-07-09T06:07:33.395935Z", - "iopub.status.idle": "2024-07-09T06:07:33.399661Z", - "shell.execute_reply": "2024-07-09T06:07:33.399144Z" + "iopub.execute_input": "2024-07-09T06:22:47.465496Z", + "iopub.status.busy": "2024-07-09T06:22:47.464992Z", + "iopub.status.idle": "2024-07-09T06:22:47.468609Z", + "shell.execute_reply": "2024-07-09T06:22:47.468171Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.401587Z", - "iopub.status.busy": "2024-07-09T06:07:33.401397Z", - "iopub.status.idle": "2024-07-09T06:07:45.169276Z", - "shell.execute_reply": "2024-07-09T06:07:45.168703Z" + "iopub.execute_input": "2024-07-09T06:22:47.470675Z", + "iopub.status.busy": "2024-07-09T06:22:47.470354Z", + "iopub.status.idle": "2024-07-09T06:22:59.043271Z", + "shell.execute_reply": "2024-07-09T06:22:59.042771Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd4605541b5149cd9d1ad54f08320d7b", + "model_id": "06dcb12093be456cb352de6ce861659f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "196041f8fc64445d902757f8bc0461b5", + "model_id": "790aee9705fa42f79ce0f8850fc28992", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2bba1ab8083649288982f535f9854291", + "model_id": "215e8fef035f4d37a36a704de452b760", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b922928633d406296c2f7f4a11c363c", + "model_id": "e74d0f623f774aa5a1554c10228f1654", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "65b19b2b747d4d5281997036b3117f72", + "model_id": "f85257acca8547839184b5f056eac10e", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d5400b6588744d192a0e142668a676a", + "model_id": "e9632dad724b4651afed5367d50e22c4", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8d5e4eb0eb4406c95b64e0c2246c01b", + "model_id": "f9b540e1a55a4d16ad1b5a90f594ee47", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4b166c77d384273866541f5ccf30e60", + "model_id": "22b9600afaf14805a96622049f592034", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.171479Z", - "iopub.status.busy": "2024-07-09T06:07:45.171278Z", - "iopub.status.idle": "2024-07-09T06:07:45.175170Z", - "shell.execute_reply": "2024-07-09T06:07:45.174637Z" + "iopub.execute_input": "2024-07-09T06:22:59.045398Z", + "iopub.status.busy": "2024-07-09T06:22:59.045117Z", + "iopub.status.idle": "2024-07-09T06:22:59.048809Z", + "shell.execute_reply": "2024-07-09T06:22:59.048389Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.177179Z", - "iopub.status.busy": "2024-07-09T06:07:45.176847Z", - "iopub.status.idle": "2024-07-09T06:07:56.743400Z", - "shell.execute_reply": "2024-07-09T06:07:56.742700Z" + "iopub.execute_input": "2024-07-09T06:22:59.050786Z", + "iopub.status.busy": "2024-07-09T06:22:59.050475Z", + "iopub.status.idle": "2024-07-09T06:23:10.550360Z", + "shell.execute_reply": "2024-07-09T06:23:10.549830Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e4710c1045041a7af16f0ee012a9646", + "model_id": "4dc3098204c343329173882a90c17240", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:56.746074Z", - "iopub.status.busy": "2024-07-09T06:07:56.745817Z", - "iopub.status.idle": "2024-07-09T06:08:15.057962Z", - "shell.execute_reply": "2024-07-09T06:08:15.057324Z" + "iopub.execute_input": "2024-07-09T06:23:10.553016Z", + "iopub.status.busy": "2024-07-09T06:23:10.552718Z", + "iopub.status.idle": "2024-07-09T06:23:28.623727Z", + "shell.execute_reply": "2024-07-09T06:23:28.623090Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.060710Z", - "iopub.status.busy": "2024-07-09T06:08:15.060486Z", - "iopub.status.idle": "2024-07-09T06:08:15.065482Z", - "shell.execute_reply": "2024-07-09T06:08:15.065002Z" + "iopub.execute_input": "2024-07-09T06:23:28.626614Z", + "iopub.status.busy": "2024-07-09T06:23:28.626243Z", + "iopub.status.idle": "2024-07-09T06:23:28.631908Z", + "shell.execute_reply": "2024-07-09T06:23:28.631461Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.067609Z", - "iopub.status.busy": "2024-07-09T06:08:15.067259Z", - "iopub.status.idle": "2024-07-09T06:08:15.071263Z", - "shell.execute_reply": "2024-07-09T06:08:15.070812Z" + "iopub.execute_input": "2024-07-09T06:23:28.633766Z", + "iopub.status.busy": "2024-07-09T06:23:28.633587Z", + "iopub.status.idle": "2024-07-09T06:23:28.637822Z", + "shell.execute_reply": "2024-07-09T06:23:28.637289Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.073356Z", - "iopub.status.busy": "2024-07-09T06:08:15.072969Z", - "iopub.status.idle": "2024-07-09T06:08:15.081979Z", - "shell.execute_reply": "2024-07-09T06:08:15.081440Z" + "iopub.execute_input": "2024-07-09T06:23:28.640034Z", + "iopub.status.busy": "2024-07-09T06:23:28.639708Z", + "iopub.status.idle": "2024-07-09T06:23:28.648404Z", + "shell.execute_reply": "2024-07-09T06:23:28.647970Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.083945Z", - "iopub.status.busy": "2024-07-09T06:08:15.083772Z", - "iopub.status.idle": "2024-07-09T06:08:15.110709Z", - "shell.execute_reply": "2024-07-09T06:08:15.110077Z" + "iopub.execute_input": "2024-07-09T06:23:28.650474Z", + "iopub.status.busy": "2024-07-09T06:23:28.650156Z", + "iopub.status.idle": "2024-07-09T06:23:28.677896Z", + "shell.execute_reply": "2024-07-09T06:23:28.677458Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.113263Z", - "iopub.status.busy": "2024-07-09T06:08:15.112899Z", - "iopub.status.idle": "2024-07-09T06:08:48.018465Z", - "shell.execute_reply": "2024-07-09T06:08:48.017880Z" + "iopub.execute_input": "2024-07-09T06:23:28.679944Z", + "iopub.status.busy": "2024-07-09T06:23:28.679632Z", + "iopub.status.idle": "2024-07-09T06:24:00.730609Z", + "shell.execute_reply": "2024-07-09T06:24:00.729889Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.828\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.752\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.643\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.660\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6b554b734a6e4e3d9fb6f3ff5d0940c2", + "model_id": "2d1e313f048a4f3a8de23b028b96ac30", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7b6edba21c23485a95c2c8d3aab79786", + "model_id": "2fc5c7705c8a411696033cba51b98414", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.772\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.676\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.618\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.516\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "891956e6cdf34df29d3132aa55b99817", + "model_id": "2441a271713941f58f78b8fda33f4ac6", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "39f435f587fd4607806141736054b6df", + "model_id": "3e2096230a38431c8485c89adab185e8", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.851\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.705\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.922\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.374\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62c3c15d8c074e74816c7b8d0fba7678", + "model_id": "e85162633bd84b0c8065890dd355820b", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6cbd56b47e648efb6391b45895679f0", + "model_id": "b587a2728e9640d8a9ca1b92d99742fb", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.020876Z", - "iopub.status.busy": "2024-07-09T06:08:48.020635Z", - "iopub.status.idle": "2024-07-09T06:08:48.034832Z", - "shell.execute_reply": "2024-07-09T06:08:48.034409Z" + "iopub.execute_input": "2024-07-09T06:24:00.733259Z", + "iopub.status.busy": "2024-07-09T06:24:00.732863Z", + "iopub.status.idle": "2024-07-09T06:24:00.747461Z", + "shell.execute_reply": "2024-07-09T06:24:00.746842Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.036973Z", - "iopub.status.busy": "2024-07-09T06:08:48.036566Z", - "iopub.status.idle": "2024-07-09T06:08:48.515541Z", - "shell.execute_reply": "2024-07-09T06:08:48.514904Z" + "iopub.execute_input": "2024-07-09T06:24:00.750028Z", + "iopub.status.busy": "2024-07-09T06:24:00.749413Z", + "iopub.status.idle": "2024-07-09T06:24:01.220584Z", + "shell.execute_reply": "2024-07-09T06:24:01.220037Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.518205Z", - "iopub.status.busy": "2024-07-09T06:08:48.518003Z", - "iopub.status.idle": "2024-07-09T06:10:24.891504Z", - "shell.execute_reply": "2024-07-09T06:10:24.890865Z" + "iopub.execute_input": "2024-07-09T06:24:01.222996Z", + "iopub.status.busy": "2024-07-09T06:24:01.222634Z", + "iopub.status.idle": "2024-07-09T06:25:37.104449Z", + "shell.execute_reply": "2024-07-09T06:25:37.103860Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1e3abfce0184ef19c5c108ae494316b", + "model_id": "6a90dd6a6a2443a98bde0d45de0efdde", "version_major": 2, "version_minor": 0 }, @@ -1144,10 +1144,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:24.894040Z", - "iopub.status.busy": "2024-07-09T06:10:24.893621Z", - "iopub.status.idle": "2024-07-09T06:10:25.338187Z", - "shell.execute_reply": "2024-07-09T06:10:25.337650Z" + "iopub.execute_input": "2024-07-09T06:25:37.106884Z", + "iopub.status.busy": "2024-07-09T06:25:37.106446Z", + "iopub.status.idle": "2024-07-09T06:25:37.555548Z", + "shell.execute_reply": "2024-07-09T06:25:37.554986Z" } }, "outputs": [ @@ -1293,10 +1293,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.341041Z", - "iopub.status.busy": "2024-07-09T06:10:25.340571Z", - "iopub.status.idle": "2024-07-09T06:10:25.402746Z", - "shell.execute_reply": "2024-07-09T06:10:25.402151Z" + "iopub.execute_input": "2024-07-09T06:25:37.558429Z", + "iopub.status.busy": "2024-07-09T06:25:37.557965Z", + "iopub.status.idle": "2024-07-09T06:25:37.620886Z", + "shell.execute_reply": "2024-07-09T06:25:37.620404Z" } }, "outputs": [ @@ -1400,10 +1400,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.405453Z", - "iopub.status.busy": "2024-07-09T06:10:25.405037Z", - "iopub.status.idle": "2024-07-09T06:10:25.413465Z", - "shell.execute_reply": "2024-07-09T06:10:25.413028Z" + "iopub.execute_input": "2024-07-09T06:25:37.623179Z", + "iopub.status.busy": "2024-07-09T06:25:37.622863Z", + "iopub.status.idle": "2024-07-09T06:25:37.632155Z", + "shell.execute_reply": "2024-07-09T06:25:37.631723Z" } }, "outputs": [ @@ -1533,10 +1533,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.415625Z", - "iopub.status.busy": "2024-07-09T06:10:25.415232Z", - "iopub.status.idle": "2024-07-09T06:10:25.419976Z", - "shell.execute_reply": "2024-07-09T06:10:25.419444Z" + "iopub.execute_input": "2024-07-09T06:25:37.634200Z", + "iopub.status.busy": "2024-07-09T06:25:37.633914Z", + "iopub.status.idle": "2024-07-09T06:25:37.638563Z", + "shell.execute_reply": "2024-07-09T06:25:37.638106Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1582,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.421866Z", - "iopub.status.busy": "2024-07-09T06:10:25.421691Z", - "iopub.status.idle": "2024-07-09T06:10:25.930458Z", - "shell.execute_reply": "2024-07-09T06:10:25.929824Z" + "iopub.execute_input": "2024-07-09T06:25:37.640623Z", + "iopub.status.busy": "2024-07-09T06:25:37.640325Z", + "iopub.status.idle": "2024-07-09T06:25:38.149293Z", + "shell.execute_reply": "2024-07-09T06:25:38.148744Z" } }, "outputs": [ @@ -1620,10 +1620,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.932930Z", - "iopub.status.busy": "2024-07-09T06:10:25.932562Z", - "iopub.status.idle": "2024-07-09T06:10:25.941214Z", - "shell.execute_reply": "2024-07-09T06:10:25.940770Z" + "iopub.execute_input": "2024-07-09T06:25:38.151396Z", + "iopub.status.busy": "2024-07-09T06:25:38.151125Z", + "iopub.status.idle": "2024-07-09T06:25:38.159704Z", + "shell.execute_reply": "2024-07-09T06:25:38.159246Z" } }, "outputs": [ @@ -1790,10 +1790,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.943232Z", - "iopub.status.busy": "2024-07-09T06:10:25.942999Z", - "iopub.status.idle": "2024-07-09T06:10:25.950325Z", - "shell.execute_reply": "2024-07-09T06:10:25.949767Z" + "iopub.execute_input": "2024-07-09T06:25:38.161796Z", + "iopub.status.busy": "2024-07-09T06:25:38.161530Z", + "iopub.status.idle": "2024-07-09T06:25:38.168634Z", + "shell.execute_reply": "2024-07-09T06:25:38.168169Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1869,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.952276Z", - "iopub.status.busy": "2024-07-09T06:10:25.952098Z", - "iopub.status.idle": "2024-07-09T06:10:26.694503Z", - "shell.execute_reply": "2024-07-09T06:10:26.693947Z" + "iopub.execute_input": "2024-07-09T06:25:38.170647Z", + "iopub.status.busy": "2024-07-09T06:25:38.170331Z", + "iopub.status.idle": "2024-07-09T06:25:38.896076Z", + "shell.execute_reply": "2024-07-09T06:25:38.895490Z" } }, "outputs": [ @@ -1909,10 +1909,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.697087Z", - "iopub.status.busy": "2024-07-09T06:10:26.696892Z", - "iopub.status.idle": "2024-07-09T06:10:26.712697Z", - "shell.execute_reply": "2024-07-09T06:10:26.712178Z" + "iopub.execute_input": "2024-07-09T06:25:38.898304Z", + "iopub.status.busy": "2024-07-09T06:25:38.897893Z", + "iopub.status.idle": "2024-07-09T06:25:38.913887Z", + "shell.execute_reply": "2024-07-09T06:25:38.913315Z" } }, "outputs": [ @@ -2069,10 +2069,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.714884Z", - "iopub.status.busy": "2024-07-09T06:10:26.714554Z", - "iopub.status.idle": "2024-07-09T06:10:26.720001Z", - "shell.execute_reply": "2024-07-09T06:10:26.719578Z" + "iopub.execute_input": "2024-07-09T06:25:38.916427Z", + "iopub.status.busy": "2024-07-09T06:25:38.916013Z", + "iopub.status.idle": "2024-07-09T06:25:38.921757Z", + "shell.execute_reply": "2024-07-09T06:25:38.921224Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2117,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.721955Z", - "iopub.status.busy": "2024-07-09T06:10:26.721631Z", - "iopub.status.idle": "2024-07-09T06:10:27.109651Z", - "shell.execute_reply": "2024-07-09T06:10:27.109044Z" + "iopub.execute_input": "2024-07-09T06:25:38.924037Z", + "iopub.status.busy": "2024-07-09T06:25:38.923722Z", + "iopub.status.idle": "2024-07-09T06:25:39.389398Z", + "shell.execute_reply": "2024-07-09T06:25:39.388872Z" } }, "outputs": [ @@ -2202,10 +2202,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.112053Z", - "iopub.status.busy": "2024-07-09T06:10:27.111865Z", - "iopub.status.idle": "2024-07-09T06:10:27.121489Z", - "shell.execute_reply": "2024-07-09T06:10:27.120936Z" + "iopub.execute_input": "2024-07-09T06:25:39.392016Z", + "iopub.status.busy": "2024-07-09T06:25:39.391689Z", + "iopub.status.idle": "2024-07-09T06:25:39.400809Z", + "shell.execute_reply": "2024-07-09T06:25:39.400322Z" } }, "outputs": [ @@ -2230,47 +2230,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2333,10 +2333,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.123756Z", - "iopub.status.busy": "2024-07-09T06:10:27.123578Z", - "iopub.status.idle": "2024-07-09T06:10:27.128344Z", - "shell.execute_reply": "2024-07-09T06:10:27.127804Z" + "iopub.execute_input": "2024-07-09T06:25:39.403252Z", + "iopub.status.busy": "2024-07-09T06:25:39.402932Z", + "iopub.status.idle": "2024-07-09T06:25:39.408523Z", + "shell.execute_reply": "2024-07-09T06:25:39.408038Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2373,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.130472Z", - "iopub.status.busy": "2024-07-09T06:10:27.130300Z", - "iopub.status.idle": "2024-07-09T06:10:27.307299Z", - "shell.execute_reply": "2024-07-09T06:10:27.306712Z" + "iopub.execute_input": "2024-07-09T06:25:39.410787Z", + "iopub.status.busy": "2024-07-09T06:25:39.410472Z", + "iopub.status.idle": "2024-07-09T06:25:39.613099Z", + "shell.execute_reply": "2024-07-09T06:25:39.612513Z" } }, "outputs": [ @@ -2418,10 +2418,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.309453Z", - "iopub.status.busy": "2024-07-09T06:10:27.309267Z", - "iopub.status.idle": "2024-07-09T06:10:27.317287Z", - "shell.execute_reply": "2024-07-09T06:10:27.316770Z" + "iopub.execute_input": "2024-07-09T06:25:39.615178Z", + "iopub.status.busy": "2024-07-09T06:25:39.615000Z", + "iopub.status.idle": "2024-07-09T06:25:39.623056Z", + "shell.execute_reply": "2024-07-09T06:25:39.622584Z" } }, "outputs": [ @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.319255Z", - "iopub.status.busy": "2024-07-09T06:10:27.319003Z", - "iopub.status.idle": "2024-07-09T06:10:27.489162Z", - "shell.execute_reply": "2024-07-09T06:10:27.488581Z" + "iopub.execute_input": "2024-07-09T06:25:39.624851Z", + "iopub.status.busy": "2024-07-09T06:25:39.624680Z", + "iopub.status.idle": "2024-07-09T06:25:39.818392Z", + "shell.execute_reply": "2024-07-09T06:25:39.817872Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.491411Z", - "iopub.status.busy": "2024-07-09T06:10:27.491227Z", - "iopub.status.idle": "2024-07-09T06:10:27.495468Z", - "shell.execute_reply": "2024-07-09T06:10:27.494923Z" + "iopub.execute_input": "2024-07-09T06:25:39.820461Z", + "iopub.status.busy": "2024-07-09T06:25:39.820284Z", + "iopub.status.idle": "2024-07-09T06:25:39.824833Z", + "shell.execute_reply": "2024-07-09T06:25:39.824377Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2590,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00bb56c3f68a4c468fa0c17bd9c4777a": { + "0048ce4822394612977d54522f371396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03645e2db82a48cea591a8ecc43409ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "048da9b24b0844fdaaadce1da85d3915": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2679,72 @@ "width": null } }, - "00d54377b2e443bdb88c0393deaac935": { + "04cca25384c24b1c94d911de385adc2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7175568282174c17aabd5b48f20140b2", + "placeholder": "​", + "style": "IPY_MODEL_803df58ad8f246a7aa7af05b01bbbdd2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0640dc756fe54e39ba89546a15f279be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06dcb12093be456cb352de6ce861659f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8381331e81c54cd79cb929ba488eab91", + "IPY_MODEL_a81bc963e07b4ca2a4b8dde6b946165b", + "IPY_MODEL_4886dc2baffe47ecb690143c953f17a9" + ], + "layout": "IPY_MODEL_fd9234c25dae4c37a35f1e4d52af48c6", + "tabbable": null, + "tooltip": null + } + }, + "07de4e87697443a892880c15d1e511c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,30 +2797,23 @@ "width": null } }, - "01d6ba701f1e47b693b47938240dfc44": { + "086f6f5b94bf449da8bf7c1157f5c8a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4eb9a8fc2a49139695cf9c6270a915", - "placeholder": "​", - "style": "IPY_MODEL_dc13e0ad81f143a2b5d4c0a44532f5b5", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1312.46it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "01ecc56aeeab431f9b9070473e2195df": { + "0a5df6da0ddb43b7937c82e97c6d8d54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,33 +2866,7 @@ "width": null } }, - "03823f9501e94f56beacf1613576e9dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132dc7af6bdb48ac9a6f0c3fd813002f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5f09acaac394bb5bdceb2dc492585cb", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "04be2e19fc3542cba1d0cb7b9b407a95": { + "0b18d70977e84a5b881906cb08d32a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2816,7 +2884,60 @@ "text_color": null } }, - "069041277d62430c89d63c6ea9627b6a": { + "0b3fb420b49940f589e153c0d5c3fdec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d1066339f76479d8d58e5ae35748f5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2831,15 +2952,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e416714bbcb4438b9179a39662ae3c9d", + "layout": "IPY_MODEL_15c58bf8ec2c41c58fdc7ce58a27b6fd", "placeholder": "​", - "style": "IPY_MODEL_5c28da92a87748afb024889018deb170", + "style": "IPY_MODEL_5a7bae3cefc94a02b58e9ad0e52aacfa", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.37MB/s]" + "value": "Downloading data: 100%" } }, - "075db8536d174c2c9ea47cd94e70d981": { + "13c0b9289c5e4e8f92a21c0307aae6db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2857,7 +2978,7 @@ "text_color": null } }, - "0f8c591a5a474389ba8bdbce5f559954": { + "140978469fad46c2b6b98809eddb12e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2910,23 +3031,30 @@ "width": null } }, - "131b0789bcf143a599cbd6e57b98a768": { + "1524351aaa084a11ad505c11404bdbea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8df85e649d6248f69af1b8b2c06dc535", + "placeholder": "​", + "style": "IPY_MODEL_2b0a6e80cee24c8d92776690977c796c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.34it/s]" } }, - "132dc7af6bdb48ac9a6f0c3fd813002f": { + "15c58bf8ec2c41c58fdc7ce58a27b6fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2979,30 +3107,7 @@ "width": null } }, - "1347b08ce056434db43829c852acae6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df1f220280f9444e97bb1f2206036724", - "placeholder": "​", - "style": "IPY_MODEL_228decf3fc7b4b14998553b0f2546e6d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 107MB/s]" - } - }, - "1706e87bbedf4666b19fb67afd605807": { + "160801910dde40a3bc9f92bb4e901944": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3055,7 +3160,23 @@ "width": null } }, - "17bfd66f1c9b453f99645c87eb6daec1": { + "19246b6d91f14aaa9f10d7cb83049531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19a410fe62c9469fbbfdb218f3a51fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3070,55 +3191,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2fc5097f7a2449695b74f340b163dbd", + "layout": "IPY_MODEL_508d1420c3244c5c83b9ed16155ada6e", "placeholder": "​", - "style": "IPY_MODEL_d596fca544e54787848bb610c63e3218", + "style": "IPY_MODEL_336fcd5623114b3099304ef7c8d0fd99", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + "value": " 4/4 [00:00<00:00, 1277.68it/s]" } }, - "18c247743d574b23859f998162e74050": { + "1a69c5c720624a26a9ef7b1cf11811fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "196041f8fc64445d902757f8bc0461b5": { + "1a70726215b842018678da6d06100009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9a72ec9f2e6549f79a8b592fdf22dc2e", - "IPY_MODEL_a9cebeca318244728411d7a1bbbcfdcd", - "IPY_MODEL_55bf2248b3bc475c842bccc8c8152be0" - ], - "layout": "IPY_MODEL_cb4004f3b5e94f01b3f04c2f61489f80", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "19d308a458ec4a08b9d2bad00f5870f3": { + "1c78106bc0d64791b1920a0bba595880": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,47 +3286,7 @@ "width": null } }, - "1bc1f27f582a448a8c9266309f30be75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1d5400b6588744d192a0e142668a676a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c3da49dd6970428a9727fd888d6a07ee", - "IPY_MODEL_ebf23d88069d459aae84207ff5363fab", - "IPY_MODEL_17bfd66f1c9b453f99645c87eb6daec1" - ], - "layout": "IPY_MODEL_4ebecbf20fe3449fba89b686ed581905", - "tabbable": null, - "tooltip": null - } - }, - "1df9db75114848a59f7fdd0ce91a687a": { + "1d30818e74e74811938c25e51402dba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,96 +3339,46 @@ "width": null } }, - "21206f0ccea44b46b11d0821d3cdadbe": { + "1e43c58cbb0d4962913d5ebbcdf1554a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2eb285ef00d8424b940fcd52e171abf0", + "placeholder": "​", + "style": "IPY_MODEL_d5a9c110896c475face60d8f33b9046c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "228decf3fc7b4b14998553b0f2546e6d": { + "1f62a32153e44d988bd8265c95d6522b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "240c2ebe5dc54104a1f10d985ffba975": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "bar_color": null, + "description_width": "" } }, - "2449bbbcd46a43e6aae3c8afbb81bdb3": { + "209c42932bea4cfc866adc42d1e0bc34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3371,7 +3396,7 @@ "text_color": null } }, - "2574510c0f7f417e8dfc009e4994bec3": { + "20a3b73248e646e4993c7afc88dc3bb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3386,74 +3411,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ea5cb47ef6f4603b0653421aab46523", + "layout": "IPY_MODEL_9954def9bc864f319508e65fe36fe98b", "placeholder": "​", - "style": "IPY_MODEL_66c810aedffc439696fd6bacef156446", + "style": "IPY_MODEL_1a69c5c720624a26a9ef7b1cf11811fb", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "26b1a5eb544f41938059bcde43ece5ec": { + "215e8fef035f4d37a36a704de452b760": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1706e87bbedf4666b19fb67afd605807", - "placeholder": "​", - "style": "IPY_MODEL_88cbcf1a55e0425d8c8c3c335d271c37", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e89a1ca0e0b746b0b9349efd7a426e3f", + "IPY_MODEL_5bf0bcb594a046af91590125b69df952", + "IPY_MODEL_4d61ebc6154b44ea91518cfb38cf00b9" + ], + "layout": "IPY_MODEL_7eb94f5f7a9746bfbb719504013c7326", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.87it/s]" - } - }, - "28443daff12b402baed64f1b5d0fc8e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "28f8261f18b84882ba428c63eace54e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "29170a403a424dcfacc506b91190a1dc": { + "2183a55cd7d345069c3ac605305b0edb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3471,7 +3461,7 @@ "text_color": null } }, - "298221d0cc1446ce993bdb7c7803efb8": { + "21e26b29d83741a0ac17ca8718fb5ef5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3524,71 +3514,7 @@ "width": null } }, - "2a2dc27f67c34e2982043a2f79c14de3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2bba1ab8083649288982f535f9854291": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7517aec27ff84cf4adb25156adf9883c", - "IPY_MODEL_54c6bc5d398440fe8ad2de672c36b9ae", - "IPY_MODEL_1347b08ce056434db43829c852acae6f" - ], - "layout": "IPY_MODEL_00d54377b2e443bdb88c0393deaac935", - "tabbable": null, - "tooltip": null - } - }, - "2e4710c1045041a7af16f0ee012a9646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b385c56f713245438f036b829b7057eb", - "IPY_MODEL_a9e6164c82aa48da9b7f39e1e8611e10", - "IPY_MODEL_4aaa65f93be449728c2f251b5174dd7d" - ], - "layout": "IPY_MODEL_79d18d37893e49a38abd5c29b0b4f81e", - "tabbable": null, - "tooltip": null - } - }, - "2f4eb9a8fc2a49139695cf9c6270a915": { + "2221768dfac3448cabb0bbf2bb0d5d7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3641,7 +3567,31 @@ "width": null } }, - "2fa3f38780ca4859b7969d5d2a4fcd61": { + "22b9600afaf14805a96622049f592034": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d81d5ebb400493cbbee965c4f1d82c3", + "IPY_MODEL_c25be99949354d9b93261eb01cd7f371", + "IPY_MODEL_3f09c19718b949a48059dec191d9df88" + ], + "layout": "IPY_MODEL_2a8e473785f54b5380a3af0bd5ee8ec5", + "tabbable": null, + "tooltip": null + } + }, + "2397a262e2ab4faaa19c65aadd199f4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3656,15 +3606,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ad393e55e6bf45c8b5e243058a28d53f", + "layout": "IPY_MODEL_7c7a25483bae4f619cfe4afba2815a1e", "placeholder": "​", - "style": "IPY_MODEL_6fb209a0dcd9424dbd5459259cf91e81", + "style": "IPY_MODEL_24343e388fcd48f38c917201d72dce78", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.91it/s]" + "value": " 40/40 [00:00<00:00, 66.55it/s]" } }, - "3174d80e40c24cac9b15db890d599220": { + "24133d82571542d193f42c0273b76a7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3717,91 +3667,67 @@ "width": null } }, - "325cae4479044735a8d7717951188993": { + "24343e388fcd48f38c917201d72dce78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "33cdba775984444396b1d4c9f0a95c94": { + "2441a271713941f58f78b8fda33f4ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39a6f7c0982449d28b821be6784720b2", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44680a52cd6e4c6aa0004d8a0bd638a8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49f26873e5144310b3a59d54e3402106", + "IPY_MODEL_fe504683f63741bdac7f7f37aacf03d2", + "IPY_MODEL_8c5b91a2c962426c9d74153961b3f44d" + ], + "layout": "IPY_MODEL_b391fb64df85406aa863198b38de27eb", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "3522c629e18843719c6dbc2cad7d7fc4": { + "273c6aaed1d14c19893916ddb87297a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "359b79f7c9b0473b9551b61fbe8b7e7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e02cdb3570024c49bb96ffcbc8948970", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6feb8a8c3d3a4938bea5e24915a122fb", - "tabbable": null, - "tooltip": null, - "value": 29515.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "368cc0e1d6734409878e33ca4d54012a": { + "2a8e473785f54b5380a3af0bd5ee8ec5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3780,49 @@ "width": null } }, - "38b582305d03499a81383d2c820015ba": { + "2b0a6e80cee24c8d92776690977c796c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2d1e313f048a4f3a8de23b028b96ac30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01a831193cb480fa8538ccac1625826", + "IPY_MODEL_7c16646bae234611b7eed4f389c43a78", + "IPY_MODEL_1524351aaa084a11ad505c11404bdbea" + ], + "layout": "IPY_MODEL_5e63e2472a434921a76445a39db78557", + "tabbable": null, + "tooltip": null + } + }, + "2eb285ef00d8424b940fcd52e171abf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,7 +3875,31 @@ "width": null } }, - "39a6f7c0982449d28b821be6784720b2": { + "2fc5c7705c8a411696033cba51b98414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_380f5576d14c4aa3957661b21a817720", + "IPY_MODEL_c5e5cf9a26c0498cbbbc47b2b513a358", + "IPY_MODEL_67bcc9c1c8ee40d6910452f187311cd2" + ], + "layout": "IPY_MODEL_512f0fdef9fd429cad8c5f4ed2059739", + "tabbable": null, + "tooltip": null + } + }, + "3352d2afb83f411eb34ef57cd4914610": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3960,31 +3952,7 @@ "width": null } }, - "39f435f587fd4607806141736054b6df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e1e3e01b912477595f0702fa3d3043b", - "IPY_MODEL_be3f3fec721448b1942e5f66a28630e9", - "IPY_MODEL_2fa3f38780ca4859b7969d5d2a4fcd61" - ], - "layout": "IPY_MODEL_3174d80e40c24cac9b15db890d599220", - "tabbable": null, - "tooltip": null - } - }, - "3b6fd5946d154ca3b3c1477ecd5510ab": { + "336fcd5623114b3099304ef7c8d0fd99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4002,31 +3970,7 @@ "text_color": null } }, - "3b922928633d406296c2f7f4a11c363c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd5289f0713644e7a085dd0fa5a5b4a7", - "IPY_MODEL_359b79f7c9b0473b9551b61fbe8b7e7d", - "IPY_MODEL_069041277d62430c89d63c6ea9627b6a" - ], - "layout": "IPY_MODEL_6a1e82417b0d4e5bb80cf02543cd79ff", - "tabbable": null, - "tooltip": null - } - }, - "3bf0b89a3d92407d832df29196d61ea2": { + "3382045b67e54a7092879295b3f663f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4079,7 +4023,7 @@ "width": null } }, - "3cc740083d8443cba7eb914038225918": { + "345c5ca93fa94badbbf86dcc2fde77a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4094,33 +4038,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b6286c3ea93414bb16571506e25d347", + "layout": "IPY_MODEL_408df73b367a48808418e0ac16815aef", "placeholder": "​", - "style": "IPY_MODEL_eb2f621f64a84dc8bd2155d241bd5e62", + "style": "IPY_MODEL_fd5d6bff1fad4857abafef9b11b3dfe4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.56it/s]" + "value": " 40/40 [00:00<00:00, 60.26it/s]" } }, - "3e69f9cf29d34cc381b10a6789979acf": { + "36e9f11e672e4c928d6b86537f21d20f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "426a8afc214b479baaeb9e8377e0f0d4": { + "380f5576d14c4aa3957661b21a817720": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4135,57 +4077,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1df9db75114848a59f7fdd0ce91a687a", + "layout": "IPY_MODEL_3a15e0a1dbb8487daf29b7db56d34511", "placeholder": "​", - "style": "IPY_MODEL_21206f0ccea44b46b11d0821d3cdadbe", + "style": "IPY_MODEL_b0b21430f5b9446195933039b4632b6f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8649.10 examples/s]" + "value": "100%" } }, - "44680a52cd6e4c6aa0004d8a0bd638a8": { + "3956333acd4649dd8a66f905633d9a1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "44f00a50f1674a53a847ced00a1a1aa8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4aae17914634179ba6ea992729761fb", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_18c247743d574b23859f998162e74050", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "470825afc5e34409afa12f9805c6eba9": { + "3a15e0a1dbb8487daf29b7db56d34511": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4238,25 +4156,7 @@ "width": null } }, - "49cd0886c40048d5b78db2aa719fc1d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4aaa65f93be449728c2f251b5174dd7d": { + "3a97aab207204e0fb9a0b492587021ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4271,54 +4171,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcec722d627145cf96d7bad0f67e25d9", + "layout": "IPY_MODEL_a8ef0954dcca4870a833eda0e973e2a0", "placeholder": "​", - "style": "IPY_MODEL_8a076d7eb59e4537abfac89fa37372e4", + "style": "IPY_MODEL_6a37073f2b7d4c349bb87cb4719c587d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 4855.77 examples/s]" + "value": "Downloading data: 100%" } }, - "4ab3adf0bd104266a806b7d828f8ca0b": { + "3c579cf673fd400b97b03f32b9b95e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4b257b19650e432a91a32e404b137423": { + "3cf5000751a1413faba426291a215dff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c6d8c2c52594f15b9ce9a2fff3b28d0", - "placeholder": "​", - "style": "IPY_MODEL_d5b1e2ede532485f989cdd9654c0c392", + "layout": "IPY_MODEL_a035588db59040fda6d47042d64418a5", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8995f1250ad74a90bfc13b5eff00a2fd", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 29515.0 + } + }, + "3e2096230a38431c8485c89adab185e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5970145c544541c3a0c064690e3b8bc8", + "IPY_MODEL_dde263477419437a9af2ca03171dadcd", + "IPY_MODEL_2397a262e2ab4faaa19c65aadd199f4d" + ], + "layout": "IPY_MODEL_634d98e457d644a884fc562b0b5d877b", + "tabbable": null, + "tooltip": null } }, - "4b27bedd5f134f52a7334e3638e784cb": { + "3e9e0a7872664289907ea9b2a0c0f428": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4371,8 +4300,31 @@ "width": null } }, - "4b6286c3ea93414bb16571506e25d347": { - "model_module": "@jupyter-widgets/base", + "3f09c19718b949a48059dec191d9df88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6ef56fd6db2466da0273fed8540bed9", + "placeholder": "​", + "style": "IPY_MODEL_5edfca35fc1e45d7850bbe3d5ac2afb4", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8732.57 examples/s]" + } + }, + "3f14c7dcb14b4ff9b9a6110a6ebeea9a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -4424,7 +4376,23 @@ "width": null } }, - "4c10d499b1454a9db990b1eee7d30416": { + "3faa0e46f82e4e81b929be6c700311ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "408df73b367a48808418e0ac16815aef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4477,7 +4445,7 @@ "width": null } }, - "4ebecbf20fe3449fba89b686ed581905": { + "436dcfd1d6524d58997ebd20abd27ac3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4530,7 +4498,67 @@ "width": null } }, - "50962242a0be4c5fb1f19bd9ba3796a1": { + "440697a08c6346efa46be2fb03bac8e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4586a50b001c47b39290a335d19b949d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a5df6da0ddb43b7937c82e97c6d8d54", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a70726215b842018678da6d06100009", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "4803cfdca0f84916a50f60b8c4611a48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48054868536d4802a306884dbdf93ced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4546,7 +4574,100 @@ "description_width": "" } }, - "50b772c22a484ec39d88b6aca3ce2b03": { + "4886dc2baffe47ecb690143c953f17a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21e26b29d83741a0ac17ca8718fb5ef5", + "placeholder": "​", + "style": "IPY_MODEL_0048ce4822394612977d54522f371396", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 627kB/s]" + } + }, + "49f26873e5144310b3a59d54e3402106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3382045b67e54a7092879295b3f663f8", + "placeholder": "​", + "style": "IPY_MODEL_dc05e2e419574abb89ddec85c5fcc81d", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4d61ebc6154b44ea91518cfb38cf00b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c670dd237db04ca9a6e63e4d35cecdb4", + "placeholder": "​", + "style": "IPY_MODEL_0b18d70977e84a5b881906cb08d32a0b", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 105MB/s]" + } + }, + "4dc3098204c343329173882a90c17240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e43c58cbb0d4962913d5ebbcdf1554a", + "IPY_MODEL_6968618e0c5047b4ace24b3be9d82b40", + "IPY_MODEL_5522e860260648818409cb45e8e8fe97" + ], + "layout": "IPY_MODEL_d83e3a00a6514bd7867d7bbbe2edf9f5", + "tabbable": null, + "tooltip": null + } + }, + "508d1420c3244c5c83b9ed16155ada6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4599,7 +4720,7 @@ "width": null } }, - "52ea11b6adb8407e88b4de65546300dd": { + "512f0fdef9fd429cad8c5f4ed2059739": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4652,7 +4773,7 @@ "width": null } }, - "54c6bc5d398440fe8ad2de672c36b9ae": { + "51598d19ee6b4333a63b1d6da5fa14e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4668,40 +4789,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01ecc56aeeab431f9b9070473e2195df", - "max": 26421880.0, + "layout": "IPY_MODEL_a7643f32743c4af6897aa249c9d0be2f", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3522c629e18843719c6dbc2cad7d7fc4", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "55bf2248b3bc475c842bccc8c8152be0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58285b3b0ec3462d94bb77a7c7b43914", - "placeholder": "​", - "style": "IPY_MODEL_b8a9635845a942c4b071429b568defb1", + "style": "IPY_MODEL_36e9f11e672e4c928d6b86537f21d20f", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.39MB/s]" + "value": 60000.0 } }, - "57b1914593884597ab649943b81cf1e8": { + "517e9a88dd474cac8c7f7723d261a5fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4754,7 +4852,56 @@ "width": null } }, - "581b0a844bed446d8fcd2fd92a517bb6": { + "5522e860260648818409cb45e8e8fe97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5aee2c22e48477b9f398e4ad03d9e34", + "placeholder": "​", + "style": "IPY_MODEL_dd31c22f11524a368f9eb1cd18be16f2", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7326.12 examples/s]" + } + }, + "5789650eb64d4dbab1f8c667a5fd4cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed9503bde9bc41e0912e3c94c2a43266", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3faa0e46f82e4e81b929be6c700311ef", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "59346cab1ea9483584b6020a911d0be8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4807,86 +4954,30 @@ "width": null } }, - "58285b3b0ec3462d94bb77a7c7b43914": { - "model_module": "@jupyter-widgets/base", + "5970145c544541c3a0c064690e3b8bc8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5aa1f846986f48738dc22ad6b5fc5eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e6d9becff77b42d59be635fa6580a8e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_325cae4479044735a8d7717951188993", + "layout": "IPY_MODEL_6c31a58fa1bb416c8d82c1038eab5edc", + "placeholder": "​", + "style": "IPY_MODEL_9266dd3df82b430c88bf828066284aab", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "5c28da92a87748afb024889018deb170": { + "5a7bae3cefc94a02b58e9ad0e52aacfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4904,60 +4995,33 @@ "text_color": null } }, - "5f5ef63b6a614a69883bfa94a9302743": { - "model_module": "@jupyter-widgets/base", + "5bf0bcb594a046af91590125b69df952": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d2d50b86148485fb3e3884e2b2bbf34", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6cdfc2ba48ab4f3a9a18b3b28c17641a", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "609338d8355747b9bd1491ce89b327f5": { + "5d4e96503b8040e196dd68f00001b30a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5010,31 +5074,23 @@ "width": null } }, - "62c3c15d8c074e74816c7b8d0fba7678": { + "5dcfa0777e6540998053e4a29b29b806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df585fd875034d5cae08c4684ad20c2f", - "IPY_MODEL_ff5dd94e778e4a3a9a4f34a8b29844b2", - "IPY_MODEL_3cc740083d8443cba7eb914038225918" - ], - "layout": "IPY_MODEL_891a944220b3422db752100ab9244125", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "630337ea4da741c9ae70a52fa0e78a29": { + "5e63e2472a434921a76445a39db78557": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5087,31 +5143,33 @@ "width": null } }, - "65b19b2b747d4d5281997036b3117f72": { + "5ea8be39dce64842a42fe020b19fc090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_71842d6d22e64009a0383929004a685e", - "IPY_MODEL_ec65d1696272499aae2176b681d4abeb", - "IPY_MODEL_873b3e16fd5c47d1ac1a455bab6f19c9" - ], - "layout": "IPY_MODEL_c5b34df732014977a42409332881088e", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f537f948c654bed919b428785993db0", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_76b1d6ca14ca4c4d962e620e94507dff", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "66c810aedffc439696fd6bacef156446": { + "5edfca35fc1e45d7850bbe3d5ac2afb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5129,30 +5187,25 @@ "text_color": null } }, - "678ad1f4e5ca473e8370433fa2fc17b1": { + "612489c1401e49c9bb846fee02bd9f6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00bb56c3f68a4c468fa0c17bd9c4777a", - "placeholder": "​", - "style": "IPY_MODEL_9bfbe5f7520948028e0423e3a007e614", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68f7c63cc3134dab9aed0bfa7436f944": { + "6198d3b6f1a04ba4a34a5d2018c9b155": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5205,7 +5258,7 @@ "width": null } }, - "6a1e82417b0d4e5bb80cf02543cd79ff": { + "634d98e457d644a884fc562b0b5d877b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5258,75 +5311,106 @@ "width": null } }, - "6b5517a69839448db9d026068acf99a3": { + "63ef519d04dc4bbd9c67f568f10d54d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82cb4f38207f47d5b97c3ecb4462795c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_131b0789bcf143a599cbd6e57b98a768", + "layout": "IPY_MODEL_24133d82571542d193f42c0273b76a7d", + "placeholder": "​", + "style": "IPY_MODEL_801840cd919742fdbe5c2e8072b678cd", "tabbable": null, "tooltip": null, - "value": 4.0 + "value": "Downloading readme: 100%" } }, - "6b554b734a6e4e3d9fb6f3ff5d0940c2": { - "model_module": "@jupyter-widgets/controls", + "66f7cb4e6bf441a09c4dc48e13bc4fc0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2574510c0f7f417e8dfc009e4994bec3", - "IPY_MODEL_5aa1f846986f48738dc22ad6b5fc5eb9", - "IPY_MODEL_26b1a5eb544f41938059bcde43ece5ec" - ], - "layout": "IPY_MODEL_630337ea4da741c9ae70a52fa0e78a29", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6d04fdcfce89428dbf6319ffe1ba350f": { + "67bcc9c1c8ee40d6910452f187311cd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa87a07117a74232955cb6e2e8b66aa9", + "placeholder": "​", + "style": "IPY_MODEL_3c579cf673fd400b97b03f32b9b95e1d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.84it/s]" } }, - "6d5c548246bf4bdbb636d3a3766345a4": { + "6968618e0c5047b4ace24b3be9d82b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5342,17 +5426,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_733bc7ecc3ea4fc398ecd2611d214af7", + "layout": "IPY_MODEL_59346cab1ea9483584b6020a911d0be8", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1bc1f27f582a448a8c9266309f30be75", + "style": "IPY_MODEL_4803cfdca0f84916a50f60b8c4611a48", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "6e6489c700d54df69ff90b573c906911": { + "6a0d54aeee9e43a2a6613a32708b583c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5405,65 +5489,12 @@ "width": null } }, - "6ea5cb47ef6f4603b0653421aab46523": { - "model_module": "@jupyter-widgets/base", + "6a37073f2b7d4c349bb87cb4719c587d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6fb209a0dcd9424dbd5459259cf91e81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, @@ -5476,46 +5507,31 @@ "text_color": null } }, - "6feb8a8c3d3a4938bea5e24915a122fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "71842d6d22e64009a0383929004a685e": { + "6a90dd6a6a2443a98bde0d45de0efdde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68f7c63cc3134dab9aed0bfa7436f944", - "placeholder": "​", - "style": "IPY_MODEL_bf849ce1955e49498468867578cb2b82", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_702d10c13f464c7f9144c3ec519a43d5", + "IPY_MODEL_51598d19ee6b4333a63b1d6da5fa14e0", + "IPY_MODEL_f8b91b2b5043498da2181511d46d09c8" + ], + "layout": "IPY_MODEL_6ff8decb43474cec8270bc1aef096a09", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "721e1e458b6f49229779a9de4609ca92": { + "6c31a58fa1bb416c8d82c1038eab5edc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5568,7 +5584,7 @@ "width": null } }, - "733bc7ecc3ea4fc398ecd2611d214af7": { + "6cd8c1cd5f2447968f787deb71aa5bd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5621,30 +5637,7 @@ "width": null } }, - "7517aec27ff84cf4adb25156adf9883c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c436f7262e954289901a6f4e89035f4d", - "placeholder": "​", - "style": "IPY_MODEL_92f6dc8906c04997862913bc427ad476", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "7556d3f58c814407862942b3f781e8a6": { + "6cdfc2ba48ab4f3a9a18b3b28c17641a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5660,7 +5653,7 @@ "description_width": "" } }, - "77ba2f60a09d41d3a6e43c6821ec0634": { + "6f537f948c654bed919b428785993db0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5713,7 +5706,7 @@ "width": null } }, - "7816d15cde184da3b4900d3062e666d2": { + "6ff8decb43474cec8270bc1aef096a09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5766,25 +5759,30 @@ "width": null } }, - "79c09ae007724b7da175f15e77c939b5": { + "702d10c13f464c7f9144c3ec519a43d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc0cfa74fd9b478baa3776548265f98f", + "placeholder": "​", + "style": "IPY_MODEL_273c6aaed1d14c19893916ddb87297a8", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "79d18d37893e49a38abd5c29b0b4f81e": { + "7175568282174c17aabd5b48f20140b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5837,7 +5835,91 @@ "width": null } }, - "79e3577f86234a258c9acd26c706e0ff": { + "76b1d6ca14ca4c4d962e620e94507dff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "76d4d52a162a40a6aad6c51613675dd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "790aee9705fa42f79ce0f8850fc28992": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63ef519d04dc4bbd9c67f568f10d54d8", + "IPY_MODEL_7dbb1c566226438c82092b5954494254", + "IPY_MODEL_91cb9b53980c47cd817c545014defd09" + ], + "layout": "IPY_MODEL_9fa40d4368164452af5dec4576e541a7", + "tabbable": null, + "tooltip": null + } + }, + "7c16646bae234611b7eed4f389c43a78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9afd660dbeb04470a375320dc78c044c", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_48054868536d4802a306884dbdf93ced", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "7c7a25483bae4f619cfe4afba2815a1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5890,31 +5972,23 @@ "width": null } }, - "7b6edba21c23485a95c2c8d3aab79786": { + "7d3d1214cad84f609b2ae65551813ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba73c157fdb94c65b92dba1069f61646", - "IPY_MODEL_81c0397a4d694cb2b7b9202a67b12054", - "IPY_MODEL_a07c4d7451e740a3b7cfc737ab615ac9" - ], - "layout": "IPY_MODEL_be7e225c537c47daaef5f0ac239d1f05", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "80c62a5efa2b42ce85de10d4f9638e15": { + "7d81d5ebb400493cbbee965c4f1d82c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5929,33 +6003,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed87086cfa9c41729602000b60ca20f5", + "layout": "IPY_MODEL_f74501f2cd3a424a9fd976bc8add6990", "placeholder": "​", - "style": "IPY_MODEL_a262c4ae9287449fa95c34bde946bb1d", + "style": "IPY_MODEL_8689ad17b83c46c1ab297ec243208f64", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.48it/s]" - } - }, - "81af3bb4d3be46abb3e8fec013b0ab4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating test split: 100%" } }, - "81c0397a4d694cb2b7b9202a67b12054": { + "7dbb1c566226438c82092b5954494254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5971,17 +6027,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_470825afc5e34409afa12f9805c6eba9", - "max": 40.0, + "layout": "IPY_MODEL_6cd8c1cd5f2447968f787deb71aa5bd8", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4ab3adf0bd104266a806b7d828f8ca0b", + "style": "IPY_MODEL_e73b799b5ff64804a99810863c6f0533", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 8845.0 } }, - "8253cf2e395646f0a170750f8c426d62": { + "7eb94f5f7a9746bfbb719504013c7326": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6034,83 +6090,59 @@ "width": null } }, - "82cb4f38207f47d5b97c3ecb4462795c": { - "model_module": "@jupyter-widgets/base", + "801840cd919742fdbe5c2e8072b678cd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "833c213f3dfb4616b0ac1c52e439ec3e": { + "803df58ad8f246a7aa7af05b01bbbdd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff23c9d5761b436eb1d73a55e8f32ea8", - "placeholder": "​", - "style": "IPY_MODEL_8dfdad83c03f4aa08bc19fe37e73bb03", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "805ea7e6fe75453dab92e83969f8fe93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "873b3e16fd5c47d1ac1a455bab6f19c9": { + "82fc78533dbc46d08a781919716d2335": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6125,57 +6157,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f5ef63b6a614a69883bfa94a9302743", + "layout": "IPY_MODEL_5d4e96503b8040e196dd68f00001b30a", "placeholder": "​", - "style": "IPY_MODEL_075db8536d174c2c9ea47cd94e70d981", + "style": "IPY_MODEL_0640dc756fe54e39ba89546a15f279be", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 68.4MB/s]" - } - }, - "88cbcf1a55e0425d8c8c3c335d271c37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating train split: 100%" } }, - "891956e6cdf34df29d3132aa55b99817": { + "8381331e81c54cd79cb929ba488eab91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4b257b19650e432a91a32e404b137423", - "IPY_MODEL_cf2c1748546e4ac4918f44c9de22b1d4", - "IPY_MODEL_a9fbbe85922f431a91157ec285ca35be" - ], - "layout": "IPY_MODEL_9608c18d1d874f2a9e8d6ff6a53ac7ef", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_048da9b24b0844fdaaadce1da85d3915", + "placeholder": "​", + "style": "IPY_MODEL_612489c1401e49c9bb846fee02bd9f6d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "891a944220b3422db752100ab9244125": { + "85ab7c6aa7b341d69b9dc923ebdfa7c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6228,7 +6241,25 @@ "width": null } }, - "89b3cf05a743439f91b59abfd6f0b25b": { + "8689ad17b83c46c1ab297ec243208f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8739c6ff8d994ba4be0b2287de3e0173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6281,7 +6312,7 @@ "width": null } }, - "8a076d7eb59e4537abfac89fa37372e4": { + "888473885a6149dd8b3df8549f631e20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6299,7 +6330,23 @@ "text_color": null } }, - "8bdc65fac0044ed3a719c0c1889ba9d6": { + "8995f1250ad74a90bfc13b5eff00a2fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8acff64b052e48dc9e676ca2f1f20446": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6315,7 +6362,30 @@ "description_width": "" } }, - "8c6d8c2c52594f15b9ce9a2fff3b28d0": { + "8c5b91a2c962426c9d74153961b3f44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e9e0a7872664289907ea9b2a0c0f428", + "placeholder": "​", + "style": "IPY_MODEL_888473885a6149dd8b3df8549f631e20", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.73it/s]" + } + }, + "8df85e649d6248f69af1b8b2c06dc535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6368,79 +6438,7 @@ "width": null } }, - "8dfdad83c03f4aa08bc19fe37e73bb03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8fc9906f7a0341708627692f8489b35b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "92f6dc8906c04997862913bc427ad476": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95485d5b8522435ea8f08eb2d854a336": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9608c18d1d874f2a9e8d6ff6a53ac7ef": { + "9141cd35031b41548bc5618a17448a0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6493,23 +6491,7 @@ "width": null } }, - "999494066dab42bbb02dd47224780e98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a72ec9f2e6549f79a8b592fdf22dc2e": { + "91cb9b53980c47cd817c545014defd09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6524,15 +6506,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4db64e04ecf453bb64e410e92717688", + "layout": "IPY_MODEL_2221768dfac3448cabb0bbf2bb0d5d7c", "placeholder": "​", - "style": "IPY_MODEL_79c09ae007724b7da175f15e77c939b5", + "style": "IPY_MODEL_2183a55cd7d345069c3ac605305b0edb", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 8.85k/8.85k [00:00<00:00, 1.44MB/s]" } }, - "9bfbe5f7520948028e0423e3a007e614": { + "9266dd3df82b430c88bf828066284aab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6550,7 +6532,7 @@ "text_color": null } }, - "9e1e3e01b912477595f0702fa3d3043b": { + "94f306cf8ec749379c45de871b0e7b5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6565,194 +6547,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bf0b89a3d92407d832df29196d61ea2", + "layout": "IPY_MODEL_a859e810938d4055a256a729f8d389ce", "placeholder": "​", - "style": "IPY_MODEL_81af3bb4d3be46abb3e8fec013b0ab4c", + "style": "IPY_MODEL_bcdb721a85b449cd9eaf7819dc3550dc", "tabbable": null, "tooltip": null, "value": "100%" } }, - "a07c4d7451e740a3b7cfc737ab615ac9": { - "model_module": "@jupyter-widgets/controls", + "9954def9bc864f319508e65fe36fe98b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_609338d8355747b9bd1491ce89b327f5", - "placeholder": "​", - "style": "IPY_MODEL_ac3a48d859e24de49589b8e6fcbf6e56", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.12it/s]" - } - }, - "a262c4ae9287449fa95c34bde946bb1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a6cbd56b47e648efb6391b45895679f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3158013f4864de583ab980afefd55af", - "IPY_MODEL_03823f9501e94f56beacf1613576e9dc", - "IPY_MODEL_80c62a5efa2b42ce85de10d4f9638e15" - ], - "layout": "IPY_MODEL_f60c654fb5a84d09a6d3b2f8c92cc4c5", - "tabbable": null, - "tooltip": null - } - }, - "a71dfc2757d34c75bb330c1eb6ea11e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7816d15cde184da3b4900d3062e666d2", - "placeholder": "​", - "style": "IPY_MODEL_28443daff12b402baed64f1b5d0fc8e2", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "a84982db10294fb58f5db219f440a873": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9cebeca318244728411d7a1bbbcfdcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57b1914593884597ab649943b81cf1e8", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7556d3f58c814407862942b3f781e8a6", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "a9e6164c82aa48da9b7f39e1e8611e10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d308a458ec4a08b9d2bad00f5870f3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc71489cf7d84e93b1534d74c859b3fa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "a9fbbe85922f431a91157ec285ca35be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_581b0a844bed446d8fcd2fd92a517bb6", - "placeholder": "​", - "style": "IPY_MODEL_29170a403a424dcfacc506b91190a1dc", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.75it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ab7bf39143554ffc9ed393ecb6bf2fe4": { + "9afd660dbeb04470a375320dc78c044c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6805,25 +6661,7 @@ "width": null } }, - "ac3a48d859e24de49589b8e6fcbf6e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ad393e55e6bf45c8b5e243058a28d53f": { + "9d2d50b86148485fb3e3884e2b2bbf34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6876,48 +6714,7 @@ "width": null } }, - "b0d76730d77645b19085de29499a07e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b385c56f713245438f036b829b7057eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_79e3577f86234a258c9acd26c706e0ff", - "placeholder": "​", - "style": "IPY_MODEL_6d04fdcfce89428dbf6319ffe1ba350f", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "b5f09acaac394bb5bdceb2dc492585cb": { + "9d6e31ccf4dd4aceabf442d6436fa02c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6933,71 +6730,113 @@ "description_width": "" } }, - "b8a9635845a942c4b071429b568defb1": { - "model_module": "@jupyter-widgets/controls", + "9fa40d4368164452af5dec4576e541a7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ba73c157fdb94c65b92dba1069f61646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b27bedd5f134f52a7334e3638e784cb", - "placeholder": "​", - "style": "IPY_MODEL_c274e57ac9594c50af93c3bf8136acce", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bbe3d4342b5941289611bd0fc91aa385": { - "model_module": "@jupyter-widgets/controls", + "a035588db59040fda6d47042d64418a5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_298221d0cc1446ce993bdb7c7803efb8", - "placeholder": "​", - "style": "IPY_MODEL_95485d5b8522435ea8f08eb2d854a336", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8715.25 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc002711d08c4670abb04d02bc7b008a": { + "a07fabe6cd554c4281f06c189fb7f17a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7050,7 +6889,7 @@ "width": null } }, - "bcec722d627145cf96d7bad0f67e25d9": { + "a7643f32743c4af6897aa249c9d0be2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7103,7 +6942,7 @@ "width": null } }, - "be3f3fec721448b1942e5f66a28630e9": { + "a81bc963e07b4ca2a4b8dde6b946165b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7119,17 +6958,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c10d499b1454a9db990b1eee7d30416", - "max": 40.0, + "layout": "IPY_MODEL_66f7cb4e6bf441a09c4dc48e13bc4fc0", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8bdc65fac0044ed3a719c0c1889ba9d6", + "style": "IPY_MODEL_086f6f5b94bf449da8bf7c1157f5c8a3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 4833.0 } }, - "be7e225c537c47daaef5f0ac239d1f05": { + "a859e810938d4055a256a729f8d389ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7182,25 +7021,60 @@ "width": null } }, - "bf849ce1955e49498468867578cb2b82": { - "model_module": "@jupyter-widgets/controls", + "a8ef0954dcca4870a833eda0e973e2a0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c274e57ac9594c50af93c3bf8136acce": { + "b0b21430f5b9446195933039b4632b6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7218,7 +7092,7 @@ "text_color": null } }, - "c2fc5097f7a2449695b74f340b163dbd": { + "b391fb64df85406aa863198b38de27eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7271,30 +7145,31 @@ "width": null } }, - "c3da49dd6970428a9727fd888d6a07ee": { + "b587a2728e9640d8a9ca1b92d99742fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fabf70fcbd2f415f93e6e8b9c17f4861", - "placeholder": "​", - "style": "IPY_MODEL_b0d76730d77645b19085de29499a07e9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04cca25384c24b1c94d911de385adc2e", + "IPY_MODEL_ed241b0fef474a6687201441ac67dd74", + "IPY_MODEL_ea9573c409424d8a8bac15fff0b2b7d0" + ], + "layout": "IPY_MODEL_cad3cae7738f47d5bf0f64d262df886c", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "c436f7262e954289901a6f4e89035f4d": { + "b6ef56fd6db2466da0273fed8540bed9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7347,31 +7222,7 @@ "width": null } }, - "c4b166c77d384273866541f5ccf30e60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_833c213f3dfb4616b0ac1c52e439ec3e", - "IPY_MODEL_e724d9b3e35a45acb354091fe5c23aeb", - "IPY_MODEL_bbe3d4342b5941289611bd0fc91aa385" - ], - "layout": "IPY_MODEL_77ba2f60a09d41d3a6e43c6821ec0634", - "tabbable": null, - "tooltip": null - } - }, - "c5b34df732014977a42409332881088e": { + "b75b2dcda03043c19e92f21428536acc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7424,47 +7275,7 @@ "width": null } }, - "c764ea439fb0433c9474557f8e8c6684": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c8d5e4eb0eb4406c95b64e0c2246c01b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cab1ddd99c6a471290bfd2b4f876e7a2", - "IPY_MODEL_6d5c548246bf4bdbb636d3a3766345a4", - "IPY_MODEL_426a8afc214b479baaeb9e8377e0f0d4" - ], - "layout": "IPY_MODEL_0f8c591a5a474389ba8bdbce5f559954", - "tabbable": null, - "tooltip": null - } - }, - "cab1ddd99c6a471290bfd2b4f876e7a2": { + "bbad93a33def4b229788aa20849516bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7479,15 +7290,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_240c2ebe5dc54104a1f10d985ffba975", + "layout": "IPY_MODEL_0b3fb420b49940f589e153c0d5c3fdec", "placeholder": "​", - "style": "IPY_MODEL_8fc9906f7a0341708627692f8489b35b", + "style": "IPY_MODEL_209c42932bea4cfc866adc42d1e0bc34", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 60000/60000 [00:07<00:00, 8701.18 examples/s]" } }, - "cb4004f3b5e94f01b3f04c2f61489f80": { + "bc0cfa74fd9b478baa3776548265f98f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7540,23 +7351,25 @@ "width": null } }, - "cc71489cf7d84e93b1534d74c859b3fa": { + "bcdb721a85b449cd9eaf7819dc3550dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cca83903b79f4db49ff544e07d3fffbd": { + "bf1ddb949cc4482ba290bb117f55ea82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7609,53 +7422,86 @@ "width": null } }, - "cd5289f0713644e7a085dd0fa5a5b4a7": { - "model_module": "@jupyter-widgets/controls", + "c1a678c9161a478e8d2196917db2dad8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52ea11b6adb8407e88b4de65546300dd", - "placeholder": "​", - "style": "IPY_MODEL_3e69f9cf29d34cc381b10a6789979acf", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ce6dcb58e792427c8f87d9ed29b4f0a9": { + "c25be99949354d9b93261eb01cd7f371": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38b582305d03499a81383d2c820015ba", - "placeholder": "​", - "style": "IPY_MODEL_28f8261f18b84882ba428c63eace54e3", + "layout": "IPY_MODEL_a07fabe6cd554c4281f06c189fb7f17a", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_805ea7e6fe75453dab92e83969f8fe93", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 10000.0 } }, - "cf2c1748546e4ac4918f44c9de22b1d4": { + "c5e5cf9a26c0498cbbbc47b2b513a358": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7671,41 +7517,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_721e1e458b6f49229779a9de4609ca92", + "layout": "IPY_MODEL_9141cd35031b41548bc5618a17448a0e", "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2a2dc27f67c34e2982043a2f79c14de3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "cf7b401abca245b48479f04da4bf569b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_678ad1f4e5ca473e8370433fa2fc17b1", - "IPY_MODEL_6b5517a69839448db9d026068acf99a3", - "IPY_MODEL_01d6ba701f1e47b693b47938240dfc44" - ], - "layout": "IPY_MODEL_50b772c22a484ec39d88b6aca3ce2b03", + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d3d1214cad84f609b2ae65551813ff8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "d4aae17914634179ba6ea992729761fb": { + "c670dd237db04ca9a6e63e4d35cecdb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7758,7 +7580,7 @@ "width": null } }, - "d4db64e04ecf453bb64e410e92717688": { + "cad3cae7738f47d5bf0f64d262df886c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7811,7 +7633,7 @@ "width": null } }, - "d596fca544e54787848bb610c63e3218": { + "cf54f0b1ea01482a8a59acd889c89c88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7829,48 +7651,51 @@ "text_color": null } }, - "d5b1e2ede532485f989cdd9654c0c392": { + "d2d061b68a1d431fa7d7e4082cdce543": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_160801910dde40a3bc9f92bb4e901944", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f62a32153e44d988bd8265c95d6522b", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 } }, - "d645a9bbf7dd4b8889a99d24f9a5908b": { + "d5a9c110896c475face60d8f33b9046c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da92e7e27e6440389d193937e123694c", - "placeholder": "​", - "style": "IPY_MODEL_2449bbbcd46a43e6aae3c8afbb81bdb3", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1698.