From 275e41203fe5d2f74ed2405826d903e6f3f8b427 Mon Sep 17 00:00:00 2001 From: cgnorthcutt Date: Tue, 9 Jul 2024 06:32:28 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@e4be990d65e77f5fed23f796725f09cd114a37d7 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290735 -> 290735 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 26578 -> 26578 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 250944 -> 250944 bytes .../cleanlab/datalab/guide/table.doctree | Bin 63584 -> 63584 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 79258 -> 79258 bytes .../internal/issue_manager/noniid.doctree | Bin 90556 -> 90556 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 78825 -> 78825 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 114895 -> 114895 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4532 -> 4532 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/neighbor/index.doctree | Bin 6725 -> 6725 bytes .../internal/neighbor/knn_graph.doctree | Bin 111899 -> 111899 bytes .../cleanlab/internal/neighbor/metric.doctree | Bin 38404 -> 38404 bytes .../cleanlab/internal/neighbor/search.doctree | Bin 32456 -> 32456 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 4972 -> 4972 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166920 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 98688 -> 98688 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69021 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79564 -> 79564 bytes master/.doctrees/environment.pickle | Bin 16791502 -> 16791605 bytes master/.doctrees/index.doctree | Bin 42710 -> 42710 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 130 +- .../tutorials/clean_learning/text.ipynb | 1684 +++---- .../nbsphinx/tutorials/datalab/audio.ipynb | 1314 +++--- .../tutorials/datalab/datalab_advanced.ipynb | 366 +- .../datalab/datalab_quickstart.ipynb | 138 +- .../nbsphinx/tutorials/datalab/image.ipynb | 3936 ++++++++--------- .../nbsphinx/tutorials/datalab/tabular.ipynb | 138 +- .../nbsphinx/tutorials/datalab/text.ipynb | 172 +- .../tutorials/datalab/workflows.ipynb | 1278 +++--- .../nbsphinx/tutorials/dataset_health.ipynb | 34 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 532 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- .../nbsphinx/tutorials/indepth_overview.ipynb | 210 +- .../nbsphinx/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- .../nbsphinx/tutorials/object_detection.ipynb | 186 +- .../nbsphinx/tutorials/outliers.ipynb | 576 +-- .../nbsphinx/tutorials/regression.ipynb | 202 +- .../nbsphinx/tutorials/segmentation.ipynb | 996 ++--- .../tutorials/token_classification.ipynb | 138 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60765 -> 60765 bytes .../tutorials/clean_learning/text.doctree | Bin 230171 -> 230169 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 333645 -> 333645 bytes .../datalab/datalab_advanced.doctree | Bin 203507 -> 203507 bytes .../datalab/datalab_quickstart.doctree | Bin 142186 -> 142186 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 514366 -> 514366 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3367 -> 3367 bytes .../tutorials/datalab/tabular.doctree | Bin 120657 -> 120657 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 149929 -> 149929 bytes .../tutorials/datalab/workflows.doctree | Bin 405645 -> 405645 bytes .../tutorials/dataset_health.doctree | Bin 325916 -> 325916 bytes master/.doctrees/tutorials/faq.doctree | Bin 199353 -> 199353 bytes .../improving_ml_performance.doctree | Bin 372315 -> 372315 bytes .../tutorials/indepth_overview.doctree | Bin 220325 -> 220325 bytes master/.doctrees/tutorials/index.doctree | Bin 3181 -> 3181 bytes .../tutorials/multiannotator.doctree | Bin 137334 -> 137334 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140181 -> 140181 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104189 -> 104189 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106940 -> 106940 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176691 -> 176709 bytes master/_modules/cleanlab/count.html | 1 + .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../tutorials/improving_ml_performance.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 130 +- master/tutorials/clean_learning/text.html | 18 +- master/tutorials/clean_learning/text.ipynb | 1684 +++---- master/tutorials/datalab/audio.html | 2 +- master/tutorials/datalab/audio.ipynb | 1314 +++--- .../tutorials/datalab/datalab_advanced.html | 4 +- .../tutorials/datalab/datalab_advanced.ipynb | 366 +- .../datalab/datalab_quickstart.ipynb | 138 +- master/tutorials/datalab/image.html | 58 +- master/tutorials/datalab/image.ipynb | 3936 ++++++++--------- master/tutorials/datalab/tabular.ipynb | 138 +- master/tutorials/datalab/text.html | 2 +- master/tutorials/datalab/text.ipynb | 172 +- master/tutorials/datalab/workflows.html | 416 +- master/tutorials/datalab/workflows.ipynb | 1278 +++--- master/tutorials/dataset_health.ipynb | 34 +- master/tutorials/faq.html | 6 +- master/tutorials/faq.ipynb | 532 +-- .../tutorials/improving_ml_performance.ipynb | 306 +- master/tutorials/indepth_overview.ipynb | 210 +- master/tutorials/multiannotator.ipynb | 146 +- .../tutorials/multilabel_classification.ipynb | 98 +- master/tutorials/object_detection.ipynb | 186 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 576 +-- master/tutorials/regression.ipynb | 202 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 996 ++--- master/tutorials/token_classification.html | 16 +- master/tutorials/token_classification.ipynb | 138 +- versioning.js | 2 +- 181 files changed, 12734 insertions(+), 13005 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 43a64855b..21ce20434 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 773b440c612d86b2988dd7a619fb4540 +config: 4f48f09f8b47f3891cc4f07acfa7ce26 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 4dac63aea6cb3b484e405c8d827b508369ae8b36..0f7529d6283b77da910d7ffa24e5f772ac90fa29 100644 GIT binary patch delta 117 zcmdlWxj}M6IHO^arAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; WDG;ZaCMRz0U<}|SLmMaeaz+6E?IIBX delta 117 zcmdlWxj}M6IHRFOmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Yxq(SqQfjj0<_^XHPBOG{axZ5D05wh`@c;k- diff --git a/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree b/master/.doctrees/cleanlab/benchmarking/noise_generation.doctree index ce263d7f47dbae2dc496d7f247ae9a847061b6e5..b7a478586eefe368270dc29a583cc8a215cfd859 100644 GIT binary patch delta 1464 zcmX^3o8{ndmJRWYhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxOoC2D;e4*JDSIBR$=yIA>Brh*6F%7jQo=YI10(q-oDwA^Di4&TDv!Y z5^!W9Q|o(SR#vjK_H5oL*+HJIJ)6JD)N_z&tC3nKc@fmJxk9^ynM_+(>a&sS*BqlI zWH@-Uqxp4qvK(8od9VFKPBOJJdp(pQOKbe(^?F>J>r(T`i&wDr$#tm$o2TUk$Wq{f zhMs#8OjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OMGJC7b=88A@ZWoi_R!wUhcCO=kj@e&wJ)Q@64I;h3xT# z?1?7kj8?ijJiQmMJG5}bv)Aczdm~=W+g=&gG*6^W+ZXXfB2Jgr6>*Ez<_@7 zG}`-GuuX3uuQ? z@xiW>i5Ddr=uP4(eKMc58#AA~Q!#C)G57U>gld(=VxVEo%$>&ckK-_RVrd@Mmi)?s zGrwCgU~a*mbFg;j>JV~F%zY+5W24CNSQp>m>>iq$o~1AaCht#UZ7|uN$?m}9kjfsz zdwW) zfk(HPRi9auawv3PB3m*p@0X=idi7iyK7zT_>v4r;lL!+<`(eXD1R2OcGx$~|RbTik z&4UIc3|i6w@#dM#)2nuI8DrZAjQ0L&n8sDF=FmuD3-$ojlPF*^ hsls(pxP=A_OZiro>Ox^Ho{XYf5BqG&WLh$U|)af2T>!rK>%`&Vn*W-<59jiM#c- z?Tpw+_v!eH5)Je^ew99*%fiOor`}{t8!;BX+>=nPvRnu>teH7t%zi%!bEj4oVQtaR z3^?=KH3R16{k{NecmEwlwu!mUYn0Ob)2* zAxs{#vU!-yZR{CLuC_A|OwP(?mjN<~CV2rvf90_W0JJyLHr zCiXqJ!L0h+vXn)EyAs(Fae22YCDY5N(%3P~r9qD=ER#f-9<(1e9Ym1fG&FnL7O*9?BgO!Yxw5x z$`i@(EYQ~Q%>rs2Ok~=spvlcbrq<26!Q|T7XAnxR)@q({zXM%ORoI=0qhH@S{I;M+!qW5Mb7T;LpXZT%E>o?Kf!qqmT&wKe_= zxhaV;se#DEq)>~O^z;i%684+d)y)ecORN55KXu9J zu~Ceon{Qpb%}Kr)oAvHk*^{n)df;P5i|GbZjO^QQNHg9d!vRPpD5)_XF(%y&z!21* zyy2C^_P8j<fW{7X+-pD9wM7sX%z;I;dCtV*X^qjY!_{3PL zOP*$n$?KdnrgO$Hi*A3ez;v3A0#mj-8!$PFl5PMf{-!TrWRckZ$CWACgmeR@FYITE zo6h}`Nnrc8DyAwC(oNV7G~ovsO&O5Qk=vDLGaZm5-BJ{PPh{HuW;;`#0qMqoGtlG@ zA&SY^rv(Bv4~H%u4GQ${zr&8pPK^nK4c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1A3Q0Tw diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 2d757063a65701c9e3401a937dfaab4ef56b9775..88a9385887241ba7802d8037e62bfbaca063e5e2 100644 GIT binary patch delta 477 zcmca~p7GLo#tqSohDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJt-M1{t~<1syhDW!k|+p4Q3#SR2UF8Mukvm4!T=lh}nf-{S6LCQEn7 c=C}OGWQ6YKM!}L0vTSq!h7tef(zIAc0MZ7KhX4Qo delta 477 zcmca~p7GLo#tqSoh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(ECQ7;liFt5MKl^HruDOyp^u{ExMPES-Uy*j-u3(>aM;}+8$Bcw?o<%X^{GDzInkJFquhPuW|`hg@N z8M4DT5Qt`&gch-vc!RK;q8gdGypq;cH+m!87twq2FYxQdx%@nz=Xu`e{c*Hqi?(ce z=_QW7MrX{G>Q2|$!;0&q!&xsWl3j{6hV6Ej60tWZE=6%TC8ts^zDRvoX1B->08`~) zGg~yAHErIgqw1o;rsgb3fG%b_nQFCcgU}GO+ax1^%E30ay7xpmgkEI1+7C#=aqJsQt?@oD zYQ2#1pw{E*G+<@L%wNIFNjVwGXWzClkqcvv(suky>^1%;*iI zRvq<^DX7(-&7jt6xmnaYr#(TfYmW>lIy~NsqN9^7XswB<_o#JY8o88JeI(e-ThwZu z{feRkFRlWcj*9^4s{K)U*(hTjQ{{ShX39$eG delta 4228 zcmbuC-%FEG7{@thZMiLN*$?v~vV?x!=+e0@LYfp(+fZvGgT%f2l}#KY-DD;GK$4IQ z*~@q#7%sykRuMbI3BqoQYGmfxm9(z9(HrT$h|ZgT!M^?hpXc*@pZ7UuXG+PSlngK3 z#B7VSL?ekryvc00Sgba?-QN-p*)74K*=h|*!C;`R#eCcnYz6`N(@)-95Vg+4Y^XJI z&5c^m#a*cN=;$b5WyR!Q)aV~`07h9|hqhaHHNZNMe2{gIuOK%Q$zNsfCVwJXRrJ)< zbtJ2bdZxpu)ssr1)+^~8YJH|WMy+cPH7Gif8A8#iY$uvEI{O~AF3ur8%Cfo=Z2m23 zHRise=*Wx9z@cL#KZY9XUU^Ye_xcRbte9>O`|_p-TZbN&T{vij?j0?AdgsaS~dzyZl!nX@ecOz%mJzczaSS8KJCKgTBX53t9a}rZQ8^Pv|Lmf z-U+qg;wCRGU^lx<5$rxb+)Hb*qw7jNt>g6}n#RKa$2%f)U0->0E{)J>;PI&l&chQo hXwFo*RB@yP{Nz530Q<%T97lF-VqlhLo|a~4VqubI P3dAX<$%&iGS-N=uKSUBi delta 62 zcmZotYEs(Z#$srZWt^8)R#vKSXlZI{ZeeMeWSo|2X_}H^Xl|aGn39rgW^8C=nqrb{ RZeWs@l$vb0xtyh&2LMgw60raP diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index 4401270535bf6c0da563f77ea2988c332ba5980d..2b0f44ee6f1a96bdaabf1448dffa3df07b5f0cc2 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i SCTXTXoMM`sxVe!rx)K1?ycFmF delta 64 zcmccfmGRD3#ti|Ch89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- TCduXoCTU5j$(EZN8KWx!<6RY4 diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index 952de3577ec463605cbb1bbdddc8979100886628..a3b94ba57d0c8689a17e85b86a03c251b2dfbfeb 100644 GIT binary patch delta 62 zcmZ2yxXy4xHltyYrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRy5!zd&U0AhU-jQ{`u delta 62 zcmZ2yxXy4xHlv|MmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0<~fW);s9|T68!)G diff --git a/master/.doctrees/cleanlab/datalab/guide/index.doctree b/master/.doctrees/cleanlab/datalab/guide/index.doctree index 40c154ae725241992ff75d2de00b3d76f92d300b..8d9a31b265c59cc855de8b993f7250d5d861a515 100644 GIT binary patch delta 62 zcmdlUw>@q{G^1gWrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRz0VO*^X0C`svhyVZp delta 62 zcmdlUw>@q{G^3$KmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0<{rk?x&Vjx6ZilC diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index 89acec21955ae43f0bcaf69cc59fe863d2abddc4..1acab3ff22b53d8fab91ee890d3e26b49c229eee 100644 GIT binary patch delta 81 zcmX@Gg8#q@{tc;&Mn#q;8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i hCTXTXoMM`ss6RPYK)HDrWBV>f5N6uGi;=nQ5&$ze8Y2Jz delta 81 zcmX@Gg8#q@{tc;&MiyDdd0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- jCduXoCTU5j$(H()V+E9(cQLl_VgzBP?YkJ6+b#hBNl6-$ diff --git a/master/.doctrees/cleanlab/datalab/guide/table.doctree b/master/.doctrees/cleanlab/datalab/guide/table.doctree index 6e44c2a3a0158db72039bddcfad4148d9fc57945..05da79122ad215638d20fa469923e012309a4698 100644 GIT binary patch delta 64 zcmaFxf%(A)<_)J=4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 SOwvq&IK?zMaq}P6lurQk0TyZi delta 64 zcmaFxf%(A)<_)J=4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w UOp?tFOwy84lPx#@VNLl200OZV+5i9m diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 5a11b23ce0cf1b7ede8e4d1b79905331aefe088c..c6c5dfaa536cab6f2ef64dbe0d164de8edd5b58d 100644 GIT binary patch delta 117 zcmX@AbyRDEFQZ|RrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; WDG;ZaCMRyLW85xChPE`}`-}iKMXt+rlWL`PZLwl!LyJMIrY*IXy45=CTB|nJ zvFX@ww)5NghMU+2Uj}aLIOzAFGGTif3?fX%HrNImY=~WlQW(?8zMCtf&%X;dkH0_X zoZq=Q+}UfMS^aFM*hqcdU}E&(u}HMvN^FeP#gkStnjEO_k46*Lf#@bHVOg=dWSte) zzXS39J~2*n0IIZh7yni;g9vJwjQ>_b&&!uwIx zD>V&3o4B<0BP`DuZiue%Kr_vV^T{Hf-{i;IWW)aig;Vw33$Lyf4Vyp53B<+p4$f`a z3-(PkH5T&irg3c08IfuYh;K60;z{$DSPh(Ny<H zXbOG_`1rcj?*{(yPyw0%TYby$vo6%d)YvldXdpCPw z+|*TY7JT!)_6TO4&wX_xh(U#8JPo4#_k8kJGp*+De*Ond&{K{wak<9e#|DMTJ_g}~EiY{R;m>hq&8w?Vg3zJxcJ4A1lA>XK{K|b+sUE9v1B^U&`e=U>*rO^dm zzPODRz=Udf8(t*8eSx}MaLn$YkkTpdL}Ota(IjD&+l~j^Zl)%gLbLt9iMe(nmzDVB zqcE*gS5uTg1NPL8PaW^1^+hhGQ`JtUJRhMN)z?i)H+J$&Cu6itjqIm3JhX;t9H15# zc&YKrW#AC~1^2~pINlv5?B?hYxoSgxF+!y(dzc3Byf`HG^^(6B)bvp|E3k-7O^wnk z_%bYFvM(a_$+(-X$g>6Hiad!&&7Gwod?6eXsYyzt{ugLe S8{eX^4@%@NrN77ixb#08z@j+- delta 5702 zcmbtYUuaWj6z5cLT1|SJrj$0!nJTGut6LgtOrw?7wZ)2^4J`(-nzl9xU03VWHB@b^ zW7DzWZ1vmthTB*ld>Oc{a?tN#jtTQg5HgsIZLkeCn25DwqcHYI_T5|=eg0jzufIR% zoZq?kaObYM=Jd0J!c8NMV%No^X6 zHf+iqOb^Ax1kD4e^7`HUOVKPMsG;)iJ5(lo#t}?exGO8T(sg+`46ovD_g>JvRDByRB8N@g5;jF>pTVE@P2%25#pyv)+)h4#Yp@ymJ9hEx zz*#f}Klwa-Ju~D4{?TX=ngC0E>)6u{)Wvjmg?M!AJFtt|K!M@i#4f%u9zheKX)d00 z@#`mYXdo;jfhp^C@QnC#$}d*8w~K~T{did%n3@Os$}?xaEe4fm&KUgrTg%WuXt>D# zVDh=?E8r~n#@k&X%sijF^_d@o3fp)BM0@Xh z+g@y*XMY_4=ODcIO|E(HDt1@&3Ukrq$RB&aAhEePg+;hq4AdC%wHOWaiGQnCKm)Zo zs)`A_Z3=MpW(kd(4&*hyLdq)YbimQQh5|C*M)%Z(t33zPEj;qkL`HW@g91r#KClGy2zC0LsX{*`>4r@odVOzFl|>y4^Sr_T0^y@ zsoeoyYWzy+J4C<1eKBl~3uA=c9Ni*cYsfE-Qn|_0~QxCbi`ht;e^bK;lyKXK55)2%AJ|k}|2k V0xfFe8x-_FiQKL9|Jd)B{|6gk$VmVI diff --git a/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree b/master/.doctrees/cleanlab/datalab/internal/data_issues.doctree index 5fe4983fa7c158fba0ebbd43648598cf86561dd4..3802dc4279aa57ed24ec27d0171a7fe9db7179ac 100644 GIT binary patch delta 2705 zcmex*o8{|mmJOkdhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVepyi41L%9Tj6Xi!%3fk!~YM>tsW|1~PTd7Z%RZuCb5&{;GE44nx5oEZO&#j?LGzaY@Mv8%{MvT z$Ac{0;6R@2E5W-t-uE~w*+xigz80KJp4UMx5Sc7jDY*GtXe$Q=F3^r&O}+~xHn%12 zW1_(JFDcBFXkVUwm=f($*-@1ET_snR%uEK1Jc-R83r!x TFn$vvBM5*kyX}HHj87N=o|G_U delta 2705 zcmex*o8{|mmJOkdh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(Ebj7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqB1t0WnKKsm2m<+9u9M8Xb-LGm!0M9;T*8l(j delta 1137 zcmZ4agL&l-<_*4#h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(Ebz7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{9nu5Bj( diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 136aa8c1352a0e5603bc887c5b151a33bb87901b..675b4fea72e91278aeebff9292229fb0a7cefe6c 100644 GIT binary patch delta 122 zcmcbsd{=pcKciuhrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; eDG;ZaCMRxgV4TZrM6x#h$q(42HfOSy@Bjevy(Fvv delta 122 zcmcbsd{=pcKck^VmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* fxq(SqQfjj0<_5;O%tj<@)1Ul+U21bCYY7hkEPf@7 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_finder.doctree index 2dd966d05e704d66733f17a9da58ba0818aa2bcc..11db0f814d5883e9e045d6517607b4c394adbe1e 100644 GIT binary patch delta 1125 zcmeBu&(!;#X+t=pVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrxacKi}k;?gEp$^td*EGUO5^-xWY(Qpwcq z5TLzzhetTM5#SJDu=$+tV=_`XFuBHUb_kGXCfnf#o8>|_lNt4!6QX6wOYL!!fm%0f grnA|S?Qq`Br`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~0qcwOND diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index e36a597ddc94cc3c6af279a54985956aae1130cf..cead77e86d26d1a1b36b877f2856ff4229e20f18 100644 GIT binary patch delta 62 zcmew$^+9TbE0bZ7rAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRw#WBSDf0B{)-bN~PV delta 62 zcmew$^+9TbE0du`mT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0<}#*VTmXK$6XXB@ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/data_valuation.doctree index f2fb93444170deb39cf2e62abd08ce1edc9d07c9..6e0392ef538c102a5234827580f301bee001cd72 100644 GIT binary patch delta 2628 zcmccdp5?}SmJQL2hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJt-ME*ZKMjp{Z_Fz1nDAyDgN31*?m?yPxaS-g7lL^gI-vb3(>T){J& zJgqY(@7HGC{7~pLFIhH&v~z5(RSY06#6a4GH?LIoWhdMAXtH#!-uzAH7YpfHH!B($ zFp;ipvZB$3%|@nI$kqDXqKCWy-mp2u`V+afs@r#vYwHBZALQDa>AHekTR*w~Bg59s zirziUWW;G>&XURX(ZZ9z>F{k{?7xPL)HE4lgv4f>&`xsv4AZ_ToUG6WYTsNRT}O${ zuVP=35#n%vA57Gv#P&PMk0`Nyb^1~=B5iYH&N(i!lFQ7=4Rzd`RVq}t$<)5UjBWCS zF0Sdt>Wm_jt#TbES5&BOp51boT;~Wl3v9NSP{B{Sb2dMmAIwI&Hekfh-287@83&nK z?KUux;n&TDyF|&UU=Tmb-Fk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0Ae0O6951J diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index 78bbc033feb711bb3e0ab72819d3de3cf8045831..83e7f865a6107d2480192cd76bbcc4a48c904860 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wndgE8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`ssGpLbT&!Q5Us{x$I(eeK@#ce!a~TauHU_A*WICq`BmZO}mO`?$_f1}{ zEVem<^&kt`+Jz?zgs^OW&t<_%rV#>)team8EaoL!JICZu`9EaqK18-o;mH#A_Ey*R zOL7Z9n4IYA+q_!&C1qjHx;b03fxN^6ihWS@v2H%3eUypJaDW*Rr{6=VD-IgIq|_CS zrYk6P#U_i#lsaOU^)hDCLv!;)`%v=o&{}XDo^;J7&+8EF;vV10^EX8MNADs^YG14xde4{++eiFjkO@^kf1o^!q3Kr}1v)&k*4zQ~QP*!OdTa ztN6*&zFDs&nv*=OlM{M)H;47HvQeO2V`>Vywtw*A-5fc8D!I0UwC`SKMy~DtX>5}} ztmBz%5*svqx;UfiW~+^d$V&j(ljF}zPuB70*}Q+x1Tu;mU>brOF?s(U*3IGv*N|8L zW^ax^zlevd*aW#iZS&zfpEStQ-akE_hmm!A6&vGQ4)P2D<|5YZIs%MgWTuDdy;6)E T+r7jYrN|3_lI_5@+Y?3rQ${d9 delta 2632 zcmaERn&s_jmJNZ7wia2&d0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(H&l`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OT{WLN5RS diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 36a86eb1728b1b9651804357b124a9df0d5d170a..cd6e306bfe2a1fc47fe087fb193b2c03d58ed440 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wndgE8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`ssGpLbT&!Q5Us{x$I=OL|@#ce!a~TauHU_9QXL17**JM_fI`VXHR$%?h zLY~&i3an0l55z>Ofn66Dw8kFW81tidkP1+ zMiiNC<|sW(wsxQkHq`KLo>}KYei%TESlz6|NvSWZSN%viZV1 zGJ~*f@`5#jo1<6skymWAZCHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qq3V^X1x{+{!_&_T7{DH=Ff~kf*(CvR}BsX3?3y`AB#CX2%uo zkbHP&N{A5p1->` z2V4{-uXgO(tZ>toOj{@G5cB Q%WhChihuiJW5!~30E09P_y7O^ delta 2506 zcmbRCjb++5mJN}Nh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EbD7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NR@_8xcu diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index eda4760bd468de68710d82206362296b8cb206c8..556566c0f3ffcc46a5f36db3bf38f94c99408703 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeh)0vXyS8@A+3w}@cmpZtxvkaSyt+Uq7aqzG@;WQ}7XTf6vXUoIh5 z^0aT}6JX&ZPwV7^a!<(AxzbK}bGpK0S+cc9lc^IF*2nD6lONU+n`2xX$V(`on3mYQ z*nJ@r*^Zak%y1yPl@gK!#XIjT`#hh65ESnJeetoxTXYu zGPQ4RNclpZ!{<&uX3w`dAmccB>3z}WSGlg_h4`Y)Oa%|gbM&Ik+lr&fwe?BqIdW}n zt;{3W)??M%$+b10UXNT`0~^)FSzny5tL8f+v znZlc&%{oS=_RTR%qR8`e{p9`G+?xwmHIVCXkoGm3bmhtP_x>W`&2uiDBCq5CIv%K9 z^ZGS1{l0nq-B@z{z5cG?=Ce=5Imz_5{yV|VOW&uG7vJfVH^@j$e*Z^k^SK}Sq*W&3eQ#;fF20icY_x;@aH d@iv+Ir}ujU1L3I;<2Ej`+@G@@*t&kl2mn+PvPl2{ delta 3034 zcmZ3sg>~5$)(xJFh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(Ea|7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>kgJOF)H6V(6! diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 72f2abc78a0a73dba1981c9cd692499f319191c7..83dfb2b7c9c3aad3a1ca3d78dd7eb8a6ac065af9 100644 GIT binary patch delta 2706 zcmbRBnq}5&mJObahDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeh)BN^HzAB=CBe!!TKf3hx1A?daPwa=U^U?jY`n)M(H+1kZ7%W{jc zlBa$1Ux6+T^0ZFwQR3JfDaAxyu+0Q&7v5|k(?zDkf!d?VbT=r#k0}2qKfon6FV$=y z*V_U{5}Vm|E;5nrc!|xs^n1v(eY1cOFEa%;|2JJhrp>@)F0r}O;yoq)jpow7oXhJ=zA;(IqA2zySRgZFNp8l^|B zts7(RlVR)TgYi~mXag4CdpEyKVkR$M_inzGHjRvk*}O1&2Nzj+c-G|iI$WFe%K5p; z)V{VsXtPvv4nLXNv!`<}j+snefj?_9Q1@n|nezq7wEVpe+vHeluFY#!>yzjGqRn;N zw~`mtMU(5c>uhG)vyhi8$Ah#>PhNkWdvngIRvz+=*u4HalO|c(XKk-xWc)#1Lt)l- zdv3-=Hq!0geo>IojGc6Sz-&2ddcO*z;AGbw0^2`JGG62)&yejvL+bd*(%ZBh*eblm F2mnErP<;RZ delta 2706 zcmbRBnq}5&mJObah89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(Ea|7(bGsZSukRrs)Ta8TlvcvJ{eTD^UB)$pS{go2yw5vXHG^e6uXK z7%O?&H~$sr;vi4!bfARxdV)IhX z26DYEU?j1bUFRYb*^Zakyi31_OxrgL81XVwVDo>|6=d2BOy&}sJ1yQ*;_oP%4oYl4 zVz-tO+k>4dDG9oDZuOLC=l8xtp5u3HzT&r=ytKY|b8Sc{c_F@c^MSDE#$9ZwdUHqX0<+f-Y?o* zw|y&lQC&2-ZoAHAracRJ$#OhMyY%Gs*SR<6oNDDE--ylYuQO?qrG3`+8b-z+`I&e@U5Xh`{X}-!jm6NW8K^&tj$WMD;|icY%Y{^W~V@Vg`%YjS=t*nC%YvH zkg2sioQu39(>VEfiO}SXeZrd~BKJy>XFJe{Xfk!yHw#bZ=jYx0rSt@OiLP;SeY3>o zw(16Qy${lUp>{bF*&dMC?AX{trtO>Sn;%nRvrhX8GHnJ2+q}-Bl-RD@+d+x#_5ID1 z*nVb`KY67EB*{FT7D|bBmf3g6aQtS$c?RT_O$)$9oA{D)@PKfZA*CAJ4`Z6L3J>fJnH7dLqoO4DS8dalh8hg>+wDx8`o zJG2RIPB^`pTJ5amvTOLj_gHEBI zZSsV#+?$!d7n0|JjOl(Xj2c@_85_teW-_(|^{?e6%lTltrMIsaV$A2Ez<}vM1Gu-} zm1o?hL6#{^)Bn3OvTgVAWV}sY-f5bAVG7&!2Y!r?$kabQKa7!Mdu<5g9xk$ckhdM! Ipnk##0D2g*`Tzg` delta 3021 zcmdmUn03!#)(zf_h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EaI7_XC|ZL;9Jyy-XM8TltOvJ{eTD@gm~1zf_LRaoz`kf(j~03aH-A6LxWvSD`dbR;cIN9C65ngRH`- zX|h9`;O2zWo5|Jw;1ciV%U8CN>v)iMkGrqPwcTMk&*qQMn#s#9K)(aE8^7h@Bs1s~ z>e(hw_{zPR`FkOG9>|#P$HJ(w)s(S;ykaI}J5c{xUb37Iwp)7pdLhPq9tsSY4m5y! z`(1g)Z5m{m(lq_QJ0sh6A5X^H>i~yGF$NB&O diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index ba750533450fc780e6b7df8541acb6dbba70339a..1ced38ffc6b8ee38567488a1ac2235a7f3dc5cff 100644 GIT binary patch delta 2688 zcmbuA%PT}-7{(jsjAJr0B3YO?g~mp6W}M^9D1#`b6dNSDjN#<65hH5klBO&)8XsAZ z%LZj(#w)Rsvazv35y_g3u#(H1`~{v_oaL|I^L+33e&>2gf4!uS*6N(YZmCZh?H{v? zepPWgB-y39L|3odFN%uVBbKU)syZZ>q{{KHNA~;dtSVVzn>LOPbgi7@-#mLN8(=G` z8FZXdql58jhz!$>F-;GljJ7RStZtB13LK4Od3ngJ;XDoH7GS3pq)Ooj51z?{h6+}0 zONFwBi7UE54}7tB8mr9c#=e>a1!g3d%%j$je2Q9m_byZUJ%2 zavJ4DUXa&bvupVI$_MhB((ug>Q>*-9u!J27nt!XR(VM$T-2GBL)_} yGE(j3GcxbU!yk@q=<&baH1r~UVA189$a^A!BNGyekA##G$^ delta 2688 zcmbuA-77<39LF0wb1XBFTo9+w+-T

^RC0#Y%C5ByZc<%9PaRr6w;)xzIEZxgak$ zC>J(Ai7P2LZd{>= zNRnKkC~nc`RU}ol$+EXkRXq;TRxYV_k6dQ=xxF66%4(DCY}3Ngfv$tI{hMb`m43F8 znn}kg^*R`zg2*u47}N9+%4pl1ht&t|A$wn87&Ntm7fzM*&%-NbxVoNu2hktQ$wuX^Y{xcWSTKfqeypW1J`x3FY zbwOLC^o#@72y)HAS$Ja^jAgrJGehmVZFQfm04BZK5=s~N=2 z%V|^)c}8A)&933+EAPlRrQw?!=@i_WLG2oTuydFKb)TiYXb`w@bQZhFg^c4Y8ZfZ% ym5~}Q_C6nQY1z|g`AN3M7bopJ9gPy25<2GAb;;wkiTm;M8)d}tj2 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index e544d743e77f0789a5fcc478068b9ef55b5ebd8b..5e0c85f7433089d198db174318301d4f13c5e4e4 100644 GIT binary patch delta 2967 zcmaF)oaNsp6p~KQc#3VaAccYV8F6DuF8*tOe6fw1U45nOLLN`y`fulb3`vY7kSz@ zi_UmLX3%Y3KUa^ON(K~c0&4^|FJ8Qz%uwGfuqJ_w;M%-!YcY9|G;QX2p-$nxtz3 u2N%C5>vnf(MsianFh{a(f2P3rn#@!^Sw4V$d!HKPAu=-5c3|^3g9!j30G8tb delta 2967 zcmaF)oaNpF)snYcgb<^!mX{76B6Y%zX@GWMlm%R zqFs4&Npv|mAq~@hB=#AZj^CV+IEzf1H*ZKL*H&PVDR0hC*CW$ru=cXd-DLV1teq>j zmD~suC==KmTI9)2Mj{18*aSzm$pr>1o8zkdILI`@-%Mb0QL{8Bnc5q=MK?$EvU8EA zeY5C{Cu9cQ=Jj*+$f;yN!6vXqVDsX|+sO>|%>ru@$Ox{@3%3@N7fI7L-`*!ehK=AN zVS*$7<}D|x$+21SW6NaAE4-UOUaTgkD1>R(yEcoLjO3yCv43;NlMEixwQg4Yn5{{= vHgIt9d$MkKmu4h4RRVJ)>-J{~jIYT|)sy7|*thqoF&-i#Lv05(k29D6vGlA{ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index 893d2edd4636f46becbaf50f81adedea3079ce5c..c6a43dbace018e4299b19c2bd439227b8b77c00e 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr#6SrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRxgVSLB~0B*JuWdHyG delta 62 zcmaDV^HgR-Fr%SGmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0<`%|>JOF)H6V(6! diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 242ff3f0e1668d205c2eee1d4a554fa73eca1949..b325a3d8673c0341f85db6a4ac5b21058a69d725 100644 GIT binary patch delta 3483 zcmbuCPe_wt9LITT@3iJ7w$h0uNDvW~?_~cx6rKhO`PzlDkBgMI-3YB{qUO6r=a?lGlBAc#ogo_xJt&e$VspRyT~* z4P&mK*~7h#pgS^gty}eL?jF0t>Crr@=R&VvRoz-Zb!l!*vpYNv&8dF@r~f=%XB7bB zOr7SPhFI-_l3X-dDWH5eVDxL#{C0q>1Yhy=fSGPKk0HX9V4mLYoE1p+n}cN zq;%X@0F{*J7tnO?hKoS6 z`sSy2-^nIE7`N(Il!g4!G}8S4GB)~k!;2)owM6&S@A}NxsC{~@jxK00Zb2ro)r4>M zXdNBs6S2|cogek)Ftm^b2TBD_4ZxKsGbn_NH2N^p2;%25R{H#`isGu*Od=cJ0jf(} zS(!J1_`X|aUS3z|>ifsYvmoQsOHg@z7&V}$&-*@_>A)v}MHr@7=^eKJVIC_TChNDH z8H!Kh9f=|{(cI6)CcMOQk(CcZcuG7t#EzhoD})+EO2zrrD~;lbi=8k+z0dG$%U-d1 zjD5up?k1nqc|}CM>_rRSM6xoW(XIgU;Tj|6SB#4O0Gv_vUQFt{_D2Iud5|%q#%aP$?yQr|C3#8P- zkFkqttX3fuZ1v(kh|r6oE6LqNH;YElMK`e#)I~8m$D6#}vp?YXKJW9q@B1B2Wm8|- z)MxvcwP(^cH5rM7JFPCe-Pz-EP1yWCmt9e;PN(mJqIexPYnNT=_B!Qm|Af!$qHC-S zV4TUbyj>TqUQi>K4Q5iL?>dZrWmwz^kmbNjp6WN!jm9xVxE#pQ+TIx?D-Au^@@EIs zbdIF9dlG;$IZc;3E}E)GiODYzpG;LAoBq&!^4w`Dq2kWw((;CbSDw z*Kq0eq5;GY+%)pihD2B2KSDkWT6}5=Ds2p*2GsOBVFR@x+rNa=O6!(v?W9a1a!8(zYaenCU$Mj8;u9(_iHMs$Z^D~Mlt3)qeijvkPYwt2bncY8vpe(ZUk?I48Dtj2wMnBr}OViHefVgM);c+A0;c3;UoE zn+H05I0}PMBH4O~bGHULif$%EP%;XF3@VZ!=x%g2z3I~bxj2`<_xC*i_j%v<qqegIV5 z8Wl+Ic`r?VAR{x&$<)C$_Z34A69M}(7DeiTn z5v4mX07g0P&C-S==g>Z{9$SrCqbF~mR`cmuG^W|JPk@3c<-1q`PEmc}GgNGTN{$V$ zk;eoJmGz!6AokJ{4(jT^4kf*af4{UFh)j+z;+qFYKs&{TyY-m=M*8sN9dv$VuO55y zW)Il6w(kyVi1K>u9kHMuduFswkNx8vL65!a-f}(m#>5-wu$Bh4l5*qo(37m;Gp&_0 z@pRsV9oEr(R=V~gu?(Z-#`apO&oqNLt$RC!)t#nW@7@C_#q(`uu-EE28@>Lv3*F`- z{^#cwD`Zc~GvOMt7eweEDqq6Y)(ZB@wsgHJ)UhBior=ayt9RG3+gQ(2%FC_HqS^(P zs#<#0#kXK#fs}_0fCH)>E`wq{$js`BcE+GZydgDxn0q}E{7{~dkyEJvpjnphFT3AAto#xsWIl5pZGl{N5Md>*kDH-Kut5n!t*o8)H z9_Vy&6a}F~vh@(>-5TU5dNUz{l2H(3P>}>d??z|SH@)yR`PM6!=Y4`iw4ng3YPG5&0@Z0R%R)^5UJ8ez=P9N_U@39{M z74t^KevO$9m-2{o9uGm{G=0^s*FfkLu}TR;pNR)-8XB}bsDjJ|T>remfQ40{EuyEv zK$;CbI=F!o5SgYiZWaqILzi43Y~&36+MX|g8qUxcPXx6JyVjP1)}fYh)LOT1FJPsZ z*NH}yYQF#&#h5ok>kgek=e%-cC2EZvzm8fBCuh)@W==l=8m1(Fu?*az+OE$~v$;tz zI=o68jkz`Qn)Gk&T4iGn|V@txtSSd z3&)Zbi|@MdEtoHm^soVNL6ys;l}!7YL0;C%7*xa?lv4-U2k324SkE!0F(T7@gOcK1 zA+_;LFB|>rA(Y{NRWA3j<&8)$%1Pw!Gp!tqvvzEO3(uTJo_NfTg1r1`g8i=k2g>-; APXGV_ diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index 8a4179e378ced58b43f564f1f4cf86c22723ca3d..c32be83278adbb14948716eb5738c4025d681980 100644 GIT binary patch delta 4920 zcmb_gT}V@580Of_xz$!3e->sDBG{ihhVCpWLkNtdRHTcRLHTpc($J4XI-4j=jZ*-^FH6q+J> z1u`~s6?Yf*f$A(d%0N|;90p!jWY7b_3^;4ayf2c&?MDXC;E!SN zBE37bKC{bOTU8x;{`sn;fb%4oWfK{{H}Ha*GeBlJ;Os*38gRC7?!ni9qH4O9s#~II z(xo<9)=PeHn8KjpNmm~F?lcz`jyZNJ3!tFai)=qJzEPmfnaS zNeI64X%xwh6iR({4>X`Mc>5O#x%_ru719!_3+DF*q$L7Qh4Lp%ZC@j~d^m_4!8F62 zuWym1pV8OT>G4kB{Qe>^(ywnDaS|R0E=LxA+5?RQMas{KCLs_6z1B@xz$!pYhgcx2$toxOs|tlgg{YBMS5r&m~InIMVVP-v}Q$V(##{x z{;0QJ%BhDOh?YhXQZFkA%Q7sXG!Zd_kjn1767=Y|9`^YCoO8eP-OJ|26mw&WjzfYe zxh$cwthV-;!DLQM6qC*7q6E9moM^S0MA3G{YAsGmFzrmV?kX0IyX-}_Vly`iN&rTk zX@wlUtZdoR6$4P(6m|wemXlMX;{(dpPz=saO))lZIXhR~3Bgn))9d(^?lq{q06)C; zMlkC4*4GE4{xQlOjC#!GJoJG@#)!+Yt@C)?Bs#MqNk@k5Dt5;Yf$F44%Ex>!L|iMr z4QAoDQr=_mb8Og~3tTmKruAdXZs53mRhZcZKA1iUn3XE1nm=WwV419-{ya79cE|A7 zToIeOg8TDcg6eFv*g#b>T2#EJK&1qN>37tSwlb7T#*eYx=0wcP6iRM6I)n@$!ym)m zb@bt6YD%A>rlKnFTk@-t{EiEx6*Z*(UdL;yF9VrnzoQSytKZSYSts5BijwIXs%i?S zd8gE9dtdXzQxpUZ&pWfxXD7SRb42~cARI`8=(*^;UIFHys!7FL8;el5(ftJ!Ho8~v zU~>U_I2w=AlN}|*w|Lq?0}=!0x0NIBGbuz|etTsYpzQM2Ep*29yJwNnUEb6D;{G`x zbL{da12A%V8)&#UHRTar6fSQq8G3Yo%i?!eE0TDbM$ft3B2pR>oDDs*i1NU5CuN?O z3#0epHJn1v8y`dONZEm&H#|XlmLxb^o+SZS&I8XU0hpwCoNoG+bl5)%T*)Gur(TvK zR}z31J`E$$5=-%KxL@2Yl>I+U|AXeyPw>OT?&$~@ zVjoz98qh`nZ}7D$1gJu!b;tx)mJ8q)hutSRNJr{mQG6Z6HtzS$XoR&OiF6fOPrFX| z4995!uBO4}4BzEQAp*ZG?bUEW>B)%_hH)W^QC?Vrr3QVPKJJnQUNSo|a-@mS&!oW@utz zl4c6TDW=JZn`;>FvyrZC@rnPn`?t>$qS*X%}c{fS;+Ed(&pUgIx_qTOovIE>*Cos$+9(Oa$gqjWVy`8 L4Fl5A#dXk?mV zl5B2Zl9rU3Y`M9H@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*Je}Ckw7+wh>)YgST5WDKGpz})p0q5Jrx%|AJ=g0Rw?@`5jRPk;M zc(lg}{h={8o$nDDX~Z-=Zc0;_Q;CcahRljyX-KK*rY_^omyKs^E_l9r-D6}$N9eGz zh>`ru7sjPQdgq@7#I`B?! zb^pda)Veo#5w*S=f~_w`ZXqG8rRS&^3-I%?NQ3)CaV=d3dS%a@FUWLj>3LqB*aVEE z(BsJo)cVuz08rMl9oSOlx&Gi1+UNdsKTzz+h{}&{A~Dc%_kHfu;}}y^P56m&AvOwx zJT%S`Ji4$B6s_#MxHOARIYo<0ExhpTLI~{pYBI>ZE0d^Q;oWa?*n20ax_X|^y`Mtt zR#b3x^$^*&gF5Cmj+CIOpW?pF3=)-pIF-uH)Vb3|;io6sxHxE2Tj0Vc@IRMgaj@3@7cphB`~Uy| delta 3077 zcmbuA-Ahwp9LJf{p%a%*b|W|lj13YxXD^;}lxo4qEHX}vVJXVl&KABf82B=TL>OIU z1mf>9f)SBK!IB@*ZuDjZ-6&oOA>`JDfgro`uAuWs{sHIPAMklTznAaxJcm{1Vb%F* z*dePk;oQvP;=(mqi$)by(^BDVMvI!JtSA}7G}8lNITSS`X+?@;Q<=2J1;>%oK1OSE6q37o-sBjw6(E~3zK1yrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRy*%5;ni0E6-q)Bpeg delta 62 zcmew@^;>E~3zMNmmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0=B-S}xB!xq6hr_3 diff --git a/master/.doctrees/cleanlab/dataset.doctree b/master/.doctrees/cleanlab/dataset.doctree index af6f556ba7370bf78e9ec2dfd64bb503b87eae8e..56adf7313bc5a079e1a73c4cfa976154d2f4fa34 100644 GIT binary patch delta 1253 zcmdlng>A3;BiVSeAg*W3#8}h6-0u~hf+c$SGwlV?$7q)n{ diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index 6ac42bd7e5ebb30e0193cc1d413d218f18ddc6af..0f2d45a6b09a960a54871e98541f64d8e798d395 100644 GIT binary patch delta 13101 zcmbuGX;77A6vyYh3vz+Gu(>aVB7+-O^a@%Eh>>H8qN13hC~#9;a0yLZic(PvQ7`(K zqorm#YL4Wsj<`EIWMh$zfjMqSi@RC4Bs$o0?`=lD^1mPW`2YXTInQ~{^S;l^JyhHL zP;K+l6zV&>chAW&c~j;^Su^c1(cOF6V(qck*zDe!R%?ts%i7BxW4Cwj8QartlYd#Z z%!yH1xtVjK=H%wh&dhccbbHmYk4|=Pw2M>@bJi+8IwloYBYez`6~41DxpRSGkBUhh z3k<=InHie%sPU2lS)@3kS~hV!2niN+kQ}Y>f_tMtb;D0Tn(c$8ZF>0^`{wkZpxw*TCWN`KzE5S8BCJ_XJ7{*JjQ zm3D`sQs-ANwR|5;eQ!U!bB2Cfi&pp=_e0Bc@E|;!N)K;Fske`Ns-|T~|W|+{3NUT|%iP=hvaRmRCJPspBthLaE~N9hBPc+7y%;UNab_nttDn zQd4ihCtZ(Q8&PV`-8eMYr29uu>XyHUqtxQsGbr`RWB3{IkAJIBYT9$Sn-c1ufK;v| z8VQz|%T@XZ<)${FAXKaQ(F#=C$w*yM?L#x&L$!;8sTW%3lu)Wbxrdum26B5OU)s5> z4J}8xS6`u3XugK_RDg0LI?@JIJ1&xnkc&E3t(JAAktlbbl@6fVAA8Uaw9e*UlmKwK zAeK&{%$hzl6=1q9k@$9B`U2&4il>1n*PKW;lzV*uC8FFDZ_)@<`}H7NgKDo0A@r4i zD~A&LJjIuW(@bFhiG;T)m*pjHI3Q*zMm`j{pzrdU@etG_9y^JQK*S!g(N3>};&EIx zh2miGw&|q$HvXpE6?Q6jo=dL*$B`<qv1u3n^4Q&!I`?^C*#dlJ^^E_D7{%P6h4$E#ZEzsc z>o#11-f_w*WCh&2Xy6-45-JvFCo7t0GgP)v+qaZ_xQ$&lENwnPrlEV7NQV$n-BJJl zJXn&YoI#^u>2(D@5#1F@p0AiVK2KSJ#^5e2OPl$j=zw$Aba1gEyoy0c2NTbAC?`6g zfgC@o7#eJoCS^)2+HWkqB4F|4Q_3#17`*nhVl{y!;KU0`9C}W&TCK1ZB#Yu8)lb|= zRl`M2pt>D&Vd)YN{2PqtAz@etwFNpCg%n%3E?nK)8jRiL;3K*vs<*r`;LirA2P|GW zTuD_e-ju;dNC!V&JX)=8>P;ZxJJrj;eT3)acR2{@5X4J%t5?ynAlx>K4ygw5s7$SId>LK_!_pgNyv~qh8*qCrbU9m zvFz@f=yB_+O$6^dq5aSb#EZXbWHIFR$V9XlEFB)B4;!Av&Ap{9_ND{|AstM-^qy7^ zzooc_3>!)B3?Dx3F(n;BxJuEF8NdbMrbfLTycXXD>g(W_gZj=gcKLF!8OBS85_lx; zh}8odJOJm|^h4;$!_w;(+LLUF(}UnHkYXd3#_RcAzy=U|rt1};mg{Eds|TTC|ATry zS~MZWMh-r%pFto0c)~fo5S{{3?8mbz_4Vig;N>^!TSSWTM>m#4z8Wx5%sPo1)kaUtY z-cNCBz0_JXU^%s3CVM5tk}|xVbz5+VCoCTaC@J+F+aejQ<6|nlApLABPl!iyrqtQi zoynOzTq_RC-}aF)ICMSt6Qi{Rgoq^~{P%D7B(E4yA5g^Ax3q ztR0L}4eLWu>Xp(dDD~&EVJP*`rf8H}@<}5~_1l_(QhR=8LZv_LSd2<<@0y9``fzsv zN~L|isMPu;OszZ!Q{OuT@0>B;G@uo(<)LVqjvRq!Q~9xNDE02i4XCu!nX{<0uo6D$ zW}jPwQZ47NpzCU=f_u2@#j7Z_?9xUw*UFk_D0Rw}tteGoyN6PH)Xqey{`I3!s{3#I zP-@aG_@oQHvjwGQ-;Y9bjeB?;rEdRgEJ`hDIFC}FG{Vn_zyDiu})&66m2dH+bH-({fPV}WJlzXfrr6IRR@}-?C zy3s0>d*c;ahvsYONku3(pf_zswJCwL7P+Xi)oNvb8jo@p1k+(u`$H)0M(b<}qhSD- ziz4VO%B&wuvjC>;5{d5)q0donpJ*C^a!oO0M!7d*DF)@9ev`(b+OI}ZDXOgnQFl#cvJ;V@d3p4&JC_2Gu%7bmu30($EtB0Sxx1@S>mXiv?)ino_+T;-y~P@ zMIHSDRKVW3(jeXlibe2aYTKfLx;&yXvQ+C#YrH?Y}H*$#YVb&UV2aK+T3h4!13op2!1 z>n>b^$S7qUvI6#9G~x{<4i$?FGZam98zWn&`&&vO+{QK=mNp+F)6hOlq=S#B>#hHP z9xTsL&ZE(=^tuk8i1v!aFI3z)I$v3h#$YcjOPhth=zz1=bX18VoQgq62X`*8D5ra& zft)&_7+P$THWf+)+HWkq0$}lsv&vqy7`)+}66_9^fMYHzQRq3zYMsKtAX$`nsjlKy zlIkzAJ=I;H3rm-1;Ab$7hlGS)YA19q3MuyBCV%xnS1@*)gNqmtquz1GfIp2@4|_P} za6L)&aHb3{LOQte(urzaduIX>ALXh>(a7X4I^?JioUvkQHK{x1km?9Ql&BT0H()vQ z39dqqhNVk(Z)Y4t zU7*%hEW4{}yrf>eg-$C+PA|Qh?x|bM&c@{{>egx=9OI{X1HT?@Q6(AI=KfAa6P>Dc z5Z(8v9^%njEtOX$Yr*JigS}KN4W9)$8($Axhe?0Y~UJOqGDR$+&YJC$r0C?4HJrHjEkO%rhV8?Uf6a6WYv(zQ? zrDu9Ge4*9f!^NG`TwO+?E6&oPGw@df`v(OPpDAzTYPz}Rd0L8rS( zNt!7TrZjx<7wZ@2mlh?bPCnSEGRz;@mn?FdLro`qn87DGr z2Kzf$ZXG4IuTku!#P%o3;gs0^OwExJ+b?M(Q)2rAZA%t1lgtD`{>^I)R&r3F{e>m7 zB$?VBLZvo$1{;$ZbekPQow&%f`Fx`IX4wQia&11JXijdB&6gM5JU`2XOq(ZzwCChh qagycl*v%znGTfwV-F&cdyAJ8vfW>(5=0EESc*xQkwE6w+d5i$?^b=12 delta 1676 zcmeDE&D8swX+tohtwok`URGIIslK75sj0bzrDc+FTB@aKN{XSmd1_)xO0t=;p^<5d zNwT?tNm^2BvZa1XesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90BUF-9{>OV diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index aec3b69e54da7d20cb9f2763235f9570d354504d..54fb9276bf685e9d84ce87f939471049712de86e 100644 GIT binary patch delta 117 zcmeyW`Big6IHO^arAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; WDG;ZaCMRz0U^HYWL)$A3ZXN(f+al)x delta 117 zcmeyW`Big6IHRFOmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Yxq(SqQfjj0<_<4<_P3ceEL_;z4HzL9IAl;<-TcOaR2%?7;6$L@jBpVf_MQMb9Gz~-$ zBw808wV+7Qf-R^WVGvAPe}aOj^isU`APAlm5*0i++Z=M~KH4<9Hh#E#96bl()`6R;ell%^?1u%24 zZ191mEgkj~SJ8@^Z^BS>*5@(1{VET7hMHl8mj}FrH}LY6jUh0d&-&)D=046g>o{rgPg?#0{R{NY)_@TMrbBL(|rGXQwF8F?vI#Gf6a+@xq z@M`_8DcatU!1I8vG$a@;()xx3$EWFaLxSoI>A>|?-@=yXR04*)F1W|(uhPg@cvesf zoV$X!QKC=4rDN4EFbO-vwlcK>KS!1!!?dsDVl!28vqvR5B@Qo<2DZrv>G}vMl JPbj}S{sUWu`lbK? delta 3290 zcmbuB%WD%+6o)y}rt}df(NIi%MkLrSq)8@^j!I_x*lz?>+ZUVXdRE z*6}O@;eo7jF>4r;{b4m0OAM%LQc3G-Ow+=NgnmxbQgJ05iD}VPA{0$0^_0r*z-9tw z4p-BBsAX4|{lpElCKp?1sJRgEnY}@oM|>l#WQCuH{XlQv=j+>}#B{z8SfnLq%<;Ym z?+rdB;(WaCnv1k#R`PDX*w5N%IA4zk-9+^M!OyhRJl}aV-a|^w^H%-D7zv#=JC`mK zNp<-ZjpTDH2WV3~&CNF|4K0{c?`G`x<-^q@)WE^_ckKs?3#Y)Zez>mLN7+mfCUI#$ zjCiQL46)n!t>VL!nWs7Aq;s_aF4@Z$;m0q zB4mhjSHc?=_(XVgtokJ;U>EMGLObE-$TH+u=qq^Gd>y>(Q3aBCauq_vHaQfokA$bU zQDou=`0(X7a1&QDhr%$`N!!O9%l`p4KCZ)IYJ9^`{s*VJX&nr9VVe|Sw<_Sp)h$wu zxD5sh&GAk4JK)cK(s|1I39f`Y6shdDA1WTq3|kqMWYmvIZwdE+B|sr~LO6JWO`A2@ KgWj{!ude?xQW50< diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index ea2bec1501f8ffeef46c6a7eb6ac9e3d253a8056..c21429163b2c3dd505fbbefdd051e39bc0692d92 100644 GIT binary patch delta 15985 zcmbuGYgAO%701`PckaC~2#mu+e39a#N^9a^86ItvAjSZi6h$J4s017ZMTC^lVia9Q zOw_WBv-G5B!Xj2sTAx$1lWL_#TSLHNLZTQN#7b3)R?!k8CDJo@Vzcsb{_}y4|Nn3A zefBwLb7rQlH>|EV>_`TSD2|O>9$k`GI@ywAi=Gk@X^pYPSYnpO=2$Gzwp>e;E!t*_ zh>VG}S;b$jH7DD?g$)3zn&5PYzicsJQeMB*%in%UE5hXVYX1O7m)A0oF66@;J-$Ci zs^!eP+W(9M2Oi>(0}5pK<&K)*Za`+Q30`YAl_-v>BV)0AUGnhJ^RS#>a-am45W2elPbcElQTb|hNNYVJ&RM3#*WV`b5v!QB2Dd-p3I$uQth_20M!wncMc^w zRzREAndh-p2Y_JhPN`a)i%Nq^2GLv_O7l=^YuQYcdiGT~*Vghhl-jzX2+j4*YjD7i zHva~tPTx8Q&2`$ZUqq>K+o8e8*~1At(oyQnoe$Am|HWsc)T>oLL8%RUR-@D}s^d}W zUu))~)HA>R3Z>@Oy@FCV)%&B;xPz6b^p{8S&|J42dmW`V91lXJzS(jSm6}`Oo6h|C9+aBVb{SpQFTa3$*woRE zQg?OMp}F3?_Ft4*dHoPdz0utRPgwQAeN#OhK`9eMPoNn?q7@y?WnqwLm2WpBW6rmW@7Wu zGTY3|fO3O^nHeqBry*=Nstp;%!cc8jC>unzm19^GTIa%XtP|z-Phd;1*PJp^o@7-h zH`&4}(R?>fVRn>z+RC<}+OK0+HQLY9r?NzpYkh`&jB4u>SS?Uz+VCtpk1`)7vUGsy zy!>b&nIR8Qx^~Bn%wGKrw&g9P{P2G-)Q)pJoeyu5m4Zu-ODJ z|2OBEk-y!{+QB497`ze)h@Fkg|6CweF!&lvfg7l&n+*p}OIPm;u`lhq#j25=r?=oA z``Aq&`Nvu#KhBw%Pur}d(OVDLy&_rZu4)3|Uc0}<X;xMO7N~f2yrQJxQ>f(x}QWbF2kq~c0_NCA* zr-E|n5^}%k5ue{G9YoXRLhMIFw@beYa({F3-UE`26K5vAHd{)gidyNXKp-S+tm6T^ zvt8(SEz+Avr|7*V#NPDr=TZ#nK%3j81|VnG9&frLP4hz&ul%=^1Yc=F97wAlNI4b| z&(kN$mq9JP7cS2o3W$qV$qUH-GkG|2tm)$Dsq)cLAerCJlzsTR1#%Z?K*Hdd2@~g1 zWPv;c$eTpotB~ncuUCGBJRX2@T|DA-IW-hWSKpe;_shO~uofz|elQ4wM&wY_=|^G> z-qdhPz6Xz;xJG=zRt=FZj&xJk^d+ zD$$dGJ{YH1;pGwH0ICRA)&WzxYwUVsnsNfgQ)7biE;@G6-Py`0xF3XgD7~Aabi#d^ zF(CPndA@?*D7wSpbfs#N`&)D8Q8kUXY*Jb=DNWq0)FoqDp5LYn;o{lWL`9z}F9QX1 z22aA}GBCgCiTB)Ayj>Ceqg&YsG=Uz0aM=l*1jmo6+kuW3$P8*y)CcfRf6k=h{~m1( zRDICtiAIi9bAfesy`KoNADP2dKj5v7=2+GB$kWLuedpv*ov%a8KUs7=U{iSWzmpN(oXa>ME3<|cI|GU@B$n}1Ui zU~>Bf75V0}bG^&yTC3UsljmMk7s5F&x~wL{OgLDcXO4iCp}A(8`bGYGM4&Gg>&Yr#0|*sxB82E<1qyzZXUT zZ%)yMyFM;1dqI02Sd8!ck?@;gbicABD(ekQeNH-wqOP6bKJ#(pN%Z$^TGVvhAcLod sc)T!M$u)& zL=DS0OHYb6EMf&E@i{d+sa9&VH3TdsB#NOytW>3F6)iDRB0Y1bHY-2Qcm9Cy_p|pt z`<%1q%uH=hNNrEZk#rUwoj-X+{;E|a6T@RHmZ<2Mm?e{Qb7Cx3Yj{*tPL|c09XUCC zlEoU49TgUlyCf$&#yc1bJ3L+st& zKSiqL$h*q-j06WBWS9L4WY^{P>cB2QW~&ZdYcrK7_9??-uza2J(2;YooSpKpCtI<_ z%D3+wy9Jeg`jb8n*DEbbmT6CpXve6Tw&aN6_DeB;M96V@OKf2YihV+S5khy$ZviPg zl^!-q{Jk4$b!G~rF0l{Hyk~}_rS?6GQjo@u%PX~4X01k=+95q@oq$qpxoZKcJudGY zO0+M7Hm@VkV=E2-!P*>Bwb+VE14;(aTz&u( zfFEuC4N9H1bvByo)VE$nsj=Ik!N}3W@jKE`>WrNa(Omz@XQ9-qm6K6w{hpO5_3NrQ zl=_$IIVkna@4iK;*4kAlbyJ-$Dvdo@fl7aMBoEDX+p#xLYW?v5R9f~COg(l2rWT)q zcTV2v`)Gx=v&m?gq;v4uq&6Hzsf(M+QR&;w7g4FX1-|LbU+qDu>8+R1b^YdRxQ9*c zZ76kDM=hG`&1?TbsTJ1`q0}2)-2jz`EM{x$>u!~z*u8gV0a$%Bt?W68Qduv2)!qK~ z1C%HdOmvG^;}UdD;|~fO0L*vCmL#T|BD+>P#D+XXjDo!vvNF zFddg4^(Qgp0ZP}7d5P^sxy8wBKAP|96lOuW^HNzV%AJ?SUO=^p8Eh}A z)r&GuXS0>S-s3&%Sw25l$o%NaQWoWoLl8AAV~MB(i5Px?iX90A(cxFw6Ye=|Sj{$p z4uw>+h7D6(e+DP90&9S;8yqW_{oxk22)Lbi^(bjBU$mVC@P`%bs_Q}P1|$s5s;GEB zXB?@u9=Z_wQp;{u=mp~W69d2XsSgX&JR`9Rk=7eLr- zf|vjM^UTP9+r-+yBuE&n@(09@#^rx15GxpXjU~ek)ZN8~0;i?3_l4M-cHLrC$j;MS z@DIK0CXoDNt&tz+%*>~5R#NGm2khP;)N8#_@}MD#)QL6%35Vz57ECfpXV7g-JN%_~ zZ`TtiQN;UT#EWQ5sFaR~^|oy<7JU;uQL?~o+iH<+0K<@T!%vTvUI)Hvb@u#~7bRa> zFjIO2pMn>jkGaCdKqz;T`Hx~k}PRA(x|$)JV&Yojye+JjmW+f zx>u;6OuB^JZ+gV%w@L@mbh!}w(BSRTuLE4)oV@3Nl*@@T6JMJprBZo~^fMq35;m5x z0N&9q^nSDSHqt42uL-dyefE_UjXKcgHmM%S*}2CXuSipU(8MeLB_+aFnh^Wb$_G+* z7>MU- ztrSrp4+8Qgk@pH@de!TdUoMXYpj;OZdqYkM2GZ5H<}3SUZ$3~16;tZ)zyWwD@ib6vJa?d|r5F-~3fzx89yz(A8cG2Bg$_Th0gm^H$m#lQa zeVN`bd69XZg5M~*!{Icga)RqybLUYtl{arvS}-Y%->lRoVOpNwstn@d+15lwUns8v z1#|>Y!sRkBzv+p0-&Q=G5&XSN*$6a&9)WP#37iDSkE+{&ju*&uYE;w*@J@fhq~afs zw)(4H==4OxN2^v~ot^I|LhM84P}K)`tE1T#bv^QQ@_DbifEGThMhCjy5H*2CmE7u5xD&I>QANiaFBP2B;LE8Eo;m^|{Tiu_E&S?#5r zD)Qa7Q#|Xsx*pE?wJx<7xG|jMcWphiQXO$r+eU`x(~SO z_-t8QPTh}GWH2QmE&;9zN0~Br^{C3O^QuA%P1>hm+CP|_^4Bh+k~O8)4d2;OcN_DRYwcZ(t%9e;>5)BUUYh-+4|8CHAZa{!i8ELc(PSkpGXu z@Z(L%+EC}$#icK49|4Q;V?Ppp(~YiImPBPefvL|yCsEY3<6LJxjy#e6woQwih8v{w ulpv3tlzTx-03HB;2qW{l78UMB7$m~@*sTaoJmZlY2}O`b;;-A^oBs>JGmV`9 diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index a332746027ca178c1485b4b9499d490762649ea9..ef3185df58e2a6fa4d230074f8c94980f7c7d497 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxOo~Q9~s&v?^jCMY{`6snRFXLS|^`s*TW> z!kcCJ>&f$S8CZLm;A|!eY+o%BMqa2vY~L+mK#BIHGB3#py3PBQZjcvbm75(^(+$ZA yuGGzT;rasPX`O5rF1%SR!-kDa?FY(bH?!uea*(He^MUeGKC-l?Y(CZ2zz6{Cm@AzC delta 976 zcmX>#f$7u)rVXi#h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(Ea^G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7Ybr9G diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index dc6c181b85bc14ebe58fdd17ad42ee0bfa6c321b..fe97f15c73fe765ff3b42e17921f34b218e2e488 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%QsfVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrIR$VGIev1skM{4fSD|qz^Es(LGPQzjekm(LW{`okcPV}&BiJ@?RA0bJmVb>W+Zl*&K4Una zJne?lFN8A+ZoX&DC`p#}Q2jxnDci``&pNq5LU_9Y52FWp=^X3`up!fdhOln`F2Z;~ pntbO7PJeI1sJz|RkWrtT0#mjFO;Ix>%K(GPo!tD}Tk{xO838D-TH^o! delta 1139 zcmeBrz}oeIb%Qsfp+%N)URGIIslK75sj0bzrDc+FTB@aKN{XSmd1_)xO0t=;p^<5d zNwT?tNm^2BvgPC&#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3WzS;6 diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 208c4d1a721c1a76b24f0a263a8f9d3ae66928c3..2c6bb535a5f864e45cbb3852c461ac49b3029f2b 100644 GIT binary patch delta 117 zcmdm@yhV9~KciuhrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; WDG;ZaCMRxgVC-flLz@k21rGoddLml@ delta 117 zcmdm@yhV9~Kck^VmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Yxq(SqQfjj0<_5-YW-_$duvYK@07%RuI{*Lx diff --git a/master/.doctrees/cleanlab/internal/label_quality_utils.doctree b/master/.doctrees/cleanlab/internal/label_quality_utils.doctree index 753dfd13af2bbeaaeeb40a83920533bab14bde98..15cc9dde1a6df50a52da723286994a69df3d0548 100644 GIT binary patch delta 480 zcmcaKo$=Ci#to^AhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxOo~Q6B*hjGfKp4R%KpBrq;%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?OyV*2!`W9Gky5e-kH5d(7lJlERz2V&0JxTo1Xy z+9%65uy2-6iV!8s1<{lF8bl}e#RzQHsE8sj_@X!SHDt(>Y5N3Ksm(GAxH%}$es)E+ z8d=(7CiCBA+kE=`b{_JyZ|1+7WkH_S?QCL<_2hXvX1kC)qoEF2_67mVcmC~Hy&3x% E0XD%14FCWD delta 1690 zcmaDdi}lGY)(z2&h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(ECQ7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6=loU+> diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index ed97a7b732405e2acfe70f063564bfb20d983678..6b3dd3273a29476e4f53ab64de97f07b82c04c13 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxOoO6D;e4*e`HDAtj|1=JgxUgcjx4Vx>Gh!VH4sYOY4ly`TQ2-xOJiK zjLijt>zT;1b>`-mB9q9ob>?PQ@x$cWdP(Xtxmx?>j*+WXUg-w8em$tNgB|u zs*cP!kDn}{CbgNdwVS+%gJ?JF)*#pM>-)twvrbasA~Wbf+AqvGL9XMwj6^rvE^eVj Ud)i7ya#Gz#mfX#(TW2x?0Ep93qyPW_ delta 1932 zcmbRDmTBHwrVZ(gh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EaEFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$NYkxp3?3|$v!};l$%LWW({nljuF0K&_ z9>Pb=r4)1L{nlaJ*~Y6Up8%a@a2sz=o)--TZ(&M_g||*Sh;?1%H)d?d>Q?!iS!Gzw zD*rTl1?oCHryF!Vw>A?b`9x(Cil!_)g_i2dj*Eh(Lgi_BrPxGNaZ5q96>_a&mI4D$ zDN4cW4dE#ED>f|9|12qtH}c7F)~($6i8&Bt+K5(Qlfvq>Lpm*3NuD>MJsEm*c zH4B`v&?=k6;X(3rE;eI6&0?h!yW(jZuvbUhpbMOerv{OgNQ+X#k0Io^_JIvJD)Q~L zcqU-lyM|W8hRpt$S$_P;H2fZ>8x|!uQofZ)8grWr#tI<^ks8 S0*`{U5PJ!g3Hf(8pZ*4#(iH{( delta 5860 zcmb`L>r0bS9LG6FXUploU7MR(2=G zi5^BIMf9QzSRL>f6=}WcLPbPGl!#J6l+}ysMU-`(8A`p|cl`mM@Av!ro!_}|UPMeU zBBsk;vS7aA+@u79&G`@y~4sol`pRu zLeZhX4P+#}p(FC3GV^^(1~Qi3P?)c4=tVlLqdzzALh9AgqF@AdjcnBbSMCih0x+hB z4eW$2Asy{h@1k`s+`A189NO#Na4lpQ$Unu2PX6M ziw+a!%yx8{*kI>ZjOIJKrjEl<*6_&47u{>XmRE`56%XF0$L`J>2ks!QjRR#|yiObw zyCZ8HDB+F|+cDP?p7Ze(awzJq1z(^J>*%C!i-BDbt@Zi$O=zvxfBXVmwVnhL)Lv^e zPqa~z444b4aL5jGlwdaiyuL{UpV;ua7B621T&YwRHuCW; zWe%+sb50WraCJsut^F=BioQ$aIB;N$D5Qz(4)Vqpdq+nUfFajeMZ47}SEBd1oDBJP z7B}yatH5OZEoBokACp92*8i1x_k^7P4>HT15#--xG>wq`$pNMo4EFp)S)s$ zE>tc!W6@PMiG%&*=}c_K6wP9#V>?r68?aZ0+n@`aNTmjmKc1Fm#U4Y*aeV?d;IJri z(6VWOX-_$=NsgVLz)6Jz()L$75E=jDlhjk*Ez TQGtgMT7tcVs)YO$@Hs}X+u1tVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7Tr^{_sY_&N1N&20&V-CenOw+| zzWKg#069Sf(t2D~REUg-DdY*C++`-QxyFKtjRNg*_Dea))V@ZPYjdba4m$ hlc#-iUczPaA}f4yUIPE-8)$@Hs}X+u1tp+%N)URGIIslK75sj0bzrDc+FTB@aKN{XSmd1_)xO0t=;p^<5d zNwT?tNm^2BvgPCnj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGoIlyD>f diff --git a/master/.doctrees/cleanlab/internal/neighbor/index.doctree b/master/.doctrees/cleanlab/internal/neighbor/index.doctree index aa4ab64794d592dc887784d9ec0cd1c213427f16..f6ad1276ce9e0f04933fb6680817f874543c7f5f 100644 GIT binary patch delta 122 zcmX?Va@1slKciuhrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; eDG;ZaCMRxgU_8xZM6x#h$qE9}n`iK?_(A7@EoAy4b% z<1E6Pk8`?`r#*VIf(7T~1a;xfTln^|k>vuI5fYo_#deSvatI?@BrY>i=n58@%M`mp z?kJ_M_@+3UQdiii^itr8%?aw4D0RVo&E?D##)h%p8%kYq#^4zR;Q&nB5}V^qB3a4y z2=``xt1eEmwC8Rvckv{{|C>L$O6rns<8((}#@NZ{isUwLD>fs;T7>=?rAB(>*&j1m zPEl&|)?)R|GnV*~=?1VFn|qhVJCo;z^vN4uuy5{ur9?)ggTer!-{->-8Pe_F4%GjX wopgO5dlzr#6Ju15BTsY9_D3a*p=5@5&Gsi{j4U>!+YGJu__sH0W}L|g0EwwissI20 delta 1928 zcmbRJif#5Qwhe)dwia2&d0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(H&l`N_rl#rdU0$*Ge+x~gs7!dS~_NU||Ntx=QrFgK8=bMtYQBo^|t zPCm{ey!kk%D|yWXiQvnh3jok}kSuGpNQeu+{S+}B*rOkr#o>%F1W6=w{dQ4kKm#4WKo-XxNh zY>#kn_P6TdBujhl=5iNLGW@^!qpPGY={8Px!8Ao_hi9FZa2{_Q~h xKiNsw2eNnZc0Msi^*Hi0*KB`O!Wc?sh}Ud?QpU()L%Pk-dXIm5(`Lq*i~zR=Tgm_c diff --git a/master/.doctrees/cleanlab/internal/neighbor/metric.doctree b/master/.doctrees/cleanlab/internal/neighbor/metric.doctree index 74b7bde375d5461e9110c698e7db34ccc3c4b5b4..df0fd8122e719186b966db1572d2c5d0af65c7fb 100644 GIT binary patch delta 1023 zcmZo!!_=~dX@fVTVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrbD+!=@`9>%^JIAzR&f59|szuXC|hCf&x#5A0$l+vf^z?#$36CvJh-H{0iK PQzOG>P%f&P(!~e>i@rHu delta 1023 zcmZo!!_=~dX@fVTp+%N)URGIIslK75sj0bzrDc+FTB@aKN{XSmd1_)xO0t=;p^<5d zNwT?tNm^2BvgPI)#${w^n|wheWOCIM{>j^z3rV*WqC*KEsC~12 Q?lv_tYzF0`swrKJ0D$m7&j0`b diff --git a/master/.doctrees/cleanlab/internal/neighbor/search.doctree b/master/.doctrees/cleanlab/internal/neighbor/search.doctree index d873350d659eaddfc8cbcda31c6ded605d960007..cc407c552112aba487916db95ca6e60eabb23b69 100644 GIT binary patch delta 527 zcmX@{m+{13#tq(#hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sxVeUL0~y*T$1-0b-LlEHoTZzuvzW4wu6465r!*_++JH7DZGO#H!A_>u iZ(@GpWNA&_d_!+G6Pa4sjqE+h&>G8}y!lquJ7xga>YcOz delta 527 zcmX@{m+{13#tq(#h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EaI7&nliZE`I071Ax6Y|B}?`8ta!3+Y-n+j2^?lCBMCW76i=d=>0u kYW*hWCr*~u)%*mT?RlQ>d0ROL{qyPW_ diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 07830b0b0f390024701fee8b7060062f4fe551a3..6b445bf17aa3c0bba975f15f2a68f20f7c8bf667 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJu7T9vQmgMO`*uWST>cg+Q&7?-cP*{>V~Dmc>bvcXJDG=3rA`B~Sb2 z-Q1_ib2rFliOq(56PU=e8K_-+bGG1NX4189ju+iWo}*JYZx&yoMY@fX<3(L3=krT! Ye(Ds?NrCoLK66#c((bbPPEi>n07;$QR{#J2 delta 731 zcmccgg7MM|#tpuVh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EDr81IpxD_+!P^F^jPg=ATrGwndgE8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`ssGpLbT&!Q5Us{x$Iyq2EZ}L6HyM`p20@RtcIgEJ$BY9eQJIJ;5qJ%#gwr&oT zdQXOpn+s(>kzpG!CG~GsRwyOIMzGch%k8^1nYR0h@ou&%HX+w`kaqFXIC(N{pD)e6Sz@XZ zxweC}-<_r_OQ!7w+xRwb*`h$E?VAg>Jux89=FK0To0Dnlwia2&d0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(H&l`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dc=J5aIv; diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 09ebdacd43ebaba290c8f660e811f9e8cefa0c53..1ea6e3a1837293a09d1da5253d9622124edb255c 100644 GIT binary patch delta 7878 zcmbuE?N6Ik7{+r>*A{7|E${DJaMpyND^Lb3lh$R5q#0W!BNGRREgeND!lp8m%!!gM zS;*iKPxgW{+gQk6*xX^chrwu^EOQA2b!dW90Tbf~5fbMti4dQbxj*3ILqA^E?|wP= zeNLW^FB!*|j8}?Tc1xkXF8_7^n;UE%Uw%%uJ+Hu5U@NFC^w@0qKCf+~FW=|Owinoa zdFs!b=c!Rz*(9Kvu@=b@uH%?g1UG6-ic{MR$^Fu$E4Dz=MrljjhE!?B+9*?!w_*7P zq(1E@j2e&~Yqz3QUq(4feQEtpfGTIK!+=bgu?A#e<_IeN;K?3TI%;b}r9bDML#2=9 z*P_xVHg%vqE!ivpsiQksy0>p52 z&+ceJsn^P&yCO8FCw3yIC>-!NyS4+lN_WLHn&(7iH9!mpJ6>IbQpaEEMybo*-6(Z& zPbW%Eug?Lf@?gUqlz1=T1c>3reAnzosW_e$%Tm2~Y;#-3#b+Nq*rCJYu z3Q(n`V+bXBJNE!Y^*Gc^-=PvM^cD=r(yr%GYWC5)Ye4G7-d>Cvkkg_Qt+4jQB1-M+ zt3;{CKE94p7f#os)W!buD0RyKOm$rtK&d^K3ejBaul$8d|CP{qOJj+pitVi| zl@i+65H=wX40au0S=c8bhe-R7#gM+6ox>t05!m&j1`;d!X?&>)qh2QQnCSb zI_LjpIx+tPixyGy%uIK0vpyr1iU?VeYNd}`g@N*m+eoc*%!JNHD2kAY*d0`lcKSRs zV2j@o$|qH{%`vO^@jm+p&ncCvf~if06DY;Z&wvKX+N6is~|u0in9p+6px{{Tf7nMf7pfU z?(lXX3{f-7%c)_Ce+ATlRPh7=RlnM-ykNzj3p_@sbPIj`JO2a-;h`0&Rt;b*O5dP* zIhOEvn!C?0qgRV+LP^Vf9r_5(v}lsW4U-0ZXOOD@2#j4UrD>8@MzJPQlLeNMRF@-( O&=M;m_5a}S_5T4X7mXhP delta 7878 zcmbuE|4-C)9LM*5pLa*x#oh7!yN>MI7$wJnaL%~PnZ$0Q#AHSS0SC$jN2sxrVrCT6 z%`xE`q$$79RQt*!ESYS!CrSvj8U zn%vCny6V~*hvH`wfNI*BFNe8~V^R@VuQ4euZ8IdVmu_8w1(G((%=oQHm!_?aGAVH@ zR7H1eB3!Uk$m)xlI+~$2~or7Dpqtx?-Z2(mkyJt}1w?%e< z80zkY?R!z`%@XKa5uDSLJCIux3jEE^Z9uKExNHiobG*C~Acn$@RaT+YvFa|Ay5!k~ zQWti2pwv`v7C@DU8t$XShdviT3?0mO&BZA7_P%u}wX0=6O1Fse^Zi4L^G+LH?? zwYRq%r5-~OuE!|w!>cR{+ZRspzlqp0$)jnagqclH9GCdKip9{IH7o`DhCViksAunDH`FDz z`B^f>wX#8MLLM9JJjgPzpM;zu$?bnMYJJ-@uHqS$gcw%y6 z13w;tT`MJM@>vl#&}bn)0Pd}z38^MY;cy58mAuA};(P;@Rq$?9KYk#Rd^J1_91SI? z4|w>IM6mvhgURBBJ|079@9`qSm{-5j_8p z3+=hj+khCNYKE6m!zBL-=mDwXaR93RYP0-;6@Sk2D526V^!4xj6ClD9D^jf*z${Ad zfckMP3u@0Pu{lmll9lX~=D3;7ppcIe?e=EmW|I$o zKAW$(p5Y+R_RSys&XVtM)6EW{JDAC{8JN~hCp&}+Z|;knMTrYm$D8m_;DXih!kbHT z^2v9B-sXfNc^0x=pf@?8NMtjA`E~M>kKSa3Zn@13Z7LMFVzWZGiYVEh(A~U$!8}F) D5Hc7m delta 1783 zcmcb6gz4@PrVYW2wia2&d0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(H&l`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_V8Eybe;3A#? delta 117 zcmaE(_C{@kH>06NmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Yxq(SqQfjj0<{HMuY-DH);E>@40D&?iegFUf diff --git a/master/.doctrees/cleanlab/models/keras.doctree b/master/.doctrees/cleanlab/models/keras.doctree index fd959b91c92c3a45f75a16ca8546997d14186b84..0998f3deb0662c74bddbfad77e4534999264ca3b 100644 GIT binary patch delta 4131 zcmbuCT}YEr7{__ak9}q47mG?KH5#V*PB-^1CU~K>7jz32(M2ISebY?B+A3_2VqS<9 z!U>Lr=m?~%Y;eGHC1oW97FZE^Awo9`?V>>!7AbU`t9zew@m~J_=l4A4JkOtZb2evl zHYcHh^P1Py>4|pTtX9Ihr^e}WtGcSF9p12_c=UFqPWR}#)1|s}xA@xK;ft&fZe{OW zM&|rJ)|$Ikfs@kUW7tdPYa%FlfW#UK*+T83EVSIp{;2)CCFBM5-*@5UEY?tD*twL= z`F|RBE)y3OVrr-uS8IrUI6HF?cPcSQ+EB^>NsO6^(pSh#(Q)h*3k#<7bs#1}bnG92 zm3d+j&&A;AJ|C`eS;e@mKZycgOie#cpmXnJ6Zf(NS;q7a4u{mUWo)?!%tJV$O^Du z&w7e*z(kqLr`4TsgI#{zfY{&ZwIV#2_uUy262Z2-hsI)Xo<+Y@A{QgGEf3;iBtRxs zjpSJJD-vF)*~4$sxhT0tPnUv;q&BkI!jDB<`~Q0w*wNojxY^tGV5yD919Ej3=u0cK zB0Ulga1c{;AOE-?rf?5Iqr#+$mzIGYw+k}{Yc?3fZNiK}(GfrUA$OK6J^Qpf=k%cO+A zuZMM9j))eNLosQh4tl#0-XbB=9;@+7+Bel$8)zU`6DG2;D5Siw0d-q|kA$?tRZ6@I2@9zURE}!`YfsZ_TOG zesFlYoY%XO$%M_JxLj_JqJ*5WsN#x59By~?awHONa60N-k@~RPULOlZ!wTzzTdLj5 z$b5^Jbrh~w9JF4oRq9i6_FNdB}<=;}Jy;xjHoTr5QSq z9_cEmBD%x@{_!A8;~s*a3X@u1UIA9zF3cOOTVN2k3G)V~V}MMiyuqp!E+7fG=s^rw zJ|C@yPsnq3dapYP$TakGiyfXw9e&jb$Pmo8J??^DDS~?*a7YYc8Ex}I7CAs-nUwMO zjj(~s5z&H5C?(Cbir#L5w@8Sb$J*2tuAGKtEQqK?Pi;Za@QGG1;1V^r)bw1qT*HN< zpB6iyg!cD>o@~6j$)`J^9lN8qow#u7#)V`aWpV&iTtp?sZpR#ka2djdW$uL-=#l%N cCAAqVT^@lK_-A6^!f3&OGVpTo*Pbc(3wm`V$N&HU diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index cec55296f8b3e7beb6eb922a2fdafc29ec84b91a..4e11c82bb6b15799d977cd0712adc0918d26c7f3 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`nVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7Tri^9GZX*hIZ7p@Yv1gs{DYlzZIcbHDmOpY zzE4gFfwbo6ePANfRyLzYwwAgrBG=Y~o{z~%gpSIIprp^b**a*R7#YC~)z7}UDD%fo^7K!3FyNZr{gzQ= zyOav!4MFk^+1_Wy=#)gd{_Tu28M(Pg*Eb!gFJb%K#f%Z2n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y(e64ix|Z diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 8710d5d97a2684896cf33585467513f29cc83881..11c95fe2524ada182bcd49f1bc88f3deeb5afb01 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7Tr6;B{a_-?*6EvXi|!)N*6EvLC0>(jtANZ0GHl&!C>KXwluq9quB5_BRuI*1*4B8y zL7vvdyA7Sl(wRPa!gr<3r6oWbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgY}@asU7T diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 61c6cd047f1b3419738b7df3c3945edcaf37efe8..7a425eca62564ab1fb03a52ef823e6913904dfd3 100644 GIT binary patch delta 751 zcmeBL#@e-vb%QsfVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7TrH4<=lg=$h02!*?P5=M^ delta 751 zcmeBL#@e-vb%Qsfp+%N)URGIIslK75sj0bzrDc+FTB@aKN{XSmd1_)xO0t=;p^<5d zNwT?tNm^2BvgPI)Mm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFoZrkLIOv#h&*=xztnJ`&^M{@Fe0pZP+99gUs86mNG zDc=GzybW|e*cF@K3ow!AeV8Z2H*XS=Wg*WKn-e7ek?Z&bNtw;uGQHvC*$j?>cuua( eJ|(&2x&Rc3AR}_iD(%T~1tMWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~v;-~34 diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index cd67e24f3713063705d8753c5f9cd72ab1c7acfd..61fa2c2094f31c25b8f381f0473b8ed0a08a6efb 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJt&#BN@6Jc!DNxU|K|;&dpbujhM*O3ba&c@*K82vUHbk-ozfuLb}$? a4m>@qq-&e(z>~5$Q7DF&Oszo*b|nCw&5Oyg_K&uCa=X_8@Hnpv)Ikep_2WN2b)k!E3Fk!qQ2U|^n>VqlhLo|a~4VqubI V3dAX<$%&gMF!qw8&5wB>Hvsl5B6a`( delta 117 zcmeB?>yg_K&uD0oWt^8)R#vKSXlZI{ZeeMeWSo|2X_}H^Xl|aGn39rgW^8C=nqrb{ XZeWs@l$vb0c>-fEIokY~_i+OND~%&o diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index 5ec6649068bb088fe20b1d0e5df7f301af1b1c79..234674ff67bc8930917b030573b2f01257ff72c2 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJtuHEg8BN3i@q+!eqxpp4RD8-I@3&Z(uDXOMBJkGi)E($a-ea}W(7wBPtvt+ZtR*!PHt)JO5410Qllv8 zHUg8q|KtEUj>!pLl-A12r zCYg?yUZB7vz8x4C)dJ)>0AfJhN=BbN@(kGSCBdY{O`hKAK)rI?g;bbWl*ux{Z#%HW HpT`IQlMeua delta 1704 zcmdlyiF5NL&JFI2h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EBV7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0B1oA!2kdN diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index dfbfebe291fda9844153980388f71a40cf643274..379c9b9a05e597ae27a931a80e098bc6607ea4c1 100644 GIT binary patch delta 2429 zcmbW&%_~Gv7zXgpWqb@GW+AT0R}>R>n2$Rqgkh3c;3_MP8MhHDrP=tZnS~P4RaaS9 zjLb@@7pG(=B|BRS(}<<=v9MB(`~~wY?(+9M?|DzByLn*UJg}aPGUt-d74YOjEC|*6HcyzC>J6)Aw=VJRlbX?H{*}fkL?yaYJy^w?^tVsdFlt0o4Rn4n(T;K2etjvzsImQ8L$=SIR*aitGLw10&StQy z(*6Sm8`*RvIKfen)tf;(E8|n$><0TSXk4V^R)G`rE-=~HN|kYKmPHD%5H3POw(Ko` zSZAq2J}<=O19c%GW!=xQ?4OtP3m-D3Cs-|Pe2{a+FnNxTo6gv$Zx3tYP? MY%RYSl_q+A0rV;GT>t<8 delta 2429 zcmbW&&nts*90%~e&x{!&c33=?Ur{W~%=TC#j3vzhk8;wsXVS=xUHmFLD2?=}XXW59 z*-5Dnz9ly)xw$%66G!F8!AW`KFWCDJc)j1B@8{dM?{><(oid*VnZpxvF2z<>mOC7h z%jNb+QrI~cm0XJAaJ!=+MTzt{9bGP^JL2x_o(o4KlDf_aP&x0Enk}qU?}U9!)01IU zz^Gol3CRsAH+>gFbc?Pk_mK7Gyj%2Rxy6o}pt$uNYfX??a{{)e<2F!|z5WuVTGKOn z)b^HpwDq)g4QMm6V6(AdzJ z5o%o|=V;sv(!kW=1Vm+;&!o#Rs?KK`>HK1{1LKr@eJR1HntZJ#%ja$z#w-TENCC__UARVBdnw^^}5YaDx5?CaOD`3NDA4V!}eW9ul(T zZ~4Op%T(p>G~Gpb=>b~~=a2R0DXaG0W-ZGEqc-BxcR%>eKEU1oC2>884`7pU(Jy>~ OYu9vJ$1j4yWZy6AyaDV0 diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index fc9af29c8c4b14de5535d91f5555b0fac006d02a..00c445f97157123f19ee82b8bfc107750d333af8 100644 GIT binary patch delta 1486 zcmZo@W@~6>+u+M+SY&CEVP2Y9u5XZ>W^QC?Vrr3QVPKJJnQUNSo|a-@mS&!oW@utz zl4c6TDW=JZlj|4{lcDQ_n$hMZOsiPP(>i@cEhGQr1MG!lX?NYcoP(7-n_VX_=MdU# z!pqA_md!4c9i&({?-mkZCr|rk2dM~h;^>1K$YzesqB5(vNVj?O2elLA+3L1gUvqaq z={8P=I(TyW&R{ZiFE}Z?*=JW9dC}}LdBI7g&6)delILxR_L~QjnaFm$(&o!YQYo?h z{IM7^ZQs1$qzD_C4xg}>YqRl%17svJaFm0z7u{|*B+vF~VvMZYi+LGM$+RA+u+M+Xpv={msM6)s&8m%YHDs_X_;i4mTGC5l459Xo|>4Fl5A#dXk?mV zl5B2Zl9rU3Y&p4(@h};>KByUOUc$7Bg*>g(SJX1{Pd>n2NS1cj&C5Ah$+OvY@^TKL z%_h9OtYq2jGTA|jb@Of^0e14VZ+4K1ASaGKsDW(e*eoiuii>ocH-At&L7uH{oAot! z_mghpWT=BDr|%3VQ}=?CvYUN&wUHOiE|V9WRN9=m|0a3fhG@TeFqw&L$182Vd?b|; z+s_}1A=CEF3r>o#k?HUWd$~3nUpPQUA_GS`NPE%kc0=-PpC-o0y1kf}(UeT8_WRg4%buw diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 8cafe28e77ed94e76e785fb9f7c5f5c9eb287fb7..38743b398b1340776167ecc3d6773643ae6bf4e8 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJtsx7wNjD2kv6j-#m$Fy9jxDttW34FCjx~Av2@yWCK<0&6_0Nvyrdg zV6(nL78!vx9csV9W_6|2Ok~=>*+BIKMRvET2a;o0W@WmECtS({MS)?`i4qI7D%w%n$D;|LGEIK8OOf8Z!Y5`8PXlL9auHrV*~&{ C7F~=0 delta 2066 zcmZ4ggKhl}whiu#h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EBV7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DNPKII diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index e8cebdd7ae0b502c2eae51ddc648471b27e6ec32..54b35b8d4e2433a3016670f7607bb97d7aa58d34 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr#6SrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; aDG;ZaCMRxgVQeQu+vEw1qMHMmJ-Gpdks~<( delta 121 zcmbOwJ4<#$Fr%SGmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* cxq(SqQfjj0<`%|wGPF&ez$m&oklB+P0KH=*82|tP diff --git a/master/.doctrees/cleanlab/regression/learn.doctree b/master/.doctrees/cleanlab/regression/learn.doctree index 2fcae44ba0fab7c0d2914459e0ae632345a1ea32..d0bb50983541da333f9aed0a09f3f53f42e70a37 100644 GIT binary patch delta 4106 zcmbuCTS!z<6oxtbj80AJI8zaae5fo8tUME=Gg3aKffiV!qg_Zxw4)}DH9B4BK@oc} z1Fa+NVqz-j0$Fs~>4LzbP$VIVdFf^_y%k~fUO{^Xy1bs>hx7RT|5|&kz1G z*$)~OPo&h_=8LwUDAJn^-&T*e*l+lC|KZYRUH2I+dWqpP43F3EHHzieQrz4mMwD*= zX1e0#yt+Ykn#D-}a4M79gw=UW1yVbM7_#z2(Lb)o3= za1&Oku$Vq?psur{graLMO`vEr)&Zcx75@ofvXR2#?sW%>25)=-P|W3LtR5t zqo}JnlR#ZyJ5jY*!?5vE5uJ=HE=Xp=D7gw6Cq5)=_%6Pe~vPS#piE zJfuW&tebMBj@9zMP9>9ayOiU=X8ljWby7*LvmS%Iyg^=_ujKN$ovol)ObIv_qjJc} z>~wZa={*Rk)R_8B8{gw(E=!aIr`>>ULm)q}nq?bM-6&^ft+V-S0N* zCzkq0j*{JA9YD=fa3i0LGL2SuGdD1B(+VUNIvhak&vVqBbhVF-11p@TU@l=Ny&qr= z*?|3@=fy_)c!Blni%=*e`xG0jvaUcfi+(WsAiZ>}EyyJPn>d$=JL%I}HH4lY$>&+# Q7VC-2aaB(8H6G9S4Vd=ZuK)l5 delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tei>5aVVeCKntw#)`fI*E|%h0qa#HRir9l0 zXdP)66H`GK$fCq|?#V4Q&&yLgP}lBf5!7|?MLFu~ zn;t`5_1OgKYMSdoUDv#-L|uQ(!(+QLk&Er-2C?vF(he<)2BCdz>okti!vjhJS;&%W zrjY;c~W`3i8-n zJP3`h{Y4^wE4HivYb%@~!*b zWV~XjH*%EBA=Uw$c?xdkQ&FbT+HPhC25wq`q(X-Ui2Zqvx|^={vk72@^AyY_Y^C>u ztSK9?|MR`rOdl_>0ml*)3duaphN_J#kj!EL%)Xvp+SLFuiT@_fW#U%)v|jb0^&|N` S%iCr=aXGFkNdCs-8NUIQ8uw&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7$%S`TJHkcgA#y@!zQxBO&Z0=$9XChNC)cRWTwd+pK oR~DMQgGYFC8T(ci3eDNPgXbO_WoC$P)(|jdq#FcIHO^arAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; dDG;ZaCMRz0V60^{B3YaMb delta 122 zcmX>jdq#FcIHRFOmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* fxq(SqQfjj0<_^YMMkA87=}(@(BDUF=xt<#U5iBI( diff --git a/master/.doctrees/cleanlab/segmentation/rank.doctree b/master/.doctrees/cleanlab/segmentation/rank.doctree index 290e3c7e1b3082d5f852f785e5e2cc65852baabe..2374b41196ef90e4e8ef3b180e47af1e5e3211b1 100644 GIT binary patch delta 707 zcmX>!f%(t`<_+$QhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJtuHAsM>lSv@yjW|C$iOY1Q*bnO=?+T6kRkA*C)Wt(+*yvYfi{Q_m1 z<@xf-@aE?I0_!-*a%}wOzfv>#$keK))gDZiR`<#Eo#LBq>P~Z!r+ssM=QSHLw92!F KZoYjioe=<8jn!f%(t`<_+$Qh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(EBV7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-A!lK*K diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 0aa185a8f469d62a207031e53939471b0c41902c..74ba0468af2f0d64a67efdca6fa5b9bed58a74f0 100644 GIT binary patch delta 1026 zcmbO`n`Q27mJPm)hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJu7T73sRBU*u-=-~58fk%>IL(UZ5b7LupcXR<#R|KtyX!kdq>DY8;# zhWO@Ao=s!~8p!)FcZhGk$Ja(?Fo4b2{6TO&g>I18Y%Eeii5r07DY4mK{3#2$;aM*w zxcQLGZhlJibL;-}B3Hkipy=jl6~Vle=&x?8^Cnk+zNoikN(;Gc`D{CQnT74$_bMa69ASk@~D4QZH zWoC$P?&R4-MxcSb4|9k3=6if?WCjD+jLjbe=TqngiOt3$6_mIE7@iWF{l%ZMkQ<)$ zQi7Wg$?WE*L_fFgPcL%y+X;$po>mdeONsvKwmNTe_2-KUY;L>c!A^<(=v%Iar0d@f IOp9k20W{`3{{R30 diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 34ee9d4828550249edd5507fe8379294b5040775..ff9665be852691167eaed2ff6df289c9044c21d6 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i zCTXTXoMM`sIJt)LKN-62vd3=bWM0fdmeyNj>57`1z^A%7oimR-OQSX?@an?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dcpam?;1N diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index d51052e58588d66cdc8800fb707d327254aee405..1f99741281c2c468b2c5380bd6228d5e4ed8cc0b 100644 GIT binary patch delta 122 zcmca7cTa9ZI-_BcrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; eDG;ZaCMRy5!ML8$h-7X0llQU6ZJy42oErcHG9^I( delta 122 zcmca7cTa9ZI-{XQmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* fxq(SqQfjj0<{6CZ8I4HRrayTfi`?ev%*VL_J>(`K diff --git a/master/.doctrees/cleanlab/token_classification/rank.doctree b/master/.doctrees/cleanlab/token_classification/rank.doctree index 2c130a789563d09724afa1deb3d72c36a877a9cc..0648e270fc9f8d20d281670459d924134ab2fd21 100644 GIT binary patch delta 699 zcmZp_#@v35d4oHnVUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( zNt!7Tr@{j2(d#%tEz{ E02DnnUH||9 delta 1014 zcmX@}mgUS_mJPm)h89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- zCduXoCTU5j$(Ebz7@5e?wvlNK6X~{1-pCX`-QSdvXYx5JwS%vfu4Z5LVWXV{<-9Z1I!4C&2NNSDR9MRUeVcpFCaw diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index a8fbcffd3735a045fbadf040257e8d398840f92e..c9ad566d0c6b1fa56bc48112cb701c02c17cbe9b 100644 GIT binary patch delta 380346 zcmb?^2Ut``+xB<1FR;rNmhBA|6;O&@6BTRhqOmtb#a^&?L1PycJ>rOpz4yx4MPs6| zV(&FdjAGZsSmHnBESmTG|LgkSIq|x1<~cLxo_n4$<+MHXJYBWxMY<|;P5i)0WqVW@ z(sNjBT$gSYO2?NiSFu~gxQZ#2y2Qm*=+-r^e76eSy2Y2RShia^^w+gqm*m-3yQ=&r z?Wo0_b*lQujp&)&tz7>dcK0Aj)6(&k|1xkxbJ`-YJy8^mu2 zck6Xs`lKZH>yz9$w*Qd9eR`%0iI!kJzRNk?hjXa>D-KPa4)u5ILf&Brp0W0W_P8UR-c<;2HSqsm`R;v+h`X^m@rz7 zq+;Oke6AROF3HQUNQ&d!Abw0aFTbOtmA?>U;TuO;(4lit4m(I1X^~4Zii7y^J&NN9*uDDuae4g5g>U^lMp_2k)9tH?g6j%H#W|D z&_d1M?X1)V7ip+l&pv~Zf-;kfqw`H5wd@c%9~=|Ll?3MsB4fDXz*{>G5$#|D11jom z;Qqzv%KV(JZvJ9~g_p(_2hs;=9==?Zk?%Ck0=E8DDC3)yisloGdATa!WlT&J-qqR7 z-%8T*FWTwB$Nh~h{MqQ@oE7Ldw6XGAx;i*7V%#^J@7%d0Z)+a_*5_ID;PbUYCF+_3 zG_60vg*p>CZ@XKqpPQjAqTQwckbZ;t9{MFATTw)uSW$F718%d0!;oCEUZ; z>{5fX0PfV_5a4+{T*l1>-p6S!zI0~~=v9D7&nfOht~B6qN)+F}n1er`63OSK7?8c< zQ2raP1V6wRPRz@{ZRgvuEjBiqc%NXVZ6)pe>~6*Q3rTLjl3pZ5W1f69)Il$GHrx^2 z+zibZ>vc;W0LDB_v+$|K?0nNwk%B5vZ#|%Tujd|=q27ml$%d4s1fHmDA3r;}7@yF? zF0i9ak&^kalJUGg=AYK(zPQAoPF}!AW!ohg7Ggia#VvC)Ohu~f+rMjy->tBxXf;Je z1C#sp=9h#=gRsYGPJTewFs>*du<-?N<3ho?xxJGb>P&PA z&JLO;J+mWwyxiY79GihJ)7kBh;r_)!Wqp&ory!RriXHI7gEX5YL(a!WS-<$%`3NIO zoYF~-yr38|dI@ZBY&jlu3HxdY=$bqjjdO$f*TWg+ zN52dv|2qtKeCSz0nzmE+KmRjL`JKr*?Swm`u_SG$OGok%xSkwp4Lq*aSzi1dm` z?+3*aX)}=)Y$`{jeMCw+Mx_lzdaNi<%8n7~Stym3r4cc*G8I=5sb)q+QZ6U_=Xg|O6@?TKZxY~qbrfl66r~B3Xu*FNn`3kq`gEs65pFh^N4gY zr7w}*(XzVzh;)lc>t3c3={AzmrYS4_&j2ExBZbX}4J1-Nk#;{EOQa)2+7*&cr1L~F zRG`u$BCW6a11UR1r2pvxh;)=l@|yFBbeBjqlNS)_GM3Vmizid@BPlHRJCzO-seAe& zQgsKBy57kl(o!P*GGiH$<`e1Qq~%0fPo&0csWgX3X}4FBvV%l=v3(VhPSLXO%dIBj zVj}u}rqXO8J#wxkWjw9w-9)4xiL|=IW+H7Rl3^s3P7-Nc14zp55$VsTdx`Wrkt|{R ziFAcXH_}!eAmRfejy_4H_e5&6?I0<8O{9XfLqy6Yl4K#3))2|M^9U)sNu;N5ej?IU zBI$CE5otS--d+BMNH>U7_G20qKM=8A(=(*-F_At$qS8eo{k-TbDceRRNTuCGYOyK!6Fz$GI6LL^JjWg`7dq&dx~^o&S5 zJ5gx~kxCXHFdYwG`-x=eUNZwrg+!XP_W2AfEhp0Q{;g(W={}KG)ZITb4U0b!@!r$U z*;racq@w{{h_s1FjbA?|(yv5nzxK!iTr-bIyKA&qgr(y|TE71Zkroii=H+v6*`GwZ z)w9ZCEd55LUSoe-d?F2r7l`;r77~%Pl1S|@)?R|8xkOqyOSTkC*NBvSdOeYz66x`c zVk>ajMj~ZNixX)fkpi0}uEb?~h*axjtxZ^ZPNXwo9X6kE@Wlqz<#zJ@2bJbt@`txX z@+SwC;jZ)bmpA9DZd3E078vCo2UPO!T!KsS{bRt zv&^iyCHTY%K7RS|Y0}JIoB0pZO7Pc5Sh+I%wvirwj*VpePk(q>&PEs@G?Aj^{pA4+__Im%)mi|=VtbLi)ysxb|Foe z`Mi;Og6A1ijh{EV6F+!Dbv}M{3jfFGD9nmG&1bBv$K%o#i*&d)xC?Ds8A8eCJB}>} zQteI^?@cQM@@7N@a&viZ`ZxUjv9-AJ{IanzK&SGl_@uOWwCD`tch0QIFCANhH>FqP zC#Baz)ndWY+tEh;&FGSRa@x0u`x8EWTzM|%3v&Mnb@+3`+w+shNAadM6SFFcE3o$2P(;dK*IP@C0B56%s5hf49R<}Xc7i!CB?cTRN#ifiDR4%g7ns39=; zi~qb5YefZ??$QPD11Hqvcg?JU6i^kZ6i;_prC)Upcj}KRHon=E-lXN6$v*z~$vuhg zR-@jSiP3d!TNwGfW9#s_GpqA=r7V&>IhWf9Pv%0eY8X2x@Vdd*Y|rLw;~cMoEO{0GVs5>kwWN!AqS#_R9$I&k-RAFAp${n3$MYkbi%@7d$&VCV+pL zU7F9#?u?-C{;wfJk!$7eOf66RtM)>>K&7`5uO=|P&MPi{vlk@YQ(FT8@LukX=|4m`HM?Rq83ge4J=mT)d}uN(^(Pd*lcWLt}UtAWknNogeN>a zD|>T4qOyV9R^-1Wxs!a!Rgp@(3c=?lEwp{rLu4Nhe{X6C$cst|LSxjjq2at|Wp%^} zuTwCmGN?EbY+aIq$S;f~O2-k3VhS~Qg}B+~HRaWK<$|lnk?N_S2fhSQ77KjNE-m-| zA1b5`aV4>8__)QPLd=)NLxUQxb1+gOc4^?c9<{k+6pG#XGIyy(_b z&0n5XQy`N|+6da-fSA4m4We zRTG9t&MC&fonj}0LyJXmeEepo-+){jq9Tk_{;4`4@t0IygMATwGFoOlrUGbH6I(9~_zhVv?RK_&$e*^LG!7{s#DUxtHIyHUpW(=dMa(Q*9jU(!KrXVgR6&wuin$J4=wItPlHo^w1C#5Fyj=55D@ z@tG&mdEE(2;VJJpIg~5S2c8-RHl`d@@e59-g0o!^h~)Hd{J2xY!O|{B8HQ7-;1fEE z&REFzJu{x$!@oE)g1?nNhVPs|if?*;G+*h`XukTzcR<$-)xUgxD5%yQ>FC+np?p3n zJ$_*XxSc{uUh!AYjpTDLMR1$>gv;^V2J-(h{J+}2zH;F8m71)tke|IJHQw;2E_dWE z@X=SQayxhQx-y9S?=L0;Zi+1wd^4pm6hud62kxkSts#fN=3Jkl{O`f|bA!w~y5C>K zaWBE)o`dW14Ik|I?@C5|2(8_)E68l@G=P&F=j8uIXCoQK?I96To7!k;2I&IH#5&(7naEgJMB(D7fG^k=%Yn6TXY)AZei#w@)q-Iuz>5a&1+J z=j`*E0HTejlrhP zxyLBR;kWI$H~4sbCvK0Zet9aD(}0AooEm0!<9c8tkj`m(bB7gT^i_ll5Uvs=oJ&%G z+H*M_7+yl6hsy_Y!MGdShjYbndTlJ%1t}I*nama7Zuv5}-a#Up_rPk|+)s9YkF2{m zsn{NQ0D@G(i~G1m*cby2aS7N++mCV`F>C!VToO(PoTllyb2N>=%zePeOWok+W8?mO zi~FQR>CuN=jvA$%pL2g;xy_$k4P0;02ksXvcauu4VCStWmvC5134xN+Sk`JJa#7kz zonBZ9=36DU0KaxVhf9`9#V8y@0tBgmol8g>V)k2NB`(~XGi4-gaT-}sLTp~Cs$>W5 z&C^#){z$!jf2D=v`y z!l6{MNMgXpO^YSlv3z`qL@7mS{&IT!*Oijz#gTmBlw>tNZ{!V$Rf*EM_a&Ec{oW5G zH*s3GK;pvZb^l#5pTS_jPj>->+R(X;LDb5@p&-9Sbt~NcOtKMC0V%H}St8I}5WJRb zWmxy(zBC4Bj}BJBGan=~ZHNjUlfkf0$g2~cNNjL%sI)IqIta2#Gg%oTd@YQ$Ne?hO z2VtlMV{B3nvTY`g<*>0%b+Z5yqq4?NfEhlBp727d<=eA4a--i@U*Whi~$Oj-x0)murUaX|EKBkhCb z>m8)~vBQHDX@(r7zTVOv_`DhYq`|mePO9_*4uAmzrG+@{I9U28PFoI@w!`OdA1NJ% z>qm{1zQ@NS(xta?DjP4&$Hy;Cl+MOD-KR*iF+Mkw%6z8u9xfj;SGu0XCVnR*Cf0*l zPbD3JJzMHz&?tiH0d$c~Lg2$}DUXx^Ml6%&umPn)xLo=aJO8Rx(qXI^2UbhFBISUv z_0nam7+p6=H(?%z&Fnm)wn$BwN5Xa~!*gkPph$&Nc1X8jjLMLmN3-41H@Gj~?UOEH z)yL%h(tQ}C<{@St;MR}QAlN-m`VIE*6^Et!aGLa^G#7U;^q6!5E4j|crBM>rlS`eH zPRBjlb6UEd6+?Dbn!zxpL1f}vxa}nuq$^q5esED5#L#)@y&?_3iZ6McUGc+jNY}Eo z-SoCJ7`L5#Pr8}4-&^lXk1*(*hL!Q5bO=`b)Zf?@f98?&C^LaFPo!%wfg4Yy>sU1q z@m#utLHkq#BVI{|VFEATuxp_FAJS9I8d&j;YM{XfcK-t(r41R^V9h|`%pod}Ib?_t zj+4n!T}T&XAyy$wCM?9tgv<6}FMVE2#yA&|Mzo+oj4TLBOUM8o@D@hOF5)ybT81tL zT!*Jh$-H<8@vN-u8a{r!ylfwy>L+|F>#4!V>&afKPDqD)l%4f-b!Rwi`yetcoN?9o5aN2!2?Ns%ZvhtYp@Qt!knB3~kvX3}ju}v0- z(~CP~4RPwtl__vqVz=xDPG$RKLy!sJ$b&L3mKWv8ViYJn`LnD(ZZGtt%!<>vvob5L zSO2{19_CZ>s*J2zTi%cz!RJ|T%O2qJzwgNcu#9e;HBzIr)l-=Q<8^#3BeRk1t!y%` zxBQ*#KmbZRN#!q5f7djVqh0!S_`Ono2p1az<>#>)3WDV6xcTmSc^Q0sVThdUn^HpM z4{><|i+mL>f9a6VVO*v)hbpgp0@me>67ohtD7{fu-ot^?T218|+-S4r@)HbOY&;A! z0SVirN^sga)IKjQycaCdPR=2|^eR!+B>8Jb(qC{@Ft3Z8ETv0!mlOY1^pwxQI+@#7 z9*Rx1VW2!w41Eo7nLAVZnh|nk5&g(9a+7FW6-Ws0tbo_X%Tutbt4*SPuuh?USd$@l z;y(N|TV9GK#)t`)d^2=rZniuM0a3+QTPzMu1OHknUyS+AUrYH8TrY2eb$(>Cd=Tba zey4mTcBvct2c!^f!4n4!0-2%MW3C z8=lE;;n8O5CwZ$tl-^S*GI1mfG%5bZ@&K=5q@8URZ89%*hz=ZVGC~EaTB400-DPbG zeygH5CUgkrh3Vi$RmC_)B^9-zg~4?cCvo3y)K#Dx4`}$VujqwMQaVu)&2YDgM)Ay+ z3LSjfT;XM$jhjG(Pyx}Q4tTwlLK?uJPc&t8fW12_>?~@+Cjs{XnW-62W zLQ96C4U2>P1JDBh&Qy%SL&NB~idmRv5K#2P{x@ooq9w~x3c=S0se6Z2h0|6l?vG*f z8ghLo8syI$u7H+sC7CZK6jT0%17vIor4kJTekaNm-oUXa7T*yd} z_)%5(;il4J5bueHo>NbZeoZ|w;;mAJJuyb3s)>mXG^mIt#)qhgCtf$H4r5PTWL9;@ znwGg$H5qOh;31t}oQGG6tIAurPhi{?&3B+hf@(2Cr|3f)e4!dlnwpXfS5{ZeWSJ$n zOjQhcwpHVXTWhLbaNz0i5qh|-wn`_X+4J>OkwP}8vFf;xeb`LZC6I-*zcui4N7X1c zfEM(s=*%S{a7U`kS6xCQ( z4#TIauF9!JlV_>=|MxHuY2*}*5^#I2is2z4>RLhbR1zsA;?7oe{_lxUnBWDfX+lu1 zU#Pk*AZ9O7WwRpYEmg(R{>@vZ>c)!lW|b;Q;MH}F>XE>!!v@ttR>VmgRbvFbhiqe4 zm~6Z1t-vNAS2c%~O%zm(V)o@SdsPdBc)GoxJ)T}2P|X)$7Urq?uyv&)oOf9Dr=XF= zKdC0O!E}H-epZ!c**~Coszx_*FJc=RVd`ns%^)zb{sN)KrRNhxX!86bPsyas%2)7le5{0?X@I<8->Xv<`N}!_!ocLOGOgOE>TUDY^ z;ov*fJ`IUtI8CAM97?mF9O`z$X+6W#QUg6YrmVWTnr81;Q41=EkE^TOvP=%uTc{Jk z#&v2Vy!xGbw~}hC_;+fmvGYyTRT)qrLj6D|UD&9T`jL*(tusLFSDAK@+OM(~L)2~s zt>780&JCp5-zKXYsA#rkruwyo!JU@P52`qCK&~A0hiVl>eT)ep-Gk3}s0}QWm>&=# zzzBidszXJ6>U+4TPfd=hO@bQ?Ij%k~I7j1?>c_&-dim7(b8_d`Zi#cps2Cc0+I#yc~LLmz2Fib zS_E7d6jjhM;HVHq`#J^W3E7O!0h@$u{jLGagzU$ZfE?D&V)cbWUEhEfLc>Fc1gtB~ z=!+m>ZlMZht_|o%{SY)?7eK=-VMjn|wHQ=@P!;g^{Q;u|y$(GR@KP91hUW)-D+J(A zcLVkbPBr^ckp{ax4){sX)whKKn}zI$rvWy>S&O|2=)iJq0LKeR(+0*t$NPZkg758D z2exIoj)B1-0{ctwy{U%4i$T-4`2nffMz~w^r?DHa9uY6f# z>yfVm%L%x7?*g|m2T!L3zxsCl9n{`R4cgxp)P~WZ6#>S|`a4JokU0fI2#>QQ|NPenV{P&GbL6$Krs{xI^}E3AoWntKp0;!C|9uZyGlW) z1=C)x5%i--({8ID#3cWtPiTmq7($t z7HrW5D&U|kK_7*IGJQvpIWO-0H_QoO2pSxP5aNFG? zh37p8YA6Jd^Y@^Ig64jC7Ic<*8ax=P2?ZbK2N_}1UqK6n5%7AjW)#cZj}%!EBE+8r zW^)~yOTr8@GF&t0-wFw535`D_9z<&VA#tR%MpQ`D5j5NUTa7;$>NL>o6ZjjNY5bdt zv8^=zU^v!M;}3?uT{Ql|&C^5U4~DlrHU3~Y*;^AT=;c+aM$6*sXna8To$>Ar)=Sd_ zux!c@L=$*noTjYMFUu5-e*t=Ts>Z(nJ(8jEFF+qu1s%|yYM;}&XG z2&2-26&i!kMddop6oxM1%PKJtT`-+fjC+MI;Qq<5zC+h;Z6FpDYJs(O!(@P-_BMdT z8__Zld|eX=zQ3kv!2s$7h1PisT7A=&p8sP9?ZCRutoIPOGUK5V4v1^B`=+QWz_DA8Ute7@k zLXT#Z&{h*pdstfgP{6%WQH$m&0#?4Nwu4cmlkq$AV=?pnJu+vm10pqzZ2Syph=R}$&OSJ9O|kK zrGBmNq|K1d``)7mo4aV|iNJ&ilM~UsilE5}tqQEIYcqns9}N$Ho%(3kYrx6Q9ustr z)b^4Pk_$#_`-mWk+t9*UW3=INktlBP{DRH`K6|Ad;Nc&%$7PrvTrfp@iX*vU)3hsT zu4IOG5zSqj;m=K)rL~8WdfQiNZv>Lu;%(Y43X(JI)*jJ|DVo%- zTiQcnGzFjE(e|KxdffjPESK@C_JSBbc*t?VcMr9FDXF24v~xr&Y1!}Ea50vH)e8Nd zwE3BKs%Sp>&$TT@3@nwho(DVV-Qn|ZwSSPo09^Yh#+xvt532u0<0pIXD(!k6ypWo0 zp)^>;D1h0R;T~DAR16!^rS{6;ft1o6b+CvrfGS8E7+hL3rMsHoEJ|sTE?C4=N-6Ev z2Tv1CsURd+7zC2c!81g70MU7dCHRbpF@W~#y)Ae%)zThk@M5u){&WRj6iunOH+UVT z6yXcb5lg9aM6i~wsK%8DP8EwbJ2E(*q75t+EMkPB%3l~0d{eYjnM(&Zr|KGARy?Iu z<$~ACL}&@zIipp8It_!%Lisnr3&l7Cfr4RGf){H=5Q5(}48A3b1_IClZP|_{xVLfe zToG&PN+5mx6AhT!%~l$!TLmu_#fm^_;%tpzTASc4fg&^nbnQcffOcC+8_Z7$ejZ2{ z`4VDLcZi7l4 zbw+d{T5E%4l5|H!SqS69k;%F^+J}89x>&lQ_|RLopZ5BAUtLEz=}m<}x_Pwp_6Xe_ znmd!OTT643C+oIRlzJJu9#ZyRR|c6+j51KZ#n^JNd!|lIdu}%dY6QQqSysO?NPWcxLz`X&eH)G+zx4J;uB~apxKL8KC(`AV5oB>?V ziq*h^4>|*lB(+2@#NK78K87AM1?V@^D7+Y~-=`31FFDki^{WH}ov`VjFgg#uR7D&> z4iI1>(iU*vDK0KJ=A=u(fVAPt58Z`kq#Z{@%q7HwnH$r zf