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "da92e7e27e6440389d193937e123694c": { + "d5aee2c22e48477b9f398e4ad03d9e34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7923,7 +7748,7 @@ "width": null } }, - "db6c9d2e8a9344f28325f582fc86210b": { + "d83e3a00a6514bd7867d7bbbe2edf9f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7976,7 +7801,43 @@ "width": null } }, - "dc13e0ad81f143a2b5d4c0a44532f5b5": { + "d9809a0d4cae4531973e9be895c2f08e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc05e2e419574abb89ddec85c5fcc81d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd31c22f11524a368f9eb1cd18be16f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7994,7 +7855,33 @@ "text_color": null } }, - "dd4605541b5149cd9d1ad54f08320d7b": { + "dde263477419437a9af2ca03171dadcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b75b2dcda03043c19e92f21428536acc", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8acff64b052e48dc9e676ca2f1f20446", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "de21539b01914576913a0b51a048b56f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8009,16 +7896,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a71dfc2757d34c75bb330c1eb6ea11e6", - "IPY_MODEL_33cdba775984444396b1d4c9f0a95c94", - "IPY_MODEL_fc047f3aaf0b4e4a871a8806135acc87" + "IPY_MODEL_e40aeb47074d4ecb90098770f4839946", + "IPY_MODEL_4586a50b001c47b39290a335d19b949d", + "IPY_MODEL_19a410fe62c9469fbbfdb218f3a51fc8" ], - "layout": "IPY_MODEL_ab7bf39143554ffc9ed393ecb6bf2fe4", + "layout": "IPY_MODEL_3352d2afb83f411eb34ef57cd4914610", "tabbable": null, "tooltip": null } }, - "df1f220280f9444e97bb1f2206036724": { + "df295f854e794a6dacc9fe1281979049": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c78106bc0d64791b1920a0bba595880", + "placeholder": "​", + "style": "IPY_MODEL_03645e2db82a48cea591a8ecc43409ac", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + } + }, + "dfc1a61d6aca4ccca4fce1f46c9b016e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8071,7 +7981,7 @@ "width": null } }, - "df585fd875034d5cae08c4684ad20c2f": { + "e31270e184e04922b08349a65c597693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8086,68 +7996,143 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cca83903b79f4db49ff544e07d3fffbd", + "layout": "IPY_MODEL_517e9a88dd474cac8c7f7723d261a5fe", "placeholder": "​", - "style": "IPY_MODEL_49cd0886c40048d5b78db2aa719fc1d0", + "style": "IPY_MODEL_d9809a0d4cae4531973e9be895c2f08e", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" } }, - "e02cdb3570024c49bb96ffcbc8948970": { - "model_module": "@jupyter-widgets/base", + "e40aeb47074d4ecb90098770f4839946": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a0d54aeee9e43a2a6613a32708b583c", + "placeholder": "​", + "style": "IPY_MODEL_76d4d52a162a40a6aad6c51613675dd9", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e716b663d19a4155af04eb17f142c03c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e73b799b5ff64804a99810863c6f0533": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e74d0f623f774aa5a1554c10228f1654": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3a97aab207204e0fb9a0b492587021ad", + "IPY_MODEL_3cf5000751a1413faba426291a215dff", + "IPY_MODEL_e31270e184e04922b08349a65c597693" + ], + "layout": "IPY_MODEL_436dcfd1d6524d58997ebd20abd27ac3", + "tabbable": null, + "tooltip": null + } + }, + "e85162633bd84b0c8065890dd355820b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94f306cf8ec749379c45de871b0e7b5e", + "IPY_MODEL_fa1df74fd9f543a1bcb1d473ae793b1c", + "IPY_MODEL_345c5ca93fa94badbbf86dcc2fde77a6" + ], + "layout": "IPY_MODEL_f061db9de67c4b4c92b189d2906d780c", + "tabbable": null, + "tooltip": null + } + }, + "e89a1ca0e0b746b0b9349efd7a426e3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8739c6ff8d994ba4be0b2287de3e0173", + "placeholder": "​", + "style": "IPY_MODEL_3956333acd4649dd8a66f905633d9a1e", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e1e3abfce0184ef19c5c108ae494316b": { + "e9632dad724b4651afed5367d50e22c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8162,69 +8147,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ce6dcb58e792427c8f87d9ed29b4f0a9", - "IPY_MODEL_44f00a50f1674a53a847ced00a1a1aa8", - "IPY_MODEL_d645a9bbf7dd4b8889a99d24f9a5908b" + "IPY_MODEL_20a3b73248e646e4993c7afc88dc3bb7", + "IPY_MODEL_5789650eb64d4dbab1f8c667a5fd4cf6", + "IPY_MODEL_df295f854e794a6dacc9fe1281979049" ], - "layout": "IPY_MODEL_edc3d19afcb14bf9a3ec0e41f62a44b4", + "layout": "IPY_MODEL_ec3cdb9f36064f85ac05856111e8b6e8", "tabbable": null, "tooltip": null } }, - "e416714bbcb4438b9179a39662ae3c9d": { - "model_module": "@jupyter-widgets/base", + "ea9573c409424d8a8bac15fff0b2b7d0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1a678c9161a478e8d2196917db2dad8", + "placeholder": "​", + "style": "IPY_MODEL_cf54f0b1ea01482a8a59acd889c89c88", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.52it/s]" } }, - "e6d9becff77b42d59be635fa6580a8e8": { + "ec3cdb9f36064f85ac05856111e8b6e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8277,77 +8232,7 @@ "width": null } }, - "e724d9b3e35a45acb354091fe5c23aeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_368cc0e1d6734409878e33ca4d54012a", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c764ea439fb0433c9474557f8e8c6684", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "eb2f621f64a84dc8bd2155d241bd5e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ebf23d88069d459aae84207ff5363fab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e6489c700d54df69ff90b573c906911", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_50962242a0be4c5fb1f19bd9ba3796a1", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "ec65d1696272499aae2176b681d4abeb": { + "ed241b0fef474a6687201441ac67dd74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8363,17 +8248,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc002711d08c4670abb04d02bc7b008a", - "max": 4422102.0, + "layout": "IPY_MODEL_dfc1a61d6aca4ccca4fce1f46c9b016e", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a84982db10294fb58f5db219f440a873", + "style": "IPY_MODEL_19246b6d91f14aaa9f10d7cb83049531", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 40.0 } }, - "ed87086cfa9c41729602000b60ca20f5": { + "ed9503bde9bc41e0912e3c94c2a43266": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8426,7 +8311,30 @@ "width": null } }, - "edc3d19afcb14bf9a3ec0e41f62a44b4": { + "f01a831193cb480fa8538ccac1625826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_140978469fad46c2b6b98809eddb12e7", + "placeholder": "​", + "style": "IPY_MODEL_13c0b9289c5e4e8f92a21c0307aae6db", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f061db9de67c4b4c92b189d2906d780c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8479,7 +8387,7 @@ "width": null } }, - "f3158013f4864de583ab980afefd55af": { + "f512ea72b63a45489078a0f45d052131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8494,15 +8402,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db6c9d2e8a9344f28325f582fc86210b", + "layout": "IPY_MODEL_85ab7c6aa7b341d69b9dc923ebdfa7c4", "placeholder": "​", - "style": "IPY_MODEL_04be2e19fc3542cba1d0cb7b9b407a95", + "style": "IPY_MODEL_e716b663d19a4155af04eb17f142c03c", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4.42M/4.42M [00:00<00:00, 70.5MB/s]" } }, - "f60c654fb5a84d09a6d3b2f8c92cc4c5": { + "f74501f2cd3a424a9fd976bc8add6990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8555,7 +8463,104 @@ "width": null } }, - "fabf70fcbd2f415f93e6e8b9c17f4861": { + "f85257acca8547839184b5f056eac10e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0d1066339f76479d8d58e5ae35748f5b", + "IPY_MODEL_d2d061b68a1d431fa7d7e4082cdce543", + "IPY_MODEL_f512ea72b63a45489078a0f45d052131" + ], + "layout": "IPY_MODEL_6198d3b6f1a04ba4a34a5d2018c9b155", + "tabbable": null, + "tooltip": null + } + }, + "f8b91b2b5043498da2181511d46d09c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_07de4e87697443a892880c15d1e511c6", + "placeholder": "​", + "style": "IPY_MODEL_440697a08c6346efa46be2fb03bac8e0", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1657.88it/s]" + } + }, + "f9b540e1a55a4d16ad1b5a90f594ee47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82fc78533dbc46d08a781919716d2335", + "IPY_MODEL_5ea8be39dce64842a42fe020b19fc090", + "IPY_MODEL_bbad93a33def4b229788aa20849516bd" + ], + "layout": "IPY_MODEL_1d30818e74e74811938c25e51402dba7", + "tabbable": null, + "tooltip": null + } + }, + "fa1df74fd9f543a1bcb1d473ae793b1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf1ddb949cc4482ba290bb117f55ea82", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5dcfa0777e6540998053e4a29b29b806", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fa87a07117a74232955cb6e2e8b66aa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8608,30 +8613,25 @@ "width": null } }, - "fc047f3aaf0b4e4a871a8806135acc87": { + "fd5d6bff1fad4857abafef9b11b3dfe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_89b3cf05a743439f91b59abfd6f0b25b", - "placeholder": "​", - "style": "IPY_MODEL_3b6fd5946d154ca3b3c1477ecd5510ab", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 617kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ff23c9d5761b436eb1d73a55e8f32ea8": { + "fd9234c25dae4c37a35f1e4d52af48c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8684,7 +8684,7 @@ "width": null } }, - "ff5dd94e778e4a3a9a4f34a8b29844b2": { + "fe504683f63741bdac7f7f37aacf03d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8700,11 +8700,11 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8253cf2e395646f0a170750f8c426d62", + "layout": "IPY_MODEL_3f14c7dcb14b4ff9b9a6110a6ebeea9a", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_999494066dab42bbb02dd47224780e98", + "style": "IPY_MODEL_9d6e31ccf4dd4aceabf442d6436fa02c", "tabbable": null, "tooltip": null, "value": 40.0 diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index b258b462c..49189d5a3 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:31.954471Z", - "iopub.status.busy": "2024-07-09T06:10:31.954063Z", - "iopub.status.idle": "2024-07-09T06:10:33.062774Z", - "shell.execute_reply": "2024-07-09T06:10:33.062218Z" + "iopub.execute_input": "2024-07-09T06:25:43.397675Z", + "iopub.status.busy": "2024-07-09T06:25:43.397521Z", + "iopub.status.idle": "2024-07-09T06:25:44.500416Z", + "shell.execute_reply": "2024-07-09T06:25:44.499930Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.065325Z", - "iopub.status.busy": "2024-07-09T06:10:33.064874Z", - "iopub.status.idle": "2024-07-09T06:10:33.082725Z", - "shell.execute_reply": "2024-07-09T06:10:33.082160Z" + "iopub.execute_input": "2024-07-09T06:25:44.503054Z", + "iopub.status.busy": "2024-07-09T06:25:44.502594Z", + "iopub.status.idle": "2024-07-09T06:25:44.520286Z", + "shell.execute_reply": "2024-07-09T06:25:44.519788Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.085238Z", - "iopub.status.busy": "2024-07-09T06:10:33.084866Z", - "iopub.status.idle": "2024-07-09T06:10:33.122428Z", - "shell.execute_reply": "2024-07-09T06:10:33.121889Z" + "iopub.execute_input": "2024-07-09T06:25:44.522768Z", + "iopub.status.busy": "2024-07-09T06:25:44.522335Z", + "iopub.status.idle": "2024-07-09T06:25:44.561412Z", + "shell.execute_reply": "2024-07-09T06:25:44.560787Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.124701Z", - "iopub.status.busy": "2024-07-09T06:10:33.124258Z", - "iopub.status.idle": "2024-07-09T06:10:33.127662Z", - "shell.execute_reply": "2024-07-09T06:10:33.127234Z" + "iopub.execute_input": "2024-07-09T06:25:44.563603Z", + "iopub.status.busy": "2024-07-09T06:25:44.563330Z", + "iopub.status.idle": "2024-07-09T06:25:44.566773Z", + "shell.execute_reply": "2024-07-09T06:25:44.566347Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.129795Z", - "iopub.status.busy": "2024-07-09T06:10:33.129342Z", - "iopub.status.idle": "2024-07-09T06:10:33.137253Z", - "shell.execute_reply": "2024-07-09T06:10:33.136681Z" + "iopub.execute_input": "2024-07-09T06:25:44.568882Z", + "iopub.status.busy": "2024-07-09T06:25:44.568557Z", + "iopub.status.idle": "2024-07-09T06:25:44.576133Z", + "shell.execute_reply": "2024-07-09T06:25:44.575666Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.139475Z", - "iopub.status.busy": "2024-07-09T06:10:33.139068Z", - "iopub.status.idle": "2024-07-09T06:10:33.141754Z", - "shell.execute_reply": "2024-07-09T06:10:33.141219Z" + "iopub.execute_input": "2024-07-09T06:25:44.578213Z", + "iopub.status.busy": "2024-07-09T06:25:44.577888Z", + "iopub.status.idle": "2024-07-09T06:25:44.580359Z", + "shell.execute_reply": "2024-07-09T06:25:44.579938Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.143704Z", - "iopub.status.busy": "2024-07-09T06:10:33.143398Z", - "iopub.status.idle": "2024-07-09T06:10:36.054194Z", - "shell.execute_reply": "2024-07-09T06:10:36.053560Z" + "iopub.execute_input": "2024-07-09T06:25:44.582404Z", + "iopub.status.busy": "2024-07-09T06:25:44.582006Z", + "iopub.status.idle": "2024-07-09T06:25:47.496435Z", + "shell.execute_reply": "2024-07-09T06:25:47.495884Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.057163Z", - "iopub.status.busy": "2024-07-09T06:10:36.056695Z", - "iopub.status.idle": "2024-07-09T06:10:36.066132Z", - "shell.execute_reply": "2024-07-09T06:10:36.065594Z" + "iopub.execute_input": "2024-07-09T06:25:47.499186Z", + "iopub.status.busy": "2024-07-09T06:25:47.498702Z", + "iopub.status.idle": "2024-07-09T06:25:47.508351Z", + "shell.execute_reply": "2024-07-09T06:25:47.507924Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.068240Z", - "iopub.status.busy": "2024-07-09T06:10:36.067922Z", - "iopub.status.idle": "2024-07-09T06:10:37.919153Z", - "shell.execute_reply": "2024-07-09T06:10:37.918499Z" + "iopub.execute_input": "2024-07-09T06:25:47.510494Z", + "iopub.status.busy": "2024-07-09T06:25:47.510083Z", + "iopub.status.idle": "2024-07-09T06:25:49.420464Z", + "shell.execute_reply": "2024-07-09T06:25:49.419867Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.921685Z", - "iopub.status.busy": "2024-07-09T06:10:37.921227Z", - "iopub.status.idle": "2024-07-09T06:10:37.939600Z", - "shell.execute_reply": "2024-07-09T06:10:37.939159Z" + "iopub.execute_input": "2024-07-09T06:25:49.423063Z", + "iopub.status.busy": "2024-07-09T06:25:49.422479Z", + "iopub.status.idle": "2024-07-09T06:25:49.441395Z", + "shell.execute_reply": "2024-07-09T06:25:49.440922Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.941611Z", - "iopub.status.busy": "2024-07-09T06:10:37.941224Z", - "iopub.status.idle": "2024-07-09T06:10:37.949046Z", - "shell.execute_reply": "2024-07-09T06:10:37.948512Z" + "iopub.execute_input": "2024-07-09T06:25:49.443532Z", + "iopub.status.busy": "2024-07-09T06:25:49.443194Z", + "iopub.status.idle": "2024-07-09T06:25:49.451051Z", + "shell.execute_reply": "2024-07-09T06:25:49.450614Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.950940Z", - "iopub.status.busy": "2024-07-09T06:10:37.950650Z", - "iopub.status.idle": "2024-07-09T06:10:37.959497Z", - "shell.execute_reply": "2024-07-09T06:10:37.958941Z" + "iopub.execute_input": "2024-07-09T06:25:49.453099Z", + "iopub.status.busy": "2024-07-09T06:25:49.452774Z", + "iopub.status.idle": "2024-07-09T06:25:49.461948Z", + "shell.execute_reply": "2024-07-09T06:25:49.461497Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.961570Z", - "iopub.status.busy": "2024-07-09T06:10:37.961245Z", - "iopub.status.idle": "2024-07-09T06:10:37.968825Z", - "shell.execute_reply": "2024-07-09T06:10:37.968376Z" + "iopub.execute_input": "2024-07-09T06:25:49.463968Z", + "iopub.status.busy": "2024-07-09T06:25:49.463653Z", + "iopub.status.idle": "2024-07-09T06:25:49.471593Z", + "shell.execute_reply": "2024-07-09T06:25:49.471011Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.970802Z", - "iopub.status.busy": "2024-07-09T06:10:37.970481Z", - "iopub.status.idle": "2024-07-09T06:10:37.978940Z", - "shell.execute_reply": "2024-07-09T06:10:37.978487Z" + "iopub.execute_input": "2024-07-09T06:25:49.473529Z", + "iopub.status.busy": "2024-07-09T06:25:49.473356Z", + "iopub.status.idle": "2024-07-09T06:25:49.482335Z", + "shell.execute_reply": "2024-07-09T06:25:49.481895Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.980895Z", - "iopub.status.busy": "2024-07-09T06:10:37.980578Z", - "iopub.status.idle": "2024-07-09T06:10:37.987894Z", - "shell.execute_reply": "2024-07-09T06:10:37.987444Z" + "iopub.execute_input": "2024-07-09T06:25:49.484408Z", + "iopub.status.busy": "2024-07-09T06:25:49.484080Z", + "iopub.status.idle": "2024-07-09T06:25:49.491499Z", + "shell.execute_reply": "2024-07-09T06:25:49.491016Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.989860Z", - "iopub.status.busy": "2024-07-09T06:10:37.989565Z", - "iopub.status.idle": "2024-07-09T06:10:37.996677Z", - "shell.execute_reply": "2024-07-09T06:10:37.996133Z" + "iopub.execute_input": "2024-07-09T06:25:49.493531Z", + "iopub.status.busy": "2024-07-09T06:25:49.493203Z", + "iopub.status.idle": "2024-07-09T06:25:49.500767Z", + "shell.execute_reply": "2024-07-09T06:25:49.500318Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.998801Z", - "iopub.status.busy": "2024-07-09T06:10:37.998404Z", - "iopub.status.idle": "2024-07-09T06:10:38.006720Z", - "shell.execute_reply": "2024-07-09T06:10:38.006170Z" + "iopub.execute_input": "2024-07-09T06:25:49.502816Z", + "iopub.status.busy": "2024-07-09T06:25:49.502476Z", + "iopub.status.idle": "2024-07-09T06:25:49.511060Z", + "shell.execute_reply": "2024-07-09T06:25:49.510478Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 194f48736..854b57cf2 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}
+Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 79b7e466e..007861577 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:40.535594Z", - "iopub.status.busy": "2024-07-09T06:10:40.535117Z", - "iopub.status.idle": "2024-07-09T06:10:43.126940Z", - "shell.execute_reply": "2024-07-09T06:10:43.126369Z" + "iopub.execute_input": "2024-07-09T06:25:52.110367Z", + "iopub.status.busy": "2024-07-09T06:25:52.110187Z", + "iopub.status.idle": "2024-07-09T06:25:54.784149Z", + "shell.execute_reply": "2024-07-09T06:25:54.783592Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.129363Z", - "iopub.status.busy": "2024-07-09T06:10:43.129085Z", - "iopub.status.idle": "2024-07-09T06:10:43.132156Z", - "shell.execute_reply": "2024-07-09T06:10:43.131728Z" + "iopub.execute_input": "2024-07-09T06:25:54.786763Z", + "iopub.status.busy": "2024-07-09T06:25:54.786450Z", + "iopub.status.idle": "2024-07-09T06:25:54.790234Z", + "shell.execute_reply": "2024-07-09T06:25:54.789808Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.134177Z", - "iopub.status.busy": "2024-07-09T06:10:43.133850Z", - "iopub.status.idle": "2024-07-09T06:10:43.136808Z", - "shell.execute_reply": "2024-07-09T06:10:43.136399Z" + "iopub.execute_input": "2024-07-09T06:25:54.792282Z", + "iopub.status.busy": "2024-07-09T06:25:54.791960Z", + "iopub.status.idle": "2024-07-09T06:25:54.795130Z", + "shell.execute_reply": "2024-07-09T06:25:54.794637Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.138812Z", - "iopub.status.busy": "2024-07-09T06:10:43.138552Z", - "iopub.status.idle": "2024-07-09T06:10:43.177660Z", - "shell.execute_reply": "2024-07-09T06:10:43.177223Z" + "iopub.execute_input": "2024-07-09T06:25:54.797237Z", + "iopub.status.busy": "2024-07-09T06:25:54.796891Z", + "iopub.status.idle": "2024-07-09T06:25:54.839838Z", + "shell.execute_reply": "2024-07-09T06:25:54.839268Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.179619Z", - "iopub.status.busy": "2024-07-09T06:10:43.179241Z", - "iopub.status.idle": "2024-07-09T06:10:43.182896Z", - "shell.execute_reply": "2024-07-09T06:10:43.182371Z" + "iopub.execute_input": "2024-07-09T06:25:54.842013Z", + "iopub.status.busy": "2024-07-09T06:25:54.841618Z", + "iopub.status.idle": "2024-07-09T06:25:54.845269Z", + "shell.execute_reply": "2024-07-09T06:25:54.844799Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n" + "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.184918Z", - "iopub.status.busy": "2024-07-09T06:10:43.184590Z", - "iopub.status.idle": "2024-07-09T06:10:43.187433Z", - "shell.execute_reply": "2024-07-09T06:10:43.186872Z" + "iopub.execute_input": "2024-07-09T06:25:54.847533Z", + "iopub.status.busy": "2024-07-09T06:25:54.847103Z", + "iopub.status.idle": "2024-07-09T06:25:54.850442Z", + "shell.execute_reply": "2024-07-09T06:25:54.849920Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.189544Z", - "iopub.status.busy": "2024-07-09T06:10:43.189224Z", - "iopub.status.idle": "2024-07-09T06:10:46.827935Z", - "shell.execute_reply": "2024-07-09T06:10:46.827389Z" + "iopub.execute_input": "2024-07-09T06:25:54.852582Z", + "iopub.status.busy": "2024-07-09T06:25:54.852188Z", + "iopub.status.idle": "2024-07-09T06:25:59.138875Z", + "shell.execute_reply": "2024-07-09T06:25:59.138241Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:46.830697Z", - "iopub.status.busy": "2024-07-09T06:10:46.830289Z", - "iopub.status.idle": "2024-07-09T06:10:47.705352Z", - "shell.execute_reply": "2024-07-09T06:10:47.704778Z" + "iopub.execute_input": "2024-07-09T06:25:59.141607Z", + "iopub.status.busy": "2024-07-09T06:25:59.141219Z", + "iopub.status.idle": "2024-07-09T06:26:00.038840Z", + "shell.execute_reply": "2024-07-09T06:26:00.038252Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.709046Z", - "iopub.status.busy": "2024-07-09T06:10:47.708102Z", - "iopub.status.idle": "2024-07-09T06:10:47.712144Z", - "shell.execute_reply": "2024-07-09T06:10:47.711648Z" + "iopub.execute_input": "2024-07-09T06:26:00.041846Z", + "iopub.status.busy": "2024-07-09T06:26:00.041473Z", + "iopub.status.idle": "2024-07-09T06:26:00.044333Z", + "shell.execute_reply": "2024-07-09T06:26:00.043847Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.715606Z", - "iopub.status.busy": "2024-07-09T06:10:47.714676Z", - "iopub.status.idle": "2024-07-09T06:10:49.613175Z", - "shell.execute_reply": "2024-07-09T06:10:49.612550Z" + "iopub.execute_input": "2024-07-09T06:26:00.046828Z", + "iopub.status.busy": "2024-07-09T06:26:00.046455Z", + "iopub.status.idle": "2024-07-09T06:26:02.001666Z", + "shell.execute_reply": "2024-07-09T06:26:02.000979Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.617209Z", - "iopub.status.busy": "2024-07-09T06:10:49.615926Z", - "iopub.status.idle": "2024-07-09T06:10:49.641459Z", - "shell.execute_reply": "2024-07-09T06:10:49.640965Z" + "iopub.execute_input": "2024-07-09T06:26:02.005648Z", + "iopub.status.busy": "2024-07-09T06:26:02.004357Z", + "iopub.status.idle": "2024-07-09T06:26:02.029990Z", + "shell.execute_reply": "2024-07-09T06:26:02.029487Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.644905Z", - "iopub.status.busy": "2024-07-09T06:10:49.644000Z", - "iopub.status.idle": "2024-07-09T06:10:49.655340Z", - "shell.execute_reply": "2024-07-09T06:10:49.654769Z" + "iopub.execute_input": "2024-07-09T06:26:02.033668Z", + "iopub.status.busy": "2024-07-09T06:26:02.032688Z", + "iopub.status.idle": "2024-07-09T06:26:02.043061Z", + "shell.execute_reply": "2024-07-09T06:26:02.042510Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.657493Z", - "iopub.status.busy": "2024-07-09T06:10:49.657322Z", - "iopub.status.idle": "2024-07-09T06:10:49.662434Z", - "shell.execute_reply": "2024-07-09T06:10:49.661886Z" + "iopub.execute_input": "2024-07-09T06:26:02.045235Z", + "iopub.status.busy": "2024-07-09T06:26:02.044844Z", + "iopub.status.idle": "2024-07-09T06:26:02.049066Z", + "shell.execute_reply": "2024-07-09T06:26:02.048544Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.664404Z", - "iopub.status.busy": "2024-07-09T06:10:49.664233Z", - "iopub.status.idle": "2024-07-09T06:10:49.671717Z", - "shell.execute_reply": "2024-07-09T06:10:49.671181Z" + "iopub.execute_input": "2024-07-09T06:26:02.050976Z", + "iopub.status.busy": "2024-07-09T06:26:02.050656Z", + "iopub.status.idle": "2024-07-09T06:26:02.056885Z", + "shell.execute_reply": "2024-07-09T06:26:02.056368Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.673760Z", - "iopub.status.busy": "2024-07-09T06:10:49.673436Z", - "iopub.status.idle": "2024-07-09T06:10:49.679943Z", - "shell.execute_reply": "2024-07-09T06:10:49.679422Z" + "iopub.execute_input": "2024-07-09T06:26:02.058842Z", + "iopub.status.busy": "2024-07-09T06:26:02.058553Z", + "iopub.status.idle": "2024-07-09T06:26:02.064989Z", + "shell.execute_reply": "2024-07-09T06:26:02.064469Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.681898Z", - "iopub.status.busy": "2024-07-09T06:10:49.681599Z", - "iopub.status.idle": "2024-07-09T06:10:49.687322Z", - "shell.execute_reply": "2024-07-09T06:10:49.686783Z" + "iopub.execute_input": "2024-07-09T06:26:02.067209Z", + "iopub.status.busy": "2024-07-09T06:26:02.066773Z", + "iopub.status.idle": "2024-07-09T06:26:02.072793Z", + "shell.execute_reply": "2024-07-09T06:26:02.072374Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.689368Z", - "iopub.status.busy": "2024-07-09T06:10:49.688972Z", - "iopub.status.idle": "2024-07-09T06:10:49.697716Z", - "shell.execute_reply": "2024-07-09T06:10:49.697194Z" + "iopub.execute_input": "2024-07-09T06:26:02.074940Z", + "iopub.status.busy": "2024-07-09T06:26:02.074490Z", + "iopub.status.idle": "2024-07-09T06:26:02.083051Z", + "shell.execute_reply": "2024-07-09T06:26:02.082510Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.699771Z", - "iopub.status.busy": "2024-07-09T06:10:49.699457Z", - "iopub.status.idle": "2024-07-09T06:10:49.704782Z", - "shell.execute_reply": "2024-07-09T06:10:49.704251Z" + "iopub.execute_input": "2024-07-09T06:26:02.085157Z", + "iopub.status.busy": "2024-07-09T06:26:02.084826Z", + "iopub.status.idle": "2024-07-09T06:26:02.090319Z", + "shell.execute_reply": "2024-07-09T06:26:02.089787Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.706759Z", - "iopub.status.busy": "2024-07-09T06:10:49.706448Z", - "iopub.status.idle": "2024-07-09T06:10:49.711619Z", - "shell.execute_reply": "2024-07-09T06:10:49.711154Z" + "iopub.execute_input": "2024-07-09T06:26:02.092426Z", + "iopub.status.busy": "2024-07-09T06:26:02.092121Z", + "iopub.status.idle": "2024-07-09T06:26:02.097472Z", + "shell.execute_reply": "2024-07-09T06:26:02.096931Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.713635Z", - "iopub.status.busy": "2024-07-09T06:10:49.713315Z", - "iopub.status.idle": "2024-07-09T06:10:49.716766Z", - "shell.execute_reply": "2024-07-09T06:10:49.716331Z" + "iopub.execute_input": "2024-07-09T06:26:02.099674Z", + "iopub.status.busy": "2024-07-09T06:26:02.099271Z", + "iopub.status.idle": "2024-07-09T06:26:02.103221Z", + "shell.execute_reply": "2024-07-09T06:26:02.102687Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.718751Z", - "iopub.status.busy": "2024-07-09T06:10:49.718428Z", - "iopub.status.idle": "2024-07-09T06:10:49.723391Z", - "shell.execute_reply": "2024-07-09T06:10:49.722940Z" + "iopub.execute_input": "2024-07-09T06:26:02.105280Z", + "iopub.status.busy": "2024-07-09T06:26:02.104977Z", + "iopub.status.idle": "2024-07-09T06:26:02.110409Z", + "shell.execute_reply": "2024-07-09T06:26:02.109860Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index a4152a9e2..0f8301dba 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -879,7 +879,7 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3564,7 +3564,7 @@

1. Load the Dataset
-100%|██████████| 170498071/170498071 [00:02<00:00, 77333951.88it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s]
 
-
+
@@ -3896,7 +3896,7 @@

Image-specific property scores in the transformed dataset -{"state": {"5f942cc81ac44594bd238162231ac7ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "309173506dba4f15b8b7213882a655e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8bd3259d18d64ab0a7ab19d9a309e286": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5f942cc81ac44594bd238162231ac7ac", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_309173506dba4f15b8b7213882a655e4", "tabbable": null, "tooltip": null, "value": 200.0}}, "4faae3cf9dec4bff8d6b153958974cb0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f06ca8d0f284b2faa6dfcacfef924f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3150f0f2d0bf48d380ee22cb6a6ec59c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4faae3cf9dec4bff8d6b153958974cb0", "placeholder": "\u200b", "style": "IPY_MODEL_1f06ca8d0f284b2faa6dfcacfef924f4", "tabbable": null, "tooltip": null, "value": "100%"}}, "66f3914610164bc59a81d0274162760b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed6f32f260df411fabc8f0fbfee24aec": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bfa11543be8f43068f62cfed9db531cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_66f3914610164bc59a81d0274162760b", "placeholder": "\u200b", "style": "IPY_MODEL_ed6f32f260df411fabc8f0fbfee24aec", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007737.31it/s]"}}, "887298b3add949feb4bb13ea5dee1afe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "391d66fc80844e98a6b7127eea20e3ba": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3150f0f2d0bf48d380ee22cb6a6ec59c", "IPY_MODEL_8bd3259d18d64ab0a7ab19d9a309e286", "IPY_MODEL_bfa11543be8f43068f62cfed9db531cd"], "layout": "IPY_MODEL_887298b3add949feb4bb13ea5dee1afe", "tabbable": null, "tooltip": null}}, "c10a765f9e4f4c4cbaaba7f898a15d5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "351acb9554dd4c3b842bf386e04513a3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c325cd32b1d14cc4b5ca8e321dc31d90": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c10a765f9e4f4c4cbaaba7f898a15d5b", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_351acb9554dd4c3b842bf386e04513a3", "tabbable": null, "tooltip": null, "value": 200.0}}, "7522155776ea4756a28dddb027c64cce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d00dcfbb71a473cbf9e476243985f81": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f8a482431f34e2faae193d10e76980a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7522155776ea4756a28dddb027c64cce", "placeholder": "\u200b", "style": "IPY_MODEL_6d00dcfbb71a473cbf9e476243985f81", "tabbable": null, "tooltip": null, "value": "100%"}}, "b9a1aba8237e45ea957d852a6d53dcc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65a45dea02f74c5bbcacb4916148fb86": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1a09c3aa59a94a799c0b7a82b5718e4d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b9a1aba8237e45ea957d852a6d53dcc4", "placeholder": "\u200b", "style": "IPY_MODEL_65a45dea02f74c5bbcacb4916148fb86", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007691.49it/s]"}}, "57556e8423424a75b5760334a13aa4a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03ddc5e5c2af4ed382e0c99cc2aa646b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3f8a482431f34e2faae193d10e76980a", "IPY_MODEL_c325cd32b1d14cc4b5ca8e321dc31d90", "IPY_MODEL_1a09c3aa59a94a799c0b7a82b5718e4d"], "layout": "IPY_MODEL_57556e8423424a75b5760334a13aa4a6", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"59f5cfbd0629486ba546f97d01ea7fed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75e04c762f744d54adf55d90a052c562": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e56f4d7332994f4e8edf32b758ca794d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", "tabbable": null, "tooltip": null, "value": 200.0}}, "294a1c481a4c46e5bc9df718d9565bc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b6cc201cb424f5298894e3085cf6d74": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "43460e1d74ff44b6bdf8b3639d60c64c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", "placeholder": "\u200b", "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", "tabbable": null, "tooltip": null, "value": "100%"}}, "4550b40c93134694b00bc701007e4553": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b3b4bdc005f14648a26d1a16f3cf9fbf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "df74cf1241974d8dba64d522788976ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", "placeholder": "\u200b", "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007800.04it/s]"}}, "f9df9fb0ad7f4fe6b179e8db8621c60f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "716f2c676ad44e9fb6218d0b8625a9c5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", "IPY_MODEL_df74cf1241974d8dba64d522788976ea"], "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", "tabbable": null, "tooltip": null}}, "cdbb5130f8d045468526e3f842f2ee28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58c201af515141f191ad32c13265a546": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "37549aa8f96049628f56685e9b488f6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", "tabbable": null, "tooltip": null, "value": 200.0}}, "75f430393fb34cad87ddab50d62eb686": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d12154805bed4fff8e2d01bf4f786af1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "31bd0ebee4be4b6995b1299029dfd4ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", "placeholder": "\u200b", "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", "tabbable": null, "tooltip": null, "value": "100%"}}, "0f799df441bb4d05a6a28c61f333f046": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dee7e34112e0456e8e72f2a3ac0efa77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a58aa13dc64e47faa0cc93bb6652151b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", "placeholder": "\u200b", "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007681.83it/s]"}}, "ef0ce0626f2f42ccab835c3082d23f11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea4f3639cd404344b740181a60e6dfe1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b"], "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 0177ed6a5..8fba9ce06 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:52.942544Z", - "iopub.status.busy": "2024-07-09T06:10:52.942073Z", - "iopub.status.idle": "2024-07-09T06:10:53.345681Z", - "shell.execute_reply": "2024-07-09T06:10:53.345198Z" + "iopub.execute_input": "2024-07-09T06:26:06.359120Z", + "iopub.status.busy": "2024-07-09T06:26:06.358944Z", + "iopub.status.idle": "2024-07-09T06:26:06.770440Z", + "shell.execute_reply": "2024-07-09T06:26:06.769872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.348217Z", - "iopub.status.busy": "2024-07-09T06:10:53.347881Z", - "iopub.status.idle": "2024-07-09T06:10:53.473155Z", - "shell.execute_reply": "2024-07-09T06:10:53.472597Z" + "iopub.execute_input": "2024-07-09T06:26:06.772937Z", + "iopub.status.busy": "2024-07-09T06:26:06.772696Z", + "iopub.status.idle": "2024-07-09T06:26:06.900862Z", + "shell.execute_reply": "2024-07-09T06:26:06.900374Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.475525Z", - "iopub.status.busy": "2024-07-09T06:10:53.475127Z", - "iopub.status.idle": "2024-07-09T06:10:53.497388Z", - "shell.execute_reply": "2024-07-09T06:10:53.496815Z" + "iopub.execute_input": "2024-07-09T06:26:06.903167Z", + "iopub.status.busy": "2024-07-09T06:26:06.902756Z", + "iopub.status.idle": "2024-07-09T06:26:06.925318Z", + "shell.execute_reply": "2024-07-09T06:26:06.924766Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.499731Z", - "iopub.status.busy": "2024-07-09T06:10:53.499527Z", - "iopub.status.idle": "2024-07-09T06:10:56.136141Z", - "shell.execute_reply": "2024-07-09T06:10:56.135492Z" + "iopub.execute_input": "2024-07-09T06:26:06.927949Z", + "iopub.status.busy": "2024-07-09T06:26:06.927455Z", + "iopub.status.idle": "2024-07-09T06:26:09.660674Z", + "shell.execute_reply": "2024-07-09T06:26:09.660045Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", + " 0.356959\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", + "2 outlier 0.356959 