!{n9ndSRH9RMNi^(?gj0jh^miprfijlB{H4%LIQ%JT>&gsBf;Vt&bK%AEbu` zTY%f+RKflY^f5w5a_jp$a;Kqw7G2tj2$ zQERP@-St5rDlFaz6-oMWGCC$K>Y|@3Vuq*$5vnj8jP0%8PkpCBs=km0OWk4m4kAYR zO3<68Pm)tFnljd}{38?eVn+Q+Fl4fR1|6@q&(=Q-V2|NAh^`KA;lSHb6P@t#VttI1 z+Xv*!^`jZCf#XZo=qoq`1Abnme;@~kXQaEq!YYS!z_3xjlMxfVSX}6WWj5(`GHwH` zwM{=%g3^6E^hX0wnto8Px1)5g;8(`ZILn~Z=yVZbxYvdSQR?eVg zx#2-B=p*eY(2w|pLSqHPJ_+!=?yiS-Dj8G-MTV*pltwKve1p?&%M49$n!Ca< z0H-BZ8}c}m{=UX=49nZr8_*X&R>3Zt4fV0Sd8=V8PD|~e^`7lCti$!^=NfL~whEp-Y8ZjjddKMb0l(08&Yv`F#pnHSmbP=|9Brr3 zMOsgLnYOe0is24EfBtpDU0i>}ZNo?`zqxBb&bNxbkyrUw!zg?(_n|>1L+QTX4U4hd zw$ShgPMbbApjTy9LETHkQJh|SMZweF7&c=$<`2Ur&VWB)nxP(;(yeR%zR5lN&Fuw% z_obm4NX<37K;{xd0El^NP=d414H__gu2}~*y)-yM$MWbcz*BS0UU1@_p&J52?+CWX zjn4dFKySe!&3!gh#Bw*zNHs4tqL<58!8r;e`iRadI5@yaH1~Uuu^m2MJJ^^gN9nu} z;~7jYCDfRNQvAB13(T|`mGH6Ih&}_f3WnN@=soXM@T1-6!zrp!NrlpO5k}$zi%S@Z z57aDaBt9@c#z=hNU>s$lEn_4$T2s#047WhuZq!yV*27?}D;f{s)Kb})i_^2;7#sU5 z0aQr?t5q@9#xy2YGZL4nP}4|UW_)d9FMRyzcShn`o9h{gtITL*)C|>o>w4S7^@gT-O+|5W7+^Lt5C^)+h?bh%8jDr-Y zyu%PA@4^ao{8T4e#H|1q1YV{;Cr|JM>qzw2^ZFJdKChina1$G!Db9W6IeyyIJF zy{X$MUelda9g^J?uhCwLw|hUWH{u{wN5#Wb9aoN0b?A;!o}GR%zQXGGKHoSL2giwv zM)XmFRdB`?V+Wi*xn`V%j}N?UL|++L1&80I=Wn}D%Yz>przp|!`GrOj$%f}fwFb$K zkH#*ze)`|W-;F5kWe6eWjt&Vqiyh{JDdaj%FPlTo;dHGvWDGv9Sn-fRd|v6u5cDxB zG%`hppl{}`f`60@xrEbGF(K$ZHWWW`AvnTeUg?l~CX_C(8}fSqN;AF>AznYQMM&vj zB(LfkG8o5^tw%^DHAP8m7spd`(_06Rvi+jtPAe3=QygP1kYp)bCB*v6^1CF_G@~=wL$M zeLzv%)s%qi$8Cf7KVmncf7JR z^b^Lvv^g{p;}qK+S`CL|x09hiVO}NAhRSgL_-mn$FkjpK(1W!=nTb1`pi>}khq~fs z8Ot+jMXM~>vy}OujLU*0N}JKNlLdR1GoxuI3+gJF(X^8Vn|xzN(@qwgUd4favd|8N3!6Q`ernbWWfs!&0}%etO>1WY-&bJk1Tkg znHkL|S#VJcGn!Ab;D|P6G=XNpXYI^r>5&E7bu^=CEepQsWJUv47VOuBo*$b++xfG* z8O<+QaBXke&g;Ikoq?&eUYUWkom+#U0ITodKy6li< z9)%BH8)rsKk1Tk5qIofv$4oJ!rAHPVJl%|z9$B!=3^Q`?Eck9F1z(U#-2CpqK-@x*&<>srneCBGZ0qHt3 z^8GBBw84x%9-9T1ZZ)GNL>BD7-HetHS@eqq)%KVJz}VepC495PjMfoZ(35LMBWe~@ z>^7ry1g!>9HK__6ta+GPb<$C4)#&5Ys=ZE7tFAspIsI{lYJJu@b2AKr7ZbpC&8z|T z3Pvkvbk*zxi2>*%y>~)Ge4y_I^LYfGaM6s$>a5($X0*o0g7AtNtuX{8pmUpHc71P9 zw{YK~=IV9NjFuN!@Y1i;T=O1McNp@Bx^XZXrLNi3yGJ0J`0H#V+l)Dd`7b<3yGJRC251VV=N?I z65}l-Ui4)wBwntSvygb1Udck@B-|CeMfs=o*xY({u zet~j>Acw6ZsGzYKD`x=K9}32gwF#J8Gc3YmWZfrQf@L6aj#&>TPq(ZW(PxN2Lqzoy z0k~lDEXx=PCG>o@h3x@>FTHd@J8vmuyXyEg%E~OuG=WvM`Tqi|-r1J#+1#D5YEBnsz*a0%XE`CSy3Rhum6sa4|C z<+obcZoYdV3gq%aXtdhJih_rO_Hah7B~OI8tHPW6Egz(4h$EldFU+%y7P>d$M+@5p zXyQgy0m4x|FramO)guCvt4NS zg2d03^5AZ!MGY0VEj=ZIi-9(`EJo02gT)57-9>8w8cX_LnVqeu84y}v(L(nFOLtZ` zDT0Cs>LcrfLs0TwS^`1R6N?5rTY1o@&=LYNk6Y@1>W?iMjJ7EPh6wmNtH)s!i0DPL zI-8$H0LXu9(ZP(jmeQgWj<^U=Nq<_FGI|?Ctk7r5cLDv`UMBEfVl_}7dn&d1eXNnf z$~vGS@b7@D0F6TJl-5=vdMltLs;%GC*%j^#vUU?;iE3bs(HaO+4OSUMp5_q2jY2^L zbxwqDRRb;aEgtyNVwH&M))u>!jAq|}GY;!J_K2wl2ofI6z&fYZ2=;reZYXtI^^Bf| zr`xAtbWCZ-6w&$qfkp3`}>ehWic0^6Y zLVvc8wpz>-_6BcNvE2%%Cc_$Md&j~HUgTI?(6?{)Wm^-3m3L5%m1pyOi15%$wPc<8 zX_=Mnv3f7OyWF~h?NJocqiP^9&ejBWUTjt>+d?W|P^tL0hms{MgqaM&OC$tSF}guu@|W$nvmH9WL@X-flhPg`p; zcKHhwM6~b8sfQ1^WbGvQ{rzj!nL>8lZEIfi@tiQE2t=S=T+YX8kKn zAyUT=q73CHsR2t%q33_iZ>@{}l}-~p8Ep8c^{}WgL;MVIiNwbETG1E(F#v?305^u( z8o(BE+f_BA0X&0kWkIK%PtXh2cAE+w3bs{OaJwKEYCA0W;RTCr+P?v=g>S94eyrB` z2T#^H$Pc3bUvbygWg8&$_ol~|EwaA^-vuMXY|J6|52`Mh=d+Cz_%$eQ`&at!g4rc( z{aK^U&(8=^pj{GcRrJPiDfEFO6khdU+c;YWYmE6>DZt$-HUsE`o%>OBTL}0(6a~vO ziLD>3_N^^cEL{ae@a092tOS?Vwbes`2IAi(o8afhwvB>y_cs+2ZIxhtGuvnp-Kzu; zfEGMxZe!iUBNJ2x=^body4XY0+5};l_EQ@%fki+gp`o3qn5qmBwH1P{%XShINdlqq z$)bX&GDvJ~3xt!q*{+B%8%3du(V9J(;|C(+G2d`O=Qf0BKDxvj7ieu51JTW&Ei&#j zy&u(fXM9=EcCwA(#u-F6&LY_~>Y2wmYQh6kZCVM~^2Di!H>cZ%%4oJrrp>~(U%;sC zK~4d>7iC+9??tT=b1%vR;*9nxFm}EzS4xhxT6Z&KBE78K^wWX@X04 z+J;dpgA&ljb~%HvB#mfc<=wUwj9ynn)eSOF+iHST5Qtu2+h^-SwFt)?w4smF5r@qE z(e?&?Dh&JPzMpJ=t7-PcS({zR{&BS^8+PAzl%zwvQrIoCNb<+P)Pc+xf~9<6JJz(fy9({Q1pnMFwXYUKMJu;6zFRFQzOl-_N8n-!v~Lx|Wo(fBo(LOugQj4+ zOc-6F4E9_$E)We4yVx$X2`X6_YJVcA1X%6c*l6Iu?*{+2*ikN?;2HEl1k5xk>hwg3@<&wr>@bKD4X-U;x#B?f&*L3Yxtz#QvJ? zrp6bKG=iH`N~r(y)ks~M-7fSmVZ8m6*!~&8jjY%pcyyv&D=Zv;ooe4N^lj^OdxX%T zg4y;EVNMSO_HvBg43Sz_ig2N1Q1__P1lsMiPlD-7>=!s14n3CHUn;5Md#$rO*p~G~ z@lC;!T)PcCm|DvQQ7b(pqyf-#husKtSvDJ#L;DXRbS~gOYU4f=aUw*^dh9 z?|0Nbkx{!iD4K%cDGx&6+7tG<)JwqSU;Nz1p0N)U9GE+AFDs&zdO&y6ZUGy=87lnt zS^cZ_^Hf!qEB@v>Ub9<8sHz@BZ5$N%-nnD1En;C^6?7`J+u`W~yFt*3vcON%``EsX z)g{q7*x3t9Dh`x?f6VdSj4i!-6=nPO+ z&vC(xV6XOYR6s^XKM~*h;u-^ADyBFH4ndFvI27LOZ;t~sh>Q*gH&v+;5Mo+ARw zdmcC%qE?~eF|B7RbkxM_jtgv`!6`Cbb#Ul2^MkM<;}m~(~_ z$qPz3yNe7jItzirWt|(jC-h?Mo?VS&z^~<;3>RbZTMWg)rrgFpc&WUz2iq3P0jGZB zOyRgE@cFk+tCGtB+@=wALDO2!4Xkr^Vt=OwCf9ZzkfIOvwARDedd|`knjP4{X=9yF z5o}Em+{~$kk&T_`@(soY&l8=q8SRhpAi|p^qujQ%bhZ*`n%g)h2}d_~a57%saeyMm z05R5sf=|C3GPTiftQw_yBJJC}*L;+>GIoY1lA@rI+1iF%ORE4O2kCkBlt=1;k zWSDcfV3MmNoNQNo9WZmGb1mCdRR=)lb^t$bMegx@tWy$1Z7P}W^azG5Gt2pnkWJ&A zix~U-r5W(Ud}}gp5Z!b*B<7|AHN?Et&M^84g*V69nGywampPY<@EC*{1wSlz_7V|t zO>$Q|6@sss*E!j)PZo7C3TCW#wid>Px0{?jSy!LP^_rmW1%YR|UOV*cbaFw|5zFT} zXN&1B28I28bjGQKQQ@R>g_>r&Tymb|XtvrFr!tUcTiti|Qqt`C-_iU^vw2UPP31Hj z_R{%_f@VMd>HJx!aN#c}dfbtWkCQ$)(WNkwZS={xleA`lMy2bm;IGyomy2<9$74_v zka*yU13uHaTC*;8ics(@tOkvaq91QgFF7(8*rB%t9Ak8$w?D`@pbd3x70i3q>iV1I zr!L5>wp9^X0k-$KCMvisc%mE!xu$)8FrzCa6*bp!#czffZ;t{2hrz>FqiLoyAFxr^0beO@wyp_ zhlTKIf7ca(%cX&?qhh$E4|Xwrd|lu&dYJ2`z@_I%*H2=&m`1zGiLz0An(LmxC49W= zXE9vze{d~kojynybz0yO)+T+Yx_**@{CUv^P-~_b&l!V$tIHJy|Cr?p6`>{p=2% z0JR9X+uIccJ^NhC1?&q4im(?SausL03nO5sUT_)U(i5&_0(P_0McB@>u485 zfw~(-Iw^O{h2CZ%ItjSrLQh$c?D@MzE#}-WI-2spB^A|p>Qh$;to_{8R@C&l^sOrh zBzEwufaZ6uTQa&-P=9j05H%+GQB^<(YzlZ&;%-Hk9~i-LVS*MQ|D`t;#59kt2L}{)w-%vy0#yz!DOuESQ=I#NpzUAFx^D{F$gk)gDq?78 z0rIS+BB3t9U7%whrU*(b{JE(+RbcpCOLwx0hRmLh?%$L&yRDlWf2R?TGoyOA(N>IP zYxHu53l)YAaQ7Dw{utukBxHAvbi3$^4*r_vzAE(m)DP~aqFipvkta%UcWHzbZ2sVx z3TI7oqX#Alqs5~(?!K@raEA*G_Q-Zm5d}R4 zjjSL}8fS$FI#WO$v)sKmkOTDcXWC}>YR2n~{M`xYN0WXll*0vE+(E3Xh^4`vHlV?F zH|rfbbp9al;ft`c)&s@k5FN;m zjf@0+FS+x@s1K1Mn5w?gAOoRkvI2lOkwAjU=*5p1yQx?o^|`-FH(+aI~lV@eaBh_f4^RQjo#c?0!DOSN9OPh(1k*Y2|-v;>#F zVIS2In=I-<1@GOvu?H>rEXIR!;P;&8od|Q~z_KzA`fecrR;A|@yIOMK8I|X=C?dIm zo^zPU6fG+eh}7F!#NeL;?-@KlV-9Og9@cF(;*bMdnLSNK4Ag00YjF51C~ zJe3rP_xnDcIb!(E8|Kk~%pN6daL^zR`o^EYx#Td<3?#t4BRwG^LUb^J_t@MTxOTMX z6ju0RP9tZ4Ygc;;v7EKuGg?HXCz9O_K)ahN(74^Rl68wih@y>BEFAx%ClwQX zeatgJh0>IK&!0+^cDU+6-?Ig<_;t_EIDK}*QwARo`_+TK_X^$XXGs1iO-V%g}ZwUIIrn^+K$! z_~u^Ll_KIqa9!|53oqlZlA#9(5DG+IcM-EG+s@0n1tU0z+It^~Rg()&OrmVscJ`hV z?fL4iUgrJI7Y#eQd(l&`1)#8}mv!s>1#CfYZyCnXdfo}|5OC*)I}jwScG3MaNZq_u z29FK!qK8BaK>wkv{`3!M7mOJ0{e#hz|A8bQ<-LY=cV~?EG@Cj918`oN_szdUZSZ*S z2~4fp#D9s}ACtVSH@@(jS#ucfpHxB?WNkWiQ&56u_2Oy|Ii-HlhV&bOrF#jUEb* z-1VwhpUF;t=}n_ITy7V7Te8mP2<0(WRPVQ5wErl8mEL>N{-XdE``eqw7$N{+_69GC zJye1hJ1BCOJE$J@Or2XL`!))2VS0Q zQ5SsJZ?6ch^$25qMvi}x9t^hrRj7godxrH>fYgUAf?&neupl|kYGJb>VR>@yFTmO2 z>Vl8^?G?bBQOu3OPNTz^S37aPge8Og58-Zb;FqwD;80o^+gIZp03r1Q&L`1PFfTo9 zwG_NqP(=@hO$fWhHjz=h0~K5@=$jOFmeEHr%22$IF~Z|B!mh}{je}K8VE(Ky^r_HE zVK#V=4{Il(R2$6;WBXzt>H26m9)yi!T%cf_%2z*``wo>q`l`on7$`2X|E58o=#Hz3_DE2?XjtUBU@h)r! zqr$%6O@1HtQar2npTcq}tE}*F@uc>0;jFt9fV&2f6>kYzaw)?%iPq8RG91xM-S2w=t=IPR+@Ul ztBGxetdD*4cGB;WMXhK{7PWG%RCoi%Rv^+-Upf`TXBESb3flRxayWYSh4g0nw?*x= ztXg!`l@LCb?Q5OrgB&>GpFJ+&rjOiwt{;vbxgl-28WlBA&^R1D8bpq6N(^tuxGF6& z)z_D?o3;u^kK7RGiEYAbiGm*MD*pAAY-6V)=@Jb4*pI?TDw-BYDnWH@+ z8qawz$d7Fya;D?3b=R$Cd49^)g~l54{oiE^3$ z*l4D02@edW9awTOyt0@M6zyTrjmg8|=m9@MIP&Lk^nf49E<6*C9`GYs{&F~az>j1* zTrG-X-}P|xfFC*9`d&DCz>j3FJ`6_>_>t_q$KmJ!Ka&0Fc{qB&k7PH$4j;m5MYIe{ zhG^?DUB$hiw}YPj*{=jRDf6*z+rVAbQ#0Hu_bFJFnW^Fs4rCm7HlqVf~9=E z&l1Y5N^##>Hg3R=uZ7D?_$slkoQhDu&1OD5xbusT-V$;}`|42r!67le8!|!{CYSL+ zIn72^@}UtntT zg=md~^*i_$30(e6@@*EwWni+8c~?icsJr_13S2IB^X(MFr9}@P^HmwbrB!bqdNH5G zy|bT>bpt@4a{Bw2_mu>o^g!QOfy?2+V&Z%pEI-uuqcEHWjP$K%Q*rJnUp*R!plzCO z0~-h)cgDf<=|1Kcx)4AY&}o)Wc%iGsB;QMcRjcV@qKbe%)4%op$ij z6ZD%E52AYK?)9~0ynRQz=81o3z>iG|w*%+@OClNy z9F8g@hO+J^NzXnPzBYkOBVshVZfE1Xjp`5>t&ONFp^BTLi(uXn7r{dWKSbz!XlTR$ zQG7E`mekURMLRko4$Hvby^wv&dLz)QZA7I9eG$ytU&5F)Kpq#(C>DYCzy!5tWCYp+ zlWe`{i07g_^hI1mDCiU!ZlV$0wM@i55pmP-t7k@It3^~`yi<$aoIsU>WokvBJvHg; zy6+;;o|SaZxUuz9K>i(JkGUB9zz#=-QW5g47SOePHXg5ii9NvKLc>SZQ2u_qoLYXB%iGVT!Wwq=wPT8aE zGQ!>^WtRO@J%1+zg`_EVEAFY+kz0ZBl(b18Pu5{FAed7ik-Ag{;Fg(i6?z}iP zuykAFRg7EXkmW+-I|SNW*%N*Hxiu&|PFZ(r2yMB_V*1GJKl zjTb=lsm7-nZ40n0)18s~aIZjg|6*gDcF!J9vxQ!7jK4wnYRot(54c)4 z;k5@sjeh&0F>8_%Qlm{?HfE0Z3BbMAjd#)--2ArjZXWAu{k}14ybqWQPWmpWWX>DO z0Uj3L+e?@ueWH=QPLlIfBP(1bzwmI$cb70n`q)Tjz{?tv&6LYFZwc$FZX#AIU&$@% zMsflr+j+!#T2peLLfsFNux8sJtfq!YnB#riAV>c#-j_9y9Cj32m7P?=+N!Lea@ZU$ zVO}aBpg?hipnY`;ocM1O5Op4ok+Fm=Mx9w_9U&(XE zj!hVwjTS><5@<(#DXHy<_6+b2gtj9kO}MP2I?x_5MzTa~=Medo1c%f_n9mbz#nWF) zaCA+semhx$qia&MOp~0WkHyZE++`gX6A`VE+GO}@u1(25%(tm?&;m&(j#_N-x6tkR zN=ZIz=!Urxs8|SEE5V@~(L>n=2@c(G(GNOokz92^sv=)M$lfL?VH_C>wcg@yq1(Z| zlBKMnn-wYw63$3)=tdZCzaYV(8!0MoNO0&zijD3`aOg&gPwq=_=thcL9!PNLMv8wt zm*CKi6nnmw;Lwc}rSBy;bQ6kOnoH@p8uX6RY%YTkBDcR~Hu>Z(t!0loMELrG#8YZ* zZ%@3WHkv-ta;_IzgS=pISKqQ)QoPK92zaTEbPN}CDGmC9MCgrSHt0JIq}#ZltLJFS zWYRSbB$|NyNGZtRnOeS#7XhY4SAPuq7={EkmB1_6To}E}Er` zpS=MijdMhcE`RBZ&gMz4GmaTCN>A|&gueOGfvg5pc}ZFXV_Hc4D50foq)QkH2~Y?_ z#fz*Owv(=A^?g>T22j>Tddd+se(_}>4C*P3XN@v#fCvM+!jQhwexkteYJhZ?9jOfX z-sExEbf!U zelT)@w4NVP!pimQq#`QXyHUzIGk`${LHH&q^P~UtzV_d z6sUKlv<{;qS&5mlIywAkH{@d0z_7?L0JvFD`oxKSdI7Mo|JXY0ac?+dmzPGV~MWXJeIP4nXShA{fU%$4x$?6?sF+V zK9R86@KVZ};JF$v_O+CKHiDX1Jvi}~bR1<>{9gJay9*{JTMw>$kRBGB&JGXPGLA)P;FBv-}R5CKWuaIGB z0F)<$_h1ZZ2`R7D^}hjqYWQGAkgb;RwytDkflwaKs9TXQ4T422!$a83e>jx334cU; z@ll<^3t5Mz&-#atAPcWii67qEwyQ_D(Ow)0`u7eWNyi%%{lZzlKLdV24u#46A{>V; zWZ^&QMsPVj^eW3IR_bejgWU$+!VZJN%%C@VXhS_3fwk@;~5IVZ3=|r846PTuqPbPP>|xw z!{OFpI*|(gui8^LEM1;>pQOE7v=J|;Zjz&ge##CaD>~~ z&hDica36J$Enp3}!y3r^P(`E1j_APl#=-E!QTEiq?j`)@DvM!sE=Yic5)WA<4*

C<{n9z;_f6;iU4GHFCsCYvwPz$T-#_>cTi(#OV2Tfb1x%U0I=W(a8&q zgHcIHYj-FMk!^Rv3`stP4h>|V?C~G%8_QTfe*Nto1&zF*QX*sC82nEtl+;<~i&PI~ zG`5^6lcflDb3q~dlQsJPzi$}-UsOB7)io3hMUC?8Av#tzPf+QJIN7fM#sZ2GWXzGF zRbXmNH=D@j3gkxUWIO*Ga&`t8bAb3Sa&t^FocZk~%1)K-=OqV~X|g0P=TO}OFJ{U% z3cMy~%l7f|65Dh@u8cWS{Fl;JSY-GR#h0jlp^P=I{uknsBH13?&QQme+&+O?-K|!# z0|Mfzb~4rjRsY2?qJxYzbR>NT@|i8er{eXM(Vg0>yU0cgZacguU!%3c%3wz?8FQjt zBCG%fnBjGyc6B8()}E9;kLo7I42DH$R_-f|gE&HEA>t(4)^yf5L=D)BAwqxkojHM0HOZ$p-y zGO|%P2+ep?ZxSp3*)gGAlEKP|ow8&umre|gyn$>Lb~%8@7t{Zc`H-!`=;VG`Br0wj zu7D|fWmR~H1icT*+Va(}SWbt(S zb26OO>Lo;6l;NyaFTvxotP{Twd#*opMU@-ziI`u?)JiD2A!D83`5S2~Xfn9mlr^*s zO7-_-dKb)m%oCX%u6!8#LUu&>HNTPJ99AzO?!9cX@VoDmY&%bb5jufpLc%VZkl>Ju zoHWR*ZgSEfS9r+d7-v&NA#r?>@V7wzQB8R?YambBqZKa}9tO*Cdf}IlA1cS`y%L^)2$`x5RpmFMu{=0TN7j#EUxgxRU`6>fH~k$O_s4Ai}Ks|d64k z4!W3I(h>PMhNw`*Ah{bT^W`P1y;jL6c{8Lhl(Vj2#?Q|JD3V`tDAyMFqKcOCO2#27 zMjC_4?6q!?(pv7p+O9B4Pw{Za&`$E(zNp2DqCluUNNy+clMj`%eySwM&0YDfa6typuw@1&m$^%ekp`5Yj11!}+CsK83RhSgG4 z%#j}#`HY$?XI}0rG&&-l`+WIPekH9~Am1gD8njr>nhUF1#!nS;<~X$)W#0Gli6SZ0 z3OVZ+$ZELtE9Jk6-el@(IqL@cYPcF}<&`4b;|+4w+yK>Z{eO}(N2VpmYkRDMY zeuMP5BOk~*;Kf?$g;Y=EHBs2XMqk3dXYy-YP$xgj1EBi{`Pdq)J%>OjuSSF`tZ<9y z!8(I3hy@3HA~x~>;FIQM5;WZsJ`Wz$j)-?beWnxyqL#HH{L$V#xf`lnZjbZ1g++vN zm}D>Uq?q&42w!x3xLk~B;d8@?1ZTm8K&Cu`dH*j_LWwG3pA%sYY1)V}#AU*Tgb3D; zu7YFf1!YYl?vi!{U+W@H*%7MU4G|w1)eYE~x3GS9#ZEkzglmA$yPU)tsR<}xX%#VF z)X@935xa;Jhoc=Mu8G&Sc8y@(f=WnMe`>AKH=>O7Q>zs!3c8MtC=p5C9T(BjmDEDZ zsS)>FNXargVw+eqL31LuilyJnBN~eT8n`H;zxeE&r4ehzQsK&odSp}!Ts?0M)(8k064HU;vEM{fAK5p-CYrOj21@B7Fko}^#Y%R5ein%iz|Qxf1&W< zL`0CC-6`=~Yx`3X%)56heu}IELn|Zj?%gSc;DPY&-3Yu;D#8bX&qs7}wA&@Vg6!md zd^v(S4#w{Zg)3LsT^0uDj@Dd{U=4i9^S|DXphw9xybE8!2juPh6HN zZV>Z;qY6bMR)6$QLI@M`MIk*E15r+lf^k*?5lmvoB#$v(@Ek})LxU3)2iO}IX&VV3 zX{unJq_8qefQvfCA<>T485OL%h^yh+Co7mIDXLKd(-gNwQtp|GquiR>YgRC?bFLblBz4B3IKoZp>jDMyq(C*Prp*+qL{hI>C|DOtRKqQ9rFbm5iG}SHtb3CMIKXBf zAv*2s&I;B|#RO?@7sW-^Q6!Pf@}(k4%wxEqmtu=Zs#AZy7KkxZA#{M^EbC;Gm02o0 z{6c{z1%y8L;t<6_4!Z(Oig_hhHJ>3P6j$s~)tqL2sMF~GLQACz=8s&}tj>;8ToSdk za{`xTB2smOzE*VQ>MDGmKa~A#^>Y0gia%J#uS7`Pe@ju=j(S1jYUuoViv6sCzZEZ} zyuZW`g{`hX5(X?+?Bj+*RZ|;@UzH(zqvEa$8Cjsf4GJ88f2{}t%Qi(5u}faCQ(@25 zFt9d4#MhCeWnb@BjPv4X8HnJ8&2J=rLEd^&fe-K?p;E8QvsB-&~0*B;6>A)35JkKZ(Hr!OKV2#T$$-nQ|9`ICA%;8q)j_n^_D!PjL z3;j!hBXmK^#~&0pLdT^oS0YO}8rk1>Yj<{y+|C-H3xWfV^%sluO6o=8*jylbQxb_| zbD?xa8Hr57^?fWj!fZ#s_3X_SiT+~<21KpkxCgRBkN1hYwz-w6KAhCvKkBYn_mL`vj+$z?jWlCfX)4z(^0I_$IQ5-5ZG@V3`rQL-Y?Jvm)mNvg1ugZ5I^z!@O0I_nbwS-13J=>XP@b zkDSG*To9U#s6SVT93_^@cSLGMOmeQ`j)jYdBTtI@+j=Z=d`))!b%#g4 zM|Sc+ej^%Wpz_C&yIB|L?@fFxMQ5KxvM$ctP^KJ!KE1#*LOq^EUS{n-tthNBLiqVv zsLH6MGeQ+FBOBpt{HGfDqVs=6zGYOi6|^24dly;2>OKg{+UX5~A<#kD)elYC-7pYl z1S-Ap!2klm^|h6(QyT=DEQ?4EQg-Li{VXJ)pq>(?FIp9(^Z^J_9%3CC+E@vAtZCe> zx~JQ&KT4Ii@RK3bHJpC0_<3+_Ondc#@ zQC=k||DvouHC3MF*3}7}l6fLRUk@-vsQV?y=dRi-k5veM@$ ztGHPO=P4iavvMp@;u9E%Nx3#tp5bP7p}CTI!lv4!=C@MfM23V__qNKz+^pp7m3GuW zH|?Zkohz&6XV*pPOz~>>P#)vp2YY)e_pnA7n9yc%&SrLhWmkOkkl?S}hA3H&`NnuV z;pR{!a~f>|@M*Zxml}H5Xyqk#piCk2m-Xx`obx=&W z^q8g$pj@WUP%>`V0}Qp1OC>$ORk~0bV-Zh--wAEzarwoa&}o7432o*b7xQsxvP8L? z!yE1dyJbq8w2-u*Pb-wiIjk1WtWu6<4I^>=E+VUJR&G$T=A;#De>U11t^E73;0<;t z16U_T2%e#d(gzhUl?4Mn82maHRPkkHZ3sB0{Fw_y_3mLP9IH}3VV$!hV);B!(&@Tg zkCcIK;&A!iE9D@LRyG?ERI>5o!bdvBB^y7szEcWE#9=?Z#T><)e~l2gynh$~ubrdH z>_yJsxkb(A;!FU;J)?p|_W*@HQ8*!^z!e(%*@|!cqi~KYa&=2!)N9riQ$&QtZ(jz$ zqJ~j(sR&t;s3ROcb~X|K5e9UI8WB+*RE}_^jr_YPTk*KsCdZWMsC3q8GeHj6kP;<# z7Hi?DIf~D6FjgIClN%)*n<}VYl^=x@50K)!f~d{3xTh#;m^Yh`DjyQHk|ekQUDqhH z3z|M2$A=61L?wy?8n|C#d*M$5qj07J^6p`SqFD3xZ5U;pjD8CU`zoqAt2?RO9yJu5h&b8IswjwahbIOM3f#% zSHLGLoUVyX#cS)Ls1XemC^Ja4mUWJ-B=fN^>JY4Y!`8x4aRXH<+zV0JvzoF1fQHvs zF;0&Ge!jDlT{$`+Rk5xCz!2TV-3sY4)dSX{T{X(12-Q-1OlgKvwVGY6l+vpxRVUWI zwwjV(v(u=qFikbf0c(nEX5E>o!dVE)QCzla6kAPh%~4e_Rv#wT0kSMAH8yV;)l7Aial9hn zAdKUS_P$oNN5!pGb=hPQ8vAfaZliJ+6qMUuwT2ysTKAR?D&}n^m`y%B>!MmMuvySU zwSk>YKEgP`q7SIiOT|2YDp2|xR9PRR-_FO|f$zE_bC^0BtJ?hTip6cLd2HRUdvl)mB_FhT|&c%*@rI3Q!0`IU~yubvI-_ftyLy8SIQ6jZsfS z%2T)%Qa9B5l*-6UJq$XWSJmV2l<9z-S!i*E^*+dp$!g?YQd>LRFRHUeaP((tXZG=svyukQLPnB_0cmPmn*&l;deNrsKJrW zV1A+cokO$#2e0a-D(FANLl}>Y5J#|gGik`@o+=Psw^P?d*aIJdy?=?VKI^@Tbt^eG zgKAj3T;YRi3wC#NO4Y1s!EAtldG6#G{-hyG4RwsTB__11%FYf3xvFOfmgDH5<`EY# zt{Y>}AdJxov8EvPR(~U~+3KriT>(=KmgKKK$KhQFrF!UXUv)5CtE1k<1*Ov74Fx>v zIPtVLvxk|@J_)L%UDh*m8Q@`M8O9V-AQPm4=icnv$ z5?rKEFX3{1*tlwz$E%&;akP4>;7o^U)fYGr(@|BS+7J0;sa*k&UmIFID#V!7Wa#Rh zs^%KHTH(E*cbYnyqg_-p4Mmk{Y9CY?C6l4=GS!vr)l`kiIDsWJSP=yBvejLLq1@&? zHP@h(C=7$uM20;oH$1Jc-XOsKUZmz4zS>~H(p(Mt&7T)qJB-Y;FEH|LiL_C>y12z%kGvjZ1_=7|Ic;E~>hr zU&pA=QJ0G5jK;4bL%-ik)xEe};j;N@D^Le_x> zV2}x{p502|TShb9@L6pDukY0dMZKWgE7U7Fpb&q@K&BD!@=iR=0?sO-G6A8+yPDXH9`UwP1Mds_|uQ@B$>v_t4;z z0Er#7@Ydj?+)2?XK=Xw0GYJx;gwooYc-GEF06-YP2TgI-Ab1p{Ie;BEYz)zyq4xT1 z1I=Q}G)1bxpXCW@b%f@ohuwA2!>{k}B|&53G^{Bs%9}lQg%CZ?Dqo#pxcTF;5Z370F$GWTq zKidLb8>C^KJR)^Ok}^0A(bRGj>nL)#rkqh3q>j3d&@5(E1_szp>m;~TGmD2t-dGJ{ zq#@ecr16?Al*`8nd|cFDb8_i5S@SjJVn0nYk4G;_(>43J^inZH^9AM7XqILU50^Hx zHQN}uK=B;SQA#6mE+35n^EB*vj@N10i7WIA7HjYcLxT55XTR5!G3q63ou(@UEZ5kx zcGCpl@Jh`vs+{~EHLQan0#&|RqhsU(7~mqM;kr>Xn@1(tKWPS2s56^2J$RrVZqeMK zP{04oS5XbNYxXi4Fe2KWy;IYga{07dGlNGg-CoTn)>sE~NrzL1G+P)0XQ(`>sbYLq zP(%VMc6(F<{jxZ;4z#|giD4b~5-7tmjT?mgrn$~hGYN>Gd|jof<$%YCWW~XzTbgnw zad_AI56vO5t%LfB=CL@sfv6Xneym^83G*4BHMJn&qvkXZbHFG$l;>l|=vS;ZQBgCx zFNo6tYBQL0T_TiPg%|A7}WM?K_(2U6MdT1sE8usP8TG?v#{u; zJc>Yb&KBfBLBr^mtn;{p%e>143GggDdI=X7jN(y#t-uJm5z!8;MncTC#N&}S+)+hy znJqp)4WpQ&qw$Jj5<(4&k7k~`A+%II?|Q+Xy67{kYO!*NC_b;m4_U58IHH|xqYD^VKED;CfdTEJ zD;^DxjM`6ikjz3qXHXh6KXeh0*&Q zcwhm;jtLMO$C$0rJ86^2-X7i1Q@mPwIC^OV)>l|+$JT+x52DZ36#0H_7vt*41BNh| z3+i9h)*0$J$JADf98GaCU?&#c6JnN8=6lj&medfh4k(Q2)SE@sC0025G?r^^Mf6m7BW%Qdmm>w_BrNNut>5pIQA%2^p6c<2VyA%A08=> zJs8aP3XR~nLt#)_>@pUTc9Vi?LWhi4JBFTGJ^gWQR8kU~0KaF(E@K$u*#MApek{Xm zXZ7b zl^Zng9(#r%8W6YuuIN;s|2;~!%8?4Dv9VJ*tSl8;kB{9{i-Q50|6MG@#3qrzkfALU zC!4M=i2dH5kp)I+1NAq?US-t-0a&~#)}PhH2|zQ5Wtsf5DxwW++!kAhi$ULAu~)cs z@L*5uGlsdbY7s{L5_^b8gq3#>$MQT6lYfmp$0NbkQ?X851Xi7iWl0`uQ{l>b=lL|S z?^5hdE+a_08tciWg4e&r>bU?e-Hh$Q1#s(bEXzh6TO~l3KVo0-m=U~v6nmGe7REh| zeaXe3&Y!U-xd5iTj=j$X5cn>ZWiq+C7QXxt%aYd72Czk{J;_xGbM3WHxKto>*8a)` zfZVixTumX{Q~Q{U!8ISPoQuH^0ovDGwP32HZN$aEEm-@2O9$okI2p8Sz{%i2V=Z4} z94ylw;nG2sLi>mdpg&$J&t(UHX|!2fc5qj#?Z^f2AW^%V3qYgS@^#K&)W&l$n3byS z##oJjhq+_8UfwBN+k^4th>WrO=4q3;7!($2Cvh+?=J2 z<6^M0T>F8M!Pfa&8S9K5@#V)CX@B8rhngkYkzCT}FV{9>o&F;tWUkR_xfnFqpbci! zzv$4be$wJRP6HESdc+OxIW$Vuxm%n@9TOYhEnXGhHKDUg71yncO4}{2TQ_w~d`!1k z{9l*Y&Zydmf7+_;&IPb@yLK^`9emoOZOFyoz%Sabxd5IV*0O8}tXATIW7?-&)!6)` z_6}ED_^ndQH+MMyoL0ppLf?zp*IWS3SGD^YbpSrswb@)I@VQFcfD7QjZS6oVfXnwe z!=p|QIR}R!Pqk)-bu*+Hl!PVeQ02F=E;ys5mVPv<`%3$YRV6k&z<8rs{fiAnU{w!} zeA4FrM^O75;-^8^>}| zsOVIcaS712VI0dI8XEw@0JR~qaon%0ALk6pxGGki;%Bo^u_f6VwnfLCU^wNkpof#k>Nf5U)1~5E?^uK*CdEhL&V$Eo*w6eW~@o>41;IH`7&A_ zGOUbCL|1=K_C}#Y6S}~Nxp8%v`&J4S2oc}KonY9RBPa|oA(lg7MP;vyOGA^Dae?Jy z8uo$>Kg4N$88uAQqS}v}!}QC^UC`0(asKefj<|!Yy_SFn7%z@tskc?MM3i?b&I8Gw zHJt<_kHzIPI}CvfhRXJ1RgTcKZu}AFg{CUw@G6^nb@Jhxn{ky~jSSljB=oBzYAuB-G%=jea)iT8kRe2}+qp~$Az2K+l_#oC6V8si7uJQ4m zf*I?GpzLlH?_chmA+`eaV`02M8rdyA6kZj@r|{4N4Ez;C8gt?-2s71;6kk+hW)rHf zX1(H>XHl$pwIHZ}{J0QyedVHhS;>^p`f1FB024}3GtwY7J>yt>4fMw_=PqFWCH?@H zY}6X zu%0t(r6!=d@8cuU`dX>su=D$(r039r~d0E0O4Xaw3!PiV=d z2Mpke>TOJ24v%IeY-4paf=WTLHi6|BzUu1506u8HwZKr`q>44B zB3u@2Y=VvYT)GmTuW!33=qP6a$xkIO^z{6=>rDn&1|q(ge{|* zwqmvn{QR6zO})`IkJLaIY2WmFRv%0TsTEC|)?}qZ!U7E73VL1B_8k~4mC&fSsA(=& zjDrDu;N$Y9vslNMgoe+qrYr}7lKzwtn zV%(zycn)wGYoix7!3lfVLSeHkNfwBncivSOjj<1jK#lcDs~9%+3ET1z-j?Tu%6cTZ zBZVR95u4RPu`#I)t62D1BU&WW)j{pdNer2;gmwdASxE<+?DnHOmZaTmG9V1mQA{vd zRFHIn)tyzNoGD7$W{)XNYmu~yo6?<@NiMAOtJRbiwn@V0RqaRS_DRdRDOGexI>oQ0 zuue%^1WFgWB(3146xl5)h(}BCtVhxiflc?`NensChzGCM_PRbv%-b!hQ6l>%4HYOY zACSb57p$66ab2?;JR6uagLT-1DP@7*u%!L2m<>so^T*hvUpXuw3(b}3yr9`vNqrpb z_QU?KlUyC~@2^wE-*YpP1`29QUEeLg?witu}ULDE*?cl@Fxd}`2s zFjXYEamdybPAyNG!y!&ngaPWJD+iMTA!t=nsvA`kN?)0T6CwYZgg1F_Omb)Kjj{Th zBE!!ZC39=i7d$)xqkQLVt;A=$lbBa-5KemzCIzEM%afGw=PyYaT*NTc3LCNE$CG~L zsZZ4ZW|Ai|$LIQ^t2>&8gYVfSM^CHN@~R}3EP2-E)D$rITES}T-c4F4{O*(Ge?O=BJw?+!s|#H<57wBlL7l(fX1kS5)+KQZTfwr;8B!PSU0qG}H}a z)w;DOzl_x5_t2rq9=UD}$I!$R_C)Bmvkoo3*pb@+J+s8tfTuCKC_B3|5USP9bGEyW zejhh718G&a@UbfMbe<@xfzbsmTKr=ON=wo)=HDShDNpdx=>l0BL5Zs|4|eKxm+eu> z`BuKL!ldiNkZ_Dxsepy#I%6pMG1AZ;`SjHJLqe{uA*=r(c$F=6*2Qdvy6%pIC7RPh zw~VptCIVy7E)F78YFphn4k(17>cPl%y1SIx7oBtr$q}pdNAPxb)(v275?DYB3hl3p z6;tJU_0pZ9qCV-XW9`ocP{5!Ltii68RVZ8@qPxI_QWg5h8(kfus{{SV=;9f}B19z8 zm+64Dr4xzt!yX625A$@6A?VTYR)Og9Tpj*^@I)5`Pq$#h7fr0;b{-S6AmJrQp)=Ni zE<1Fe{KSU(#Yx=@Z?QP!H(fh7v3UEQ&fY^TzImam?JgF>KI%3((;FQ0ZD}#zT`zGG zuTJvTcNUEVKKSXiB5z2prB9((=LYE)(0fzE^q#KbW1YkGZMe+zhDINZ1}OC-*;}9m z5s-=~{SICb@KWm&I2@@3FqJ|c06~@@bUQ{ri&K^$6t2}D;Rab6r)N%IBe)?!9C#A1 zcXSaA#=)SkMa?rJOJA27SF2q8RXg#9REvHWE&3Pe@ks)tQ}Qp;OX$7k7W&WhYU@_| z+q9V1Mt_tRW$pB9XkT`>gMJe&{@6*snijit)$gXo*dF>wYU^M0(RZY;xYJ+%iQe#X zp#CGpwI8gHqE}5r^(|p8W{lNOp+)&u`apVvkAZ&8F&q zrLRy=*FT_-Da!OX6)_RsdA9yOEqb>)UE#FV;DxS=F~LIrEc|gh@m^xV81X!BDJq=jSLy|s$aO_EXR{S0r|M!bA(Ezp;Bz0XrtD!m0e*X9>REXaaJoO-mp#-8aXsIO#2U!`y?3> zDDqZ=Vae@Zoc_1_>ryW`~s#pwnU<-Eyk*zn&Vmu_;vCzNIz_E2OWi(%@2 zf(#}31|tRCUu0PKpMZ*Hk<;ApnIgAqZQy93|Ht6=wlT~S8yxCfY}oc6a(>&1sz%aRPT5u8QI~?J~5a;`H11A2nt92WW!;@dqYhZv0kp)8#hu37P=T2`yIfjD=1~Dr?Cs=xxml( zj$U0^%c!IQ#NB$vaC$>%BjYFzK`iAmqdVv#jNy*rICMmmk$Hy?7J=X)jOPML8lyGt zu!}VwpmlITYuv@bHxKa4+6hm)J;*Ldm5GemMy^RtR95=f7rlPetRq@jk?)5dWyE@- z$|7MWL5{H_lfg@ns=F~7j^!Ft*jkJTfKZWh4)&)Wz$7~9T>1JJP9#lFZ=Y+S_6j|>6lbTpY$;>E@-_M&FxON}dOh2LCeWDB(< z2m_{q-3ntmYx5KU(A*!4wb17?$v()ZhXPmJD&q-81GK`iP2owP^he`Vf3X>a>^8DZ z*h^65uf{geZI7{vRVxJG%|7EqT0`F)VD`!c>heJ&V{Tq5O!5&Uo>U|5;kRSP1#Gng zm`f~c+aPjmJ!$MlX+)kjA~qUg^$b2^WK7jdRr2V95uckzR8n%8wR)iVijgsa4W(iD z&E~j|Rq*V#BjoHwO&>_m>3iPQZ5n~QwOS-ayJu~Uaq^F7*haKF1em2YaejO+r;R1 z#TKRUH8Czvqg*!noA3de#9kydOFYB zz*J6YxHL8`;qeTuBqqi*!6KKfGSe(d<@*Q|!>PR0E$B~$=>bsMiZC!cS$z!dE7;*CZP7xErZW=f6g@hPN9Cx zHZh#MTy1*Ca!mMh>fXJ0`rws?uOHAAn3zLHGJ-f=WLkmGveI?(Lz7#WSf>gI)TNdt z#;n8Ca-Oy^&7>-x+1^ya<7jSnFfk?}mOw=(Qw=e2M!UN5HEhrBCdN#}R3&M>OgNS$ z-BFFcrlmY8>Cn&gC6~jSGyn@Da;ZOvwL22K>3)Mvj46t#Uj78g63Sia?=4 zM{*7s7L7J-rd&FY<#RGy#+ew?7E@s~6HKQmmw-v8l|1&+XR?VgfidOsVXEmW<#PWU z(`p_rDP<cp1_V{-^KoeVhx7#MR_3RR`+%XxroS^Z(X&R;R+XEBpM?o_Dl|3>sCRe5^ zaer#+L%DqYoNwyk)C&`1nq|tx^vYH}JKpdGl=g2;%cxlJ-qe@JfX{!xak6MMm7n=S z%bIq{e4*u9hvdnWOS*INcRXUvc1dQ;$t*!7A<1pXHVlL_F;~GjuVkw|hx#V7PLN>G z&M?$3`8e(UifSgaPWuq3b+wXrQK*r@$&5iJV5l0@sZI||W^Jp4P*wfphK!#V1&yb| zB5Cp@N7N?(f4yy@NcLg%K>`-SSg!CynS4PM4$em>dvTD{A#a~#Pt>ArTo<^Xkj%VN zqI6hFl#pII4ZYDP|HWwER*>2V=V%@S9;W1xY`bA3h(P69lKlWDGF;8Jyjes6jIvC$ zM{p=gPGQTILK!Vg!HHo>;%2Af8URDx68j=J zxg+@+m2=0gle=@tilO}A#N*^ORF6}hC(mWeKu>EMXMz5ER_Qu+DZ8l}?>nXNxd{v% z0CQbay0MxgX?CCMB-emNJ}DEpnw^kf8sP-fU7&VQiXBh06LMAi!G@5OC$#OY4^7!i z+g@q?6gtNPlN+Vr*?wVe12#!hE>fL-r%3soOAaAJHNqLHyTDLwN_{RlFjQ@bO-R9O zg$d1ZNhxo*Y*R>Ejd0rPF3>+Y}Psrz0f2 z2AuR7XX+xezlxfvte;lN7z5)?qAqw_?bJooG4}{gtwDZW$3 zhFCwhqEhkhUs6?ns#9y%6^kKxsVC{x_m)5ZfL#m7|g*^?Cl>Jk?vo7ouY64*Zf4~Q?jPn##xOa5wVXDHprKwA4 zF>72Z-i=MvUFWOR3_l)q;5RxW@1Y4^fU|MSc*zr}LCAS779)0E>RGDeI*V;$Jg=~c zv21DTDJsTS%TnvGr8lADFd_!d#@z%uuTN!6llm_xPr!-2C)MRvF3!uXgZ`&dqxh9; zOYx0xif;sWPNzCjLwWa`O~YrZ1Pu!dC1B!Bn})mHPR$PBk)=8(IEiaY-=;p}gj)o& z-={Wp6%Dz{A?-RfhLcWdzp{p!VQbRk(U_35!0MdgfOCd_%a)o|f&@IkcwbRZ7!aBk zOowKMhG`e5eM@C&&sjqp!uXkIB2MtHN(*7N5i3d!^qY6$OprvUJ@*h58?H~QO?`L1 zDQy@fe>E-b0(IW|3)8028#=T|8%=L`(k5*->)3}V&AV$_LJdX>A<|%g05L83vjJ(h zsBPT-BJBq{I$Ja%ZME0|LhFfXJH144rE}6wQ)%4hr9Gw9=C&X$&riIe=eo4fJc1$2 z3+GvxVRA#dv~(9SwRZ)iEoV!9E}GasK|Rsob7@}id0!e%L9zE}M?bjsOWG|eVC9*# zF|^SaSEXI1vYKzFeWtRuzL&O|)_u)C(*|d1e3p*)`4gS}_9}fM>qtMW zMn>9J=ZsWpam_t4Sf?5=63*{O2)TP_d}eL~H8NB%qjm;P6((RIhmZ``6%Uw^3SlUJ z2(Ft^lNy*QEW?AjPB0)&FP{WHl8gq-_9cSQ9QD_v85`xI))p0H*t1rn!8KC_l1>@H ztgHk86t8PK5pud@T&Ikh%*e1>Ud+slnzVM?%+7d0?XmrwjF+_78D%u0E^ux|#w%)? zioO#)^C*N}=%S`GVB3L=bFAIB6~!AG9M9NKrFnHSLqdCU#f6NetnHm( zue+a71B!2D9AWif0?JB^LTz==!wlTEG`wK4`dGR{)x)Tc3b_#^sA2Oqz#ib+)2Xhlv`?qR46m{rkY>y_t%k)p2wjpXz z-xA@!feA4^;s*B|8l~#oEl#73iH+|TuZr)Q&{?I5>()i3?H1Rqn>r>wrdurjuS;xa zM0TrS%$CSUmKOjPH*+o87{2s2vu+o}c*StQ$9#ap7>YsXZyrOf^JE|&m!MkaN=7b# zg*iiMGz>A%U~eSF(4($7oAnDG(P^(R^FYewaRc*g9xmEO=8KFf5u8ae{30>ad3Q8W zW?sm{<)GZWic2pIm1gU@@{1}n>y9EKR;0$vyrhx5)nP)o?hmN)tn*C96eNzx5w=^^6=Eq|QjEXR-D=cem9#6Zj`1V#W z2uF&|?dcRrTsLzq)&K{;CLTTOY4(77z0H5xi(S&we&&}P?tlW09AG{rRu8ltWS&pS zx(qkhr^SRZ=AEn)+k|)93HT(CY2(c%9jhyP_M&?1a9Q zsgxtBF{Q@9i zt+|yu{-b_f{{R#ZW?%Rj%ms|~3Yg^`R;PfUEr$2I&417!<<(yEbQ+b;K4^BNwz%rB zxh|{p#OiPzyCB1|doC!nR;M5sal-t&li2cC9k;gpMQ6?IlUkFq+CtW4^O0D_nhu+k z)d_y}&gxCQM!J8NRVBv2tQ)n&L99A5D}y$~DVnTxRA-qnS#xReMQqkaTHG9$wSmrF z57yc4jWG!Kl2v@a8MCZ2-HVg6*3o<0n{D^j&9>nl%CX^2%FFtR-ka6jcCUL&+r67w z+3p?OChH;{UbpLN+&efF54GX&Pexxs;4e)c4*PVth%T;z|IF%eHz*t8a>R~ zPNjeP$fl`3o@9Nd#`xAb+dz%cTqE0RjBZ}pOXy=eytA#wILbGBKGjrsZQH%~>SS9D zw=CFpZ$aJcvs6>s#@Q2C17;xup^!i@6go#{XV$bkfW}_*Oh+%1v$yjc34=;oX9uAE zOCLL-;MDB5OwGNv0Fr|$K5Lv|eOmSlwotMf#TD(9x;mpPcW{L^%g$z-0wHjNQCM=D zKviX#dfp)$dugJazMZp|@<5&IlKs611(SMY*Ws{(4yeOnCuhj*o85rOWV?ChWY*a1cCiV1|>Ut}+HCSt=E!?STWBxnGRkI8;duU?v%-N;3}>iJD} zoTzPRHY*!8LZMKow_wm(u8 zX9t09cQ!u5fz;84eLU4&{U#TZ&Kch9&&Ip4i9B|PvcF>M(rTAq%$oXOrnNrzm>W=pSBd+WvQ3)H0UUCG87X9?Av*Rp@6#Rjg zva1sP>U^h>a`gFbHuL#aJMU$mW^l|m{>oOtll$3g+!-H6_+e-CAp$3yp7tW!7lK}9 zf9v?aV*w_z*$Hdo+fUhx{`bcbe!Mj@>`}SFq0iaL_N)jb1MC9(oC~LX2NP!JCbJltM?+?R_203?Y{O`{R^{7S_ zZASW`;=@kve{-eDs+@lHusVc;?oi999PFt&<^;i?xjAl(wJp8}pU#l;+}W-QIr>gB!>t`C*w=KC-!&>^QbnBsGH3vaeF0EN|enB>ro=bGm zAv1TTAlviY+-<_|>Y`j9;Y~Z+;y%o_kQZ-fv;uMj1kusV0ED_d=;{^dc@j?KAS(ZSN%8ED&<++_@) z^$+HTq75q^d!R_!JU4V|dt)Csy*0NzgIk`xWUxP)+@x*;RB_1S3JZ7SM%dY1K%?)E zsRdO#bG=+pzG@ylEmC_RmmxF&%vNUize_p$_cb!q|7dOkTtAc>&)@>A04Lbr9gXzo z?_ot8%f04c_W|uXnR|*GOjViN-kB4nHX713KL~Oz=B{_byok$mzJ!~N&-q+8RJq*V z7j)NiPjYCTNM0Ky_RaT%-8XVadD?w|rjK(^*x_IIr@8m>YvIqAxzp|O@7OoFKMB`k z-sbif?px-ZrxE`BqDS6&;rd$7yxR<2jJ5s>P*PCdT)Tb3I4T3x3(jNdEwK^SM-}mT zo=6dr_vn9DKl*)-r6n5LE;<0V)Xkgd#)dEeU6urQwl3s+^VQ zEQ)q&YMx3I4gEDG&mWbf=LLbWEbj?J-yk+O+gkv?sr?7qlu( z2lMd95ps3m@jSd%i4>oo%NyXyVZ3gr|C7A>;C(CaD3#*zgS^+QQV4F;4KU&jDoTeJ zc@rt=*KhM~i9N=a2bKg%KgP}SqmwAfQ!mRymOz9wBEcGy8fyGQ zE%fU2_LkRFPv3U3)TFQ2(ZhldcO>^ND6#lZ?d%$C$z~b&TeahbDyCSRp<=Y9%!#N7 zH6LT4?Qq~%7WS5amE{E(+n#dXG}B^s7wLN~uw0|cdcVw4;w4@kxycg45U~T6L~Vzv z#*NHGZT4AqFjOvyR}5<&2cgpamOuY@fZ6+&MO=#jN%XM}M2SfB}%LNACY-KYTE}yj=w8umi zU$Cs>AyW5}C6vJ(RTHUk)pAN8a_zch6AzINH!MCZku5cv!JxlwIV}+Jy=U3XMg*|& zUExy3v4@uZ0*C2OEF0N42n}E`cs;YEauI3xr%2@PE6W-lBAwn?4sa29{m$~Uppo?- z`G`b(wrpjIr>S|gK)+q+ewkH=dpp|Dor1<48d*9C>vZ<>GG4*xpq@-GO#*Y)|Eo$>FiwEW?Y z_}4Ql{{+MAWVJjU?pW%g45tpku(UA$l#?J-rv+o|#SboJ56`9m;3<%uDfnNk}odVRPymk{!9j2v8g2OT7E+= zF78*TMhW=ixp5ukS=<=q*QaJc9-_;+<2O9!W%};prV%Uzq zuy}vY&!rXD&#s_9D@)-eJMI^H!UX$*FPJUKhEm~J5X6mwFp4kA>s#0!O{rfHfFAA1 zXZfl@ErL3LpIi!7Q-|EIM!_mZeL;n1K@x{`)rUzw1s7?(mG~F@$jAdbHYJ=1D5%B3 zMF~r472r(>#L|}s6);4g)qcb`q@bK(oI?PRA+A6xy6F)O3i7C%zA7zP!l)eqPzNcp zf?llZ5fO$c3cjZL@rvSPGgMW;G!raXvB;)tbOAnxfz+0-wqQAf+&XZf&2OaRlX10BW}7?|r$KtLG588vk&3WRnO3cQ`rhnu*w9rslM?QGXg zDR6fd*&Zz`n8GsaZe{C>W-KmngE#XE?(t9-VbIrAnhZF$px~0dNI7AlmGbSy1uH~P z3g0a+!1)V>76NO3EbtI}K{&du;2Oi)2O%_yMT`oi4b~$6?Odf^S$l(`pX$E*IS8 z;(#!M$JT2Fr3_vOu&qC4c{_e?7-ZZj=;uyGyYTDNf*5zZimmSoDqKbT-DqF9nVRwt z*TS84;?-pL!nyQ@M}CD3=?!7E3(t$=cyJCWOk^-I7|^J2Kjo4URd|U(CdgM8exxiq z#1<~aJLIP8{lGu55YcwHLuX_BG`a8yi|rBLGA8p8&br;K&>8LAt@lTJ=NEN@pQfAjV%kUZt9nI zh1+P|PVZ2NbF>iW)xKk)j>TjBLp|iR(^$pdQ&Q*-?fVrDpaEjlfWq&2un@+oDK5H> z{i1LYbH|E#1*65IFjiG)NB}JTvJmHIA!DKrBMZOdU>FP-bq<3Q5JwMV0`G^wm9GkM zYDH3oSH3O;TANEJ+bZ^psfGLL)wJn_YiQA7M&V3`Mk~H}ajp9SsPE!J7o>A3@`voX zg|{8VF0#jWg|t^6xS+5d^GH~D0pJ(Rrj6V8`@%J}MW0+*=t_(CRu{HlY0>%j3kN{e zro!_z#MXOkudVf3eqn087;z|cIZ*hV!HFUK@Feg$TsV-5HS^cPRO)c=oh^JsEA009 zLY#h()N|Fv!bN!7t}x`7aicJmK6d9;VG{-u2mE>mM%q1*CHOwxy7UY;4U%T1{)55? zA{`X+v~USS)4*&*RKTd~Sq#XAAn>XOm46oEeR9uYjDBd=Yd%UM;LA6K!~X+bQSS@i z(=MaQr$XRSmB?$;=fcYj^)HxTPh>Fv<$=y7dTXGwQ;~|<90VAMcPV=8Lfio)dKXQg zmReb}=sLC3-N8jT{SdL=u?>rMQ>(T#E-H2tukKS8;o}3y4VN`V&se%8B9%{iksp#b zQ2WCqeNhufk<+E*qD8Fr2NIR1i_Ulb{6)OB~5t!mDVE~-UG zcpt{ws^-@TMZM_Nw5dfIRKCSCiu`LZ$VWyD&$1o`Axx}0>{{^uSbOXEsE)90_}RD% zNsvGU*TC*(v&rIKic2=K?$M2JbRz_cTd~32OCb~)N^z%np~WRgahF1|@1AqcF6H^Y zkG`F}zx*+?lR4L1x6D0r&Y3e4JI9?3#OW(y7t@&L3q%)mEjiT%?^qpsjEkakeu_=z z=m%_#g|D|6qh0+u7IQ{hu_yK~&Xns8#4hD7)18Q2N^_&Yu&KBJE9mE)jU7T`y3YtB z|A^%|vdWorA=aBS*w$;Yuty;y#m-x?$=tLz=3eXy>LI=2S!^rx=9nxJA9x-+fSxpg zu}*+T=+|Gyc6Vi&N579f>&Mb<;4Ov4stohsdeT_VD&?WlJwE^4lW=x~^c)Wjb+-0_ zMe$OaN36_?P(PW}A1&ugpZ<3WXwUc3INU%e?M>siv+Vwat)Q%ldY9*B`q`im1IC)TG*8`1rdn4#1sqr6ZlWmQYfT zGypAHAPvTjMbcNaBH)S=DV%&otbxnRq_9Ar$;MVlw{Y3|l~NVW007)mP^xpI0NiYh z^rc-v?IuXI6mS^e!Z>X{n<3rEk=u-yY^gU_Vf1|IF)nLZB5hC692*CG2g37? z6|3Fr;eM;6K6Vi@evrn|%rO~j5=@*>C5_?;F4$z(v~i0RZcG{dH`*#4z`0Sy4k@ho zW=aR|k}lw~pLR=yT!rojrLb_Hso;0mZo%6}q}yojsevRDjl)o{(?DkpyYxo#n{*jX z*mx*yG3~m}8Fx4%eaxHLy}mzg|GPBFiOKzRL0aO-f>I@su_{RC;j<=*D9&ZiKzAY8FpzO^9`=GFNUp@+cD5Y2{g!ep@QoZu8_KB0B z%qLWX8*}Z}S5oeY%g(3Lb&kBL$ox{eo5B_Z4FlRh8n1whi`kpo1Mj78T!6(+$2b~~ z0H8`7qBvcm`vzSDc1oNQF}&;*`V$U24VAe22-jy*MDQ z1x4Ge@YdRKONsE|_2O30`9LKu3Xc1Rf&hNjAkNzf+Wr(Ccb>NGagE}NDB5O)-_kVh zArXFQi?}Vc1iV_sU7+j$23#zNlhWLVgWct*?e0hZIK5NcRGOjsGs4_1arZnx3CvpU z*?r^2LTAK{hs2%ZLHcfJ++t@)=O@G+CcjOxxNGEhZ%y0*^4m)ncZ{SL^l|G*I>s2c z&<)ZS8F9_Qw0Lk%9M!W#!Qpr%Qd{F1p|P9e+T!nu6*bbnP4mQ}{p za|L2~W8+{)f~nYVDl6#SX>q-L;dk4magl_$Ze?5v%?D}Fq5@6nayJ-{+#I)qk~4>J z7sqYzwpnJ~fw+;xGLgqv!k#Bs%lvqTwM_o+tYzXZv6g9Yg|*DRtE^>aU5{HwEceZy zaeDz2d%TSMlUVH8t2jUC1K8nB+;Q^%Qy=155Cy#D#ZRYHKoTme6Yq^uGW!SO-hS~S z(#IL^nj9D(Pt#dJsYw_x=Mx1q2#vo$2)=Fp3{S0U@r9iyunTO^W!lMDt@+@$Py^r|pSv zOf&m~mMU?|!FWXBWf(4=59AnG5jqkNdxV(c;QNBp@ri_E>bdySM5!Gw$DbsrS9Sbu zqU_^;#{WjRFS;AQgQTka@lmAy^r!JB$Z!4gc-W+1Dwe#AUrfp`{T=U2uB-kO??d%f zBsbd$L$m!7enn?*Cw526{S#=$N|^v@fwCDB>(r(&5nnG zVx2mnts^?#RThL+sS*Nah9+>^vizn?pt*_qtN;dn zsxe_a>)^O;N*ksp4^PdyOa20m%NLWMh{LE&Nzj?>l=K~Ih5@=Q< zk{~~A&|+8g;-S=luKAj4q4kS~z!@P|6a4V^hZCs2^&`&$1}%mcvJQ#u(15taFf{kq z1e$N0{{hq)?K%Y?!7(cz&Kymc?FfRKPbTc7iVk*qoiU*Hq4POANGCk!T*60ZAjC|B ze!P;fiq7f&fq3_N!Y?2qUUn;?86e}M_Y&a#;TZn@K?2-A9K)(d3Et%Y=}!~ZxL6RVzrh3lhDW)XYHbF!&D~-x&}s?1N0Q z#3lb74lyrR!YzqzNFz_YN&(=%HL)k&s7Mr1C?QOIrR1SRT3icUZPdZBPbVhEaR zPUL1k8#Rd&;LY0_p+6dIOr-eG{!7$Qyxx>Jlv29SxJFnDCr?Zq3a@lY>Cx$ller3Ma}(k8dZu*hqQn6-8wY_a7*T57kU&(i zJI)QwPfPU2OMXZ^@6HmNyg6|Qg%L5pX0YCbr)*E`&hfpuH!+IKwmg#P&SiU?OpM^N z!+%eNU27SE`kqTX#mUzCN@6L+fJT(g^b^eco*mH|{F!)|qO-ES-Az^>54w}+L}UKp zuM<;Y&)P(qUH=fd7V{4}NTgYZ2q+WTr@ax65_6om#P1*r!qK6! z_YP>ozyU$HPea*pwvXXv&1G;CLj=SRTgYG~H@dZAk+hzMcE3sV zMGySsA}p53zNIt;3xivAkS%p)`QPX&d&2R*(c8{{RUcV%uJrl<*Q)fFbn;B6;U>L8cF+fF9CK_P=Ry-c=9C0oR0TWMq-+-1FtvfZ4D zYNyCtX%=KLD!N)A3&6)LvV2)_R_;x279_NbzAMUmp zSTcb@%4$m4tl0OYEQAy5&`FzE8E0g0iUC8l_@WG6wKLg1m+jfwSM8qs$2A$8YQj{Q zRc#Aa_?ug@^Be;IfnC_w4`oL^*t);{Wd~dI)}GCHXUA>(!H)a%qaAl4PyQXJt|%9| z7nM_xz)&T9=!YNq$qT6zXG1`3I>_qbRsnL@29gPEiFM>~+$5un;UV&o9Mjs3)%@cP71oH6JczLk{5J;5C zDW(b-Fs{-}*qFALspQ$D?b=#7&D|e^F+eB3Nzo6m)*ydH+Kx|>Poq`*=o zlyM@v;-ouqfW{v69Tn=qxZkqGx8491Vn$x*AN2N z&dZn5`d{;la+(E#Z1)YgBF`WMDzDLx06VYCsdlaa2Qs6qM{)yRc~jnt$D4*9-I8y2 z0yb;zQQZbG9{J!tJsS*cRudw@Pvm0>k!3Ha`X)>+E%?$)c|&T)Sp1iK6|qa-zvc63 z9b>{f`3Y(QpFYY*5dx!l3hKzX$3a20aG0^<56%kMFLN5|=%%0;nOW~Hc2`7GYaq^x zC2+@wh5+8+tN4k!ZMOi0fe3F7Qc#EH6}1&Kdr`BRlh;?kj-b=f;}8YS)`*M+1!0Ot z)EaoxP*F(;lr&LL-yHnXR56g|DGRWV!&CT*QW65buOAYGk_3ucX!oy*U_2;FF^BSw zCk|&x6b8V=zjsocBw=QG7sW1;8oMdrRHA9PZV$y4lAi3T@NkCo;_gXh-S|O;-qOB9u28HPx>k4$e`$akt5nTw;?a)~cY{o1S<-Bab&; zS*EapqHvQ+MF=rk_fZNyNpr_3+LCn1B*iO|&YGsUL(+;_3MsWbUFRvhQR7a&!8m<^ z;tw~QJX`16;AIc>vD1rzoME&UQfr0Re&wBQv`GXMJZp;ejF@l*umk@%~HULbGq> zvnI;HaE!UaY4a>)16$w4M;w)HX{5EIVXLcBK|J7smlD<$Ps8hdlp3N(zX0WX;`!cn zl$S{Py}C*&&xV$Cs8uK50DLP{*@htcH&W8C^3Acg_SkuY=aqr5;EUHeuE zyPZ$NX#?5cy#_0{`@nApwXz`%QzlMbJNc*OxL*&S@bdTsDt!5=!ua4lWhYuraGS04!y}$3sD#hhrfuG%+Dv{HIH;;f+QNzbebrgT%rjQGsxFf9 z5$>vMB-MMe^#Z-wdcXRx^``r&Zj%2O)>0{{<({%%?uxF2sXS5pTcQA*T31EpY{>s) zY7qLlj*6SqFAh;1pm!!{0z(taNl+QlSjFgKP*W8wy`6>|G-ri7-hvfwL@QRf0c}_% zv}mi+Qwz6S_Rtr5h*TtuF-AqX(JC%#s$*1Js6`^csQqcR7hcp}vsd#I?U227wK#=$51sCdMS-~+-CYJX(R3`kx$dyuM#^p*!hR8MIl42;`d zQD}my4m#J~w=MoYPDK^42@D39Z%J@rzKtwZsBEuGIXQwio zou8JeZqld?;PmLE!RUg`m8xUJ#O+6^you)ej8Vb2i_>tsaVl3rIC_#wL8D1%L5{`-AHlvQ603P zL{$$hUki4ZD2?9e(p`BId}OU^F|@+Q%kuRq8ENX`PbxR+ru<&YJ+X4D>aop|ShHQV zg2sM~LI@lJI9EJo7wh&8dsV$@*lB-LDbd>1?g9ATAyt%pM9e#8^E1tH)hUWu5C-5s zh^1nFS0&OAW8}PgUgd{&+*i3W8>^sCLt~sV|B?#Z@2uYcsp>}Kqjq!*=sAQZ|B)(^ znrD>@JSM8}Rl5Wv$|Pz|#w6_0(R3ZzgaJ0-9+;e#VSsEma1v`;l) zoZ+hu#z1zoo!vtZbuC(U7~shJH2l(EU7tpai@U44qpU!M2U-{oTJ#gC0`aOk>IZm*H&v7Q3$E8({SwrHeInFm5&*3NwKvTw zPR6-9MXT$g8C%;%;+`>TALCDpVcRp* zRBL4p3=BgRxoS_eD^q>zzmL7BdaAlF4$W3my=W#EBe>WF?Z{QrJk1AyJZ61AI`urn z3Hw;oJDfoy$BNb4=wz|tNUK^()5(E~6-NzMZ*TwtcSfjJ&=P3>ow_rP<1qx9j#W=1 z1b!Z`UP4R2ZK8TTO>blf7$&P%69PU{X$WAz_(UN*_DAYxq*=!~YMND&4E6qV)l}=1 zn2W;~s8{ zT@6bS_u(r$)g=^Bl|+aHv~aK58$aH!{)PmsXWL=J(tgL)2^5z842J;D6?Z+YP9f~p zoKbhAWH%I5je~P33oei$gj3*=^Is@%-(~e8$}Yj7zr4z7(NwLbx+?@N4#l1CsQ+~3 zC}PPI^$Ch~;v+v4G7Nj7liQm5;j#`I9|~8)J9=nz zJYE$J@1^vzSOEn#FyP=vN zU~>h4!4HOM;Ojgl+c{pdHjK@_%hv?>Qw*X69Ra!zIw9BiqlXtXD)eTICWH=ZAc~%@ z;XYU1IaXta{SJua9Vcl<*8ngSYbI;pLn8)DFpU}u1G&K*%q*m#`9>4e#mE?n_sr6W zSn;sSe2oW1Z@>WdyBq3%(JctKUaLuh?N5lZmafyJ(@#)=~D{gG*t|OYBTsH7GO?#SK1JD3V8eO_TWe?sXO(y%z zZ2e1`jhwq(yQZO8>jYQ@IHX#0mS*r|E}nf;1D}mDR&4qwJqP_A%?WA_7w&1|IS$<( zY9{}8>thgwYQY<$f?uC#<~pE?yB@Vr!E?>5|K2=eVDJkK&7L*v#g(r$S)2+S-)d++ z3t>2P{#!%!Jq~m6>Gzs+j>EuD)EqXC)h?l#3j>8jB)*~*t-R-~rF5l4G*8yo4Lwfl z8-ORdY6~6F#f|PkxW1=0gp$%AG$=^xfy({0a3tFmZCg~5pba2po+!{yTTSOHEGP!h zM-B`_v^oG#!}B!3cwM0OEj8D{b+t~ob+9(lg%vzETuU1n1|bIQXd~@aZsgw9OuLU8 z&nLCe{={X6w9*E1A=k>+9^p#kgxblhE8*87?P!{nC*Ti*P-gX8Uld+P_dTB9MSGc( zYEp0QE1El-FA!mGh{ie>9NJHt&dE1-pk2Pq!FKtCL$%#$h6$!IweF!i{*b7xW*rg5 zC)&&$uF}$W)Io^AqWaDA;T@UAPCvw8r~k}or@tvl8%8nClb|#R@sHni!}1JmOUmxZ zA$VnJuXBE$lxb5y+gvTxX~fU4b{O7Pto@#wg=j`-ZL^T`-)U)PAp{YJ%v4f_0#K0`usa-?krp(3fc5Ag9 z2lGBH&4W?~X5D@*)#qT$#q|$qmvbCWAJNj>!7(rmj%ul9A0YQ#YY4I1HvqB_VL3Ft$>nA z?94NFJ#g9`Z49MrGXUt%w7&I`MqikOH{B!Al9?3oA8NbMJlp~CV$sgOwVwFXGc9bG z&w%xMqkTzB5d+u_ZVcY=(Kd)}{!V9`V)Sv)*`^q|ZaUi(V}OUwHpO`4rCUfd#b89? z3w5qDgLJMqtd1_%l@(`YsE+0-If+EE$Oec25T2hl*5z=*?Q5p9O`uQq(&Mx?AjLtS8GIu0=rwsC}g}Zmw!EP1gE)hF*)wQIV zQ84X<-Gp5x6&YF~demF@j$-!w8Krf2b9Y?cM|X+y=gfY(mK4v>(3ek>aFbYFnG-tO ze0CpnKS5VTL6LcoR#FYiV-McxuSIo6In+WYE8#?~s&zWp08OTgqX6|EZS0Nid>a*r zrE(oC_o~M4R6124q_SL{GtGY9fT%`KDs&|jY&Ntq_QKbP>n6JLs!_&R9nG6jf`O`* z>e}Oj<8&sP2f?2aE>F}waR4gErsy_Mio;Tgn5s*u8I|5Mbnx|DHF|<{OKL==+icy2 zno(IYPxm{aQn*m}Lyf4MS)@y%rGml4HwcSqD|8EM#Nx(Eot~BjYu#6Cbn6I}Wk2ec z)riWQbvhI2gX*7jG@G&_#&b{oqzggU{?NIixh_Kj(03bjjnJaoI&WA4XlRFj`dQ}` z3|yJ5T92O54W|~Jw1c4?zB@4XyRJ)vPK&K~bg*!u8V|jvOY(qp+Y6n$Go<_9=$;eF z@O#}DQm?C%9=>|0#-1*EG0?%?!}Vd_km@4zGeDL2O*?(O3#5a^dU!8hjc>*1;|Wg3 z&g}0~UG=-j?0yGmPahFvQ*qgO{d8&-+kr6vcP4s! zd_&LZcmFNDoX8jcKp#T%(D|v}iOAREC997Mul0LK`P}!cKH7cK!wQRP{K(0`=ySNM zVFmf!!rQ>;d#A5q4*8uJ#Qy(L9m6^D`#^|cC~3EDQv;*7tIZ6I-WIno^e1+IEHJn? zhxAQ?;TX+il<`>2EFG*-+++>LX)41{0L#7%U#T>}!z;5c7^{;F3#gSy(DAr5gC1;x zA6FPy{Z$$SUhw<%B*Ousx9!smD~Uc0a|}<(Z|OqA0P=h3asw=+s>X#Y+3N$x1;Ao+V-sM^8h%!|ku!Xc7RF8#s=%P$ zAVTy|J64eS0^=4UaIC}#r?^z(r`?R3$?p~48WSPiGQ^nUN!RYmDn?o+biy784&a7<&;P_02XmCuE}wjpK<>`$~-=6h4PxW){Zd-9v&g z#(NaPGV@Q*xyD8-M~pSn+?4U=8cjHOys;yVtB{M)qsc~^XHszO4ED{K_Iu+LXHdcO znZ`>rDwu1WkLS)ZM$z~ru$bovZ7*10+(FxR%SA?-jWO`zCB})Q?RG1SGz;v2`h1L6 z8cQkUM$E+yKNx>=00O`NXxv0AeEfRjOqx4HAW)8;>@m8br|kv=;H_JX!EQi>nE~C| zX-uFLsvHAm8yDU^+~BZL1=__WM~zk|NZ*_^)*`9rS>p|oK0a?uhZeEC+W40Imi}ox zM$$$PjIG=u9q`h4I*d*$NvP}dyN&UMK+||%n@mMbOnHD4{n0Ukx!V*&< zbZ`7ag=sRSrzD{rYmN2Lq=2SwsBLWP0PHfxbj{z!_wU&znvIc2A7FuDcP^9E6DS6* zG94k5udXxAt4*g`CLV?%{z21P-Z^%S&KzfJD>U$sDW3)r77$_2!=^Br*xoHGITih^ zNDRQ|kC+n7!SK`L*WblMfth=`bbF{J){&ty16 z_#9sAlblR`2L&WEDqRwk{EnzQPxJNYP6{yTJ%ZihITi1b3s9Q z$^Iy)CoJJ|7f6}svh|Q-aq>LgExf2WInxDIob&F3Jhm1!L#4x$X~Q$>uqZhUHuQe% zjMNQM)o6EpKGW7n3XKRBC2P=NWOYH0r&t5{nrTC+RW0GkCIG_}v zCmmDS^^z!SU6m8AH!k@{Cp6jH#~+=Wlzf0rLS?8p^4%)UZFT`TJkFgmQD7| z`%V#!&ZnnlMK7+6RY5?^U3groyodfO8&%UYhO*C?ah|%evtf! z8=GDE5+VVcwY;`xd%Q`89rzgp$G?-|O%Rhk@Gcn+SzxkxACup6tqpfd8ANl}%kxR0 zI>-dB8;fK+OM9UV-YTUZrztoPZa-H#L738!Q^bWX zDK<@Ic2BWss=QaqXzsE)eN+D8>E&^%_ZZkSr107N4XQ%V>cA*XchR12MIkm`>#IVmnPbt&yBdXpU( z@6e_EO4GOP2!tBVV+8_$LAFRIRKC;SABoaZXx{5FF#Pls9?k5|Cd9W$eaP7pX^y+W zSH-tYU2(&_6uk%U1v}%LU6v9;6L3DGU%TP#gA+%l?5)Mfirb(RI3<@EN;N?1#&6t-`*oe*kwKHWuS9)xB3Jf?*g~UTC?Lye>>{}_@xC(|pQx-Y1r9lr< zMmVt9)sItVaHWG@rsTM>rN6yT+0A8_I;UoO@V1~mDKJHl`=!#H%g#&@7>BQT_{be+ z`lnLuHbHbYE#wDJG_b0u4)RM%@xx04QX_f5?n%dxI{0y5YHJtXO7?z@nGlSwpIWmH z+V$}xH>7NkdYi5v4McaRz_a&DA*tIb`_Vwuz{?y)27eV2A50DCFrkY2uv-iYyyc2M zE{7iVM@uS80zxUO*y!knyR=SyK`B!yzTP%X;+K9ed>FP=>z&Kk9VikT^yS$T~cXQbbZEZ-7R%p&2%%lXX<8-jr5z; znRMNNbD70`QlHk0%{Tp1_j7C-4631SQU|AoQ;rKsX!iyPwpELg^>}H;qaI?Vll zXJaal=Kdcn#$w_t$*JzOn4W?EDo%xgfb>>;$eIcR0h7%yOND`e$x13xKRUD7KBH1k zJF(eT<5OWwU@Cl?kouPkn{}O@`kN!0y^m5M`ZE>E=A>%f*zD6Kse8H0_ARrwma`(Y ziYtv=mHNVytsA|`j&O8K>U54n*7npQj>F%(Q+Lzctb-l~p-+O;0MxZ>sWWptA}Z-# z+8wVxoSFoo9m7^kG$){v?)6V#(6Sp&{4MnYN4>}S)HqI2Yp$lw;!20zO8tft=!d(h zREx5icC%WfyCJ?qS_ta83GN3gpQO(8wRud$r_>V4J~0RpU<|+-U)C;*{nKnV%nL|c z#ThOlD9z?Pmusi}!j-P7oA!y5b8BdtCzn0j*p9HWY1)rmU1RgKH=KGh+NQncbYh82 zgQJ)kKk6QpX5lIv?qDyS(J5`5J6nPOjUCtV+q8AuWqbRknT2eHuBB-}%?dGA?Kjfv;l~rwmNUwRjd}6vd1);uyC*0c;1IyMp=-&hF1T<}+AvP-m)F~c zTff1s_T-Irwb$94X6v&Tx7gKwf4g1nE_>|=7xvlJjtzUY`;?JG~)6`Xe_&CIF& z`2~CFu1jg(acY;|w&S+AV^{l~yJ`8H+B52>+tl78B)ynZ`-z6>Tjhps z-KP5$@#!{~-=a*nx%_WBJHm29y3OVFrgWRjr<>DlE}xr|ZgcsrdFeKnKUi!pon}pc z#dW3GmFc!H8}VIwSI#13lkBYxnUZen2!2!3Z5?6Ke!E5V2h&qHi(L6Ny+5@@Dh8zn zqeoe0SN!Xl^mSy0Om?)xlP;z=V!a3Lxt>n5aXiz_Z0O#|^G>=KdQffjM~|`EAfSFQXLwf&&?nom`bVYvqnzcrm-sYOzD*Q|_Giu1oibbiu<_omf{=A_y z7~k+S|4lQ3*jk6pZUW6TPZj|{icYmMN3aV3_6C_{?#M4J!5>A0nYYr(!~jO&Md9WM zN|`u>F^$a^99T9v&CE1k{oBNg!pEDNsb0?$1Pls#$`LsoVWxQ)@|j4pc4n$uozDmv zLh})hO`j+;&8^O7tc7B8X3dOrL}I?kvDwtoO!E-zGaH}IX1bH5I4_REXS$lVacma! zFjE~PVaIyjv!<46-^VCx)`57T)kohIYCS$0XX7TuEtkc8H z1861zpAjy^n@@0Tw#v*jBiCmvKZSV*&8-T9aQ!cHU1nrOeQys9z~AZ3nI0%{WUb!+BHQgnQ7Zq4y6{L4I$ zD?RtYe3%_faFuID7*~4TJHsY%m2bu}PBx=|229ErJqQEr6&!->6>#m0&5C_N(%m$k|W_h!_E?uj#C51`KGV0=9~qnJ{0 zaR?B@wsgoC&*@@bw+x%!&iBr+=`DId2E0&VB>6qwu8ZY~c3sHi8Cy6}8!9v4yk@5E z1C_nPB2C6Zu5_?2qYc;E#N>=aT&XcN1HLh0E|a9&v)&mQLn)OdMeC!?^|x3uq)x1V zr50s;N2w+j3s13Tm^kLHBkX$WF(zXiS9*1l-T0fPWSrpSnKsp4nle2@MBQQ9WIhZ- zue-x;O7i&`kGP1ST$Ry;S}KBwoBfb6o#TIWgIy|DoPmRAXItqn9@Rq``Yd;}s8xm^ z&Oe@EaAS?|w||-Op*Bmhzh~x0 zT9WvbPv#0I){#dCWWw3(j86{;%7jNGOtxN~On8UNWG~dsoCrINl2}{NFw+(+`Zmsl z+f1hPZIev6&1ACMn`N$ox9y~^rBkM@+YIQE*|9ELIwwBU7O;{MGZQ$Io>FJN;6l?` zqrHihNtw1dr%1`%$~Dn6Ewdinw~!_V<=9K>=4EeB^8^+H?0FxS?%lPS zw#dJAon4-!D!bBK{gm03Q)J54%zK<&^*b`*@dhJs%&yGloN}@bW`1;JOUr-Fgx6n8 zg{G(MDtmL>ESs*^1!UQDy{c}OP1mKtS$s}YI~!)%bbY*O)(Ks^8=APF@ zSvLKx65A`p$7I>`$7`Q;hU0s?Yt|Mov?M{-2bpAvZIJK4Eb2S?V*|6!{`XjlPY=op zq8a_*x)?MlE{kUWf*~`qd!kT9R&8`WtU(~IjL#b7h$>tS{-~ZjYs!BY0uewAfEQ>a zVJ=SBXLWW)A<2dyyem0N2Rk$oI>NLpnoT|!`Py8_@WBn!vwoy`r)Eb$Pnu=>qs(X7 zzBoH0>zEV63lGfAI!P_+)Z(m>w4CsGYt{l!mPGq8SwfnfBfgN0W{)`l=!5*aXS<;5 z?XzoRzZTg?SiPY8ZL%rd=QCg^uG2P~>J#BFc!lC%K{o6y!T8bQ$n0@+Zv9VQheg@X zDGm2enE2>yvjZCJV627ykYv-`p4$b*V1T|fbIs2Pt9xWW_CzV?^+9;;pzH#Q0f6*= zRzAFBX!dGf);krt>@asWJ0UF_wh<(Tz&Ux@ZMp0QYxZc?Jowx4>?6)>g~s1yS8&-) zs%x>d%&* zId2yx?Nat-%Gl5goyvabii&1A*TYwCWWRM`rFd{JyAjPQP>_N}#N!@kfAnIR&VHAD zm$SfBr<@O5c9D0^09Urc$H1KFz7(CsHXzl*flYJ9Iie*Gq}1q5$mCI_JJ4dipBPA3L|pdC6n5;9S2ru-QK%a}K$(*>xRq8ac7q z>Ml7$xC%YG=ZI+fhK&ff4yT}1PGI{<)XQ)Xz(pYbi=0}h>y+dM?9+3f-Z}f>$T1KO z-Rz$;icVXfQJdfo19G0x#JMlXHNlmGbGEbELxYCpP;B)0rL;|OPHavXr49ZmUeoxT zJdW3z#GKNa>+2U;jvwn?=&~|LUvt1SsvIfjqY_QdZ4SGgA*Z6|*gcFnRD03=FXQe_ z%Gtvyae8VF&7l9k0Jo;)c>Z57ZhS`0QI1z+cFxqA>nkxQhw9_9FU8wp$$^L9OdoYF z%%ORC@+BUQD$4nmW|a91qq$$0iIo*OZXT#OFg^$ukIQ*dvtF+`*FO+Hnvin>zUd^P z_SlRZ*fXEWc3hZK+ndem*XHzZ$!2%|o^zb5u;5xwH)po=>8+e^xd7bvUXClPHmrM) z>R=MXo*2MW*vI{#Nd*%lEutEd`=k{iU zGENQ8P2x&#w9UO#hplj;ckXab9?iG8D>&Kf46>K59+G>GEB!t`_bjK8d_^wo;LGUL zL7fYG3NqQVhFqKWnx*Eh=7zfK=G@LS^9ImUPxh553#R3^=7hV5az{}-PQu^M&pqwQ(kxh=dx^%20pc6>3%XN3Ku5`$bT=;5&DGl3Yx7;85b4PM=rX9hV%Y8lv6TbAwU8q@fY$zWD1wsI%e8_)91 z8{*4K_jhQXO}fQR@@&#wXq9K{JFWS7i)$ubxG1kRE8XLQq0x+VxJsPo!&&T1`@C;! zCK%fQ2!@(>&+|uFJ#zf8uUBpi5Bqk>JHi?4UN5_#Q~KEjJv_uNXmEVqAxd9lrqwTa zm)NE9s*|mS=m&Kk_58m7@j_2j_Vy9nU7c#}iLT`&`(dQXn@iJ&wdTAaT&T-S)$+?_m~IiZ>RGr z0w5iBJ5S*XY1PBL4la;Be4f{mq_yAXc|!T-MwSz#`ZJz|>aB}S{4nAIQcC+22C56bFFv@P}HKVw#se%*74rSl~3)cW7ok%ThWg&cj!O zEmXI?41v553mohC4&4c}ET$z8(a^G&S_9LYTDA}Z{aRRlq$M!FrA0(dAV0z~nGkT{ zTh`JNh!bJ9NFLWd*J9t$SO%sI`B&k7WTNP|}ay|Bm;!P<^7om_K;1Who)BbEu_?Rs#XC zmc7&_D2`)e(8~mR6LgVT_EQsBrLfE-8t9_7{6MRL$r{UI3Ln5)y#+Q@d54CW=!Kt` zWI0AHymzYQ2SVWIbb9~u%&@$snHGcp#i56jEN*y;#q!1vSTLV-%^zhsOfyj+a2Vi@ zIKg1QWts(!YkP+$&#>GhX%Vvcc|baDu>}r*e~06iT448&cewd-%W;yvT4A|L(zB~9 zsW2qtE*mU&$?p~$Eq6%jx7o6Rqf% za`NxWGwhsW$nTa`WXfVaZ&46h7cR5qtFBs7$&@AFPxkkXJC?>?@Z063Wg{uy_RiAY z7t&WA`4yy@eD8cSNpJb)t7tx`2i*)qT{k$o;^QItW64CGQFU75{Kk|c7Yl~~4t5P8 zn_@R_o}WfUoz^P<0#SvzP5v|@GEb2IlBBPr@|)7!B@*g*VTb%}cGel)@~IAiWRw6% z-njUi{MLliihlWwmy{34XS^h3P(HcK!9r<1<0T*C@)<8VnUK$T$$VKp<0V!_ehM-3 zpSpa;?0XIQu(Rkp9F(5_n&5h6=f9woRf+~5a&Cp!7vzWeb7n$LWAeF~yx-V-+NlOC z)4$;yg6~Yo??%kja!S6GcvSh+{6EO=xS9C@M5NSttV((;U{w;aDBquSoGxovm3XdY zRdV@9RwZlJvnm<8A%7uJLCc@n>m7c{XJ*}}x96`W?ohHbzXAFGtONPsL`6Rz$v;8T zF(>kGl6KR7&-Wl5ui#4l8N#Pub$)Ai^80>%E~)q6aei-_MR&yLGuv7G(9S_cZm4rz z*ahvnQ$a9LV!ME^OTiv!AD#9pSVtHA?eMT}!lz&eA)o7C@PG)d4k*YV{&b>l!8S^N z7={MtKdg_g4lQuO5n%;zgds=#U6X>k)P2{6>4kT;D0o9C<2D7Z#16ZJ1-)DX-ob-_ z3GO*YlOfZrP05&^>e>u!MK-AU2p`IKHCbKIt%mx3vOsTxCHb1O(JDBp?t;ClvT2__q(fIiX-6 zjXN@}Wc|{26AGMC5P)O9FQ7W1!3HxJH=16+#B#5h1@lSZSTm;}kOaD2^9raAYGsha z^@a7(-IWEkm~+z*oSSCGwU-viX3d~A6p(vB?6Zyy7o{5u@@Xbi3^F__ z>5u1bE9lytBAnR}hT^dw3dnH2`BmXt(#xMX6h5f~>9yd()ug|S4KLhD%KJ1bTt(7n zjSKgXbYs)P>!e>zZ^Qn7SX=i0@7uBe-zi}Kzc7aVzp6d^f7g!e|BrMkJWH-$(3AbY zvN!vGmp<(O4}V*DjQoGbVD|s9L)rg-7{>m8m$dL68D>^13+vN5JqBy5Yhu|5x6~kb zh?@GU6MDAC5{BC)7cM6DJ)K&(hA7XPRVX0oI!htdgL9je`lEgq`UaqPmtDu=Y1YCS z{x!1rACn5130(K7tjRl0FZ@JI-f?YV55l%$1FP~b8(Ed#-NdSV&6dI>qVifh3nM7Q zl^<SQz8XyU#uzA9k$pCkjz)51AiQTnj1jv zfdizselOhS25DdKzDu+L^k%o0V^*PFy;67>NTHS0g^Oz-Hv<`ppWi5a zM(O#C`uek5x-Gq17)^6aN(97U1!p&qh}@y9Z2!E_6I9;eLt%vrq}v^f>JXEhbuEJ1 zx%>FGe^CIq&C0j6i)e0(Yzk$p9)`v@DVj9R@m3$iY&|=^X%Wr)nIRjB8zYUwV-K{* z#p;Q!K8|RCrZy`wQW$4Xo1(sCLoZlP*SzQ;EkFY|vLRB7BC3x|zMufRLbfTQcz1#U zWsTFc-S7R8RZz5wPLLdS>!6duqK7n51}G^0_r79FI~LvWMrj>+L3mEzB1Gf(3@o#u z*s(!HE4+z}c!aXZ-H*x5Hx~`|WO5%1i?;HZ+@azkr7M$*s!-Mbx9P}lh4R;YY^F&DJ6wiV5z z3C>?&g`rom!K#@%i$ZF^sx^B0Yf)SFP0zWVMX(iR)tXxVD0W{F&0|IzKL%Bdf81Ym zkH&=m3#R9xqL~gXuLnnpCe}n+4ASm#WU%nw6GfFQES8=w8bdP?`%JX!@Zx%?YIQ8^ z+qlW9#ebYDQu^_>vUi7l?iNvA19w!AAUWwV_uQIq0e zd`(^aj)g}L48=4HPHo!k#jfY7Wh$QP&PuU4vv>oiodQeoVNRgI*5b8X1@BSC@Vy=* z@$J#YXWZEAktxO7xw zR25SU_ZWhhKTSvE?I`Y#ul-bfnI>3~ixFJxg0g(gZfK#C74E{f6jKb%2%xgr7&QhL zPjNz;nXvhD%k9N0|9dRJfOUjYoFbgJyLhz&+kD%7#WXt;?njH`Dem9#_os{d)Iu}rrv%~0H;aeRhyf6Kc0t~SKZ{|rHDXS@?_sf< z8=JlSvbY~BA&&X0crjPu{(I63nYw#F79ZwH=Q@=f5&>7CFroy4BU9R~UCDPG?m3bDvNdA+Wr;B*8#%rq z-Absomj*iwK)(A*1JSNQMX;(64og8*@nt>n_-{&n@MU$}FTSKMjgG&-_D1pBN_?=N ztmJo2($~fko3?#3N^IIr%PRTE_AXp(DS^?2QN_iglBS$0{K`wJxl)IbB`OcLLiQxP zf_hG|E9k}dC41c23J2!eE6kd2ukg*n5(S65X_;N|r7KDva7`5bP|}jK;>Han@F5yQ zXX2I;szbIJjqEOY=#S%emcZ8|j0<1eUvigPy)4+_k}ZxbvyfvYa!#PJr|tS(a>1_O zkC#e5a8h_x+x44%y97pWMz+82mB8@LWPKl(ATEoam(1aCb#F?3^8D{nk3`V_6^u8c z?=Nm+cC4oP2&da*D@^iS9($n+1GCg9{t@iKzqYD02vzu4T~Rw%tB!)?5MQed?K)zr zhojuA2Wci`HU#(v*p%Xij=95_v)so@G3H=^k~{G*`Z2(Im`;{T^t8au9Sef2A8GE| zfIvFA8FWDd&HdYMsc$W(8NzKS|JkmF=yfSRaL@X-DWto6OC!M~_(fo89S=x7!%E?3nWgx8cCG$_2COKMjum-LztSus zO8p_FzY>xEl$CBGmYJ(6btBZ58A?k%A#IdZ%BbK`cBw!4{mEJiul<+eg(FK35s{Nd zl^!FhXiRBGQl34zbekKbZDy60QN6zBx=t7xysmT>+Ow}|AH-i@x`e{*m~pjjRq02H zYe{HAk586%LTxvfy5Lt`v5oVJf_OUkbN!Om^AF(ns87 zOI*s}hzq9F>{gcK#b$2@+Dofym$eN*yGJ*xg`c)8+sW14)w;|EmJv|~`_3>3t=pCD z<#0cW%itc8DLoxyuUpZ+Y>x+9I>RE)7B3?64k_%y!kFn8JcX?8;_ol!Q^lWn-~VtZ-O(z0Wm(VnljtNg$QJ6PVv zvS*yi^LLiz!l!M7`rrHP4gY$;UbpCwox1o)Sro^?daCRj&QfRpD0AaVA6+T?hUOjh zKaBRc%nu#1$Re@x(=w`8j9+5mi_glsINIln~+-9&er*fME z2fLKp9Qd4TIr%1zXvo*6+`{#z8GhvjTz?7)vLigIZAX|_w|p0;mh^CYg^rEv6&^IU zH?gW|ITz+}daLq*R8xq5jyz$=)V_QP+KY=qaMKRuP85ERWgW}gHbPyj#r}Ap#{JB zP%idCr@G|$<1StmSG?G4M7@ePb;!+-t`&5WsRg+jK@?Tk7~Dnn8J*17djm*`3{y0~?21M~vVZG|Rm zog0EgF_r!Qk1N04IyVTNlvF-M-M7zeik5V&tcz~{0?5)1kPF-n|1IiR*%IB{Ha8eW zcBpKG8gGZz_H?K$`)^ka-#)hqO6gR&5&1;}`}sTO3eoVLbL*g+JLc9x#a$|!q34~U z$&Fp$zr5G;>LT|pl^y?2D`R2T%F)r`dcKISH^zuee1Sp4kBpW`BBS(C(OOYtv>-Cd zAVhm6RgU@BT6lP2P*;zt&<9hfgMm29Z!K;`5DS zQ_7Vuwc;j9&v+daZ1B2i4VDMoBE#b`ywNRw8ekBR1sV}x2AKPoat zz+(MNEwuRIm3r9gr^=Ha;aa26AmD2yTD}fM5{Y9(F+!tIZ!&51dO?&?%pB7;_JF!8}yTAfym1&2mt zI)xb}2C)%*g0B-AMKK1wE=nkg(($zhgN`4m<)d!R#|7f9XvBD480gJt6h`VL5<|2| zsFg^Je7;y8ZHfl&dYu4ei)I93{u*?i7yd78^AVmfa$xwsv>k&4(IeZnh?EH0@=HtG zgf}up8lrWPf+(?=A1M-o+9UNkkxnQ9LA8+r^u2Ia5ayd_Dx5+^phLaZppO=5MfwxF+sG}WYh|@29dxRqXh-Tm?V)Rfyo#p(xcNV6o@O{ zpdWalUu{@|8ort#2$OuhQFQvybOHKi=E$&6Q?yVl(Z)b87DtJoGfG5SaWwSGNPd)1 zAi>q!uVp!fMVm|pQ%p4UTs?G)NU=^NiH7d4mx%RIQITTozXD_k*Mc1kQHIE9gOM*1 zNn#|?G0-PPMgc!cZxY7naP<_llNa{Y24jpUd*^gP*w-60py~$Kqfy+#k&Pq7ZDZ29 zx64&FV$BjIk{BggeT)_YOf-a*7?aQ_5k`uPd@(2;Z*ZNI=@k0)cm~U;Ck5e(HPgrO z%KybK+D70C-wsYx4;a+5SAX@tc%|^m+W)4nM#?s*r}M5lVPBWYfVv$W+cHcKU0AH= zM;Z-UkqE36BN2(=PZwp3EMz2=op@b*AQqV*4hf<}(NO}45u_6vqQyEsj2g&4Xj~BP>hm3l z16{|UjphUWD3QPr10h3Vf-nM(8YMJ=$s3Rkrh{P$d{SVDf^ke}jFd=BAfPeIpcRTC z9wF`9k#%v`B_mew!oS|KNsp?Gy~`mM*kS0K^G|!fgU5lSWyy*PG~X+V)P`WXE}v_eH15Jhn}`#>{wp;zZfX$ z%f9n3-ub`!CI9Q{GLfFP>CDX9VgDi&+#1bnik`lkN~fg^ARH;}|g5{~<5j@b#v}2%R1|Ff8g{n)TN~cN2@FxZ%tI9Vf=1 zHNw0kS|kyOC1PQ8lvb}5OMnK%O?H6R^2K5p>x7~x=#vr=j2kdk2>5!DNd#4+SqH6> zjsypVxtv6=H=6i5JwzeBP8?%28bndidYGNXM3bSM>251|peUWP{KsNwgtSCl*U0VeHgKM(K<&&PJQ`MxDsOkDRf1Ha9AV2qFzI>PaF^AdQe8 z6(iy6BlY5#s3@VxD8y9_X71*N!PqX)!$4vZ!eC;839DFdGDd5`yCr0-$Is@Cgz@a_ zO-3;Sgh{^IUKHxqXq*6@Dnc$ucxz;n2%-2NJuO-!;7f!tF~S%l%pi2pF;PZCB*ef- ztsz<)3FB(^*|phD4Zb!7#tqNSTEHtOGwiQeCFaXM_Al-z`d_ubt}MR2kNt}{==9&y zZGDW)7Y)%8BZO`UGBGf@(CZ9BJ&WT>0&V$Qmls<2$qT#o1&wH z{79Hh{G)rp97L0|U-q0tbdj}#enVqJ^~=0zq6L=J%vU*CQ$+bNW96p6KPqa}_M zn_z^}$G`;4q=WkeNu&Vg;HUS&fXDVNL9{7SATdSjVO}GM)=RV!m`lT*nIxKtJuu+a z#o=?NuY^(WE6tifJ7gpa`+CD7l>K0q0L}j}vQa2sD8{k9;5Q;3*vgu9v;s40Nih*2A(ixI$7LJ}p=3$!S^0M)~TkB)=h55u4c z=FbvQj7cXl8b$vPdv5|JMRo4~+p-Vau&>kIfGjGERn=Wx)u;&WaRv28e{RrAwQ&Q~ zsEHa8ksu=i12c0#6rmv+5ftN6Dti)lRET?2X0S&VS4^&nam)X6s%n~^30B|h^S}50 z?(gY5897yTy3VPyzwi5f-*3W7SZX@1SP@-G>tgKis(#+K>|b~$=6+1tx8#(VFuh6< zlMDi!J=At)Z&A^qs{1HIJAMBNQb#B;(y6$XmTPW09ye2}rY03bv5b_iMeOZ2E<#o* zA|Tq^``vaA6VAV@V$G*ekpXHn&+XrGx|yGFMZQQ(SX=8&IF0cVNn{j_V;^VyI6WIn zYevdcq7hBCx38_`%Qeej--@R)ifKhHmLMggB%*OeQ{~bdb*GWDp#?K~+EA5bQqPzi zeNr(7s=`!b2T5miRV+`|vK%`?TH3#8Q{2{j=7eyOq75SENuMuUAF?@XSys zrK=pNqH3HoR@6us?8yp8$rvl5#o^vYG^AJL5^1o!Br|C?TvkNn>{uikiBOe@6?etV zu#SYrjuy?N*g-h?^2mrW{n)=VDRvZFeQ?HxK(Qjl@)0xDVkJr$(-0#LojGh|q%u}8 z!Qu(sLQfIP#5n3I=_E=JBZB53mgYR05R(#htaA&coZ_!D5rf`jMRX63hJV+z*sA=8 zrP1Q>Sgg(R^UVLlOxYkq#VyLrHlYOl$F7F494HNiok5A|X?C)t8BelB zu}~-{YKZ5SUR`C8H>p3_Ync{Zv=S;V7soeAS6^KK7Qg3}uLa z-&oDJry}FB#b(B7+^5ZAQbG%h$6u@Kh5E?vyV7FNXhbw-S=$QLR82i&Br~j(%rsPL zhRO(4(LS3A5tt{Ok$FMuP$t5eLoTpv3kcsj5}L_r5(z35LtZO9L#jG@OG8VjDn~V` z2v28FP8cR~of(fO1aeZ-88YKrz7-eOTrhJ&(X!CCQaPGu zGAT|8@ubD!!sg`8zGkLbDD_M_o=i|V);;v)EPyN-7JYzPODaaU{eH%SOsQln!_Y?m z$MHq6lJQtlE;1Q36j8&}MBtT0O)8!uWn1Erw*)(!Z_#wNaa&AupFDGDWxO(~7i@8= zp&_J2EzY|PBZKCRstk~r!ui6KDk-Uj3>8tR+kXmwsm?O#&+m(>1E#;B6o|A&nYCAEJ^?eAxoDXINS zYX2XyH?e7{)N@{->2IQ}RFRA@YYX6qjsFK=W8l!*E+E7ya zm(>0TG|80I{w1}4N$u~PI*Mq?|KC*mUt+JhcIL@#MfdW{D#ZNVzv*sY_t^Yit;FYp zKkI1UGh^n+fIan=nXmsS$J?zd2h5s3b0&Yk=5H2%w~P5RXE%h@NXm-EFvTTxpkGNf zo{DG&Hl9o>62TF`#nieW0^O9*c8qo4mNAh#uqkY^i44dHO>^x>w|pw*1cLEICI#eD zbzC$OAjmOC8Ne`ONh685&H+%nXq6(xYhv$_RcD4Z|DqFO!rL{<2qoHtc*dlhiezFc zAU)uQRtm!&u*ozcE_TR_-L2JaK=JjcnFQmQjwLk}yB?4lto#5$z|~mb0c{YqSeL=A zfaA9?o8z6JT7WPOaNFrj5;HV*KzsQSD>0+{7pMZVm-t}+0$p_2jVDwMs=zS_>%WTC z5%&!>0_aOo6y`)4Yhqli{pQZz_V{(P(RTuIO@r3PxDFUDjuk2b)Fy?!T`^QGYEPKG zh)=*V0jp(9x=AFl&0EaTy5=s6C#1*3_U|Z>x#H_J^`7kU&5AT#n6$#?S zL>^buV2?BtNLZ2q837e2Aqj>HnRe$F7(l z3d07TysIrMM@P3ydACn(ZEEf8UN zm-&s&7C6l!P3AzI)9dT|g#14Y6uflYv6KXJ1qU~#RTNLgBvM$E9*rsq+9YmI=(AWl zQlw(wiDJM{Kuv&{Vofql#wZ9fE1AlJF4@KsYz+AK01=6S`$@-5aQAd8Xx$_r+(JB9 zk&>fg=WDai36Oip$n zjQB|zfT(cZkn4mM$E(UP(jMkAs3(D=o0$yT9KcI(u=qr3 zV*1T>DxewPB3;ns9Sf^QjEct#z+f2(TgB%DV4jLsEZFjtqA6wu$RS=`>7+fVV*`kk zxM3vHim5AFCaOfuI6E-DCnk=e8jxC`rVgmNNUyYjq~KuXHy&Hy!2BCacczxJi}`<$ z>qHFxT=)3c7>fa?0enDW;JPA)So=nOe-F2Y zOJdpt|AsqGhPOrVk>Q}PF>TojQ>N=<6y7}pF9ZLAoh>+=_A8f_RBm4vjfyB{!PdpZ z$2S0%UtF0v^f1m8RmTm_WRfM#q`Tlba!5r)QIm!Nx*qo~{3jWQxI}SukKq@^`rUDH z(;=})2eq(>7a5Z+TzZN$S>9(L=>K7Ir5q;4&#RM%L_N*wl98t&92Idl#filP-pm0a zmUItwt{{ek8OTDWO$IL}rWK&XG%kz^klVE8?A@Lp93In5Q8Vt$T6~{4i2&J`hY_6N z@MI0_1|jYVV*bU)#ExgGCWN#iMdRS2h?}3S>Wr9xyAfLiJ!Rn*#_<#gp%K%7^Gfe{ z?~J-hdbj`q#a&%R9#L3K04GX^IhM;LisiJJzg4139al}TnbPNhIhkhUTR0EIwRj3J zb4sTrTv04sq+q0&_EosS`IQMCQMzhw>v&ry@$*-!1_vE4euK>>35488#^Ra*>Nt{! zB#n#}v+=&*T!B9-5Oj`(X)2@QvcsZ=v>e4%3}*t7xJqK|C8`-TKIbw8R}Z#p#&#T+ zHdVTJTX=aRp6=|mX;Yv=1`hbaBE|H&TCG@#<9<;!O!}L47c<|k8d_;IM^?u0KtdEr zq;XDU+#p#-5X3mnvo;`j6$mBNmqn5_4fjb-Nh(fOo z#4`WUsVAF@WuR^Sn$6044;1?{$9rIDn@xu39;upC(twmSAkrPYqygCCQE(C*0n8gmt=MT$4X#_#StBdq!t zjY|BH*^0RE`#U>?R04=%nZQC9#e6Kaj2aLLg+Po7CN#xGyYTe?ALQsR&j%M9p)6Di91n2;0u#?WH~b0U5W zA!YbB8AgnNiqdN7TG|_~s6v5?&KEcf8e>APU|UM+mWFJakCHkmu@(= z%y5x{J!|{g$lOEPG8ihO5%KC%wS7Vn%qT!uG6YPtuwluFVnkj+8J|oN)gbArMcsb# zAI)M*roJgkX3D>#T9_<|PU1IATLMb`o6W(sNMk#25Z@0Y@Y7I%{`7cpc;C6Fl;&S) z{*~t60k?_&;`wI?XZJqu$hqU&1wL?h@3)SftNzHK?)&%czO$yDHkZG7_SDnnzjcZD z`Q(ZF0jYg{^y?ee&F^aO*)aduc$o0B>{*%;C$tdw8&*AC!}djlaiTNn@r)ZMyJ#*a zPIlQ>^FJyJ8*zfJSXhmvDG50G>CHlA_ww+vE71n(7#1!GYZgSV^hX}2X)l$iT{g7ao1hK0LdkgYP z(SXPB%~3bjc#&M~&$txsY3?wGu(;xAMkk}`};Smdjy)E9WIV} zySkJ2g4yEDx2wk<@X=A?mJ6qM5_i2*{d&{$e6h6+3tEeLLl=Y(Tq=*t?YZw(uWE%o zpTNgzglK6XIDv^^fF`Dqj5rpLVeNHWphzaK1^PBrA5$I%H?G4$K%8=3sLJTKoM2PQ zgw6pN38$%#{ByZ|WPDNm?;Tok#FI_hL(KiYx~~X+TV2*lS7XgvH&HBCAA8cbvW*L0 zHl*o2vxWIRjeNjoM~QvkS2r|!)}j*mwyr&W!DzpXk2frMx>Xo#hf3ILm3Ys@Z_DUF zbILR<#Nvs;P(xgl$Z-E+Re=ZI0N) zK&Ew~t%5+2EgdS7OE|<6?;W;)p$%BVpzDYo3@j1e2_PyQ^NDUMgJfwL?}bHjxi9?Y z$OZ487{=p(>fn0;&o*gQd$r%by&RFpHmEy>DHN)+i zFBVMhBu@Nx;c)xV?-!&l6$gL6V7UG0B@3%h6mu@&?&S|HeD`$m=|4$c`R&46T8ZNy zS~&dio;9R;-@psjwUWszzu;HNb~V55FQ!hsw~c5wxTbsEv-8@DJ%eg`it;(xQR2kG zHE`NHNBjBZCF)xQv_PgI0Oe4e&S?oGlYztTFvMujvZ3d z!@YN|y!Y)5{J3UFQ@&MRzV>4LQ8R|w-wvs{Fz`QKkA7lVs~Mf_%ZJy@Y!$lnnu+Pe z)t67a^qOm~wZdU1eNAf0)m9m>m?$ACpYPeDi&DwHMDVvVz;uS<-0LLo(K2QkA+yC* zJ@4w(kvpo~hsunI7`Js!Z<$3kVrHz2Fm&RP)ZM+>a|hI$YKrQ0xAz+Lr=zA`ZH*}l zyZ`$is)_o|uX~CWBWqq9eCah8I&E=bVPjl4@xP%pmY+X;h?r1WWBd=+VZt&fhb}*& zX5N4AkT|+&NYq?*aJz#Jx~S%|a{ig~%>U@1u;-{X6@5faE0&RMC)b>)iU&?6dGrl6 z;c{ZY6GM^6)P&-fo1hH!i=TvPsQ~>5qw7L%g9>as5c=T%BeS80FacIecWMJ#BhwC? zv~n51d=uXd&Y=?EPP}|A0gR3XGsdrw9|~cOMG95K!1wFU4EYy|d)eArMLhj}UB?gy zB^le46S9Jv3i~#ysT5(hIfDaUSM8l2)qws6*be3!&oKp8xi~TIiBe8PMFJ%!)A5YM z^0FCkD^ra~l_Ky(R7XfGY$gO}gs%X19LFoj3$j?ORPn{2Dm7fB(6rdHv1Xjuw5#rr zkfvHhEGDe2qh!Q4hx0CC1j<1?h%69@&Q~aWYzp=qxRhkO63QA;0Op^-Ge)9T5z8_ETco)7 z@tW}f{e4SxXV!O**K`a)2o{N?aYG`sY!s0LLJ2&X*f)6rlDFq5VuI7hrz$NW%^bSW z&*QHJ*MQ+$tVHE}s3C^#VM*f2oeENVrI$ z&dfS5gkyl*wL$+PO)}8hv^R4;9q;2JOuBWacri(wq!ANJs`E$JK>W{R&OF-a49ZsX}?Y-W21z zi$h07qlJ)sG%1`%p;v)Eh6R7<`y!*T z1?np9-(=2=lEgIOxc^squ4Hk5^suK%zc49LVWq<3*~Cc@zh7Jc?d^+K0{KqiSI5eS z@SK#=a~whwi4kWeVwmtE>P`(xk7xptZjd zsMzsV&DmilpI_0ANA#F5aq$`Yu-hS{KoW?N0zx?a93kf+ysrUeT4#6&f`n_v_eQen z#Mp6>Y}hr4jL%K5`UJRs6NVXwV*+uB8YB|&e0K4HM)Cv{*C}+2F!}g<9MFt}10Q_7E$Ea8u zS00vq78=z|cn1*lw(R2AKG8|CSK)h`;;_g8g|13y8P{Ix@MDA`DXhM@L87&k5uzcM zlp_+29zJup)rjSL^U=id(Df@@7psmJ7`GnW zA$c#pG4>bd%WwllN_5@HiWHa@)l>XuFSf083jQ=AR^S?l<_Bj*7>_WmL&L%j zZA10M(&w*~_lQUw{=y-OOdaV$El&NH(5;K)Dq{sgTVsb zAmUPnGaTX<`%aw55PcRSr>NK?fEU0)gaw<{MgwJPbQT0D(r?h^#R#(%Dlrv5=mgA2 z_~0ZA00vRTggz?8Ng!fxsjd5jNEyB*;sQOe_N-zhIPrB5nMAoBbxgI+icPrs#Ns%GJyFQa_m)Q&O}Y5^sK z!ca1dMx@79lfYP{U^kM7#;-8Nyd!FdRT@fV;pT-GFxx7fAgLQzXz>I~;CaZ= z98p)*z16#jeX5XjM)B>Nmcmo9@z{JOA_(}knwp;0bS}MzkDBR*0B+5tu$U0EB+r_@apTj%bg8(||fvRV|kpG$`pV@Da3sMAFgvT1CHM^d?j;8r ztQb~I&sapaaCn-!MdxzBMLxltBVE=d$5BEO)F2rW$OLcUOj43Lu^X|dBBSB%%^Pqa zl+=tVT%}X&DmZZ_CB~<(y?M)Q={@XQsvE!qrcS?7T|OsyFoamuKzxl6#)ET%5yyQP zJ0SZd=B7BOi@Y;8(Hn4gCBy~WGtohGP6aG0DdHfoy|_Vgf-q8Z*uatsPM3f`__woS zS}M@AIKqvX@W2d@J*`-&&gL6}+Sjj8Ikyba@vK@sWWkmQbrWGlBxMQ{7oHp-O zVoxwq9I7yXt7{Wuma|b6>5i6R0(^&HrbWCC|5l1N9R-Qk;rmf|l*@P>3abXu8#q}2 z2a|e&2n1=646|g)<+*8-!t4%77rPW%G`Ywi=*t5mdlDx;#YPw=q5vxO7zC35+lVN@ za*HaBVTpe{Uas(Kx@SdqE)^*@DjE{Crw9E@b=dEQMm_2#9JSFafIlGE4wfAJwPUKp z?HP&*LCho>w#Wm5an6-GDJ)aS)>wX^Q-hU^+(hF@6PRi)WSMfqhGmnlW>r9;7FRG1 zU{ghr1=(&?IIM&&!LDz?5NSIU&_UlqImt>QzsoPLJuJi`kY?9`z!NPJGvAC5zd^c| zvn$c$9+6ChH3Cf&Mn@R}1Iq<;TA&Z@r)B$mcn1jj&Z3M!y zuEPK8ke99v)IzZ6U$iBv2R5j|A|*Fb61EpFZxo?Q0-06D%u9cs=d@-#Xle8q1fn3s zjtt{Ly{vxPW3aCkv-GpgD=qTa@(R-+! zTvl2rp*f{s*5srQls1iFnXW^SLHA^&GajEccuX@1XR!?PfOdqDticw9Nfjo|6c(!j z<|Z`xe#I){l^%=6hl&*IZd+IOT+}H9Ul=Q)+zHWMB46P2X0 zc7|urzhH-CtXR1YD)z;%MK|&FowZ?<2NB}2(QIs($iRpw76XsHj0hr`v3^m62gtQ^$^N?wLL{p)b?mg(2h#1lny>tO%vfmH9<7-e;Hi_9ShNb zh-aj*88=fOat`rB3fWgJkes_RD4|bpwZO&}8Ko@8(SA*u@mZ4mx|){&|n`R2}E_W1W}Rzq#? zFvcT+V&>t1m?WqjGa1VttkoLw_|EyL4vQ4(o~``Lj1>g$V6rJe4pHd-iQFTD{lw&P z1DgWSHqLrV(h}^syJwuGkZFB;7tO-;wGvp!x zN($wMgrdb!jI(gaKxB3dO}l+Fy( zIL1Z|f;NJYmk!z{CmtCSi{OD42V5zKafbIt%@wLRU_Dj&?GN@*bHS>}$ZTOB17qgb zX!&?Kp&}n8#V`&k=$+Z8h}=ZzC6lOPFp9GSq0Uv)bgFk~rf1N@5UB(tsH9?-1muL4 zG#RPHtcuFhN1iYqlNljs@S8vhi%~g2Tpi9fOg%;?RJ;XyT9L9%XHN?kDccF=bcAp= zHO<0gfL0Tq40cmOX0aQvaA+1Nu|yIb+;cO~)i4ZYSaAi3kpnI$S9V{1KqM;;h|!oA z>ywciL4CpWLS4u9E!om#k76#6cvDv&g5?N(h;N~CrbQ}zOO!GU#JaE54wH2wyjMy? z)`dCMkkSmn@^H;iupnR-aJ5Z9uZWAKAw8m!15PWsN0BCB0hYAk85>qXOvSj1unN+f zQXWE$kGT)aIKq@E;kb^+NE6?^f2ppLqe!8W15hWti$Iwc^y8U$lbO5-K-5#v7wMQ5q29nv`VGexn^%!0GnzIp)?nWca_1JY zQi+rcoiMu$wq({61Da`hpfZWj8FfRohUBUjmHs*CSxKWtR0yMp5`&gO9apHE2fh(Q zF@T;96FoBzXDR|IW{4n+2%ccal+(~Ne)*T35?6GoJ45baK1HV`ceNSfn8E2s3LSU| z#W2%>4l&UuOWz~3HeQ^^E;9+b%At#`m+DBSNk*lH(I7=MHZ<`TyN12}(wW#~6|@FO zJaX^igNX{qf{VtVk3&1J6-s4Aigw+Of>?Tdij_uLt**=BvLF^^RtIUBLknZV^$h%( zs8Q$!(QxZ_!$&n&WBVha~KPkc@xXOWJ^x0)5Aqd2Gw}aqB!x|2-b@& zK%$yt@Iy3b*t7`cDj^Lv&TJeyFb&J_gorh4XH0q+s);9#C>F(gAStD2N2!h6.$ zK_iCZA%$NAW?_b|%CAAxV2N_0=7x!D?NcaTqvNI`Ci)ke`1m$L?VYo-caX_Tpk6~I z4lF1Vfd3#eII6Mlpom8@>A2X7V_cEa!DSIo8;OjAEAhgUN+iP-RFPO+KubVcY_MFUTz+VW%pTmDPq7K-G#F<4_9;?L3%GI(;Y=*G(rh-d zV7EsBgI1Ty5*Ux+Ltwn9g=QY>n-{0eomfTi_c9)qhk`27JuP-3R#2Y-38m7=@ZkMn zru-W&Em?Dg#B796;ro7>06{TIu*HXg)kAbN`OMs*!-mnmW)v>monmfgY5D?0hW6t82q&8CI@>W z>E4mdKuH3P)a-6&3$|XyaZ;M{!F&?lI+l`Af~As$92|=jDC@5U{fiUZ zi3}{TD7O=*9aneAVUdDu3zae^4-7T3dJ39bU~|~PK#rg>WJ_O3>~nW=`MY@7kWr(| z;0t}aMQO2Z`Hn)2_08v%e{)6i%8ZczH*q5Py2fFEZxc#FcTZSzglBZU5oBEgjb~Wl z5nS+#OL>PvlSu)xFo``9NdQx)g;x#u+zfgId33})b}xol8Z1T}P5LlSWPboXXc>4h z;!YZK%%e4*1;RzjONoJJ*PRjcFHQnR6|we{+Oi<7`w1+__-nB5#yBCNa!{3s1ll5f zyR{F;8L5a1bTATM1dkDEe%A0CiD{gd5=nd9u(=FI8JU(S@qi&g!2#c6Jaf8*MIEIi z@xvXJwx^xPEwr3(mj;=2z7#==llyY%K^spf$*krY$MPKRmm)yHkZ2-Dw%F8iYBZ42C+JAgG>*jQLDdXm?X{PlGbD zg-_|4a~cflekGe??BFU@&aMs|Ylzg0B^C`YrzC7enhs)DLyeh6$g{sVb*4NKV&x>n zGkF2t#X;~|1aL;%j*VE?6?^>bMVP+8#34tfB@3LBN?l<$>9~Z_$wKvRGi5a!yN5WM8>1fKbE^FY%U~kTVh-4@xR+5fI*$5%>LNz zNi=%U0i35;QRO}lHZ={ln<4N?AdDKauXL<+l3X_S%LSM9@afhW&{1KIngD9(W_vzyQkG?viO&0C6H{51=iWoOp_& zp-1%=XZ=NE3ba{I*z?!dYytc4SEh{HecvK2=vy8Ij;=d0B%1<_5o%Xdtp>`ww1&Bk zy$CftPUhbE57=fDjWv2)J_&#ZTv2g=$OJgYi4}hzXSaeChZ8Oa1_k#6BI96wWQyX% zz%M17(v=a5mFON|ixjwjw;D21*9xW+(o_WaBXQ?V#sJ-bK*C{=EtKC49L@dx8 zn1muu6#gbOUXhX=cCcavk6T!yihp)qj0+m@ebkg76VMt-P7#fbi|K$lSeN<+2ZJ`h zss;=i{v{|Ju=%5RweWj@9S28ctmgoIEmyV*Ww2tQZb>5MqK*Su13UvzJVyr%;_+tZ z*&-#!9A}dd>`i{f=4Gt50*!kw(WTGgo=50LrCA8naC{bkzECArK4e;;G)Yzz3A6_D zQV?4yRK$zA5M~I3+ONx68j$@*Y75Ork!IX)-zxTLjxM9i>vf{!Fj;b#{2>obsexBZ z4wFq@rX`2TlEY-lVY1{fc_3HKlEY-lVX`1_Tdd?TDQ4V(wWQ=Qx!*<8!4(pZ$=5@( z-)jm6jYPOAeDIhe^+` zwFTs<x3@cM|m^`qbX31f)ct z`2SUhNyEM~xcHyNyZo26FCeKb^Xzb1PB5x2nD9dd6pE_PUdo{H@K8 zEoS_a(>vI0&s?HhBHnmn$pCSfz2q=)jNpL?3Ogx4<_ zEPAeA(o6jEs9Sr9>`}L#Cbk@T>ogHqzof^1B=hw3OWx|5N=!~!S4{l*)rra1WUQ-& zx@pNU(XeqzU-6eQxAtu{GCW)a{&sg?v17xMKH`RBZtWqKZ&=b>+&SjfN>O&qtw(kF z@xPxnWz!P=?zX3Fx@U1Pu-WY}W5+$AA3YAnp7U8R+unW80xJ-=PdR<*)2-cqKMlAX z!{491^n+I1+IjBM+CU&K_;;I__}68f?6c2bdX0ByfcUg_UN_O{yrl$bI(}_iJ9y#J zU;NOs&n{ZJ&3pE|_{ZyybrH+%ns>8UeeTkz`~K%=l_!_l<;i=mRmF$d6~pb-3-2|m z#LR{F4xd#PTxORAm*=7)sqm!d*~@QhB|bfC`S4kre!AS=^waE{qo(PEn$Ra+J>`03 zVrt42%E<7Lb0#*wryk&*c7S`41Kf)q;GSN1Z`zdW)dLjl+-sI`%Jtd-@;Ucf2doA+m^7~rkbMCds7dt>c=iamy8I1#EbndmtXC5G*bFW3d_yO`c z_q=@5nuez8jLjCG;@)iWO4S)SEps|ITjo4azo^YRW|}uM)PL<7y8l33qaLVl+?y?n zKTz+eZuf+5gd?0-4`T7{S^WX?N>%m(FZpU!_FOM{_#N33z2tRwWY6-FFW-^9-b?;uPCkS3`|Qyj@{594z9ZX5 zJUl1cM*M9~wxTTmKoNr$WqXTPf1e#(kXx;9%6-F~*@}V(J0ECzu$~8AsXOk>9_=N= zbF-tpf=GlCurazmn)aGZi#}xdsI>#@=&t>D@k1l>L z-+rAJJ1`r2&4+apem zod@e`^A(={Quf%Ua_aJLoLrZ0wl#J6w*R6oUy)Nq_N0O$r$0tl&VQLQZBh7{QMW63 zGQ=xn;G+ENCN0XIu>a$uV)>nXyz`P57v=l%i$(c4QvXW6Qo&aX`+~UfHBCR=wK%JL zMTPImH`Wz*c-uZJ#K$<#JoxHTJ{j{b6&nDU-52B3tKMc zw%pj)sQ8Ub^DQ^#^?b|Ce?8xFufAUR&9FGgmUDh8?#;K{_IvZS8n`TboLhmqH?w2* z*UxYlk7>&&^tomELO)wpSTn<|+2?O&hkG9}ZF#;@+n47nRi4d%+P=5)ZSzpJaJ?W{ z-(6I7?c3QA-n+)F$d27#A=9l8&)bOmRuuMv>2|F1$ zqr5WKtjt&Pla={OD!<8Bvg$Yarn>6grlt}V_hrX=Z}|S*!eZjyvhiN_Fz@-i_nJR< zsu>Y5y7af%lRM@YdR1}O+PZpP`u1;| zrefU#*<+jKadv}$?#Q?A{0H*$=e-BA$9whNQlCAu+0Q0C%5o!Ly<}Ckf3qjc*LqLh zTh&y_x(D+++Jz4`tE0Ccl&|JZFFn{)NilC{vsyxvEcdLgtFvvzg{zz1DsEYwujOmJ$Zi*sG{2f@;5Y6jdc&@ zD?6<*JGP(&G`F(kY8tXvJ)E!ShKIAqH_PjEyz|BpYqO)8J#w1(VH)P9wb}k&KP*|B z9p@!?uFY5T=tr_Y@$TO7NcIFTdDZUxB0unV`Ja8iJ71ZHewRJI@avR1zV6{Y*@*Xo zQyx0AIq0}(_`5a3Tp3d0n0w7srEdU4STQY{CNH~pMR9E$Gwj? zuSfMO)PtWk)#Ioq^7Z)D6ZscR{3KtGke#o`m3Fgw=-yWJ8TEL_&IY}Dd~4@lv*Xiz zJ?1{y;OK3k&#d3D{|#i`8S;TdG;*P=IQLn7NSUj(2^J3N@AKT!nQnUA3(@B zkUVf8aiEzr;0Xi&Dhrgvv?e*JB&Lxorn#0VhQ$9WG0jFy+tjKoq9@e|be=jytm|&?C)B@Y)xw+G z*WKP%-1gV(?vDF&juBh#y>*CK{O{Rwn%$kS?AF1e|CiZ^JLL0Y6(qYk^`=SM2aXa(s|#$AW_NUtz>f#KyWy+@KC!E=TXDfivFNAEhufW2 ztQZpv!`%#>47@XtH9!^(We)+ZiBoPu(+8iWF1F0Q_4eYqrvKvBzV>0iU-6qBVGH(v zNGt+p1x$I7Xf$a=VWB6yy#hO6#-d?(BQffIbBX1jyx-4$_{|lk{3HlLM=Fy9d!RvH z3NIqu)S0-ER)~UcK>YhiySao@H{d%Xu6Rs?(*w?U$TXn_NkeK6xehETE<=b*P5`@Y zG)+Hg&;-NxWx`GgMVSE&Xu^l?&QN0_;Q30Y6|&NyVb}@*^aNb&--ijzw4>eM%MM-k4DWdwkdS)Mc z{IGhMwCJ)_MkQ=NA==X>WY;hSKx+yaHx$Yq(c;=(b>#FfR}A{HR)wX>r`SwV(xZD6 zreBR-IYcoPrBW&6h0D+<%mXC>V{|k_+6P~;B9hk0tOEuj&R-{zna925V46a|;s3MTcBqI(dB#a}_RzWlfac~Ul z!*P(+l|LaaY#oF(5HkR~%M3 zm6b!$XwfvJ$i3+2ZQE)egsZ`~U@zRiq^k5ORDjM^9r`LIW5g)}))Yv%(h7`k5LcyQ zDh$SuLq`k0!?FzM=~QT1={HD5ErT9|+d8GdVqneNV0+UkQdHb8doU#$BT;k18|hJbZ3Cgl7&B4)z7SjY?qDM89&F=yX_*bYxx z2xRmWOPiL~;OcV-F^g^w^i9+B^6#Kz3##BE1GB|sEY@fqDKkSBHwFZ8jOA zF}*TT+R;ioT2H&QqqzsJ(vEhZeYCWrm3FiPA36Rn+tJ|jUHRL-f#+SA@7DigcWz}* zesSg4fS7vA%+B_(i@h7a3;gHd*|Wfw^YiR)L2mk63<`E2F=h}LzqJddaju3Fr$a)cq?V`&Qz4KkcN*I z#?yoWRWVFB>uMgjG{$LZggkL1(leEJS^#B6NzYC)1bT54GmUy zDALt9>-I_{*d;PfCKPfohtt1?l%0vjkW%1cO~L}GF%%R}B8CJRt%#IO(G9@E83hm29zAoA16#KI3> zCT!_x7#MMSO2!nah|9AP`j;!VBo?W~N|o!Mr*mS$9TI_=ScxJQ7ZT7K7SzVHCVEVo zGJ_s0t|G)kqo`?CoZ0`JWQ{Dczj$ov{ymgwA>+RO+ej=LBlpHk@ofb;OT-quBcLXCZOn4O_a*>b~VE zyZe@>r}Y!vw~Y5HOZQa#=vViD^RwRek&RDJnJ8v=*)V+8_T$#s+mBn{MiHH#T0h+W z?wa*wJ;ZBYldPPzUg;r@K54^nd*)s1Zx4zKc5pZP)cV0a#GBWU{MFX=JGzN>vq;{$ zWBr7I;{FTB`}NoB=k*X*PawIr%Z58maq(SbNT0N!OPToTR+5V+$mFWy)(y8`xnRSP z_F{UgL%lBxr#E!|(O>rVqtm+Dw_UlxxU4y}0(mA5?|5Y-_Cw%{f*gP^`iaEb8@?|9 zN)$Xk5CEg#u>-(3_RkxhIqpWim)M*=cb`+ml zB)6Qmab#z4*!Of<&&VE^!l>y)6uo8SJ_! zDp1uxeXc}wSNb2nZZ85y$l1G&qD(D;i5g zlOQAj6JSPHE#MXaYf=Cu49hhJyB(6qWVCon#m<}rbdiYjozzmd(3AndaOK~ilBD7o zjMGw`VIfsV)imuQ^`MBrV(q}Xe)d?&MinknvS-y!_?KEB|BfHDY53vB>Bk;%%|)&X z4PjT+49!&I(tgeW11vyCMNJ?kW>k0K7D4|(FSfr?gE@FrO;uo8kq&CfL+?K*TX5X_ zH=7=lvadDfw%$Sik3!c|HB6d==ayz#X{MECnq2<>i)Wg52LEWprUg9%tL4EhD3%<( z>7gHcy8JZKvzL9}m`&{}1FP+auGloAcVLNo9Go;`Q@0;|vZ?xTTA7%#`?I#QUYN7V zeqqk$FLQyX-1idksMn8v@48Pv>pqKPCV#)@?+^U_k-um7dzQcF_v-sJBs{@&*A9sd5z-@E+1XJ2^3`$McSh{8z3 zG?R&>79-G_nT&%QWWi5Z2^G9g+O>!k%jBGCCN{i}i7f@p5Oi8Ro>9;^M-wKxY0?Q4 zrzzbqQ|>9LXfEfCPk-|MT|u$++a1I08$0f}sg)Qtm}Ic)ju$$L>$j2YGCvh<>qG6tIUPw( z>sbGrR>8QD0)v`JVGsh727(QcS<6dF#jbm@}jAi=Hs}5@;+@3db5hdV3AVA z7lW$Quz#VtcNlE4KOP=Z(wzJ-K3eoY<`Cd~x^9_DJZ51yi)-$Q(6#Es2-TKMY6e4x zd83(FPNI4|kxG~*=v>bv5{xPlV90a|w#g`lAydaVWyCR_BqP9ev3I#vosfUQ&Vf)3 z`WNY*2g~2C?xSUW-pek(yOwjIe^*(}jgLh}XbV%Nf73-Zj)h_I_-l2&fk$Gu=!&)&RW#^4%~2?OLp_x@m9kwdP*qihgA(^IHZ882R)2b^NU>tVbmm)^Tk6{*EU6g6 zwG7}}WLnHwxoEDO>Cuh~2JO(GFIeN%wD};??@HkdoAZ z5o6y~Q#!(*20~gzd;!ydo!*MM>qkg8GB~7IS_-T%z=~u%l~SYWXapgPS!lRc)R3ZK zk2Elurm+Ra3=Fghq|X@8SnR=>jAJ-=&8Yr`I?G3~GNm2W5WhOCzU#r7B91z}zVFCr z;f$j_6)+1xbCWu2b|ju*F$0?$1@RuyBJOIUY;r);zPqoOFnduGFt}{$Fye1h*v5#4Juf(;KyCu1( zaeO2w9gTouvdhIyfEw(;^rPIFH8}*qc0M%&fQ_XaDTOu5G63mggH|{Q0c*jb0GxR| zzs-Sx_b*))fs5+T3Ij9oE7=s&KdDv3+&%T3Lur8dDOvk8qYkLGgaavnZc~7p7_Rp8 z$t$O}u85j&y(LUGUQEvsJa+K^K%J0L@qdWh<7Y403_9P$V}+QXAen#!MA_Xy@GFix z4-1njwKh$3Y5rx3?eRJ_1TM#?%(U2Y-=ZT!dW8L0!my$^$|N{B>M?_QrDB$vk(hh; zd>}_-g%z=4EWbuf$NxpTX&^}u3>+Mj60z*^`|9`vFhgdFu0i8LXU6$I3uH>sQxa28 zOdV&@SR1HiL-#KjJV*N~77f2LRcEI*#LZvV_dBk@HSEG`Ii|7!8z?&}wv}p%k!CNDgNu({)(D9{Gv}i<6vt6fgLrJAMMQ0*15*7fJTh5`;{oX+^g>25j+am@B3*`}X}Xm;sKhyZ13XH`GM=_H>RTwMj{79U z#=k%ppXVGYk6cjS`>;Z2jb_Bt22dZg+HAuq6G*1c3ZSP7|y|1e9Q#5{=2GmGm_Damjp8LlM5HE9`I>}n+$ zu26I=$#5kZ&hcF?$#5kZZok}ElHp1+T%mAUlHp1+TuFwLnuY&*8P2g_w-%3u?&@Yg zc}T-G?E;^>hT-!^HVpmIhT(pjvbqo!VMjVT*7N<;N9 zN-;($@vssb9Z^RUx~IC~hSn;vFYNI*HgpIatZCxrMGc{j@}UtPp;u~z37Osy2()&x zuUXu%;?QWN7EvozL#@*V4KMu%TJ}Wo>fDCZf1-KMo7XV0dGijcYWTXKQN{D~8_uk&p5OU@K|Oc&J(Qv9 zKS*VBekCR^YUuJGXwLtC25PpTIT@qIu$s#bZgY=%TVsbDyRDBz6qu7uAPwdB;_a z{lugpJbfz6<<@zPy~Nw{@*lFut$IbdIQ0-R-yGv|$~}$!#Vd#8)`?ROW)5v$jDO^^J-P}%0{Nout#VgTVTk*0+ zzH{V=Q6luno@1%s+6b@eu5jR2xK{c2iUu|CRo95RHDlr zH3*?bn4kIPGQ6qmGkFEPsCaS-)(ZX zPFlHF5o_e-y<@m6KOuLE7=1LUW#{hgA{u&s)=_LdA$OX1OV;$r6LVGKvBOEd^SkMz z#IzF`NCQsdw@)3#J*CY@eZ_{spA8W6hJVyaY>*E=J)Q^QlXEwT;qvvHPRXGIek@slUinSDAW9rUuH?I+;3DrXG~3m`ptS-h&m&x1Y&6j1WTBa7u)KZ!HSf(D7se5GVNtt>@rk;_h zhh^$dG9_fHUZ!@*)F(3aqD=imrv4#QZ5NQ*CsRFS>J3uUE(^=#ee&ignfk3vjh3l@ zm#LFv>Tfc2j!eBOQwf>cAXAfN>S>v}QKsr->UNp>N~UUM>V28Y%G3^-dRV5m%hYMa`lC#hEhN<-Q+;IWO_@4GroNRaRi?Jc z)EJq1RHjaqsbw;Co=h#0DQjVeX$M`lN+z$CHy6m%G@05cQ*&f$t4uAHsiiV?pG;ND z)T1)BP^LD^)E{K(WtmzlQ-7AJmt<mrklGC4q|zLu#G zGWA!P(q-xinL1Xc?w6@EW$Hbdx=^OxmZ?i+>UT1AolLzeQ!`}h8=0CfQyyW zOs$fsM_NxKY0Ko3^5!39>H(SBE>pHl?U1PtW$I&@S|L+k$yB{ewW%fbf=qRnsb^&> zBvYTs)JU1SSEk}JwO*!9l&Mc->TFWeF3ZZ~Bzf}#nYvP@o{^~=Wa@62nk7?fWU5A{ zax%4CrZ&seLo)TeOs$ityJYHlnfkj-y&+S(W$FW&dQGN2m#LL9_3b$_StFAj>PWpK zQ@v&CQ<)kfQ>$f4k*Oszb+k-9B~z!!)aNpFE~#thwEp>&)HOA~su>~njrcGw&iFsM zhedhx!)~Jd4o*jd&d;q4JZAst{M;`CLh1VP6nWSTinlM!oh+7i``FE8AAeEqR{?q5 zT`0ZxcC>d~oICj7{nvu)pdeIlXE8P%=pc>>1loyZ7c`dH$0l;mdq14=#D^WlOI4p7 zBi3{aw6m{F<=*$6Olq^+c``yMeGVRMKVsz?yeFH>KkR5fbV=^%fatz%&lGw59Vq^K zDRp~)-JV12iI?TB3CLtOam3AgI@zCJp4;eMcm4IQPU6U4R@GZGRMey}j-NlQ4TwP|*zajVBzr5(x z>#pxEx}0`xJ8{n?d&}&{Zpyvr=CSA9oa^dV!