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:56.138887Z", - "iopub.status.busy": "2024-07-09T06:10:56.138378Z", - "iopub.status.idle": "2024-07-09T06:11:04.045173Z", - "shell.execute_reply": "2024-07-09T06:11:04.044648Z" + "iopub.execute_input": "2024-07-09T06:26:09.663103Z", + "iopub.status.busy": "2024-07-09T06:26:09.662695Z", + "iopub.status.idle": "2024-07-09T06:26:17.697818Z", + "shell.execute_reply": "2024-07-09T06:26:17.697224Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.047461Z", - "iopub.status.busy": "2024-07-09T06:11:04.047110Z", - "iopub.status.idle": "2024-07-09T06:11:04.191376Z", - "shell.execute_reply": "2024-07-09T06:11:04.190647Z" + "iopub.execute_input": "2024-07-09T06:26:17.700276Z", + "iopub.status.busy": "2024-07-09T06:26:17.699925Z", + "iopub.status.idle": "2024-07-09T06:26:17.841746Z", + "shell.execute_reply": "2024-07-09T06:26:17.841256Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.194109Z", - "iopub.status.busy": "2024-07-09T06:11:04.193645Z", - "iopub.status.idle": "2024-07-09T06:11:05.510979Z", - "shell.execute_reply": "2024-07-09T06:11:05.510497Z" + "iopub.execute_input": "2024-07-09T06:26:17.844287Z", + "iopub.status.busy": "2024-07-09T06:26:17.843913Z", + "iopub.status.idle": "2024-07-09T06:26:19.164893Z", + "shell.execute_reply": "2024-07-09T06:26:19.164379Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.513170Z", - "iopub.status.busy": "2024-07-09T06:11:05.512973Z", - "iopub.status.idle": "2024-07-09T06:11:05.957490Z", - "shell.execute_reply": "2024-07-09T06:11:05.956884Z" + "iopub.execute_input": "2024-07-09T06:26:19.167019Z", + "iopub.status.busy": "2024-07-09T06:26:19.166813Z", + "iopub.status.idle": "2024-07-09T06:26:19.597782Z", + "shell.execute_reply": "2024-07-09T06:26:19.597208Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.959868Z", - "iopub.status.busy": "2024-07-09T06:11:05.959401Z", - "iopub.status.idle": "2024-07-09T06:11:05.968391Z", - "shell.execute_reply": "2024-07-09T06:11:05.967953Z" + "iopub.execute_input": "2024-07-09T06:26:19.600017Z", + "iopub.status.busy": "2024-07-09T06:26:19.599671Z", + "iopub.status.idle": "2024-07-09T06:26:19.608754Z", + "shell.execute_reply": "2024-07-09T06:26:19.608320Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.970302Z", - "iopub.status.busy": "2024-07-09T06:11:05.970122Z", - "iopub.status.idle": "2024-07-09T06:11:05.987977Z", - "shell.execute_reply": "2024-07-09T06:11:05.987543Z" + "iopub.execute_input": "2024-07-09T06:26:19.610758Z", + "iopub.status.busy": "2024-07-09T06:26:19.610582Z", + "iopub.status.idle": "2024-07-09T06:26:19.629174Z", + "shell.execute_reply": "2024-07-09T06:26:19.628714Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.989813Z", - "iopub.status.busy": "2024-07-09T06:11:05.989642Z", - "iopub.status.idle": "2024-07-09T06:11:06.209533Z", - "shell.execute_reply": "2024-07-09T06:11:06.208915Z" + "iopub.execute_input": "2024-07-09T06:26:19.631274Z", + "iopub.status.busy": "2024-07-09T06:26:19.630949Z", + "iopub.status.idle": "2024-07-09T06:26:19.855473Z", + "shell.execute_reply": "2024-07-09T06:26:19.854937Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.212253Z", - "iopub.status.busy": "2024-07-09T06:11:06.211863Z", - "iopub.status.idle": "2024-07-09T06:11:06.230982Z", - "shell.execute_reply": "2024-07-09T06:11:06.230519Z" + "iopub.execute_input": "2024-07-09T06:26:19.857897Z", + "iopub.status.busy": "2024-07-09T06:26:19.857717Z", + "iopub.status.idle": "2024-07-09T06:26:19.876254Z", + "shell.execute_reply": "2024-07-09T06:26:19.875785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.232972Z", - "iopub.status.busy": "2024-07-09T06:11:06.232702Z", - "iopub.status.idle": "2024-07-09T06:11:06.397652Z", - "shell.execute_reply": "2024-07-09T06:11:06.397123Z" + "iopub.execute_input": "2024-07-09T06:26:19.878330Z", + "iopub.status.busy": "2024-07-09T06:26:19.878123Z", + "iopub.status.idle": "2024-07-09T06:26:20.020972Z", + "shell.execute_reply": "2024-07-09T06:26:20.020418Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.399867Z", - "iopub.status.busy": "2024-07-09T06:11:06.399536Z", - "iopub.status.idle": "2024-07-09T06:11:06.409014Z", - "shell.execute_reply": "2024-07-09T06:11:06.408593Z" + "iopub.execute_input": "2024-07-09T06:26:20.023234Z", + "iopub.status.busy": "2024-07-09T06:26:20.023054Z", + "iopub.status.idle": "2024-07-09T06:26:20.033881Z", + "shell.execute_reply": "2024-07-09T06:26:20.033455Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.411108Z", - "iopub.status.busy": "2024-07-09T06:11:06.410779Z", - "iopub.status.idle": "2024-07-09T06:11:06.419899Z", - "shell.execute_reply": "2024-07-09T06:11:06.419375Z" + "iopub.execute_input": "2024-07-09T06:26:20.036017Z", + "iopub.status.busy": "2024-07-09T06:26:20.035683Z", + "iopub.status.idle": "2024-07-09T06:26:20.045307Z", + "shell.execute_reply": "2024-07-09T06:26:20.044756Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.421833Z", - "iopub.status.busy": "2024-07-09T06:11:06.421517Z", - "iopub.status.idle": "2024-07-09T06:11:06.463296Z", - "shell.execute_reply": "2024-07-09T06:11:06.462727Z" + "iopub.execute_input": "2024-07-09T06:26:20.047404Z", + "iopub.status.busy": "2024-07-09T06:26:20.047075Z", + "iopub.status.idle": "2024-07-09T06:26:20.077571Z", + "shell.execute_reply": "2024-07-09T06:26:20.077104Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.465213Z", - "iopub.status.busy": "2024-07-09T06:11:06.464909Z", - "iopub.status.idle": "2024-07-09T06:11:06.467608Z", - "shell.execute_reply": "2024-07-09T06:11:06.467074Z" + "iopub.execute_input": "2024-07-09T06:26:20.079806Z", + "iopub.status.busy": "2024-07-09T06:26:20.079460Z", + "iopub.status.idle": "2024-07-09T06:26:20.082272Z", + "shell.execute_reply": "2024-07-09T06:26:20.081824Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.469481Z", - "iopub.status.busy": "2024-07-09T06:11:06.469198Z", - "iopub.status.idle": "2024-07-09T06:11:06.487639Z", - "shell.execute_reply": "2024-07-09T06:11:06.487096Z" + "iopub.execute_input": "2024-07-09T06:26:20.084214Z", + "iopub.status.busy": "2024-07-09T06:26:20.083951Z", + "iopub.status.idle": "2024-07-09T06:26:20.103369Z", + "shell.execute_reply": "2024-07-09T06:26:20.102920Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.489617Z", - "iopub.status.busy": "2024-07-09T06:11:06.489312Z", - "iopub.status.idle": "2024-07-09T06:11:06.493367Z", - "shell.execute_reply": "2024-07-09T06:11:06.492952Z" + "iopub.execute_input": "2024-07-09T06:26:20.105637Z", + "iopub.status.busy": "2024-07-09T06:26:20.105313Z", + "iopub.status.idle": "2024-07-09T06:26:20.109592Z", + "shell.execute_reply": "2024-07-09T06:26:20.109129Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.495289Z", - "iopub.status.busy": "2024-07-09T06:11:06.495116Z", - "iopub.status.idle": "2024-07-09T06:11:06.522255Z", - "shell.execute_reply": "2024-07-09T06:11:06.521808Z" + "iopub.execute_input": "2024-07-09T06:26:20.111735Z", + "iopub.status.busy": "2024-07-09T06:26:20.111418Z", + "iopub.status.idle": "2024-07-09T06:26:20.140670Z", + "shell.execute_reply": "2024-07-09T06:26:20.140161Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.524284Z", - "iopub.status.busy": "2024-07-09T06:11:06.523987Z", - "iopub.status.idle": "2024-07-09T06:11:06.892253Z", - "shell.execute_reply": "2024-07-09T06:11:06.891794Z" + "iopub.execute_input": "2024-07-09T06:26:20.143010Z", + "iopub.status.busy": "2024-07-09T06:26:20.142558Z", + "iopub.status.idle": "2024-07-09T06:26:20.467470Z", + "shell.execute_reply": "2024-07-09T06:26:20.466812Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.894473Z", - "iopub.status.busy": "2024-07-09T06:11:06.894138Z", - "iopub.status.idle": "2024-07-09T06:11:06.897200Z", - "shell.execute_reply": "2024-07-09T06:11:06.896678Z" + "iopub.execute_input": "2024-07-09T06:26:20.469860Z", + "iopub.status.busy": "2024-07-09T06:26:20.469461Z", + "iopub.status.idle": "2024-07-09T06:26:20.472834Z", + "shell.execute_reply": "2024-07-09T06:26:20.472304Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.899347Z", - "iopub.status.busy": "2024-07-09T06:11:06.899013Z", - "iopub.status.idle": "2024-07-09T06:11:06.911828Z", - "shell.execute_reply": "2024-07-09T06:11:06.911372Z" + "iopub.execute_input": "2024-07-09T06:26:20.474846Z", + "iopub.status.busy": "2024-07-09T06:26:20.474545Z", + "iopub.status.idle": "2024-07-09T06:26:20.487539Z", + "shell.execute_reply": "2024-07-09T06:26:20.487103Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.913860Z", - "iopub.status.busy": "2024-07-09T06:11:06.913532Z", - "iopub.status.idle": "2024-07-09T06:11:06.926512Z", - "shell.execute_reply": "2024-07-09T06:11:06.926088Z" + "iopub.execute_input": "2024-07-09T06:26:20.489598Z", + "iopub.status.busy": "2024-07-09T06:26:20.489254Z", + "iopub.status.idle": "2024-07-09T06:26:20.502494Z", + "shell.execute_reply": "2024-07-09T06:26:20.502059Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.928478Z", - "iopub.status.busy": "2024-07-09T06:11:06.928157Z", - "iopub.status.idle": "2024-07-09T06:11:06.937772Z", - "shell.execute_reply": "2024-07-09T06:11:06.937343Z" + "iopub.execute_input": "2024-07-09T06:26:20.504650Z", + "iopub.status.busy": "2024-07-09T06:26:20.504262Z", + "iopub.status.idle": "2024-07-09T06:26:20.514526Z", + "shell.execute_reply": "2024-07-09T06:26:20.513953Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.939820Z", - "iopub.status.busy": "2024-07-09T06:11:06.939507Z", - "iopub.status.idle": "2024-07-09T06:11:06.948609Z", - "shell.execute_reply": "2024-07-09T06:11:06.948081Z" + "iopub.execute_input": "2024-07-09T06:26:20.516777Z", + "iopub.status.busy": "2024-07-09T06:26:20.516378Z", + "iopub.status.idle": "2024-07-09T06:26:20.525636Z", + "shell.execute_reply": "2024-07-09T06:26:20.525158Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.950589Z", - "iopub.status.busy": "2024-07-09T06:11:06.950273Z", - "iopub.status.idle": "2024-07-09T06:11:06.953656Z", - "shell.execute_reply": "2024-07-09T06:11:06.953231Z" + "iopub.execute_input": "2024-07-09T06:26:20.527730Z", + "iopub.status.busy": "2024-07-09T06:26:20.527427Z", + "iopub.status.idle": "2024-07-09T06:26:20.531215Z", + "shell.execute_reply": "2024-07-09T06:26:20.530643Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.955684Z", - "iopub.status.busy": "2024-07-09T06:11:06.955363Z", - "iopub.status.idle": "2024-07-09T06:11:07.005178Z", - "shell.execute_reply": "2024-07-09T06:11:07.004737Z" + "iopub.execute_input": "2024-07-09T06:26:20.533369Z", + "iopub.status.busy": "2024-07-09T06:26:20.532978Z", + "iopub.status.idle": "2024-07-09T06:26:20.584716Z", + "shell.execute_reply": "2024-07-09T06:26:20.584160Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.007278Z", - "iopub.status.busy": "2024-07-09T06:11:07.006978Z", - "iopub.status.idle": "2024-07-09T06:11:07.012518Z", - "shell.execute_reply": "2024-07-09T06:11:07.012098Z" + "iopub.execute_input": "2024-07-09T06:26:20.587026Z", + "iopub.status.busy": "2024-07-09T06:26:20.586732Z", + "iopub.status.idle": "2024-07-09T06:26:20.592456Z", + "shell.execute_reply": "2024-07-09T06:26:20.592020Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.014465Z", - "iopub.status.busy": "2024-07-09T06:11:07.014161Z", - "iopub.status.idle": "2024-07-09T06:11:07.024669Z", - "shell.execute_reply": "2024-07-09T06:11:07.024221Z" + "iopub.execute_input": "2024-07-09T06:26:20.594421Z", + "iopub.status.busy": "2024-07-09T06:26:20.594113Z", + "iopub.status.idle": "2024-07-09T06:26:20.604649Z", + "shell.execute_reply": "2024-07-09T06:26:20.604215Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.026593Z", - "iopub.status.busy": "2024-07-09T06:11:07.026273Z", - "iopub.status.idle": "2024-07-09T06:11:07.237791Z", - "shell.execute_reply": "2024-07-09T06:11:07.237173Z" + "iopub.execute_input": "2024-07-09T06:26:20.606620Z", + "iopub.status.busy": "2024-07-09T06:26:20.606292Z", + "iopub.status.idle": "2024-07-09T06:26:20.783133Z", + "shell.execute_reply": "2024-07-09T06:26:20.782497Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.239996Z", - "iopub.status.busy": "2024-07-09T06:11:07.239645Z", - "iopub.status.idle": "2024-07-09T06:11:07.246938Z", - "shell.execute_reply": "2024-07-09T06:11:07.246490Z" + "iopub.execute_input": "2024-07-09T06:26:20.785456Z", + "iopub.status.busy": "2024-07-09T06:26:20.785275Z", + "iopub.status.idle": "2024-07-09T06:26:20.793330Z", + "shell.execute_reply": "2024-07-09T06:26:20.792773Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.249025Z", - "iopub.status.busy": "2024-07-09T06:11:07.248700Z", - "iopub.status.idle": "2024-07-09T06:11:13.254461Z", - "shell.execute_reply": "2024-07-09T06:11:13.253971Z" + "iopub.execute_input": "2024-07-09T06:26:20.795475Z", + "iopub.status.busy": "2024-07-09T06:26:20.795196Z", + "iopub.status.idle": "2024-07-09T06:26:26.499101Z", + "shell.execute_reply": "2024-07-09T06:26:26.498454Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:20, 8397815.81it/s]" + " 0%| | 851968/170498071 [00:00<00:22, 7672499.19it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9797632/170498071 [00:00<00:02, 53891570.80it/s]" + " 6%|▌ | 10125312/170498071 [00:00<00:02, 55503706.90it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18186240/170498071 [00:00<00:02, 67271366.92it/s]" + " 12%|█▏ | 20086784/170498071 [00:00<00:02, 75141107.06it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26836992/170498071 [00:00<00:01, 74765057.23it/s]" + " 18%|█▊ | 30867456/170498071 [00:00<00:01, 87824521.95it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35782656/170498071 [00:00<00:01, 79953812.72it/s]" + " 24%|██▍ | 40960000/170498071 [00:00<00:01, 92491731.79it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44433408/170498071 [00:00<00:01, 82133729.89it/s]" + " 30%|███ | 51609600/170498071 [00:00<00:01, 97114538.99it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 53313536/170498071 [00:00<00:01, 84295199.10it/s]" + " 36%|███▋ | 61898752/170498071 [00:00<00:01, 98927626.10it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61800448/170498071 [00:00<00:01, 83129927.83it/s]" + " 42%|████▏ | 71860224/170498071 [00:00<00:01, 98135286.77it/s]" ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71041024/170498071 [00:00<00:01, 85883974.57it/s]" + " 48%|████▊ | 82149376/170498071 [00:00<00:00, 99557055.65it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 79659008/170498071 [00:01<00:01, 84046894.98it/s]" + " 54%|█████▍ | 92143616/170498071 [00:01<00:00, 99457801.69it/s]" ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88113152/170498071 [00:01<00:01, 81203827.56it/s]" + " 60%|██████ | 102531072/170498071 [00:01<00:00, 100788217.51it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 74533497.60it/s]" + " 66%|██████▌ | 112918528/170498071 [00:01<00:00, 101593672.45it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 104792064/170498071 [00:01<00:00, 77401455.40it/s]" + " 72%|███████▏ | 123273216/170498071 [00:01<00:00, 102077027.78it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 112984064/170498071 [00:01<00:00, 78643113.14it/s]" + " 78%|███████▊ | 133496832/170498071 [00:01<00:00, 101792169.97it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121143296/170498071 [00:01<00:00, 79360199.69it/s]" + " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 102376551.47it/s]" ] }, { @@ -3907,7 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129138688/170498071 [00:01<00:00, 76918262.43it/s]" + " 90%|█████████ | 154140672/170498071 [00:01<00:00, 100826537.56it/s]" ] }, { @@ -3915,7 +3915,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 137920512/170498071 [00:01<00:00, 80018807.83it/s]" + " 97%|█████████▋| 164593664/170498071 [00:01<00:00, 101825649.23it/s]" ] }, { @@ -3923,31 +3923,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 145981440/170498071 [00:01<00:00, 77133636.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 154402816/170498071 [00:01<00:00, 79111347.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 162365440/170498071 [00:02<00:00, 76269291.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 77333951.88it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s] " ] }, { @@ -4021,10 +3997,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.257185Z", - "iopub.status.busy": "2024-07-09T06:11:13.256590Z", - "iopub.status.idle": "2024-07-09T06:11:13.323923Z", - "shell.execute_reply": "2024-07-09T06:11:13.323486Z" + "iopub.execute_input": "2024-07-09T06:26:26.501872Z", + "iopub.status.busy": "2024-07-09T06:26:26.501334Z", + "iopub.status.idle": "2024-07-09T06:26:26.568877Z", + "shell.execute_reply": "2024-07-09T06:26:26.568264Z" } }, "outputs": [], @@ -4046,10 +4022,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.326012Z", - "iopub.status.busy": "2024-07-09T06:11:13.325680Z", - "iopub.status.idle": "2024-07-09T06:11:13.366116Z", - "shell.execute_reply": "2024-07-09T06:11:13.365711Z" + "iopub.execute_input": "2024-07-09T06:26:26.571436Z", + "iopub.status.busy": "2024-07-09T06:26:26.571213Z", + "iopub.status.idle": "2024-07-09T06:26:26.612980Z", + "shell.execute_reply": "2024-07-09T06:26:26.612387Z" } }, "outputs": [], @@ -4083,10 +4059,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.368146Z", - "iopub.status.busy": "2024-07-09T06:11:13.367823Z", - "iopub.status.idle": "2024-07-09T06:11:14.824593Z", - "shell.execute_reply": "2024-07-09T06:11:14.824054Z" + "iopub.execute_input": "2024-07-09T06:26:26.615590Z", + "iopub.status.busy": "2024-07-09T06:26:26.615223Z", + "iopub.status.idle": "2024-07-09T06:26:28.007434Z", + "shell.execute_reply": "2024-07-09T06:26:28.006820Z" } }, "outputs": [ @@ -4160,10 +4136,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:14.826794Z", - "iopub.status.busy": "2024-07-09T06:11:14.826486Z", - "iopub.status.idle": "2024-07-09T06:11:15.661596Z", - "shell.execute_reply": "2024-07-09T06:11:15.661072Z" + "iopub.execute_input": "2024-07-09T06:26:28.009673Z", + "iopub.status.busy": "2024-07-09T06:26:28.009331Z", + "iopub.status.idle": "2024-07-09T06:26:28.820192Z", + "shell.execute_reply": "2024-07-09T06:26:28.819683Z" } }, "outputs": [ @@ -4178,7 +4154,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "391d66fc80844e98a6b7127eea20e3ba", + "model_id": "716f2c676ad44e9fb6218d0b8625a9c5", "version_major": 2, "version_minor": 0 }, @@ -4202,7 +4178,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03ddc5e5c2af4ed382e0c99cc2aa646b", + "model_id": "ea4f3639cd404344b740181a60e6dfe1", "version_major": 2, "version_minor": 0 }, @@ -4452,54 +4428,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03ddc5e5c2af4ed382e0c99cc2aa646b": { - "model_module": "@jupyter-widgets/controls", + "0f799df441bb4d05a6a28c61f333f046": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3f8a482431f34e2faae193d10e76980a", - "IPY_MODEL_c325cd32b1d14cc4b5ca8e321dc31d90", - "IPY_MODEL_1a09c3aa59a94a799c0b7a82b5718e4d" - ], - "layout": "IPY_MODEL_57556e8423424a75b5760334a13aa4a6", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1a09c3aa59a94a799c0b7a82b5718e4d": { - "model_module": "@jupyter-widgets/controls", + "294a1c481a4c46e5bc9df718d9565bc7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9a1aba8237e45ea957d852a6d53dcc4", - "placeholder": "​", - "style": "IPY_MODEL_65a45dea02f74c5bbcacb4916148fb86", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 691.49it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1f06ca8d0f284b2faa6dfcacfef924f4": { + "2b6cc201cb424f5298894e3085cf6d74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4517,23 +4552,7 @@ "text_color": null } }, - "309173506dba4f15b8b7213882a655e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3150f0f2d0bf48d380ee22cb6a6ec59c": { + "31bd0ebee4be4b6995b1299029dfd4ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4548,55 +4567,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4faae3cf9dec4bff8d6b153958974cb0", + "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", "placeholder": "​", - "style": "IPY_MODEL_1f06ca8d0f284b2faa6dfcacfef924f4", + "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", "tabbable": null, "tooltip": null, "value": "100%" } }, - "351acb9554dd4c3b842bf386e04513a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "391d66fc80844e98a6b7127eea20e3ba": { + "37549aa8f96049628f56685e9b488f6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3150f0f2d0bf48d380ee22cb6a6ec59c", - "IPY_MODEL_8bd3259d18d64ab0a7ab19d9a309e286", - "IPY_MODEL_bfa11543be8f43068f62cfed9db531cd" - ], - "layout": "IPY_MODEL_887298b3add949feb4bb13ea5dee1afe", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "3f8a482431f34e2faae193d10e76980a": { + "43460e1d74ff44b6bdf8b3639d60c64c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4611,15 +4616,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7522155776ea4756a28dddb027c64cce", + "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", "placeholder": "​", - "style": "IPY_MODEL_6d00dcfbb71a473cbf9e476243985f81", + "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", "tabbable": null, "tooltip": null, "value": "100%" } }, - "4faae3cf9dec4bff8d6b153958974cb0": { + "4550b40c93134694b00bc701007e4553": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,7 +4677,23 @@ "width": null } }, - "57556e8423424a75b5760334a13aa4a6": { + "58c201af515141f191ad32c13265a546": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "59f5cfbd0629486ba546f97d01ea7fed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4725,7 +4746,47 @@ "width": null } }, - "5f942cc81ac44594bd238162231ac7ac": { + "716f2c676ad44e9fb6218d0b8625a9c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", + "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", + "IPY_MODEL_df74cf1241974d8dba64d522788976ea" + ], + "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", + "tabbable": null, + "tooltip": null + } + }, + "75e04c762f744d54adf55d90a052c562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75f430393fb34cad87ddab50d62eb686": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4778,7 +4839,30 @@ "width": null } }, - "65a45dea02f74c5bbcacb4916148fb86": { + "a58aa13dc64e47faa0cc93bb6652151b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", + "placeholder": "​", + "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 681.83it/s]" + } + }, + "b3b4bdc005f14648a26d1a16f3cf9fbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4796,7 +4880,7 @@ "text_color": null } }, - "66f3914610164bc59a81d0274162760b": { + "cdbb5130f8d045468526e3f842f2ee28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4849,7 +4933,7 @@ "width": null } }, - "6d00dcfbb71a473cbf9e476243985f81": { + "d12154805bed4fff8e2d01bf4f786af1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,113 +4951,48 @@ "text_color": null } }, - "7522155776ea4756a28dddb027c64cce": { - "model_module": "@jupyter-widgets/base", + "dee7e34112e0456e8e72f2a3ac0efa77": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "887298b3add949feb4bb13ea5dee1afe": { - "model_module": "@jupyter-widgets/base", + "df74cf1241974d8dba64d522788976ea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", + "placeholder": "​", + "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 800.04it/s]" } }, - "8bd3259d18d64ab0a7ab19d9a309e286": { + "e56f4d7332994f4e8edf32b758ca794d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4989,17 +5008,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f942cc81ac44594bd238162231ac7ac", + "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_309173506dba4f15b8b7213882a655e4", + "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "b9a1aba8237e45ea957d852a6d53dcc4": { + "ea4f3639cd404344b740181a60e6dfe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", + "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", + "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b" + ], + "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", + "tabbable": null, + "tooltip": null + } + }, + "ef0ce0626f2f42ccab835c3082d23f11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5052,30 +5095,7 @@ "width": null } }, - "bfa11543be8f43068f62cfed9db531cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66f3914610164bc59a81d0274162760b", - "placeholder": "​", - "style": "IPY_MODEL_ed6f32f260df411fabc8f0fbfee24aec", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 737.31it/s]" - } - }, - "c10a765f9e4f4c4cbaaba7f898a15d5b": { + "f9df9fb0ad7f4fe6b179e8db8621c60f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5127,50 +5147,6 @@ "visibility": null, "width": null } - }, - "c325cd32b1d14cc4b5ca8e321dc31d90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c10a765f9e4f4c4cbaaba7f898a15d5b", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_351acb9554dd4c3b842bf386e04513a3", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ed6f32f260df411fabc8f0fbfee24aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index f5cecb764..b7c82c939 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:19.727862Z", - "iopub.status.busy": "2024-07-09T06:11:19.727411Z", - "iopub.status.idle": "2024-07-09T06:11:20.814659Z", - "shell.execute_reply": "2024-07-09T06:11:20.814067Z" + "iopub.execute_input": "2024-07-09T06:26:32.925528Z", + "iopub.status.busy": "2024-07-09T06:26:32.925364Z", + "iopub.status.idle": "2024-07-09T06:26:34.040278Z", + "shell.execute_reply": "2024-07-09T06:26:34.039721Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.817130Z", - "iopub.status.busy": "2024-07-09T06:11:20.816860Z", - "iopub.status.idle": "2024-07-09T06:11:20.819597Z", - "shell.execute_reply": "2024-07-09T06:11:20.819174Z" + "iopub.execute_input": "2024-07-09T06:26:34.042937Z", + "iopub.status.busy": "2024-07-09T06:26:34.042544Z", + "iopub.status.idle": "2024-07-09T06:26:34.045384Z", + "shell.execute_reply": "2024-07-09T06:26:34.044944Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.821615Z", - "iopub.status.busy": "2024-07-09T06:11:20.821440Z", - "iopub.status.idle": "2024-07-09T06:11:20.832707Z", - "shell.execute_reply": "2024-07-09T06:11:20.832259Z" + "iopub.execute_input": "2024-07-09T06:26:34.047662Z", + "iopub.status.busy": "2024-07-09T06:26:34.047230Z", + "iopub.status.idle": "2024-07-09T06:26:34.058799Z", + "shell.execute_reply": "2024-07-09T06:26:34.058355Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.834603Z", - "iopub.status.busy": "2024-07-09T06:11:20.834431Z", - "iopub.status.idle": "2024-07-09T06:11:25.081972Z", - "shell.execute_reply": "2024-07-09T06:11:25.081390Z" + "iopub.execute_input": "2024-07-09T06:26:34.060975Z", + "iopub.status.busy": "2024-07-09T06:26:34.060630Z", + "iopub.status.idle": "2024-07-09T06:26:39.033668Z", + "shell.execute_reply": "2024-07-09T06:26:39.033084Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 8745dc930..830ac8885 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 139cbc83e..593067553 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:27.310302Z", - "iopub.status.busy": "2024-07-09T06:11:27.310136Z", - "iopub.status.idle": "2024-07-09T06:11:28.393086Z", - "shell.execute_reply": "2024-07-09T06:11:28.392489Z" + "iopub.execute_input": "2024-07-09T06:26:41.303187Z", + "iopub.status.busy": "2024-07-09T06:26:41.302823Z", + "iopub.status.idle": "2024-07-09T06:26:42.450257Z", + "shell.execute_reply": "2024-07-09T06:26:42.449747Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.395722Z", - "iopub.status.busy": "2024-07-09T06:11:28.395447Z", - "iopub.status.idle": "2024-07-09T06:11:28.398796Z", - "shell.execute_reply": "2024-07-09T06:11:28.398282Z" + "iopub.execute_input": "2024-07-09T06:26:42.453168Z", + "iopub.status.busy": "2024-07-09T06:26:42.452624Z", + "iopub.status.idle": "2024-07-09T06:26:42.456109Z", + "shell.execute_reply": "2024-07-09T06:26:42.455577Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.400817Z", - "iopub.status.busy": "2024-07-09T06:11:28.400506Z", - "iopub.status.idle": "2024-07-09T06:11:31.516039Z", - "shell.execute_reply": "2024-07-09T06:11:31.515428Z" + "iopub.execute_input": "2024-07-09T06:26:42.458324Z", + "iopub.status.busy": "2024-07-09T06:26:42.457999Z", + "iopub.status.idle": "2024-07-09T06:26:45.758135Z", + "shell.execute_reply": "2024-07-09T06:26:45.757518Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.519139Z", - "iopub.status.busy": "2024-07-09T06:11:31.518418Z", - "iopub.status.idle": "2024-07-09T06:11:31.550351Z", - "shell.execute_reply": "2024-07-09T06:11:31.549782Z" + "iopub.execute_input": "2024-07-09T06:26:45.761341Z", + "iopub.status.busy": "2024-07-09T06:26:45.760502Z", + "iopub.status.idle": "2024-07-09T06:26:45.799809Z", + "shell.execute_reply": "2024-07-09T06:26:45.799118Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.553016Z", - "iopub.status.busy": "2024-07-09T06:11:31.552724Z", - "iopub.status.idle": "2024-07-09T06:11:31.580753Z", - "shell.execute_reply": "2024-07-09T06:11:31.580187Z" + "iopub.execute_input": "2024-07-09T06:26:45.802392Z", + "iopub.status.busy": "2024-07-09T06:26:45.802142Z", + "iopub.status.idle": "2024-07-09T06:26:45.837536Z", + "shell.execute_reply": "2024-07-09T06:26:45.836818Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.583249Z", - "iopub.status.busy": "2024-07-09T06:11:31.582857Z", - "iopub.status.idle": "2024-07-09T06:11:31.585897Z", - "shell.execute_reply": "2024-07-09T06:11:31.585452Z" + "iopub.execute_input": "2024-07-09T06:26:45.840174Z", + "iopub.status.busy": "2024-07-09T06:26:45.839915Z", + "iopub.status.idle": "2024-07-09T06:26:45.842992Z", + "shell.execute_reply": "2024-07-09T06:26:45.842523Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.587847Z", - "iopub.status.busy": "2024-07-09T06:11:31.587536Z", - "iopub.status.idle": "2024-07-09T06:11:31.589987Z", - "shell.execute_reply": "2024-07-09T06:11:31.589558Z" + "iopub.execute_input": "2024-07-09T06:26:45.845075Z", + "iopub.status.busy": "2024-07-09T06:26:45.844811Z", + "iopub.status.idle": "2024-07-09T06:26:45.847393Z", + "shell.execute_reply": "2024-07-09T06:26:45.846951Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.592096Z", - "iopub.status.busy": "2024-07-09T06:11:31.591837Z", - "iopub.status.idle": "2024-07-09T06:11:31.616513Z", - "shell.execute_reply": "2024-07-09T06:11:31.615966Z" + "iopub.execute_input": "2024-07-09T06:26:45.849512Z", + "iopub.status.busy": "2024-07-09T06:26:45.849230Z", + "iopub.status.idle": "2024-07-09T06:26:45.873850Z", + "shell.execute_reply": "2024-07-09T06:26:45.873252Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a882aeebfb54110a2ffcfd1c2a492d4", + "model_id": "3e1a0cbaae1e45e19806d88ecdce7389", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b7cd48702a2947cfbce95f0292f5ba90", + "model_id": "684088a7b56b4b3aa39b109dfa860ac6", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.622436Z", - "iopub.status.busy": "2024-07-09T06:11:31.622223Z", - "iopub.status.idle": "2024-07-09T06:11:31.628767Z", - "shell.execute_reply": "2024-07-09T06:11:31.628236Z" + "iopub.execute_input": "2024-07-09T06:26:45.880372Z", + "iopub.status.busy": "2024-07-09T06:26:45.879962Z", + "iopub.status.idle": "2024-07-09T06:26:45.886615Z", + "shell.execute_reply": "2024-07-09T06:26:45.886081Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.630960Z", - "iopub.status.busy": "2024-07-09T06:11:31.630707Z", - "iopub.status.idle": "2024-07-09T06:11:31.634055Z", - "shell.execute_reply": "2024-07-09T06:11:31.633635Z" + "iopub.execute_input": "2024-07-09T06:26:45.888785Z", + "iopub.status.busy": "2024-07-09T06:26:45.888399Z", + "iopub.status.idle": "2024-07-09T06:26:45.891884Z", + "shell.execute_reply": "2024-07-09T06:26:45.891348Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.636034Z", - "iopub.status.busy": "2024-07-09T06:11:31.635717Z", - "iopub.status.idle": "2024-07-09T06:11:31.641760Z", - "shell.execute_reply": "2024-07-09T06:11:31.641333Z" + "iopub.execute_input": "2024-07-09T06:26:45.893965Z", + "iopub.status.busy": "2024-07-09T06:26:45.893580Z", + "iopub.status.idle": "2024-07-09T06:26:45.899933Z", + "shell.execute_reply": "2024-07-09T06:26:45.899439Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.643818Z", - "iopub.status.busy": "2024-07-09T06:11:31.643504Z", - "iopub.status.idle": "2024-07-09T06:11:31.673492Z", - "shell.execute_reply": "2024-07-09T06:11:31.672940Z" + "iopub.execute_input": "2024-07-09T06:26:45.901957Z", + "iopub.status.busy": "2024-07-09T06:26:45.901564Z", + "iopub.status.idle": "2024-07-09T06:26:45.938412Z", + "shell.execute_reply": "2024-07-09T06:26:45.937735Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.675988Z", - "iopub.status.busy": "2024-07-09T06:11:31.675744Z", - "iopub.status.idle": "2024-07-09T06:11:31.705573Z", - "shell.execute_reply": "2024-07-09T06:11:31.705028Z" + "iopub.execute_input": "2024-07-09T06:26:45.941344Z", + "iopub.status.busy": "2024-07-09T06:26:45.940842Z", + "iopub.status.idle": "2024-07-09T06:26:45.977181Z", + "shell.execute_reply": "2024-07-09T06:26:45.976594Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.708142Z", - "iopub.status.busy": "2024-07-09T06:11:31.707852Z", - "iopub.status.idle": "2024-07-09T06:11:31.825928Z", - "shell.execute_reply": "2024-07-09T06:11:31.825339Z" + "iopub.execute_input": "2024-07-09T06:26:45.979821Z", + "iopub.status.busy": "2024-07-09T06:26:45.979575Z", + "iopub.status.idle": "2024-07-09T06:26:46.104854Z", + "shell.execute_reply": "2024-07-09T06:26:46.104267Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.828701Z", - "iopub.status.busy": "2024-07-09T06:11:31.828028Z", - "iopub.status.idle": "2024-07-09T06:11:34.791968Z", - "shell.execute_reply": "2024-07-09T06:11:34.791331Z" + "iopub.execute_input": "2024-07-09T06:26:46.107771Z", + "iopub.status.busy": "2024-07-09T06:26:46.106984Z", + "iopub.status.idle": "2024-07-09T06:26:49.148445Z", + "shell.execute_reply": "2024-07-09T06:26:49.147812Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.794094Z", - "iopub.status.busy": "2024-07-09T06:11:34.793894Z", - "iopub.status.idle": "2024-07-09T06:11:34.852114Z", - "shell.execute_reply": "2024-07-09T06:11:34.851633Z" + "iopub.execute_input": "2024-07-09T06:26:49.150871Z", + "iopub.status.busy": "2024-07-09T06:26:49.150502Z", + "iopub.status.idle": "2024-07-09T06:26:49.209147Z", + "shell.execute_reply": "2024-07-09T06:26:49.208576Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.853981Z", - "iopub.status.busy": "2024-07-09T06:11:34.853803Z", - "iopub.status.idle": "2024-07-09T06:11:34.893549Z", - "shell.execute_reply": "2024-07-09T06:11:34.893064Z" + "iopub.execute_input": "2024-07-09T06:26:49.211500Z", + "iopub.status.busy": "2024-07-09T06:26:49.211164Z", + "iopub.status.idle": "2024-07-09T06:26:49.251723Z", + "shell.execute_reply": "2024-07-09T06:26:49.251225Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "7247e540", + "id": "a54c40cb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "da879a50", + "id": "bab2f717", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "c4df3634", + "id": "4a53b370", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9d690d9d", + "id": "209659fa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.895567Z", - "iopub.status.busy": "2024-07-09T06:11:34.895385Z", - "iopub.status.idle": "2024-07-09T06:11:34.902785Z", - "shell.execute_reply": "2024-07-09T06:11:34.902359Z" + "iopub.execute_input": "2024-07-09T06:26:49.253937Z", + "iopub.status.busy": "2024-07-09T06:26:49.253593Z", + "iopub.status.idle": "2024-07-09T06:26:49.261348Z", + "shell.execute_reply": "2024-07-09T06:26:49.260803Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ff01b6f9", + "id": "c433c793", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7c1cad4d", + "id": "74646b5a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.904752Z", - "iopub.status.busy": "2024-07-09T06:11:34.904575Z", - "iopub.status.idle": "2024-07-09T06:11:34.922778Z", - "shell.execute_reply": "2024-07-09T06:11:34.922347Z" + "iopub.execute_input": "2024-07-09T06:26:49.263459Z", + "iopub.status.busy": "2024-07-09T06:26:49.263127Z", + "iopub.status.idle": "2024-07-09T06:26:49.282109Z", + "shell.execute_reply": "2024-07-09T06:26:49.281556Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "33e36c44", + "id": "9a0f1590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.924880Z", - "iopub.status.busy": "2024-07-09T06:11:34.924490Z", - "iopub.status.idle": "2024-07-09T06:11:34.927841Z", - "shell.execute_reply": "2024-07-09T06:11:34.927308Z" + "iopub.execute_input": "2024-07-09T06:26:49.284265Z", + "iopub.status.busy": "2024-07-09T06:26:49.283854Z", + "iopub.status.idle": "2024-07-09T06:26:49.287329Z", + "shell.execute_reply": "2024-07-09T06:26:49.286782Z" } }, "outputs": [ @@ -1622,85 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "074f2bcc255940edb9bdaf05c41c3bb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d927b738e5b476e8416885f23d1cceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "114f58093d9047e5ba3e39df4eb4657c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12829dee5c694554b8d985bb46ff443b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132060852c5a493ea0001fec443ca1d2", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d927b738e5b476e8416885f23d1cceb", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "132060852c5a493ea0001fec443ca1d2": { + "06e039af78aa4922a7a5727f3929196b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1675,25 @@ "width": null } }, - "29ef3629c9a64dd1af78acbfcd298cef": { + "24abf0a07e174ecfb6ec768926bd9a35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2b835234c6594eaa9d659e33328d4ec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,23 +1746,7 @@ "width": null } }, - "3f162310e387401b85497edaa975d469": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4a882aeebfb54110a2ffcfd1c2a492d4": { + "3e1a0cbaae1e45e19806d88ecdce7389": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1837,16 +1761,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d64f4fd144a4d2da78ee7005e80a4f2", - "IPY_MODEL_58dcac96496e467aae9cf8175b1c353f", - "IPY_MODEL_7faa44b6c17e453eb485bbbb6e97570d" + "IPY_MODEL_ea0eb1e345874ebda4377832a5d148a1", + "IPY_MODEL_d3065c15065244f0a790856a85909914", + "IPY_MODEL_7420a4a93f6b475c9704a92f12d85f23" ], - "layout": "IPY_MODEL_d5d1c5ea3e5d482f94bf0d53fc4a1ad4", + "layout": "IPY_MODEL_66c7a500b9334da2b1849d287af9b402", "tabbable": null, "tooltip": null } }, - "5170546b7aec4a93b276eaea8d93cd04": { + "49c52b91517445ea95a2cdd6bcf7b607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1861,15 +1785,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ef3629c9a64dd1af78acbfcd298cef", + "layout": "IPY_MODEL_bf6180ca73df49bea8de92466f822aab", "placeholder": "​", - "style": "IPY_MODEL_b1b635c929d044d28128d92d893544bb", + "style": "IPY_MODEL_24abf0a07e174ecfb6ec768926bd9a35", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1448409.42it/s]" + "value": " 10000/? [00:00<00:00, 1540041.86it/s]" } }, - "58dcac96496e467aae9cf8175b1c353f": { + "4a2ecebbfc494ed9b2bada7d47085eaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1885,17 +1809,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d66327ec2a19429dae4bba06ae275a22", + "layout": "IPY_MODEL_4fbbfa9cd03647f4813a04fc8a4abc42", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f162310e387401b85497edaa975d469", + "style": "IPY_MODEL_e22f6064eadd4807ae9f756d8590121c", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "64218fdf8f77412189de02f82f9cd88a": { + "4fbbfa9cd03647f4813a04fc8a4abc42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1948,7 +1872,7 @@ "width": null } }, - "6869b651699240d3891714e1dfe045e5": { + "5fcc8c6298f24a3fbf1ca1a58c292bd3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2001,7 +1925,7 @@ "width": null } }, - "68cb1231213f4268acd070c5795648f7": { + "66c7a500b9334da2b1849d287af9b402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2054,53 +1978,49 @@ "width": null } }, - "6d64f4fd144a4d2da78ee7005e80a4f2": { + "684088a7b56b4b3aa39b109dfa860ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6cde3bfe98640e49abbf66bcb38b16d", - "placeholder": "​", - "style": "IPY_MODEL_e3811b0ca1b54da2a8ec0b7be16c3b75", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2ae6b9df4f8490b96524164e46e65fc", + "IPY_MODEL_4a2ecebbfc494ed9b2bada7d47085eaa", + "IPY_MODEL_49c52b91517445ea95a2cdd6bcf7b607" + ], + "layout": "IPY_MODEL_7ec4490b5e064efd8d912a372922e930", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "7faa44b6c17e453eb485bbbb6e97570d": { + "6a7594e4ad2a4a2f97e56b5e1a6a9890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_64218fdf8f77412189de02f82f9cd88a", - "placeholder": "​", - "style": "IPY_MODEL_074f2bcc255940edb9bdaf05c41c3bb6", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1094289.96it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2af7ceec77b462294a589dbc36ef86f": { + "7420a4a93f6b475c9704a92f12d85f23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2115,33 +2035,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68cb1231213f4268acd070c5795648f7", + "layout": "IPY_MODEL_b618cbdb66e74802ac612b08fdd271ca", "placeholder": "​", - "style": "IPY_MODEL_114f58093d9047e5ba3e39df4eb4657c", + "style": "IPY_MODEL_6a7594e4ad2a4a2f97e56b5e1a6a9890", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "b1b635c929d044d28128d92d893544bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 10000/? [00:00<00:00, 1046300.30it/s]" } }, - "b6cde3bfe98640e49abbf66bcb38b16d": { + "7ec4490b5e064efd8d912a372922e930": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2194,31 +2096,23 @@ "width": null } }, - "b7cd48702a2947cfbce95f0292f5ba90": { + "8d038adf74b94c00ba237beeafd03a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2af7ceec77b462294a589dbc36ef86f", - "IPY_MODEL_12829dee5c694554b8d985bb46ff443b", - "IPY_MODEL_5170546b7aec4a93b276eaea8d93cd04" - ], - "layout": "IPY_MODEL_6869b651699240d3891714e1dfe045e5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d5d1c5ea3e5d482f94bf0d53fc4a1ad4": { + "b618cbdb66e74802ac612b08fdd271ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2271,7 +2165,7 @@ "width": null } }, - "d66327ec2a19429dae4bba06ae275a22": { + "bf6180ca73df49bea8de92466f822aab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,7 +2218,113 @@ "width": null } }, - "e3811b0ca1b54da2a8ec0b7be16c3b75": { + "c26ba877617a46b5983aa98f97f6f4e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3065c15065244f0a790856a85909914": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b835234c6594eaa9d659e33328d4ec6", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d038adf74b94c00ba237beeafd03a45", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "e22f6064eadd4807ae9f756d8590121c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2ae6b9df4f8490b96524164e46e65fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_06e039af78aa4922a7a5727f3929196b", + "placeholder": "​", + "style": "IPY_MODEL_ecb5b9b407b34ccdac02fdba74200b01", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "ea0eb1e345874ebda4377832a5d148a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fcc8c6298f24a3fbf1ca1a58c292bd3", + "placeholder": "​", + "style": "IPY_MODEL_c26ba877617a46b5983aa98f97f6f4e6", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "ecb5b9b407b34ccdac02fdba74200b01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index d8338a1c7..1a1804c33 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -62,10 +62,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:38.074917Z", - "iopub.status.busy": "2024-07-09T06:11:38.074738Z", - "iopub.status.idle": "2024-07-09T06:11:39.177755Z", - "shell.execute_reply": "2024-07-09T06:11:39.177136Z" + "iopub.execute_input": "2024-07-09T06:26:53.572917Z", + "iopub.status.busy": "2024-07-09T06:26:53.572738Z", + "iopub.status.idle": "2024-07-09T06:26:54.710376Z", + "shell.execute_reply": "2024-07-09T06:26:54.709717Z" }, "nbsphinx": "hidden" }, @@ -75,7 +75,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -101,10 +101,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.180393Z", - "iopub.status.busy": "2024-07-09T06:11:39.180112Z", - "iopub.status.idle": "2024-07-09T06:11:39.183849Z", - "shell.execute_reply": "2024-07-09T06:11:39.183327Z" + "iopub.execute_input": "2024-07-09T06:26:54.713150Z", + "iopub.status.busy": "2024-07-09T06:26:54.712711Z", + "iopub.status.idle": "2024-07-09T06:26:54.717207Z", + "shell.execute_reply": "2024-07-09T06:26:54.716666Z" } }, "outputs": [], @@ -142,10 +142,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.185853Z", - "iopub.status.busy": "2024-07-09T06:11:39.185471Z", - "iopub.status.idle": "2024-07-09T06:11:39.421540Z", - "shell.execute_reply": "2024-07-09T06:11:39.420989Z" + "iopub.execute_input": "2024-07-09T06:26:54.719478Z", + "iopub.status.busy": "2024-07-09T06:26:54.719131Z", + "iopub.status.idle": "2024-07-09T06:26:54.915038Z", + "shell.execute_reply": "2024-07-09T06:26:54.914515Z" } }, "outputs": [ @@ -275,10 +275,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.423563Z", - "iopub.status.busy": "2024-07-09T06:11:39.423353Z", - "iopub.status.idle": "2024-07-09T06:11:39.429110Z", - "shell.execute_reply": "2024-07-09T06:11:39.428591Z" + "iopub.execute_input": "2024-07-09T06:26:54.917264Z", + "iopub.status.busy": "2024-07-09T06:26:54.916924Z", + "iopub.status.idle": "2024-07-09T06:26:54.922778Z", + "shell.execute_reply": "2024-07-09T06:26:54.922239Z" } }, "outputs": [], @@ -314,10 +314,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.431253Z", - "iopub.status.busy": "2024-07-09T06:11:39.430930Z", - "iopub.status.idle": "2024-07-09T06:11:39.437847Z", - "shell.execute_reply": "2024-07-09T06:11:39.437407Z" + "iopub.execute_input": "2024-07-09T06:26:54.925001Z", + "iopub.status.busy": "2024-07-09T06:26:54.924597Z", + "iopub.status.idle": "2024-07-09T06:26:54.931679Z", + "shell.execute_reply": "2024-07-09T06:26:54.931113Z" } }, "outputs": [ @@ -420,10 +420,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.439692Z", - "iopub.status.busy": "2024-07-09T06:11:39.439519Z", - "iopub.status.idle": "2024-07-09T06:11:39.444051Z", - "shell.execute_reply": "2024-07-09T06:11:39.443626Z" + "iopub.execute_input": "2024-07-09T06:26:54.933695Z", + "iopub.status.busy": "2024-07-09T06:26:54.933374Z", + "iopub.status.idle": "2024-07-09T06:26:54.937844Z", + "shell.execute_reply": "2024-07-09T06:26:54.937411Z" } }, "outputs": [], @@ -451,10 +451,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.445820Z", - "iopub.status.busy": "2024-07-09T06:11:39.445641Z", - "iopub.status.idle": "2024-07-09T06:11:39.451360Z", - "shell.execute_reply": "2024-07-09T06:11:39.450923Z" + "iopub.execute_input": "2024-07-09T06:26:54.939828Z", + "iopub.status.busy": "2024-07-09T06:26:54.939504Z", + "iopub.status.idle": "2024-07-09T06:26:54.945245Z", + "shell.execute_reply": "2024-07-09T06:26:54.944792Z" } }, "outputs": [], @@ -490,10 +490,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.453310Z", - "iopub.status.busy": "2024-07-09T06:11:39.453005Z", - "iopub.status.idle": "2024-07-09T06:11:39.457095Z", - "shell.execute_reply": "2024-07-09T06:11:39.456561Z" + "iopub.execute_input": "2024-07-09T06:26:54.947250Z", + "iopub.status.busy": "2024-07-09T06:26:54.946896Z", + "iopub.status.idle": "2024-07-09T06:26:54.950932Z", + "shell.execute_reply": "2024-07-09T06:26:54.950488Z" } }, "outputs": [], @@ -508,10 +508,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.459051Z", - "iopub.status.busy": "2024-07-09T06:11:39.458713Z", - "iopub.status.idle": "2024-07-09T06:11:39.521965Z", - "shell.execute_reply": "2024-07-09T06:11:39.521403Z" + "iopub.execute_input": "2024-07-09T06:26:54.952888Z", + "iopub.status.busy": "2024-07-09T06:26:54.952594Z", + "iopub.status.idle": "2024-07-09T06:26:55.016618Z", + "shell.execute_reply": "2024-07-09T06:26:55.015980Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.524898Z", - "iopub.status.busy": "2024-07-09T06:11:39.524546Z", - "iopub.status.idle": "2024-07-09T06:11:39.537157Z", - "shell.execute_reply": "2024-07-09T06:11:39.536649Z" + "iopub.execute_input": "2024-07-09T06:26:55.019431Z", + "iopub.status.busy": "2024-07-09T06:26:55.018865Z", + "iopub.status.idle": "2024-07-09T06:26:55.029533Z", + "shell.execute_reply": "2024-07-09T06:26:55.029057Z" } }, "outputs": [ @@ -726,10 +726,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.540541Z", - "iopub.status.busy": "2024-07-09T06:11:39.539543Z", - "iopub.status.idle": "2024-07-09T06:11:39.560886Z", - "shell.execute_reply": "2024-07-09T06:11:39.560377Z" + "iopub.execute_input": "2024-07-09T06:26:55.032677Z", + "iopub.status.busy": "2024-07-09T06:26:55.031768Z", + "iopub.status.idle": "2024-07-09T06:26:55.053007Z", + "shell.execute_reply": "2024-07-09T06:26:55.052525Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.563641Z", - "iopub.status.busy": "2024-07-09T06:11:39.563221Z", - "iopub.status.idle": "2024-07-09T06:11:39.568664Z", - "shell.execute_reply": "2024-07-09T06:11:39.568157Z" + "iopub.execute_input": "2024-07-09T06:26:55.056439Z", + "iopub.status.busy": "2024-07-09T06:26:55.055527Z", + "iopub.status.idle": "2024-07-09T06:26:55.061337Z", + "shell.execute_reply": "2024-07-09T06:26:55.060850Z" } }, "outputs": [ @@ -970,10 +970,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.571166Z", - "iopub.status.busy": "2024-07-09T06:11:39.570962Z", - "iopub.status.idle": "2024-07-09T06:11:39.576330Z", - "shell.execute_reply": "2024-07-09T06:11:39.575803Z" + "iopub.execute_input": "2024-07-09T06:26:55.064742Z", + "iopub.status.busy": "2024-07-09T06:26:55.063844Z", + "iopub.status.idle": "2024-07-09T06:26:55.069832Z", + "shell.execute_reply": "2024-07-09T06:26:55.069351Z" } }, "outputs": [ @@ -1007,10 +1007,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.579222Z", - "iopub.status.busy": "2024-07-09T06:11:39.578978Z", - "iopub.status.idle": "2024-07-09T06:11:39.589987Z", - "shell.execute_reply": "2024-07-09T06:11:39.589598Z" + "iopub.execute_input": "2024-07-09T06:26:55.073279Z", + "iopub.status.busy": "2024-07-09T06:26:55.072375Z", + "iopub.status.idle": "2024-07-09T06:26:55.083605Z", + "shell.execute_reply": "2024-07-09T06:26:55.083211Z" } }, "outputs": [ @@ -1207,10 +1207,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.591768Z", - "iopub.status.busy": "2024-07-09T06:11:39.591603Z", - "iopub.status.idle": "2024-07-09T06:11:39.595987Z", - "shell.execute_reply": "2024-07-09T06:11:39.595574Z" + "iopub.execute_input": "2024-07-09T06:26:55.086287Z", + "iopub.status.busy": "2024-07-09T06:26:55.085572Z", + "iopub.status.idle": "2024-07-09T06:26:55.090541Z", + "shell.execute_reply": "2024-07-09T06:26:55.090006Z" } }, "outputs": [], @@ -1236,10 +1236,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.597998Z", - "iopub.status.busy": "2024-07-09T06:11:39.597671Z", - "iopub.status.idle": "2024-07-09T06:11:39.701510Z", - "shell.execute_reply": "2024-07-09T06:11:39.700999Z" + "iopub.execute_input": "2024-07-09T06:26:55.092949Z", + "iopub.status.busy": "2024-07-09T06:26:55.092629Z", + "iopub.status.idle": "2024-07-09T06:26:55.197433Z", + "shell.execute_reply": "2024-07-09T06:26:55.196909Z" } }, "outputs": [ @@ -1713,10 +1713,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.703592Z", - "iopub.status.busy": "2024-07-09T06:11:39.703317Z", - "iopub.status.idle": "2024-07-09T06:11:39.709189Z", - "shell.execute_reply": "2024-07-09T06:11:39.708705Z" + "iopub.execute_input": "2024-07-09T06:26:55.199599Z", + "iopub.status.busy": "2024-07-09T06:26:55.199328Z", + "iopub.status.idle": "2024-07-09T06:26:55.205311Z", + "shell.execute_reply": "2024-07-09T06:26:55.204815Z" } }, "outputs": [], @@ -1740,10 +1740,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.711392Z", - "iopub.status.busy": "2024-07-09T06:11:39.711064Z", - "iopub.status.idle": "2024-07-09T06:11:41.651348Z", - "shell.execute_reply": "2024-07-09T06:11:41.650672Z" + "iopub.execute_input": "2024-07-09T06:26:55.207624Z", + "iopub.status.busy": "2024-07-09T06:26:55.207315Z", + "iopub.status.idle": "2024-07-09T06:26:57.128251Z", + "shell.execute_reply": "2024-07-09T06:26:57.127642Z" } }, "outputs": [ @@ -1955,10 +1955,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.655133Z", - "iopub.status.busy": "2024-07-09T06:11:41.654057Z", - "iopub.status.idle": "2024-07-09T06:11:41.668625Z", - "shell.execute_reply": "2024-07-09T06:11:41.668134Z" + "iopub.execute_input": "2024-07-09T06:26:57.131390Z", + "iopub.status.busy": "2024-07-09T06:26:57.130806Z", + "iopub.status.idle": "2024-07-09T06:26:57.144118Z", + "shell.execute_reply": "2024-07-09T06:26:57.143599Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.672036Z", - "iopub.status.busy": "2024-07-09T06:11:41.671132Z", - "iopub.status.idle": "2024-07-09T06:11:41.674984Z", - "shell.execute_reply": "2024-07-09T06:11:41.674508Z" + "iopub.execute_input": "2024-07-09T06:26:57.146831Z", + "iopub.status.busy": "2024-07-09T06:26:57.146463Z", + "iopub.status.idle": "2024-07-09T06:26:57.149377Z", + "shell.execute_reply": "2024-07-09T06:26:57.148891Z" } }, "outputs": [], @@ -2092,10 +2092,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.678357Z", - "iopub.status.busy": "2024-07-09T06:11:41.677451Z", - "iopub.status.idle": "2024-07-09T06:11:41.682864Z", - "shell.execute_reply": "2024-07-09T06:11:41.682375Z" + "iopub.execute_input": "2024-07-09T06:26:57.151654Z", + "iopub.status.busy": "2024-07-09T06:26:57.151283Z", + "iopub.status.idle": "2024-07-09T06:26:57.155840Z", + "shell.execute_reply": "2024-07-09T06:26:57.155317Z" } }, "outputs": [], @@ -2119,10 +2119,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.686265Z", - "iopub.status.busy": "2024-07-09T06:11:41.685365Z", - "iopub.status.idle": "2024-07-09T06:11:41.714433Z", - "shell.execute_reply": "2024-07-09T06:11:41.713889Z" + "iopub.execute_input": "2024-07-09T06:26:57.158157Z", + "iopub.status.busy": "2024-07-09T06:26:57.157788Z", + "iopub.status.idle": "2024-07-09T06:26:57.167772Z", + "shell.execute_reply": "2024-07-09T06:26:57.167300Z" } }, "outputs": [ @@ -2162,10 +2162,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.716900Z", - "iopub.status.busy": "2024-07-09T06:11:41.716509Z", - "iopub.status.idle": "2024-07-09T06:11:42.186387Z", - "shell.execute_reply": "2024-07-09T06:11:42.185860Z" + "iopub.execute_input": "2024-07-09T06:26:57.170046Z", + "iopub.status.busy": "2024-07-09T06:26:57.169694Z", + "iopub.status.idle": "2024-07-09T06:26:57.642079Z", + "shell.execute_reply": "2024-07-09T06:26:57.641537Z" } }, "outputs": [], @@ -2196,10 +2196,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.189028Z", - "iopub.status.busy": "2024-07-09T06:11:42.188720Z", - "iopub.status.idle": "2024-07-09T06:11:42.313557Z", - "shell.execute_reply": "2024-07-09T06:11:42.312910Z" + "iopub.execute_input": "2024-07-09T06:26:57.644886Z", + "iopub.status.busy": "2024-07-09T06:26:57.644506Z", + "iopub.status.idle": "2024-07-09T06:26:57.765208Z", + "shell.execute_reply": "2024-07-09T06:26:57.764592Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.317275Z", - "iopub.status.busy": "2024-07-09T06:11:42.316163Z", - "iopub.status.idle": "2024-07-09T06:11:42.324825Z", - "shell.execute_reply": "2024-07-09T06:11:42.324349Z" + "iopub.execute_input": "2024-07-09T06:26:57.767934Z", + "iopub.status.busy": "2024-07-09T06:26:57.767539Z", + "iopub.status.idle": "2024-07-09T06:26:57.774227Z", + "shell.execute_reply": "2024-07-09T06:26:57.773733Z" } }, "outputs": [ @@ -2443,10 +2443,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.328314Z", - "iopub.status.busy": "2024-07-09T06:11:42.327266Z", - "iopub.status.idle": "2024-07-09T06:11:42.335221Z", - "shell.execute_reply": "2024-07-09T06:11:42.334720Z" + "iopub.execute_input": "2024-07-09T06:26:57.777381Z", + "iopub.status.busy": "2024-07-09T06:26:57.776332Z", + "iopub.status.idle": "2024-07-09T06:26:57.784838Z", + "shell.execute_reply": "2024-07-09T06:26:57.784346Z" } }, "outputs": [ @@ -2479,10 +2479,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.338646Z", - "iopub.status.busy": "2024-07-09T06:11:42.337607Z", - "iopub.status.idle": "2024-07-09T06:11:42.344830Z", - "shell.execute_reply": "2024-07-09T06:11:42.344359Z" + "iopub.execute_input": "2024-07-09T06:26:57.788740Z", + "iopub.status.busy": "2024-07-09T06:26:57.787559Z", + "iopub.status.idle": "2024-07-09T06:26:57.795543Z", + "shell.execute_reply": "2024-07-09T06:26:57.795055Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.348222Z", - "iopub.status.busy": "2024-07-09T06:11:42.347202Z", - "iopub.status.idle": "2024-07-09T06:11:42.353201Z", - "shell.execute_reply": "2024-07-09T06:11:42.352734Z" + "iopub.execute_input": "2024-07-09T06:26:57.799183Z", + "iopub.status.busy": "2024-07-09T06:26:57.798006Z", + "iopub.status.idle": "2024-07-09T06:26:57.804472Z", + "shell.execute_reply": "2024-07-09T06:26:57.803989Z" } }, "outputs": [ @@ -2544,10 +2544,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.356588Z", - "iopub.status.busy": "2024-07-09T06:11:42.355570Z", - "iopub.status.idle": "2024-07-09T06:11:42.360784Z", - "shell.execute_reply": "2024-07-09T06:11:42.360243Z" + "iopub.execute_input": "2024-07-09T06:26:57.808096Z", + "iopub.status.busy": "2024-07-09T06:26:57.807195Z", + "iopub.status.idle": "2024-07-09T06:26:57.812308Z", + "shell.execute_reply": "2024-07-09T06:26:57.811777Z" } }, "outputs": [], @@ -2571,10 +2571,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.362781Z", - "iopub.status.busy": "2024-07-09T06:11:42.362457Z", - "iopub.status.idle": "2024-07-09T06:11:42.432148Z", - "shell.execute_reply": "2024-07-09T06:11:42.431625Z" + "iopub.execute_input": "2024-07-09T06:26:57.814541Z", + "iopub.status.busy": "2024-07-09T06:26:57.814291Z", + "iopub.status.idle": "2024-07-09T06:26:57.894429Z", + "shell.execute_reply": "2024-07-09T06:26:57.893893Z" } }, "outputs": [ @@ -3054,10 +3054,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.434389Z", - "iopub.status.busy": "2024-07-09T06:11:42.433972Z", - "iopub.status.idle": "2024-07-09T06:11:42.442830Z", - "shell.execute_reply": "2024-07-09T06:11:42.442287Z" + "iopub.execute_input": "2024-07-09T06:26:57.896631Z", + "iopub.status.busy": "2024-07-09T06:26:57.896354Z", + "iopub.status.idle": "2024-07-09T06:26:57.906205Z", + "shell.execute_reply": "2024-07-09T06:26:57.905633Z" } }, "outputs": [ @@ -3113,10 +3113,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.445160Z", - "iopub.status.busy": "2024-07-09T06:11:42.444683Z", - "iopub.status.idle": "2024-07-09T06:11:42.447719Z", - "shell.execute_reply": "2024-07-09T06:11:42.447244Z" + "iopub.execute_input": "2024-07-09T06:26:57.910159Z", + "iopub.status.busy": "2024-07-09T06:26:57.909684Z", + "iopub.status.idle": "2024-07-09T06:26:57.912488Z", + "shell.execute_reply": "2024-07-09T06:26:57.912033Z" } }, "outputs": [], @@ -3152,10 +3152,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.449643Z", - "iopub.status.busy": "2024-07-09T06:11:42.449346Z", - "iopub.status.idle": "2024-07-09T06:11:42.458347Z", - "shell.execute_reply": "2024-07-09T06:11:42.457952Z" + "iopub.execute_input": "2024-07-09T06:26:57.914998Z", + "iopub.status.busy": "2024-07-09T06:26:57.914575Z", + "iopub.status.idle": "2024-07-09T06:26:57.923907Z", + "shell.execute_reply": "2024-07-09T06:26:57.923469Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.460548Z", - "iopub.status.busy": "2024-07-09T06:11:42.460124Z", - "iopub.status.idle": "2024-07-09T06:11:42.466711Z", - "shell.execute_reply": "2024-07-09T06:11:42.466317Z" + "iopub.execute_input": "2024-07-09T06:26:57.925928Z", + "iopub.status.busy": "2024-07-09T06:26:57.925621Z", + "iopub.status.idle": "2024-07-09T06:26:57.932179Z", + "shell.execute_reply": "2024-07-09T06:26:57.931737Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.468698Z", - "iopub.status.busy": "2024-07-09T06:11:42.468382Z", - "iopub.status.idle": "2024-07-09T06:11:42.471498Z", - "shell.execute_reply": "2024-07-09T06:11:42.471070Z" + "iopub.execute_input": "2024-07-09T06:26:57.934245Z", + "iopub.status.busy": "2024-07-09T06:26:57.933861Z", + "iopub.status.idle": "2024-07-09T06:26:57.937104Z", + "shell.execute_reply": "2024-07-09T06:26:57.936671Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.473490Z", - "iopub.status.busy": "2024-07-09T06:11:42.473168Z", - "iopub.status.idle": "2024-07-09T06:11:46.154478Z", - "shell.execute_reply": "2024-07-09T06:11:46.153968Z" + "iopub.execute_input": "2024-07-09T06:26:57.938975Z", + "iopub.status.busy": "2024-07-09T06:26:57.938647Z", + "iopub.status.idle": "2024-07-09T06:27:01.641872Z", + "shell.execute_reply": "2024-07-09T06:27:01.641360Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.156899Z", - "iopub.status.busy": "2024-07-09T06:11:46.156558Z", - "iopub.status.idle": "2024-07-09T06:11:46.159512Z", - "shell.execute_reply": "2024-07-09T06:11:46.159123Z" + "iopub.execute_input": "2024-07-09T06:27:01.644959Z", + "iopub.status.busy": "2024-07-09T06:27:01.644089Z", + "iopub.status.idle": "2024-07-09T06:27:01.648019Z", + "shell.execute_reply": "2024-07-09T06:27:01.647564Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.161459Z", - "iopub.status.busy": "2024-07-09T06:11:46.161146Z", - "iopub.status.idle": "2024-07-09T06:11:46.164332Z", - "shell.execute_reply": "2024-07-09T06:11:46.163782Z" + "iopub.execute_input": "2024-07-09T06:27:01.649958Z", + "iopub.status.busy": "2024-07-09T06:27:01.649677Z", + "iopub.status.idle": "2024-07-09T06:27:01.652295Z", + "shell.execute_reply": "2024-07-09T06:27:01.651802Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 2996d7ede..e7571dfc6 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:49.091711Z", - "iopub.status.busy": "2024-07-09T06:11:49.091553Z", - "iopub.status.idle": "2024-07-09T06:11:50.232481Z", - "shell.execute_reply": "2024-07-09T06:11:50.231945Z" + "iopub.execute_input": "2024-07-09T06:27:04.830463Z", + "iopub.status.busy": "2024-07-09T06:27:04.830294Z", + "iopub.status.idle": "2024-07-09T06:27:06.025206Z", + "shell.execute_reply": "2024-07-09T06:27:06.024596Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.235078Z", - "iopub.status.busy": "2024-07-09T06:11:50.234645Z", - "iopub.status.idle": "2024-07-09T06:11:50.408424Z", - "shell.execute_reply": "2024-07-09T06:11:50.407907Z" + "iopub.execute_input": "2024-07-09T06:27:06.027800Z", + "iopub.status.busy": "2024-07-09T06:27:06.027471Z", + "iopub.status.idle": "2024-07-09T06:27:06.212766Z", + "shell.execute_reply": "2024-07-09T06:27:06.212206Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.410863Z", - "iopub.status.busy": "2024-07-09T06:11:50.410584Z", - "iopub.status.idle": "2024-07-09T06:11:50.421585Z", - "shell.execute_reply": "2024-07-09T06:11:50.421178Z" + "iopub.execute_input": "2024-07-09T06:27:06.215365Z", + "iopub.status.busy": "2024-07-09T06:27:06.215033Z", + "iopub.status.idle": "2024-07-09T06:27:06.226517Z", + "shell.execute_reply": "2024-07-09T06:27:06.226088Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.423540Z", - "iopub.status.busy": "2024-07-09T06:11:50.423276Z", - "iopub.status.idle": "2024-07-09T06:11:50.658194Z", - "shell.execute_reply": "2024-07-09T06:11:50.657603Z" + "iopub.execute_input": "2024-07-09T06:27:06.228721Z", + "iopub.status.busy": "2024-07-09T06:27:06.228284Z", + "iopub.status.idle": "2024-07-09T06:27:06.463202Z", + "shell.execute_reply": "2024-07-09T06:27:06.462603Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.660770Z", - "iopub.status.busy": "2024-07-09T06:11:50.660310Z", - "iopub.status.idle": "2024-07-09T06:11:50.686483Z", - "shell.execute_reply": "2024-07-09T06:11:50.686061Z" + "iopub.execute_input": "2024-07-09T06:27:06.465737Z", + "iopub.status.busy": "2024-07-09T06:27:06.465380Z", + "iopub.status.idle": "2024-07-09T06:27:06.491353Z", + "shell.execute_reply": "2024-07-09T06:27:06.490841Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.688646Z", - "iopub.status.busy": "2024-07-09T06:11:50.688370Z", - "iopub.status.idle": "2024-07-09T06:11:52.702920Z", - "shell.execute_reply": "2024-07-09T06:11:52.702319Z" + "iopub.execute_input": "2024-07-09T06:27:06.493408Z", + "iopub.status.busy": "2024-07-09T06:27:06.493075Z", + "iopub.status.idle": "2024-07-09T06:27:08.559484Z", + "shell.execute_reply": "2024-07-09T06:27:08.558857Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.705397Z", - "iopub.status.busy": "2024-07-09T06:11:52.705057Z", - "iopub.status.idle": "2024-07-09T06:11:52.722879Z", - "shell.execute_reply": "2024-07-09T06:11:52.722437Z" + "iopub.execute_input": "2024-07-09T06:27:08.561982Z", + "iopub.status.busy": "2024-07-09T06:27:08.561454Z", + "iopub.status.idle": "2024-07-09T06:27:08.579506Z", + "shell.execute_reply": "2024-07-09T06:27:08.578938Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.724954Z", - "iopub.status.busy": "2024-07-09T06:11:52.724772Z", - "iopub.status.idle": "2024-07-09T06:11:54.183986Z", - "shell.execute_reply": "2024-07-09T06:11:54.183375Z" + "iopub.execute_input": "2024-07-09T06:27:08.581768Z", + "iopub.status.busy": "2024-07-09T06:27:08.581433Z", + "iopub.status.idle": "2024-07-09T06:27:10.041147Z", + "shell.execute_reply": "2024-07-09T06:27:10.040535Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.186907Z", - "iopub.status.busy": "2024-07-09T06:11:54.186075Z", - "iopub.status.idle": "2024-07-09T06:11:54.200134Z", - "shell.execute_reply": "2024-07-09T06:11:54.199558Z" + "iopub.execute_input": "2024-07-09T06:27:10.043766Z", + "iopub.status.busy": "2024-07-09T06:27:10.043148Z", + "iopub.status.idle": "2024-07-09T06:27:10.056923Z", + "shell.execute_reply": "2024-07-09T06:27:10.056388Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.202306Z", - "iopub.status.busy": "2024-07-09T06:11:54.202000Z", - "iopub.status.idle": "2024-07-09T06:11:54.277250Z", - "shell.execute_reply": "2024-07-09T06:11:54.276637Z" + "iopub.execute_input": "2024-07-09T06:27:10.059184Z", + "iopub.status.busy": "2024-07-09T06:27:10.058724Z", + "iopub.status.idle": "2024-07-09T06:27:10.131352Z", + "shell.execute_reply": "2024-07-09T06:27:10.130748Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.279643Z", - "iopub.status.busy": "2024-07-09T06:11:54.279420Z", - "iopub.status.idle": "2024-07-09T06:11:54.491334Z", - "shell.execute_reply": "2024-07-09T06:11:54.490753Z" + "iopub.execute_input": "2024-07-09T06:27:10.133987Z", + "iopub.status.busy": "2024-07-09T06:27:10.133447Z", + "iopub.status.idle": "2024-07-09T06:27:10.342019Z", + "shell.execute_reply": "2024-07-09T06:27:10.341476Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.493562Z", - "iopub.status.busy": "2024-07-09T06:11:54.493205Z", - "iopub.status.idle": "2024-07-09T06:11:54.509795Z", - "shell.execute_reply": "2024-07-09T06:11:54.509342Z" + "iopub.execute_input": "2024-07-09T06:27:10.344306Z", + "iopub.status.busy": "2024-07-09T06:27:10.343957Z", + "iopub.status.idle": "2024-07-09T06:27:10.361242Z", + "shell.execute_reply": "2024-07-09T06:27:10.360779Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.511753Z", - "iopub.status.busy": "2024-07-09T06:11:54.511488Z", - "iopub.status.idle": "2024-07-09T06:11:54.520675Z", - "shell.execute_reply": "2024-07-09T06:11:54.520247Z" + "iopub.execute_input": "2024-07-09T06:27:10.363517Z", + "iopub.status.busy": "2024-07-09T06:27:10.363117Z", + "iopub.status.idle": "2024-07-09T06:27:10.372893Z", + "shell.execute_reply": "2024-07-09T06:27:10.372453Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.522665Z", - "iopub.status.busy": "2024-07-09T06:11:54.522333Z", - "iopub.status.idle": "2024-07-09T06:11:54.604475Z", - "shell.execute_reply": "2024-07-09T06:11:54.603871Z" + "iopub.execute_input": "2024-07-09T06:27:10.375119Z", + "iopub.status.busy": "2024-07-09T06:27:10.374773Z", + "iopub.status.idle": "2024-07-09T06:27:10.461355Z", + "shell.execute_reply": "2024-07-09T06:27:10.460793Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.606814Z", - "iopub.status.busy": "2024-07-09T06:11:54.606624Z", - "iopub.status.idle": "2024-07-09T06:11:54.727974Z", - "shell.execute_reply": "2024-07-09T06:11:54.727317Z" + "iopub.execute_input": "2024-07-09T06:27:10.463772Z", + "iopub.status.busy": "2024-07-09T06:27:10.463410Z", + "iopub.status.idle": "2024-07-09T06:27:10.595934Z", + "shell.execute_reply": "2024-07-09T06:27:10.595287Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.730454Z", - "iopub.status.busy": "2024-07-09T06:11:54.730077Z", - "iopub.status.idle": "2024-07-09T06:11:54.733732Z", - "shell.execute_reply": "2024-07-09T06:11:54.733202Z" + "iopub.execute_input": "2024-07-09T06:27:10.598470Z", + "iopub.status.busy": "2024-07-09T06:27:10.598089Z", + "iopub.status.idle": "2024-07-09T06:27:10.601819Z", + "shell.execute_reply": "2024-07-09T06:27:10.601299Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.735775Z", - "iopub.status.busy": "2024-07-09T06:11:54.735487Z", - "iopub.status.idle": "2024-07-09T06:11:54.739241Z", - "shell.execute_reply": "2024-07-09T06:11:54.738694Z" + "iopub.execute_input": "2024-07-09T06:27:10.603912Z", + "iopub.status.busy": "2024-07-09T06:27:10.603638Z", + "iopub.status.idle": "2024-07-09T06:27:10.607432Z", + "shell.execute_reply": "2024-07-09T06:27:10.606860Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.741323Z", - "iopub.status.busy": "2024-07-09T06:11:54.740932Z", - "iopub.status.idle": "2024-07-09T06:11:54.777496Z", - "shell.execute_reply": "2024-07-09T06:11:54.776969Z" + "iopub.execute_input": "2024-07-09T06:27:10.609489Z", + "iopub.status.busy": "2024-07-09T06:27:10.609167Z", + "iopub.status.idle": "2024-07-09T06:27:10.645674Z", + "shell.execute_reply": "2024-07-09T06:27:10.645104Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.779687Z", - "iopub.status.busy": "2024-07-09T06:11:54.779360Z", - "iopub.status.idle": "2024-07-09T06:11:54.820499Z", - "shell.execute_reply": "2024-07-09T06:11:54.820015Z" + "iopub.execute_input": "2024-07-09T06:27:10.647737Z", + "iopub.status.busy": "2024-07-09T06:27:10.647426Z", + "iopub.status.idle": "2024-07-09T06:27:10.688357Z", + "shell.execute_reply": "2024-07-09T06:27:10.687867Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.822731Z", - "iopub.status.busy": "2024-07-09T06:11:54.822374Z", - "iopub.status.idle": "2024-07-09T06:11:54.940268Z", - "shell.execute_reply": "2024-07-09T06:11:54.939702Z" + "iopub.execute_input": "2024-07-09T06:27:10.690497Z", + "iopub.status.busy": "2024-07-09T06:27:10.690152Z", + "iopub.status.idle": "2024-07-09T06:27:10.784906Z", + "shell.execute_reply": "2024-07-09T06:27:10.784195Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.942914Z", - "iopub.status.busy": "2024-07-09T06:11:54.942544Z", - "iopub.status.idle": "2024-07-09T06:11:55.028728Z", - "shell.execute_reply": "2024-07-09T06:11:55.028139Z" + "iopub.execute_input": "2024-07-09T06:27:10.787438Z", + "iopub.status.busy": "2024-07-09T06:27:10.787205Z", + "iopub.status.idle": "2024-07-09T06:27:10.875324Z", + "shell.execute_reply": "2024-07-09T06:27:10.874533Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.031345Z", - "iopub.status.busy": "2024-07-09T06:11:55.030861Z", - "iopub.status.idle": "2024-07-09T06:11:55.242842Z", - "shell.execute_reply": "2024-07-09T06:11:55.242258Z" + "iopub.execute_input": "2024-07-09T06:27:10.877938Z", + "iopub.status.busy": "2024-07-09T06:27:10.877489Z", + "iopub.status.idle": "2024-07-09T06:27:11.089399Z", + "shell.execute_reply": "2024-07-09T06:27:11.088722Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.245126Z", - "iopub.status.busy": "2024-07-09T06:11:55.244793Z", - "iopub.status.idle": "2024-07-09T06:11:55.420459Z", - "shell.execute_reply": "2024-07-09T06:11:55.419832Z" + "iopub.execute_input": "2024-07-09T06:27:11.091873Z", + "iopub.status.busy": "2024-07-09T06:27:11.091658Z", + "iopub.status.idle": "2024-07-09T06:27:11.278736Z", + "shell.execute_reply": "2024-07-09T06:27:11.278122Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.422976Z", - "iopub.status.busy": "2024-07-09T06:11:55.422514Z", - "iopub.status.idle": "2024-07-09T06:11:55.428850Z", - "shell.execute_reply": "2024-07-09T06:11:55.428412Z" + "iopub.execute_input": "2024-07-09T06:27:11.281105Z", + "iopub.status.busy": "2024-07-09T06:27:11.280730Z", + "iopub.status.idle": "2024-07-09T06:27:11.286566Z", + "shell.execute_reply": "2024-07-09T06:27:11.286117Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.431061Z", - "iopub.status.busy": "2024-07-09T06:11:55.430598Z", - "iopub.status.idle": "2024-07-09T06:11:55.646899Z", - "shell.execute_reply": "2024-07-09T06:11:55.646337Z" + "iopub.execute_input": "2024-07-09T06:27:11.288560Z", + "iopub.status.busy": "2024-07-09T06:27:11.288235Z", + "iopub.status.idle": "2024-07-09T06:27:11.502240Z", + "shell.execute_reply": "2024-07-09T06:27:11.501640Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.649268Z", - "iopub.status.busy": "2024-07-09T06:11:55.648816Z", - "iopub.status.idle": "2024-07-09T06:11:56.713232Z", - "shell.execute_reply": "2024-07-09T06:11:56.712681Z" + "iopub.execute_input": "2024-07-09T06:27:11.504499Z", + "iopub.status.busy": "2024-07-09T06:27:11.504154Z", + "iopub.status.idle": "2024-07-09T06:27:12.558282Z", + "shell.execute_reply": "2024-07-09T06:27:12.557776Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 4649d4e78..345a175cf 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:59.986964Z", - "iopub.status.busy": "2024-07-09T06:11:59.986785Z", - "iopub.status.idle": "2024-07-09T06:12:01.075285Z", - "shell.execute_reply": "2024-07-09T06:12:01.074633Z" + "iopub.execute_input": "2024-07-09T06:27:15.909512Z", + "iopub.status.busy": "2024-07-09T06:27:15.909333Z", + "iopub.status.idle": "2024-07-09T06:27:17.025416Z", + "shell.execute_reply": "2024-07-09T06:27:17.024860Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.077824Z", - "iopub.status.busy": "2024-07-09T06:12:01.077551Z", - "iopub.status.idle": "2024-07-09T06:12:01.080727Z", - "shell.execute_reply": "2024-07-09T06:12:01.080279Z" + "iopub.execute_input": "2024-07-09T06:27:17.028078Z", + "iopub.status.busy": "2024-07-09T06:27:17.027788Z", + "iopub.status.idle": "2024-07-09T06:27:17.031022Z", + "shell.execute_reply": "2024-07-09T06:27:17.030547Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.082717Z", - "iopub.status.busy": "2024-07-09T06:12:01.082412Z", - "iopub.status.idle": "2024-07-09T06:12:01.090048Z", - "shell.execute_reply": "2024-07-09T06:12:01.089520Z" + "iopub.execute_input": "2024-07-09T06:27:17.033112Z", + "iopub.status.busy": "2024-07-09T06:27:17.032789Z", + "iopub.status.idle": "2024-07-09T06:27:17.040343Z", + "shell.execute_reply": "2024-07-09T06:27:17.039908Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.091972Z", - "iopub.status.busy": "2024-07-09T06:12:01.091665Z", - "iopub.status.idle": "2024-07-09T06:12:01.138589Z", - "shell.execute_reply": "2024-07-09T06:12:01.138119Z" + "iopub.execute_input": "2024-07-09T06:27:17.042282Z", + "iopub.status.busy": "2024-07-09T06:27:17.041970Z", + "iopub.status.idle": "2024-07-09T06:27:17.094153Z", + "shell.execute_reply": "2024-07-09T06:27:17.093528Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.140553Z", - "iopub.status.busy": "2024-07-09T06:12:01.140222Z", - "iopub.status.idle": "2024-07-09T06:12:01.156429Z", - "shell.execute_reply": "2024-07-09T06:12:01.156000Z" + "iopub.execute_input": "2024-07-09T06:27:17.096794Z", + "iopub.status.busy": "2024-07-09T06:27:17.096411Z", + "iopub.status.idle": "2024-07-09T06:27:17.113492Z", + "shell.execute_reply": "2024-07-09T06:27:17.113050Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.158339Z", - "iopub.status.busy": "2024-07-09T06:12:01.158075Z", - "iopub.status.idle": "2024-07-09T06:12:01.161727Z", - "shell.execute_reply": "2024-07-09T06:12:01.161308Z" + "iopub.execute_input": "2024-07-09T06:27:17.115656Z", + "iopub.status.busy": "2024-07-09T06:27:17.115325Z", + "iopub.status.idle": "2024-07-09T06:27:17.119055Z", + "shell.execute_reply": "2024-07-09T06:27:17.118574Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.163745Z", - "iopub.status.busy": "2024-07-09T06:12:01.163423Z", - "iopub.status.idle": "2024-07-09T06:12:01.176542Z", - "shell.execute_reply": "2024-07-09T06:12:01.176139Z" + "iopub.execute_input": "2024-07-09T06:27:17.121058Z", + "iopub.status.busy": "2024-07-09T06:27:17.120762Z", + "iopub.status.idle": "2024-07-09T06:27:17.134516Z", + "shell.execute_reply": "2024-07-09T06:27:17.134084Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.178481Z", - "iopub.status.busy": "2024-07-09T06:12:01.178099Z", - "iopub.status.idle": "2024-07-09T06:12:01.203843Z", - "shell.execute_reply": "2024-07-09T06:12:01.203299Z" + "iopub.execute_input": "2024-07-09T06:27:17.136707Z", + "iopub.status.busy": "2024-07-09T06:27:17.136279Z", + "iopub.status.idle": "2024-07-09T06:27:17.162081Z", + "shell.execute_reply": "2024-07-09T06:27:17.161647Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.206126Z", - "iopub.status.busy": "2024-07-09T06:12:01.205741Z", - "iopub.status.idle": "2024-07-09T06:12:03.063366Z", - "shell.execute_reply": "2024-07-09T06:12:03.062689Z" + "iopub.execute_input": "2024-07-09T06:27:17.164409Z", + "iopub.status.busy": "2024-07-09T06:27:17.163994Z", + "iopub.status.idle": "2024-07-09T06:27:19.093254Z", + "shell.execute_reply": "2024-07-09T06:27:19.092676Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.065913Z", - "iopub.status.busy": "2024-07-09T06:12:03.065623Z", - "iopub.status.idle": "2024-07-09T06:12:03.072446Z", - "shell.execute_reply": "2024-07-09T06:12:03.071908Z" + "iopub.execute_input": "2024-07-09T06:27:19.095800Z", + "iopub.status.busy": "2024-07-09T06:27:19.095336Z", + "iopub.status.idle": "2024-07-09T06:27:19.102192Z", + "shell.execute_reply": "2024-07-09T06:27:19.101750Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.074438Z", - "iopub.status.busy": "2024-07-09T06:12:03.074140Z", - "iopub.status.idle": "2024-07-09T06:12:03.086651Z", - "shell.execute_reply": "2024-07-09T06:12:03.086112Z" + "iopub.execute_input": "2024-07-09T06:27:19.104190Z", + "iopub.status.busy": "2024-07-09T06:27:19.103866Z", + "iopub.status.idle": "2024-07-09T06:27:19.116533Z", + "shell.execute_reply": "2024-07-09T06:27:19.116058Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.088655Z", - "iopub.status.busy": "2024-07-09T06:12:03.088360Z", - "iopub.status.idle": "2024-07-09T06:12:03.094477Z", - "shell.execute_reply": "2024-07-09T06:12:03.093962Z" + "iopub.execute_input": "2024-07-09T06:27:19.118619Z", + "iopub.status.busy": "2024-07-09T06:27:19.118287Z", + "iopub.status.idle": "2024-07-09T06:27:19.124788Z", + "shell.execute_reply": "2024-07-09T06:27:19.124346Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.096562Z", - "iopub.status.busy": "2024-07-09T06:12:03.096263Z", - "iopub.status.idle": "2024-07-09T06:12:03.098957Z", - "shell.execute_reply": "2024-07-09T06:12:03.098421Z" + "iopub.execute_input": "2024-07-09T06:27:19.126835Z", + "iopub.status.busy": "2024-07-09T06:27:19.126514Z", + "iopub.status.idle": "2024-07-09T06:27:19.129039Z", + "shell.execute_reply": "2024-07-09T06:27:19.128622Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.100872Z", - "iopub.status.busy": "2024-07-09T06:12:03.100570Z", - "iopub.status.idle": "2024-07-09T06:12:03.104053Z", - "shell.execute_reply": "2024-07-09T06:12:03.103519Z" + "iopub.execute_input": "2024-07-09T06:27:19.131096Z", + "iopub.status.busy": "2024-07-09T06:27:19.130774Z", + "iopub.status.idle": "2024-07-09T06:27:19.134005Z", + "shell.execute_reply": "2024-07-09T06:27:19.133516Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.106062Z", - "iopub.status.busy": "2024-07-09T06:12:03.105700Z", - "iopub.status.idle": "2024-07-09T06:12:03.108276Z", - "shell.execute_reply": "2024-07-09T06:12:03.107858Z" + "iopub.execute_input": "2024-07-09T06:27:19.136079Z", + "iopub.status.busy": "2024-07-09T06:27:19.135766Z", + "iopub.status.idle": "2024-07-09T06:27:19.138223Z", + "shell.execute_reply": "2024-07-09T06:27:19.137811Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.110307Z", - "iopub.status.busy": "2024-07-09T06:12:03.109902Z", - "iopub.status.idle": "2024-07-09T06:12:03.113725Z", - "shell.execute_reply": "2024-07-09T06:12:03.113303Z" + "iopub.execute_input": "2024-07-09T06:27:19.140207Z", + "iopub.status.busy": "2024-07-09T06:27:19.139883Z", + "iopub.status.idle": "2024-07-09T06:27:19.144100Z", + "shell.execute_reply": "2024-07-09T06:27:19.143647Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.115691Z", - "iopub.status.busy": "2024-07-09T06:12:03.115395Z", - "iopub.status.idle": "2024-07-09T06:12:03.144399Z", - "shell.execute_reply": "2024-07-09T06:12:03.143867Z" + "iopub.execute_input": "2024-07-09T06:27:19.146159Z", + "iopub.status.busy": "2024-07-09T06:27:19.145854Z", + "iopub.status.idle": "2024-07-09T06:27:19.174449Z", + "shell.execute_reply": "2024-07-09T06:27:19.173890Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.146446Z", - "iopub.status.busy": "2024-07-09T06:12:03.146148Z", - "iopub.status.idle": "2024-07-09T06:12:03.150634Z", - "shell.execute_reply": "2024-07-09T06:12:03.150114Z" + "iopub.execute_input": "2024-07-09T06:27:19.177021Z", + "iopub.status.busy": "2024-07-09T06:27:19.176539Z", + "iopub.status.idle": "2024-07-09T06:27:19.181309Z", + "shell.execute_reply": "2024-07-09T06:27:19.180812Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 940de2088..9c34ac22c 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:06.009775Z", - "iopub.status.busy": "2024-07-09T06:12:06.009294Z", - "iopub.status.idle": "2024-07-09T06:12:07.146220Z", - "shell.execute_reply": "2024-07-09T06:12:07.145677Z" + "iopub.execute_input": "2024-07-09T06:27:22.153886Z", + "iopub.status.busy": "2024-07-09T06:27:22.153426Z", + "iopub.status.idle": "2024-07-09T06:27:23.311889Z", + "shell.execute_reply": "2024-07-09T06:27:23.311338Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.148904Z", - "iopub.status.busy": "2024-07-09T06:12:07.148494Z", - "iopub.status.idle": "2024-07-09T06:12:07.339029Z", - "shell.execute_reply": "2024-07-09T06:12:07.338432Z" + "iopub.execute_input": "2024-07-09T06:27:23.314428Z", + "iopub.status.busy": "2024-07-09T06:27:23.313980Z", + "iopub.status.idle": "2024-07-09T06:27:23.508688Z", + "shell.execute_reply": "2024-07-09T06:27:23.508123Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.341669Z", - "iopub.status.busy": "2024-07-09T06:12:07.341302Z", - "iopub.status.idle": "2024-07-09T06:12:07.354860Z", - "shell.execute_reply": "2024-07-09T06:12:07.354382Z" + "iopub.execute_input": "2024-07-09T06:27:23.511393Z", + "iopub.status.busy": "2024-07-09T06:27:23.510929Z", + "iopub.status.idle": "2024-07-09T06:27:23.524862Z", + "shell.execute_reply": "2024-07-09T06:27:23.524396Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.356939Z", - "iopub.status.busy": "2024-07-09T06:12:07.356615Z", - "iopub.status.idle": "2024-07-09T06:12:10.024538Z", - "shell.execute_reply": "2024-07-09T06:12:10.023896Z" + "iopub.execute_input": "2024-07-09T06:27:23.527208Z", + "iopub.status.busy": "2024-07-09T06:27:23.526603Z", + "iopub.status.idle": "2024-07-09T06:27:26.126394Z", + "shell.execute_reply": "2024-07-09T06:27:26.125810Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:10.026913Z", - "iopub.status.busy": "2024-07-09T06:12:10.026490Z", - "iopub.status.idle": "2024-07-09T06:12:11.384283Z", - "shell.execute_reply": "2024-07-09T06:12:11.383744Z" + "iopub.execute_input": "2024-07-09T06:27:26.128599Z", + "iopub.status.busy": "2024-07-09T06:27:26.128270Z", + "iopub.status.idle": "2024-07-09T06:27:27.468768Z", + "shell.execute_reply": "2024-07-09T06:27:27.468127Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.386832Z", - "iopub.status.busy": "2024-07-09T06:12:11.386489Z", - "iopub.status.idle": "2024-07-09T06:12:11.390443Z", - "shell.execute_reply": "2024-07-09T06:12:11.389901Z" + "iopub.execute_input": "2024-07-09T06:27:27.471344Z", + "iopub.status.busy": "2024-07-09T06:27:27.471010Z", + "iopub.status.idle": "2024-07-09T06:27:27.475004Z", + "shell.execute_reply": "2024-07-09T06:27:27.474434Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.392453Z", - "iopub.status.busy": "2024-07-09T06:12:11.392156Z", - "iopub.status.idle": "2024-07-09T06:12:13.350265Z", - "shell.execute_reply": "2024-07-09T06:12:13.349664Z" + "iopub.execute_input": "2024-07-09T06:27:27.477072Z", + "iopub.status.busy": "2024-07-09T06:27:27.476759Z", + "iopub.status.idle": "2024-07-09T06:27:29.490391Z", + "shell.execute_reply": "2024-07-09T06:27:29.489818Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.352635Z", - "iopub.status.busy": "2024-07-09T06:12:13.352287Z", - "iopub.status.idle": "2024-07-09T06:12:13.360007Z", - "shell.execute_reply": "2024-07-09T06:12:13.359539Z" + "iopub.execute_input": "2024-07-09T06:27:29.492995Z", + "iopub.status.busy": "2024-07-09T06:27:29.492468Z", + "iopub.status.idle": "2024-07-09T06:27:29.500292Z", + "shell.execute_reply": "2024-07-09T06:27:29.499734Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.362027Z", - "iopub.status.busy": "2024-07-09T06:12:13.361726Z", - "iopub.status.idle": "2024-07-09T06:12:15.951530Z", - "shell.execute_reply": "2024-07-09T06:12:15.950920Z" + "iopub.execute_input": "2024-07-09T06:27:29.502433Z", + "iopub.status.busy": "2024-07-09T06:27:29.502113Z", + "iopub.status.idle": "2024-07-09T06:27:32.049416Z", + "shell.execute_reply": "2024-07-09T06:27:32.048812Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.953826Z", - "iopub.status.busy": "2024-07-09T06:12:15.953477Z", - "iopub.status.idle": "2024-07-09T06:12:15.956917Z", - "shell.execute_reply": "2024-07-09T06:12:15.956384Z" + "iopub.execute_input": "2024-07-09T06:27:32.051592Z", + "iopub.status.busy": "2024-07-09T06:27:32.051401Z", + "iopub.status.idle": "2024-07-09T06:27:32.055077Z", + "shell.execute_reply": "2024-07-09T06:27:32.054480Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.958940Z", - "iopub.status.busy": "2024-07-09T06:12:15.958612Z", - "iopub.status.idle": "2024-07-09T06:12:15.961923Z", - "shell.execute_reply": "2024-07-09T06:12:15.961492Z" + "iopub.execute_input": "2024-07-09T06:27:32.057199Z", + "iopub.status.busy": "2024-07-09T06:27:32.056870Z", + "iopub.status.idle": "2024-07-09T06:27:32.060234Z", + "shell.execute_reply": "2024-07-09T06:27:32.059802Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.963899Z", - "iopub.status.busy": "2024-07-09T06:12:15.963576Z", - "iopub.status.idle": "2024-07-09T06:12:15.967078Z", - "shell.execute_reply": "2024-07-09T06:12:15.966654Z" + "iopub.execute_input": "2024-07-09T06:27:32.062198Z", + "iopub.status.busy": "2024-07-09T06:27:32.061876Z", + "iopub.status.idle": "2024-07-09T06:27:32.065020Z", + "shell.execute_reply": "2024-07-09T06:27:32.064573Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 552c5a63a..949e5b545 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:18.540918Z", - "iopub.status.busy": "2024-07-09T06:12:18.540757Z", - "iopub.status.idle": "2024-07-09T06:12:19.680849Z", - "shell.execute_reply": "2024-07-09T06:12:19.680297Z" + "iopub.execute_input": "2024-07-09T06:27:34.654632Z", + "iopub.status.busy": "2024-07-09T06:27:34.654465Z", + "iopub.status.idle": "2024-07-09T06:27:35.815092Z", + "shell.execute_reply": "2024-07-09T06:27:35.814455Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:19.683207Z", - "iopub.status.busy": "2024-07-09T06:12:19.682952Z", - "iopub.status.idle": "2024-07-09T06:12:20.782328Z", - "shell.execute_reply": "2024-07-09T06:12:20.781710Z" + "iopub.execute_input": "2024-07-09T06:27:35.817596Z", + "iopub.status.busy": "2024-07-09T06:27:35.817178Z", + "iopub.status.idle": "2024-07-09T06:27:37.096670Z", + "shell.execute_reply": "2024-07-09T06:27:37.095921Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.784972Z", - "iopub.status.busy": "2024-07-09T06:12:20.784608Z", - "iopub.status.idle": "2024-07-09T06:12:20.787687Z", - "shell.execute_reply": "2024-07-09T06:12:20.787270Z" + "iopub.execute_input": "2024-07-09T06:27:37.099444Z", + "iopub.status.busy": "2024-07-09T06:27:37.099077Z", + "iopub.status.idle": "2024-07-09T06:27:37.102193Z", + "shell.execute_reply": "2024-07-09T06:27:37.101773Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.789706Z", - "iopub.status.busy": "2024-07-09T06:12:20.789390Z", - "iopub.status.idle": "2024-07-09T06:12:20.795637Z", - "shell.execute_reply": "2024-07-09T06:12:20.795205Z" + "iopub.execute_input": "2024-07-09T06:27:37.104293Z", + "iopub.status.busy": "2024-07-09T06:27:37.103979Z", + "iopub.status.idle": "2024-07-09T06:27:37.110147Z", + "shell.execute_reply": "2024-07-09T06:27:37.109740Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.797653Z", - "iopub.status.busy": "2024-07-09T06:12:20.797314Z", - "iopub.status.idle": "2024-07-09T06:12:21.282480Z", - "shell.execute_reply": "2024-07-09T06:12:21.281912Z" + "iopub.execute_input": "2024-07-09T06:27:37.112184Z", + "iopub.status.busy": "2024-07-09T06:27:37.111923Z", + "iopub.status.idle": "2024-07-09T06:27:37.598528Z", + "shell.execute_reply": "2024-07-09T06:27:37.597913Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.285356Z", - "iopub.status.busy": "2024-07-09T06:12:21.285011Z", - "iopub.status.idle": "2024-07-09T06:12:21.290021Z", - "shell.execute_reply": "2024-07-09T06:12:21.289526Z" + "iopub.execute_input": "2024-07-09T06:27:37.601014Z", + "iopub.status.busy": "2024-07-09T06:27:37.600572Z", + "iopub.status.idle": "2024-07-09T06:27:37.605747Z", + "shell.execute_reply": "2024-07-09T06:27:37.605308Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.292135Z", - "iopub.status.busy": "2024-07-09T06:12:21.291713Z", - "iopub.status.idle": "2024-07-09T06:12:21.295440Z", - "shell.execute_reply": "2024-07-09T06:12:21.295008Z" + "iopub.execute_input": "2024-07-09T06:27:37.607641Z", + "iopub.status.busy": "2024-07-09T06:27:37.607468Z", + "iopub.status.idle": "2024-07-09T06:27:37.611290Z", + "shell.execute_reply": "2024-07-09T06:27:37.610844Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.297473Z", - "iopub.status.busy": "2024-07-09T06:12:21.297149Z", - "iopub.status.idle": "2024-07-09T06:12:22.149730Z", - "shell.execute_reply": "2024-07-09T06:12:22.149063Z" + "iopub.execute_input": "2024-07-09T06:27:37.613342Z", + "iopub.status.busy": "2024-07-09T06:27:37.613034Z", + "iopub.status.idle": "2024-07-09T06:27:38.555539Z", + "shell.execute_reply": "2024-07-09T06:27:38.555016Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.152147Z", - "iopub.status.busy": "2024-07-09T06:12:22.151777Z", - "iopub.status.idle": "2024-07-09T06:12:22.372019Z", - "shell.execute_reply": "2024-07-09T06:12:22.371560Z" + "iopub.execute_input": "2024-07-09T06:27:38.557847Z", + "iopub.status.busy": "2024-07-09T06:27:38.557649Z", + "iopub.status.idle": "2024-07-09T06:27:38.851691Z", + "shell.execute_reply": "2024-07-09T06:27:38.851100Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.374207Z", - "iopub.status.busy": "2024-07-09T06:12:22.373800Z", - "iopub.status.idle": "2024-07-09T06:12:22.378360Z", - "shell.execute_reply": "2024-07-09T06:12:22.377817Z" + "iopub.execute_input": "2024-07-09T06:27:38.853964Z", + "iopub.status.busy": "2024-07-09T06:27:38.853618Z", + "iopub.status.idle": "2024-07-09T06:27:38.858060Z", + "shell.execute_reply": "2024-07-09T06:27:38.857615Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.380601Z", - "iopub.status.busy": "2024-07-09T06:12:22.380269Z", - "iopub.status.idle": "2024-07-09T06:12:22.827294Z", - "shell.execute_reply": "2024-07-09T06:12:22.826799Z" + "iopub.execute_input": "2024-07-09T06:27:38.860047Z", + "iopub.status.busy": "2024-07-09T06:27:38.859765Z", + "iopub.status.idle": "2024-07-09T06:27:39.310110Z", + "shell.execute_reply": "2024-07-09T06:27:39.309501Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.829350Z", - "iopub.status.busy": "2024-07-09T06:12:22.829090Z", - "iopub.status.idle": "2024-07-09T06:12:23.159105Z", - "shell.execute_reply": "2024-07-09T06:12:23.158480Z" + "iopub.execute_input": "2024-07-09T06:27:39.312865Z", + "iopub.status.busy": "2024-07-09T06:27:39.312462Z", + "iopub.status.idle": "2024-07-09T06:27:39.647092Z", + "shell.execute_reply": "2024-07-09T06:27:39.646475Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.161413Z", - "iopub.status.busy": "2024-07-09T06:12:23.161230Z", - "iopub.status.idle": "2024-07-09T06:12:23.525420Z", - "shell.execute_reply": "2024-07-09T06:12:23.524856Z" + "iopub.execute_input": "2024-07-09T06:27:39.649619Z", + "iopub.status.busy": "2024-07-09T06:27:39.649296Z", + "iopub.status.idle": "2024-07-09T06:27:40.011855Z", + "shell.execute_reply": "2024-07-09T06:27:40.011238Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.528578Z", - "iopub.status.busy": "2024-07-09T06:12:23.528384Z", - "iopub.status.idle": "2024-07-09T06:12:23.963657Z", - "shell.execute_reply": "2024-07-09T06:12:23.963056Z" + "iopub.execute_input": "2024-07-09T06:27:40.014685Z", + "iopub.status.busy": "2024-07-09T06:27:40.014328Z", + "iopub.status.idle": "2024-07-09T06:27:40.429827Z", + "shell.execute_reply": "2024-07-09T06:27:40.429292Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.967971Z", - "iopub.status.busy": "2024-07-09T06:12:23.967513Z", - "iopub.status.idle": "2024-07-09T06:12:24.415572Z", - "shell.execute_reply": "2024-07-09T06:12:24.414915Z" + "iopub.execute_input": "2024-07-09T06:27:40.434217Z", + "iopub.status.busy": "2024-07-09T06:27:40.433815Z", + "iopub.status.idle": "2024-07-09T06:27:40.880331Z", + "shell.execute_reply": "2024-07-09T06:27:40.879705Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.418819Z", - "iopub.status.busy": "2024-07-09T06:12:24.418433Z", - "iopub.status.idle": "2024-07-09T06:12:24.633283Z", - "shell.execute_reply": "2024-07-09T06:12:24.632674Z" + "iopub.execute_input": "2024-07-09T06:27:40.882426Z", + "iopub.status.busy": "2024-07-09T06:27:40.882229Z", + "iopub.status.idle": "2024-07-09T06:27:41.097056Z", + "shell.execute_reply": "2024-07-09T06:27:41.096510Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.635545Z", - "iopub.status.busy": "2024-07-09T06:12:24.635179Z", - "iopub.status.idle": "2024-07-09T06:12:24.835048Z", - "shell.execute_reply": "2024-07-09T06:12:24.834421Z" + "iopub.execute_input": "2024-07-09T06:27:41.099352Z", + "iopub.status.busy": "2024-07-09T06:27:41.098978Z", + "iopub.status.idle": "2024-07-09T06:27:41.279647Z", + "shell.execute_reply": "2024-07-09T06:27:41.279135Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.837392Z", - "iopub.status.busy": "2024-07-09T06:12:24.837055Z", - "iopub.status.idle": "2024-07-09T06:12:24.839948Z", - "shell.execute_reply": "2024-07-09T06:12:24.839511Z" + "iopub.execute_input": "2024-07-09T06:27:41.282138Z", + "iopub.status.busy": "2024-07-09T06:27:41.281802Z", + "iopub.status.idle": "2024-07-09T06:27:41.284795Z", + "shell.execute_reply": "2024-07-09T06:27:41.284347Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.842025Z", - "iopub.status.busy": "2024-07-09T06:12:24.841705Z", - "iopub.status.idle": "2024-07-09T06:12:25.813473Z", - "shell.execute_reply": "2024-07-09T06:12:25.812857Z" + "iopub.execute_input": "2024-07-09T06:27:41.286727Z", + "iopub.status.busy": "2024-07-09T06:27:41.286354Z", + "iopub.status.idle": "2024-07-09T06:27:42.233918Z", + "shell.execute_reply": "2024-07-09T06:27:42.233305Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.816037Z", - "iopub.status.busy": "2024-07-09T06:12:25.815657Z", - "iopub.status.idle": "2024-07-09T06:12:25.972932Z", - "shell.execute_reply": "2024-07-09T06:12:25.972181Z" + "iopub.execute_input": "2024-07-09T06:27:42.236357Z", + "iopub.status.busy": "2024-07-09T06:27:42.236129Z", + "iopub.status.idle": "2024-07-09T06:27:42.414922Z", + "shell.execute_reply": "2024-07-09T06:27:42.414319Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.975551Z", - "iopub.status.busy": "2024-07-09T06:12:25.975177Z", - "iopub.status.idle": "2024-07-09T06:12:26.197045Z", - "shell.execute_reply": "2024-07-09T06:12:26.196445Z" + "iopub.execute_input": "2024-07-09T06:27:42.417052Z", + "iopub.status.busy": "2024-07-09T06:27:42.416742Z", + "iopub.status.idle": "2024-07-09T06:27:42.567516Z", + "shell.execute_reply": "2024-07-09T06:27:42.566950Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.199182Z", - "iopub.status.busy": "2024-07-09T06:12:26.198971Z", - "iopub.status.idle": "2024-07-09T06:12:26.909973Z", - "shell.execute_reply": "2024-07-09T06:12:26.909345Z" + "iopub.execute_input": "2024-07-09T06:27:42.569723Z", + "iopub.status.busy": "2024-07-09T06:27:42.569386Z", + "iopub.status.idle": "2024-07-09T06:27:43.238504Z", + "shell.execute_reply": "2024-07-09T06:27:43.237885Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.912306Z", - "iopub.status.busy": "2024-07-09T06:12:26.912113Z", - "iopub.status.idle": "2024-07-09T06:12:26.915710Z", - "shell.execute_reply": "2024-07-09T06:12:26.915268Z" + "iopub.execute_input": "2024-07-09T06:27:43.240966Z", + "iopub.status.busy": "2024-07-09T06:27:43.240541Z", + "iopub.status.idle": "2024-07-09T06:27:43.244348Z", + "shell.execute_reply": "2024-07-09T06:27:43.243899Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index af0c138e5..7d4e1d2ac 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:03<00:00, 52539309.75it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s]
 

-
+