{$Y0UX8Y0(dd1^=84z#vCC#OFGlxvTj3qQ-9aAC~4edyl8B z;!~C_%PkCu+NXC2BSsLM(ExWxze%OlK^#OU^T^xPau8#J`mARULxarx(DXx^W z?Y`U@buTq~xsSa+cV&Rf?&5_LnGsumn|sW?yk!-?y=PT!k9*nWhCLm{cj;a2Mftm3 z%Ejt8yL5M_#+$2iPq|sf-@dn_*l<2srmp&UpuO#(+}3}2FnPf!`?IyVC-#>iD5I~a zKfS!2-SE5IGc6v}z1^b=v~`b`*?)N~x6XaI?5DeWh;4hi3>C{7J}k2XcJ6oX1LfvD z9qnyT{%e&R%DeUx-+tetgP8h@T$$ZrU2co}i|}-&?9y|nGFc9F-#2(e?n(D)`LB0% z6j!Djou|D-d7o~r?Y^6Ge|DeFzd6^@?z$z{@nEOTr(x&8r}>?RI*C-=G-ar54; zcDq04U|V)>ws|l2o_llOd%1ny&9jbZth7V*xzhsT+u!p}M-czAA$Nv&`wzVHlAXCx z0h#P(|K@|-#a^;!W9~XHx#Yu~hhP|HZRGezj(Rs{|EBU_|>1ZwafmNyT`jZc|c=Zd*k18Z+rR4 z^k*-*;G5hBUUKGlxv#wB+<)focawr*+S;cD8d(NqLCm9G(Z+uOhE)A*tLh<&NCyZv;(#->K*>vwp+;?b=KyOrG+ zYCOZcd*-0Vrfzz3aN`Z$-NYgJ))EZ9~uU?h&=Eowfv0p%5ceno#X}riy3QgyW zzqG&88<_?2VV&8yog05L8@~;Rv((0**gS3TS)zVKzm8Jj(^i~$WaG(!$HkzFazpHO zNAita1mZ~F;mNyNi-|9M!U5v`zFmcWA`Le4=tdzkJaXmUf#QM}KI!c|voAiT@eO&q z+nikk?eXIp4?dWSaa*{Ua$MsKd9i)cu2FXQ#KuiB+s?7O2io7BM2)!Ea#mwpZ2p20 zZXCxBaMme}&&k`K6upVL}= zwxVx)u{HTonZ4=U#ye#xvif3DwqIG@-TgY+^Zt)p$Cl0XXuooM@db^?$ych2KI&ob zyQuMx^5*-d7xo5Zo~&P?M5`KWwrQ&soqYa>${_Xg_jVe3Tumk^nIo3_pJs~fKh z$ZJ~emRv{oI~wll-&;KVs@h&W)VQk5e(RdXxn7?6+gbi!di|3Mam#!CJJ}Cj%g}It zefVjOVNw1~{~lt)6CZaG`<}>kvm38(eB67y`9i*I-w6Zy*gJm7n00?6w;G$R<~#5D z-b|+Bo1~_csln z^U5a$@39hM2(8QD@Ik28?V4UBQ@uMVcH`_7TwEk1j^LEyghDGOzTcKcA=r}CvJ@e3b! z$!$3_=YNui77p>2Dy+A^0??#xcJ*0jK+3>ZP zaf2ItgY)yu{<++KpE1r`ojn4^Y91yu-f|qdHamh^Ez~D!y0tbt)gViY)(QLAqbGcR z>nqh@{lL75pfEl^KV7o3k;y zal))-*q@F2xk3Z2*sr!`w|1d3$!6UpJedr$7_(bn9Z9veXUF2z)!k-a$~t1MPABG; zuO@l_EHdNBT*tbswE6g34-*0SB%7j@=Zx0u?5QoSs` zl4Vae=29U=`g3n~2Tg($cmM-FPd0_U@^7fs!F(|Lf-WfaNw&x)gpRufmY{$PG=HPR z`KVIZ(QK?7xQtz|X4fEZlYceZb1d7HVtkSLU+F@3ncTgowTQGkLugxm_Jno#Trsc% znlIv4F(jDkC+k_y&c^Jy;x~+PsyhU$M)`F1P+By~xnLashiEw9z7$i-TzyqwU?tjf zq`W&7D~3iHawdC=PDSY=q^NV*RvkY!l(~Z`%oGS)l-rJ{&Wq+^fuhkV@^`r*dFQ}N zmCVe(qElvG)f2b8lwCp^bXiQoB8h}tn!0GIMGa7#;Do7xUKH9K)hlpAbPD%SXY| zBx`n@K?HpW`dxz(y9HII)T%*lT62G87mkS_Cp^oJq)owro)psrb(_@(v(h|S3~^2z zm7ZNAVM9zt86a;C{lk6}T4jz1#-9igV-JWN+(t?ye3b}gU4{G>Xn|Zww z&C1Eu*O*B3EJ~YeQs}UtU^;Q$**F{CW&f_1;Pp(iC_$Bkw}Az5|R9q__ryUg( z!cCIqXGW_tA!Cooz85MTP%OxuGQUQf4s;Ry1$3{sew*gEV`U4o{$r2hvngg zMQbnfB&;#*IK#m#P@X~yc!x?*@=aQ#gdL0kEM^5ACcQkJSXe29BCl2Skiv?aF&8i; zS8JrmlIBl(B)YjeWj+lmM-LiSLT*CW|152W=gVoZol+e~NtFV%W>Wmjhjj`Jb#=rKrQwWPW~`zjVfv2NFhey3 zMS`6Oa?zMjPK@x-%Ko1j07IzgZkEBOIQ5zwqBTnEdS>V;QzD+D&0;PD*OO*9Fkjar zA-FAN{TN(a%-cnz(~Zo~cV^FRcgk8GTu&R!g`1i&7MbiZMKt8J;4Nul zGKJd&1;mb3u8o-0@_!@@dxpn>xZToPn=wI()Y5`BW^8bX< zE6vy8<}vWsli?lkaizH%bU1FO(?#eJVa8GdxUYnYVPj7O3AV5&MWqCPZYzfO6ivXK z&3l`h>zra@qrgvOCp1wakOfFbSL-GeQkLqZ50yWiFTqv6ahYw25IGY1V!nnHc!@B7q zWlt0B%VZdi>iB=}s%1Z$(QpYi1TM+Rf{qE=LHOQ9P%3XXhYuW4v&kTWz7$v!%8NA_ z79x#8a13v9&hPJkGOy8jAgBgbT_GhYYFr4K&j(NiXTiF z_nh<5r!`_Evk2}aCI@y4DJ|7rZ^oRKCp_LJ<2YHE#c>;jS!9Yf4+xP_HLL40e0-uA z`_D|ypKU^Th(5zhTf~SLEYgB)=C&^M*Gp_v@=0;G?HI403h3KR(&6o9Y+?Y1SBm9^ zgyn`!$Aw`^I9a`_*3iG~60O9Hnvy(`gDCEhzpFOEXYUqcRFEZ%tOhO`r|`hGhwd}$ zsAxn;EKl7%Yq&{E518QyaT3^~iaL*;Yx&PK+4ZncRc3^_uB9{boR%m`!Q+2^dM;B` zhPleWbIf_{?2(rzMcZ&ioEj4#<(x8O3yLGTry&<7!@^N?wf+6D7m>;~3FyR#*V zuV1qk9sj$O?q*HNG;h<%u!#NsZ96w!He=&Wq?TX?+q-Cj3j11MJ7+*pyrD`N&31OZ zA+(G+A?OR86RQL)K(5tnrg^Qe?}%BCneN;(clw-(#pT)3omrxrx!A(Ll~VsU7tz^y zzD!K0S^Kk@reSQg3K6t;Ole^YCSb$?+UoD^!qb2R?#9zfdxFL9)bJP{mN)cY<7VX66z-f`diRoOcASg>281pn-+|V133Dz zvl>8|Q$juI@vP9oQuT@!=oXWC(;|=DePJkOg9)K-Qnz4B7ngtWBqZaN%78jx>E042 zV6UrKgxwb9aayV1gc=r{shkQeOci#7x{st!y>;fm?7_Px}-KB^| zmKz4jJnJYSHEm)ktuwLZ6-)_D>K2l=H?#EkcZJEjWoS7Gm4(-tTYgD6U^=I>-u0!J zHkNz;sZijzbt~eS^o2X2RzA|fb{1i?MMI!!bzr@f64IIWmbV6Kb?s3j%IV~2ntSOh zg34USVr^e1%Xotb`j9xJlv;MNz%gVT=Xajkj#x~Ydfs%=O>v`(uj{(e$0}kG+SP(7 zMlebN5te!`wD>Y62wWcmOM~lAEJ$Pw$%x8D!e8*Zk(a~jMV2OjE z*<&s93H5z-6-ic!YK3KdczJgMTdfDM;Y?Up?bTT@nh%{5RywmYe ztZr!N0;?AcgBqlv|(aIa1S{~>)D(Oc#qg#5=o|u;I(&2wB-xz3kFBBNJ z3Wrno-k2IIy|knnE=yNmTHtVu?TdLa?~38g*OmzSIKVkMc6lQj7C4-e3OKb_-dbE; zG@LCM>Vcykrn3bbQ^;D8TF1A-@%bmqWu1c2SB7%>wQ3|SGFaiKF+1;ff<2VRj&J2I zZ7g6-)hH4s7%UA0lLWV*vYs7$ZfIy>Yk3_P#UT`@BAsw=Q;fVltOY5xR~U3PYp1U? z#?z|jE@3*Wucv|ES47(6ZC$M6fe}#2`v=h#sg;xfQir#4lV%pTV$Ze4akPr_lBFw6 zE@|yV_s=?8?ri)|RxYN6<*oePd&Km!3;R)$&0;IGGR#;q4$J0S(4{K#A=H1SV zYQ$k1z#L%3jsTOLI#ZdRv}#wFivHfljk=bHy1xsuLeH3ow~d7wLUtLdSw$%Vm#K}L zR3zAnnO?9+n7s@x|Cadi1`7J*7JlAj%qb$ZsAfH+OU!KwAyH~n-HKB}mV-&5#DC;u zR)x8Ut!>5l=knyHrWmD702K&^t=krAg`LsJ2P|a-#gFQ|Y~w+<4jnBb?X8zfhA9lC zS?}9;lJO#Tzm7M^EmdwGONouFutl1*Z^8b_ubn4-D%Z}PW~|0oSDIKc)|t%Gygb@^ zN;%D}u$~;5+h9^w3#+V0qKQK3M2WVAB;VFnxCZ$-DZYN&^7N)c+oCkUjx1WWaki~k zWrfo0%56*2yGT%mw-W<{Q|I;V;2KI%O5A4gk>hidt1-^t0pz1mVK>v^hoE3;56Q}`^!eSA`pZonA!io zx=C?U+G6WRkP`-2;lPS)CD;?JaC0j`iG!>jbiYmqSLx0Wr_yO_sLUuUya?vxi%K&F zS!+{bMh72yGNvOgGsRdvq~0T}I7VO|EINxwt)i{iLt|Xn3xd7yqO28d>riT7bGTF+ z+QRh`39pW{Vxxi?u^7Vsmk^#gvtwDw%P6c5Q@Ec`EN+YIQ)8^IQs`JK*0D^1YXRTz zg2hV;9dE@gAWe{N)x0S1O2>wD??_uW37I(u2{$4vB-{y+T z)me%=+t!bYRqo_Lt?omn|94inIGmgh?C!0AiHf?}#zXR-k*mi}Gg3vWGs~K(v$Mtr z2DB?Ab%@RF5eyj2S1gVdF7jjBa#GayqG4xWvf)+yNJuY^_f3wskHdsXsc$4K6NOG2v+S&b8j5$2u3MA&nJJdeoqVkK`L~{YB%E zGM8C%bar-eP)`Tr6%y841Ec~8Ryb2Ejj!tzoeO)|vP%icef8&M55O&-&fawDw_kju zdTXtFH3a@ z?Tane!%jKQF-WMAui$Z$!nQd(L_&+a*EzXyaz=M4Lif^#VSj8M9QY|atb25Fnc0@o zQrDf<{TeR${F1AyJn^1ejJy5EHh1~_irN<`xkc9ocCra@=a$5nJM&bO?EbOq+^G?pIrXSgRN&I`x+@)up)2^ZQtq@NDvvn2#uQV!;` zOJNFV*Ts!4bU}UB9um5=WDK_E@mWIiqr2}-Qm^V!Th}YmQV@i`AoRr znPBQ(g0k*eeWc5GL=!U)AJp%;XBGPtLau0X5^^QTeXcWM)F7phajsi;52@VWR&22` zJCD%8k|@6*`}gl&L<-Cn-de-u_89TuN)Y*5P>G@|aFJ?}#k$BKg0S@quz`wv@F_!E zr9#4`$da^S=x}#By03_b^u0}}B=g~r*;5+o5anb1!4uq5-yO0;bL)RAjGOj=~!E43vI)C#HXqM4I-&imhi(&9fOZg;we5Lqj?!<*9YKo^EO0 zHn0-la?SCmgv~&~HhSxa53);|V%)>^)nL!B}e-tV()76HV zQ6pn!lqO)Ish00{fTuF_c#8>U!hcd8yHu<)LNRBo8XL;C1x!{!;2+2KI1 zqW5q0@S+DJdX<${7qh|1Wisnqe8pa6Y2*1Gm~4G)uxd=fO0o!5XbOD`z0kv#Vmo6s zy|K9MXPwMvUZN6GY)Km?0#3s>TT&wRG}5Nhw&Bi7pi3ll$u*r*R7ye%;!NRR#Y}zG z%b$w9>gA)khBN(buoBFJjn*PkOrULxo<`JMf(~J&%yeF2bGyc&s?zw%wnsXJS3cvb z+Az@+TY^Ip{+Mfhh%Jh4FTr35tZtiT5J4=?Ct|l^aRO=(*`ZI6^q_|AmQE4ZcnQOo zDLC4i(Wf-sO2m4nbZy%{od?&js~ilqL5qbj31||oXiS71k4|MJqO-Zt2a z9+9vYeCm+X7mb@Zz-crF^|N7t4_qtO_K*E-E{sav1BI%4oID1f?qVe}OK!G17*KUXUet1kl8gvDogw_k;r| zangi-wK<;Y2c3*k-Vnao@lrP z>w_&gCZX?f^Q8RXAgSL>(cvOe!bNFp$uXU8prdf|XQBwAkW=zNSGwOHi^WCrk==K5 zZP*CVWG+In<1^Lbq!z}<8x!VY4`A*OViYi$?Zur;HRLn$y7~E1OK}Tr_ceAYW|0lE zG*XtJk4^1`x$YFB4)&Hd{bYk9z%t{{poXz{T-BKfr)hc+jRbqlq@m%z0%?bsgkOj%^r||7^+EAT++%(BhK3 zO{lTP9*;JTEj_fTh8U6sJ|4t2h%JQ#L`THm3ptCtUG}}4Xq{__d|D>#Tf@b z%RIE0G%XG70YV8%O?^~Yf*zZCea{eq-f=LKgmqO3m z2I)BK%(_dqO445!g>4W_5)3dlq?jMUItf=WES_AkUDd_&N-^u2FvS{=FjSBcOriCL zyCswy?ndYLiI0pXp+4Hd{_UcRGC?K7RD=|3MCT^v0dKxZq54-d&+~dn>_@ z$LGvn(Sl${uoV5kw$LDgxNh1JE~&>uo39Jw68yBu@>FCBuu;o`C2Q(qDEl^q5=BrqXfQmS~_3U9kGe`#t+4k@=?=mSCyc8=-m#`jDuZbo{LicRv_+ z=2(_e=XCYN4YZNv>B5u(Zc^w6G41?`wbn4DLfxF@5k zCeSE%LP0#F>#lax?cf>6*6QXC*~hLpM^LrGc8nn4`ngWJhkYY1yI3&G<0Eu`vU!3% zQgymcy}j(IhJ#X}qINV()EO|~&i)AcRLtJVuwA>UKgJtH2ErHdo0qbeqR2N#{3x`= zBsZ(B#?=BaPc18t}Z~tE&T06%GgC%TnOJjqb!F-JR!am#dS9Z zB?O@bZj~3+d)N`4Pu?fyC;U<9Azht5P|W~4CSl;Z&k$F`4ukk=T)@E~J1i#?#I~5E zRP##=IsXeZmcDb={Wjm%YW`}oCp5m*HbEiEG$5oVKs@kzf&J^LFOM^n} zZn_{|eIiGAa)K@`sb%-lNYd^)c3kJ=U32ac;qi&F5xRh@dGe&g?>e(Xn; zYJjS#SZD7aZ3pieVSPr{&J1VBE6xztXOOIqbRDGg?lg?TbF%wV1BBfRnJ8T`N z5yv>>QFxNSRJoaG3XT-ttI^w~69cG`FIJuHTG(MLHZ?*CSUGpMvUf^o>MVd?YxFiy zOd3MgxwiJw6zXd)BbmeOXP6+JXls9~h5q`&E^8rt=JrufCNAzH8NLb|)YG5pgyTL^ zh0b<-v?hd#vqq*$#lr3GE*!_69j6FvFr@~ChQs6kuA6A4H$5=s_`!n_-G$or*QYkR z*d1znM~aISYHP~`7v4em8k?QYx$jv|`(%T_wTXmgtk~r*CHA&scH&4eDM&;6+Tj&3 zjymD{vHtdFIxbFBq*(*(A9S33Qz3)`x5}Sy58WDMhuvlw!e^6?4YA|Gx4@Y3RGa!6<(3?}Ty6ih^-s&t~94 zJ8oXJ_|EUM{kFgvB6Xu=7%aS5QIE%V}XN#X*U! zFoM|FDj~(kp@2ZOn-fyaxpp`y0_ARP{eyjtfzBA9HF+jx(0pXmsGw7S{+w_B7NsbN zZp4toMxqF6wMC&zQn6FB%4uJEY*}QNbh406kd8VTr^69BHp5$5_mdqi+U2@fO0cZ{nNE%kiQy(t?m0k8o6^)5}F;1na4( z-U>8^S$ecWG{)mq=qVo2_f~-`bhWd)Iwy!Z2e`h~$$5x5M+#hRhZDsVJ~xZpf~tX1 z2wzFf^2If=SluCLy;hWCL^n+7&L)eXS`nDdm#-HMb-uf}mm_wIAiSowDLQKwDz%73f5V>~7?}(-q$rZL?3KVso86@P3=U6?Pfsq6fMr+cD*H zFkpwMDhGG|Y){sM!*|)Sna;75cZ>OsgV$2*v-Mzfs(r8)q^o=F7Yt{lt^4e52EbkW z?G*$(bHH9!!0a>)caiKRU8rU&C<)#%38T}8(WWVFou#XH#2#W0xUV$ss3;N#Umvqa z>%j@f?Zfoo-x*@KFvH}Nb`#c^#UM4`n<${;iaOY&$#Tq4e_B~*eUY6W3LO%^Ma`#cvmzJ2jzSArF!tk2dtWcA?l&% zUBN*9p^m1~z(+!U>BEqZ*I-&uPcx)uW;na%xY=G0w|_FwH7-{B0zJ6SW?!oZJ38#^ z_23IxSZn4j{n(B>h8*mkW5>+_4*vAaUQG|4er{iEpylxu3<1Yv8CZ zJ#ledhO+#Ei5l&=fWjo_Bz>ol0~rFxEbSw=mWH`GFgyh=U3Yho9*p&HptCu)x~JoW z9(?cR*sTYT7ISpegC%?%L$x5q)^!9*NxqH-I!P|>fbYYZb#CjZC{-!tsHl?$ly<-k zV$%2qju2^?pQDCOx=_{utI3()Devf{2OIi33TU#VE`g4(^|a?YI4VdFf<$e%XNz79 zc8tU`Ue2+wE7*~0ST7B#?7&!fx)ny_NfpO)irnSwakpv?s3~w=O{a!9Fbo*SFbI|0 zYdEku#W==7U+G0n2b=?eOVevRR_MWiP)CFwL=#}}assY$iTa`joB;L25N8q>+oh2x z_M-C`MtRQ*#WitsqONx5FjAU`@&VV&H>jBd!-#PVqsG#^=AwLzqkM%VYUwzo;nLXF zj{Z7{`{iYrqm52N$&5OQ8~<@TQGOvsifHe^`h$ZgNQb^j|RkSygLLx*faqvQSN0J_#*F$8;vF4tR@%U0sh>7mw z2-jnO?d!nA!?C^lJ1`PCsDA0dNaWy}fexIJbMV4o(XJe9Khyye&cPQ^jtzQn+i=H9 zJ=o~tG~EH$hGUn`a7@&LzOx*df;e`| z?A+YL;vBe6z_Fv}I(q307ruAQ)Pu-dn)F5Z7)1bJJqqafdzEtjpqlq+qwPS#W zOO`c`P!}di)z&*;IGegdmz+;zMNp!LQ?N=*g?GGq()1&!eO8!r5884>j8EXcQpIDA-g_SB9K=sj%RvolsI>Y{#j^F|sulcKavC5ItDBfc#Nss9H!q zuLoV-@HngQ>xB~xHS zeYqfw_LduBDb*0`Ud)uRB^(@DT)w6UJCu~6TpZh>w2a}-!MkN-^acmFm6bbVO(i6J zDlh-2$FBF6=jg#Yfije<$ry3PH2F~v?a8;VD#{Uf)s>$*xL#3iW-zRje1hdPKzi6v z?kV|Ik^2ioe7sMa8q1BOqg7>p!FIcvyjxICPB3FzySn_RKzcN@6qlyfWC2pG+VUz9 z`Or1HxOBaaj5&C*8M=+v2n#$Qasd{rcRu3L+fy}i8!&}K8^x(uW8OFEKB20sL*)E*6 zwM8jDEy4o9yPXW3MbJm;{)N0$4?bxx!_;zYOh*}7#KB)X%U|okrd?%d+!qBQ5D(<_ zB8q^(A+C^;6Ct;Qo8*dlu6?8oi_XDEJwypx_`^0ipV12?x86vUSyA|qz2%nh`6|Mk zU~>Cj3le(=Q~HUNOe*xHd{Pg>lTFcss|U$z40Np<7GZdj&qNO*ak`bcY| zgko{9({MRn3)1?=a#N||S8}jU>K834&s?v*mN9lYxNek;34(*wjq)cfiq@e9{M6sA zu~7B#>)~I9j}v(z=tIb>qx4|B+*ikuVH0U~jOatAbFP7t@a>!mh@rSZy3ecF}_CpQD!+sDWUiAa3c+xMt zJHO|L^x`o;G?#eE4=mytKeUs0!w>1i1AgJ|{CZz_X@0s7qQ$d);1qB6fhHd8LnL17 zixmmQTYadgc&HEQ#VdW`f&4@tF!4Sg5{k$9P#N(uA0oxGd`K_e8G zOMH+ip5a5Jc!LiK!~=Zc9{lVZYPrUy(srH6dQJ9@yx8+zar z59o!*y7TjS=pgZS9#V*h^H5UpY94@iGB3O)zn6zB#AA7A1o2WHI$b=IhXxjJjR@?MWa# z*9+uwK{7OM73gxkAk{e@(ZH~i9?X_Yj~0Cko&#qKfk*VB$m2?TSG)r#es16=nmba& zpC5#%i{j@JexkYeMEt(@h&q6uXznu+HNL0Y{~2S%&m{ar8_hH{RxXWaq^HKpyGx3$ z5nQE@fuSsZqS5xWvBsJ@E>{YYcOR)O{Sqe!vSo;<-(nQSsa+0^?^D z#mJB677|e!CYmY_`*1|V#6zL+#!vY$!_m)ZvBmbI;e1$;e3*-e3uk|p zGc1@7bIpgj=fh$>@}Zvju%h`e?|hhVKCEp%?2CMu&=k=!LUH0*RRkt9C*JrV_CNt9 z3NsXMe3%b=ln*oK!>su+3|S#mSgLrVJs&3L!_<7(6A6|%FX7XC#DDT(FY;lp@?j6E z6k;jD{Gk&0ut)hYF$hF{Vobz~K@iKR7!~n690XCr#JI@A#JCWcFnCbCe3%$1c{DLn z1SafWJP(;XObi);39}c^V<$Eb6{9E*s~M|d!V1P4Yv;p4^I`q>X`Etc#2W|dm@rs8 zTH=jE@-Ym{$AI=nqObDBan#8FMj8JbHSWJrG5?L4{NJc=^{Cj-%K6=Y*=GJXD)zro ztMw?Y1=i-n*5|`E=ED;AxoQ2cCESvaxGf)+oDbWP58Ig!`z0Tik`GJGhwTH#{jX(z zARqByKI~9F>_|RLSXiMq!s5oWsm;S?ws&WmnD*k0vH7sM0&9VU8gX7e;=+8`kNL1= zPE49LU+!)&+@|vjDgf>^Z^?#T}QtG0d1osXxi{4CkrQVl1H6(7eTRP*E{Ufa3|KiDAYKbYQVu$*_lR z3J#*GO8_kN?Gm}OyRhzHd_#W#GvtuZQn{DAu&annrm;&Axq}WaMS|y4C?42L>K-rm zch{%sblMY-x*eec%jDsP1p0cJJl0=43oWX6<*5q>>@)mCy~a<<8y8ge9_1`UzW22( zE=g^cW0_(2m10-OHHr$Gjf^kB6c01n=+Fvem?62Wg!AwJn=bV^+&yE~3jA~;{QR`0 zAf#r|{#A07AYrYM{uXTMF!nA*F{1J4v9U3{muTZjdb>)lVc1Vq65xI$QojUwhG8{b zNkEecQ!Da@bsc70PA&wF<5ZvIpqlVExkB!}3gNkD{6w?sDTMz$08w6p@Y83gh+jr= zgdA4TFC_0UoT5IfQ7zqHNoIfL94%RmCVNPKgJiH%(KT|A;Rc1SkxO^bd>P~KFx11? zFBMs|?*K<7rXzmtbQ9jnKYD4-_C(bBUU|NbF#~3Mm~lHTUIWQ@>F^q?qHof3k-O@u)O_=4G)13`{t{0Kx$V5DqYaaDV~C^U(letOE%D7eM&G0K)$T5bs3;2>%!0 zl?H_W3rv`4fNga(C>&s*!T|;l4lsalfB}R93?Lj}fG6a)Uhc+jo{86gCSLw6v z7k?&R`L1*F>orxE8CSK1i;$@qOS8XO%bQ9~giI;39Ua^^Y!Diz1nu*od#H%$E zyB{W2)mRg&s);pqAuH-a*3*TorVCk17qXHrWF0lJiY{agUC0W$ko9vRtLH-2&V{@< zTgbX;;-%R_UYRXqyb?nEVoz!OChTuKr9U(f zm?)0`_CumP9^juu*$6OXGdOS4tj(CdZd1l)xjjIkEwH$^srwepg17PBvD^{Bx&`*? zHZ|WW_XJq7RqhIKXDdh6*@lgk+cbY0M_$<`_wc-pUNO3jz)$t>XxTQo4&eet5qIOO z4j%tk&3Kz8C2`8rNyz^LnUmz^071#}7XV);V`}|CiOF(XfJezNU?0eTyF3VB#&)?6 zz@_bSKY)-On3F!xv>nWObO(00KG3Hfkok=Kf0n-p6ceqnDkfOtm z%8^2If5skB3T6B(xARI7%q3O)bb9=M6z_?*7+at7E(gR5=o0L8?5!Gfh-&?sq87U*A#U9(0Fzi?uM!A@@fb)!r-j*0=&^fXg_8+NA1S zMQab6G;(qt>(#yT0LZPgPi_q`VISvtbRQSXb-x^j$d3D=32C%)zuXPr@BOG^8dWLe%YeLcgA*#DuE=!Sz(0{*N$%&xjQcl$@!&>W%r__% zDW^}liq3vHPc;t7Lm+k0Aq=JSD)zseH<(tl;F?kRZ+u;f!HE79+#WE{p*t=~W+ z+Web5382L95Jt54cX&)hg-aNZrFYPQyvR&^iRgBpOGg3 zTYCmMSm^K>d6bvftu(HCi3&#G%Hgteav$-OA|7WrE4zY+&LRs76*-4uTWH=n$hOei zbMiL;F@K>j7P9}v*wFKkZJ~?j<#7NlFEFhH!?Y)CG|IG=CJz{M7BMh(|^xzRHx`WzgGqyb&gKr0UnUTYDs%eH*d`|Pth(=m%2?fG1^#ntJkQ`4C=)FyY--ZYE6BD;abWJOaxCx;b(v;7h9Un6cH5ne)?Ql=>xo^@Oo=Pvns`Uy4%qU58Sq;zyg) zif;g_nGCUWZ%o3@DVvPeGE4^E)T&LfX6Q*eoytMirc>Bc4B>P-_7vxF>D1~OM;?6! z%aKk^|B>SWj{L(|ljl%^bV_{=HBF}~FBseS0%I?oO232wNhi}wbXPjPeu-u{LZx5H z(>;%fQgls6DcanjVQ-<$+RIZy&5n@YYk3~UWI|WAzLpnI_e%)Xc_S|dDgBMS8ldl6 zoDLqLdv7^%%sU2e-r?Np2+e;lF90a|L0&`;gpds%qneT9id8} zP`e|P^hut}Q~)!6p#qe+Q}#=^U$25b7v7^|g_Ry)E$RWG z_h_Jp5)QE4L+J#NDocA<1k(0+7SMI>gcndv=PrrN61)mfYy{fW z+f%7!xJ0cyQSM9hgD0e2qQ5+q=7vj>yO-kajg`J%1!VjyeO&>K{wp1=fYSU*Uj9l? zfGB^Zt>>>o9UE1`H9)G1gQ0I)S!!G;8>!5rDTGWs!ts4|M4L5|AEJ%d_TQMv;xt-_IiS7FWu zRiP9aw4^FWKCG(r@X8RCyy%9liBIkYX--K6XW@8crAW*-PIoJV=2S!9W>97|lqiFO zLX^G$(?U4%j}XqTe09!lY<0#?R_A=m)!>3n*1)+MoSv+B*5nFRsKuP$ z)IyVG&;<>vQk!XWYO~Diwb70l)VL0(TUG~Znn6$NC?f#+geuVhM?=wa8C1EhGS-vp zWer2UV%t&cstR7ZcfP?v<^9lk8Kl&Oj%QHkdT9L&O0CCv7p~9pN7Uy^9;wfH7i$1j z$)G_ExZUe&Q(pF!)Iu#_iSWb>w+Zhlj!FIuIk5>AO<;f;3xW=c2eE z1!+?k1+QG=d-vSJCDPpvP?$t&)DhAXX=O*~R3bg?$dTcll>VM9;wwy<#sSBEDcDY7?fE)jvQlX)EtsB_z`0&Pp#$c%}>X{pJ>= z3lVr>D$Cfr;%9PKbm5YyUC<(l)G1t<0B|TAZIDPlU7@;(G_)&*O(LD?il$giwyx0b z)zqXL8hbS@=>|))nr>>KVuaENho4_YfO9!bi-7Vir&AGVyyaA)yE4=Zx`Z>=Iw(%@ zdV0z6eRK)J=hbDMC0|aN-7!d(Q>94d2Y?-sXzt}yqz8l^r|LbRwa0084`}ppI^P4O zI8K#%a^%#WVEKy@dMe?8VlUKqR&0d!!q%tef(#i5R8!@RWax!78>vq(B_dE9&>MSW zW7Oz1!pZzMLOSy@I@JsLEF-_(XqRR9t40j|Wpt)DDz=Qu_JP_jqX~UrqL$GgeH4E; z?E2#G=DwrZ5$H|v4RLORub{epm3E%Y;JOewJTlS40pP-?!^N>3d!R3d%L;nl7cy5+ z=YB8+D=5An`hEr7?1wt9psM|qHUOjhV??c>-Tjpgnz+CX5O*{YUnD^sKItu?&!j7; z*_Y_Y6}0e6%yuj2f(A+qP}&0PHvl7Y1+5yOgaKS1ptJ%gIgmLA4n$Y4pj`twrzZn3 zl2%ZYL7d>*LFo7uc-;&WA=hU2eqK~)Ziv#c zDyOS`1nGtyb2j_(bf8)vof55BGQE(t%HA|Yse_H`i$j#2o=oxk6`W&FQB*HzH9l<( zaw^a%nm80Kb&5_5MTt*Q;V7unDH;@|)G(yd!YC-oIockDN}VG)3Y_Pt*)RsCVQA=c zbZHo7!*f(=I85(3nxKKB!y)V(6&wMzIY<39@XH7o>2vgE1Qg;NMScZ^I7gcS0{Pz- z8#++LefZJzZ@!#cw}<2tjV^vjUq{0(Jfz>EQGkb3{A(!DLmKlna(+nC*O2#++()9s zcB(oO*2+!`Mq)JD>FG$!N_Of$3MR=;hev_s2HhNm`I%)Db;E0KdK+K9td{L@4u3S~C&z%1ydI5iI-YgNWQmVUy69`{<`hN>hN-lav+! z1tz28_Tj5*)PEmsnv62-qt}z6Vt1(86eNE~9j8D;-qDX!P>6SQWeTLcqkwOq_U~x) zH>lY=%J>G2@{US;s|@yhC+gCqDoza=R;Pe(m4@Q0u+sV%d`FqzA}6Gu$_c-jiVWY; zg{d4_VHz6z9Zj6Z*okS(QtCUD!a)tcgKsO2K8&|;avz5l!3f?eVsepanqXOKfTLOHbR{$+}YqSpz zAV)PB)kLc`?~ERe5IeNI7kUbNrg_w59X((Infiiy#6l8w{{%Qsiv?Iiy9AKwi~t+R z3eYll11nF?l?T}E(d3Y*Tr}`JD*mzENwrX$I7oU!Lj}m8Spp=}IstajVF8}g4S<%s zB!2&c%V%ld@MNszf@4*52qxz|>d)W7u4>d3WcUG+PEmjWsnk+{b2LzZhxDBQb|Qe5C@20v zw}$IyavpWdZ833VW88=H&AePrit|k^m$&p(NcxA0%>y_{wFKBs;R4*H(E{A01pqDg z2{}h^eJ-af^i!83jya9XaLAdL%aPZlV1Fe)c5#58|^_AFG&Ygk#b zEQB3@N|8Td4LHoC)J8boq)Y=Syhxb=FmI7EAHefRWf{Q6AC<)bHGfhn0U*^N4Da1P zVU2y8>_5S}+@=G63@uV9}n@jRe&085Jj(xo0$*P=q~H`#y@Wo#6eXkc}|WrjY+?Bu=4mt1%0t z(CO7^niQ(E2Ca}nb2RW^4bz&eWw2~5=Kd6Vx)xJt3Uyk?36j>Ky;7*~dS!qo8^gY? zFid@2smD2`48^ZjYE!k7kNj}KmonF*!BVLC2BmLNX1(PBR`ElLDPk=L=Aa3~zFMhS z)ly!dik}55e{%b3*py*ohYeq8d_e^_!uQyfumzIWZ&d0Vc2VX=)MOV0Y!U=AZBoVo zyxOFU0m#{+R3TF$=9pbndn-;co+qNMcTv;L(1=|$cr!~_wpj@Vc5pLhA0fIGkk(t2 zCIApujS{ygB@l+p0J^$GDTgoww*-L9h5!&(f#z&Qulzxg+wlGTKO+7Q3fZPq(W3ep zHq(x6=zz^+-v;M-Gu22!Uv8!!la#ogoRY zRVb4H)*MlSXvB8pgYb5!UlRT(ObMkrJ1~hH zuNp$uXEZmZ)*=}V_5pfB}*uAyk|9&b?bqAL&o^V_#NPq0ch)bff zDd?djTA0G}92)4l2V)G`AIEFc*Y}`9lPD|$eHWgpguAn}A37Q+D9hK6q*S<1N%TAw zE?E*~WFW=Nz0mz6GMrFC=+$00L`f8R0_)&u`#64+i2r9FT0e;z?8neXH8c=<5^7rT z09PaGB=n>H8l^a1)F5 zfqmc(523k7lu`(z*E;~9ry~K-$*lp1KyQ{K|C5Rj!st>_Vf3cxZgigj=(&ni z@K^4IpkI}+e|6vYzjAHSeO2hsUojPNA6BEHr?>>@NHOrxeL~C7b6o+@Y3%{fU$rRi zH^mQOblL!%LBIG7R^X}f=Zu;ZJ7JJQW@bLzoRrS$o@O}iz!tATAhaV;mC3{ z`!r;y(YezwK510&4_N&)8u7#|EI{~0jN&vpe32u|W^&|$Ol6!O3-?_H;o=A8 zyPz=ND{=eI>k_!m)AUQw;q!Fz63TU+YF$RT&ePV*%1nU3E6QYml~)j~D)v;>2~OFQx7)S5&0GuKWlPcteQ=NW8()%G^XR zpQpw*A#@Gxy$PGUhH`GAk=9VuEg01`bmf-vJwU(P%3Ofkw_$ggvm|-kQ9|LhH@~B_ zEGw=Ij%s4O*~3Fr&wcdxDbbV04;#DEc%7EtfsSmT>^qopHc+j*=(!EF{;o0$pzJ*q zY6B(TQvv`^-$Uc_)I0#dbYEEyQ00NL%Zpb7`!Aq!_@VBN@&6`K50tMcCQI=I&#WwE z4~5lK3sK#N$}fnx|4`Wr5dXKb3!ud#jRM52q61bX(nG8{P(`nv9(cN5t(~whz=L9BrF(&uMxxa=WiuF?*_A|q zJ9cD2G}od03{X>M+67s`H<~n2QSd=8l~x%$qN0*S{T?f8y+j7aZU3M!_@SU`d3i(@ zX48SY6hup(DERt`YUN<$5_QQ@OgN~%ngio!p~_E{6#$2yLbinlJwv`0`uGf0u~70q z9NGD~vK5&693`~S$`_0^c?p>oy8cpG2QcXsW8SZojllN2Mn)F;>$Nh#RowS9_NR<@ za84c-P^;6PH%ejD|13>=0~3Ch{(Otq{ocP(`ta3IVIQ%S7Y6ArDgoxqA$N}NQdnJ%_LP#_9*oT`qAmvJ?WvZ*QE7;$ zI>c~|-UFjVPc;nThn{L#Eo!wJAJT`mqV!O;F$ES?OQ5lm$?k>1C)0wW>MsBdimAH* zvWlsDwZr+j9Z>hV9cXhS)IF}a8cj=sR4=f!_EA#-a(vX?02_VP?EoE$t4RP#amH4b zPTEco&42qSoA0Os~yC-yT2L>FgQS60-yvS-E*2Ai2R;Y z(IAf85CkdDsa8eR1RzyJ2R)}Ql{oTtC3OL?;lWH(g4IQSd?TP3HWG~DM_Bmr-;9O% zdrnI$t8qAp_pYLL1sGgKT?k;Q0zJZUepM*RODb7ST@SFYnz|97M+owIN!cOlQcvEW z=(iMN`z;k(980wyp>bZ4XANjBQ^za=b<8q)_)>w6*HU{>Xie1{ENyC{jb762n(8`$ zZ)>4BUXojF7QVJN>iQCYlLOVcNuBGcQHG1OvyR%o{6($X>h@wo?lCEPI!U2wFMuL-)hz%ib=AE9QT3oK>Eu&iJqYk;eU6;oK-~wdRzo!n;88=y z5*k4d)2Ur!btk~%#*D3N0u4&1&P~;1fSji4R)Cew)G>x53C-0}IE^3O93qcUxfbdP zfV(Z!41o15)!zYzw^Gjm)NZX_1~7!FCn(N<@pU>(J%xxxZPY&idbU+h1NgO5PXgR& zr~U?z_yuFb+p9-``FBtc1KjMu*vgLTFU@AB8fep9 zod@iX?l39|)FqOooQ~w=;XN2+_FyT!d$N>kJ=H*PqDYM?YhztEuSt`qRGJhWGhxz{ zmB!c9rkC0RyHm4!sYAsrfL`iofKI*DaplBKd*g20tLGo+tZTkhc8}n4*6K@i zCTT}*1}2bL03)bU=tAJ^j-u;7R4 zE>O#BJQ=^YEDfH2rl5^}rC#5t!vmOg#(uDhA2g1~hzV1ohm9CDdi=g#h4>;Nq>YCQK883lORf5^5*TKy;#$GL*=h$5 zal{N`o!HxhQYNES;^Wjt6gHrZuZuB*d}1-%WzbKt=y=>|h*c*7jEYmI0%XOhleF6i zGd_v7`c!~6FHi^3(K)Io$bZgJCjc~=t4;#gHJ6iC_+I@E7=6!?9zSs8%pcToh;;m* zjtBU19tKthot>wC3(#ghN2dONS!V%W#m@9`3Wc_~yR^7d+})jC+_lIeMOx${2e`n+ zt%cwe_lp!bI4usv-QD5rp*R%z{xjK~7x;L1&LqD~l1VnnN;k6;T)~Lt`j^X`^DoB| zPIL{^2AoKVr<(XtoqOvRR8g-dx{@Ksw~1_P@FXtg(Il=ZU@}_~J(;VoIE7VqOu)7)v8ZU6~xYbQ~)5%?wP%gKEwUOxlAg(@dNZ4ysi%appd# zip^rpjk9nV52}2#G0XA7!fdV~Unr-o2;~N54C5MRgkk!?+%WE#pgG*mdvn<8MswNf zeRExdpyIDsWrf1jI;gznvC80iE(5U#^IZLPj~om{kKjjL=wKhyE%ROU62@`e-1-|!IW0pt7dKrcLC+9m1Ruh*d9 zj{S!P2Mz4nGYrEK12z-hILB&oM5SBl@>A89yNV(lvK&Y22p&VR=)D3%kHZpt8v-jRCQNl@w}=gtj1)$ zs`jmR^+@!Mrg1my3c_=o3%Bu2h-zzG{t1a<0`+R1P(9d%YqKgx8>Lel)}Wc+)T=eF z-2XqD|5}_x@s`8}^mq7LoM58V$+hUDC{=kKiyiB5jH6WE^;jCB)XMd)ZV)~jukY(-Jws^T^b>u_~y8-{MU zsu98BKm=+FR~5EnkcX??+Zh($0lUK0#vM2m;VREgbZNMnu@gflTz%b%y2I6ACysr% zdg;VO4_9q>alR|NI75@&SmVOg{oPzj>pg7C@jaMZc-v#ID<=f(%m#1AI5o^uFZbeb z&QrzrVKB~9OZQm>g+)b^4Y3NB)Vj_ii$*gXRAt4XvJ)`EehAf zvsJ4@=p2UOR?I87W-%MPR911k9u%)SF^;{KbTR=v>@4FnD0Eu3-lBj^aFeT0K7Ms+f#kpujjw)`G2W5$d-*b78hyf50^uDea4cr2q997*^OIgfk85d5en5g5z9-f$1!|D>y^+7yWI9$=T+rc*fRvs8g-^u;W-F&d|B zF1Q=sA*g)Xi^+Hv|MOT2XsKI(v)L^|zaRIi$y?JV+cDRHU zCR9aT;yTh_cC|$;_%au8^s=iRV%e{7sY9=DRTs3#f0YX#b=B1#Dz~q?+GP0O8x{0g z1rDxfNN_LQ9E7UI*U(Fc)%t5#W)7=o*HGnQRqr|m@?o{}I(p@>%6fyvgd48Th&{jI z>Ya^Ww1|5GHq#GXn+)#UrxzY6@nt#}mqX3Di4|;%+I$m>;}-ScrYkMP=bJ8iv7+`Z z9HVG8^cK25T1DSNk43A3w^>ZPjoyq_&u-(?60PdrK{KM&IxW2J!rW-p=*7W?kwt~FX+x$g?VANpb*VXdqFz?BW*t`AVg19kEN zX4L~#{vp&Ks3i~4@&_v6BV30)P{t#S+Xw30Bdm3tc{Kh?IPkHnHpHICm})Onr6;(n zd7;id!PU?U)&422n_j3VPqA=bQ>~u4YCm6pSP<>uO z`5kuE;0V4`uU?@O-l=A<>L-lLvLdpGku|b_)!K;N!)5Sygry zZV=a~AQvvS*Qm8F^u!vK+C+J4)JPL6#Tpf3;)-C6>g>jXxJI3GbFA_k7;sySdE=@C z5%~t|>1|as293V0HpXBrysiA+;ws~|n)eoq>}{3u9SXaxCcMJ|xUF8l!`gmZ1-*9- z$;>Z)Ox}%F(hpkcH7KNS-_8Svg<-d4+z;r^>#EKNO!n()@CUT;x;pp)GvK;P^AYRn zbrtv#hxxj4esq*;_R|bW&DKG>o(Qx6EwG}J)f|qZc{%#;XZtus`(j{Ynxj1 z853xm`tTWpV4G_71zpMan(5W1FF5wM)VVJxAFpYA#rZT=b^MB4v1;d63{AY|5sQft zs|Lqn%*3jzvFNv0RqY$jHL+^bH#9X?`F&?G=R3wztor($Rl5JcS{$pc{9st_r>mEK zStLzSyh4$ts0#n?YNWpZbS3hLo#SJo&^aMy4rG84S?4&-D&8+?OgL(Isesc%Q>m05 zNPVeFd6*p`=6aaf|4_K(VHU=pi{r*M%RrQmYj%QI6xXbRKOWzSYgUBF6wl18V;R+7 z@yr_dd$NjWmVh`N&+H1}?}=Qy)GSZ44gSdd+S4otktaT?T&MnxZ}xz2$A{)R)iiuAlmpK z*9sNwV;cBFbg6`9HHcve%^-*u3C$r8ofARxp1P6<)tponlbJ=66zSEkTj0>bxCsq2 zPO4^!&0I+NJF!^`Vrycvk;looNzCDhj7VaRhj^acEUzjiHOnGAB&pc~Vp$3^qk5jy zg!7cS$zTzeToGb;GP4*2it$tDl2OSh%U|V6ZdM0IfsK?ix#^EEO6>!I0xKj>+%>2l z&ZS+j=+eC#m!I3?k%|m3)2VwY%myCERKb*HJBUds&AQ&Sm)OYa^io^njn1LIr!RuYNv}%{yEQv5msG=^W#&Q2Wf3`Gc1|%cDpK6oFOo}iH z$)LujF;gOplCr36Y0QEMqqq=nlWNbs&r7BFcXTE-B(0gx!&J-CntA?6d6gE2WvTj_ z(X6M!)0z1Zj!tK`@?J{$dmp4>IXb6moZhU5lm+R{HOjw*89$!KVJ}rNv)NiL&tNu2 z%7M&gF_kl;*&5+d8F65^$iCjRYuQ-b(nl8)n#s)Wu~2P#Zsx~lv(4rnn^dXH=D#|B zSDm$j>W~EkYoA)|iz4r4fl2$6PgW@JQysIK!@T!Vk=w6&sj8P>{ z>U(w!pVz8EZnLDClmkQMwc3{h!Er1@|tZumaDaeU_?}29KGer%xiXm2*`(a zEmvpqnbRTKyD6+IVP{b^aFv_i@O88?;a^V%!YJV&t zTtkG%Lp7tQIo{_Xjs&hEFSSw~nqesRFOHwa#mquTA6d*?1ktUuSxvPoZuUj^RB>~S zH)SziCi7N>UQPE`>q?-*AFA_Z(EM5@F*6>jnI$pf9;)vpu|9A$t<=#{W+CsDlyRMx zj|%TSy@<+J8cpQl|A9cs4OEFTW|2RNUswhvbMdVqP;y@NS6MT?$5GY0tT`CsKvf*I zTiMOj>U?E05gsNVRn^O3Q9P=alryJ56s?9{=vf|1)={;gyg3%4a0PQ6#Ptg19Eg4u zG31Y`6BW(c5XmcHXdG2TE1A8#j*`LO%BzD-%(Uu9C9^yd%2hTyK%n*tM~@q@wDW;d(LXq=vM>@pw~ueiHSl zF6PrFm9(BY5&{#Z3xvBKY}=$N)Hj>!vXbNLTkhg7GbmLN3o&I(k|VJ5pkamj26e-q z$v3G-_02%!fFa``&Njg6@^~T{2X^t@; zskSsXM?(~CVa|d$+yZTjRQX!M{zw(m2ZqFNW9CtNTbfw`ZnnhKi&Vq=V(9m8g^r6< z`&*g+dPmYhcss;fB^k4{s2bVY3_!}c)>v{PRsA;R6fah&Fidq0!s#eWTeF7FvTc~R z%G~8;b~UA~*-9&Q8LpOfz`BvA6UJ=Kc5Hp`c4jC_`q|DLq?M97)cuw)E4)3NH1I-M5+fv%^K=_FANm4)G+%& z;MkJ^INsG%{oa@?e9&t`;CN?O*Lq|9;DcUEweEu{%tyYs+R?{MhVaooSStANQ-jfY zG@NkI>8PIRYj*qNcpLpN@%ea{Qs?^Nl*|XckjfUswczOV_~UTD4#HBy2dSd!*x$^J zFphCiXWo~k+k3j!a{oXRl(7lnK@{nh0GY%dOD8z3CPqG}Sl3}GC`Y7pqa zDiAn=`Bm#dX8J!439gL(HNG~A?P|f}} zn|Yt0nd4mSt(I+$$cuNa&4wB^T7oY}xK|cXt%hTnI-&Ls#~|RWWmVr1xa@jH8GWBy z8IO#>IgQJbj5$Y|wUDFtNX+O3>cU9$+5+`;Bxc6~RcDkr2IBs|W>uBQfkCuD^_pn@ zrS>>*DZW4@8f`9t7&8f1uAfJnRT2I+3FB?R7)<{K>fRXB1#xDqc?KfuRI|Fe`;YlI z!mY=dkq{Zjo4dUikb&cmc&i5yFFUGo6L3abptepo%c*@6Fp(Ch*a=vG7N}DHV&1Yz zrPR8AvFNc~6Cq&IGzeHzOI4hNg`G{JdSJ~A2pG~;xhG=|vo)jDlPNggut{qnU`>Bj zdKv~Hn^a5fo@RFV!>&=&ap2glt~$j$iY|4&EU47$(?U|2- zZ`aN$opybxJs{0(YZ-@#xGsIB z5--C=^zVap_A;}HMq6KatHRgO*=d*KO6Hkb6M>a%_j0Vj&s5RvxC-mF0{0G_yN8Ld zdM({vdhSXraL-iGO7j%N>m6oCHGdWEIi9I`JJD|~SDV8SzOdRn0kL3>c>$u&T5}sj zwsp9~eWteV##Q&1bvRPboa5Hx#0%DBuQ^Vo+h{rvRvXRN5FY!@zA9!Dj{Y-e|NpT5 zfZaV{u2$u@U=}>Xhat=s>gN`=wPz%3-MkfR?z6d3m`A<0nRWi?4$la)@E?ut9)X35 z8$AgE?H&7jQ`Ot;n2y}mW=ieAfZzsifIwT9LzH)#+acaKacX#mmlScDODJAh%pEscRdBNYVN2Z5#y^0=h- zN8!3?3Vt$O!W_T_dyaPe*w-gG1b+?b)wvH|2x6_t`YO9qS|7Ewo3oi(aR_JgmFnan zv+W<(-)#@$+_F+_I&2<<=zGMx1~L4U8KCAK#l%{v?i|Gh-AcT5XKsQhcpMXDrD}B= zr?Ml*arRxQlAge22w&7obulNfXmg=uRlAe85ayBxs1m2RNEAN=2qhO)Iiqn^#>KZ$ zXQOdv&2>~#RZin>pDU^lfjUa4>!(ptn5ujReG#T2&fpnLn96q6obOHEwhWIfKB{Ui zxS@zSYc}^{R5`mEVB!K}*g2e@!qmQVm_K2v(Rs8rO!;0ho2U*KaCH}^=3g<3t0xy= zU6?9(5f|oMO)Yi#A}r!cDydqR@F3xain@jyvu&3!!`ygChU>hR%VN$tN&xg3= zT6qtvp-Z_QVx+aWk4r_D8uJMEv7hf_W^#e`)wl=f6fUmiA0-uih_e-!G!6oVghC+y z4lnYtW=w3RBA=KI)#S&xz}cv_KE@ejqe}DyXUdJLz%#Rumoc@OPaI>T+VjL*_2Gqo?_4$Q+1auW+BV_yvwWKa>cA z82u8rBV0l$mG2csJZsH`NdDSfh%TT02G;|w*QPJRNnPlg-FWb8j`P}0&AHiMeS2dT zP`OMzYuc@Pn^*;Rs~aZne0QrRZnSE*igx2-gAZLh2o%=?58-wQ(ZZ-KWF0kC{>szzuAA=(N9qi?@MnPc6kAaAJZ-#2UIx~D! z!^RKGsbe2-VeVGRK4K|%s~I0*9T!_$HT;Aw}0=}nYFtV}3E;4UsCJs@_>C0e@0ISk*1a6WQIdihczcyeiCfPCL zLOxEOBH(9P2GayoXax6kXz2_gZJV&lECEaYVh}3eLvsdm1jMvspacx+z+k?B*BUGo z(5e$_ECz7srVQxJWT~i-Up82_OhCC|3|0s@_cw!80<7*>O8|T0;}}auv&IG+aQ|$w zV@8RINOpu7n}rxNIKx%}&E_zO5U_6ngB=1AtYqL65U`HHZUI-fFxV>~{vHPV892z$ zn8QpCipscC459@5yvX3N0IO}s2*@@`bl6E7aATwG7(19l@)-jBD)Ozn9@N2(^F(AT zCCDWka0yrJnBj&`IwW5cKyK&&ZU|^)GPot+y9Rdz+;_9aJpm;hUzt1*vhxRnM*`aZ zWbi})d8|Xd&jdX4VDLgfbx#Jb1klDPWN`_Y<;}p&^N(8};lm_GRA_S)^1Ks3`=J0n z5coicEgk&Y0(>U0fxzw53}S7-J^0;@8Bh`tz?(me zEGM9)1{DQV)&*3tfy1zhtZoy#kXiz)Lh2G&MP|os#nm(rkWz!jHej;??3nQ?fc2XR zSXP2T%O(jOR*@M?F=-v)}X6^)H+Ld0f#i`CBRvM%jhG(!=Xu# zkj)wl6fmF)=Lr$;pb~?j0vOElsuyNT>&uQvf!+QSuL28RU{YR($RY~V1SYI4#hM!goSa$3ND8k`f5wIyp@6ktt=D*~(uab18l1#Stj zrhwzF5NirN5MWJ##{#S=@JxU;1zrlU4!BEzH3i-Xu%^H}3t;|v=n?->RIDlRMSwL0 zz6r3Vz)u0z6o`vWNqRV2Qy{(oYYKP^&{M!+BobmxfusVgDUd>dH3d=&u%ebxpF>ov5uaOtHRAILutt1A0oI5wBETB)#ROO*zN7#i@VNde zBg7i<O3Jd$BH!7C>Hn0mce=slhk_ z5`!=S4$sL< z<_d9YFi*hRsjRU;z?5kW773^{oxu_TMP@Px7eJdaVf%6c){$G~Ai^6e;ZB%T*4luN z<$612R0`wdjRFeJW$>SXlNxLhK)!}i;x+*z7ctl_AY!q;{@N+z*b-LRB_R7U273h1 zo==pzPe9w13=Rlzu3``=V9{y@hXjmR!{A5&UH|;r`s1WBpRTbS>saNK4Y)f_+c6`~ zCQd#pApLd*=LPg|GPo#U<1Pl51yB_ZH02r*+E!|$+si69ZNQb@rr1?Vj)!-#p?{CS zVgk$H5Esl0uHXD>jfs?L}lwm20sMkyTl+4Hc4u;4qs*vSAh3b z2A%>Ut}#d;fOfyaGH(IVcl7;FLLmYAt~46w?3j`FJ}0LVknahD zGy>cjq!aM?DQjfVfX;u#o-@fLDxNPGWDzjzC4+1N4!mOECm`ZAgB$`nm<)0WpzXG3 zNge@%-vi+MmruwyB4I`W0aoh^6L?Ak?)nGTC~5=lj^cKVy;P%sk^(Y*WBt+s7HLq{ z1`ea)cUCEH6XTTz6$KRd$r_af^p6vl?5rxl&x1jA0jJ|Ks3{<&H-p*&Mrh!uE99vr z^#xdsZA9P{wZ0X;u7!F7Y{0E=YR8PMI=O`aYzij*)&#y#0ZTP#CmLBDnsgLm<>~Tg zo5?dp`8$pBFy*WR#vkbu!?8H5O+ zZN$(RB4DZp!vrMFz#78^kn?Y387Ux7=D7U)!9fH*EV1`9JFASf0XKG>9WyfK;N%Gc z{0lOeC}5iglLd4w#2Qltcob$ZT?3kby)~IBD#ePi%4`8ii!%rlK#s=Il(_;jmt-(c z!0}QH76?dEfx#jHLkM90EfMlStArB}k6fr`1%WHnKQHh_H-ObP;Qm=_$L!<{1gs6x ztpA@4SbvKhgOhUyr*9K-yat2q0;bhuuu}l-p@s>&1e~wUV2=QDfewv*0`Apga6rK1 z1`HzqqVq2sdOm>3AyHZW7lR`L@-}5~Ou&B{oFK54I%iIE)`+$NH};GjGZMArj{fF9?a#l~pbY7^}e*0mZwq#x(&KG`JyPcz4#gC17n226qIs?#bXD0S8;|X)t*p zD)oXGJQA>7gC_#A_GgV}0<6}*B*1&L=VN;|TIaF>cZb`K8J`AFvcrfG50tq4899UH=4mu4QT!)9>c@~8?m+J&an*Q37GT` zgZKhy>pAN65@0npA%TxH7|7KfG?LhWTc6C183)I6ateo#VN;o;5)i9F8UY)pu|_%p z^`YtSd6A*Ct6FEnu!y;BGZUgSIk`!Y%aglHnhYV#1{JJ=mw*l){ zv|~o_5-zT?faa?iR26UyfaYIyArsfIN=*T|*D|Or;OROBbp@o_z@WZ>BN{Xm5VVOk z8VlI5jX?kb2R9{K1e2zsGD(Bx0z9^}MoR(SyBM@4u!p*@_ALhOY{1>o!H%(`f3&re zfRjf_-(hqSQvVp2&`rQM4Y~_haGW)I3aEdAfg#|V27Lq^IK>+M1WY{5puYw*|0bPf zGEh_|pJxy(pzB2jg9W6%#9*j^gO?fnEg=3)1|tLnX)sE_4FWj-jTT~c;XefCQlGB6 z&4o;`0r%-dJ7$c%%gK`kjCsIdssOKt45ka1tienhI1Ku10S?S;n;5Pq48jBiK4mah zz-bNU2`K)IH5LdsuE8P!^Ix*Y5&r(n8LG*00rxamDPYiR&a+xTO*ezJ0`_aL zUO>(_tg%tR6b=5f06qWLoxGLEXX^D{v7BeS4Y=2L+A-tATTb33pd-Foh#uS{fIKY# z>=R&>c#yyys^Ty{kpPWDP3idy5w7Eiq(A(|B^(n_+mkb#5O7w5Qv&Ei4k+@pfZH0J z74Y4QHO>pT=QG2zxfmh`>JIQ^-B9BCLl7w{t+gO>tMt2$qoX~smtI^g7nAQfc3}OF{9QlPM#p()GmE!CkpZ2!zz;n zOx0kjfVgK^W4eGbR~gI{ko`J?*#a)yU=SuC!z~7L0UX-$YsQ(_W93s$UM=9>GXN~DYlUQd!7A$o#Q(uyqkwquY5}wU z6F_b*0JaG5i^Gqfwh5Tv!CWzb}K^0*Yp5a92QhP6qb{WXjFp zp@27e@a0L^`dG-M{H*d+K&yfbo(p(Uh`~z%UPT$a7LcqI15-e}atz)G*iezdTL6b1 zyY!6{81i0JW>jbJQNV&43_kx4)MD^ez|h(Zz6n@Xm%$GKN9!?&10M&v+HLhQ{!njR zA+;Ja@Dz}wIfDcOaDHDb`XOS0!{}rC?&vu zFoQAz>JDL0PC%le3@Qk4Y#7U=k`QvVf^MxMz*<+U6F5Sr8GKxZG-}y^7uq^@%(w^t z21u?apf(;712hmYWj=#O0FK{^3?P;JR7X#2I7OajHsCs1*fHbCVoq))U@iQSL%)rH zsY@BO6OeE-gAM|Mw*g@N??l8&m6CIA6w;NzRRY%E61v-ft>{UyZpFq;UoixfCTu{ z4YG_8FdlD@1N_4P_4CJjh)f_7L4f?j15C03n>EFb85eJI@-zX{ZZnu6Ut%U85)i`LM}XDq6CzC#9+Pv%dABN!pY7tk6B}>4cN|QcFf3(t0L5~LVz!J zQv<9LP{iS8vPKAfCI~9)1T>6cutC7Aw+uE3*oG%b$g){LqYn(W3NST@5I|oNLY5so z|G6p8HF1hcyjWJ*Er7lyggko%jPi(2V7~zRgb=_%0pXquq6CcaVQ^T0BY6@gM}%q91m@9!TAPVAF4=$&)D^@WI{i!*PQPZS8`ZKg zxFKM@FN0eG?qz3iM}SqweFE#LQa8T7j_!D51FrOm9n;B}|IdlcrVLH;aE4bl;0!K1 zW{l0x$!-Bf3NVNfKp#y)jqe2HD8}G}fU~6;e6oSV=vI!&7n>MyYcPlvV43xU06PX6 zQ-?J?;6sD~+ZoS}8PWAPIlh2B^%-~x*xP`CPYXK#imxG9o=8-zI+79~FGF~Y$azxO zfGbU9$M`EwC?E|1ti^E*`ZfeWdK<8QMmuIC#%J!4?8q#HKJ5gOl>p8#`uh<8em39| za@aBBeIV=S5^%2vgFFJrZxIT}C*Vgv1_cD1b_`%rNJyi>42lS#uUMdvVgztzqfbUL zC}{&WtF#?6Hjd}yvI6J}QYfIjfOnG^R3zZwB5O`#Qdv|M&tyj>;eEr){NOU->G!`&<8G`@;b(b?}D!_XMgXRLfRx)TQ z;N@xttp(g!%b+cQL-#3pTtaKwi%R_s3_1!Jxrsq%0Y^78=qg~*76yR=25n`~L%_go z40;LJ6yadfTS$`~4EhS_vy(xPfQe290|czx&0vrK^6G@fgb1)k%uoV2f%EsWNMkt9 zKO#JaMoN0}NG`!4fIg#z3}XQ13~%ERhyLlJMjYmpe?+y*5eDN06g|e^UjgJL3WZG~ z;P};^sYJGrfsv%^0INH85x`XqK1%(HHTK$o`)5C54xQfC&FKg2bYtNU22lbI zc=KNt4hv|Wl)+H}8&WYiF5vHU3{DELtT;{J1)0?;qk~n>*@W%7V8@J#nK}8AfPsDt zt_T>Oi@`MkGx9LFK>$~g`s+RDoZB|wD(>1bhjF1GXSi<@<6IdA4+-G<4qxBH7k*H} z6B}>|&+M3;{F1;|(yxJU072hn1J-xjF(arpC&w`0>tFKZg$(bAte_I`oh$+$3A`ha zsU2&4u>ltuYsZX*O*#2Hft{p(N9)IFX#v)cYsc*5_$}%DyM{7UYR@HjlL`UOkkF19 z_d0TNVgWC^Ge|0+cP|FX1#BF|Af*7;NCv3|&{yH;`A=FRxPp&kWYmA}%3uSwB9k36 z+Rfw=vIw|2mq9iGbrv!36X3s$K@I`*Avx5U%K~V>TFoSnsC-?^AfJGo5ey0lAb(^i zq!0nzSi~_#%;W>+PvANM>o0f3ZNM!lX~&G!kz7FOmbCtGh7PBglob_^^9;%h$bE%D zMFO~W)L)E(6;*7&byTxsM!dVMUqitD#|&x-$m>eL=ifR);=N&&dIGk+XV5@E{!a`V z3Ap}+K@$SM{tdFJ4cM&a6vG__mTG*v3Rbt$0Ds!z^fr>7DGqmKI{~K?G3X$mO z1US+&=ptZyW(M5^tjxury8!wIAFSx<5K=Qg6GOnlf(-fyh+Bw3KLOnfGw3hCQG~%j z0pz_6)dUMzR*}JA8#s(om6;5+iQPfN3B05pgHtyuWRwlK!$#XN{^TE$#|p6Y#}l|r z1?&sp0w&sk3z*C?UVjeYD}g9sDv_;}Vbos?X4rr;%(7#4au@+Tg1{Wm`pO2ZKi`fS ze>LOc77Ccrj=^GHf7Ve69$lD(lL`SYVYwYM#&_l9l>%NF3|0#`HITtt0>3^?*T% zLF?aPn{Ww7?U)f~HfK04VA}!)Ck5Q&ie&Lt+G2 zmc18XS@ubQW!YB&mSx`sSeC_Ug${c}9p?Db+ndIIJR*3O6~{Qcms^v-2Hb_-c8nbH zk$xfpGj=mbDq!gz1}OwQ)F8EhW4elT0FK`(%_u5XHCY5$)%Xgqs>vb1swTGptD1ZS z@ZgEv_>t`eZGfgZ!i>Upl-&GLdQk#PDMOzV3`*F5`=XQ`Be#B}Usk|_CJ8CEsT1X#7S zB(RUNti4NyggEjVZEVJ^YiGxd$I)zRM*;8^NY!=`Q1~{3Kml+UNE$r_=vs{41bDpV zZ_k$Yvo#!sRmcD$+}zkM+`3=_ugTOMAGp*ZHefr4*)b#K15O?x;MQXX4gqaO)QkSWZnV?C@f; z*e2YzrFP8d@tF->E@0wU2CD?Lk7ck{z=UrMHVAn0gTa3Sl6Y{PTM0PWj05qQY!{W> z+AODl!W!%mU|F_bfMr>v0L!w&0xZjp34mpM{dH1^W!h;0mSyJzSe9KR@Q}K&Uq-h5 ziVe62uh}tUp${kD6!0oBgF70~t3{DXnA{f?_*JA~{767|UB^=aUg=rmg@6uPl0q9_L4ehT zl?7N`R84@@MKuLjT~tSa)kXCM=q_>?jf7Zz6hMF%%a2{zvSy-Tbx}*v2XEJ*(D=8yq`RnCJ<^N7A{tbSb&vG10gs`6cFay5K!De|DSDj?wgKx8 zwqxYAlBU8i0Ef=AVz_cb@#zX-h0~kyZ01uZ`?{opf zTR51^5@J~%Ccvs!5#WPT!{96n1o-q}u-FFN*rj&NIMj-hmkY2?fvXts{YR`mDXtY2 z4_)L20oF+PPk?pcw+gV#+Ad(azOZu&u&(s>2q44h`g^|+%aBL`mLZ1)Sfw5#5J^KL z)k1FGNgHtMqwSdCKZujh3V7L(vRjW2?db^>c87qE0JgH!^F zj03>=C#{fhohO5Uw9`3HW&x!pGRP+2zexVRAVo=#zqSHSeC3<@yd@t;&z zQ&?2W&199L0=8?75&|a7V2#oOis>xn1SHY}v!Z~=P|i|CK>aX1{;LZ)3IgM63D_}* zL0tjybg2yl#GTI?jRmAwz~CHwv(Z^JW3oaNgF2?mu`0SmSwzs9589mjG)#?-fA97lZYH0BiI{ z39v@*5dqfdJuV=wLl56mLagC?hQJA0;Jq6;}kn4=aJ|0^aKa zZV9kTyi36GjOu_pSIYB1RIEZC3$O}#MqmMD`FNDGytDzE_1caZNj7n^Tfmvk4BiSz zwT*zo_#k9>1gm@&&~_JtSOKH=GWa22>plh^ZEdp->}TL9z&nb8mw<&DB-DV`|I>$A zC5foOc`S8Dasdf+V^ax$vsThbE5PcG3<9hU$SlC>fNTP|1F-&Q7h-ilE&)~tv`i)_G0 zdx;&h*OO%e;BS}oR|?4fn!y@}kRX%EdI4~}OL;a4I2OZTi+}?fL!}v0LH)7@vlY2>Ug&RtK;7a zusZ&O0ITCa3$QvqR)E#|_-q2Kj?Yfu5-oqlJ^66vvH?$sJa)`Z&QE}!M!{Jy z4emk?n{b9AcFcZSRZPH}M4X|dfSZXKlo7BcHG}d33Z!CCNx)jIQB^>ZG!9m&Atb4` ztG0kv8q^bDS>8~9WmyvemSs%^SeCUAU|H6>9bJEMe^{oq6O|%q*s_iSEX%qGuq+EC z5JtzKc6QFv(+1q7h8;6fWaQ+&0^l;4@4x#CsjN#FBw)BN=NT-(+mFF80i!e+A>fV% zd|=tE(z?*GqG8!No`8c@EYl_uxj{`CSAeUTLI7{*Vr$b(2GgYw%d%MlEX%?KSe7XP zmSqbBz%su7SWJZLg-2!@mf<$wE?jQMj6}IOd6fXm&b0yt__M|a0r1pJCH^PCvn+$H z8qoZkS(3?iQTbMefm1+NZPp$EmYw?vaR0!GGgT8w0I!|n-5Wi!4@(xS-eUr|T3mmf z6k^qTT7XsWIRY*!bz=ZmbI}IeKbP&8k-R!5UlRc5&t%q30r@nzV*{Lj8nMcKn;0u~ z9ghT9l|B_*Du|@^~*59)-3n-(j$VR~NYo*ym#VRD104q;k0zAH+>G4&-25e^`J7(f*)DaD0XMdV9U~9wbWmCguqtgQz*@dK3g|hVvvhF?fhTP$Bv3#D zU1?7N^EK!#z%r|!0ISpi0<1!V1z3d+v4L9N(p{SUYqt+$x7iTb-4O=@+YLxyw*v|C zzYDQfiw#;F*J7C#tF)M-1-3j;h89#T0=H(`*QwNP3-)#8*EU$h|q zH_*JI#cD0qYVlqR?4ux+b6V`zVviPcwfL;X9WCx+6CmZdprhxtIHbizEwGVvnh{!rYcWp?+LeGb+G_wo@7+V-<$4E6dTAbl-h79k*TNwVYeDbi zB1SLDLeLwf5HGZ#mn;!`tOdOQi5R`K2tn^6LeL9^5cG;41ikJCL9ehu+=6gG#_A}& z@Pyc9E$C$=#ONI(2zoCFg5K_dpm%m4R%mfg3wo6VkY40~pqCyXmTEzN_D78V+zmm0 z_l2N8p|;0Ki2innDE+kug8qmDL4WUnpa)bC^fU;9p1wfPO*aJHjX}^gC-xki!aGV zwRQWc&28O2KL7p7^84U5#s8^fOI@a;f8qZ4q9i8qs$WyGrYTY4e@S@R@qd}Js-f-N ziG9}n#zOn;_DPIFHvUG{UDDk28wz3bHV`5u>V`)nIcPwhRe*14pq4)Q5Jv)D+>U{@y zYJ8pvb!JyH`ng#JZ*_9tJX2LVx(oX3lIVkuZog3TkdIp05siJOINt9NXWIL#R!Mwh zBV8wVMg9QD%&7%cmQL=Rp`#D`q(q0}4Noqf#>LF3*_FqFeVNpbPVQ9rlEt#lsA1*_ zE-}j1W2$^Rqq%rrROe-urdX-}HTTeONukM4av_I*rGsH;s#~z+YVA)z8KQs3mAhgnAODpV^0{n9 zT`EO4cLo*S6-~bIJ3C7ZufTFQuwF*>y(>&U_bbcggV$z%RoNJLfUUmt8%|yNe>39Z zZz*a=H+QP|G)rfytwC;IYQSwvW4DS5bZ1FZwCw*f-}x;`)d_@=w|-^5YGfeVi+6F^ zDlWn|H1aa{%%fjvKA(HPMzg9E-O>4+AuH^a;r-w@t8@xRCP{%=%O?%_@W3!stD=gDtLjuKY!A+$*Obi?INefmjBKk4ab zV^{o?qEJoxiAO()>8CRN_|eZgQdvMhN9boU{XD0iWR&`fLID)IL8069^PPUOf;o)h zlv0O&b`dn`Ck;hUQK%7x_EP8o{S>0;c?!kQ&kp*zM?Vkg=M4SCA(c-Q3a6i(6#Yt} z1Qg0oKieq!o_?aL((hIJc|t#BDS0!6s!`|?g;vv#KShsIr~-xZ(9a5rW^z94>2B?T zZ`D>X+=UX*$!Tg1m16Ul9NzjIH8qPG{m=L;h|#HPYF<^fpqUpjI%7@Eul(}Q&!{>z zn4S`AZ|2_aocJPT)!y#h3Fw?PHM6SP(99eUr!FxhFI(1FWsvb0TrpFh%90?NW z)0py)a-{X*QyI!nG1JVSfX-)AeO1)d2w!AhsT%ch=So25v#I&ifIYkO!2nvmppyKm zNh&UNrjI)tJ|*Mo_w3G-?Dyr0U+!T`nzIj~JbJA?U;l@l5UP=Pt`%enKoved_0~ zhIO=Dkh^SRI^&MSu$+S4Rs*`Z)2cZ^?&Pp>b&$I_Y`hudE{V^)B=7Iel9P1xn?w9} zD5^xiAV|Hg-;LYt4CwC;t(7l^Nc`mZ;ZV9%cBmRY%c5B&UkW*sINjeb*1k#lD=XlK zLpvMUp)2@+ie^Qd+M)EV>`=D$c4#@iiDKMT0h8Zk^}r_*C%<{xKOl#1vz~#z_^5TS zu7QJmhx7~_80Z_^v)3SB{O^uWa0M3h?FYZ>;E$?@Bw=8(&q?>CKf;Drkr^cIX70S8L{iOKKeohNo#`hjU5r+h(;}pP@4DF9P9EzNL0( zJbX55)(*~^b!Zv9H0w|rcw^R~QxcjBhs?}Ej5A>#DqElT1yvQ#%s$T1``&IWm}WlJ zGzJcpwQuHQ@T6?acUFDzwt2HObf;x3IRwI?s&I*HEOu_F_^w%IU%Krww!w9<_8IJV z#R`QOf1mQ8Zi$-ZTf*72%{%X0X%y*BgXdlC`1cxI?i!dGj&}o+rlA`)qw)_B4o!kX zTH~qniVj4yC5he_+(wNIe)WwH;Q{L;|9wXq7$&a|7f z_waINe0Fv$`e9=7M0CS#R89~N`{SH%tA424G1~R^;a9O3@Og)CL zDjgaRCsjK16W*zGs5abE>Ci~Hqtc-n_v}y(IG{3~J9~Bcc&Kb3JqR$qz=4!@-qHk) zqjYFAJVxnI#}1xWXq;h(o=K=)Z=1yi*`XN&tWb#Y6V9rFmEYb98PxrC4N^JxE&A9# zc^Z1|V06YD)J{`YVa6LroP{@iEVm&IJ&Z7NVlHd{DbsO#Z`^l|Z1w3vI*)J8#{EAv zFISwNO&A{!BZWiVkJ+K2xNq0Y7ps&GEyX>x5#_wL{?n!^6(cC;+S?!;+Jz&jLsxL) zuS2h4feyXG0}35#h6@QJ!Ws4IlXoXaIF)fR282WJ-`b&gxTMf53!XygP>~;Ys6xE> z7Q51LnGk6Lg%QR+zy?G!wSuY!c&C~l}*o?oedg%-jysLJ&!Tk!Nr93K5+!T zC3NTuoJw#g#K@O5J`TZ{G#%5Za98tG&gShtJ31AoXE#Q7xOvbXBPzkagAP51V+S1? zRn87&sX-y9*Z$Ank|m$(WE;H z3sYlCw#(p5oBGS{5bbfm7fuQE*83!r?NCQ}A<)bT_X9dq3VsK4Xb&6?=+HiR8qlF@ za511myWm?uhsrIsLr>vMK(kfwBA`RvmSe}g4rX6rhx}IBArkp|b|?y4+cj%;%MKmDW_BwFcCqWwFl<)Wp#+cZ&^-xFduB7=7j|g! z%VbtC#3*&1hr+C$-7@~`{rHR1`|;PuJ&M!QL}LfGo9mtE*RjuBhk~%dT!)UPvO{6m zQf@qOW@`|8r*bxW0BKCcj&Qx1d`>Pqv<`c~;b1Y-)L7pdiLQ~>3+(AOt~qO+kM+-! z=qr&A*mG@sb&mNI+ozGoJEvLm+uWdIqVI_&1z@Sd`5N1k^~UBd*q5wB^_JP8o!E)2*;YK1)1lOO6sJR# zu;*BZR^qXgaoZUb_C4OPZ1nKd7>XwL>BC zw(-8kCS1LtH)RGpR6MI4x`_R@IyD*_ZFOixemisuJ8PMR80S5_sGiN2hGufEP5yIw zR*#p?(nWsm%aiyr>KkMvZNTX%I{lr+nYrc9srl2>!(d|_HjwgT;Sl3mbJD=w@`Js@ zvpDaJ`I(?>8hTP}#P1Cq4n4-+P-C6*^PZoXQhPX^sn7i!;-6>*>14&8Ok;&}?$4j8 g%jCqV1lPCNW2v`iUc%-|4uu$VLaC0BkS>M)56E9oRR910 delta 375872 zcmb@v2UJu?A2Vt<3A2w)6--Pdm#`GPSlsqys-OV3d z>E>g5MgsA}G*?J^aL@0O69#^lkQmde?{~wJk#=l=JKNm>?q81jN|bH{anD6YE)$IZ zEzQE;_gMIdNE2rRE1K(!{MK+epU}s{IYHdGN^bsMq?=FdV&V0@%klN1^jsvEySGkR zRH{wrYXKRB&!zm7$S9yuc%=yN)!r5%Sr6MOLC(GwGEuq*+>2@L5oe~mfV+E57pma? zEzKcHuf(sITPY+nUG3+y=b+&Ohh?T)L0peYq2NGNEh%c{;p;{^K%F1PV(3=G!y>`U z$Wofn%yf;v-Js#azUzwxtPC#v>8Q*f>Kn<$34#nLZR1;e${_MW2X`ETiv!$y7f#gX z=T3+K`(hKRDyxVhQVxstK$u=nJZ523nPU5r#M*UWu*_ zklU-ggP)t=qTa)2L^ynGtVp!;4?Je#xFVmRUsw=v%nvP9k+0Fy!5{46K`iTlX0Y4D zzf6>IQhs)?*sN_%rB80b1wA6_4ybcMFDOy$On!$&xy4RT{e(Z>O9f8f+O6RSCt8Sd z;-Wnqaag`b7XzQsTTayUd*^WeZl@T|0JKdLjYw6-d zLBQGW2DQrXv_ldG_UE@GMN?}drE*V4kzqma4<5~b2M6D>l$YNXS%xe2-k{9%;<11~ z-!l^X4N`2vlmj8eXZ@b|g|klbdbodvnGwvLfJB(vJ&JGM-Bj%8!uW%f6b=&RwG81? z7HfHT-*DdPtqAge36~3_QbHH2?*EKOaPM+dby2$C`#|}&Fq}lcE?reTe)UQioS81T zwJ*f+a0psPW?Mu)7ye?bLCgq|Nyep|*n+Q1vif8-w4}B|((;iFy^Pd^=N4eQ;PT6GrE)z=C zb`hc85DFe#L#We)TGwkMq23WnTzeCt))MN;_-%w*N2p3!0`;0uy)O&YTSAq6C{WpH zgq$SbP8#ka)YQ&93AK|@=fd&`wVF`&CIWSZP?PH)BxM^2wR!nrLR}!#S7nb8>I|V4 zw-l(egergXI4L_PNyE}VzbcTqr106rlcaD9q4Kw$CR84w9``&;s7-`Yj1s8bgj&?& zJSp2jDAARRg!+|GXC4dG9YTHhc$t*Fl>8?RbzgqfRYE=|h27@gAkxwhDY{vy=gH3mZcPN;M9LJ2jOP*Z<0 z5o#W$(&P*72;?nN_@TC$6y^|W)fEe&t`iEz+6eV0q2_#c5^5iz?up%mIz_0zJp#3j zP#?Q^NZBuh%8vCCY6+pz#^(y;Q$pUa6HW^E6YBHAQiM7|sP^ll2z8WD%N~~{)D1%Q z7ndW{0YXi#T$xbU2sQjhH9{RE)GK{;LLDcRCv9mBLjFw1PKO0*J)uOKYm%~sg!*}6 zEkYF%>edp0dO;}d*1Du@5urwL4G49gP;E{$B-AlNJ^HN?p&kiwV`yew|Q<31v6d{x%I4{z1q_ErWYv>K>s21_;y#LLEGiNy>gBROM;$Nx0@R zLLDvtBpFky2(>r1OD{}4A=H6JTyIQe5vte4^@N&FsBP2Z`or zzyC<6M}#ug>C+dNK|*ckgZg3W5TOhWmVSq+p9ocVpg>(DREG}d2H-M4s8Wl$5t!l$ zmA}|9@|2A)HM9};m>)E>Ja?JDv$za@dT0gi4N3Ld(SUc&Qz-CGBsyhOCch%JAHU;! z4PP`(&-dC|ny&~d^WLQv9%fniN*gqM{N_NgylTr}{^jyUe9Mt?{>2C@*PDMetQkKx z)xn)6s4G+ZlEz6RtpB%0-}A>7mJ7`2ho_i1nGxyb_=F`UaJR6Xo_{s68^8T~k2s^> zT0U;Ak$*Wx%kLOv;Ik&Vfo6_Lj;6aR{Jk+Qe)K3ahZgx`j9~drO#uIFlm~4?lxUq6 z+)*9HUz}2(izD@tN9z#SYkvHg3h0`Ruc&7{58<9&zO92)5j|w+u*{5pt5J7>dC(MopDOS6J|NKKmK4qec7f-Im zRpD2RN7=7REBW{dUvZTQiS{cBq=bfqh#wto;`LMOBa9fZ{C1R{H%yE|VxHkAOsp)& zQz7DnKQO6caR)C)c1JQr@u_Pxe9m|yUW+UF@8{K5X7t0eBd#Ajp+5g+WG9}R*^oC( zt&3d3%Ugb^gKFRz6W5rVR_h-%CeN#jO7RRTl*SSnLZ;S5`oME1%KbtgAyez|ljqg@ z!h8Wp@px9nt#42B693_*_v6b?>;Hw=e9sX!!Vu~X0pqC_1J@<0KpQMQ(o1>Xy}k^H zf7DCKADK~+&z?)VqW*@aW76Ua#l9Zd#V;q~i9a;6BZ9^gHHL0ZZ1`@LiN`#*o=}w+ z&uYkDno<|(c&p!vsM{{6Vgp{09>mAYQ4t=o0<-3n;zctX@ZWE<@q6cBp7Fenfy4M7 z+bkfZ;&26*$#>fp&M%x>x7dit9H@i6`~c7l1*nav8pk2R;{MC-L#=MFK93#%* zr)8t%LN z{>VrzzdYL@*tyMO9U@$apSi-YhDI(ll5tn6K=#C`EErRs;J;>YA_ z`O{0)sQbqJy`81_)Xdua(S^~7+kFH?7zy#J2DkZQB&kL+yk0_xeD_uJ`Cc3AA@)xY_Fb#{b4Pjm zj>i1WMP;}f{O8qWxdVLJHD$PKq&$47nM^6M>!lz+GC7DJwx%NAdn1koyj;ReeqpDB zvs$4^N6W{qw}6~w$pQSjv0r0jq3({8PPVM8ti&rR+^!-Hb$-dtApYo#O5A$V9iFu= zBLHlcjBTw#$RL2nUqQ`yp@o|k$92UG<@mvyD)NCFBDr`H2z%Ds_?S&N!VA$TYUG19 zI=L65^WCF0h|*@o_mlI3HdR737V%4#;Tl>HTX{eL|83saevp>P!SMPFE3NkC^8C?} zv1C{)S{cq8r&;-xsm-a1wZt#*7*T3VXVeO><9w~KJa|?fG|Ys$dx&PGSnj4EsW5rd zsM%Upl#ZvTPP`{4nje~zj9j82nxez_tla40AX4ImA6CE@e)iuEMFyn0s2$e&M=}Y2 z+EI${yS)szf<*PL?J6E_S92%%W82#+@sbcDmg3KCw}IgOV~85~UOU<$QSb^8i_&?K z4JklV9J3WbHEugUc;{DKK2b6XX8z?21&W}$ToFukLU!lfk{F z`;+({KPf=az#;{x)4528it%y}7f=01u?=y6SALj-!MjKB-S>{>`|N(t58pKw6m>3A z^2vLLWo_Y={JUKv_~bpK`RjYf@y~u5&)?mXrj3nG8Q2>I16~4R=rO8&2de}R{GcPNqWA8mhk$jmA6k`UJ(hifPE6He**%wywu-LbU5iWMnl zaiJE}PApRJ3y=TBYfeoFEMM7IgLIZW@05n0dom52YqeL&FFY{t_$QmalUqj(bi1X5+s~-}=pe7fgnDTumxG=g(Z} z#+~P*uGZonZ|`??DEIGgb^~sjB@{HBRu~GbZD8Q`2G^T$2yEVsS@M4m#$Om}+}`{C zVvf5E4)z_^h;R0A`@csaEb%voIzVWHW=SBUgrwK*M?*YC0!?>OMUe5m zNVfge(1aa~U3YW8ER02WW9~eOGFfMfa>*u#+;Q7c=TK@hYm;V=#j_srVJSGw# zpI{J9d}Yn7ywBot^~gOC1|>tTTMBw zYv;E8PxJ-z9NZ9UglcXsp`@S?Id=+Ga=wTAoAP_AG`FRs&^T@!uzDG8ufQ) zx+=$Ql$NlAP^hiQby9%IO-32ugc{sj%6nKHuB6cv3M1=s-%_^u`Wy`^Sk!>qAh-$K z(3CqM5nOh3Ja~0ns+mLaeX9$$g2L_ zL0L(3=tl(zRSxQ0=q>{dGC2(x86ncbl|#5-D$1deTqsTcI-YBz5X5dimAgU(teDPq z4k{rlE?7I8J8BhVGw2l}bcAa`nRlP$TGHgiv;O40 z3;tx?E8H_$q2^6)8g+{+x47qWK@*oBakG>{a!3*PnCABViz`o?ZFip%T3bEQu~B%q%Pi3(O)*fS}9I9?^1fNdW-@l)=OZQ8OyXff$jR zN_V@0s0mG0t19|TMQU72w2C^-$FD`VX@$bZqT?k9g(MJJGguEN$BP;Z(t)g&B0Y$0 z#aW=HvuF*YoDi)#Hd7}#mnhmzli9sQM#}fWexevE7?&ctMUzFtMFq4%!DvyOf?dmG z&GR!j_?@W{*!+Vi=ieg<%fr(J;$V=r^0^dP8#L<^M#In}~Y@zn&?2twz_X3q>b6bQLWY>2SVbsc0LfPb?G3#pqhFQpkU>T2xdT(U;DM z*5Y=fZ;H%vbj`dkx`ONXe<=C|UmHCZIdHq)zls(xm=O5bUC5v|)V2kPTsk=VFYnAUhwecZvVNvV5~gyo^;JQ}>GZV2t_)nE3#=4vT|e?|gA}?BS~piud4a z_ru~mEMVwy@kUnW5>JRDMXZg>ofgl;lKpg6ynz)%a$cOyFs4Cd;#;`yWtYUOS^Iu? zSscV5Jak_b2VljQy}_>dkvGLZvh>~Rwm2B~op4XguniR=Bj>*O5QENz#`;I%;aKt0 zpRg>8;2r}zxB23EZl zG|==tyZ?a?;%1C%u-2e(_HYHr7(QGNCrTtK4x|gR5UUaej3@0csfn-k2T0E1eC;5~42G>X z_{T~q2G(g5G*|?$kCd#%pc6(*9^my-(sapk%&c^dUMUDw zceSK4W_si%Njc2i+AWd~__``r5{s{ww@aGgt2<93!`FyilAHJ{*&`W_OaMpkm$)&# zIA0PiL)X*CBu#LCp{FHge2qOXG2?noE=ulUe#%~xkTq-jo03Dgo%y!pAuj)PPZEG> z{lSKpKiowQ-0vz9j6cfWw$5u&){=mHXK*GfrwKF)ljn z^CZgP^-0oXtm@iR1R2cJ1R2()OYK;OqjRO@SYnKrU|IFl*?HO0NCYG(zV_0Rp{d~C ztEEdZzYBg8_#LuA+7j#h&=%=X%x~o#($(0dZtju3#QA6Pr6NZDTfz9_()lJI@9*wN z+cM5ctzf}@A)H!0k!Is?d-kjJ0A_FF3+XL9+D!i_?GT8r_Y|@W90@}VvQL;E?3RtT zvdy9`vtov8!2Xt_6rh$VN)IMD%&owanzG|mAe^St!OL2*iHu6}_o9Zu4P~dXY&RRp zp5YR(x0h+)^R_ZK<80g#B7`c49l-%_bdZSy81#vzjIOYM zqRh&oCfpcUH#TtsFhr&WuDucs?7XpwnFHs)li9(HezI+dzqr43A+S|{Sqd7Rf!nSR z0lkOIwD8Gr*|#iX73y>p$luc>2{s=stH9v65FsRDdxoURmSA7q_Ps0w)5j;vny?H% z2rmx&azd^LPuGpmffxOo=)r7x!T@MWmvv-ukbeN0;HM1PI6O3r&6Lf-dlHm@P~hoV5i?2$5P^2o`2@k1&3-#9?VN66)9c!5*u z$R}V%uLiynh@&a6*nJbjH*)EiS*ddhf&yzpLWB#W7a$`vxGhFb=9z93)hDVOb^BBV} z4k9PVw|d~I)A9}2u){CN(*ig8r$A-U`dlWbGGq1*)IDdw?q6A2Y#n0>jzZpA_x zPq+87$J6io6bmTKqI|`7Y@&37SqBw=QH?A;s+h_K(-m$%rYO&{e?ak6TiD3GjA^ci zDQ6YG1c9dCCm6tqGYWlHk-`FJ-%z|~R5pQDL-}n*ksu?K-&dfg*T^(@{(<6xpg@@W zSP@U>KHW2gme#HKLQzK;E#TzW3iNykY1Z|PBA!;*|5mX_CFIVKDHB758{6JlM2esfX9TQSOop8Y}&cQqb7NmdaWT zs1TvP7bacUyod6sMqsz$V5LuG>Y+-X%3cmvI%Pry*H~pGX>M#Qud^Fo$^@OR4xdA|GDxQ%Rx7?KrD#Y2RH=d ze)Un=Cs1t|o2gSjFBkBKS`hR18UbUdqQ=(_NT9y+vT?vW>JRVR1>B&DdfYAG2<>f8kAQrd zOiv8hOp{HL0#?xEhva}ItiodTg+k4MfOfRw)Zqc^%QHG6h|erkz>FUQ1`6H?+O7`} zVyw>gfbzcl2(+9_mzcpZYb}>$iZTR97_$ z1GdoQ`{w}`>a3-H59rErV}L|WnmRBR+TI1sq`tRT8Q6*CCI$&*1cshpB}3Mc^daD8@QLlW6K$Sn>$ zMm2hENni>c>^iOsJV_wEnnvcwxhP}cs_6& z?auZywk7ecAFl=uqj6I1PGD7Q^VJYVED_Uc!DV~>6vSc&51zYWY~ zj-Hf-54<}+1$8kC79C^>>d0u(ssLln{}dz#$f7b}C>7*}PxXP}9N6j!N`|Vipj>K> z^HD+dsmz`VLAO~ZOssf-f+z;`C{P(e%7LIEFs^ElZ;E(ZE$A#Y?Ui~#hf8SM+$KT3 zFzwSU$QP!aItM9fm=5a~WT65r8yw`b=hKlvK6}m{7gUOx>*%B)U+^ycA;=fJDN}-c z!5cHppL{XhpWHk%s0l?-%nja!>XL39FJ)qyfNbZgKDI#N#9 z?ls8YjM8r2$ zq9M9nI4&T20i(!F>?%Y~HZBVEN<_66Y0D9J22jXu=NkH%oRUl|{UDb{OG!7J+ zvlcq+px~BD1D!WiO_<#I3zXF*)g~2~Z|!S#XXL3L!Vvt3FI~C8g98L_+TT2z71R>`{63BZ_;o zsv6Bx1h;Z6bys}}EmsD3TB~P+gNMT#fn||p%7XAV>Qn|y4@(14-&o!JV}|)ahdIvQ#N8*wRy- z#Rv!yAjcpRMBJFw;G40f4A41R-A^QNvT&@LY-s@lL9pi~~y4Rue-P5LitmN#6ACEIyReSlRru;`Au4`rm! z{Sq1}{ek)tDgY+{N;|vjlIUy7|c-%<>dRG1gy>;L9cBroTIQJ>@3c8_crE zF6JgNJXlRvI1?j+Q%a=gxn+V2DAtg2!7L+BF<*^d zf#r@4lBWY`)+{(0N~;GiVz4?y2t^FXNAOkC;0PA|p>~~tx?(p2+}$ELlVQ;c5XVhH z#)fAqFuj+hJXCfFUd|x+7ci<=OLLgkF?cJ>?RCP9rb}oLQ0JDlz=Gu9qCiliTxkQm zJUE!?5#d7eTtm%amM72%k9V4Dxvl>Gf}H1S3C!58Im^rlMgRyw2INaL z29V!8tQ2(QX%>dEvh-3DtOVyTX_Ugl`zdkZa@ganW|CM4(Z32bZCC~|;-VNEBJ6|0 zlmu5?)#OmWOuVkyk8b7Qoon1f%?i1YeDF+@$Q*2_HyyT707z?;r~z0KfFv0YhrH1Q z3gUo>KYX!w;H@UTB!cO{jrlPu`1rj>N5e-c()yzAidY*>a}5F7Ei?cx2W$7R+)MZA zQVKOj?HX#BQx@$rW-mgjk^%%42%@W$mceiA+K!aR+%UfoN|YAe zaVLhWQchcyju#W+w8I#8Db2Dx!4gp8Ao_}!T4WCZ&5y`6!aF2aD{J-O_BUEJuvxU@ z0AE#GP8dN+0U1F>)wI7eYT=*#%7Ig1mqAcnJ4{%yKwB+s8JcWg$1lFCo^}NF<{ukq zqgZ8z@lCbpb6$8B1bI!6m_(X8&9rmq>Mbo^%eWG31`xJW5NB>H?J_Du-L`%i0^9p# z;5%xsv8<{RdTTp?$gns)ly%omMCQZO`Qo11OomAVBCsIpN8|fz_tIq36m21mp++OL zOwUiCz-b1<(zIv>B$}Q!-lyq9KWMM8`VBNp)uz+2YujAyBbL{E(EXQs5Z!Fu%5m%P z*@hinU8*f71{vD^T3}eIWx2bEZvmsv%4nkn7#O@(ds)i81{2p!bb#!d2Q)ypNxOq# zp1{Ca%L*N^!e%XcR=w6AeYLP{uC|v*NS@xV-4P%pGxlrIPkoRIE3a$4w8GV!S~pE9 zZ)@97gaP-pXH-JnCNH&<#X|D#Ywc@V;o)2DTTaM*{!Uw#B1C@FPSpyzhtxVW8j{{d z>U8&L-F_juZ=|$>S$EqC-tcjaz|%^)d`8jnuk=9lD?Ru`EULT~-l?XWg^spxa$Id4 z8W&0Oo4Pu0AV?J18iDQ2bUEyOp%dUWg$nZhN^oaL9}WDaxh^|^%Z91n>V`?s^;s9) zTNgM4M>PUb<8`|kdjheW3SIbAED&~2)2#{xwa1RuLVcF5yjV!K&(>wqKRaD7`9=+0T!17c_jKqT>s`Vtc3(Zv zq32;p{;@~8KWOdKzv^bw+y?n;^d0<$mrx8#sc(3^%1Fx#S+!{3a0pAVI?=zpg5f^7N_R1czh)f56s|8Tv}8@EL0 zecsrntlsC1^P>Go=VJXlJ1XdXo&YQ9>*3DHJCEur`o^@gK2`NwX)@v~J$m?saDAt` zzLu{xK($q{c1?W)D&73rdY=n_Q(y0M;du@8ooI!R-{^gwzrV5G=eJ9m>3x1XI^M6f zqSks}z$CQuHw){a_XW&v9rZpBUDVaz+vD#3-dZL4o9UADTPP0~dg*=kOzEfh*>nAO ze%<^%P>&9Ih_nNS>pS`llRpX>rZCmdRku<49u)KZ7=2e?J=k=dUPP_aZL;4wE2jCa z(=gp{oyoKP);XBr=RnK*JNbUTUxu%NU-Y1benszJ;ul@H+%NjDmHuXxR{Iqlvd*vQ zR~!6_?zP$9+qJF!X4$#^-V%2B6|LLl@2%@@e{U!D`kPJP?^krAgMLLnIpSBe>$qRc zl#}}VRM9;P^t~j4&Tm}SZ=-5ma#i1)Cf{Gzr_u_OZtLGrZ=815k9+XGzpnF{~(8|K1_^nV8lxn)1-+fdw$Px|Y6A$PPc#OIvVLqZPFE&@YCPSNCJV+eYLkT}LJ zbI1UdkgQxf~MO@0*>vWF&RvuE^ZUzi~C9KLc)TD+?`1wNpysX>=RN(DdZ*%4)MjRcWB5?+Qo0fLfTRN z#*gvKrX3eDkRoJE2>FE~jGGbSp~+l6#6kV{?xK)hv~GuGA*(b(Z-F^}urs+Ke^Rqt z$_qI}J6^lXFJ_33vT19~2mAbd?Yh4!b~xn&LAMeDBhhW4ZgmWa^Rw8Htg zP;?)IfGw^NT9tPEs8Z+zs)yA2p|O+)*gUj1O~!m1>hs^tokQ1Au;k=WpP!BB9s0;O z^$ZOCRV{SUdtB%sD)Ezvp+jl3^q(904aGgYC{#~Z6;GCjKBqi9+7eoac2Rj(Xbc_Y zQcs8Oqyp7AANmKaQ1^Q1H7arB{m?C6gQF8n4v^D&8u}n=X`_VYmJHq!;e7%6@lq)q zSkCy9BA?2!Oj24l+?$wP^LTXV>V{IYzthO;hNOi4e%;88q z$Ja(Ew)C~|v@&K3ZO^tgo)bzpwKJX(+D`9iOcL@w zbvAYpQvJIbrwJ)Zg0ZiV8sF20S3B9qfxM4#xqz~(zmEg)KpzK_QhY7y5AkvEe5mof zfOj_4SRl0BGTPWr$SX6>=oE1~g#}sHG~*Z{``3xaKZL3;CL3o9d9$V&9}B4;W*WB$ z;?3M|)+DqyXmH-qNajCK$ofIe4!Cp5$h23#^;BwfW{Hf|Mo(OfaE6;j8q z8qwO98U{hM7GxcF)8~OPcYO9Aeb3lQD1G$6XaBX2e113isn72c3w^q~`oibsjbHg% z1ibe7*u^(KAN&4qUmxe*`}(N%$=BlDXX6&3-=9P#YR7M7CThpI3KNZ~djY0zWkk>> zS`%90erc5@29q3~)R}0|RX3P=2#}kMCbY`^qAH9qn?!V4`9DYb6s6>qXT}G^`(2H&Laws^x2;t7D?U{HmUb z2J^XwCK}B38~gg$+0@q}wYjg4TJa_txJ7MzeSFp4*T$5<;)w6nl2D?6n#g*-Ucc`e3uH}!O;Uvzbm-aaKH%D z1`)cNMw?nP+*O4O(oE$zFnDK+Mxb_`xKg0PL=)q4lu;n#Y@q}wCz&2G+*`Rf(b5(? zXbo2KWv}Ty?i+vo5*Fs0 z#$sXm9yU#2(`Gk-02Oe;5fjsoAYqmW0ze2dm~qTxX0%K*6b$>IZvl&4Eg$VQ} zqdQTAQ?E>JMt33zHi+GcS-D6xHi%ql1+y0w1e=54oX;j3p5C?R`x(GHky$5r(Q~nx zcu`H6nQ=U7128^7_zK{7jE0oXa&re}Y5xl=UTJQF#!k38$ehY-1B4k$hAD`g%T^NB zLLnOME;75*%TT2DE(IufUzyCJlE|Y1IaYHp9;d2;(C8vj*<0 zV0N*Z5q7L*?uJ4M?y712l|$E+waw_qC9c3Fbw#g_08zlT&_S{12a0pzXH!R zG+)5irH#yc@wIakp$KOW^GGPzKV@o8_=}zWJ`w7tW6l`ocNkl=*8M&TG$@$FUipxDyr3 zJ8MS2?q0QDg@OH2Q-{aIRjX8~O4VxB5-apdu2v~2DXvPDb-ASMvjAb^e1>2aG5*r(pK7UzpdF zm_3Mu|DM?#KF(BNc{%j(y77&9X^EvISQ6OmFY`f`r?rR!BEEERnaINQlA0d@AOsn> znQCbY+et0gSVDJ2J9LLBWydr018Y``0v-sq)Rmza;6g12u?Y{GEGz^0KTy^1joC7g zMeYB9DG49i|09GtIV^**fM;Bm^$b4hlS)4G-r@HrLv z{tJ<1Ago=(5?T`Xl0gJrnUT4UaCsw3V-zzW?k)Pt)8`hJP1uB+TCoOBM_AC>GL})E zjsP`QgNJP`47*^6bgf4-AlTWFH7Le_3ERaAsO!ue4-{d2S0NOO_j)G)3 zwU^~8qa~67S>@I5%k1`@!0e$G6&PRLQVlL2W?`DRkVPrX^O}};SZai227{kNbc*m% z0$yEc*9dgl5mym(nrdM<4}s{&rVNWZwR&q82&Y>@L?GZ^J1zWWrUgCXM3Ox-EGCx4 zIEDl@IhzwKd5jK6EGzKg$Qt&;5yE230!yBl@CE){WMO%gp0I^rLWMYrTVh$mvh74L zoB`lqJVH3(Ng*gf$rs_|ejiQO&)<_{SCn__2{i527Dg`@uU~Et@3V1~OiP zwOi1ju9W*u=#I#a{1c3D<2IvPQ6qEkCdeUJhI(F>1zEagNx5CEGMnR1Hy|e9~f0S9u~Z^)S$6z|HFbFb0a!@^u~hT{vpXte_4JPA{uP{ zU|~7QBTPy@S<18A0l|%T7Fu^w|Jx?Eu4Pyh5*E}_E7Pm;q;U&{^(V@MDbULD+&_UC zA7s79XsgN45Nwsu5hGG(&HMLyfQX07tX6=FLaooJ3V_*~`|rC4L#~;snjf?F;r2%Yh{rv>$C%=XJNPrfS}qXhn}=6E&wMSGA%;+-*3Tc(yUg$WOXK4&y++mJ-9hPCI}vxY(=jl6aF7ex1y&; zNit`qHJpm_c&;^sPQQV`T8Y7LA(HAa%dmjjO#qFK$PJ+L4(k*+VVM>EjPwRD@dvE| z_FZ9pDHoXSx87=FSYKmrOaaUCtQPQa`qvhS`sgE~F$MZ=x9Wuzk`!9MXVf!Af7;5S zg7LepRjC@Y4_J>-l@B~(oy?$7fpzD!havFCQ`SuE6X@QN0bD(4rR%!!=d44hvvL=$ z6&d?LKWY7o)dV(GPo=*J*W{Y@qEAJpt3DNVyKXfzs;Cb{J?y8P-nnCKz_{M+3VIY; zt?=w)tIii8K>parp!+v#E{g-AS)?mOzyqk|Zojh5rIwrUrxm@&K!T;=TPu2KpCpy< ztm_yh=mOEkD4gRi;OFxifsG>D3WiY;ZT3o|FJl%4!mVQ4IwqquvZa7I4x1B(%5AgI zhZNgX)WRJ~+hCfk9Aujy6LOF1Z0PM3QlYNFR+lDuqb&!0y%INTYqc#b2@fo5@WF_G zc*<$pD)0bicx($86p3K~f5voWlE zje-b}>B|8~D8h{c9;#p~5bOn3RkpF*j4j3rscO5%5?#dzJHE1=rrc!IwEf6tE2GG=?Qhm^zrWeXL$(~IB}gONVA%4sZM76c?W<^jiVLh`&)73WG)VXfY8RJQ3OTpdi|AfoW3vEoKGyu>r!CLG*=+ z(R7&H5MW2|z!LF(4YH%Tge14B?L(>j6?FFDj6)8Q$%4By!*M3NUXTf{vD)hk;NWkE zo#keaPhSLECVZiyoXc*a7HRMG3t}r}ABR5Pf~~iqoV^1>90JstFcX1;744h2Gx#eD z-+-TXwulA~D%lxsg#t1=Zq94rg+Eue_hHx)@p0p=aC&unGRK{PMK$bZId>Lto6&px zt-iKzWEi&yNAZK~Dwxo~zE7N05ACjE8r#c@NNPw^yM<-`%xz`=4wh+Q-$`IVQM`Tb zzvm4il;;w{$JX}t4gyEUj`k@+-j=R*rduwUH-LE4g2z4VEI(?90J_1K3HI`Y4^W|( zo#i{B7zH4dFkwqRzPEh}%VLMn~7FD{V=ihBazFEA(IKGEI% z1MGMA1uf*-O<>>#J6%Azm)H{pyJxPjul)B;4gLY@fbUn@nLdR2Uoeqt?Y{^XH?Fs{ z+(Go?K_qLcFb=%gZ12l50r;@YpeWC6fvz2PE(p{(XEnge`S!Vt;|cPnTr`^uI&6nj@*&SMBmZlIn2Z-cL?a7k@?5CrRZ$v$v9xRM;!~Nf}9f_{)Aw zD82NzeWj3^^4^{&q?&)U?-2UX$sKj5;e!@s9XlDq$Gyxs9^AO4Qp5am4yLCs{0N{&tb^ga93X%N=-1F4 z^ijn-aSoS+%gw6n_=8Oz0_K1>t2mf``kSz`c~+Pe8tOPIsE~okBMIG_JLFb1;36zE~GyM>u}LtaKdh__;)^7{)p(u_{CmCN9l!53{15`=Mj23HHmlnfLptD}a~z?JO8OG!^E}60tf{;69T(U% z^(ESB;9xqu`-i$5aK=K%Ma)#!CI1Vi+{+w$7)QS^WjnvZQGl6RzS?oRB$|TABSx|8 zWr>mwY)1zH8Jis|5G$~Jj^h-Et{-z9Oi!c}M9ohQ4H(3inGUz?afD#l!}|o-*#{g| zSPn&eu;>@18bx`5Wgh%*`YR>|ZHVGbtLiv^amIL}}&duMar!S=f0aE@oxZVD)P<&FW-ZKE2)!KIzw zGAfk7RD#RO3L;8looBH^FI99FVv+N!I;SwkYYNCWmn#D`b)1hiY-0vNh=IpiInk>Q zxv)xm=U@f8uJ7jjOOCE9dO1&GCHC**Jch63`#CG%{9c2dX}JF5;m&>dx_Y!T8u=c) zl;(VjW!n3_GlAJz@((>j5A`k&H-jzjUDM&58BR4e=+bm23BX>n1zyT!IJdI)k+sOF zfLpSh>oM@R+0F$FKoEI$Q!MO&mCjRvAh)%;5lGwOT+3hxvV&S4>@tDir-f3uaH}(j zW$sP5=o|)`ZgaAnNujp0!OPoDVaozuhPkEi(sn2M4e6AKU@bU}eu0ibFdwP|PWs9D zn#IczLKduX(CJZufYE9L_%Ix;Y0=^>^Cff4QjU-1YC7$ zf$X;s4Je2yQw9w9*~zk5@IkTcGErM5%iII%ejZqS`hibeMY4aZX9sy zJ?9Q;m|+i{yBQh5&gg)FkDaGV#?7{;&Wn_r`OlmzpXc@I*#XNxcQWl9iV?nk={!rh z34854z^EIz{10a`f7?3n{aP8WJ0AL|R2cDr_SLh|=8S2)XStwd{^97eP}nryg&s5}U1;054$|HpwDotfvAydCYt(~o<6o=E zMggFW!Zi50tLvHs92gvIfOivJofwxJvjy0c!}cJM)z3vI#C4q`(qVotS2dX+O~3%x zBxb%pr@GW2qYwH~l%Ydi_~}Np3V>xtxMm3}6L@Mgy0^+YRuFKP#i@cnj&+@(%AcI( zI!~3KJke!k**p-V#!hvGf*xf&)8XyuewPxb`<>_9EZ0Crf9?Op&LlqD)rMtff_Nk_ zmEf?Yu4Jms-&VNx33CJ7wbu0u&0Vv>^&R8D(4TBk0NSF|g!*l+)hzoI!YSJ6#K1|1 zT`813@d;OgLh!HQ1+FJ@Avxfh3q4&-VyMau7kavwBtPABd1!_54_xR=pd@$O6W3;% zOeu6Zq(bhpSFUSR>}hXY-!S{_guh)faA$eA1)^OHpsv;alP{QeI@~_)9&zpr=5FHe zJyd{<_F)$A%QEKxcv#`~(7yf(aI;63>({4tAii)?zxO1K{h8& z*xKfnaX_c(*9a`PyP5Y(1#b$i@F#~`%`$eyy)CQ&T>ag3L9O0lPB7E$W;r%g{ zb!lAQtp~2%=-l;lRreJU%Dz(F&2j?d?+&8w`mzkdegw?08ssfTe{2igwyZF57Z_N_ zJp!o{eqY}$lcMX4M()up1Ks~$CwH5>$CtoFLxfxIXv-BRf}>iwA=YACTlbj~V2*}2 z+qs#3sm&+gXgKa$cOGV?VrMtYP2^&rTV32t`>tYy$=%(TF)N)C-7I(hi-D9$Zl+CF zF@mkP`#ff)u&yEjS@D}z$meFdRSf#DN@7Lyeg(n==!*$ZI9G1NX(VGt@ z0_3-H%3zo=44sbTLEajMPDk>f)EkCQNAlpus4#Rok_V5M3qz+Pd2n`27&;xvgNG`I zq0^B(Sg(2*IvvT&s}qI}NAh4ygD`YBk_SzV!#b7B3+tQ{PDs9kYg&eRn6-t*8!}Qz z!Jzjs1K|7iVUZ=nnqzP)@vfmC?AR@=4)X|x)L$2(b-9(}HUZ8O+X#HvYpnvV_X%Tt zpp4Jy6%6wKE>yt%eZvOIxJ|HJN|;fKt__BVot1LCzvyP(80KzZkFjA)Yn6i$p0S|d zy~hdmoeb*+4y1*#d>ss-Ob7O7QIRlzLfBd{xLYn-3r749#`3rf!P-{^J-OqZ5_X=& zEeOKWlVM~ZqK7ADg4*a>E5A-ef| zFD##OQ}8ehG8zdGtnQD)mb1(VNS+xWR^o9Bn~S2tu+`LWR=;BP8vQ$GG=yj9;V|PY%Peab&G1nA@^)9 zkyf@UJk=RTW}??Xh|X(P3EaRWod+G&;3)&fgm`YVtT~Z@8Q|`MvQFWYCc*AO=RgE; ziqj9?%I&Gm01gp&4Pi=y>au>c>*YL68PEW+#hpr?Pn5wIRXymWhwys%D-Sy9A<3CF z{2jHg<fnxTCj(^*#Ks-z0i$?0)!rSP*^-Bmn)4x&r-% z&>KfZII^#&oUm4ay9au{X4w^D1A|zMO*Vw>QaxHSzXP%%OdH}shf_o+Cr5hPG3&(t zTw7k62mR4k@SwvalKbsF4?0XD$!m{1=rD;SvwriS!z7YCTI4~8NhG=DwP!e^&Bj8s zHJGX3b_lPRzW8fk1UN16vTlaJOT}{|%#nI!EIQ-{dA|cuyTYB|d24SsP@wR#Y*i3S zrf_I-OzB-EMxymod0Cz?LqLn6HrRWX#mi9R@gVJ9INhTB80t+?Ay&xksB&KKXAvUG zmG-injrgF|aAkzI8p|NyM*zRH_G-bMlU_497I8#*8zP0lZ* zWbYaj+u)m-Od)`pFBe`Ozmx90$TA2OBg~lNMdx`tK=*mxWB=Y2KrzrK-utv=Uq&Gxc9&sofhYmxVT$yoVgi8lwcvSv9uD=#0Zm9X|o?`~#RQf`Ws@X~7UX3WaO zbxgiqtd)@U-Z+-o6d}yW%kf@kx$leGrhy4Pyn(>A$6*2S^WClUc6&RqoH1djtU;x8 zz_rmm7A`pIW%;r(_SZBpsKO%)EG+OIW>iNSxI5EJb~hF{`I`5v9GQnKE_&bfGX1_G z;fi45T@C#Dfj0dQU|^{;&t>M!~%)bAh)?}G7n$it_w?2!n&WA)({Ft$;mK5G;D-MT1s zcq8nkL=Dq4;Y^!5j0+L&bS#uCG<+g6a|O@QQ;`!&p)U!Nx0AZr!VjV~lE7U>cQ`uX z+X1(D!Qpn0kH z7f%t!)DEx0a;o?LvG(0@O(oykA38_}u>gV%LLh`BKxhIX^qK-|@4fe4(bcuLb!F7G zplk2_Sg@{T?Y*yxi(RpowZAiSZ@}H(`_GAv!Q2#34<@41L!s$9SHXbpxby` zp>#k1-NxGrS4RZUZM?0pWK;kjFn1XpK)3O>!h#6_bQ^Cg)S4PVxAC^ZjhO*-A8#vE zApvwBZ!5f>7Z8OuyxPXlzL2vx;4vDZ_3{9Fc(x*-8AiF>HhZrN5Vz~PZwRQ1aobe6 z-GNR9!z?Tw36s+$I|EiCh6h5Bq00d^XH9Q!1N(OcG_kgL1m61sR#;oy{%+cyo$mE^SD{jSwX%JsRK+hYkk}!F0QZCjn!~i=zRU-5#2EF3}{*#OM$sj|E(z zA+L^&a3>v41>8d@&jjcP;b#KQVa$OdEM~_AX(aZ}w870d5#UZbcMgr>Dd=`3psx+_ zem~NSJiHP>V~$zUr62#B0dygo({?UJ)j2J61x&pY&u!Lj zphW2TAYe0M{tA>1>g9?wpIDvz8Wx|s68Vb&J2>?`fbKbP75(xm05gX*Vf#Vcn*h{A zwi4mNyMPjr&DIYAmjInE?*lQD+e)b4ECW$9+)9M~Hi4H! z)hxFUM9g$aC6=K|AZlmPgy0TuoC4|nIc_#PT>~+TPbMrsXyP7NCOVf~uRzQkxDxAm zwZMlW)FHj6k}T$&+ic0>d!_8;U!xVm>+zv;`I5of=kvs~QKo zV}{-goXt?7b~}^upjO8~x&g^Kzv>i7Hz0X(SC@*y#&xUsG`C0KOUwo&7pihb8a6nP zM#W^^Iy4_17>6{0dBPl*&qs%i3S2C-NeCSqNN=!lA-;{PNS+%XNaIlRPk)&hxJIlm z{gl9qVz$Vcf%h>ZVlJ9#W;6}P&Z(%cRr4xT*nfUtTTFdXx7GK%snW|8fdV@sm?4#{wGtY-AyiUF ztb!kv5>w6PhF9pOYNR9%Galy+&{VDyL_|sGzBQM`Jyt^Zt$FfgoMaBh8&iAavn_wp zELHN^;)O6FT$Cm$M$DG@R8x~J@q)GK5?74Zv$!tlNt#$Bn}i;F z;i~#!r{txmiAMXFli{D%IUw23lOFK;poG3hiGRB6kfe>RkgR?}k}PKHc2-go<0$^c zjyBJ}#AkRAVz2}hYM#J`ti3J4oPDJTgtWHJbpZJt3F_@K9D#?7I8Y`jw&ZFeeeX*) z;#wvV8s)1864d0Kvng&qzyYQ{mh2JPG%J^2PU2QdcITM{HG8i_xc^c@UyjDCiEMl$ z!Gw$zB+Jt|fcl-}D5m?XWOM3o$rzDM>rax^X4Ta7&yu4;o0`2jXsuaLa?7BTqVI6D z4Z@r|WgBlf=u@0P%{W~{Qe)(`T_9{LcI&60tPg-f@lyUZsPT7|1T(QsuP4-cc`Gm0+0GZ zM*X18A}>b?&O-mG`&mIjYSe&%!MrG?QDSKD%9?!t7~X^h4Mue$3`;-!9z7sBN7e_5 zVuCtjW{q4`E^F#cgT&OJ0ceD0+ogdpRUdT5j*kHd(FJ*uVuQpR7B&v@MVouiy|S9{ zQ?sD^V&^-eZBRa9z5!IqFP6l=PJkD9b_*IVjsS{#2BCtoP_!Z1& zaQRlx45CW{JUO^1h%O26WQTb{sNhW0ZFl}I2Ftd^K~s?9Q4SLZ4qJlgk^tv434-X7 z08f727eto?c=FBBAk&y{@39~{>E@q~I}t>e1bA}i`5?L^z>_gog6NU}PrknqM3)43 zGVo3iT@&C**Ly)Sgk2KW`rz5)p!R4>+4zl`Vee02-C@wHpbuCML^uAPJqfc?bc3P~ zK@yZdV)HsW-K1|`D;H+I$E>9DF{1(Y=C#^&r5w^Xjgy_JhPTQx3VaQTlUfj zj5B%JPudmMIZ9t(Mola;p_%^nyYxpZpI)_mimLSDMCaeUq&`43UuS$g3S}6_kQciMGr3cN@%GER} zYU))<6QeRQM|!|4Dpm8Os9n=aD$DiKp^QqMd?{u^S_!ncK)R1PkT#9+ZIqi# zSrh3Y2DGw;bf;O$327z8ZI#`d7XBW!R(cRy2+@~Fg_F2K{LA?uJF08eav$F$f)E^ef^N3wAZ$vj7f_Woa?ih@EhXoa><9GAN zr`3YPG4n?gOe8$<38trS%fa9uOi$mIgMa;CF27SyaD7Dm0d3_fhWCpin775|s$hCJ zwjAn31h+@v5#}{Wag)&6!lmScvBCA2ncZ&?oQr{DCIO||;LQwVR%-Ba2XZIaFN1V! z+C)ay>4MRRL~93^*Cbc+dbc5N*1if-+&`Eu-y4E^W1RnipMran#Qb2)AyJx_o~-cq ztqMB|g6a9t;*K=jd~xI8vxt!d#aaT%O@o~<4S;4ID{Mshw++7QPBL=+yr4$^U<;8` z@StGKP85gbJ5jR-2e(6NcPy+M8XSbpOlW3*(lS4ozGZWJa8+_PKN!=y@S5UBKdnXv zt89dtO8YSw6=Z_d)XA~In8^xIB57i!)R+{ES+}MLOJKod>e{eY7CSBYprxP!=b6En zIWFfg=jUM5%!Fqyo*hij9`FV;VoosT%p-@XGB5ZTS`W+T2h$xg&Y}OJU{rJ%Ru^B3 zgHh8WF2LO1f`1Y@D3%9fwvRZ>h84jlM6;T_CU`y8GMv^0pA})sHwJIO!t~l4jG7Bk zQO1&mYwkH!zA=q#EbU|spCR~nYoVsjmS7ugCA1&3-5ZSBh583WKS(_gd_$}~<)PrM zIDLK3>(Jr<39l7@1n&@e^*-^x;AM3x7&R*Vm%bL938shbd5dd*9&4uG>+9u(U|e(^ z(bDL9jko#Pk?CPU9iZur;IWvcUoKEennn_AIzMseQQqU^wt1 z_)j#y^i zohgh@2%%eWoOvfr$QP{Ii;9EYzq`L!lo4_UX@_0-3<~J`*(P8nPgK$_pl=c~Pt@3_ z<{@<7jmvkeO$gn0;8&7)A4x#&QJb9-mgzmfXq}Rd_y6?u5vzLU>eK(%WUlBt0-FR}$ z+7P<$#*^JPhA7dtS^hYv9~{~q@)3(bZNydxN_u}!hy_ypW620VNfjX;soUWY8PWms zDV#riJ{96^VNohNNqo=dnX4af_ww(RQ z55er=R07rb5TeCQ>p4P2=p%ORa|T?rkfk|OQhZ%8%vDx})myBG3^R>0;k&>YPZ?@{ zUy0yaO?Hw}fj?`?`q|K@-d{!|9hK3yOUY=YqcXT&S4P*S%3yJQnS}lBm_+uR)-&vs z$s#bmqoQO&OLix|U1WVpZiEc8IKZL!U0>7XP%kP0=@2W!yiVJM<_CcdWSBJqQi*US zL3V^$;KC%?1!Q9YD%eBJ6uFXxSDNfDWAQOVb`8mbHE=)JpCv=B7*taED_3@#Q8}oW zT{Vl!c%uw8X|JTx;0M`CM&({38Rpdtl|YM{$jVtGp4vi&d4GH*P-ZLHD+bh{oeZ-A zSqb!^y$m&frwEHk?VsvL!u+nXZOn@sdtuwqBBF>5l!AXB*#)HaiU?2o$!@TEIyz8> ziLuRPqEv#RXt3;oc~k}tlU-+23?t2=LbXyTLrup`!bsu57#WRrQbyK}!y28a-u~ld z9gzNe5ox`?{`ZGL>r9tD!VCbZSjB|ycGefplp5yB4q|32Ogoi9iTW&)9l)Y|7g8u_ zlkC17RW$3biPuIMowtscd4qnZERJ=9Q%YnWXrrnOGBkd#Y>W%eAub}O8(~6xo$aS( z&6s8I0Y>k$vN?>V!$lct&Ez}phyM`)EO&ePE3H=*6-4Nj<148Mc$TIjkICLyi_Kzb%-?HbB zF`-9TWoRaa`eIJ~QDyTIdgJ^9&+7-q>7hGW({=hebeWeKNOXgA?;CpLx~X-2z{^VB!GqS$ zxtx|>FvCmkVnzR0R6~xLqH|Qf1)uCK?}V0&Uk2?GNMALx(p&BZ;443Z8E93oAruP} zKDe^h_*DCgL|$e?m2)RlehbkSOlW?vJ4}w6YF8o*Q_1Pryo5B2lwxyFe+iW z@)u@N@zKf4&7)#%l)q+m^LK&#FSDpzZYW1BKvbH^ye9GzMx{}6Ipz{YB~WlnIX#wF zLS${_nDw1XAdB{LTLxs`S$-X<9N6DQz7I40rYz0~=cs4(l6SDBEItg7-@&oC0)GvX zqhh~O7FXcwP`NuZSGSS!he!h33*{b|VG%Fi`$xGaD_{N-x_t1PAlD)Wn?MOXVP%h) zE`NZO9lFnyzeTpvE70W^xg8_WhhQ7%6=*gW?Xj*v+xhZmtXUcs;R(bomhVMtz+$QV zDepd(%m2hy!TFW)k%&1K9nQ|zn6K1**fEleLd0H-1mU_^(aRZ;q1V$KM>weke|U3 z3TF>aAz_Y;bq%?|_Hmf-EKv%qhlYnW!mQ;mHN(b~uwd5BaScDu3d0)%MXCwS^1=>L z`JuKUj4lP0z++?BA@C zDuf$nc0B02HOGCc!VV+tl*5EUv)y4dtak~V+!sa{9!ntMk1)FMSOV&^+yb_r7YyL& zg)qAASOTA}htYM%5*T(njIKMDK+N4Ry6#v4oganKb;lAgl!uK)`=`Q}VK(G;aX=3U zd=rM+yWnn)_Et7P-{5u)sbJdQb(Y%$y>))Bn#Be7ZritrX2w@>3Ny>yNh=@4dkjE# zMQeEAtFXkFqXo@OhSpJF7I0|Z?&NfcqM9&jzfo85(3GY28#&3o8t3SfFU8sKr#2*HVGG zSx{*J+gd452LdR>a3>O05%ehA6BNZWcz5P~>2YlI9ym^aGVPq}7giH<(taD7T<`pnEP} zFmsHeHd3G-pqrq$iS)5O2+izFI@{FsBBfHL3~EeP>}9NYJAN`n5sF!urfP0W+^#4* zh|6N?B|gV1M?+eXVo8OA_%c^Pmv=9atMe7BaQ0V;?*b7E6{v;P3YtJ^1|cd8OhU$j2VaHV}A3(cL^O#dcZ=nv)8NIhOB97!08>G%DIaWk-^Aikg4vd4&sk zI!ZZ($j{K0CAyPtXB0{1P_7NFE-C!5Y=JtYrWLMj)Kvw+Ocg4tb%y-D4S6?SIRs)$ z6`rg^$@@!j6^Yq~?6-Pa9nL&bgtB2b^S;F45!IyIJcTzTJX6s3)LkG?Utry(fKMpC zEeRVCY71Gf6nBuC{6AQwZxr7DBP>F(+}U_*7_M8OchDawya??Ms}brw|A75}3#~Z& zlVX>-kaRctvtk={S+fh3n1DIdb_9Mv`IR7s9?Va*A$lieM8z=9!UFo+E2lH-uy#~p zMFfiJfEm-62sHqSt8yA+vE5yXIlfQ{6z{3Li1ZR%H-6+p52X)1`L5i9hS8|+`$JZ3 zC3aBIhA;$@Jy6+=OslKBA~tClT2GmYCRJ+vlty#Eq)?INQspbGF>@5z6-8IFB}94I zL~NlibA&_G%F9T!wxl#)=|SAGmG(f#jrC045F)fnK4f%F zRicNCCTJJvmZl6x+IuBKe{wcW=|;|mNu}i1OyyZzl~m#(*KGs<(B&xGv*FZMof17* ztDTaM7C&}SqDPBdMmmmtigXcNOTIvdho|re`ASdnqLtEt zQ1=&3R`plDHp8q1D4>2&Q!(-?9;C#N0;x55k~6kX9bm=?WnJW;gEtrfhEN!5qPU{y zNKTAWUKHISnLUyg!-rmX3YA^auI$A)WeuQ1#3{@v{y0flh}rj`JtJS$^@lA#E43CD zw}f+s@xLh1ukt8esI-Fyvz4o?EN;R5In))>r}wW))U|DkBT6GFS)jz+0AhKe`XXf> z$`^|T`xCn*O4NAqh_V^D{H8oi)j%#T$2DAvK`2Hw;Y9(FE0tDEsWEGm?@?{=h_aoq zs(N;Nd=>Kii`1UDiGYouN(Z*citnMx~<6dYC#|L^S-sQ&3T z<1KRJ4`tzh&rWFeE>L<*nQTKvu75_kp4ribb4m$&e!8H1O|2E4Us8VK&nwEN*7WbJ zKb5{rMV)RdyRpA7lqt8e{1YB2!!Y*+840rYh|-;zK})j#wGy>V%j)sPH)SnhWIgYV zay7Gx)W4NWaf;z+0Wj}_5)*-usa8aY`K%nn>Zs(aawU=qP{B}F!c8pfNbH7sjxgO; zWn@(N;@~@bl{>Q8a>?vqo}+3lvxIb4)jDPgZ#`9CQ495~9gnJ^ib3@UOwly6JDFsw zBJk8(MK{`S!6skTd1jSk>#8;|ZV?g{-NU^FbwX6H94!_KK6pbfmq0Q)N`<{}PTYPd zw}(d2suq@{_oXK8a5z@=1tY|r%c?wbO{?-Jt>aag@dpEdq6F0;jQ&lfW5%yEZ$8{*GW-zwc@%U^V3y}5cbXhfdZbv^xB-wp8hI(@YbuEdXlF@n|Q&*cB+9w{Sdc~ zs$NJ=gu=RjdnZ*gvV!v&fefOfg$`8}VHH9v$qzaV zQ!PR(gd;2;p=vKyk58fMXS3MoMyrT9Z2V#3kE(Ven=j+cWTPB!9veUCI#D%VWMer+ zH5aKH@Sm!>ZH`*}pm@5fpGc(s&#Ku-BFs_vL9>M-M^qH%|L<=Rf zJrkwM1#v(bR9&XB#PrN2N-{XQLN!FJF2icoFJ`eR zTBAxZkIlICs=gu{`%S7@NH#!~y;y`fzg5*43B&4422ZxB?ul4;c9>aRb$6-uBkftN z@L46QrXriKdsWlTk}P4r>MLgEVlo~Yz2t~$8)l-*5jKugRRPa4ss#uHpa|=b-F^Yl zELAyx?=2N-E1h%a2;)mt)vd_TZFJzUrA$?1BMj`CK2jYKnl~t)smg^R4uri@^~7uw z^U|h&Q&oqUFRF7`+X0G@EAlJ14u6ZRbp=`I9PR@x9mBDGgaRnScFaKost8`Z8_7Lp zbR}0}UFBd|J$w~XC6!o>p?}Trb4XhfVWQ3%W8p>Z@FnK4nSH^i17p4LH<%5hN(Ifm zW{iOsLE($dV?$vai~ckwL0(9>71Ck~NTK6XSGcDLN87G|kQE+IaoqhfS)L#6 zOExyNp!=M?Yp954emL@|DFtofB7uEwA_JAnAo8e ziPrV@Ao?32)}*9)xDnBxyex}QL7x`kG=A-i!#VC?Y!j}w6q0k>g)1=Q0R~BA9m6pb z7@9Ynl=cV@=YuVBHp26PJVY{My$XWhf6;e-qaiuwvE4yP0cefosY6?8*<`iDua=+T0du+D6n+3LLdj5%j(B zys=k_iC8K!-=^M`{6WJ$5%yxXULzvf zJBZnSidZ3Ln?E%|VlRApadyNs53F*&4Gs4px3BnAA-VUA?(lhKM3`8unmrK*(P}cm z+7ZQojfvw_dL~Ft8z~Y+`{s?;nS`j^K^13AN?nZc$!U5slu=q;^YScr) zGD+ztH(NOVE#j?@K=Q0l22pszIxa zNDD+}n3);*2BBs`^ED(+hDgNh7tR?XBQVB8^K}$9l9o1%L~WM$xgTjLYEf=SCbW(e z*HphWi$q-~F+l-^O2%kV1aN?cog&X;hW8Yp0M_-6w8va`Vwnlc4BF9=lM$9fDiNCg z7`df7!t^T;$h==8F-wyapsRQzXMW^wo;V79q0Xkr8%PcGg+*H;Juw{|<=z*5fJoG0 z9nZXJXJk!u$vyT&UPsIPcwgiT%*ch)9`SqR5iIQ$_m4(m^TNavkr%P7x1Wi$K^MI8 zd?YF^BvaQ4ze{+D4_uA>3th=+HzJ+UBEP#8nTXDO^{>dzh|ECsrN>qpF9&Ltk8ON&Uqf4GSL5;c^$F=P>SzU}Sx$$)M z19VgV>t}Toy5y1~^=EX+&E~03qf0)yQ2jgF!c>dZ!_g%hmZ^V0E^GCL%(ZGYy5zbW z)jnu#mu^;vp-bMpUEK+txn!4m5oT4BH;k|Q)b-FMANpNA9-aBwQ8ntW7pHybxcWJ| zsv4eF-$UE>t+Q(U;@7;3YSbnxm$}Ck^*gl8wl~xV(K2_tseXwr`CF;FF4{;A-BtHR zXTJ8(jG0B-CuR)6e4necFvlKfJr|HOzeL)TMIY4SK0&Rw>bFQ02v|U|Mj{7jYOsAx>XW|;}iTmwP_qE2A8fha;-;+LH~5*)&!sv|TB6d@85Hj(BtkcBBx zRmjSDZgTqCtSC$jSB3%PGRrboFWtx8X>??`qd z{)1xL!>~C~H8EWe7mvbJgOFdNPGN3la0JJr$<8DrDo9SYu84Y$(25CV3T#{zrFO?6 zgdL1>BvY>?wRc)d-^uZtc%3DUn5PDeXY^D(XE3hRaj< zCCUjlevHy#4IL=LsTx?@I$JZ^14^q!_d*v>5ww^tkV~%%iFStKdeL&M{(vInV>6T7 z=x7g8>Kf}wW~@!=3Y){Dz0p=pv4&!f;&44|7?M)G$TmYTYO*>%+LH|L80`;l3!+o7 zj0gp-1y`CxcSClwdh)Gjv=?!j87J!Jhpy35EE}L$3w*I=x_48G7aMMfL^e#p6Co7K z2l~&9zNf&lnSMOli98x&+a9uhk3NKUKNKbcZMxrHrObjW=c7@ha&B`J!4WoHiC%*C z#kH%aRwuU{Q&+(+Pom$VodAWYMUH)>I?b$}8bfM*iVh_ks;36Qfp^gs3D`=yt&VX9 zePoOac7O~Np-;8{UObG>joE}Ll;&&424riYuRf+_eMHF?17gNwN~ZbRL#;tEfO>CP zZcIaHHZ`U(rerE}Lqan<6TeNV%i!tsn4K6W!C*kPE(Z1fC(eOpb|ZVQ#&|*EhL~8% ze^UVla0ISknZG(hZ}AI(6fkkWs#AUPSRZjlM@y8|y+^)JQ9U z(04JY&3F@_4}AU*(-m{pjUm7b=U9|=@ZxD^C%EMrTcSi%3Pos2+&ZKkfcx6mHkhe^ z3Bi-BUl?l(Px4}KrkFv*j`W_cbs!08>GUA-<#ZaB6w)Su&Fok^jQ=!|t3-7sMQdW+ zi#(&;;L^g_<}o;`oyh)=Y4o`9hZtLCO5>pEwb)-VlMYI-63Yn|-Hsg)hodxzs|(Kf z#MMFcxIl?`N8n0sLS_t2FM?)`;<{i)KeS|yPzQQ7kGqR->x3heE=!*RUB<*^AgiGX zp$IOdwLaOFMkkJ|i^yS%aSu<6L1e$8Apo z)Z6Gdcm2TzsWp*;lV0|jPGo^)<~UgKXM@d{=Ezk*VLa&TVjFD2yd8-n6uxcXNUFR} znE;z!G(gYCfWiz#PsMtLWv+uDhj;~|ZxlwZ6v3T5S7+M73)lE)^zDw;wowkSy>@&{ zOp7+%@2Lq}rSVcP;xVjl1_?-vUx~00c0q~I3ra3zMrRtfO{R%|ia?=^YA}FUl8_Z| zO9r(FuSzzScCv<@N%59Q5i0>P_hwCuS_^kjW@pFi=;gIDb=}EZef)YeMC=R&#`seh zPiCUj8O|5P@1%D_8Jqcy;^&yf=3e7?JItzNC7T7!;@667nzoF`M7XKMDsB~j#ys8B zZX3T%WOKiLJSId_C7aNW@!nY705#{!B9TGe;(s!$lGb;RM;(j*PLy8pgG4sl`ovE( zi_P=C@iQ>vArqS{@E8(*(4I`%Th9v~jgCKIPK{@gIno3d_+e~(cY1x8HVHUCKK^ep zd1G=#^6vEbw${QA8vPQ#PfSYY#vh}Xa9K8sU*nI9$v@}EFBg-u7RIj^lg8rs519VX zBz7E}Sr$Lr99iQCMW{utACC6|@0IbX4qSyKeMLNt+4?%3-i6&1U&SnnM6-j!WNwe| zXBJPOFu&Rg75rjvJnAq)h1$rz!|^`k>9Tk^y#75t!#rXXYq>~l=*jpK=9qCD>GfB< zGs%k1^CUNRHwXgv3-Q*@g3!UG@dwN!O0n08RvdaieyW%}@hJYA$+pYm<3%f$zKX9Z zCiC7^d^-PQyp{Or#;@@|i^+Ve1e3*w+9a$HZTp^W!X)trg^m?JXzHABLHt32Yl5js zymd=3HHobr2}8wfiPaMZVn#)k)x4p1ygez{5$^-d{SrcK1VzrTmoUVfO5!65e*)5k z{T5e<#kwIGWPfnN8ifBdjdYx0Ur53(#GqtWpQ5^Cl;6<*@NubOA&l0@h`8I0D+;r;g!kSJYYaA}nes{uG z58lxFolbb=%2NYxCA4thsk;vnEFF33{i}o;Rd}lQmxL|0!nan5&4rYqN@Ac5|7?P5 zVmn^(@Yy3#%}9DcO7+BK;j=m3iSvcurPfY#w&yw81tm5^THI*TTb_t{;~`b;XtF3Q zu>{xbMuW35F&63EM#BeHA}Vw;Wj%)6i%6V_V?BmQ)rm*{dtRXB`XGfJ1J9!qt?YP3 zTWJ!j3&s?ZomfjSh$eZ7H!S$Ksrtk{Ldw&a_*_gCBnAq<%W9PPP57*7lf=71O4ls$ zn2?gTNL(xQ7WZ2vZV^(e+a|6NQXM-a?iEszofAWOyMcb)6Wa*L_j)CM6~2AbH}Q*r zXE`7-O!!PYD6yaLyCXvr{}xhbMka0$zMVcgagvY<9-HW8MK;O{JistM@v8vSdZLNy z50ev52%jmZCO#Ij$YvxS6H>Ob5+4ewZ?h9G38{N?61NMfwZA6T6bin)FpEXsS=m<2VZr@ew$c14xU=8gG(&{Xa;s_P2=45iucnirtDdzrv4X|ytgp!sKJy6D zT)>PXDx@NlFDAOPVaYI@Zk7tGLoQ*OpLxq7o79@^IHP!on^Z z7tDB$QkX`%-`4n$wS6>R@M|B~#Sxln zf>Zf4MiY!AJQU7OqBh8B68lLSaqxF;n&z}%m>Yk_Hj<%)LesZ?5pUZS?`LTQ()6v8 zbA{CAd73AJ*IU0xGY&I2qxv2Sx0Y!dSqNIrTA}e3v^;1HwlxhU6tEh(-MOnR99ye# z6u92opfL!lPT!_kgXKy#=4+hDUfmFTl29W=JgVtcqPZc^x7njBq z*3t!h){^Yu&O=SOU?lt8=< z1V$!0fbLWzO{xM3AxS~j!XRl_SQ6^~g9(dJEIWu-C2g@Jh41K)&@wXVccBt4tCRL1 zX?6rUD?H_F@t#6w^P7gs1`qNyBhs0iEl6=8rMXFM z5GJnl)Ha6Wc}Xdl_Q5g}Qjmn%nd1fT`XT9w71ho1CP_z-C1{kCgt#FH#J}v`&NZT zos!lub>((TT7XkmC8Qtx);;M6QeEG})a{itgsE$OpCn=qDWGzqmY%7?IUjm8V@Q$@ z(+_{WliP?SROFZnI6~p<$eH#XY~j~YNwE|dE{{oyWKXA`k_MwIbw>TCz7RYmNmfC% z+w`O(m~kMd%HYVc_8pv{>}P?cUy;DFU~bZOB+IsB#;PQH;YDuy=M_{T(+4N{!mUL~ zQLL)DeuI}JtzdtgUz&tjA*I}TAueFIJShojhaAD5d^=As!MSyo1ro)|q*FK}Zah9En2cxG$*`sf^9zB%xx? zaRPV02?X*iwU|R`9Akx*78N~{XAZQ}wqhFi$w7+HH)$=kD6gSTEG7rxq2XlWSl? zAIhE*aPN=r2YL?BqC$0Y0)G$E?qLMB57q9#YQTRusuvb4c;QIxRz@IyG~N?z8>2mm zo*AmfY0ohN))Tatw<~ikcAuz41@YvWKTp=)U<9sC)9%JrLCOp*elUFDXJIt7W43k= zmOvme!w5Id)&9*iuxh^c0G5EyLM43rhp+^EmuXP}J~@G{E49Bd z0*%+;Tfwfi+BOWscLTmZ%-N`oVtvxsE!wSEMLgQ7MP01qif92sV~E+M-HRo#a<>*0 z{F4({e^96i<6(TKxaEiz6$6wGDn~=%G3`87jXo#wrZD1^_AiFf`m7dnw1F#P_BpMK zHN{wZNsC#Ha4VQAfb zl9A5pd$bF_$*UOJh}y}>R`)$xX`SSH=)ESYFnd@iNuI!5G2dK@lO?+$Cp?^$J)v;+ z@Jyb3nPS4>@MJ$UyBPsb-AI#KQElO2OfqVpeCCYg0v16ujl54x{u|+5O#n3r4M92z z9JR^AF$dr|OrAd3188)xHP%QXKoOQw%YoPV$pwx`5V9bJ#%bh1No`su|78ZsP`KYF zd5|sT)3S5&cE-!Ad$Jw-yH?-iE0}xgR82p?(8A<+8w#>xT(SgXi425L5Lf6wAvqRv zdW0gh0nPN}+K5>n(9ACOlz#D?2nNuW%tCQV<#wuNiHoD3%rGeX% z!;tzc018t^y9e02JNYS-YR#VHK+Iu4s+|H-8L@OqX0juhe>nLuLO~1)DAXU!;x3*_ zc3}SI*16;hjOXTy$=TRuMpz_Mppi_28RCwcXfrHeNbcmyon#l1^CYDqTq{k!i8ROp zQW@6t%){hPXyGV~2b?NTUdtNn(3i<8U68sbG%o4)F-~h*r0iu1yK0kyZMOvsvntH7 zPw9v;F5YCm)}#Ti7rLd4LpK=~>y*$~r|qGJcZvnJ$q)+T0ULc&o-un|{lVvF{(S%uaR6?VpwueFLlsag_6s875#-uc0g!;y(*kL+u z-oRPBR6^sWwufHHDLWWkP=*;sLE${%K~_prj8Skx|B9gcLwc9$6h1V= zv?-DYBs@uJfHiHP@loGnwLy4r)t~-O+01-V%;yvbOblLLJuJv7&>*YvRj3L3R!ha~ znK2-sKogj!Tva1=J@cH6eNuhdb3m=s0gUC7+Nqb>-v{fZx;fG3g|Jjt_IH^wHK-PS zI_XkxvHVZ;sehyO!lJSg8kJQ}eruR|AK4lSMd=5l8>d<@Gx@PaDjzxZZj~B?)iTI? zrJ`bo@+zX4J%I*p9YYUA!^V-RSD2b66sB%w&$uzEr`XeBY-(dncqdZ{w#0Q%j0=1$ zN|ho;&*UF4{fX@yN;z_F>IJ4jheZPAJH-O!UzViaW|aFcO_f%`))7^TEsN|L2kkbb z)-#VX3lIx5Kjf@I#NP464Qd1e@xP*O=Lt*q@~?w{&91D+I;r8u2I@F_W7-5X}@8H23#Ai z9nxZ){(JQj&Y5PeDnzG!(I>5p)$+xDX*=0)W!kW`-L&6;te?_Oy3l9!*=cte=MQtz zzA@#0_%*GS2YohKpEeE4ozUX#{}t61XjI!}sDQT2%>DuBOpabmbAfLM(oQhRPW+zs zhDoyjeA;x@>hz^)kC;TUchg+iGwVUxZdPlyuhYh$B^q@*)*EQtTQz1*$*Y7S)P|~7 z>0zuEQmUl$F2UC+{Sedo9hY?87SFh)YuVo(p6UCUY!|Ag2e9GX2k&$Vld+C8y^P6Z z6PoVKo}P;Ix7=T=)90BZn+w@kJIp)}gcBO)m>^13_0UW1R8Navt+Vn?E ztqnJ%8>3hy4JKV-Ik`$_sM)-RlYk^YH2Prpqs z!j4Y~3;Da0&e+f>z6szKm{AvFG$Mc)2KY}&#-?COXPPm?15s0Ou1!X73=5jC zIiW#-M?r4;jGK%>$n=cAnGMySnGwjUD|=RkC41)0&ah_Be3B8tMs*X4Gi;c@oVG0E zHd`C-xjsXUnS4_Q4N2{V4W_})Lm3w_y`Bld1?ry6ILJ8OJDs6sy`S&pjLn$lND+S^ z>mOz~LF=-NKM+oeFoYEpftlEbCmDR5u&_MiH2YikGGh-W$Sr5p+dk6~Xz1ZHv|W=P zcA1#nX$Axo=s2tAxGI_67#%VDC6)1qdsNSCk5QBf#vMBOX7csxsRn)u;X(l!xl=@Gize{@J;oyn$xfl znf5SEpBYM*xr9C4v)wY6Q&T5{dS=c*I6@Pu3oPlCIRfK37y?jUPnk2AJ1lbwQ&-@q zOt#?yj?DS&*=T>}LH6|iBXbvfUOJPxj6H{4$+TzAXY6eO$Mdhu<5f*6di5^z zChN3jwr%VM_daK;m|^e@ahX+C9L88pTJtBZIwrLw6F+8p#!cB6*1tz@_Ak0?c+ai_ z2M!2R#zaO&MaRUn4e!_?CbE5dWmHs$HtpNDQ->>6k?kYeMJXaWw(Za^hETi_!fi*r zLsoT0ud{2`a$I$egF|jvhmbWn4iY@GMlpNZ>xC!aT|Mh8nm}>QtiFtZr*GCGtOh#Q z%F4lPmC$+^2VH9m1a8*N`t83H0A?HLvVRZETF8WNE6rN>-^*rpG!702XRSmNs3*_j zr%8`0vM>kxIe}1B7V6Lz&%7)mYX;MRIw}iut%76Bj?Vf-y$YGxAPaNeiDSHq&)R|3 zV(X+VelT2>lC=$6jSEtQ~6uAX? z(Iv|f9(2ok&2+|lhUY!A-XL9=2sgY>))_`Hr+?OJM)3WREG2tNM`fMFtXOiQ&BtXq zz?2`ev{-IH5l+yaT9C5A^ei2+id&GD^|I{AZIWd}21}K4Qc#rj7H4V#6i_I(v?MTl zw1EDBfTQCq8r!wAZ7%83E2k=%)7CZ-?k>$*U=CJ3#IDJDOvlJX`N5+q#H`C|!ZyO{ z)bgxKq9My2c0iU9Q>Bb7^xmCy3DeHGq%^Z0KJCqV#76M<_Gc|%v-}?qXH{jEH|J