@@ -1124,7 +1124,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index ef13a6be5..5a34daff0 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:29.114173Z", - "iopub.status.busy": "2024-07-09T06:12:29.114013Z", - "iopub.status.idle": "2024-07-09T06:12:31.813402Z", - "shell.execute_reply": "2024-07-09T06:12:31.812863Z" + "iopub.execute_input": "2024-07-09T06:27:45.444339Z", + "iopub.status.busy": "2024-07-09T06:27:45.443934Z", + "iopub.status.idle": "2024-07-09T06:27:48.220490Z", + "shell.execute_reply": "2024-07-09T06:27:48.219850Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:31.816019Z", - "iopub.status.busy": "2024-07-09T06:12:31.815566Z", - "iopub.status.idle": "2024-07-09T06:12:32.129315Z", - "shell.execute_reply": "2024-07-09T06:12:32.128775Z" + "iopub.execute_input": "2024-07-09T06:27:48.223134Z", + "iopub.status.busy": "2024-07-09T06:27:48.222782Z", + "iopub.status.idle": "2024-07-09T06:27:48.551328Z", + "shell.execute_reply": "2024-07-09T06:27:48.550787Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.131878Z", - "iopub.status.busy": "2024-07-09T06:12:32.131486Z", - "iopub.status.idle": "2024-07-09T06:12:32.135688Z", - "shell.execute_reply": "2024-07-09T06:12:32.135276Z" + "iopub.execute_input": "2024-07-09T06:27:48.553939Z", + "iopub.status.busy": "2024-07-09T06:27:48.553405Z", + "iopub.status.idle": "2024-07-09T06:27:48.557550Z", + "shell.execute_reply": "2024-07-09T06:27:48.557027Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.137627Z", - "iopub.status.busy": "2024-07-09T06:12:32.137303Z", - "iopub.status.idle": "2024-07-09T06:12:38.133619Z", - "shell.execute_reply": "2024-07-09T06:12:38.133066Z" + "iopub.execute_input": "2024-07-09T06:27:48.559562Z", + "iopub.status.busy": "2024-07-09T06:27:48.559266Z", + "iopub.status.idle": "2024-07-09T06:27:53.022684Z", + "shell.execute_reply": "2024-07-09T06:27:53.022093Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 753664/170498071 [00:00<00:22, 7533055.14it/s]" + " 1%| | 884736/170498071 [00:00<00:20, 8089244.09it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3440640/170498071 [00:00<00:08, 18808186.49it/s]" + " 6%|▌ | 10289152/170498071 [00:00<00:02, 56739816.87it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6324224/170498071 [00:00<00:07, 23199285.68it/s]" + " 12%|█▏ | 20709376/170498071 [00:00<00:01, 77845103.95it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9666560/170498071 [00:00<00:05, 27197953.48it/s]" + " 18%|█▊ | 31522816/170498071 [00:00<00:01, 89510002.96it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13664256/170498071 [00:00<00:04, 31743822.23it/s]" + " 25%|██▍ | 42237952/170498071 [00:00<00:01, 95784414.02it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 19103744/170498071 [00:00<00:03, 39286747.61it/s]" + " 31%|███ | 53182464/170498071 [00:00<00:01, 100337282.40it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 24346624/170498071 [00:00<00:03, 43433867.11it/s]" + " 37%|███▋ | 63504384/170498071 [00:00<00:01, 101255669.81it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29786112/170498071 [00:00<00:03, 46673827.94it/s]" + " 43%|████▎ | 74022912/170498071 [00:00<00:00, 102422137.80it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35094528/170498071 [00:00<00:02, 48663639.53it/s]" + " 50%|████▉ | 84574208/170498071 [00:00<00:00, 103317034.01it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41123840/170498071 [00:01<00:02, 52228428.18it/s]" + " 56%|█████▌ | 94928896/170498071 [00:01<00:00, 103108871.70it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 46661632/170498071 [00:01<00:02, 53081926.67it/s]" + " 62%|██████▏ | 106004480/170498071 [00:01<00:00, 105346208.26it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:01<00:02, 52946728.47it/s]" + " 68%|██████▊ | 116654080/170498071 [00:01<00:00, 105629779.29it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 57311232/170498071 [00:01<00:02, 52526789.19it/s]" + " 75%|███████▍ | 127434752/170498071 [00:01<00:00, 106225044.57it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62619648/170498071 [00:01<00:02, 52620946.91it/s]" + " 81%|████████ | 138084352/170498071 [00:01<00:00, 105442269.14it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67928064/170498071 [00:01<00:01, 52748561.88it/s]" + " 87%|████████▋ | 148799488/170498071 [00:01<00:00, 105804424.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 52564510.79it/s]" + " 94%|█████████▎| 159744000/170498071 [00:01<00:00, 106833768.32it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78479360/170498071 [00:01<00:01, 52150842.99it/s]" + "100%|█████████▉| 170491904/170498071 [00:01<00:00, 107010972.25it/s]" ] }, { @@ -388,119 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 83722240/170498071 [00:01<00:01, 52125723.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88997888/170498071 [00:01<00:01, 52299811.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 94273536/170498071 [00:02<00:01, 52413230.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 99516416/170498071 [00:02<00:01, 52173520.09it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 104759296/170498071 [00:02<00:01, 52218238.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 110034944/170498071 [00:02<00:01, 52258499.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 115343360/170498071 [00:02<00:01, 52472747.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121339904/170498071 [00:02<00:00, 54675432.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 128352256/170498071 [00:02<00:00, 59232462.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 135004160/170498071 [00:02<00:00, 61391731.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 142835712/170498071 [00:02<00:00, 66388150.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 151289856/170498071 [00:02<00:00, 71709682.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 158760960/170498071 [00:03<00:00, 72569444.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 166035456/170498071 [00:03<00:00, 63066107.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 52539309.75it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s] " ] }, { @@ -618,10 +506,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.135847Z", - "iopub.status.busy": "2024-07-09T06:12:38.135509Z", - "iopub.status.idle": "2024-07-09T06:12:38.140271Z", - "shell.execute_reply": "2024-07-09T06:12:38.139735Z" + "iopub.execute_input": "2024-07-09T06:27:53.024946Z", + "iopub.status.busy": "2024-07-09T06:27:53.024611Z", + "iopub.status.idle": "2024-07-09T06:27:53.029364Z", + "shell.execute_reply": "2024-07-09T06:27:53.028817Z" }, "nbsphinx": "hidden" }, @@ -672,10 +560,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.142240Z", - "iopub.status.busy": "2024-07-09T06:12:38.141970Z", - "iopub.status.idle": "2024-07-09T06:12:38.683191Z", - "shell.execute_reply": "2024-07-09T06:12:38.682615Z" + "iopub.execute_input": "2024-07-09T06:27:53.031408Z", + "iopub.status.busy": "2024-07-09T06:27:53.031096Z", + "iopub.status.idle": "2024-07-09T06:27:53.577241Z", + "shell.execute_reply": "2024-07-09T06:27:53.576593Z" } }, "outputs": [ @@ -708,10 +596,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.685213Z", - "iopub.status.busy": "2024-07-09T06:12:38.685033Z", - "iopub.status.idle": "2024-07-09T06:12:39.190392Z", - "shell.execute_reply": "2024-07-09T06:12:39.189791Z" + "iopub.execute_input": "2024-07-09T06:27:53.579601Z", + "iopub.status.busy": "2024-07-09T06:27:53.579322Z", + "iopub.status.idle": "2024-07-09T06:27:54.102985Z", + "shell.execute_reply": "2024-07-09T06:27:54.102360Z" } }, "outputs": [ @@ -749,10 +637,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.192564Z", - "iopub.status.busy": "2024-07-09T06:12:39.192364Z", - "iopub.status.idle": "2024-07-09T06:12:39.195681Z", - "shell.execute_reply": "2024-07-09T06:12:39.195250Z" + "iopub.execute_input": "2024-07-09T06:27:54.105484Z", + "iopub.status.busy": "2024-07-09T06:27:54.105073Z", + "iopub.status.idle": "2024-07-09T06:27:54.108602Z", + "shell.execute_reply": "2024-07-09T06:27:54.108156Z" } }, "outputs": [], @@ -775,17 +663,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.197505Z", - "iopub.status.busy": "2024-07-09T06:12:39.197332Z", - "iopub.status.idle": "2024-07-09T06:12:51.543036Z", - "shell.execute_reply": "2024-07-09T06:12:51.542330Z" + "iopub.execute_input": "2024-07-09T06:27:54.110579Z", + "iopub.status.busy": "2024-07-09T06:27:54.110395Z", + "iopub.status.idle": "2024-07-09T06:28:06.643708Z", + "shell.execute_reply": "2024-07-09T06:28:06.643176Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca6046bdc6394abb8a985e631993257b", + "model_id": "17e3dce4b40a4cb8a2b240ec353e0eae", "version_major": 2, "version_minor": 0 }, @@ -844,10 +732,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:51.545576Z", - "iopub.status.busy": "2024-07-09T06:12:51.545155Z", - "iopub.status.idle": "2024-07-09T06:12:53.675656Z", - "shell.execute_reply": "2024-07-09T06:12:53.674998Z" + "iopub.execute_input": "2024-07-09T06:28:06.646239Z", + "iopub.status.busy": "2024-07-09T06:28:06.645832Z", + "iopub.status.idle": "2024-07-09T06:28:08.702608Z", + "shell.execute_reply": "2024-07-09T06:28:08.701924Z" } }, "outputs": [ @@ -891,10 +779,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.678465Z", - "iopub.status.busy": "2024-07-09T06:12:53.678008Z", - "iopub.status.idle": "2024-07-09T06:12:53.932263Z", - "shell.execute_reply": "2024-07-09T06:12:53.931720Z" + "iopub.execute_input": "2024-07-09T06:28:08.705102Z", + "iopub.status.busy": "2024-07-09T06:28:08.704635Z", + "iopub.status.idle": "2024-07-09T06:28:08.961907Z", + "shell.execute_reply": "2024-07-09T06:28:08.960875Z" } }, "outputs": [ @@ -930,10 +818,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.935174Z", - "iopub.status.busy": "2024-07-09T06:12:53.934820Z", - "iopub.status.idle": "2024-07-09T06:12:54.601757Z", - "shell.execute_reply": "2024-07-09T06:12:54.601178Z" + "iopub.execute_input": "2024-07-09T06:28:08.965548Z", + "iopub.status.busy": "2024-07-09T06:28:08.964610Z", + "iopub.status.idle": "2024-07-09T06:28:09.623328Z", + "shell.execute_reply": "2024-07-09T06:28:09.622779Z" } }, "outputs": [ @@ -983,10 +871,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.604780Z", - "iopub.status.busy": "2024-07-09T06:12:54.604444Z", - "iopub.status.idle": "2024-07-09T06:12:54.941815Z", - "shell.execute_reply": "2024-07-09T06:12:54.941333Z" + "iopub.execute_input": "2024-07-09T06:28:09.627057Z", + "iopub.status.busy": "2024-07-09T06:28:09.626207Z", + "iopub.status.idle": "2024-07-09T06:28:09.967511Z", + "shell.execute_reply": "2024-07-09T06:28:09.966954Z" } }, "outputs": [ @@ -1034,10 +922,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.943967Z", - "iopub.status.busy": "2024-07-09T06:12:54.943776Z", - "iopub.status.idle": "2024-07-09T06:12:55.187139Z", - "shell.execute_reply": "2024-07-09T06:12:55.186558Z" + "iopub.execute_input": "2024-07-09T06:28:09.969885Z", + "iopub.status.busy": "2024-07-09T06:28:09.969463Z", + "iopub.status.idle": "2024-07-09T06:28:10.214869Z", + "shell.execute_reply": "2024-07-09T06:28:10.214223Z" } }, "outputs": [ @@ -1093,10 +981,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.189615Z", - "iopub.status.busy": "2024-07-09T06:12:55.189398Z", - "iopub.status.idle": "2024-07-09T06:12:55.284535Z", - "shell.execute_reply": "2024-07-09T06:12:55.284038Z" + "iopub.execute_input": "2024-07-09T06:28:10.217596Z", + "iopub.status.busy": "2024-07-09T06:28:10.217139Z", + "iopub.status.idle": "2024-07-09T06:28:10.308655Z", + "shell.execute_reply": "2024-07-09T06:28:10.308107Z" } }, "outputs": [], @@ -1117,10 +1005,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.286976Z", - "iopub.status.busy": "2024-07-09T06:12:55.286581Z", - "iopub.status.idle": "2024-07-09T06:13:05.614875Z", - "shell.execute_reply": "2024-07-09T06:13:05.614249Z" + "iopub.execute_input": "2024-07-09T06:28:10.310977Z", + "iopub.status.busy": "2024-07-09T06:28:10.310791Z", + "iopub.status.idle": "2024-07-09T06:28:20.594421Z", + "shell.execute_reply": "2024-07-09T06:28:20.593788Z" } }, "outputs": [ @@ -1157,10 +1045,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:05.617192Z", - "iopub.status.busy": "2024-07-09T06:13:05.616989Z", - "iopub.status.idle": "2024-07-09T06:13:07.827467Z", - "shell.execute_reply": "2024-07-09T06:13:07.826891Z" + "iopub.execute_input": "2024-07-09T06:28:20.596810Z", + "iopub.status.busy": "2024-07-09T06:28:20.596554Z", + "iopub.status.idle": "2024-07-09T06:28:22.741544Z", + "shell.execute_reply": "2024-07-09T06:28:22.741042Z" } }, "outputs": [ @@ -1191,10 +1079,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:07.830162Z", - "iopub.status.busy": "2024-07-09T06:13:07.829583Z", - "iopub.status.idle": "2024-07-09T06:13:08.038042Z", - "shell.execute_reply": "2024-07-09T06:13:08.037537Z" + "iopub.execute_input": "2024-07-09T06:28:22.744305Z", + "iopub.status.busy": "2024-07-09T06:28:22.743745Z", + "iopub.status.idle": "2024-07-09T06:28:22.953993Z", + "shell.execute_reply": "2024-07-09T06:28:22.953376Z" } }, "outputs": [], @@ -1208,10 +1096,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.040467Z", - "iopub.status.busy": "2024-07-09T06:13:08.040116Z", - "iopub.status.idle": "2024-07-09T06:13:08.043191Z", - "shell.execute_reply": "2024-07-09T06:13:08.042744Z" + "iopub.execute_input": "2024-07-09T06:28:22.956589Z", + "iopub.status.busy": "2024-07-09T06:28:22.956213Z", + "iopub.status.idle": "2024-07-09T06:28:22.959468Z", + "shell.execute_reply": "2024-07-09T06:28:22.958900Z" } }, "outputs": [], @@ -1233,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.045228Z", - "iopub.status.busy": "2024-07-09T06:13:08.044834Z", - "iopub.status.idle": "2024-07-09T06:13:08.052977Z", - "shell.execute_reply": "2024-07-09T06:13:08.052453Z" + "iopub.execute_input": "2024-07-09T06:28:22.961611Z", + "iopub.status.busy": "2024-07-09T06:28:22.961200Z", + "iopub.status.idle": "2024-07-09T06:28:22.969422Z", + "shell.execute_reply": "2024-07-09T06:28:22.968855Z" }, "nbsphinx": "hidden" }, @@ -1281,7 +1169,54 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07e9815832504753931806b6d58f0b58": { + "0bf96112dc8a4e0ca41d5e7ae1ebcf56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83246a4b1973465e91e701740cd527e6", + "placeholder": "​", + "style": "IPY_MODEL_aaff29c1d12b464a90fcdf95eeb1a265", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 287MB/s]" + } + }, + "17e3dce4b40a4cb8a2b240ec353e0eae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce4ca1db437c42df9608894483bf3780", + "IPY_MODEL_f925fed948884b0e9a39e8a060169585", + "IPY_MODEL_0bf96112dc8a4e0ca41d5e7ae1ebcf56" + ], + "layout": "IPY_MODEL_64e12728195f4391b6280124850b845f", + "tabbable": null, + "tooltip": null + } + }, + "64e12728195f4391b6280124850b845f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1334,41 +1269,7 @@ "width": null } }, - "26725f9df2f94d3ea6293ec28ead7c10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c1e61197b9041c2979207dbd79421ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f3f248148ef4e539a3ca4f9afbd62ae": { + "83246a4b1973465e91e701740cd527e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1421,98 +1322,7 @@ "width": null } }, - "aedd690df73d48378ef4e0ccedca1f2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6116745dca947648a98ff8dddef3db4", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26725f9df2f94d3ea6293ec28ead7c10", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "c6fbd30ad1b64135acf648295aae87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c843c3709f5d465786f56b6c642b06be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07e9815832504753931806b6d58f0b58", - "placeholder": "​", - "style": "IPY_MODEL_c6fbd30ad1b64135acf648295aae87b4", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 282MB/s]" - } - }, - "ca6046bdc6394abb8a985e631993257b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eeba128ad2734250a58229daf256d2be", - "IPY_MODEL_aedd690df73d48378ef4e0ccedca1f2f", - "IPY_MODEL_c843c3709f5d465786f56b6c642b06be" - ], - "layout": "IPY_MODEL_f7b6602f97fb4af9a7103ad7383ccc0b", - "tabbable": null, - "tooltip": null - } - }, - "e6116745dca947648a98ff8dddef3db4": { + "847a0080121d45e79b430fce2ac8676d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1565,7 +1375,41 @@ "width": null } }, - "eeba128ad2734250a58229daf256d2be": { + "aaff29c1d12b464a90fcdf95eeb1a265": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "afec228371694b259b4beb453ed5662e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce4ca1db437c42df9608894483bf3780": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1580,15 +1424,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f3f248148ef4e539a3ca4f9afbd62ae", + "layout": "IPY_MODEL_847a0080121d45e79b430fce2ac8676d", "placeholder": "​", - "style": "IPY_MODEL_2c1e61197b9041c2979207dbd79421ed", + "style": "IPY_MODEL_f68e78a7cc7d408cb71b2a049145349d", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "f7b6602f97fb4af9a7103ad7383ccc0b": { + "f68e78a7cc7d408cb71b2a049145349d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f839052ce8de441fa54a98bf191b0352": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1640,6 +1502,32 @@ "visibility": null, "width": null } + }, + "f925fed948884b0e9a39e8a060169585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f839052ce8de441fa54a98bf191b0352", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_afec228371694b259b4beb453ed5662e", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index fc3d493cb..9a21f3bf0 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:12.198906Z", - "iopub.status.busy": "2024-07-09T06:13:12.198717Z", - "iopub.status.idle": "2024-07-09T06:13:13.395705Z", - "shell.execute_reply": "2024-07-09T06:13:13.395147Z" + "iopub.execute_input": "2024-07-09T06:28:27.147640Z", + "iopub.status.busy": "2024-07-09T06:28:27.147460Z", + "iopub.status.idle": "2024-07-09T06:28:28.302447Z", + "shell.execute_reply": "2024-07-09T06:28:28.301888Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.398528Z", - "iopub.status.busy": "2024-07-09T06:13:13.397970Z", - "iopub.status.idle": "2024-07-09T06:13:13.416454Z", - "shell.execute_reply": "2024-07-09T06:13:13.415844Z" + "iopub.execute_input": "2024-07-09T06:28:28.304997Z", + "iopub.status.busy": "2024-07-09T06:28:28.304730Z", + "iopub.status.idle": "2024-07-09T06:28:28.321957Z", + "shell.execute_reply": "2024-07-09T06:28:28.321531Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.419243Z", - "iopub.status.busy": "2024-07-09T06:13:13.418769Z", - "iopub.status.idle": "2024-07-09T06:13:13.422066Z", - "shell.execute_reply": "2024-07-09T06:13:13.421519Z" + "iopub.execute_input": "2024-07-09T06:28:28.324137Z", + "iopub.status.busy": "2024-07-09T06:28:28.323717Z", + "iopub.status.idle": "2024-07-09T06:28:28.326748Z", + "shell.execute_reply": "2024-07-09T06:28:28.326302Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.424342Z", - "iopub.status.busy": "2024-07-09T06:13:13.424031Z", - "iopub.status.idle": "2024-07-09T06:13:13.502698Z", - "shell.execute_reply": "2024-07-09T06:13:13.502157Z" + "iopub.execute_input": "2024-07-09T06:28:28.328783Z", + "iopub.status.busy": "2024-07-09T06:28:28.328478Z", + "iopub.status.idle": "2024-07-09T06:28:28.398404Z", + "shell.execute_reply": "2024-07-09T06:28:28.397873Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.505024Z", - "iopub.status.busy": "2024-07-09T06:13:13.504684Z", - "iopub.status.idle": "2024-07-09T06:13:13.692827Z", - "shell.execute_reply": "2024-07-09T06:13:13.692311Z" + "iopub.execute_input": "2024-07-09T06:28:28.400685Z", + "iopub.status.busy": "2024-07-09T06:28:28.400280Z", + "iopub.status.idle": "2024-07-09T06:28:28.580610Z", + "shell.execute_reply": "2024-07-09T06:28:28.580004Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.695582Z", - "iopub.status.busy": "2024-07-09T06:13:13.695101Z", - "iopub.status.idle": "2024-07-09T06:13:13.913575Z", - "shell.execute_reply": "2024-07-09T06:13:13.912963Z" + "iopub.execute_input": "2024-07-09T06:28:28.583196Z", + "iopub.status.busy": "2024-07-09T06:28:28.582842Z", + "iopub.status.idle": "2024-07-09T06:28:28.825147Z", + "shell.execute_reply": "2024-07-09T06:28:28.824546Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.916022Z", - "iopub.status.busy": "2024-07-09T06:13:13.915716Z", - "iopub.status.idle": "2024-07-09T06:13:13.920472Z", - "shell.execute_reply": "2024-07-09T06:13:13.919999Z" + "iopub.execute_input": "2024-07-09T06:28:28.827512Z", + "iopub.status.busy": "2024-07-09T06:28:28.827171Z", + "iopub.status.idle": "2024-07-09T06:28:28.831561Z", + "shell.execute_reply": "2024-07-09T06:28:28.831115Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.922631Z", - "iopub.status.busy": "2024-07-09T06:13:13.922302Z", - "iopub.status.idle": "2024-07-09T06:13:13.928584Z", - "shell.execute_reply": "2024-07-09T06:13:13.928040Z" + "iopub.execute_input": "2024-07-09T06:28:28.833597Z", + "iopub.status.busy": "2024-07-09T06:28:28.833194Z", + "iopub.status.idle": "2024-07-09T06:28:28.839457Z", + "shell.execute_reply": "2024-07-09T06:28:28.838888Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.930747Z", - "iopub.status.busy": "2024-07-09T06:13:13.930457Z", - "iopub.status.idle": "2024-07-09T06:13:13.933055Z", - "shell.execute_reply": "2024-07-09T06:13:13.932620Z" + "iopub.execute_input": "2024-07-09T06:28:28.841676Z", + "iopub.status.busy": "2024-07-09T06:28:28.841286Z", + "iopub.status.idle": "2024-07-09T06:28:28.843833Z", + "shell.execute_reply": "2024-07-09T06:28:28.843413Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.934875Z", - "iopub.status.busy": "2024-07-09T06:13:13.934702Z", - "iopub.status.idle": "2024-07-09T06:13:22.688532Z", - "shell.execute_reply": "2024-07-09T06:13:22.687882Z" + "iopub.execute_input": "2024-07-09T06:28:28.845847Z", + "iopub.status.busy": "2024-07-09T06:28:28.845459Z", + "iopub.status.idle": "2024-07-09T06:28:37.416310Z", + "shell.execute_reply": "2024-07-09T06:28:37.415785Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.691605Z", - "iopub.status.busy": "2024-07-09T06:13:22.691183Z", - "iopub.status.idle": "2024-07-09T06:13:22.699311Z", - "shell.execute_reply": "2024-07-09T06:13:22.698788Z" + "iopub.execute_input": "2024-07-09T06:28:37.419117Z", + "iopub.status.busy": "2024-07-09T06:28:37.418506Z", + "iopub.status.idle": "2024-07-09T06:28:37.425880Z", + "shell.execute_reply": "2024-07-09T06:28:37.425420Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.701375Z", - "iopub.status.busy": "2024-07-09T06:13:22.701132Z", - "iopub.status.idle": "2024-07-09T06:13:22.705382Z", - "shell.execute_reply": "2024-07-09T06:13:22.704977Z" + "iopub.execute_input": "2024-07-09T06:28:37.427928Z", + "iopub.status.busy": "2024-07-09T06:28:37.427621Z", + "iopub.status.idle": "2024-07-09T06:28:37.431159Z", + "shell.execute_reply": "2024-07-09T06:28:37.430715Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.707406Z", - "iopub.status.busy": "2024-07-09T06:13:22.707081Z", - "iopub.status.idle": "2024-07-09T06:13:22.710090Z", - "shell.execute_reply": "2024-07-09T06:13:22.709573Z" + "iopub.execute_input": "2024-07-09T06:28:37.433108Z", + "iopub.status.busy": "2024-07-09T06:28:37.432812Z", + "iopub.status.idle": "2024-07-09T06:28:37.436103Z", + "shell.execute_reply": "2024-07-09T06:28:37.435676Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.712167Z", - "iopub.status.busy": "2024-07-09T06:13:22.711850Z", - "iopub.status.idle": "2024-07-09T06:13:22.714709Z", - "shell.execute_reply": "2024-07-09T06:13:22.714294Z" + "iopub.execute_input": "2024-07-09T06:28:37.437855Z", + "iopub.status.busy": "2024-07-09T06:28:37.437689Z", + "iopub.status.idle": "2024-07-09T06:28:37.440738Z", + "shell.execute_reply": "2024-07-09T06:28:37.440200Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.716596Z", - "iopub.status.busy": "2024-07-09T06:13:22.716303Z", - "iopub.status.idle": "2024-07-09T06:13:22.724381Z", - "shell.execute_reply": "2024-07-09T06:13:22.723941Z" + "iopub.execute_input": "2024-07-09T06:28:37.442722Z", + "iopub.status.busy": "2024-07-09T06:28:37.442340Z", + "iopub.status.idle": "2024-07-09T06:28:37.450065Z", + "shell.execute_reply": "2024-07-09T06:28:37.449543Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.726307Z", - "iopub.status.busy": "2024-07-09T06:13:22.725983Z", - "iopub.status.idle": "2024-07-09T06:13:22.728617Z", - "shell.execute_reply": "2024-07-09T06:13:22.728073Z" + "iopub.execute_input": "2024-07-09T06:28:37.452147Z", + "iopub.status.busy": "2024-07-09T06:28:37.451829Z", + "iopub.status.idle": "2024-07-09T06:28:37.454273Z", + "shell.execute_reply": "2024-07-09T06:28:37.453859Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.730747Z", - "iopub.status.busy": "2024-07-09T06:13:22.730427Z", - "iopub.status.idle": "2024-07-09T06:13:22.850115Z", - "shell.execute_reply": "2024-07-09T06:13:22.849630Z" + "iopub.execute_input": "2024-07-09T06:28:37.456308Z", + "iopub.status.busy": "2024-07-09T06:28:37.455998Z", + "iopub.status.idle": "2024-07-09T06:28:37.574042Z", + "shell.execute_reply": "2024-07-09T06:28:37.573412Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.852276Z", - "iopub.status.busy": "2024-07-09T06:13:22.852104Z", - "iopub.status.idle": "2024-07-09T06:13:22.957693Z", - "shell.execute_reply": "2024-07-09T06:13:22.957175Z" + "iopub.execute_input": "2024-07-09T06:28:37.576401Z", + "iopub.status.busy": "2024-07-09T06:28:37.576035Z", + "iopub.status.idle": "2024-07-09T06:28:37.676628Z", + "shell.execute_reply": "2024-07-09T06:28:37.676092Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.959831Z", - "iopub.status.busy": "2024-07-09T06:13:22.959658Z", - "iopub.status.idle": "2024-07-09T06:13:23.439329Z", - "shell.execute_reply": "2024-07-09T06:13:23.438815Z" + "iopub.execute_input": "2024-07-09T06:28:37.678829Z", + "iopub.status.busy": "2024-07-09T06:28:37.678655Z", + "iopub.status.idle": "2024-07-09T06:28:38.159157Z", + "shell.execute_reply": "2024-07-09T06:28:38.158544Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.441676Z", - "iopub.status.busy": "2024-07-09T06:13:23.441277Z", - "iopub.status.idle": "2024-07-09T06:13:23.530814Z", - "shell.execute_reply": "2024-07-09T06:13:23.530253Z" + "iopub.execute_input": "2024-07-09T06:28:38.161651Z", + "iopub.status.busy": "2024-07-09T06:28:38.161475Z", + "iopub.status.idle": "2024-07-09T06:28:38.250789Z", + "shell.execute_reply": "2024-07-09T06:28:38.250230Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.533156Z", - "iopub.status.busy": "2024-07-09T06:13:23.532707Z", - "iopub.status.idle": "2024-07-09T06:13:23.541181Z", - "shell.execute_reply": "2024-07-09T06:13:23.540639Z" + "iopub.execute_input": "2024-07-09T06:28:38.252951Z", + "iopub.status.busy": "2024-07-09T06:28:38.252776Z", + "iopub.status.idle": "2024-07-09T06:28:38.261091Z", + "shell.execute_reply": "2024-07-09T06:28:38.260672Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.543142Z", - "iopub.status.busy": "2024-07-09T06:13:23.542832Z", - "iopub.status.idle": "2024-07-09T06:13:23.545507Z", - "shell.execute_reply": "2024-07-09T06:13:23.544989Z" + "iopub.execute_input": "2024-07-09T06:28:38.262975Z", + "iopub.status.busy": "2024-07-09T06:28:38.262781Z", + "iopub.status.idle": "2024-07-09T06:28:38.265296Z", + "shell.execute_reply": "2024-07-09T06:28:38.264887Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.547414Z", - "iopub.status.busy": "2024-07-09T06:13:23.547118Z", - "iopub.status.idle": "2024-07-09T06:13:28.999446Z", - "shell.execute_reply": "2024-07-09T06:13:28.998830Z" + "iopub.execute_input": "2024-07-09T06:28:38.267254Z", + "iopub.status.busy": "2024-07-09T06:28:38.266967Z", + "iopub.status.idle": "2024-07-09T06:28:43.570047Z", + "shell.execute_reply": "2024-07-09T06:28:43.569491Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.002183Z", - "iopub.status.busy": "2024-07-09T06:13:29.001812Z", - "iopub.status.idle": "2024-07-09T06:13:29.010474Z", - "shell.execute_reply": "2024-07-09T06:13:29.010043Z" + "iopub.execute_input": "2024-07-09T06:28:43.572470Z", + "iopub.status.busy": "2024-07-09T06:28:43.572094Z", + "iopub.status.idle": "2024-07-09T06:28:43.580386Z", + "shell.execute_reply": "2024-07-09T06:28:43.579870Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.012589Z", - "iopub.status.busy": "2024-07-09T06:13:29.012252Z", - "iopub.status.idle": "2024-07-09T06:13:29.076214Z", - "shell.execute_reply": "2024-07-09T06:13:29.075749Z" + "iopub.execute_input": "2024-07-09T06:28:43.582347Z", + "iopub.status.busy": "2024-07-09T06:28:43.582046Z", + "iopub.status.idle": "2024-07-09T06:28:43.650473Z", + "shell.execute_reply": "2024-07-09T06:28:43.649884Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index c2bc2e9ad..bc0ea3273 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"31c0461c7cc145fba8fc1a686d641734": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "542ef1339f3c4f27a392d3e6f794359f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cfd0057aa0524fdabff5f5ef309b8944": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31c0461c7cc145fba8fc1a686d641734", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_542ef1339f3c4f27a392d3e6f794359f", "tabbable": null, "tooltip": null, "value": 30.0}}, "3feb2ecf671242cfa780179115940fac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54ca08a32df543b592283e0378c9fcfe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "493c9eefef1b48dab54e40072abd5f34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3feb2ecf671242cfa780179115940fac", "placeholder": "\u200b", "style": "IPY_MODEL_54ca08a32df543b592283e0378c9fcfe", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "4ccbc45f2aeb4c9c85627198b276be79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5ef52d1a9d646df84e1139d4d1089db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "de3dc131ede549fc9a4eab8ed54190fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4ccbc45f2aeb4c9c85627198b276be79", "placeholder": "\u200b", "style": "IPY_MODEL_c5ef52d1a9d646df84e1139d4d1089db", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007819.82it/s]"}}, "3e770c86a7ed47528817561e0996c8f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fa6ffbf69764ada9bcdda240d9f5c3f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_493c9eefef1b48dab54e40072abd5f34", "IPY_MODEL_cfd0057aa0524fdabff5f5ef309b8944", "IPY_MODEL_de3dc131ede549fc9a4eab8ed54190fa"], "layout": "IPY_MODEL_3e770c86a7ed47528817561e0996c8f8", "tabbable": null, "tooltip": null}}, "8aad8f225cf6422eb201fc5ce1fc9f8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a211fbc91ad7428f88de83462ce179b1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f0e42a3ba88a4b12846e1d20b351a59e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8aad8f225cf6422eb201fc5ce1fc9f8e", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a211fbc91ad7428f88de83462ce179b1", "tabbable": null, "tooltip": null, "value": 30.0}}, "7fdf393fca40427f8a2bd92d317d3dae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85a0fa984b144cfa898831e10209e74d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c9d0984d39a4f0e881a09e0550d87b4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7fdf393fca40427f8a2bd92d317d3dae", "placeholder": "\u200b", "style": "IPY_MODEL_85a0fa984b144cfa898831e10209e74d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "b931d7f32e6b41668d503c6a2ff41333": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2616637ba3464f08933830c12d469b83": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d67f58d8b5b14e59b0b843789281945d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b931d7f32e6b41668d503c6a2ff41333", "placeholder": "\u200b", "style": "IPY_MODEL_2616637ba3464f08933830c12d469b83", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.39it/s]"}}, "a28f14e157a54c3bb2ba09f5232ee9c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f569c0971e0640b980797b7457fa4061": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4c9d0984d39a4f0e881a09e0550d87b4", "IPY_MODEL_f0e42a3ba88a4b12846e1d20b351a59e", "IPY_MODEL_d67f58d8b5b14e59b0b843789281945d"], "layout": "IPY_MODEL_a28f14e157a54c3bb2ba09f5232ee9c6", "tabbable": null, "tooltip": null}}, "d509507d60244ddcba41140131d9be1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd786bb433b84b77bb5a3892748ee7a8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7da8b6c3ea2a4772a5fe093e05addc72": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d509507d60244ddcba41140131d9be1f", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd786bb433b84b77bb5a3892748ee7a8", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "aacd42748d294de29a7979f5b0d21f14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e68f9ece6dd446bbcea41ee789d666e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "573a0e4f1aa3447bbec12012eaef0dc3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aacd42748d294de29a7979f5b0d21f14", "placeholder": "\u200b", "style": "IPY_MODEL_8e68f9ece6dd446bbcea41ee789d666e", "tabbable": null, "tooltip": null, "value": "100%"}}, "e0fbe3dac5a0495f8995783e2dd80711": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27c16fceefe04f7ea1c6208a3b02d91a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b49ea13e3a12486a97be815b76759ed6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0fbe3dac5a0495f8995783e2dd80711", "placeholder": "\u200b", "style": "IPY_MODEL_27c16fceefe04f7ea1c6208a3b02d91a", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007155973.49it/s]"}}, "58a5fd3630694826904227c50dce4a58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf5249d5bbbf4d75b55c111b8b11a61a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_573a0e4f1aa3447bbec12012eaef0dc3", "IPY_MODEL_7da8b6c3ea2a4772a5fe093e05addc72", "IPY_MODEL_b49ea13e3a12486a97be815b76759ed6"], "layout": "IPY_MODEL_58a5fd3630694826904227c50dce4a58", "tabbable": null, "tooltip": null}}, "25c74ae19d60408e99632f175a792eaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6483135474b1449087c991fb32524a5d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a8b97972238e423b884d9df90c31735c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25c74ae19d60408e99632f175a792eaa", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6483135474b1449087c991fb32524a5d", "tabbable": null, "tooltip": null, "value": 30.0}}, "beaa3af60b7746888d20c45dbdce9842": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51e9e889a46e4f308aff8141e478e0b2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d07a9489d84e4b4880dfa0c9d8716d8c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_beaa3af60b7746888d20c45dbdce9842", "placeholder": "\u200b", "style": "IPY_MODEL_51e9e889a46e4f308aff8141e478e0b2", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "4e9c5d98329c476daf5bb5ab626f75ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dd8300efe074538b752b933fe4dccd5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6bc426565cb49ba80b9007e05438975": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e9c5d98329c476daf5bb5ab626f75ea", "placeholder": "\u200b", "style": "IPY_MODEL_3dd8300efe074538b752b933fe4dccd5", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.71it/s]"}}, "606739628a3c43e188dfb8e4ab4161c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c948217428084bd496b3f2a49594566f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d07a9489d84e4b4880dfa0c9d8716d8c", "IPY_MODEL_a8b97972238e423b884d9df90c31735c", "IPY_MODEL_e6bc426565cb49ba80b9007e05438975"], "layout": "IPY_MODEL_606739628a3c43e188dfb8e4ab4161c1", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"97c988acb93f44548e72b7e6785373ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9af440153d4e4cdf94b2cf7fabd36183": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6483735a58b043b6b18bce9fcea7af01": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", "tabbable": null, "tooltip": null, "value": 30.0}}, "c498db02e0b04391a5861cb923082075": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f51ef64ff6b45ebb8b941ba2ee62b5d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf3b18d1306748afa8e938ecd97912de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", "placeholder": "\u200b", "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "0dd5218cedde49baa055e8096ed30926": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6584bb27a7154628a8d459aca88dc035": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "403d955a5e56429185a7d79c76b3f942": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", "placeholder": "\u200b", "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007810.84it/s]"}}, "95f6f8f5058e4a999e52cf9ee97471a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cc3388bab2643c8b90c9272aea123fd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", "IPY_MODEL_403d955a5e56429185a7d79c76b3f942"], "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", "tabbable": null, "tooltip": null}}, "2abe5ecefb664d2bafb6bfe15ea93d0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d504401538154719844d7826ee272589": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "176760f869904a7fa39445bdd88719b2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d504401538154719844d7826ee272589", "tabbable": null, "tooltip": null, "value": 