X|#6jh<@nP8_O+}(BC!=s z5sYxcHM<-02vMHdAD9}HUfIv9(`TK~?8dCY4OM0DWuM1HWUpk;zap~_u;#`5B@8cQ@-+yc*eE(Y$;rkBF zvLCRqX>Pmhi z8!|~g+c{W}g-^0;k+WY1b%pv*vUjn%zx`BD!L?`Eu1p1w zY;*KX1+h*!+*Up~=WJrXTjQF;ZKa2M&T6KD8a0IPuhh)pwp8dNe6OvQQ^r&f7?3j? zvvWl2hsS*KhjyVknbk<)73U1{COKypqGeQuwJK~%UEruCSW4eQlaE!Aig)EpujLCF8taw#w-yV)ba3 zv&1Z{i|uoM6R==H=bW0z`X5MI9ksEAydF8-F{2i$CXV1pTA#9aBYW<3)IdqEoN_CY z@xj>(_V&wJYRh#8{f6db2nGTtN9BAHKfU@>PJKJ!2hP)SqO67F4?pLu7k^N7ZjPga z@Tp=+&YzeiY09w!ac!F8O3Kd-EdZN!Iq%&#J<@+&jweyH&hdtXy*X{firIJoTgjEB z*zvHK@cv-V2f+-%;z-U|Oh3cP7ca@FNj9!3up^qS!`s08lR1lQ1O@BQ=j;}F`(DnO zk29za#8iMY^uLnRRxSR(${Pu7w|xGY%n25jnb6F(DPm$tmdp>N~dKtboQs%dUR zE8$bOmbp3hLb6B4T(A(5k)3nX9fjo7ez|p>iRQO#Hzv%tRLkzcN3C*KIBGg$!6H(C_lLYKEnNUqpjkY^`|cCuMsSMmGwHhHIz)~h6E`#ZQ3x2}2qMGJe`kx_rN z@Pz$c@uoJaF=#}dl_|b8)NNVMS139xRzzxoA&ufY30cN=m@+1@EYSkshNA&ivV0T`K zg~iWgDoP z^|H0tND9Mrn3${#2q;iK#u1xX#6wwx?zkmou|7(-7N<-uPCR(W=qxb}zmm$Iak~AC z%7O$PX2Ylw$X28CG>^(Pt?mJ%av)WQi3wFnB|Ke+id9;Pa5PIdj#0_Y)%|K#1+C1} zt;ftNE2&ibK}VwxY$U~vbeP#=CD7-_y1JN|6i0Z`O(zk?CO6vY(yS>TzR#oXtc$`n z1)!MT6bT%A>pt7jr~P2v-|T5osJm!EpO;7LF0tp@A9Zw9aU*mar(2EIW$!g~AW*7# z>PgQ2tg{tFIWt+OFo{C`o}}|6z0-BxkTgU0471e26;)9V&~kpaqO^Z0(w$;rwOyz? z$(~`$1@Wv`3gTT~rCWyYtQ%vt+ z`*oH!^rPBO(vYSlOf%JN&s{^iOx?_wuH>mQ*x_4OO%)>hX z#k|ef>t5-K7~A_Fbg!w$-*#P}$w=3C(C=cx+;-7_!c0LbDj7Q0)-QH6@%EGH&9hBt zsM5cuJRvVe|B5}6GS;ZCR@t+g2aQaMpCzmohy}>8-EL1Yb8m-yAbWHwo@SiYMu9p?IWz27^isc(=AS4|H}v$7!Zq^eP5l;g6hu`X4y|tM-4JtA z@=r>MclGq_%r)ZvK#z$d_fN3d5A_|)*V6GPdU~Ar8kzb`j|n*RPf9K?^r>c1f)}s! zZyBBYZ}phL_dn^heXl=c79C#o?>_2xFiIP~{0}IFeA92oOq{4{lO0Sl`UD%! zV|p`_jM2m`W`{4#RT$_iSp>b2AxeWMsa>Y`2Db>q5UjYY6A{o!^to0pkQ`&U$y8XU zf#ELg<-j(6~pqElpNR)astT7Rj(_g%KSLlc^R21FqH8(AS){ z8VwY4HdFexUIx^eluC)u{Aj2}{yZG-1=#})RjQaMb}clZPBT>i0|llBK(9gTp9}-d zQ{bY{dfGas7*d%T9hhM_WtQ#;hYSD3K!eX;gCj+TU(NARd^q*U;vE@%#W|h0ZfIpo zvLecy$%DWGXOjK?K~1vYslkr4S!BR$TJlj}@2%xtq(QOaIih3lv((TMb}csigi#sI z{0dQ~#acs8Vc1q}x#5j9seLHeo%pOVZ2Rw6K(QubsMCA{LAk*&+)^lh?vDkk)l0du#f0;>0E11kD?1%Sml!yh7->lX}|#VrQ4{gPp~ zSt{vwwL&Fdt{Y~WQ$1;a8tR$FrOs`Gqm^JP@qZamcNhfIlf#lSgFR+Xl2^~ke0Oqf zOMW37eqylqBv$={y-2mMbR47EMYmI2zZvqxitA}%?1j}BD`fY>d}kPEY3zp?$yHG0 zD8<%BZ?jPdMR6y(9{DZFq&mi`HtDC_^4vVWBUyEFpc^ffPRZ+)saQ8J9VTL*kfM}wO zYQaqpt83JWZu*AAxEQG&2ABXTQe#)FdIW@lGUIqrKQ3WrvKgc>2AapFL%8u*k&V0B zxD2Tqpt>1u9+9!J#$QAt(s<)iBoRTyvlEP{0h-Bf5}+)}IGVHZAOlm3#Yi?#oND}v z^<07|9W$t6g?{687Mh5F)hx$ofgSWPgxX-6Z@gHAvwE6WFolIY3bb$ABjStMBEWnWQrK$`#KHqrN zQlK2Oz(o1(BI9zwlftjdj22>Y-D;zw&-bK zXIjZ&?lmJS)_w&7p$LxK|1=gNybw@ZFUM$r<{JVT_l!NOaBGGW&y5jPEZ%MZXe_oD zTHhwie0mC)O{-y`eSV3BkW8+UKS%t*Q;+<5;ty)q$iF0vL6J*F zSpHRnOkhyve-T-%IRfM9L=t+?$;Vk`ehu=ij#UfT z)HvVdrhadczf-K+sjc$&i^-O4@)Ix~>mTaj#ZJMBzprNrzmGUUEbWv3n>kp7 zV$rKo?0xW&{qh&0J66iehb$UFvH1JomkiEdD>7^~JRfs0!5vTZ~}b2giQB( z=nL1!=06uq53Y~Tr$>8v`&}}zqGJ0^&Oa!Anl?3mt(df$o<9@OXoZ3|RDW2N^jMT{ zM-uD`JRxUJ{#`4fi|qVszSyhxouA(VJrZUG04-pa*tp$)%U>(D=+i6m?ZxDSHTjJ& zE!yxfzYmmd$-m?zc*5iRD_XDqcU0@8h=b_vcK%C*6C*V91aLW;-&YiC=861N(cwP0 zkpEPyu)CM?pNPrQEBOoUgnFKSJ3m#-cCRcS6RQMh@m5IMT}W%6hYqCm3)(d3xx=bZ z=W+gHfe!I~p1&B;cqtnJ6)5Tki~&_3FkXIe_H{nJhsW27XTHl{Vh$w%@Xh=Dq5lJ3 zVW09piM-;z=3`zD_%A`Xe9OOvad8ze5N1=*-aJcSBYmJF{YQ2}%Zha^7$;il*=hwh zMN8f5Q?Ob5bacIfy`oj?0}5I@2v&VSUSKEw_L{2T1*Ti#Qn{rUc#z<_N>7-OSP*9| zaJrgYun=2+KoOgY%!Xwbyc6Bi7+ry{DA0z61yKYK1WJ(tElzMK z5TKw)%-wa}E3%p9d|6B*Zie@!%4V7$#>K#gAk4the{#$KPQJy{V*DtU zEwRt~hdd5Mz$+2&TM#qfm8F!rDrPB-Wyo+khXZs%HQzF`k^ccHfBkgEPVYJ26RIHtJ!_YU%;K;(1IMdU;Y7fsgzaGnAe*fw4@12k3P# zV)}3~AnHxbc^}q!nt4iLjVj|uflZ__oK?z$r3WeYal=`iq_Ab}K6EfScK~wO`@|QC z?kj zA4HkfUz)|S@f|4r`m@-?43b`=d8qb*&Fx`QxM5^;lRWY>*=!gk4W*d|TiN(vgG{QS z>GU5E6bfk%dn7;8F#vB;OW|`MA{s_U>38rI9?9y>(&jYbiEW}p8jMCbs{L?}9O+m` zrX7@+Erstc7fA!LeUbDJTKc%6L|V^U0+*Lb;cIh-ZcK%A7nf~XDOJ%71i(BQnH^jB z;WiVbFF56NnIhFvfMEa&aX=%=IyS(+&6aNCsO?133v1+Yr6Fhj0)Qb}!eZ4f6W|nC~#PM6CB97jo9X2f+cS+&al+k^Q-O{0) z16Ayk9^gtx9FQ*JvhQo8;ar72N2Tx?8grRXt<8FOk4yK^+*JcfCJKk3erJKs33l;~ zf&0}k6o1fGo zwuqv6Rt39S$3Es%u)SUEDq0R6VX>DeyMzH33u2`-_vWB{IqF&S#22Ubh@D9@a(_Um zj*flkhMKwN1mJmtVkfel6Gx1UJ;q}!gxyES&TwS28{=bP3mIZJoG*(#&6UP#Vt4Y; z^j5hIaF8zcJFdb*eJl(&Ox?N0*l8|oR-7K&h_yV{WXFCMiyKR+r$kiND9)4FZW8zRi4!`oqE7RVi=*lNp!q}$hzl7#HNc&M<7zpQPA%iI zIO-GH#SQ05A9RdcK=T+18nU42J>ptnX^*(yI5$)Djq5^l=kozf@nsxrlEN4$W<(r3 zjbgG{v2lI4>|sS5%)*({d8)WqIySrfU>wzl6wq)bPCgokD0~#d#S2{+b0Ks*4t6Oq z#lklZXX6q$s>Q#=9ptn;<63hFE1t!{ z^G~Ki&TnzB9|Dsd_#$owSK-m$aqzH*DSiGv?j4OGAy_gKu@E%RC;kNQDwz`YMk{^e zH&cunFdJ-#&J2xr#yc9sKcY}7%vxKcnj`VU(B<~=*Z;EaO>VmvNt4;tcUVev{%VX7|i6whe>iH87>d*ix=A0JK;-~K=Gsw3i8aHbd$8IL|k ze?;<+m@bKmFQ=FT{ex*E{9VuZQLc=Aaqxh6<7b&BtVO&pZZa%B%8doo#>X2zi($y- z_{LbLj_+)bQr=|*pf##^zd6D2+!irE>Edbb@IEMjfuCuNpUgTq?wlNdll3YbnjQ~B zGwG4|UPe3&%}jQCRy@2#V6qn=WUh3@SMgdd+i*&J*=GsgMHJr;yv|8kE-a_`i-|kpE&6-Un$nQV$#0~xVSgJ)gywe(>%}YkY z+qvuUK6plLyooOGH$wmlJAj>u7oefB2_dNZL_Ecp+#u!$Bq_Tn)M?vt2 z;B-92=hHS&4D=?@Iotg4}}^Mf>3o@0yiz%u1T2UfO@$_ z`=SxX1d7h_Pt;(%*_1GfQo0Z1g7LQGgzd0h7~z$lnm{op`oIf=w0$TB-H#A5a}uaF zApW3nKyX4mcUS`Oq`U;3BMQsw6@Ymq2?0*L2Xp=&)ot~tF;IcXi}hb6{04Z*PcFctYc>2QB9rR1W8BVqi z*Ahx8Mml0Prk`M>_l@s^rqA|=H~)n)Cp7pTcs;xbrrG&`c?TToB5R6=-%oI$7~{~G zKNHNbqi+J$W`*Qp*wGhUq~lqs3p)KMfo3TspnT0ft?u+BA=?r8gv9%zEx#pvPZ7!h zYc`g=NTB%=3d6;H?Ahkeze=F^`VkI>PFP9dp~MQavB$fFg?3Eyv-iko-m5bxfp)U1 zl#VbP?{$#D&Z3L~1~|)TUKcPNmbu8DQFDlQmrda~{NX91*@vFtFxp%8iju7I8#Q_{(UP%`!wfG?aCtiSuxA0rqMpqnWxAhblmDu@mBVlLg?YVA&fxlrRU5 ziyP2f_9NTJaGSO=n2Hf=Nu{%Z!v+H$3JLuIv`RNoGl!NPGys;ZH)&0Mzc zXxVkHZg_$WUe_`e?Bp_de$HgKDrB%MnaLKZWJ|bgm`3KtUDnSitKn4CFj?kIv!;wu z(e(nEA3m8U%cs>21_XF?M+}Qv0~o4vkp<#2rLs(p>BuTsFqf^EV3T#kB%7@7C(Gb9 zHY4lauVoS^HtY0_jK{e{7V;NfX0dyxHam@3zQ(=a}2=vX$0i8Eo~%)D7EjD}8oA=Ev3bKP>A`vDyQJls745 zvtaMjvLH^ZW2dcRrJs|*K@SYo;>$8vE5Kw2T(xBzUblJj&o^XSxe9Y{T7wn-@{a5x zhroYi6ZX%?vLD=7u%G_2fh~Du%cj4!;dXv&!+rM7hP#+2AIGUn}T?Cp3~b;=~>kBp=H$ZP-HY$dz_%CvU-(syoW7C|2;1 z!1g~A9$&Peo4kfs%RatX(Oph4Z9rK)ogNKrtK9f zc@}BAp;k_FE689B)yZ#D^aHFl$YIO0S`?QkpGD_7xp-QV{35mR9;xzkgg{-od<`vu zPMPvVnwN8o<|MiD#e~46d^ycznZamWDF2?CK!rsP+W^-hw{khnO3?UXPczrS^ei6Xkh?K#wVMsuj%8`&SoyEvIh3*>rg!X@B-in$FJ# zkh8PoZqx)S=E&y}0)g}BeK27@j32b-+rL0Qmk@|sET?!EhMO;u51 z`BGZ`ZmZ=~cdLy5PhQIk-)aMm@T~cD8|9Cwwg3BO`By{(CEMr;e7jv9Ol<~kDO+gcsypW{5)wp_JEvbhbE@&DK+xnskPtgdwB{WF#U*}=1B!Z z;P_Gbb!q}bj>{EJ`@ao(0emq_+esV{?*8$k9 zdq{N~zb70{6b2%ET7ZH&G_Pu?pxS(!(Z0N?0(Ld6MfE`nn%x~43_*yZ1+@lV zHdj;<0wt{!)Hes;wN?zHdCCIpWASvpqLhSy8BK!%P@+K50M(pO1mfW$#eB*;o>-hI zQ5XOdU+AHL0}yKQ%4h`~fKZE#y%lf(LM?9GR{;kg)Z)`$DBK(&y*yCSj->X(6&+|E zfrB8?XiMy4M|4`IfCHoFdidevF$y<(BG+(Nf7Ct>iW#{A;;H*8+XRLt;B@U;+)l#^ z_fpFWw_DE&mttgvYmunvLh6l5RfKi3uZ* zCth8quz;d)t4c)>F0zl`V)QZjs81S!| zsDy3XYjMgj_IJM#%DrCj+fJ=)PQ#SxWlv8(X@JtEXEZ@0;zl~4hm}e%e8!->XY-LC zl9aShD5DXB{%hed4=hMk#zIWO6LOV@h!BH|lp~!WU0AN{MAZJnSmhRKA^5B0PN+Wq zvG=aY$|`SbkhnBY$&E}$<}0Z_8Dis*6@1QQr4xEqILrw@SfETJz7)Ge=|_YyuTZui z>DOzNaCTQMUb8{jo20*PQT8Eer=7~{6pQG{3^W=oIrGGy9M9!|e*8%(!nJ#p&8Xvx z6^lLU3oYBL^he$=;Q+(Qi{#Dm_j{Fnz!t361|Cx0qKOSwoi#1&59tP!dhh@{_ebTtd$j-eaY%`V=gN_ zXdN2Ay`d}u$3bH@cM8B$?kHPR#1Gbc04Wf6yRV!CGhux6p|S@pC%Da4`rxXk%2?>O ztc%qDq4cCC#=w=lRBj<1q~lxV4NJY$Ws z>M|*>a#h_RsotHf=kLkZJK@FF`^HCgoBUtcK&7OXd-`FyGrAU{az|b72>r0Rv5L&u zknd@80Q$C(iks9g4N@JUcP3~8LlY}WP^oIEVstUQwdy1x->fYw+>h;8;i|$|;f8i( zmC&xUN>44^8QEiR>?Tx^Fvb`aMoO1&V+E(RF#58lhA@3hs;!s zA)rgYVLS7@HCnJ<*j1@>clx2Gvq%g^icxn^iK>)a7j|7wV>bUdY|Ca<{79YDuiwt6D{4 zKSm)04gs7qo^XJ5d%Hub{xs~gKdF>x!&+BA{P37cWE&B4Pg?y<^P}nv#ViN|@Xy3j z;tQ$-8e)u`*DtDk(7s<)&di=L==~_MBj#UGVcVV6n|rF>G(KuW$AF$qc=Dg9BB*(8 zae~K072awW!qXpBPJHE$x)w`4aP!|)qpeEC6JM(QDOAZ$39L)W9_=T^!DUBAF_EGminf?klv^W&B=p$75<28-cj{uVm zd=HzbxdHA%pnB+MHG!dtD}-!GOEnzMTZ>1uR+IS)Zqio$0@Q)MI;qo00JI3yo;0gC z8RzN|rEZL7@9rFdzYwdvs7GW1gD*?ewnumPRd;m(h5Q&)EVV@+_x|c7H2nrZ)No8|E#45T9z^u_mt4(E@P1LM@6xRJ2mSTLu)=Df3+lIHdJrnN zYt{knO;=Mbmm#0{gyy@W0~zW&|9$jDH)pB`;ovMa)vIQ5F@lSo(7qfs&GUQ!$Yoae zqcgt+Ibg3m^*%@55p=Rxy@yT~3y!d;r8M0fs93OQjC!jb5V&8ZUPViw>o|2!8rNe8 zw4SJ*MF@O5S-p&wfXmnF%{2XyAz+xMUP}mg&7>iK0pmS|@YolrpOa?o=c{SfNix)j zRI900EHM{{E>f>11ZtPiTfXTs^<C-BlvR4g@5s%<&`_&~Bag{`fc(nMC+7s6wR)6UN6rb;fkHH52sE((w^anTuaL%~b zS#>gDx9*&}J0-hOXv-uxWwYQC8ALb*9=~W+pwF*O8{orN)r%>+1c(0OI;%y~O*Peh zA!uJ~h*n;H;)9xw#_s6!p4L9NteeJ* z!qxD;z8W2mcNvHF(|qg5JHRewZ$4N<^X8o4HF&wk6Z;L(IKYOv5q*47yOA22CAz(r zYr5kuqcrPb3uJ)7k49_Y`#dJwGfuN1gw4Lr*ZBET459=b0lF7DCD-_($CorJ^m2kG zhz@EPiuy*weZ9PYq9zSCIVO^KpQ`!lGXR6JW|{^*HDa&?v#7B!kQ>3l%tacSuQWkj zjEuqf;9L#t3B{PfX`#lAqBmdwyWoOeTY3lJ4jVLyu&q2%*78l7R61qFqPp!GC%j;@ zra33&sco9clvr@mg608iT}@o>(jLuy)`{`i8qGD>YMYcEIIj7E%liMM=}L2R02*LP zqbrxF?7@4Y$zZ>lZF)tsopZMvH#9V>odBx<2i?@1rx`q%i|5_ez=xxZ6ccLztYfr7{b8x{98lyMGkZE**BV0j>E9`)EstB)Gni$3j>7&6nRZ6T>a2dOX*4p zXn|~y3#v~U;@qGB+|*qgL`i8l8Xll^L*>3&I9KkPwlgY;*ZPq%cjWJ* zz4_l=m6)3a#Q^%mj$w$_`T=Tat|ky~^4Gqi<~pLW)&X}2)J8a=Ykv+5z&W8>+Q={* zFir*$^Z`z~NZw3aSxCE=2LseSZjyfC>Sk$y_KD;H<*ysltZ1kTSZS;2} zYC|Z-dDcsN{rJEI%hR>(DZArv#2|QNYU?;ZPt33?pmUCv>PY41SUVc;Db~*5W+9p? zt#uZ1ah#TB7D5owt1VhD{PTG20&W&kHAzb|3;BSxWU}^x7u!X~&)0V2y2wvUwBxyc zk-S`ckei@%TdSp-idb8tnWDqB?2|n_WSbVY^{i0!X@J^bEd>?^EUF!r;W`UGx<@;X z8+8=>v@}a@8JHFOwd-iyl)3nIjaJKXNc&z(^PrT0*>qS-^+6bOanobkl^ln&$F($f za12bdAGB1n5a!~?KWdACL;Eiqpu#g+iqCQp1GD!mU2tPAjybQ*=k##pXD!VxA`DFE zMeSEK<0xFLLhr6?;c%&ITB_wo1OWrWTyFNU{+3oi$s`8(oO|GgQ|@cUl)lX(pnEBU znj($9FcI%~Na7_kE#g1cM$E`2BOOfSYRcd#Qav%Mk8z8C92cE+k}=dxXPsm`@z5=%nPf1c@WXY^a{_eE7$zDy&a7@$2kU5_ zlN0}sK~_LAbAczQEp^$PaNoDlS*K8_olQDfm~JG^6oa&dp{=Lv>;elTbyS}{SUG#6 z8oi?vekRsgr$lMpZG3z8wDEQ5rE5Wni6 z>)KO1J463`iiBIm=*k>;7s(^E0q9Y@j%LSV<`LTDo3J$Y==~vD)M&h219Z9)js)AX zN#}}kWx7}jd40b!_DA;ziu|!uu3Kr3rblG?Vt2J}m_M5}=ji_Mpu<(8rxm&qifgxq z8T;Y7F}kmv84jpyqK+m|6Bx8*xvncdI!R}uc^3Qu;p*2qIGmIy2VI@6TS_Su%cj#z zUGnF#=|5YyhGX*{>1g(t_#j#Dc{-XiThIrDWeao{I5ra&>u9D}AF$3X(IwLA27|3{ zaYUA{(osC<`ADc+t95!>BCMJJSf|^>vDvXvM>FgDpq7`LbSAEEW^B`mX~H7|c4nI{ z2;KNu=ZvbIM*5*~TXikalDiNxgX0Zd@V0Mt4uNQ0Qf2`D;hb&^wfLkJ46X28*%%U9 zr-Rk1Ok|mIUk7``Gg;k3U7Q=6J@LEll>?hS|568IHB;f(8(krH*$4+coOj5SHg(ds z31qXQLiOIBY&N@-9;W$B1sA^lOD8s~iPTqdr7y(#FCE#^Aw6xSb-nbPxzZ*5Z3vMA z^+hgh-I|fMx-l{O0UYi|nLdFd*+`||%~7w@>0#S6hQlg@9wrw|Hrb?K;KgPe=IN`3 z(uNL*hs{vt_j-4<`HCKpb-%l%w_54^9sOWVYW^d= zC#S4o&-8E*7$e{47dE{;{8PV`tFZo!O>fcf^&7d;w+;rYJ!Uu?=5VEAPlMHVr@Rf5 zxYFbRTiv&f49B?A3qb}rj*)4&U2B6?-Suq@R&{S}XXwtk-8+HdRU5XhOM+o9%_N!W zG@7|OSUtJJ5{Oe&hHb8l($Q+A0UoKP=>oAj$*_o8{RA6NN-^jISfcML3^vVI8k&2s zrB2ffJ2@viIm>`Jd*seH)N!T8#fBbS>GqWdICX;2(1g`CFx6Va7Ot~}>@e)&G<0vD zp^#=?%c!N|h#?d?ItB(}uUf-lRxSAcS;Hi1We`N{e8JF#>wI5cv+)nQVVJ{_KK#It z$azEedP8r{8>aqY7{h5G^o@bfWwmxjt1==Tj8@HhI2nt%3dqA4#zlyqyo~M~ZoQu| zf-4PgXoPce8FelUG%lcYA`L2Y$@PQP^u|^$tpCgnHFEybx1F&Eg~~7(A%NriOBb7L z8wJKyoJtH5BOISYsPF1yT*(#g8fYBIWqn2(bu_0QLBqXK&Fv?_C~QjaCb+56D7R-L z(PWKr6V0Pj8zMe#F!tk|J|xT7h-3O?p|OM$^<1gZlfq>&%yUC{=tAJ|0cdepdq>2d zH?S>QF~OKm5s#UPxO=s+#pj%R%i7 z<8;{Nzu$0QWQUAD&}gCBxDZ#*HHv7Q7l^>KP^S4!i;Np-n{U6wNV7)>Ub@Uk&M+a; zN3Sxjqir6qHkMLIPt33o+pRbL1m}Pd4tF;iSI}~Z+iaXeGam#F<>=`_qYHZ0WvCzC zy~`Nrf?PX}2*CIE8{;XZD#w7>(TR}?cdRuIW0j02|6ojo6CprW>~h9v$7P$IH~z$B z-(55+T-XXJH;oUuQsX`2UM?H{$QTGGO%Md-3**5MI&~$Y5x+fXi7)w^CVR8O7PT_v zQVPp~t!Zm|4ab`hW;?=758((9lHC+->eq^vWUnMRGrjJYrf}H#-BCXHh{06h#?qB# zm>SVMR0C@#A}g#D=I5DsoR#{NnBWlt!}+@k6V3TC#GMn-z757EXsTap7t}eXgCBO9 zV7lSUa{hasiDo0I53qRu0+ZC8<=ASC>06F@{U+0thIA@s0%!>0A2n^@9b?xu&3Ckf zp<%~Nv;zWmuQi3x3r`c-+*SW<&slDzx#GiRM`gTx*yUU}?uL!>-ux z;eg+sHf1=VQ<4U70?B#PAqow1pnUA`vq?hJyKDePkc)=%^^q#kOGkp3UtEJE{O$>jBNOrXJW8BoBgwKqQQgB zrnF8x=*(t&bV>}dXR~Si#HOry@H}DSDz0>dIPt72TOqtpqK2!mynkXPt3Dh#Fwujn zJ9iK}p8L?WENN%V`4jZQ4*O5@@aEnMjxS)wa<**j&TrxRPZnIW;UIPkida zWeXC6xa{Tf#8M6+sWS0L4x#_}#GzahD<&oO zH7By*_r!zTW%h4vcFE->S?%KNkYu$>E9ay_4q>Bv(mPInd%cq4xzg5tNmjdT3rKpz zRoK)xDW9t#3QF3^wf4GA(o<`ep9FV7j1*_WlWMr^Qen~>E-Q;nf+PKy3XR1{2f6I8 zlB5+}c5%0)Ra`csTEnk_Mpe66aVM5Z@#R&!ECi$X(FJN7st3b*;a&Lm{i<1_h zCI?!(<8{SJMkn4{Rsy%(MQu>&m?YXk1a(`I6oQ_))H@<|GqW1iH03i5j-^nGU`dh& zjX)OIgkrkI55KKSYCU4R%|^FNxgrl^ytgH1;-I9~LbDH#^4X_6@pK%eEit|_@b3b~n* zL)Z{Gy;qM0=u9)SFVbWuJI&E0cm40KY{SL-bjc?u`nC;#5TkfbLaxUkScC)Ux>ZVY z4V?^_pPJ00m~vX_4@Bx?j_yeFqYHc`e%I6sH_uJhy8$I;7CNsiIfx?Cd;q_3%h3xb zj7>h&fHxmEL&@-6%Y6KJZZdq=G9OpZPd-Fa)q>;+Eg-$WKN&tIo{#s|Bu{aIbl|b% z=paZZ-bsd?tLEdFd&yfIA$5G53|}zL$MfowSCZe+FOn-=AU*UZ`3y;CIhtYS_mL2XH*PZ_Oi7U?VHPdVeLewxTXuUfcwxy^M@<~kg!OQ*35j@^w7^Z?6 z;d*~_2PaqwUS#(+O0HDz@9Z;OGwK-zfzu#dV#{u+eZmnk+EW zyp#taI2O0U&0o{9VC85XX@-Lj>d`B)dBbNZMBdf>hGGIhEX)bx*~5H*Q28<1O!HCs z2cQnU&6_??E7QI(!)EaHsNa|7RiCAmr31{*K996_4ScsTK1Gb0|evCk9GH zHCtguzGX?09#4)pFY*9BOf>IlH1lYlDcCUawIs7^171D8Uu=d*UXQWG43WGZo65`( z$?I|Z3bPkPG%Ox(zUcsI;AAsI^m_bsirE=DGX86p`IbGTmysDFcs)*^Z_aXov~HRC zCsJ?w3Kmbd%3MQ!w_Ibk2l}|}4z~VxyUZ&b;kRb58TOd2$G_H?&(Pe0gG9s8dx6;x z_3BmX$econO8S)c!E0;Hi9`U{MrB|TX?Pe{a5$GMlKb-(B|l#`js({qi7XJW-vhX)2?-h@jL-M0NX{ryiwOUAxrAxLJqP zkq`{n?F16TQvJ}gL~|hC+#|I+y%GT!r7TJD#M67HIurfP9g)hoUdpIc#`Rjoq%y8| zPMXT-Z%$k)<9e%g6K1SDvQ^9dMa_nT{BY|Pb@pks&n+wRM@bv9{+eERY9%Jis9x! z^dvLQ8J{?px(Qe?o9yAKms4AiA6x5EY2IEkPHu(vMDF)fJ(<5* z8FSt?LR)&8gXi=#cSmP>nwy~Ow^IKGc`n^fg+0XUvEp88JyFZxC#<}oPg65VPoD87 zt2Wik)KjEKcY2rFhUg*2E^Q#iZ8iyzcf%ukB+TS#x*V=jrs_;*vc?bpoQgkLPtrPnS{!l=g%oS7`6p~g; zClG@s!b?KaI#CM5AxvnQcF7K?=-Q-h`7A0wwoRjYBTiIDURK%h*n#ueJpv94C8J}mHlXo8qJF14_XNvl18<9@&iKh@U$0%ifUBa z?$6T7+0ki3X-4M{R4&D(og!4$$kJ#=r4K+pinM(+^Iis_?yt1Q%#eu&-5uqJ$LZ5D z+<+8wpW~XI)}OjR5MT^rad<~wH4a^vCJ2Re)V{PAPLO_iI1TQ5s&S*EX{Shf?^v1( zDS!H7+FA1Z;OR6u%`AWssaNZ?U|e%Ct=QWt$nXbg3#kQR;HE!Ht0n|H{+8Cw5z?f; z(p2R4vA1a#VO+pVoYT9I-)B728Nrr#r|%$wNPW{`mQ;;f__5```LpG#8>Yhs#no8Z zIQ<5}>k*s|``1-tztD7;rGY}4r!$J!-7-Cz(zda5MXJ`=>L?Xgf50Avg~{62}TVJAoB;kUae;5z1GY4!bW` z<0~q*e7YumGx^<1m)@P=l_sVCLViol>E}q=K9x=1rlspBl^{i%MQKfU<)upN|a$;uxwA$>mieQGLe#1+%iuM_@NGuht>-=u#*?akdY9*3Ym z`@jxL@`dS7Y<*L?CcPE46a*8uS)cw5Vg21!R*JuNr5_8Rjfs}upEN<~`b<}}BrM$r z=l_^)aIq@<>4o$q)Km#D?tCeI5~2F-4VLO3chWb}9R172Os@=I-1SBJ+lE$xL)8m)wkI43p(0}yiCpfJGImhBnm~*$ zzaEj+2EAXH;eudmeLp;YdWM9|l9|!t{Je~E>JgFvV*tMB1r#rC$Y6r%noX<-aa&l` z1#ZjeNmP=sJL45G!RUP%aBE(T+a1V=BBE=KW_XeEj1w8~egjl=hE>Ibv#jbCo?}&I zx{#4W>R-OfwzKX!+fG6qtEz^#GGOEJYJB}RTmJRk3^<{!8b{sFxK3~zKFP?ZdBzAT zEM(6n8SqC&OPk^<-eqJ`xFZI**F+sbE}4wFp15W*p0>a}lkqgQXC|YrMShu#y5=^{ zWYm=wnAwYnzo~g9qpp3eGk+$Y@l6*N#~@&F{30?L&p9K^WYjS?k}dyIoXM!;xg_&8 zY5zj6%%dK>TkP#;qAZ~U@*b8+efxQGSmycv9+mLf;h6z6V+LF&M#Ez>X}$p)IXmkM z6s*W>i0VR``QysC%<=Z12UmF}&F*jn4FlRG8ZnrQQ}vlW9f1JT9Sg?c0i0~%##khTexRV<_&5wXBKCUr6q(X zTQV291B0*$nSE$>TKI=lQ|J^s0QvOEazb@ovl?Qbc3Hh^7$#7Vl}~(UMno3H8+zh9AEVU@vwowr*T*n%QCVq()DcM*%|5g?QW*3;h-P~B z0by<5ta@-Fwxewro>f2*zCUOQFB_G$)*F0sh%T#(E2Nf`th+9d>TOh#k z_%3S~>0RrOWi|4J^!tk}bNQ95$CUlOAF9iG?2L-$IyS-AZe_i4vJ!vvFslX4qB$VW zV&X~lS?@p(c;f4zL96`?t=XWY0VL(Mko6 z_Sw`!*k9h1`$^;G4;9$I^f{IFYx>|gEC;?Whp*s)9Y3m%(w6J&p9$7X+y z$Uf%GW;b=qZsEXYZ$@X2z82Y7Y$`olW!k`~LuD$7F|4 z+TerITH)4l*|{9AbqU#}pRcd)WZ6EfccH7wZ2jj0o>OH@IUkj1vhQ-(T@2Y3pO4+w zm`$}6+yB_&P-6B$PKn=`v!{PPuiYux?*Bg+H!eN<2aZ=nRyNI66#pY=LUuOQ*Fyh< z*_D_5f}`bFm`yX5{}T_3in0gNj4mHwG`|*RU}Z(NiyH)MW>_qql>PMc`n~3tA^!Nu zlvZc@NWDn#*@Sum; z&aC3F?oqZAmo0jdO?Ao*ksd?%d>p{ZjCTH(?T4ltvjefpHOKyQ9I!q6F2CMA$KQ(; z!!IzWKO2~_IW#AcE4|e@=Sm~C!m0i_V>pR419Mh!(l;7zD_uJ>=NGPYMqJK$PAB<_ z9N5H`(W;#~2e#E?vgZvsR{gax=d9(1ySlWTo-{KC(9{>~mzb-vbKuD*=ORsta^fiF zkr?2ba^vfd6LMy8l(VMhG~=?1X61C?#Jh}g##214!7~=-oOQPnEm)g#g~pcwo-*TlR_vOGkb4K?e2W-~+`EbryPSTW~Ag1?SN|Pasp9(!Kf%k zG`uA;7oIwCQl0CXJCItckD9ojr=26Roax|=Ze%Cf8ay#hkl?VyeP?(M4Dy{ySLW-6$ou z355kQkb7s(yMi@YxuT8~G~jwYYQHF#X06A_Zh50n*os{4x!uUcx%+_%@>!lsv+pHA z!+@ryc_hqGIej=6KDT^r=ZD_qB)B2jhTI0Y?}pr>20)5*e)M2NE^J8BG%pap+n<|Z z2gT_Jb7|(8*5HR^C11{Y;J`g zq@(ZVDx4wR@;JAf6QqxS%WY56hOctnp?qhHJa~P41wZHIt)PiaR`ElK=cv%7sRgjk zelh(WDBz{C_nmszJgE!V=0OjJh4f2Xnj)`7Pik5QWMDU zlsAnKaN_6DtV?1D#0m1wQG`?0fldqIVj!?QDsLyP3EqnHXf_eXz`i>PqEma)xBVbG z?^yj8Tqcj%wzL9P9(1M(IT0wsg#{qM&ic~r~i8Q%#Uk++-> z*gqSdq~nEl;`6H>7=E3u<+svj$NL2hNNv*=KV<0 zKUU?zYMd+h{F*#749PfpYu*F$yWRG@`y}<*nYWdshj!)7AajeDeR*-9H@x9M-e`B; zm0dsNT_Jy8J(;(X{9SpDopX%5kQYX#ES8IT3PS7BRknQ1^*l3~viRL&f8V;F*U|%i zJH5!;PRjSZ&g<$8=^t+S6{MMb&wO}|bp_w?&R5ZVZw$H_je2dhcg8;k%}*hs&I-%FL{yR1F@F{jnJ379LDD}(`K>9ZU!(EjZuxs` ztkZkvQyqNBC;^Z>aq*Y=9SEmYgYy|LDIc28cuDf`{90%RhfDJrFL@W6&v?n{_`{lZlz{>GBz~A2Q^RB4!In&Ht0&dSvDQPARJtjX35QhBp`Fhxl@4LJkx1 zxtYAr#C+PR1}qG}9i!@ zmvo%yb*xIh_u0Mqu39X#^3M@IgKy@;%R%`4Ykm%?_ozOgYAW&kXjki<5L1-VH^(fdx7yWJUuD=w8*MIVR*qk zih+|%T}LAVhX5`J-x*cFJQ%ngThNNIcTpC^kW{HJXh>M+CKZIxJj7+1nHuZlgPz1V z%|?6E3aD0Z5VC-hkNRX3d~X#!Ftgw$#gkyf+z{6#ISob08St`TcTvGJ8iQD2M&r1O zf?r905WH&Ok7Fwf5}?1M=0Se`NIIp!7s20N`1X{7VKm;xw37MVpdHA6dVwE~nNdJ> zabey30)G<64lF33I(w8s4%HVnMGsaNG+>SbLsOl#X}IC? z0y&M#*Z?sA&L&-}Y<&T_#lv2k*l19?y&#`vzQiEIlaL{}dQU;GJ`~Z)iZBXKd|N<9 z>z#iTz9NC@sa@gIMv&eJEL=7M>*k&mO`4 zA2W*m|Lth@{{zy(hh!94t1N6v>+~3`t^OR#cET=6g|)<@XU&D{h`KD9g#wap$}6OL z_-(bz5H$GGAV2i_s`ErV%ThR-=Co5Q)+qe*)Iw%P)@LSb==`uu5LHt1yu$xxxOzPLu&kkIx+~6g%?Pun)LLpDf%);jY%F#*Znk1vLbq z&|eEXp{Z93nH{tI@sU%7tKj6SytcmBa;^}LwPCU^E)=e_XS16x6{gaRM*nDxX7QU9 zpg+5%7PB(+`nAGZmKVY|3uk-C-5p_y%pj1&wHb}Sl1b~o}u z6>W=-(gHMdAv?;nE28?A;vW=XhrEtO6fa6JpsaI1OZvI^B8#AC4V@&}>=rDi!;2o% zgdpIc_}{&jmUl0@<%xz|b_u}q2NfZjp1{B|yDXg?UbM=S5fWD^i(Gx!?83C75$env!Y5{>AR{Tp%Yu$cT$ngo6YW;S7dZ#vmF-~o%iG|MZAqgzf&lY zam^6>dUsT&$!&sDHx*5z>9rtoBiwgOk&=ggRWxwN>$es)a^fAgEl#9aiNjErj^*{}c+uCN zVS^4Bq&)~nih+#y(5WKW29?Q5&lXLfnWB9l+G|X46SQS*4D4pN!=lAM|5Bv%L6R}$ z?x=dWs~aBhpor=Ox&LwMPVK+?|{FGhO-vKd9RB~+3ZgHVh66Uu|u(pt6Jq# zywZ`qO46_xx;rDdUE^ZdfRD*qLTsh|ninTJv8DUk7PoK0X8-C{3>&#Jbx-ywhT|-l z?6NP4r*n1t4lb5+4R0P^`~}r>QE(s(oki*LL3wCke6b%|(yBNR-%uC7W?Mjy48=5y zOsxv-$FARMU@D&J$_lbGqZrPQVPq=EE3V~a8eu8kz*X=ZUwn)c`tDc7=Umvj$EO$X z$$@oTQGAtR4LhAQ+425SURS!|@5fQzR)fJ&O|Eyn*n9AE%CPAN+f z&aEk4YX@xye_y=xzqd_!#j?T?EayFhyKMX?-2!|ncpz6j~%H^uM?=_9=D zUGYWod$L2xRgxyTl`!SKJW4J&!S9BCC11Nkx+1s)K1qFq3qniaL%~P5O^cG=q&%rp z34Bue2n)KD%qG_#6SDQ@N3!(>ic7vH?R)kvnMyMbfKi7c@9#_f(ShMb&df?mv?Z?W z3q1MDlJ(x8FXm;@;JA{;H2V4nx+jX;Q{shvWF;4fWcQ3EjON~_l`xu>i@}1Re`GkdRdDP;PR06kR z1*^ccRVA+pPV)K^2~qs=ttFSp@6uf*gJ|MCBifmg$G$jre@QMNvYNVaxa0w~rdYVz zl3n&d%=2VP3K5{_EUTxPmsma3Un%h<pK zlSg>e%aTLxbiM6=!ryk@T-&`I%?EM4r&&78ajy43mxg7kQQQ;Q6nw*$(g0N9WpPGb zoGm&EmLt6_GIZd$sRLYc}H{a1PH0*mdptaOB>R8S5r$l&A4er`FIoEf*^~N2MU}b4M0cQ zS^SVsxWyHnS!w5s545*LI1#b2J>P;IncNQ|%PUtVcOlyHFo4OOmRij0zk}qKU}vVR zNM|{~V{!uxmPKstrO~p1&FxIIbYPL6r&*4;F!he*TW(U#N;psX*v_LWEmKj0gCho_ z_EnbeDBO>@G=}Z-uTg3_1jEkxX*}L`lyz6yXx5;xX4q?jCD@5qW4rZhgXT}Q&`g?u zTPPK+t(I731AGj3d{?Nt6o)|bjBeysO9u0JZuOG67Dv#-(uEe9FYBy0!8mNOWg|^U z{(vxhnPrn5Q2An|WhI4^d;nU#%Cgm-SA!GQS+)Tn_Sk6gr|9J{AGXk(--Y11Ja!Y+ zr8_KoZxD$Y-kTh@EN}%nyMDAhA?b==EK(mx|Gsa5O{#0~k%yL7tsy<&T^a!L zHgbd1J){(NEvUhDp`|cMsljVols*O5#q-*irjyi#U%HUyBTb+ghiaaeHb9y_rB3Yg z(41bSqba?a#lnCk0_j+h*9|VsB%(AOS$cwqd{0)ogIK0oRSLTwfeH+zrS6cn$Sh@4 z@Fc6$m;8QjDTNpCHF)vZQrLK*1}Ba$g{?tquy8_YcT%1;t#pqIq#fs$mQlS(=ekY^ z8nLN#F7N3__fCqT)OlyA z6F#uD^cGd$`d=ujQ1KCnoV~r8x~p`%18A+!ccsT@dMbwqoAH(&{9L*8_{xFO-FCp{ zn?t2E`@VgwZ$19&`_cxVLus|r2I`&6|`r(S7N(cCYbWA+EcDvNUh4&QSdQ^JZ8Pa{fmzIDXu;kCuE8rbC;B_hN z%JLN7eNzfITTk&f?@Hg2dNZBMptC>4N|&+%4@fWgv%i-#EbHk9zi+fJW3JoWp^Ujs z)u{}2VR?$1b}9RbTwfnq1~+j}@j)^Be`eRRvu^OaProvw6QpYfm(|leXa87hQRrDs zsUKNq!%p#VinMIv=j!hRD0i$O+ybruiCJ|fr<56qI#1`Y;xEo)#T!<@itk=j=0W~% zJf@6M^EXvxjG8kiu=RUQV(UMhTy~MDsdg5t)>*U5R=LCPu1ne9j?2rg61Csj%&Kwc zR`xo>_A(x+XWCy@D*XWUKh zP|moUn^QUCZpWOO*6k+8ms$u%09>|ObA;{FVd>L;e8nb##FmBte+>XLAv8;P}=N7z;c%rKO zB@fa{P5EUvNR=t&e>p)a%`Pu?=51Vkrl{Nzex5BWPqKqHA?=Mz#*}xm{rI)2Jeph( zHmUrb1ElSzl{a_t+vxCr|2M@o+h{Umq-m4WzcCNqgw9F}1!zlj124Q_c6k6aM$r6G zqc!Et(Eb{Ds{l}*yOxwE12#4-ut?7g~C6 zQV=S)Yt{jsepCMPzmIG9<=gT|FWxfT#iQbh2c$twDtL~Nh6Gn!afbAD>k1!tNIe7< zKBPP-vf?Nyztf}Qusx(}dsnzPK)S78#bA=Y8(6WE)Y~z<;t~0O$><6@QocN{;tlg# zUID97m*Lr(3Rw2G3{N#wGow)+mKtXwGMPwklUD{v(^82dd(0`W*@!HR8gn}ki zjN`4u%O_L>JEGg`eM4~F*A=~KwraM*c_aSB3TG7BsNM-3n{vSGt68W5&q8CKc=KLk z@amDD2ksFJPe0s;S9{>zTgQAm4mn9G8=?!iIt(?FRCYrPc2~!v_u@*}Qe{_lC|W3~ z3_|MN)y`<%uIgq;D6Smx->z6y_+0=xEvbC$rBBkPCmI#%%;fa89Yayi?v-uOH+!m^ zqD$Q?{gI)2Wn(mWZ?zEp(X}!dt?X9W%)Vo2TQtV7pb5+$ziWar$ISOcq2E=@JUWd^-viZ+(VCu>eslI$e}P8!tZa&&_pEG!Zbn1SExNMXf4Txk z^r{>m6&fCC)CnTRCILS@LZ}yr#A2;MAm&F!=yW=XAzX+KPOY2}@`+mLX5fq_cwS-U zLbuRJ314gq7mN5&CIHliOCp34kwGgE3bhiW&Lm<0KV54~VP#|7aBSsdw@{NVLc%vh zghxe0MhPRLBE@2(Ko@R`)P@`MV!gz`B7U+KgE(dyK@@AFB8;X8pk=BmoQZlMO9UL=-)8Y6W=AwR+>5ky2q=p#)Mkv_^K)<&@8K3R()=drEwG$8UL zgn~#=9Y0(rG)W?K61_NF92KtD^TQ)eIunQZsag!;cl#>)=wLn8yO64=Y=>3P|L^}$ z@76Oqp=%*4nuKTtkw!3%UJvRO3UvmtE=5duBh+G3JF?uDu*^Fj4ZxHY!bb6BzDuTTXQ3kEv#1A(`8TcX*I(q>% z#!L2~HN0RWxC3;A2#GF2r~|Lo8AMUwB{~UTWQq`DsJWjP`tOa3!x3-kME)mR<+*MY zpz$lJLP8|rkrF*Pry)E%N+^kvi22%ZzEL0+g2E#uI(+cADlm#DJj$p8AC8EK=tD@k->oOOII zNG&ixJ+aQH(;Brxq0uN7=uASfK_t>f7$Ei`u(`F1Y4zeLu~rm8dZLgYWsrdFp@Z_F zbBZBCptC0s)5R|GLO;>A37Pg)4gX}@OJ7yBMrYi|x`%~_3#>g&uM_CCI=;>b-C8Ix zg=--^>2%;`LX*f4sbf2OT@$2m2o^_~_+pVHTxT=@Um*x-3^$Q6COllE7a?%J#<=dl z#MQhI5k#M;@Q5gF6kjLg^YwslFq*;*0;ABN6&YDi4gEyZ0>ryFQShl&N8Z~YKrfG0 z1qMaxwBZnIMSO`?D}=n*BorAV4WdYWc%&Ae$(^0$5Te%#bfPGO7&;Ji$#A`d#1sg| zCVf<--k@VU+nGaE>v4ZdAr2S~5FoUA33ND}L=+Jj85JI`jW8Jn z5dtodd}913;V=MKjGi=+SN;k6@c-G5KH;dQf7bql-Xch^GxQwWFys?bA#m5Q5PhUb zYl5H-!?H*iVGu~dwcu|;iBPW>=tU7|HCP*;i>tGx;p&5;*29U80I^HLm7owkU zz~BZ`qkn5!i$*S;*rk1Bq=*~cw8jWNUm!5(b>Og(V!aspN2E?1ZZJjYwW4q=7)U}1 zbRm%zrda|g6>9k+310{yRxA=3#9{%A)=YeWfng&rNM{m6Mu{Rs;HeSeB5{-sT-zWJ zl4(o079AXWqcPsHn{>>7Z#aq_;Xc*yj6HMs$oQ}-s9B`Rpc4opbOM7ZTqxEGBnF9A zZ;0TFgrM-vFXlADXR52@(CuJCqBlmsf6#v-U_2KJ#Cns!C=u%gCKKD2aHto8F-|Ws z=^$9be{FaZxEp$!pT&leaYb!4QDh$JCD(;?_zC&}ondUn9B;}a)A zr-Py3U(6K#&u;YZKB|rSXKl&9tIa?<-PlfZ8wLNnL&SdK@3w^Nfci!H0oh&0wypU7xA^Gs3-v^P&iD8jZsE2EJp}UFs*?}r9Pam z6^l(Uapp5~%3V`$tl+}-s|HIy!fJsrEecx%>WD$pb zo$dxf7GbERYiV2njY^CQsM(YVy&5$Nu1PdHfEZ*%WN>Br~a*?&W{qe*^tPkSDaC zql{j{MiSg^Ud(H#SEC`#xP9@lTvuOt{MXrv)nxvFQT6a4uu&Yw-cDs;q+HRUMDgr*At;vb^^-~%K z#DZTcC3>Y6jEx#rCYMG8%NnZG8)D8ZNI-_^>lW{9L5mA+IxU_Vv0yrbFSu#h zyGJEVQ!zDv)}h)UrP%C5=xAzEPo}U@7<6gUu+mv4KCl5rPEpfnGTA(fYzl2p?kDVg zC{C898W=9tbgpqFOB6X%!Af9ep`F zuv^Twn^nlDOt!5Z^07>2SbVr>_;h*y%D{ILXbS9YA1vw|r3ZB_nJ_dRK_!P(%Tf$o z$s=O(`s_r#Ht_Ok%g*J@9Lhn8bw^76h*zqTmU~D>$qRMf0)K0ZCM{&Nbk4$hBvl0j zm?Y9o3TZ8YEF&KLbbUW(wL8m#TQy%LmyLDe<9BOKwjTG^O^@9xy z%S}FG8|=3U=fR8W=b*YJ7_clNC`GvhmWX5?EfZbUVm75LQTx|L{hW%|)+2uIurqh8z#}A*eqLBxOI_uaN}A|%zLy(4QrTpvBmE1EjV(Vp_WLIwu;pz zrJz@*(B6DQJp#JhMOYQ!9CP&_5=@2rJcoup&`7YlhQ!A{@{l3H44Iain&(pseDY+Xm)PUVrJQOuK`2IqCGfhv(>^-N+l zK+8?BO{Lk|Fiu*?VuD4fRhVSCLK!qNDta3Ry;R!N6MR)8hXQ1(x?lAdO>Atz%_qcz z7qGFh;RZI%+M$fobd`16pLXb&^dSE?r8OjjF%aey#2#!7M$+;WI8W&bX*Me^ z?Y}~;3~W_IE?TaMlP_N|IF?9e6%8{lI<}sWpCHekkY|I|HIVa&+=&Ks)CH~>Y=VI8BN-Jkz7{GSgfwuysctAwiV1{SqnwG+JXB2o>4Fhex>;qE>~U(!%p`afofR>mW>K+`*m+eYWu_P|zQ7-1qIciU z)89gRshwaLGD6!4o%!G|=ZcZ8(In)hJO!?LMU!<%eT&$0{er$_PeIvJQ1%qG_g}T! z_sX7vwqA;|ry$f|@4Ds6o`SZzTG>RZo`SNc0F~dx(Ud&}rH+=e zry$s9U-lG~Jq7>fziMaeEPD#t`zXqug0iRJOMN-*W>48uQ1%qG^G}pL1^<8W6gaD{ zyy5K5k*8!-T$OXhBTM^raF$+wgB5YMJ-&3fTYl&(#L3AJsF>hJ-51_*!wvlXjK78a z-6-z3VbQJ_Xe3;CIdC4}FY%k%Hc=*8LIPlb$mc!xOcc*r2K*g(yQBs@+DI!#CWnI? zfDoQvG40{HetyJ4I;W>KO#+y~hvq;L0`=1KdEALn%0iL8-LS~(XeD4l^B6O0^D3kkfeV9`=a z8hBbdV=FpvYH$ZH*KCbc8VM=KXrV%m(F{?6PF8o-qWx0!c6 zf#7F@nskw=iulQiHN#@6#*^jowBn@&lnR!5-A))*DIZE-!TD({w40hU=fTAeAwfFVV- z6#iE&qvZ&pNyz~RW*-kM@fv{EJphl7Jyn&7JpIPy$7@61~x!Gfj^LQVzlp8y_66o8CU z$pVc@tA?p%4F?DBsz_8bErK2J-kaPjX%N3O@Ble0VH0nXmvAwY50x_sRq(=10JbtZa%M_VG;kHHD@sz& z0x`(w07z74*YBIQgOg4Gvr_R<^L7U7gQ**a#RyLUe#(nI02@H`uZx5=>3XL_S`;6h z+N6n3&aW96Bf>xPui>k%qyY; zLAcmJHf1!E8(tAjGJSYxBgwJ})GW^!1#<^_ET@5Hbyjy~9SLhyeDqR{8VhR_+^H=N zyR>H1IJ=E&J!zy&V1&SMbZ~`)XQd2_l`6|%0O=wTam=R-VB@@*%$lr}gp;LJCRkcx zqLOLQjim@p@E!pjlgqZ9BEch3X*d0XKbCFF3DtRXP5-zW{8BDNb4(0`5ucl3mL$vo zlwwliK$75PQ>Lb6O@B&RITf5ZL5&ito8voyfl%oxfS3dj`M^sLqiNCSvbvQgN-Pa3 z8B`M^0oVwTAvNjmTOrMYdYa3=71nI+dZCEwc{SaERuIxjya9_1AgWvvXi`!IE36YY zLrj?mBaY^bv_;e$eJ%00pyMgEzQh+Xi z66r+R=uWQ@%L%RvY0x(c1~+KQjaLwkZD1fR_eQ1Wqig1H-j! zRvHfmBG-m^NW)pzx*68+gV)p_=|vqZy0vEXIJ-2wj(}L52bK|7*+eo&kO(ivV-t*| z60GURa%NOQ9uua-zk<&PeWWQ_;$4BY5zPd$7I-4zbs>GzE{Y&zD7M?Fz_tc`GIyu) zFe||?RDu;Vbs683N?UYA!mwoAr`(S7fG`shRqx6men<&xyhgN3R#8|3^D>gyP(ibT z<_BZuVf%c^FvUP5Fgm4L2GSX;R?ftfq!Wch1e%rv2Leo(nrS^F=2g@H;Qye3xf$57H{lR;gBy0miN|WH zB#N&DBnBd#5IUV04j}g#otWDcdnmGv4V*6{QVI{@4LG7b4T1()4pb$PFbJn0jM~&# z_1M^T!u7;gsmyqGvE(A9CtED9zT87sRs0@Cw_~?eCVkXJ~ubj&oEP6~k z-X5I{*)Rhw3%taZ70PW&(=&2Z5w>MB7XX-n!}H%Wtz-^icEiwj=cypFhU5c@T{2*2tc1Uc8l(dLN$Y{30 z;2@NcU|b80R0gqbWo!mD%h&|p9Mb~ZR6G#$oZ&UYW5ft&lV%F=By$1@!zL^Pxfbj; zX%{R%?0(u0YCu7=TT4X|%s1i4SruHmTvkjakD6(h#!OTaCXyvk2r-g3X1tPig0K;$ zFmTAE=+(iOdgCFDGsFpri06YF1`qmZjU^VmS~H@`u1b_jjf@VaIl)Fqggi2#Ei4Nx z;C3pN0$A_M94TTOB~;ra9FrJh0?m>6k(h~QL=O|w=LtWaE~J0jAuL0NX1iG?a|(R< zH?wp8EbC9#2ELP2!$yfaJ8d;YguS>Mi0;7R5p72yS1fk^k`$vDH}b?Mvt=5S z{>3$2;woX-$!yLf##j1C)TCwW3T9ISw@x;Z@e`|t)bbLmzVpfA8K1>)8srE>&)|z7 z?+95OFAUk()s^$sZ(BJZ8NO*UL$X8JKKJx`j2B zgc>A;#jys2Mdb^T(x4>dJ08-smoOq4+_aecsL;fzU6y=3W?}KoNIPK)lP6jJ$T34_ z;D#j+8t@L^ACV{HnJRr2c!zjS9PU}(3=ahk3@|&+_VH^m;^MK?Y?8C$DkK9VZy~=D zo}~oIYB3&fKLu<<#hGgX-2^x4`yxUb^}Lv5W$7%cE0&DxOpdxLLleJ!qJBVSmQ0Ga zrss5b@Tz&6d{u^O>1xVWQzCV3Q-9wb5i)-L^qMm7WI*?{i&+mDm+g!;!5=M?kv3A9 zb1WA0O60H-+XpOps65HaldL?+Sp5G_O|p5Tx1R5O`{*Upx`-<-nd$GuuN=Qb{eQC) z4_tW3sZ02~#ku6vrGGqM%0blXXaj|pkijGe6=A~1UahcqkT+Rv70jUYH zDJQdPiZmo7qSXOBSZOzdb}Xcp*gkgIAm`9emcH8!ln==pSy%IXYIdwF4r~kT68R}f zC`Kz@O775FZc6Uob*O!+Ta5HGDh_&{h>UF-X_@g?u?LaTL++facSD&|H?Wp_!yg`A zyRloGoL(BMfoOJN|QU?W5gd;AT})-2&#Zvh0;W zd}JC#9oUS-9a;DQYZrx9n)~DVgPdEAf!IiV>4+sHcuV5*Oym@jP>{RcM$zDV{c z3s)^dizV?vjG{b3P98uZ=}Fy346Wrp;?i%_J~2E_5?%}MCEkC$t}1X8uo=J_$Weo& zgb&%fV^}Sx*TuDu{h$N+;lxLu*7gx^zEXR{Aql;H+p=L|{jg<+ioe8{jS@G%QakZW z>-2R#`$KJ?NSo^e#j&r}_TWZh+H1APG&u7Q6W={z*<`WfkF}EzUeTfA(6%@6A7r?= zdE~PAmp((4v-tJebsb`6nt7Q97?v{WIntvd!Q$=*M+$yI$@qgRq>?+R`Zw23s))-B zWm$45tB7Hwxg{N5Mx(>^6nG$Hc>nu`*4p*S;z5r2QSEUz25pT{)ay3 zb3D3j*{dDmb`pq?3BVSp9&kMkAO?t;R0{Y>G6@XG8*`zx+)@1FPRk}&#K^~S4u3r`*8(cRU3<{_0vPIG0O5V!&*!9aE zy;vl>)QxhMeYEV79-`*_TSqygK3|r(Kpel3;)CbkT6>as?+c0-Y`pdL(;7ZsHp;o^ zvs>qO5MTf7)=`i4uA_ACRDSFeLb$!J7#lvMsaP>)f zxa6|OJB#LR8~clC$6SA;^UovdW<>tGnrt}hwvo;Sqv~$xP@PR(cG1ksGqW$t#p4%T zKGQwC;PT6_%ynbMO4xD!*ZR7$?EmlV%cvlefhzKZtRUGNTCeh7w*uKWP4^rXpxH?N zTLnv3bni#925c-|b?=mW3lK_))?1+VvQAyHcjEx@!(~q&R{gtU=3JILuA5gIsLy}% ziyY@S>^`TZf0Y+GLaZ5A_q^K&GY)jZ47V3%%>3`_2EE%?c>1S5*+`Oc$x(DhRh{)e z^%Ycc!GyY7+^0YA{oT+1-}d$S`2Y1u@J8f;q1B6@{r_s{yX_|ZS^gCUPpaDkLmi>k zRSXb)uV(3eX=>d`s#w;6;?Y;v#VcYYRW|dmSfF@Fs3w*yTT{~j{K@*NfvdyvIJ;w% zFa=DP7`L*BYZ)^|2!o75BM2=^)^D-B>xzEPti@{=Lo)*tMvC0*67MNFa|oBh*vYmf zMY3W*LU5y+82o0#8S&soN!B{$*1Cx?iw#$1^US*BIPhzb0Tl2(st;CN6D+%Yffzw{ z*iln?0ElGM)Cg<>xk)S#@+R4Ca}G2I0Hjl-wZ%}2PDf};#v)n0t|PP)p+J<6n)7li z$3t4w+@$P8*abDHdEn^3Y^j4!eQ(2vm<_uS^h4x-$FhhB#g=c7tThjfl7gw%`6wr& z%n*{Zq_&kWOkRDsL_qRe7QlYP0O;-1Dne!iMH_|2E0yAxWS57O1p}az)xg}6FyD)* z2y4)z`XSGAP=k_Y!zDoIBNp9VH)@>PhIk}xf#4<4JaJNh>NS>4Mj4MMsD9P`mIQLJ)&SV>@$6$ak|^ahsLs6kq;kV%tJco71{4?;MpR0cyfX z5|P2b7Kvs_yidfcw4gJZyZ}1l3J57fs3wU%+AF#W5P9<6<{4%=J5`b@I+h{^GM%H} zF^~h@WlX~Z0*W8fH{x6~4ulCGL_%5>Gajv*77J@s=6(>LK3dm3hRW|M(-?xG!~v9z zW=&Km0gj{{H|^G!AgeVYc5vPRJxk*)0`5Y-l}n^Gaz#`BSjb!XDcB{w2u_(y#xPUhyXioc z=s@C|Sn~jSqw!|_{>&}XWwJl@7#dWXN9UjY&b2@Kn>{f6TX?ScD zvh?QRa)VOK$S3?zH0Fm1Z6fS~tnHZJ@w;`S$ClEGAW6U+Wm#z~b1d9M zE1~AIi-EJm@9I=cUVa%IK0(G=$${27&7?E#%ezOn=`Anhhi4P&Vwt3)efR&e{ttoY~+_OpiS@ zPy9V%H-WfB_b~M`5K^?J^9XiY$kmPP7A{3ya3{6rzamY3(C}=xpM`v~l#~)*o+}1a z2EG&627-89vMiiOn0JumSn-I-C0>(RLTddqOC(|3K0^#)WT6|w)z1=LN?UZO5T7PCNtZgr3 zbzf5t@!a|1uowYx7LjhuBNnABk%1^%3Q_)OHt^xHTNTBvD3NqH=5p-XIB-`TiV{Ch+#{4T&!N;)4kuI0Un-X#-50@faI zSCSS_rFYWVB%G!ep_Lw?sV6f+9s=@7>eWfY&E+g(ghHP!Lss=XUQ9{W>dms?rd3s} zTO`hihqO)j^Q8KTF(PgAmZS`U_AUXz6&f`xM8J>m#R3=ep3v82@Nt{iyojgD!u z=FLInmV}Rwk=q#p@%S6pV?@O7i=@noOG*dQ89-?dvEYwP69tnULyAWMB*d5_Ub5IoM*Qc51`r4pnzP#hB-ga<2N)RV<`c$=9aF$Y>GN zss|0c@S^%Lm8=ai=Mg{^jWI-=KJ$uihdPXW;WWS50G)9*qv{ZNWo_0tnYsmAC`lnm z#sz^7oLwb08x(HXoZ(}pCOC$)3Cmu>LgZ)Xz+MU{cKllZMS@!vdsf!zp$%iWvBdLR zM0|p-YE=pIf-8#b;RckIXyv5gz-5Lt2gIn&{)|a1lS5vp-2fGtpW-8rf{8Aj2A#>` zM|J5tMI0e5nnC1xt4$GZ)!<%g$MzwC3jt$OZ@Y_ye7FSjEH3IhHS~`LzL+8qvBt)* z|05J)`_PdwK-Wt6ZdNl99Z9~E%KOy6D!k&P1Hz)nS3>@W1sH4%PC>9M@XUF66ufyR z0i(c?Nr3~RH_M8O6a$@KWDLq4u%vrq!#k^o=Arb{4fk+ZmW{>5yVoeR4I#vv@PDdr+#`YtZCQ6c+>7~+QVB@&(+-&}KV9V~}H&V1tJ0(Ug8L|N} z#c+PfJc1+?V|ZfCCl{u)(YtqsYbC-jGmfNb zS-4li;^{uk;xSRZ-|g^)Z!Aw7m%~*UKARcyv-9KA)XIvT6g!icu3Q3GSmrj zgX<9^s~WabRsquWkq;Bko+P%{Omt6}8GUP3%#`UDWn2)ZepD_v(oMpR@_8tmNsa_r z`18W0{AGaZuvo$$i^)-@kc81+mzZ$Y{5-uT!p`GEU!c1f1A=FYR z2nL#b&d(y}O|4vTtG2kXX9L<6 z##+r@j(9EDlQ4y%?WQ66#V3u`-edXQ`Stqy$e7HIjU7Re7w8kg)c7@Smo%0Uo*$J=CR7Cr zL+}~$TFxU5_b8WxTV)=Speq*As^~Rsxexfb?c?P~jI*s0mK4JExC z`L3Lpf}NLiwR8hsl(bJggVkNf1q)aTeFt5PET`mM%z{cl9!&x0m8L>(+X5Pbe-WcB zrZ_Tl5_Lg52Q1{e*K{_l2?;G7M9*T zM*BRTR@6R#`JlV#yhO&~88KhsTE?1T;rm2Z!fr=qQO2aqho_^3AX*eoKGfZdE#hH|&{Q7#SRTHc&!4703WUNXF9W4w|8f1`4$CmoU@a5G$PN`5esfLDK5RT;q=f}4{TTN#6lBf?bc9_m@@1?nCi)x ztdVt=&}lpCJJV5ANJ&dJag1*~B`XN=YGiW+1VB#Wq=!$8GF>p20_-6NG3jelXej7# zu!F;BZY9LzettH_SV*HH@==o-4{6hPg~=@|iU}Jf4{!`i1Ugq1Lka$eEIwwWI5e(` znoB!I@knDnRG3^$s|=DL3k2{P73(*7)4i?8b2kti&hEzq1SbH1hxcHmkO9_+9}t~; z%ZTd@s|;*d?0>07ivooSXjn}9h+OIfOm`8doX{|0tWh$x2hC4?5AGbT-If(HAlpx_;1AZCQgT2v@P%-HJlWtI zIEb>x*G`gT#CtrNtkM|I)Lbqn)02|(eoC(m(#%cDQlvygB0Mi>rV>SkH5_3OTODZ$ z<`tdJXoR48qyUdnZZk#`8ulXgIvI+n_|7IzDhz4b6ob!dI6bUs7om8b+RzPCyppyN z=NXM4JXriS8SBI($(m&H_W{fVz%$>#en>6E#Kn#^o~Km+QQ>eGz2Y^kYrfPGv5Tt= zTn&T2kz}#8NQ+Gad>Gx=w%GH6TGd=>DjL%2^wVoJPb5sa&{#x0X^F*M1+q`#F$}~e zENr@uXfyL^{0%83E8WY?G1M14kE|=`XDGIg2TqiaiZcdlh$PN%u?@H=5gVn=IO}={ zu^>K<1u+)fs;4r>f*bWc%_}}$KH{jPS~9nEsos&nS=wE}D&vkLNQ#ca{YpAuv1jJ; ze$KX6>%QNyGB8}s1A9HU2s?d9&$LsyLIz}enK1aH6&+&Hkk{&ULW2+MKr95%O@a)< zwi4KWfyCmpm!?%jKyv+ixb!4?1_6%%)lpxF^98FzJTjU$UQR%^o>R;d4P|ho3oF1B zi3KZ_q(8AQ*l9PnvNPFk`T$;+;8xuoEFRLR=MNL^?v)`WKlBqwJ|Im1;$fhWPFUs{ z!J63GQn|H=g)+Dr4jxlxznAI9(-!s&3@F$Byp{@LJ`vo1wVG^AnhMruQKLwA7ltV7aol5}%pU_~=5a*~r88PsROSGlkb z=1Iy;8V|NQ;FkEtmY1WOw2I^ zLga1KO6;?9VKx~-46D1_-P!6tE zXLE43X!*8ot>B@UZfDC6`Cu-I#zW7^EGo@oiXGjtF zrZ@~BBtvWwER-2Qns|`$=dzDU(=T!#<~V~O_@c%Yll=xv0QM9KrY7z(hnHEE!4mk8 z*yGl$L#6R8g@H{2d34PgVQsflyd=*I#!fKD3{8X(_AeP?i;Echp{n?b7a|_wp`1?m z4RE(3P>~B;syOU7hifeio0Rw(o3;C+;w zK!AoF%z-4;VeuGcH1CV7NPG_h3x-HEQnBaF25*^&1~)1-uV`?KlBe#RD!nRU zmuy~G;}Lu$&Q7ib3?=-cEDq9@3LR3WRgnyg)D@csH@5;3L;9rM^a>f0?Qp`upGtL& z@gFZ~kg{RWJ9$tJ5Q4C9S*&L=1D5nZN-!wF9%x`7cD>OURZ(b=jR}?>V2mxfRlI+V?UCHjEOz zcfIRn?hykaD{~D#Y<2Twn8J} zYmlza63t-D%y3T#*q(iAsM7eU$af&PdLYuWe9hBWLdk*>?j)xRX1SE|i2 zBwX$^X#T|2U~Gf?4Dec{N-la5KP5wfh^E3PNp33%43_v`0*+WLJ$2Z78G_#kaDicg zwD<`??a0q?a%fC19N3Duv<6eSOJ)_^a6+h$3Y^R#4ZANh=ZgB?(l9?}LQk2AVwPhu4;uVgj>T*r!&;8T#NAqs#gwF0A@PNhX$MC` zNC;>-7E{KpmSZu?v6$spOc^R$j>Rm;V*XncXgL7vEXQI_``*mc&iML?r_Kxs4Q}VC20&Ae#cYiNEyrS(V==!xVzwNM85{vx zj>Rm;Vt!c`{5H<9;JDd#_>FQb=9k8SmSZu?v6x>%5>bxDEXQJgNd#y)7PB0SS&qdl z$6|h21ZX)Hvo(IT9E(|w#dMmt%2<_<_(C_ET{#xhGeCxXt8y%6ITq84(Rm; zVwPhu-P}??kCbCE4-y1gj>SAkBYD<1D0`Ap2acV3lq zow8y`*ROW3Si{s04;RlZ-r8ef$B8TWyUpo1apn2lBky{*es9k9!#X%$oVxP3h}ib{ z(!-n+uJliAihRWuoi9#bX`C<8*8G^LO!Cjw$@xc!+aF&U6+d}wWn3JSoIgZ#mj4X3 z=MNM!A79x;yyC1JD^@(Va;Qky^H2S%zrE+jPxTXBpIG^R->WXTJT+tH?8|1%yf}6F z6}ihYsmrpYC|wy7r$2D}5HahR`Ih+B(ewL?8=hR*PyGDo`TY+e#n^Gj%s*1h%ican zOu6N$K^}2#{Hc}S``>Z9k>akWS3WG%Ei3zoo?BNA5j!VcKR|r8dF5bn?Ib?Ku1WLz zhz?u1`uF2_u3NUO94T7lg>IAPAN^nd*}{vruH^4_=i;q*tcZ&3H_wfUZF_4f9Aoz# zv9CIo#I_j>re81K+Ee^${o0<+j<@glaV}yzQ%}3|$&TKCKZrQ{&${!