30.0}}, "ce1dd22f0d6b4012a51c48ad29dcaa8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2897f5daefd4d14a83b5100fa9e108f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b6e063e50c2b4445910ce5e867fbd918": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", "placeholder": "\u200b", "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "0b2d6256d1c542d285214e15fc92fe65": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57f13be2c99544fb9cc14d43a41b2771": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02d9a746ed0046739aa78a6ce0085ff9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", "placeholder": "\u200b", "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:20<00:00,\u2007\u20071.44it/s]"}}, "0c20fddef0b54b239fafa2cc41c63236": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c10054699f0e464a82009f0a5e0c578c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", "IPY_MODEL_176760f869904a7fa39445bdd88719b2", "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9"], "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", "tabbable": null, "tooltip": null}}, "855c64f84945411a9db3c53deb7492c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db6c02d349084e498c97e2e6ed714f28": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ae57c0974e774c6890338ba8b17d0191": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "d1f1c3debd3a4626adf70f52c88e15f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14896ca89fcc44339c2b6527f1f9f9dc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d8a1c7ffaa334c438eb48081a604d215": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", "placeholder": "\u200b", "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", "tabbable": null, "tooltip": null, "value": "100%"}}, "5330888ec41a4abab567527c6e1ffd41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce3e640376574f9e8d585bcb85603e1d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f68c4f29617499499ee2c05c5a6a108": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", "placeholder": "\u200b", "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007157127.94it/s]"}}, "c9163ef783e742f3acc05346e5afcb64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7019068b213142edb33e86d2e73ee210": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108"], "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", "tabbable": null, "tooltip": null}}, "83e9f786fc2e45a789ee9639166df7d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b9e311328344481b090157819e78c90": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a35e0222d4f14c66bf3c3a5aa2572142": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", "tabbable": null, "tooltip": null, "value": 30.0}}, "22fe02c2e99045d8821cfc15a94e4936": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32a85d515d9e4eaba06dcc77490cad82": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fade87555302435dbdddd0ecd183f382": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", "placeholder": "\u200b", "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "44a6a6e2aca946a1a5360a07e3b508d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "228b0d40b0924b7a97e4d0957e103746": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b951463c2014d63996109b04919b6f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", "placeholder": "\u200b", "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.76it/s]"}}, "279d7517839d43c89b15e2c5c84c7be9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd89a714f4bd4881ac3bcdde2e818698": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fade87555302435dbdddd0ecd183f382", "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", "IPY_MODEL_7b951463c2014d63996109b04919b6f0"], "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 35fcbdb46..ae5ebc560 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:32.263903Z", - "iopub.status.busy": "2024-07-09T06:13:32.263444Z", - "iopub.status.idle": "2024-07-09T06:13:33.822952Z", - "shell.execute_reply": "2024-07-09T06:13:33.822301Z" + "iopub.execute_input": "2024-07-09T06:28:46.574289Z", + "iopub.status.busy": "2024-07-09T06:28:46.574108Z", + "iopub.status.idle": "2024-07-09T06:28:48.491596Z", + "shell.execute_reply": "2024-07-09T06:28:48.490918Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:33.825573Z", - "iopub.status.busy": "2024-07-09T06:13:33.825207Z", - "iopub.status.idle": "2024-07-09T06:14:27.650668Z", - "shell.execute_reply": "2024-07-09T06:14:27.649954Z" + "iopub.execute_input": "2024-07-09T06:28:48.494276Z", + "iopub.status.busy": "2024-07-09T06:28:48.493843Z", + "iopub.status.idle": "2024-07-09T06:29:39.569009Z", + "shell.execute_reply": "2024-07-09T06:29:39.568435Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:27.653222Z", - "iopub.status.busy": "2024-07-09T06:14:27.653011Z", - "iopub.status.idle": "2024-07-09T06:14:28.771581Z", - "shell.execute_reply": "2024-07-09T06:14:28.771057Z" + "iopub.execute_input": "2024-07-09T06:29:39.571515Z", + "iopub.status.busy": "2024-07-09T06:29:39.571138Z", + "iopub.status.idle": "2024-07-09T06:29:40.663339Z", + "shell.execute_reply": "2024-07-09T06:29:40.662734Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.774053Z", - "iopub.status.busy": "2024-07-09T06:14:28.773695Z", - "iopub.status.idle": "2024-07-09T06:14:28.776783Z", - "shell.execute_reply": "2024-07-09T06:14:28.776354Z" + "iopub.execute_input": "2024-07-09T06:29:40.665937Z", + "iopub.status.busy": "2024-07-09T06:29:40.665611Z", + "iopub.status.idle": "2024-07-09T06:29:40.669025Z", + "shell.execute_reply": "2024-07-09T06:29:40.668588Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.778806Z", - "iopub.status.busy": "2024-07-09T06:14:28.778477Z", - "iopub.status.idle": "2024-07-09T06:14:28.782186Z", - "shell.execute_reply": "2024-07-09T06:14:28.781759Z" + "iopub.execute_input": "2024-07-09T06:29:40.671153Z", + "iopub.status.busy": "2024-07-09T06:29:40.670839Z", + "iopub.status.idle": "2024-07-09T06:29:40.674594Z", + "shell.execute_reply": "2024-07-09T06:29:40.674175Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.784027Z", - "iopub.status.busy": "2024-07-09T06:14:28.783855Z", - "iopub.status.idle": "2024-07-09T06:14:28.787452Z", - "shell.execute_reply": "2024-07-09T06:14:28.786991Z" + "iopub.execute_input": "2024-07-09T06:29:40.676662Z", + "iopub.status.busy": "2024-07-09T06:29:40.676404Z", + "iopub.status.idle": "2024-07-09T06:29:40.679978Z", + "shell.execute_reply": "2024-07-09T06:29:40.679552Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.789360Z", - "iopub.status.busy": "2024-07-09T06:14:28.789019Z", - "iopub.status.idle": "2024-07-09T06:14:28.791733Z", - "shell.execute_reply": "2024-07-09T06:14:28.791313Z" + "iopub.execute_input": "2024-07-09T06:29:40.681969Z", + "iopub.status.busy": "2024-07-09T06:29:40.681683Z", + "iopub.status.idle": "2024-07-09T06:29:40.684443Z", + "shell.execute_reply": "2024-07-09T06:29:40.684006Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.793686Z", - "iopub.status.busy": "2024-07-09T06:14:28.793292Z", - "iopub.status.idle": "2024-07-09T06:15:02.604368Z", - "shell.execute_reply": "2024-07-09T06:15:02.603753Z" + "iopub.execute_input": "2024-07-09T06:29:40.686418Z", + "iopub.status.busy": "2024-07-09T06:29:40.686015Z", + "iopub.status.idle": "2024-07-09T06:30:13.548442Z", + "shell.execute_reply": "2024-07-09T06:30:13.547829Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fa6ffbf69764ada9bcdda240d9f5c3f", + "model_id": "6cc3388bab2643c8b90c9272aea123fd", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f569c0971e0640b980797b7457fa4061", + "model_id": "c10054699f0e464a82009f0a5e0c578c", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:02.606910Z", - "iopub.status.busy": "2024-07-09T06:15:02.606698Z", - "iopub.status.idle": "2024-07-09T06:15:03.279409Z", - "shell.execute_reply": "2024-07-09T06:15:03.278841Z" + "iopub.execute_input": "2024-07-09T06:30:13.551052Z", + "iopub.status.busy": "2024-07-09T06:30:13.550744Z", + "iopub.status.idle": "2024-07-09T06:30:14.218934Z", + "shell.execute_reply": "2024-07-09T06:30:14.218385Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:03.282056Z", - "iopub.status.busy": "2024-07-09T06:15:03.281412Z", - "iopub.status.idle": "2024-07-09T06:15:06.180396Z", - "shell.execute_reply": "2024-07-09T06:15:06.179922Z" + "iopub.execute_input": "2024-07-09T06:30:14.221301Z", + "iopub.status.busy": "2024-07-09T06:30:14.220857Z", + "iopub.status.idle": "2024-07-09T06:30:17.059729Z", + "shell.execute_reply": "2024-07-09T06:30:17.059140Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:06.182583Z", - "iopub.status.busy": "2024-07-09T06:15:06.182401Z", - "iopub.status.idle": "2024-07-09T06:15:38.554360Z", - "shell.execute_reply": "2024-07-09T06:15:38.553782Z" + "iopub.execute_input": "2024-07-09T06:30:17.061913Z", + "iopub.status.busy": "2024-07-09T06:30:17.061694Z", + "iopub.status.idle": "2024-07-09T06:30:49.094226Z", + "shell.execute_reply": "2024-07-09T06:30:49.093651Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf5249d5bbbf4d75b55c111b8b11a61a", + "model_id": "7019068b213142edb33e86d2e73ee210", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:38.556564Z", - "iopub.status.busy": "2024-07-09T06:15:38.556234Z", - "iopub.status.idle": "2024-07-09T06:15:53.166671Z", - "shell.execute_reply": "2024-07-09T06:15:53.166045Z" + "iopub.execute_input": "2024-07-09T06:30:49.096361Z", + "iopub.status.busy": "2024-07-09T06:30:49.096022Z", + "iopub.status.idle": "2024-07-09T06:31:03.308031Z", + "shell.execute_reply": "2024-07-09T06:31:03.307471Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:53.169302Z", - "iopub.status.busy": "2024-07-09T06:15:53.168958Z", - "iopub.status.idle": "2024-07-09T06:15:56.853260Z", - "shell.execute_reply": "2024-07-09T06:15:56.852720Z" + "iopub.execute_input": "2024-07-09T06:31:03.310669Z", + "iopub.status.busy": "2024-07-09T06:31:03.310203Z", + "iopub.status.idle": "2024-07-09T06:31:07.123611Z", + "shell.execute_reply": "2024-07-09T06:31:07.123110Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:56.855531Z", - "iopub.status.busy": "2024-07-09T06:15:56.855184Z", - "iopub.status.idle": "2024-07-09T06:15:58.250274Z", - "shell.execute_reply": "2024-07-09T06:15:58.249712Z" + "iopub.execute_input": "2024-07-09T06:31:07.125567Z", + "iopub.status.busy": "2024-07-09T06:31:07.125390Z", + "iopub.status.idle": "2024-07-09T06:31:08.517470Z", + "shell.execute_reply": "2024-07-09T06:31:08.516908Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c948217428084bd496b3f2a49594566f", + "model_id": "fd89a714f4bd4881ac3bcdde2e818698", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.252845Z", - "iopub.status.busy": "2024-07-09T06:15:58.252506Z", - "iopub.status.idle": "2024-07-09T06:15:58.281395Z", - "shell.execute_reply": "2024-07-09T06:15:58.280832Z" + "iopub.execute_input": "2024-07-09T06:31:08.519948Z", + "iopub.status.busy": "2024-07-09T06:31:08.519605Z", + "iopub.status.idle": "2024-07-09T06:31:08.546961Z", + "shell.execute_reply": "2024-07-09T06:31:08.546404Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.284015Z", - "iopub.status.busy": "2024-07-09T06:15:58.283595Z", - "iopub.status.idle": "2024-07-09T06:16:04.233068Z", - "shell.execute_reply": "2024-07-09T06:16:04.232567Z" + "iopub.execute_input": "2024-07-09T06:31:08.549370Z", + "iopub.status.busy": "2024-07-09T06:31:08.549025Z", + "iopub.status.idle": "2024-07-09T06:31:14.598098Z", + "shell.execute_reply": "2024-07-09T06:31:14.597530Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:04.235360Z", - "iopub.status.busy": "2024-07-09T06:16:04.234853Z", - "iopub.status.idle": "2024-07-09T06:16:04.290105Z", - "shell.execute_reply": "2024-07-09T06:16:04.289560Z" + "iopub.execute_input": "2024-07-09T06:31:14.600337Z", + "iopub.status.busy": "2024-07-09T06:31:14.600147Z", + "iopub.status.idle": "2024-07-09T06:31:14.656339Z", + "shell.execute_reply": "2024-07-09T06:31:14.655805Z" }, "nbsphinx": "hidden" }, @@ -1038,31 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1fa6ffbf69764ada9bcdda240d9f5c3f": { + "02d9a746ed0046739aa78a6ce0085ff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493c9eefef1b48dab54e40072abd5f34", - "IPY_MODEL_cfd0057aa0524fdabff5f5ef309b8944", - "IPY_MODEL_de3dc131ede549fc9a4eab8ed54190fa" - ], - "layout": "IPY_MODEL_3e770c86a7ed47528817561e0996c8f8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", + "placeholder": "​", + "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 30/30 [00:20<00:00,  1.44it/s]" } }, - "25c74ae19d60408e99632f175a792eaa": { + "0b2d6256d1c542d285214e15fc92fe65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,43 +1114,7 @@ "width": null } }, - "2616637ba3464f08933830c12d469b83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "27c16fceefe04f7ea1c6208a3b02d91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31c0461c7cc145fba8fc1a686d641734": { + "0c20fddef0b54b239fafa2cc41c63236": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1204,25 +1167,7 @@ "width": null } }, - "3dd8300efe074538b752b933fe4dccd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3e770c86a7ed47528817561e0996c8f8": { + "0dd5218cedde49baa055e8096ed30926": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1275,7 +1220,69 @@ "width": null } }, - "3feb2ecf671242cfa780179115940fac": { + "14896ca89fcc44339c2b6527f1f9f9dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "176760f869904a7fa39445bdd88719b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d504401538154719844d7826ee272589", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "228b0d40b0924b7a97e4d0957e103746": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "22fe02c2e99045d8821cfc15a94e4936": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1328,53 +1335,7 @@ "width": null } }, - "493c9eefef1b48dab54e40072abd5f34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3feb2ecf671242cfa780179115940fac", - "placeholder": "​", - "style": "IPY_MODEL_54ca08a32df543b592283e0378c9fcfe", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "4c9d0984d39a4f0e881a09e0550d87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fdf393fca40427f8a2bd92d317d3dae", - "placeholder": "​", - "style": "IPY_MODEL_85a0fa984b144cfa898831e10209e74d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "4ccbc45f2aeb4c9c85627198b276be79": { + "279d7517839d43c89b15e2c5c84c7be9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1427,7 +1388,7 @@ "width": null } }, - "4e9c5d98329c476daf5bb5ab626f75ea": { + "2abe5ecefb664d2bafb6bfe15ea93d0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1480,7 +1441,7 @@ "width": null } }, - "51e9e889a46e4f308aff8141e478e0b2": { + "32a85d515d9e4eaba06dcc77490cad82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1498,23 +1459,7 @@ "text_color": null } }, - "542ef1339f3c4f27a392d3e6f794359f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "54ca08a32df543b592283e0378c9fcfe": { + "3f51ef64ff6b45ebb8b941ba2ee62b5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1532,7 +1477,7 @@ "text_color": null } }, - "573a0e4f1aa3447bbec12012eaef0dc3": { + "403d955a5e56429185a7d79c76b3f942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1547,15 +1492,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aacd42748d294de29a7979f5b0d21f14", + "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", "placeholder": "​", - "style": "IPY_MODEL_8e68f9ece6dd446bbcea41ee789d666e", + "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 810.84it/s]" } }, - "58a5fd3630694826904227c50dce4a58": { + "44a6a6e2aca946a1a5360a07e3b508d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,7 +1553,7 @@ "width": null } }, - "606739628a3c43e188dfb8e4ab4161c1": { + "5330888ec41a4abab567527c6e1ffd41": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1606,25 @@ "width": null } }, - "6483135474b1449087c991fb32524a5d": { + "57f13be2c99544fb9cc14d43a41b2771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5b9e311328344481b090157819e78c90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1677,7 +1640,7 @@ "description_width": "" } }, - "7da8b6c3ea2a4772a5fe093e05addc72": { + "6483735a58b043b6b18bce9fcea7af01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1693,70 +1656,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d509507d60244ddcba41140131d9be1f", - "max": 4997683.0, + "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fd786bb433b84b77bb5a3892748ee7a8", + "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", "tabbable": null, "tooltip": null, - "value": 4997683.0 - } - }, - "7fdf393fca40427f8a2bd92d317d3dae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 30.0 } }, - "85a0fa984b144cfa898831e10209e74d": { + "6584bb27a7154628a8d459aca88dc035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1774,94 +1684,101 @@ "text_color": null } }, - "8aad8f225cf6422eb201fc5ce1fc9f8e": { - "model_module": "@jupyter-widgets/base", + "6cc3388bab2643c8b90c9272aea123fd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", + "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", + "IPY_MODEL_403d955a5e56429185a7d79c76b3f942" + ], + "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", + "tabbable": null, + "tooltip": null } }, - "8e68f9ece6dd446bbcea41ee789d666e": { + "7019068b213142edb33e86d2e73ee210": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", + "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", + "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108" + ], + "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", + "tabbable": null, + "tooltip": null } }, - "a211fbc91ad7428f88de83462ce179b1": { + "7b951463c2014d63996109b04919b6f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", + "placeholder": "​", + "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.76it/s]" + } + }, + "7f68c4f29617499499ee2c05c5a6a108": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", + "placeholder": "​", + "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 157127.94it/s]" } }, - "a28f14e157a54c3bb2ba09f5232ee9c6": { + "83e9f786fc2e45a789ee9639166df7d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1914,33 +1831,7 @@ "width": null } }, - "a8b97972238e423b884d9df90c31735c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25c74ae19d60408e99632f175a792eaa", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6483135474b1449087c991fb32524a5d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "aacd42748d294de29a7979f5b0d21f14": { + "855c64f84945411a9db3c53deb7492c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1993,30 +1884,7 @@ "width": null } }, - "b49ea13e3a12486a97be815b76759ed6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e0fbe3dac5a0495f8995783e2dd80711", - "placeholder": "​", - "style": "IPY_MODEL_27c16fceefe04f7ea1c6208a3b02d91a", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155973.49it/s]" - } - }, - "b931d7f32e6b41668d503c6a2ff41333": { + "95f6f8f5058e4a999e52cf9ee97471a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2069,7 +1937,7 @@ "width": null } }, - "beaa3af60b7746888d20c45dbdce9842": { + "97c988acb93f44548e72b7e6785373ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2122,73 +1990,49 @@ "width": null } }, - "bf5249d5bbbf4d75b55c111b8b11a61a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_573a0e4f1aa3447bbec12012eaef0dc3", - "IPY_MODEL_7da8b6c3ea2a4772a5fe093e05addc72", - "IPY_MODEL_b49ea13e3a12486a97be815b76759ed6" - ], - "layout": "IPY_MODEL_58a5fd3630694826904227c50dce4a58", - "tabbable": null, - "tooltip": null - } - }, - "c5ef52d1a9d646df84e1139d4d1089db": { + "9af440153d4e4cdf94b2cf7fabd36183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c948217428084bd496b3f2a49594566f": { + "a35e0222d4f14c66bf3c3a5aa2572142": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d07a9489d84e4b4880dfa0c9d8716d8c", - "IPY_MODEL_a8b97972238e423b884d9df90c31735c", - "IPY_MODEL_e6bc426565cb49ba80b9007e05438975" - ], - "layout": "IPY_MODEL_606739628a3c43e188dfb8e4ab4161c1", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "cfd0057aa0524fdabff5f5ef309b8944": { + "ae57c0974e774c6890338ba8b17d0191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2204,17 +2048,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31c0461c7cc145fba8fc1a686d641734", - "max": 30.0, + "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_542ef1339f3c4f27a392d3e6f794359f", + "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "d07a9489d84e4b4880dfa0c9d8716d8c": { + "b6e063e50c2b4445910ce5e867fbd918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2229,15 +2073,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_beaa3af60b7746888d20c45dbdce9842", + "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", "placeholder": "​", - "style": "IPY_MODEL_51e9e889a46e4f308aff8141e478e0b2", + "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": "number of examples processed for checking labels: 100%" + } + }, + "c10054699f0e464a82009f0a5e0c578c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", + "IPY_MODEL_176760f869904a7fa39445bdd88719b2", + "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9" + ], + "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", + "tabbable": null, + "tooltip": null } }, - "d509507d60244ddcba41140131d9be1f": { + "c498db02e0b04391a5861cb923082075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2290,30 +2158,131 @@ "width": null } }, - "d67f58d8b5b14e59b0b843789281945d": { + "c9163ef783e742f3acc05346e5afcb64": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce1dd22f0d6b4012a51c48ad29dcaa8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce3e640376574f9e8d585bcb85603e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b931d7f32e6b41668d503c6a2ff41333", - "placeholder": "​", - "style": "IPY_MODEL_2616637ba3464f08933830c12d469b83", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "de3dc131ede549fc9a4eab8ed54190fa": { + "cf3b18d1306748afa8e938ecd97912de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2328,15 +2297,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ccbc45f2aeb4c9c85627198b276be79", + "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", "placeholder": "​", - "style": "IPY_MODEL_c5ef52d1a9d646df84e1139d4d1089db", + "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 819.82it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e0fbe3dac5a0495f8995783e2dd80711": { + "d1f1c3debd3a4626adf70f52c88e15f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2389,7 +2358,23 @@ "width": null } }, - "e6bc426565cb49ba80b9007e05438975": { + "d504401538154719844d7826ee272589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d8a1c7ffaa334c438eb48081a604d215": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2404,41 +2389,72 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e9c5d98329c476daf5bb5ab626f75ea", + "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", "placeholder": "​", - "style": "IPY_MODEL_3dd8300efe074538b752b933fe4dccd5", + "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.71it/s]" + "value": "100%" } }, - "f0e42a3ba88a4b12846e1d20b351a59e": { + "db6c02d349084e498c97e2e6ed714f28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2897f5daefd4d14a83b5100fa9e108f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fade87555302435dbdddd0ecd183f382": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8aad8f225cf6422eb201fc5ce1fc9f8e", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a211fbc91ad7428f88de83462ce179b1", + "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", + "placeholder": "​", + "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "f569c0971e0640b980797b7457fa4061": { + "fd89a714f4bd4881ac3bcdde2e818698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2453,30 +2469,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4c9d0984d39a4f0e881a09e0550d87b4", - "IPY_MODEL_f0e42a3ba88a4b12846e1d20b351a59e", - "IPY_MODEL_d67f58d8b5b14e59b0b843789281945d" + "IPY_MODEL_fade87555302435dbdddd0ecd183f382", + "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", + "IPY_MODEL_7b951463c2014d63996109b04919b6f0" ], - "layout": "IPY_MODEL_a28f14e157a54c3bb2ba09f5232ee9c6", + "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", "tabbable": null, "tooltip": null } - }, - "fd786bb433b84b77bb5a3892748ee7a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index c2522ff69..703cfe1a3 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index ad51fe8e1..f95fb9e96 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:06.596442Z", - "iopub.status.busy": "2024-07-09T06:16:06.596270Z", - "iopub.status.idle": "2024-07-09T06:16:07.602980Z", - "shell.execute_reply": "2024-07-09T06:16:07.602333Z" + "iopub.execute_input": "2024-07-09T06:31:16.799869Z", + "iopub.status.busy": "2024-07-09T06:31:16.799691Z", + "iopub.status.idle": "2024-07-09T06:31:17.988936Z", + "shell.execute_reply": "2024-07-09T06:31:17.988319Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:06-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-09 06:31:16-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,7 +94,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.97, 2400:52e0:1a00::941:1\r\n", + "169.150.236.97, 2400:52e0:1a00::1029:1\r\n", "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " ] }, @@ -123,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.04MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.22MB/s in 0.2s \r\n", "\r\n", - "2024-07-09 06:16:06 (5.04 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-09 06:31:17 (5.22 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:07-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.224.233, 3.5.25.180, 52.216.58.97, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.224.233|:443... connected.\r\n", + "--2024-07-09 06:31:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.171.25, 54.231.130.41, 52.216.52.217, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.171.25|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -170,7 +170,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", "\r\n", - "2024-07-09 06:16:07 (174 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-09 06:31:17 (179 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:07.605304Z", - "iopub.status.busy": "2024-07-09T06:16:07.605103Z", - "iopub.status.idle": "2024-07-09T06:16:08.819007Z", - "shell.execute_reply": "2024-07-09T06:16:08.818469Z" + "iopub.execute_input": "2024-07-09T06:31:17.991436Z", + "iopub.status.busy": "2024-07-09T06:31:17.991070Z", + "iopub.status.idle": "2024-07-09T06:31:19.289852Z", + "shell.execute_reply": "2024-07-09T06:31:19.289351Z" }, "nbsphinx": "hidden" }, @@ -201,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.821606Z", - "iopub.status.busy": "2024-07-09T06:16:08.821202Z", - "iopub.status.idle": "2024-07-09T06:16:08.824585Z", - "shell.execute_reply": "2024-07-09T06:16:08.824057Z" + "iopub.execute_input": "2024-07-09T06:31:19.292366Z", + "iopub.status.busy": "2024-07-09T06:31:19.291931Z", + "iopub.status.idle": "2024-07-09T06:31:19.295209Z", + "shell.execute_reply": "2024-07-09T06:31:19.294745Z" } }, "outputs": [], @@ -280,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.826607Z", - "iopub.status.busy": "2024-07-09T06:16:08.826214Z", - "iopub.status.idle": "2024-07-09T06:16:08.829147Z", - "shell.execute_reply": "2024-07-09T06:16:08.828713Z" + "iopub.execute_input": "2024-07-09T06:31:19.297359Z", + "iopub.status.busy": "2024-07-09T06:31:19.297049Z", + "iopub.status.idle": "2024-07-09T06:31:19.300013Z", + "shell.execute_reply": "2024-07-09T06:31:19.299557Z" }, "nbsphinx": "hidden" }, @@ -301,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.831190Z", - "iopub.status.busy": "2024-07-09T06:16:08.830751Z", - "iopub.status.idle": "2024-07-09T06:16:17.805664Z", - "shell.execute_reply": "2024-07-09T06:16:17.805113Z" + "iopub.execute_input": "2024-07-09T06:31:19.302022Z", + "iopub.status.busy": "2024-07-09T06:31:19.301697Z", + "iopub.status.idle": "2024-07-09T06:31:28.335757Z", + "shell.execute_reply": "2024-07-09T06:31:28.335203Z" } }, "outputs": [], @@ -378,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.808345Z", - "iopub.status.busy": "2024-07-09T06:16:17.807911Z", - "iopub.status.idle": "2024-07-09T06:16:17.813277Z", - "shell.execute_reply": "2024-07-09T06:16:17.812858Z" + "iopub.execute_input": "2024-07-09T06:31:28.338200Z", + "iopub.status.busy": "2024-07-09T06:31:28.337845Z", + "iopub.status.idle": "2024-07-09T06:31:28.343280Z", + "shell.execute_reply": "2024-07-09T06:31:28.342837Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.815382Z", - "iopub.status.busy": "2024-07-09T06:16:17.814963Z", - "iopub.status.idle": "2024-07-09T06:16:18.150000Z", - "shell.execute_reply": "2024-07-09T06:16:18.149429Z" + "iopub.execute_input": "2024-07-09T06:31:28.345254Z", + "iopub.status.busy": "2024-07-09T06:31:28.344923Z", + "iopub.status.idle": "2024-07-09T06:31:28.685882Z", + "shell.execute_reply": "2024-07-09T06:31:28.685329Z" } }, "outputs": [], @@ -461,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.152493Z", - "iopub.status.busy": "2024-07-09T06:16:18.152061Z", - "iopub.status.idle": "2024-07-09T06:16:18.156514Z", - "shell.execute_reply": "2024-07-09T06:16:18.155980Z" + "iopub.execute_input": "2024-07-09T06:31:28.688450Z", + "iopub.status.busy": "2024-07-09T06:31:28.688108Z", + "iopub.status.idle": "2024-07-09T06:31:28.692422Z", + "shell.execute_reply": "2024-07-09T06:31:28.691913Z" } }, "outputs": [ @@ -536,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.158568Z", - "iopub.status.busy": "2024-07-09T06:16:18.158265Z", - "iopub.status.idle": "2024-07-09T06:16:20.671476Z", - "shell.execute_reply": "2024-07-09T06:16:20.670677Z" + "iopub.execute_input": "2024-07-09T06:31:28.694566Z", + "iopub.status.busy": "2024-07-09T06:31:28.694154Z", + "iopub.status.idle": "2024-07-09T06:31:31.218610Z", + "shell.execute_reply": "2024-07-09T06:31:31.217915Z" } }, "outputs": [], @@ -561,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.674624Z", - "iopub.status.busy": "2024-07-09T06:16:20.674042Z", - "iopub.status.idle": "2024-07-09T06:16:20.678383Z", - "shell.execute_reply": "2024-07-09T06:16:20.677819Z" + "iopub.execute_input": "2024-07-09T06:31:31.221635Z", + "iopub.status.busy": "2024-07-09T06:31:31.220890Z", + "iopub.status.idle": "2024-07-09T06:31:31.224904Z", + "shell.execute_reply": "2024-07-09T06:31:31.224377Z" } }, "outputs": [ @@ -600,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.680295Z", - "iopub.status.busy": "2024-07-09T06:16:20.680123Z", - "iopub.status.idle": "2024-07-09T06:16:20.685724Z", - "shell.execute_reply": "2024-07-09T06:16:20.685271Z" + "iopub.execute_input": "2024-07-09T06:31:31.226850Z", + "iopub.status.busy": "2024-07-09T06:31:31.226675Z", + "iopub.status.idle": "2024-07-09T06:31:31.232224Z", + "shell.execute_reply": "2024-07-09T06:31:31.231711Z" } }, "outputs": [ @@ -781,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.687532Z", - "iopub.status.busy": "2024-07-09T06:16:20.687366Z", - "iopub.status.idle": "2024-07-09T06:16:20.713548Z", - "shell.execute_reply": "2024-07-09T06:16:20.713113Z" + "iopub.execute_input": "2024-07-09T06:31:31.234195Z", + "iopub.status.busy": "2024-07-09T06:31:31.233868Z", + "iopub.status.idle": "2024-07-09T06:31:31.260501Z", + "shell.execute_reply": "2024-07-09T06:31:31.260037Z" } }, "outputs": [ @@ -886,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.715379Z", - "iopub.status.busy": "2024-07-09T06:16:20.715213Z", - "iopub.status.idle": "2024-07-09T06:16:20.719260Z", - "shell.execute_reply": "2024-07-09T06:16:20.718723Z" + "iopub.execute_input": "2024-07-09T06:31:31.262698Z", + "iopub.status.busy": "2024-07-09T06:31:31.262368Z", + "iopub.status.idle": "2024-07-09T06:31:31.266471Z", + "shell.execute_reply": "2024-07-09T06:31:31.265953Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.721189Z", - "iopub.status.busy": "2024-07-09T06:16:20.721015Z", - "iopub.status.idle": "2024-07-09T06:16:22.122879Z", - "shell.execute_reply": "2024-07-09T06:16:22.122387Z" + "iopub.execute_input": "2024-07-09T06:31:31.268473Z", + "iopub.status.busy": "2024-07-09T06:31:31.268157Z", + "iopub.status.idle": "2024-07-09T06:31:32.664554Z", + "shell.execute_reply": "2024-07-09T06:31:32.664039Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:22.124941Z", - "iopub.status.busy": "2024-07-09T06:16:22.124756Z", - "iopub.status.idle": "2024-07-09T06:16:22.128748Z", - "shell.execute_reply": "2024-07-09T06:16:22.128306Z" + "iopub.execute_input": "2024-07-09T06:31:32.666738Z", + "iopub.status.busy": "2024-07-09T06:31:32.666392Z", + "iopub.status.idle": "2024-07-09T06:31:32.670504Z", + "shell.execute_reply": "2024-07-09T06:31:32.670046Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 847e993c9..3e028ec24 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "00ae7c83b2015828ec65e1cc06eef34d3099ec0c", + commit_hash: "e4be990d65e77f5fed23f796725f09cd114a37d7", }; \ No newline at end of file