&4jeUo=g#^_ z#1{N_rXZ!&?aa$&|45mcnf*g$T>OZ$XSO}39^{;MkaPM$&Ls|V&L}-s zJ^M%MK^k_?wW&D!N7_N^x#!x|(+^V5J=d;YLe}eE^2Xx!8yc%Rxi2qv+|YPhyKiHc zKDYna)XfEJ@;I@dgeju zx#z0eRkRLL(LL9$o_&yd?zwjLk_V~hp7ZNfw+>C!9h>c5#XH&Vma02&+ShbXwy$}x zeo@$Wr==a0qhTNg4zHn3HkNo1v zi;ESio@qSRKRbtFw*!lT*mX-|fAN>ajh%#fb7N)cm5)|)UA?67TmIR9E-60Mo?n(eiYgwwjeF0!g-5yfmd3bW|HWGx zC;7#SrHv;ZcotRgECa+suQK zmo_!;vDPb{>l$OFSEl^3^~x!AjfQ{Y`16e?`^BAg#aG?iwVTj_;{#+ZMnzcdv4^Bbc0 zQ0i|>Up(RU=O)4Z{~;Qq2X3112Az9l;_~86&s$#Fy^!U|q2^Zl&GN?Ktt~Gv&X6f9 zihVqHMX^t2?I=E4^tQ&6OFqXOhtJWxlEbZ@6?7 z4}I?)rFVkdRZd*@%6nY#KhNQJmVQIi`-T-SH;(eJufDVR`Ifv~{Cw)F;z#K9O7ZjU zSXDYPEN^0LTg{_PT-|ttf5XpTDUQA=e<*&b_g9xbhUGnm`_pf)DR$+xYl_dZV@>f{ zdNvlH<-9g40vsCSe=PjRK2bx-NzB)w;LEB*SO;xm8Lu97>4-AdoRw{iS|2PX%wyX?p|*43-yRLt@c-Nf|7aw-qBW)fw;XUlC_juUbA1OZUtapn8w)>-vQ~WV9{n6sX-SKGS z*Gt|8rUSVbHb2569r{@5JVF6`i6?Te%y_JEuz#y-9xL8;`(wq2t8^N_;a9lGDbAkh zAGGOW!|UQ(KID;yK3;ss$&VKwZt>%dCzd>%;XT}v4;%G1XWe1R+0NqBCyEbt(G$f7 zd+>?I>)NS1C5ll|JuIt&o|@cVm_LXjb1$qrKPeODI|Cy~oX^~6XDd_1`l8xuc z+n>|ZBx+wW|HklI^L{*kpfmcJyYB82S9EX@h9oymK}Da1V1szJ-y(4(P zz*=Ja*kyy94S%@nly5}yFy3Tfb%eW%ZiX*_tn=iX*I^y4;xod z+Zl23=(VRugWHz8q^jsPW^K1vBJU<UZ8W3oVtQs~L|Xc5>tO_e7xf3~brM zN#;UYo(}z)*gtXY7zHxFD!r7p$hM(6uq9t3TszQTr=br~;RAqwA_s?*1H+*lXu%Uk zOnJG;tP;{i?a3U1hh;m4KInFXzMCY971`q!z^oGdRz;rJPBCb~QkJCa%|R#%)dd9f zFx=#A76tg54CkX<13han>(Zd1An;AV|7b&91mzU$#!w~dsW!xWlHHZ52Fae9fIA}% zcIR144{5uVIib5Z+aSh~Bt8~oF0k1fl8-E#%|f$e zWnhQS`27hPGpt%LC0Hu8AoY>&Z<%m#C1ERSW!BR3FjU)|R3To<$vFul3)BVho5F_6 z#`AK`KxdX%3zKnRqdAu_HWu8bORNQ#hGdLQCt=G-r{J@&;6#Lw!+_@uj!rVO=vint z-F2;b5G3wV$u6JGr64S0F)?6+prc?rG~vz8r||`Sx@DlV`bohfLN^W(CVUSt38gI7 zW+iRWL>giw2&Rg(%!FPBw@y`U$5QT@vFhqhln}PudP^k^^0ryyPLmz_`8?C`<$y^ygxBYs5d-3 z!FlsP?(gsw(9%w?f8D?C={Q`FsE;{vx~2`Z7)4SyXYyGUO%^u6EO;(-<5);7v1f4Y zAZO*1>#pe@heSM^fGH35>LhGv`80gc&=qP)EpNc83*JO3+o83jvc2%{zgoxN&z-;j zYW=YtW9abEoWrA>lJvXDY$}KHl2XhR#9>BC^C?Gl$k15jjxu(Et2s-KG!t@jGy@%V)kf%t87N0@T1p$u zIk;tymoB(rxY+Klv&5<=>N|@id)LPpz?z+`N|sWS!ZfU6`GLfZ(Ij6B8wZ@fdLGh8 zHI?;kFxw@YTkynqD2c8F5v6A()@z)%Lhb5-pS>0o3**7 zb5z$9D7X#i-dPscPYVt7`wuwZ8lOR^c;d7m&>RY^}|E9k&UC1LS4^tztJ+QT@6V7F-Dk!eOS1Va4? zLAb>=jggbW;FV2hbTgN?fqiuG5Dk7Q z$yPc_+}UaC@#58r4X1={Kjp2jy!Czgrd!_n{!MTwZ++#hue|mBo0#%{)z)VSSG)ez zw>MnfHPYZrnYH2Eub}42VD$mwr#F-ccF)6OjuzUUM@Bi*_B{OOFGQEY&Zvdo z+w%y2k2>Gm^VmjPjM?+>D5q+$v(bv|5cB?c*vVqVna(|5&1^70^gheEDzd{_be7Y* z^Q|3PD#hykb9+0OCI)@gw_12q#^LXA=cvpRz0Z!k<$b3gI!{das&^D`{Px3`Xfm36 zF09!8gj2Eo$?8Gk%uYY`AC@k_j`G5rPgZpPs$YR0_ZR0}y}hS%a?6vcnd0tqH;-Dl zwx6q7p>Xtp-#nMwLZvF0-afgZJ-=)|)zvaq7Vn|nt8>_b@E5yQT zianQZ>2p?P&Qw*?!r_>~hiIV~@*EP-kj-NGd4A++NL#UY{-R=X;6++s&pEVolGj zXNR@?;5GF}3g!JRLqKHcc`ae%B9$#NHd1Ko35e+P=`0-d(nma}V`WB_%_glhx-Qng zq?ObZE1S+*7(oc9Ic`Ber{cBsm}GM46gp8Vt66w74Fx@yeFXE3X26-37Tm3`i^+(G zw3`$28tT<(V7oc7=jUJ4}*)xDzgOEzK=U-XWw>+cTAA zf?M^FC9|vroyFE%Y6e~}$`0#HO z$@TtsPcdJL-Zy&dvc8cgq~sA5D~{c|@hb{d&Mn7n9a?-%_2lD}v9`xSq` z=I=NBJ;&ek{Jp^6i~RkTznA#i!QW2)cJcQ+{(jHj%ly5<-yit@yi14~+DDh1POmrr&RV6JHv;61b(L zrREgeL}@@+78^7Y36}kYViE~0?-*Lkz2oEWzj<3!e7k$oDCZ~LcmK45IBNLrQO?lA zcR$x%T>mV^9z!@=e=*k|h|24K>&eM8hwr|8NIac4v_vv1T`&1WR$`cpjEZvzUzM6N zRUbebTFZToyN}zw`)A_$&$#)zXLrZCh>DIhx&Ou8H*^qh4d(3aJ9mH3JDy3hZL1az z7(lz}EG|0Il1ZN=9wP&kr1$D!wVdfKyMHoJoY|fGe)O4qtLI+aJ?hcACQ4WCD#^5+OgP}%-jBpX zT26@B)lH{IgW3cU>ymiK?`rCbGcuRfpkXnAI)m@c;|^3*D+!iCije=dw7!lSr2zEX z09o;mXk&(yG+3E^64(G%}h-qsm%f+H+ zYL#A!&jm4^m+nN?XVxS=oz}pVuwiR_hg{N`{=)h>9b+L|tQ>@`@Z6B@Yd4`nhHN`+ zE%0+J+1olLm@DIw+puEP!}WK;UL1dL5LBbLn%-FYP!4 z4H>sQ?5vDkJlts`g&UT52oNS>Th|q>8=aL+*{IQ2LD;D+_67qVE#?r#kan2Jt+mMLP5YG8UX}6+pw0+BJnvN zHLk_50is_ehDmP0XWG?G~k>3)D2e+xJ?u?5Cwu#&~ea#|MES=pn`0FJBV*WG(+hghNu<$k`BCDIk zz)0~9YZ$A(m0@AaLzuFB|bce;?l*$!z#R6)>JH04y2 zNcdRrEBPB8JDf#K5D{2dHWfR^)=uaU`#j^7Tmcg|^mn}Y1`LB(trC{IMI;s5BC3q- z51SXk1BOT)xwdt)W2Q0GEkeWyXV93L>=>9KlL~<+1c`azl*zwndJSMlK;yYo%G>KO zlLa&_nx!31?sd^LKhaZp6BwG60NBIaQxMHC6@v7`Aog$*15pad07`O6wlB6Z@O4PL zb_(mM%B)LZ{8TW;EofpcfxN-I$}~h;OCVd?m`GDZ)3Mp9X4XCs$}otB8Ny*fgmUxSs*yNC!QGc^4BV3XYLVn;Ig#A!_Zlm~J0h#M;3;)D=a}JajJ* zdPr$(mPptM8J^PX8Q^N3Z4?9_a3aGrWK;@r2s#`44(nfn_0n>7y&|@-!3VZ0qi5Eu zF+v9e+61E4b%Q0?=PJa%IxO#1rKwd`X`Gj-n3kS2vD2cP=sA^MB0h#mCU{@ycA$KNk2-8MNU6OMW1Jv7+ge zvKCj?;@oJpvKHrB7}^P)Wi75mgDh)tWi8G#ry%ezEw^?bqK9oIbaEBJyv{O6$g)v&o3 z&A`6BV)R>gKCEBonH0#x>1dBZnvn zG5yx&Sa*5NjE^>|l!UYR=H^JGqg%UnN%Ki!$FBNUhkD{qqFz_)X0f-go0Ge_Q?dOV z!sed;oujs~^m{U3PyC`XOJ6cr=( zj9;jX+~X)C|9sNlBOAnzh7?{A%Z@A@A!ZLPoFi6Gru6>M!g=E4;gl|}EX)wIlZ6rD zgUZ60;?1Ku_w>lZP;p(fFj@TPXbz8kYvkc#f3$FtIOSLlo5vRhic4c$J@Xh2jpqwh z;*dCpyT);NnAtlju8&iB(-9ngarV2N#Lxa%7$6QEMwPlLoICBh-b2LChEZj!d;<4= zU50b@(la=0ZLPDYmgnLc=XQ@C)I)qYoL`JEI9z#Y3lw5UaMiBj!QZ^4rLWj050{u+ zebK0_5a*7dazZ{q^&KsP#qJS>r^Eo+IPW$?Y>84j`pCj}#B=f$zS!F`K)iS)H#q7{ z4kwH%oGX5Llvf%eelw~tIr4~j@QA{2F=xzMeZ+C2shOR~^{1W~*;_n3nx_7G0*CI^ z31hf=sQhjX7roV2+#?UKozCG)|LomE^czd%6(c#kZfxOO;(nFV`_I2MQ1m>CdMAIA zL-#HVRL@B3XbQZ}^Y#@ylJ^B?W*Eap@do)k5sICtEnV|$C46L_jOoIAr#0$*VpE!|^YvesPqkGqq{X>oDSh)FZ^uL?!EaBO-+ceI)t$wQ z37)x!e7+yN{H+S{9fMmva2$u*3_5MA9EP)|?&~W~H~HC`5ghJ3lf!4_;c$gRzHUEp zti|B~IVM(Hg&&BYo+|5Iw6C`~*5*R~8}fopL#I?y8j>uWE$)@SUAJXlA8~h*Dwb^W zgWdaviV+hztkgL?@DXp9=Z=qaj@Lh1Tqpay>c)HzvFXwu94=O^@7Y=GT=q_9amUfr z>w0|Qh=yaBVFTrdbidc4V>o}&$sE3a4AXJ-iEfSFqWW0Q?~x<%^gCmR3*~n1@eg@! z{Z!7mZ#Mfl4*&Ia{|7Dd=qx#N-Jvvd5{Dxuaromi--(K5c{qCvhbK%fd|x~#U)F8^ zkCVCZoP7R?Q&<=-Y`xucQ#e0be$)f)PdT1*cgZ2){`7Hqc)QNz8+rnL`?egnt54wV zqGz}H+1RgBujUla%~|`7A~wsz!{l4UPb|z8Q-@L7^qqHliv9gR>@MCov2dz*FvhuW zo>Zt2tK=KJ_RzfX;+B&NoyAcn^IKD1o!sf&f#SErKO7=fje56-_^rHfsBA--TKK8B zR*thBQwu`umG4aDN#Zx(pvqfGS!Kk#F>%T%9IlWH%Z5`5w~4r15ik5^;aV|TPPlHT z7A_Ol%K5zN)WT216glg9ZtK^bukkMI2dDAdQ{+nbz-fhL;zjui<6e39Ea9Bah2P5o zeax9oFLBfv4B6*~%6f;tcb@p`8C?B@F(96L=84Ioei~Qj$-~d56{^M936xe(FWe-q zK8w=nXBKW1cgu69f1f71omH442Fe9|(|PYr5xdXgR)@;BTwyg&5%bS3e5ZPE$FF_u z!q=B}{n~{u%hEns`kO5MO_pAer9)~d{Zp0>m!*4TX{apSD@$W!=|5!2l%-E(=>%C? zAxqO_>2X>5zAQZ|OBc%0T3Py0Z8gO|$l?Nda-A&I%F-@bx>J^3l%=1`(r;zyaanpv zmY$WR2W9DZvb0f_nq=uQS$bcV*2~g=%F>gv)Oi`DM`WpwEWJai`og#@Hp!FYWof@G zO_Ze%Wa(sCdO()WmZfG{O36||mM)Q{r)B9HS^B*!-6%`DWvO14?v$lQS*nwz2W07& zvh=hp?W~r?=Vb9eW$6#H^ha4L$kJ+A+AmB0kfndg(qCn%+pUypWodvcEt91Yvh=1b zsj{?5mX4F9*JSCNvh;UZ`mQW(mZjXSU8}!#;q$V1nLPQBELF?W8?v-mmhO+hoa*rT1m&cv<>Tmd=o+m9jKLmi{bD7s%4DWa%ndYLTVuW$ATUS}IHT z$$84-`G zEwiOyJ5+SIkf%}%|Jj|{7Zxs$$m8B(@^$;VJ6~K>*y10@f3~-~_~wrbm14=a-|6S{ zxTLVzzp`K5=UpI`?Y$bYE}h2Uit-1baPf; zUHJ9C-D1a8Kk6-do_b{$vElr8x;el6Y2kVQMyszY^z?4zaHFpNJ$KG%eYI^fuN>eE zzP`1-a9f-6w+_7><%Ytpl7<|fb<82+=q>x^NWGx9cy19N^26u%d4s?)Y6?G&$m8D5 z)|(0+dqr{DZF{>rJ8v$$?H|AK^>@09CvQ9yVd(y@ot<}XDeUyGY+KFuI7jPRDW)w< z94bDzb6+>7)3So&-}9wg3*8TKZ!eCUz{9)usQyQ{F-}!O0hqmPSWH^|PIsqjd7-~w z^MMPvr>uGJoZAZiIb|OGa`Wwlf0nlE-fc_&!wwfC-p5??`#THU{L4$%@dBGx7jBJ+ z*CLE;R}p%tkyk&dBg0vae`n%dg&#%aac}Q^Us_wJi-^llduz6*x-{QYI9(ij`dcHM zGw&^291(Ax@m6o~+DSa?8}}6+@sHhxHmob`^N;0t5r^gW9x5tc?^z+%|Dk7ZZ%*u8 zUwFc=GwVja=5NoT&fInH4Rx9~7G7+BrC~<@Bg9-rlk@qe!eb?E3ECPcnog_e;_QE@ z@ND}l4X^g;DXQ=Oc{k^fM+;B+S2uloZy&L9U(b`i!Z-anBy0}y;CkQZr#^+6+ZHdyMHe${Ql&G~(Rwzy~dzfpLdGk<-f@VS2` zGofX?Goh()YD7F#%?r5-cc(ox7@ObvRzKQP7$1?xy`9JYT=>3U9NAL1(l4%mtC01J z!{076`o%x&E4<(rAAVOZ*X|u|eqWA7w|LQqg?GJT!^eeg;vunWfOF&i!VUiA*k21f zyy9aY%kLw9BOd?HLN76E{rjDr!GAB@;h(G?($dL!=^uqx{a;e)HNSY*r-eO!vEg5G z&2?K|^+n+xuPA7xlQSdI!n)`-z@=`^@f}+B`c)@(YGHP`zdEE#OOs!Vv%STtO*}^T zt}SdM?)5)*YkA8rzSN_IMbEwAnBFZUCF|L;&c8ISqUAlm$ff`Ai&cGFR{O=~el5>= zMZwuF&NBmAZ!0dTZ0Y4ZKd9v{zbY@zX6H7}rFn;V#Ynv6H2>_ZVJ)ql^!D%;c44>f zWh08ke~l~_ZyeRK(62CTOv`+~_~_V{Yy9Hz<62t#=C$#y@8>Xrm>jz&wv@4z zmd_$${*Je27p*&;#mu9*kci`dT z#FJWjJN3u52*1v%UHf{7i=KPGzkAuaWKzp3{+0cg7J4|drnDe}xOa=6@OBTU`h=G2 z{o{&8j$<_n-k{;S_E@_N*4Rc=rl7_kZ}n zkUOTdWgTA$0DWtgXjJ2zCm4_idiks z_?LG)vbTrxmsHE8{ykzpiFuUcQh^W)|&6bA4lt?A^jd0?ZwOksBtP{I#eS4_)hRwGP?k^tLp&lyE zyNcD~?aN!1$O_vperKq7{pI&7#oRXr_i&!Nl93fz=hXhFW#A!P-uc58RaAUBxR3MU zPZ-x+*>+9KAbI7^3oskGKiseOB7lFw5TvZ@=#KW+D#WH4Lpq7YZ}nkkmwWej=eGP( z)=Ev>J6`Pn){wY}Uq9qf5#LVEjWYLiT%Cbq6v8iPWKZN1`g@s zR4sB}QS6%ST^lHN{BcNy*l|y;i!N(D2ixoC}QslmZ;B0Y>Bav&a+};EKxBr z*Z~_yY-sFajf!1N;MKbm?9o_$pPjo0lKlR8v$H!p+h%8HcK7y;h|8I35V#MO{u67m z2j&8WWIy$lDy$S@^skhd4^_+4s1ku*Qp43bSZ73Xe5^T;Vvc&3peuKkVia*#DM!BT ztGW`_dv|Gkd=88^X0yi?7RH0`&A$26l|CX|vo>dpfuj0C3V3(&i}g9-)S#a&fb8pY zQVbWR^&5o7Y4ACgU~CzWrnoPht8cMQkQISL`RG;*8quekhm^882NoSt8Zk~Od#hEV zgf(Vw>D-o_OM0HlGtD(9W=FN=T8&+|=5%nORr8$Y<+ViUys`7)I0bLZS!fVJZ^}Jn zu209msajX^+aZeJ$V(H<^(C)eIbJRrZXIl{AOE>;V|p~q--DuO!bsb)CkM+bQ@6Xr zsjca_r^QElnJhG%NRV#r&FQLfkQyJz>8vvo%qirRZwsydFH&x|NKb3`$Lbj;PS zEHzF?uXp*aP^uJhIH$DEGWuvvkj`>sDX7+?={W&9j->wa8}Qv?P#5&j$lrx(;;MQ* z)k|2GlT%6h<&>DOqZ6~I(LZN$Mp4{OSO;u+FE}eY2)GZ$G&I*+9(6<+xeuTy zG?KhSdKn*H`xT?e(MSz^lmiFz|6zbmC`K_>_%h@F5@R4pq>!AP2p5{<0kOn!$S4Z& zghYO0&540~?Fos@`vmfl(90j*KplTqt;c8Dh0(&v7{UnJ9N-5zY>oCk=$7s-t&znX z=41?g{rHXkK@_(Ko%=wAs^kO-!WDwe0hAztMLRt>;(1PcEl4bvUJw0SeAIE(UWvZt zOz-{{tAtiY1#<%mit-PjtCyTTwC5kO7;&=Oe9VW9{u3p+7&dF!!*hwyC2&lOitRWl~RiTGP&D|(BT&^XB6*Jc~ zh@dwuEN*^i*e#88H5Yf$VrG>v=OAXNyBVfchdlU;oIBeCx$~YwJ+qAW_B2m72;7Gn zeUnp_f{J(rNs#Z&TBLN<%Us<>OV5f$`tjJBffRAGhPxC|#(YE1nJ+L>WI0h9v%?72 zqpMH+tKjvbnkY?(`Rxj3Nl#vwiU|9>08K$v_ zm-4EaeYL7cetzbfdaZJMgAW%|pfA#DnBfOw0vr= ztW#nitv=;_8Bmd;_tetGcS<)QzEf4KgnWK^tA{z99_H#>JJdbQoMNy`Z^F#*EcR`H zKHvk%7rh{+3x0x9hzd8)Gl(EYueZ5~3kL~{Q9p`I3iwz7Oz&&P1Y^n`{mq!%B1mFk zBEJu{T9elpOsUHipb9+(nc=H3B^Ws=7vBKo)v|ROQcO8>RcZS$(bLQWTA|-Z-SlFF z8PlAzXN)p8&$0(Dk5$*;L{qL!a*UStrs50#j2ZbAzO)u|yBn<}cvk?pf#@Axei_Kvwu9Xk3~ zd3~K~6>Z+2(})?II^7J9Lu8R)DPYr$bBh@)LFN1FIL~!3s!Pirdb8xYOV7U)-OJ?A z3iT*Ku2cD=MY{1^A>qsz6-1}}i*oq_?6G<^uI;9Y>yCwDjxvqYl4>Iz|Jn>kig|4N z)?7*FA<`vSTHYF-8f)(2LT@@kAMzRZiA4~oXfd+pw5A{ zKa#BltHkJvg{a z8Xkj9$Auz}KT)ra*3UDSI z`9#s_=Gy-%F+SHhAjN+dUBg8=<)wP+Df3f3j>j2XaS$wQ(9vgD=0#hCLCKY88+7$K zp(87w#O?%+)FWxxd2B?8^_ikGpdKGd{uf2Z=CpF?>apr&^m|;eL+|(4%VzAg0QVvE zS3Qbr)}SFB`>VWeIDL23yj4#QzGEKrZ@roHhZ);xBDVzN^HbQEf>9+OOFiG)q}?6@*M@;P`W#5ZX4(VEl4ECwZ?TqHM@U_jm1OPgvpAJVgrDuo#YU!Xc&ZKF2A zX*RUOFN)}WWG|cVqgIy^9t%_F@2gmMaPwsn1zpFI!In|*6Y~!^qPUJ7%bQQlRdBe0 zAO#sLQ53Sek*+UdUWm3b(U@1}{u+^V{_N_Kb406jLs(=td8{#M!&t_Lw>7!$6|w6e~i7|19(-mH;6 zo7-2gV4^UQZzanZ7pmg{O^SOyW9Ws493XvB)dGtUK^WoK%pz=Nd6QRQP$enI*Mhzh zDbl0r79965kvMdt4c%3A^~@k#o0=a~Li(hJ1ro){NfWWrQ;^&{Hpq<@5i6TQ?~tNuOBy=!y9aB(LD0 zDiRt8+mW-OT|pG{S(DP__j!|#8#lRwvvHJ9BgJ&IV6T=l7Btguc9R;kT(Cfwx=Uv| zS)h`b1`Q4(KUbx!bmvpc8v}KlWbvht!?wQkVJ{p<+~W#2JftQgvTI7ece6}27#>PZ zdRXoQezZ{)U9qVbWw|P@bmi|Ru2iaya3yv% zogU|lE-qRU4irmD*f7+S;xk|aVK>s7;*K`;p!dm5aWJ&EsT&=0v$;zxqAUkLVkyqH zs!*=GQUb5FT42v{VSJK`lQGOh#;+d0c_8*2z3I`Srk<1%*VJ8VKi&eh^{?cRj?F4c z;S)tKoc5PL-pBs+5Y&3XHLe|DzpCwH93N_(DIvUD8n zt3-JdgWV}PI@nD*|IC6Dhwgtvm~cUGG~InGgz2T_q~Vs7^U{Kq@cv8msq?mA6?*(P z+EKcwQ{;xe7JUjFW=J(NPRid{;1x42+99DGXcyxl<#Dn%x0tmCb%<+^Q}Pd%KlBt> zLlr4+Q2UnBdV>{~8I$utAjpGg^3?WjQc@9Xik2e5g08QXA;A)WGGcm|*bvYX)~Y%# zszazw4La`D5p&+%T9i`yg?NzfT&y#5J*;}^5*Dy#dLCGMC8cC9>rx#L3WrEOPQ_3h zuc=fgb#!}IX-OF?wnWeW2K&HyX|gzdTh0pO?1QZ8i;jNu zMz(oNCo5PXPn_JgXHH3K+rV0d;sTT^TC%;8XeuZ34Fx2_GM&`XjY{6c{1}H(W_STNPxnxd)V5ZrO^(a&Dk-m>Rn{ZXIYD&1Y-lm5MhB~~ zmqjD;DPcE;R;Aa~LQ9d+4jmHS(b=oQp9-P{wL&XU$v#M#-bqXe&RsC7Q|c?FC}pd~ zTUz<)|C78SsdFhho`~dqT?^G*+S%PI+*s~V(PMt0p*5*QO^E%au!0^#4Wui*taqK1 zP8nuV$m<>IN;kes@{x*06e?SSz+oL{<~-RUxV0#9QfP51H7e9gYS-U-{$DMrFZCK| zy{AVy=K|;PqCG=e;@HF=U9e>Ef2ERQW`@?&k`sqog*%KkNzf$1l@-n7ZcG_&b*G1o zyA+q?kxp^b{G~^cR&2U3C7hU&w0O9+5hbK|!4CbTuDG@oZFQH%jb)@(4!6jcGv12*2quKzqw~HxuWMzgno+17PT~3; zUm9A1dQY+zmqI36;j(fHUyO;oZ1I#rrdn}*NMod{Gf(on-n9iiI27tCp)lv{;QmG% z>PW|?TcPXoi;%KrI&tah?0j|wf*5llv=WuB)y}v{<&a-O4g(0N_SVO?WX)W$A(4Y zd19$)qm-B0CRl~nE<{gQTB0U2vSyFc+WoZtKU;ruGIP#NLNk2?jjI%~)j3iUdg-lB z$sLwAu?LRQjz(dB?0eYt-)*-h>&bN&SSm=vcUt#rxa7Y(Ux;}rzPA)rII^Y3#~0N4 zC*{{)oA8NNTxD*ncvIutFjr}EiuI(tP)i<1S&`i|OLcdum)n$hj~N zO87p^lP-4d;YPUA<}Uq|T1e3l6b(*{%l0Ti)jRcYrOQ3g=$&ao(mMT&!zFyZ;7=_M zV@WRm3wD;b92ToFg5Jd50diyB?&w*DdQZbo#DSu&+VSk%qe58oFLj7ppmr2_XM7~>_S&8Mx{cwk)I z5u+-|Em1HZ zcp9!+!^x`+3XZ&r4qqt+ToXk{MOdbh$93yON*U@rwOx1JIv-b;hT_zg2dqO)TM2q} zGrX)6anrikKs647DL&<>N}t_AYt+LyQ2*nW72Y|5`o_GxsBa0%%d%FWD-C;>r>pm{ z5FfoGMw)5ZNoBrFGtJbyEag4GVg6tDMAtFR)wwwyQu+fcwjeaV!lM&>CFFUo6IJ`l zR!%D?qgQWtss3M9?4B`sN)nvqDH5vAMfeWx4Oz+&X4zj&;9%nelp55?g8JvRaNc2A zZ?P`IX+#U&Dl93=!lwzLO11cF5#?y(sL^h8cwb3(X_ZX~njj;w8cEX}qK=Gi$g3-omNGTsOZ(WkcRaxJlDqh}Paogo}ZXY{pZ}9;aiG`N|5%0ytJcp#d9J zwpEG0*sr3r@wIiEp1_r@vRAD_A+7rQNk9D~R(g>|ihXCrb~5MYm5YgjYWMY~sa=$+ z)S*gW*MojGSP)tPV&~Vds;vrvq>|Lm#fFpB|E74;^34z#c4Vd(wV}(HhC9Vs05*ya zWB8X8w_z33l5ss$S_p4auMgJCg2Kws`_R6{rMvDnET>HF>_{wDVSW9mew4*sD&=Xz zo){;yZGq7&MUU?E@uaLV{VGe_OWR<{ax%1US&FOCuQF}A)CUWzw+)JlQ{X9FWq`kw zTi`!XH%zvOF z=CO`D1-=A%xeTl!jcIFxhryIQc^CJDE{>}-5PMeh23DhAuPpPHwg%haiZKljrIV(l zl+eMJqo=UB6SNl{5mS9&by`qiP;u!>M;jJakx_ck$@Zy>#sl-GtRQMm?E?qu&cm`U zwlN0k>5KN@%eLY4sD`sCkGk3B8U*g6*+CE)eErx5%m20>HW(cuMT+TZ!y?H<1>NqI zJh%?^Iyl%(x*P7KWF8WD{9+)ljW{;IhjYVe_GagaK}0{>OoPBRlY(3N_R8R@Qt1IU zD3cL?W4RC~4e^7}-&t>*OUC3uHhB2JwMuR)HN@t^sN^?HOoJy~v1H&Yyt))Q0vV_F zbS{7wM~L!(YZtmn$V+_Np;gGscc`bdY?KW~JEuCQu1KvfZHuzOui^x8H<*_NIzDq~ zpmb!64GRdT6pVDl0HvyQY@EzzQWL4l7QN2g7Gv{{xCM zePe^=qVZgWYA0M(%aB?EUu!J<2AcpYzY}wUlUbL@SJl9el6U=3D7O?BYkR1XOEHUV zSiLzXz5{?Pt0TOmBBI=eFXM+VQ zs3mkMtaHu?#+4{ym{LaCwOS}ojuiSyf_`!q$?Z>CYg6@fHrLrq@VcRvpy(T_k92>1 zp~?^{Q;NKv4@1gNLLiwjR8?6zK6F?yO88?WE=Rr@<|^Ss1}qj_FEq_rB-bmY_;4S3 zvlY@+Plbj7cx{R65E^RQKhBWgQ6!mg*SxJg)cv57xSC#X9ImX5tcSStu0Hx9u^AYbNwzC zc^|Q*8172HAF;s*eO(s2hxqJv80CdH_hAFm#S#Ntn@`fQ<6`zQ&bRPNX4r74<546m z7~!M*`Ma28|4Qy%F3Oz}ERk*+&AU@J7>7*5j+DltVpLJ-%^9%>a0>67=AN^C(D2j@ z8+I#13S6vuQphFSa1GV`yj|C9HKqGkgt`zk5*BrAQZXY08{OqCDUZ8r>bb(OW6 zly_6;X)RsoE#wcNpr)f;(A6HhoZx?e< zltZ}c>>*v2Z3zatmsx1j{izCRh`Hw+?2(UcF)%-blYm7SmmWlr*b-^<)K*Q$d9(JP zTw4tanV|T6w6}ivIooI=4_mEFb9DE(O7tN-K)>H$c_|jy@SE8!DdMEH7hU`tHK>~j z&#(1sA%h5N?UOFQvElj$<9vN+*!e@1Ddp>)9(4TD_^NbyW)W8@235UFMmj%y{c&8^nP&J3O+}_>MQEqAE%@3s@t(3BM83;{vyTI zw?i?$no?atZfrVn3eMd;q<1y!C0sOo^8&brs66g-G@4RZyRG zrS4BYS8xQ{@N=xl)8WVjx3)vQaUTA@&b`ERU#Z0>q8B)lHw@k^|GYYN@qu63ubmxA zqRwynC?9Q)3Oq`8Rv@s07;4~HH^j$!_d@LzD8$EJQF;+#Kd+@oS3~XaCj^m%Z~bIF zh>zXgJF|+-L1e|cI=rthbqE7x!|wKrdNM0=kt|gYv%|aL;@HsRJbuk*;!biH1Hw4zDpM8cw1mRuo z#7)4tt9J!SzxTJt>5SN^bv5`#4IN;`IO8%@VT?IQA*Uf$UtvW8AW9H{DfRF?_xd z!`0PYaGF6=q z7I_by=0og!dkVST%`PoVG=nfwEIoL-+3Al?4KJ{u>=>)|JfjU@?nhS|xu zP<8~o9F;yfzlyd=xNnhN(vyV@5xAp?#;@=h$C0^S(yk?T7;UWrAM8H>{&|+T5E?T#VLFi7x^<6`3uWJHPtXBFlZ6S3ii z!nR<8uC@bTN{2Z5if2QJ)d6Qy9`;rK6`rm!3HfdOVTRgOoF%x_I3=uLhsB*E0y* zhtdbg&82ha?7cNy3cO%Hs0Z^h#4;hMr1VQd<~eA*Vqa#U5`EFMf;U&zUjzTh!OjL2 z|3mNxuJfOL-9AvmrH41f+Aor%otbucwoGLkDu+rZZ`*rfwx7@Tjc+RVrGc zms|qx*_#-Etk{`dMw)uxJ`ac_Kd^5Wk@)hejI=2WqYUKF3yw0Nob^^x&wsLMlO3Rtk7;PtapCKiEIhgW(1T#+cbGXzmD-yE-rx1umK09BcL9GIz&%J=n&>f!V?YB}+My z^x%ckj&6Ferne(f3(~SC4u9#OkE6Ms^rnmhYcm%%IMh*7YFXY>VLv$}*=^0P& z9_c+xhXWibhCijrwM5Ts`~!{z-t8GmyXrV_c5~C|LsY2ifOG=arSr!?2c(~INPm!2 zvAzRaRE%Q^43vsBbig(cxU{H|W0f9k9OMYsgUg#ZqVx>mRiSY()B>|n=_dhp#4A(kAwW0(Vnwws4k!l>j+rC`n}ateJC^7{oHRbw zgI`2DM(RQ9=Zg z<7YjXw#9Kw561o?s>TE(es!el!A9FKv$fc~?T*uW@a#?pTq<?sh!ZW35S!hkEc< zisMf`cwwL8t{zN1;JB;@<5NZdF^5iRjvoy4brtMeMB# zKE2@BuLq@z4%`i9f(ln0cl217YmQVsc;OGnGkpBm1RvhVBxd&!Pm66ZtkG6W`6dPm z2$sL@(wJM0VFEE&u}c1N+Y#tuSR=i?>*xna_&T|aH0A;14T%2|OBtz1mLo$@T=^5d z47euS@sFV7b#zq?*=?^KR>AJ-KaQKg@sgmqjP%MNm_EIW&$|>Y`5vM=5J>>}o8a5n;5S~{{q@WRS zjplgCSQPUjVc1{+hT7oZv@-HdJvgwO3}NEfffZ!TYz`_FW%ND=4^)=BV|Pw)C|yln ztjF&5mA}@59sFbn)2AyjmG~XEnKe*1-&OE5Ej8p%3?k?)H3^WRAvtKRC9l_lw7Zqu zM#`uo`|3$=>WV5d)%JSm1}*qq1366(_G%=5uLrXm%OCJw!!i_$_u@KGTvNFlIhLW= zw@u}C1`+h8osn`^DXzH;ZO1su4wX8!l(BpWTtWqg>Pep%<%Uw{Hgb-h)TXTrJDRl<xO&BLSfvMca%PaNZ?g{dIJ=oSLx;APOY#n~Y&pufWkH;C0wi!5ViYU)- z9?lo`M9Q6|+^OATZ2>Uk40x;imz^y!lRc2$5@{AM3oC?4zs8}V8nNX1iqVZHgCKIC5^u;Tne zA4tUWeCQ|fHXrhdhxx+X_*K5J3j8D=Sc~WQKq=nhLz;Mq50Q9%|jyVQ#c$zTCczcrJ6qYGZfT|NSqDMS29DyYsAIzypi; z8OH)GqBc)Q)D`h_4L{?I7s+D*CfjZbULbd} z^hEr=w}?7`pK&~9B5G=1*Z&!##m{v7j5F@XU*pLY414Iuh4P+qVrT?ag(D!SjGuAn zd-|#Vy2dV7ic+ZoQYamXk^NXR#Bnby2Q@!gC}w*c_lbzoFwrLh6O*2WAdY*;85PG} zRe-%aq>+mUK;w)b3SoxBAEhlc7Wo)87Au6g7Q#vt!b%pxT-;r_e&W^8IAhU5Sn)!b zTOn+rdm+@L5LT)X=2ZyuDTIX zSau=ITnMuk#xN5E)0ND{UI>#5VQL{PSAu3P$oQmC;fM zVcCT+F$n~vm=keg5-em?%!)Xk4kA&*#JniL#JmugPE zn3ysG6KXGx=gz_cRLr6RtieJJ6Iw9N*r*T|R0tcqPoos7G0r&bBaF3HoN?qwQE|qo zk1*pE^gl9A8VY>@qNrkYKLfAfFJpNko2MQ&o z7Q)gBVTTG~Lc|$48>jH&(OBI6)-bVF087)r zK@Er{1CbT6fG%>jI6JA!QaRjkjn*uc{Y!~e0u;GeCZdd&=+siVreQDH1Vs|H zS_Y6xKP;2Gy9wC1FB zrN^OdN2tsSd9>j=&0Zl-_I=1au_8Zl!ArtV@e}zsev)3hps}0cSE5+)`ZJ0>CG}Y; z2OA8pY56L-eyLkp>@{fOC}RShTZQsoNj|IPRR-UuI@9McA&rkxJczLejC}qc^$AqRu z-fK{gDvaF#;W$rZY2ri}44^mG)PrJ{&W zyTDF~?uws#y@au{Ua!rCzKHs%UxBG(Oo!HvGCrn_>%e&fonHq}`Y$TF9tE7C+Uw<@ zQbL2Hkz1kAqm1`x?0R`{b78)Ua$-8ethxKCFl&Sp$>g>{uG&Tzw}Se|FF|X$3{{o0tp#j8H2N32jfG~dng!u~~o`D7s<}ZLSe*xBL zK$yS4o;1;*Sp$$95i9Ip00@l$!u|z-xCyX|0)LWwv6W|H_s_)MUo1O+CieYI?E0D5 z^E2^;Ht~EmvFT^x*=%B`&&1}RiCsPudweE#_)P5Ynb_Sk@dNKB_VrBc>Y0qGVwE$o zr)OeE&%}P7iA^FCdwC{)yxqh;o{3#N6PrjTcJNH>-L#8|vFyf~*o!l<6K7(Z#>6h1i9I+IJ8&l9zb!=ZV!D`ko|t%6nAnyvvF~PL*UiM9 zn~5Da6WcE)_S#JBw3%4YO)T3c_Sj79u$kCjGqJm7V(~Sxvu0v5-Nd50(8Qu@Vo8l< zL5*cOjb$;7WhsqiA&q4jHL-}svV_L6fX1?X#aK^InU}DcKmL0QL_RC^f zEMr+JO{G{WV_7I;A(J0A$)gMw8nqewVmD~PX6$U-pj#RUN|46@Tb&?J1t_vbHUdoD z0?HS(bPHCm7j$Kd{3$@WpP_MI(5RoW2)>}?pXIIquYQKUdO=~o$bA7e{UY}SkbmLG z4qLIK@`B>Ga%A>axsS&SjEd2941Vg(p)FhG#)NwkCEbj#y14(ZuJHwZ^DF1f{1xSA z(2HN?wg62M<<0=J6S1;pP)ed43h*ou3M_*fZIg!sEZ!y$piyJ-bfI~h+)oPyZC;pjvGbY2^-V5hc=< z9daknL_u6m#ZR}#|DyyCJdoHS!>cT{>si{v)tO<~PPrR0Y}J6e6GbLclU)pE?Lu`D z>G&?WqsDCT|KRf8GT?@X&aAq#9}=m@ZY-*av~D+gK9RC^qazck+-}l|;I% z0k0&vfnh5JC!t-LG&~7~WYV@IbYmv{lZ2tlq_AXp2*9t&au~pqWVt^;mlQbyfKue4 z9%4_)_{|(t=i(enNyey%$5umWy-J1G0Q?G$zGgx$WNYIunDm@7VT6OW4KS9T{gPetQ*Qfw+JvXin?A$FYU zGeXs$5p~=nSElI3c=0nPO)f@PTUIHi58zH(EXjjBnR@?5P^WIf{-HssAsz^=;T)Zv z)HY2X3D)b=Fs*jdn>0+Foiy<`c_P5|-{cVhO%7qKcG8cBFf7+7@eum_8vUbzh{N(Y zV5x`Yu>e($U_<>P^*I8{OB8(s1AmFqkD&6GsPa*HLW4`9#mX5}XX#mkE~fT#KsBk` zE0QM)JjnBZ6n9g`r_OlOl9rlfH<)#$kI7#G#2%BsFzk&_m*)YQpN>7!z4TAIya3>< z<4p1FxI72gloJfBC*&ExhW##o4shvr#yXyqX97z-iK-^i&6DzYfZ$U|OQOA}z|#KjT9t8qtD@}A&D~1p(~T< zlk?cEW{RZqa%EVf=g-R%JjDj4al=bAG`xfhZOOol$6JW_nE!%Y95mZ5psZA?l7afC z(wYnunM&>#U9Mpe28{m zfjT@y6|Q1v57F0GQM*HwcNG~9QRFpwjK?8Sr=)T)V57^^7PH(0Z}tPPaU9nw_%PSpsd?C#W+AAcNqKS4%UGK5RI)G`a>ltsx|s6-xJ&cXoYQM*T&QF*lf5e6ZTivEeV=FyZt z<*Af+6CM2MPt2w~>hc$cDv$R5#d)e{GqxxjQ!I~iv*pp$;SPug=Ag}axLm|}s+m!a zO6|@TZyDMH&uBHGNa*$2OpF>QuspSjCl3rj~v#HKYD3fej z_Yy*zO>VEy8AqtjEBPyrBcc{PkD?YG@6qRPe$5@m1Xu}cO{~o7R zN2u8c#twdvzcCzH(^~O$yUrbQ--SN(#QM^1V^IAyn-y2X^)=g+{`h^X42CB=z@Q8Q z*aP6f8LDKX?vj;0cTqmo9&8%vB687ZE=nZ8Sr=s#K%FAWaDeZMC_?}q7Ey#-+_5Nw ztwoh6V8x3mBLT)0;}VV*q1Kdv0eGjFr;gnR-Q}ObG-yc{F<-Vrb)zI~? zDWe)H^O~ypDt!T>eU(s;*MjAXJt$(*e#$F_&lU2Y)4_i!DsG^A?W;5~+@ku`(IE-c zqq_1Lz~1WMm_Wt-Fq#Q8$`8GpK*#-*0RZLwm8k&V`zvDs9RA7#^6Lr1a!?HnQvw~T zp?nU|pr$erAigHLJAteuzKCR8!JJ*49yrNBYIPysyrH|(;(atNb*sJ*9R+LthQ+)Y-m6Fl3 zoQBscT2U8+{E8mcMU7rjlR#x4Kx`mK-U{U68r0+B=G9~DT0JhOetoXkw;H%tpEJ~J zfMI<_Up8QpKN@g@8a8Cg?;E1mUeQAhYuSj?Ry1OsmPY8xSJbsJ=iAa4^7@JlLCP3_ zaY4#BfQ%sY+$(C)M49Zt?XrfTT?;!=?>Y)Tyl}q4K@BQl{9e)9CJ^>lG^8m8?iC$x z%4Jt-#{6eA<3?U+#${J;4rzHslbdtDr8nocmTtlA8QFr{v%7`T&+sa~B~$cksdNH8 zwPXrQOH2;*TPyCqZ(1o`fSqr}EX%is;J>2Lts(fYXjf~&gg$7IVQn~Hd>aTbI;9O$ z*87A1S03QQwG)H-k4!RZ`6+~s?VP|Y+LE` zM{IH#pRFiLxf3vd66!1ZiwKQ_mCA;v_}ftQ!c*ED4E^zx-UmY>SKvQepa53Ti1uje z3fj_M2?oe&uXF|o=%5S(i0OcdxRR1OAj1Q?)B&}7K(#}l3dPZ@aoth8eS1SLPwCy2 zkKP){x3^PhO9-;0(3=o6FNGpHqWly}?uh?|Pt1Uee$&Wg5V_Fm%F8^6v?ueM!@LV#2(n zJ3Y}CN9pgLkn5w=trvRxC~fKm9dndy8fY4>w8Sy!#BfmVqu6jr=03U}j?UXh0lk$` zp8G_1g*8TX$~4t$jxVIk5cK2tS?9Y*cT)lDY35-<|npAjTgk8Xg}ghhj>eqhE(AApn-4N_&7>!KpFT+DHgVI!TdeR66|=3CeWp z5yfC#6goPc{)~e5Os8g}p-a#ZJ^@QlwqD5L?`|93$px}Se%llDD`OGGqn=+o~jfFP1-aJ$A<8H$*WzC1%e zO;_3gWKLJw0hF16aXW)AQqcS}lsp4fIzw(VAz?YxdM2{pqd_wvAopm)Ow{2XWzPhc zd(?Oqr2ZbwnT3Ykqbsw}C-*2|wlc!wo@h$zIygUQQI8tWR$7S9z$)ld@E$#yjgpZ6 z3(olc7bx%^J^X?r8-9uYzDHkw$=KB|nWXj{)M7h*ItO;`cES4&4nK_JaOR=O(x*81 z&^uZjh!|75yJ~jrl{r{W-_g4{Fgv$URns-MJhl{;h-VZ&Aeba)}6DZ2_!gXwQU?Jp&eh* zk^~TJ6MX)}qFum;*J7=dV>}>On+sBR%z;|fQqPh1ci?oI8VhijdI^wDlLWX;CIL>+ zHh^H9(%>I*>lgosPj;{T9utQ*#(g;HEGXrKIO)_%*+GWy!D&5J7eJw40UpyZ0XEPa z0sbNa2tFhD9KQ20pPrCUosT&1G_JsLXF(}L-sP8akDdrl+o|*q0Pm=w09zQFQZ$T>0Uac+1=}*Bamp=TUe83QV_)+;9v-0a$tnwC0 zk5#H_SY>({3pIX&BA3AV``n~7LO8*sdD!L3_+6$Vn3|_$tI<-t0571yama7-E zYB`p<7xa8NM-GoujKI#uab(>UFzR2>vK5Twu3(ZuD;0l4qP(iKW~I^qI_3A3N+5u; z5_&y@f>uEzW>Cy3EEySedKGkF29;S2Qze6jtOkz^IkOI~uT%tB6Az8{hOF^u-5bImv=0E7L#V=DyrhUKNCe|2k^UyEvx(GbEixz4 z{IysG5-D>nx+amDtwS#)(h3dauH&?B>ltiWkEK763>&b5Ceq*yoZ;XG^j9KP`bin; z!OC!8aVVyN#VIO7sYnTHl}6P1M0O?I^rc5Xp~Dg>Y@;%;6qDX@2dVhMXRgAR1F`?K zsIjXxtyF&cOpj-H2?DHlZ&I2e{Ad%J@{Ag9=9G1t zl_|hn6O>7YXYs!%wP{@f)|hA1{ui8K6y1Wpen#E5Kq8*elr79)%N8X7*qJR@eVBE7 zfZjhVtpUKUE~Wgeltmakt5eR;N)=`tj2Q520RVQ@XvHrWmA@%+D?XJkvK8@vQ=6?y zZ7ph$VI8Gy#Q?0M*IQvbucNlVVl3CuhD4R(pDgHEL8_Gd=8^kY-@(w9M)L}bT@-*srSgB9Pw!?5pqpuI6-nDk1 z*fdH$tW?5(grOJG=;2|A1>!$(n=xkE^l`XEL!L*F+-@h6F4ze#HjN(agb1cl`(4p z0Bw%IqU2GmMn4=;yb#7vR-t`IlnMxAJn@&>MOK!K61=j}Ol+SG;>8y+54`#t;k9#pnvLz`zQCF>MK8!7u}0IIB>j6N)#&7*o+=45t`x zjGq7)x*AmWcOHf&zbhgC8oyP)b8|6%wdwZnSd4fO@dw!_xds?XG4(KhLd-C9JpnLk zp8{aO@JAV^lu8I=)P~|9y4Y#xm95m~G<5M+s&fX~VdZJ17Q$(#QJbyw`ZNZNQ)&Z* zpMn12$SSn#40vbKy))20nN;>H^nNCNaTeRLnPfQ&6`DzX&M7ki&YZ)H$)twoG3_#G z<9X=2Oe%3fnFX-$0;gFnaN58OPWwHB(^_AIvd$C}w8lK>*c$Wb+Bu~c$rqJU$ob|X zR7oa9UcxNNq$8KG3T0BjWn}`u(#y~Une_OwG8tgl6-?tyI)8;D>s{qYx~fd6#LRtG zfVudA0xv2Q_-bP&Rl5eNowVp0gcyH`c@6d2Nx^@hUOQ?3AIdy{pzF#EfUVb+F953E zz--t_@fz^Dsl)(VaZ~xa6dzER`vrxFAM*DUe?yU}45XBORZ0m4naW~-pj*m9fRtOz zuI_CN^G@n|8(go^iQ7=S*W&M>lde(p9jMi7lzm6}7GV5c1I1dF__fYu>pkGI$F`>BsyhPBHV?`f%bX!b*HOtYNPml)!ivZR(cm%ZA_x=Hf0M4d)So( z0NIWrl4zwv*#Xc_=Cp^h@-win73EieIx1rqRJ1UO#y?ipd$Lcn^%*LIA8Jy!pp1wT ztT%9*B8fKVDjSg_I1ke{iH7DWCY(;^bhgCmw2LEo!YRpU4Nbr%OR}JsUTJl&b`t+h7qt7EF0{9$+L+?XsN-m}zv>B+-rj18AuHZT-2)`aN8JW6u#EaE zz}qs6Z7r*A2iB_`ll)Uood>`A%kpXucWk+faXXJ$GNOT)qfhF%Qb<*`8UIBas+C7W zDyXp@g3dU8C~7c%D5X?V=h4WgiYK^yQBhq5P_mM`4&c{H>S};bDx<&h=xSwjVjfMb z!q|r@>T+PqtD>Xws9H6~_Eb~jsJaJaA=Fnbhxoz1YA<;EiN0zVankOqE(DlTU0nw7 zwmPz^w8#%ds^sg>k$e2XNTuK!stMq14GfV=Lu+!Rqo(>Ju;~Gu_BKFWREh5Zl*SH% zQTzzSK6Tb)Xg!rS*HU9}?(SDx?FlfYwi*lYvNpsBr}uRrBgs^&uKE+e?{(Ep08xP` zE18}Ls>?liV`9*9upP8qNbf>wpN;?D_N%Y1*3u@eK-#1g^yH<|n2tA8`%p*&)eG7C zG(aaMlcRyU0pN#*kjZ4K(1=;@Y^1KD5GzhCLmR8*;SCRItVS9h(V@ob;Hu(wHioWA zKUU!G)5ndUK5oX0iPNU8Hs(;HAaKp5vq5S|_qE5mw zyjNRw0>GTMV0nbi58I^@d8hPD3M@OJ)RTAJ&J#qdv@KY+vSL?yLHN5>;vif3JzF=kysf zYfc{*J#G5T)y9X^r=QvmyHd;gsiVaCe?N61z~KJslqwI!+}neT_51^oEnX-WUNi5n z*2hkk-vG5Wz>opzAb`CCz+n?r8K{l}_*w(jf$A7wVT07k0BM8N@c@2<)z1Ka9L#C* zV0ARG@F5sVToTZL-%zyzu+~G>Q0$e>9jb~m{~bfs{s8ZXs(k_a3}Y;D7&PrE${hx6 zcS3R>u6`(w(|h+B(1EWhY=-)ocG&;dHf)^zwT--E)M^wxLk*%UzXn$VNx)2XsweNm z_1O&){7}aq)v6jz`sv^bpeZs7ee{~f%u+{JXVSU*K`MUGIqqYo%^VjsX2Qg&<5wGB zQ_d{Z=N2`btp)>3nypsVu*x*!Yba;0udq*kCSLKPyy>bZ<;_;hyCsPJ?ticd`3JYJ zNVUIETi|NI@Gqe4aYNt>jB^5w`4W05fwI4Zeo3H7b0AO&WSav$mp}`?QWpcb&sCRG z?r+d+o906OBv9RXn34%}VxAi3!A0aeM6GikQuHMB0V>itKJfqQI_tnHaxdOfD72-x zyZhn}i|*py#ocX?;q~@LAVJWfMfT z-cfoFPI&KVjt55{Z!!$=b%*FT#Mc+%#SmW)^A5s*Z`@(uqS5+Mz9w{Hs4o_huMG8t zLR1>&>jAN2m}JfMm#;r!%l;CWVz|KZ!+l)N=VwhkX7#k?9LHMJZoR)mk0 z>Z^|vl|$n&o!?QZ@es|y z+8HrjtZp_#tUfuz*ApsbNK`fw=GQw)`j4oL{Ksb@7Wt2_o9U4~ZP6q6p*zjoW4d>y zk6)cQHdAUUJj>U~sCI4-Rs2xgP)BvfY+p=h2G5oXJ+rYIzoTcfrHXoUFw5W3?l}T; z%#|*jGgqt#o+skZdA`z6*>1$gdA{C=bqkZmKM9kx?DM7Qx%06UzN3^2e0?+g?>z^8 z*#T28c9*Uld-iJHt$(l39<4jzl@=baDe>MpR+N{Nb+Io!)n4e!hwzAnI9M-dEaG1p zun4Q=%NdJ(S&UXqJT~vU7)#m|TC^CmcM3gU>|2XGET4bVjHQ^Zf78jOzV^X4cpkUGgBLu(Id>gjefVRUFKyXy1H6ukuEg4~ zjyA3IwSh>!3JdQ#@~rZuhd}0jcpoCgYM6eNI<3YCyh@R)(V15%bPY}+SLx*%jLxgn zXDvqVReHA;g9=%k1IF!Js5ZuEEmhlu5&o8rZ4&tVX4v(Xc5cRzcuPgLpiAFU*cJ?& zw-nQhy5G`BFOK|M`sl?he@mUVO1=kMB}0pCxXyY@FSbc39k+`um$zeL;WdvPzDy9X zGcEiXcYO2Fka`_d7)IJt%1d-Q0sAzJY4(MVD-#b9>R= z4OC+vTCsul@56QR2I{aMeZ7I6@5kvtvL~f<2XGp@PCXCcM1h;j11R`9r8|hJcbz62 zMCR+{cgWX0<#ira;WhEU68_<{ahJBedUR|(&4S(`oJr@>>qEYharw;&jI+4)#Oiue z(=SX#yASz-sr_M0fw?sEFzR~@uXMh`5E+jk=VKas1Y_qhMI1qY?xv?FeA#I7QC~rX z4;{t9*iB`R`G!IqIOg-jmjB`0?*vQmLoGI9FsBQIGx#CLeEDcsTYLclTh(?Q$5G!+ zzn(y6?53S3aOReR+u-einkRjEA%>jvHG&8~>8tnM8x=7|)9LfRV*Ex$Y@`l91#^$m zS(Fk}8yT5uKT(;;Vl=_qgJrm3M)?+lLoQCf8dgZ3yz zJuCT|ob@$8Z1Y)M%^syB=Oh+t#L;uUx`1iUW2PLX(DRskN9n+MUx=xw+DcSZZ6&2Y z2ixGjJP}g6{)YwTD4qLH>d1D%*BG(k7o>oT7ko_+%YRWy9eq)%x?@D~OH%m6OTMO1 zd49>)DEa^1rQjDTaCH59_v(n-gQL{^GJ5F{ZNH3l<`BKRj4BUNqbnH6hv@JX^vWU1 zeO1JatGQW zseg?E!+rcpMg4Fbqdhb_9NoW%!o$&Hd#J>95p%DjH}}xH>o~FOp~g4Rj6Jl?h@>}R z?jGuK6RXf3x?)7BTevFTLvwFop6sC*x6y_@)X|8Ow{hpXhaTMah2VdDe)qB1)xP6P zi*V07DB}uUy@P3Wg{s~~t}C?mE?RztQryF(*cJNo9>(nzx^)kWon#(@e-IA4@2d!L z{66N|KC1BmcQ*Uz)&tzb?V~Oaapkm+-aN$0d4xJV@|A~J`v{B55z77;tJe|Q@)#|+ zNb#TGa`qy1eB#S)Vp(bX6EtH5C4cHG3(@!~M)(T4`V@C}D|m8V!xl>U;ltOXW!FyA zti3ew8I)(y?q@iBv*^<^^uR1?^Bn8Zb6WGCL871G{MF?VUu43E(UDs9)ac1#_QV>tN8*3%%&+X ze5D}HzQAfao61I_#j|N=Bv!)Nl2RpG}_E zzP_pCeUGu*&`SP6D+7A=?$V`YkN(&UObOngFYi)=H<;;nY2+KU@GhNsgW-RdGQY*D zdY5{?#WB81N8b91<9&^&?{IE8OgY}+S2oW9=G9#sqTBsti!bW zJ!a2giv9s3;4pRgfUcA~&1AIe0}lLsy7d9&IGcu3=ttxVr^6pHF7bNDC(Md) z8u=!;gxs5WXkFYaBA2y_!e#9;lC~tju$^}r!$$kkbgCA0t zQw2Y}ImA*wJHt;3_x$YK_%CsSsCH3^s!{D0lxHe#z}H2!OW@zezNmIdh+m@FsZ1;d zwTfn!!+(;OMY9V+T#shAhA882w}4pSZ#Tlfmp}X4#UYABN3G9@qTB5uzD0-TGin{f z?ttr;lQHZv5U~U7ZV-b5>{@;s=}drK9U^t0oyo*9P@6!z4&Dga76^0p(%V40CxjJ* zTze@z$hPn==n66I-yp`sv_m02#I*ZDbPtAR1U(2wHEXDPTsvRvJRQ5XY1=P1ZbPS8 zYp6{uJ2O(o#jO;UDAh;ec4{17N8J>7~cWuvsbR4AVPJ2;B0K}X`*c@ajrogq+UiFmPEhjzv3 zv=x?JzJZe(viLovvmtg;iimGl^IJ$I64*^3W+t#J2lAF;D~&gR)<+wXkzyyb3m~Oz zLc21=xP*3jh;s?i(F-Xev0a2ZC$bA6j1tPw-9$M0KjzPq*iMdQB}JVUp~i$V~Q3h;fwGpURHRg(XA^ zEll-t+bI!7$yw;1+;%C1QG8`em&ZLI zk=i!;9iXs$_J|R14) z!vVTh0K-aBp2iKN@n4?grELXqC=Sr=qBuJB3SrJ1p!tO`7Y|VE!dN_{wgz;uu$?O~ zl8ams5JZ#bc=J%PB53uGwQMYcWl(CVM&*jyd48&DRZ+A;s%i*xFlxAYr0a>t_YE?6h_c%8ePin7{Go6tk1vFnOb%dic{MD6$w>J+sz^ zT>(`~EG?z4Xm<&#m8q@tY#QzTv`JH(`1tr%!lkO`HrMt`PrmF)Ru z@n}J#>e-2ARI+2!tIC*upD9fhdk_TXS1X8bRbb+0s#evmYl@18O1>3cjpp^6LUa5;wB5(uw+Z8i1$u z?Jf}Gx?nmCX@EWqqf-s+QL)1KK)vi67-f8}g0!F;PJOu=KTSdt8rmUHxz!NMRTwpH zWRD9F%@X~odnm?TuEut`Kp`9Y2U5;fPczW$#&!dv)M@~&Z-#ZINDGYTx=o}R1De=V zQBvHdc2A=e$Ahni!@hM*aViU=PN8-MO4khM^)PDM3>hSOF1<4N&=z)Yh#fuP#y(?9TrnVjOPq$oXkSYld9ktZSbUcy=fdPvu@#1E z7#?O~Ca!2@S3)?T7cLbtw3f1(^}_jNZfmLIX=}TqU)YS^I1hJkBV>0QIRtBZV*p^a z#@9ZY*zsstTbxnCD0Lq!8Ohp7TfX+dNxgMDIXe6L*d3@^d%It-SaN6@dioEF9KEOj z?d=OIGIzjO2%`ZV?C}so`k~uOcf>_U7)AE8%hBzQ7({5iWp{Tu-R|1=anhvK9n2e2fCcEj991Dl|0k94z3BaA^% zg+jVx9g$<5i6(W&Wv3kJymY_27>+~S2na_vAI(I6B8)@)8w7f{3?E(XEFV4lI|3V_J}Wy>Nxa2etyMwE-E>+s=nD4s0j{j^rW;9Jqb|&tv8s zu98%{A1=@2n014|;o{kdBUO>M^~WS!M1g-|bzekn{=|j!BHH$+Juq+)Pq!NL0x3Nt${1V}2M)E%A{=Wh z2Hnu1SRWoy#8BG@abuW$3L^J-`**Vcvi}Tx#1_ro7f9)UTiuQ>4ab`Hh;odux0#d? z2LmZ`9HC1NQ7&V{T55ojL%=k6pk=ET{$xK5V`X|hAD6t-Db)hI-j8E-$pX8&(Ov%pUw7NNF(+kN zh>M@;NUcX(3IWZld zKeFpl-1TC5zr8Sh&w4Dw(<$CQOsfGK>`FiNPNI!=?w>lL&ql0S(g|ZA(EedRH9hKP z%uZ=~9a^>-14G)s3Ia`E2vOB*Z}OWyW2?Oxku6(sGL=RbrD5AJ;-%&5|DTPnPB*t> zMUa+1fIy==(Au3?c%e9mfi@Ean#%$$?df-hPVK|x!EF4bWOrA% zEy&nJ9ytf~>W%-ybZprf?;(lSSieYWupgr*lCJK@9np`M^qmgiloLt24%mAj1|767 zLyS9ahtSePSl1%ScL-O5k$Ah$UIS6$2i1F`S*G zv|`lx7_OtG$nI3`xRix*`vRfJd{poRuHdBHM)1au`*$h46xBM3rwUR-RR|PbkRG2z zNe`&zDKz{69XN&OJr5|)X?tei1D?=+sc{FK8U8K&&e(MW1eMM}Lv1YAW6t0#^?**E z!Bl!c&Ca5c4=C?NyB2jlXV*5_Z=?^RvU|5@rRQ4 z@YKRf=Pu*+FJYG3S)#%mok`q6dh>;to1*0ezq@<5VB1{+C82#^4BDtS(@>lU%wM7w z5ojS%cmys&&RI zt4mF62YQH}>QEH1P&ei#_h4{=JJLT;^n1HN^!vIot9C3&?yulkTmb_Vd`Tc+P)(0p zWVTd7JgSl@oq(YVoJxl?c*9m?$|M@2Tp(7AabwoG?2E2REn5wW_I9Rqo zLGk_q7AZLMr+_62obFi8-~{*2ydk2o$_3ItYuuPsa5R!V)2x4$Sd%2fdIfc+3)rY& z=PUu66~tI9z^fo+g@A1eF0B)=LqYWI0(J@Tu%VF$gzQn3;l~B+Q}FG)fCCDgwjE}m zdo$5t$6O$dJ>ka0vmKI8F_0Ia!*BX=2Yb#kk$p(Ke-q?C7f1;g-Ix^tXLv}ytbqOB z0bEtkz!ng$;EMq_6x@ywjav!|c|Hocqh!lh0rwO%{wCmo0(O;$dLJpkr%xC>QSiIJ zfM*JLHx@K}3Z?`Kh>-awt=||VBvMs)M;7wDQox(A0NyZI%!e&0yy^nHXYh)_^+We!l60c_>QrcvOSnqGlpY9fHE%dxJCZ% z61R{F3Y2ItmsP6i~lbOpjA!io!w~smk$U z0-7q=R8&9<1@{eTtss%f(oVsC13D`3mXI3P~c2~&kCF=@J)d;1)^dflo`&>6o{_C znF4_d%oOlg!AhJd5J!PC1>!4kra&SE&J;+hz?lLm6gVS3wE}0rr!&BVMb#Pc8CAs@ z@mUl&BR;zVXT;}J;Eeb@3Y-z2Ux72?3n`ERkL$0ZN}Lh@s{&`lmr~%2__7L|5noP$ zGvX^Ma7KI;1oNHL+~3dzvf?*(W7Yt3Y0yl;Dg#<7 zxM6^&jS?qMdj(D&OM#Q83j^6(SgfZ^#BMGSD|)ywt6LvQ?xmnmUjcm-O!64gPster z{!~z;pX3>+;IRRN75oNg!C04uC}8iw0K*jEE0GL_D`3yT03$1pC z1-wfWdB!V9K3u>=1-A^Ctl;kvqVcza^kW1}Q{eF*D`bWeuL1ukSUz4fW+@mqLBJdZ zr6vlPry$Q{0rM5`{!iGxP=RygmUx)R7EZV^W|ieGkYl;hjaj9pN%Cq1IcEr1tKgUc z>lCn$W0bf-!Js(;HYwOR*Ia*XQF3^msBBe`VS#|{3V4?(O5LfT@nQkH6?m5j*sEa9 zQUUuF3|uDQU<+ux^J5IVWE6N&4KCK|xCIM#^wD$@)uVD37 z0T&c-6&^I@G85j(Y9-wvD%V^fm0suA-<%u`S1QoI#XuY}FMtnbfV(ab{rhgr>a(2}Lsv!G+0-|7RrZMZl1p!eN1YQ#0uVCY40WlQto?BQJsNlp6 zbN>@lNr<^Cjm1FS{UA?V7f9>lyD=-kpVt65|7BP5naMQk7X|F> z2p~6uEj$9Ryb+Mk1=1Y_+?Y7ThJGOhDL#vS5e0J$DCPo>RsD;o{OS_xnE@pg{PImS zN-O9VB`TX$RzZ3{0lzCa8C5`e1qlKLR8%m~08eEl4-KiRz-ep^24)vBzU_s2LtG%O zukFUHG$y&80&GQQ{e}$0Id_-=O;jU|$B^bqoII_5&ePTfQfYfPX0-~IIyx#ymq0)# z1rH7AqF_-%(FkSW5xZI>64G5&*o!zU@2Ox&5&^vx@CIgR^i?q4fc^^NBo~bV3fRjy zvJ6s?HC0r3{@`IEzQXHg5S3vrkj4&oV^)fck~~sD-kbtPE7)MbSOu+fiN<&Zez^rq zG=S${CqpKyO8)$!^0$IG1q4h}z&_2u+#<8Kg->io4ks_E!NKqhw0E?>jKeV=f>bq-6QE6 zlpHB1V3UFgb|D+<`IfW56lW2b^!RRru-Ft(b2y?^leR}4KHB4od+ zEc`>jK?T`r3plJ`tpP_F$j!fIA_3B1q0fNM!16I?FHOW(6EDmTMRs6xxXdkj;d4%6>v|%CIcQQNYhO; z9w~5I|CE9351)yx;b@)D1=1Z6Zp?buos&IQq>>YTCBrKPQ~C*bqhMrz0q+#BA9~dB zK|$q#0zN6|Gf2P}1xbep_+|jlzgRQlz z{`H^{+Xd44xNgkaGeQc8?@`i!ypV(nJ{gc$!RiU3kyJsIi2{-<@EMR&0dJ;<6{!{M zGa#)CJlIYzD(PKf-TqrZMg>!*3dpRW#B>2!6%3mtAiIL+2K=Ico$kYsTnz5=%CLA( z3MHQtBpUS<1a1}3kikywzKY=jnz%r^qnR6%4+@~IEfgF(#QGkqm6EE5rGz#L zJ{!q(Lq7gqXH}ipAG1&VE1v+=&E4!Ndesq;Q2S^w2&UEGWM*1UJ6>D7tlvR zqW=W+Q?TcPfIk&Pzb0Uyf=~knE4a!4=f5FJoG$!}!GGMRORh^HBV8bUI@*m{!){9Q zSOr7x2pF#*;I4p)3dR~R*##bpzm|Xl^S4VZ-va^D6tsOPV1|N|2K=L-z$4L^rQnDG za}>;cDjM??#D6BhGhazRLl!EyWx!$uJ)cXSr3%VN2w1LQmjNpkWO^YQs}+nhV66ji z{&hNeJrnWL(D9Sx+2jK0^(}79I{H$Qw<>6kZziG#w<};b4*)wAI3@03Fpm%H0eq7I z8vASW^A{#k$3acM`&mjjte~R5WH_qev;oHz@b@E7`D*s)HMY_X

QzP?DD_xb+ACOY3qaDV~VRN(Irs3RtZm8oX(s(zOcMy#~NK1?i*6Lbj?(k{ANEE7)qlP6cNIL}RytxIqH;DtK?eeg%VqMdP4? zezEZ3MHqirNs8E_a#X>yI0B9Fo2{^5Q{e7U&vkE>X6mVWamLvi$F!0Es zo0(k5B~_W0LckRT$x{iqreIe(0oN7e%OK#Ug87*Q+*Xh>i-5ZdUS!3GFJbF_C1Y}k z%0mSWate5?;7Kk4PZb2@6YyL?+`-tvM6X^iAFXBI}FI7 zAWbLH$f@9;PyxB?@~K@q;MeX#@~X;>9s=?!_|#KCK?Ns!2`H=}Zyy0g6;$pkptyqI zegaA;@T?jpq?8i&@Pa-nqrh2Le`oMgPD@inqk;=$p{?Y`tXoqhxr%~{B%qptaWe(f z0Py@!WC*LE^e9#b?0kn6bzC5I)N^CjLHOK2asvg+aeV~PNWu6p0ZkOd#2qg*nkneD z0RZcN3nu??rR)(LDys>K$5$-F{|)4Ne)%u==Wf- zjtiK%%gn#tE|C)Yx-qNpJ}IHUg6jta3{X(*uz*1dnjI71Q4j|CkBZ0$f36l?=~ZAQ^ma%o>(M zk|Px4`9(ma0{&1FYJ8<2V}1c|6r3(1;GGLRR-58NKDfk+T28Fh-G$^*QlpQ6JPI5u@-sNfX63}!Gf-+F z7l>I!+?cg`gd`VJz+bI`{;vvNjS*0ifk%ogKS4-oRhc_kKv@MT{}%AO0(QfMQp+n? zI9)(R1-nQPGzRdPK4o7|XiZa9sk%x)a|MIe2xzI`(7ys&E10uRKwAYp*9&N`pvMLQ z9TlwE=n>LMNv+KSx+v(pML?*6(Ov=F6)fH+pr-=%CxyoJR^W`7ehd!r5W+XQSYv?9 zKPEDU25EY{y^`)xz@P3yhM@q{2Q>1F!hfcyfd?ezFI8=IP{0TU`3?&hrGWiYp|CLw zJm1?ho(azFQLMekMP-r;#J(wR%uSxgU=Qo3KOy?$0@0u8#;m?)Bzd-i$`=L9t;g5D zQo;j6!c?WlB~e+RAn>YyMG78Y6R<=<$Lj)?De%7`V1j9x98vIRQUS*lI98lwfGf)=R*MuKQ90uhvFn^0vr49tD<*rn1bm!}!CMBi z7^G|>8XsIBMSgN)*6iAn{Dr}D*1uu&qtthR=tp&9ZgTYceE!8XDZYr=R7wbB6$X+a zrW>b!K(|+D}V`WL1@q%LQatkZGfUUlg!2 zG!&AH0WRR9SOX`^0n5wa`~Tb(aDlX>kQ=j>?v(79;;mbqA#O~*Gl=A23LO0r z3~Q zlvOT}64$sfYji)+_x#IbBb!jdEV>(9AQ?8fF*n)E;QK{-y9-2rryH}%43!FYD~L8$ zz+MKrXz==Xz$H?`Avb14`CBp^QLtf_fMW`_E*5Zt!5VHut(5{!yFf}j>&C298zuQa z1&uwcgj`bc)qtxC`mYs@>k4}PE8v!b1?vRdRq)<`2MQ9IdLJur?0hEcpIGjgW~)kL zV@RX|$FkQ79LwG*a4h?%z_IL$0>`o_4bWjvxx+jkItB9BkH%ynlhZq-H8ETuT^Q)b z*a0Bx2P>GgO+Xw4VcP}7S8&&WL<$a@Dv|kaSrjcl|C zTaKn;X;)XnV>yL%XClr0)Jj^{i@^>yb@Ll3wXX}r&i-!9N^nP#2Pz1^FTkT9>tg}K z6vTWgU_=AH{*yY^m^wzQic{%01x_^+6*$#QQQ%ZFO@UJlF_7c*S3PO{ECzG9X}LWC zLgugX7tUqs*IEK7e;282rfn&&51&$$p4N(mqgX8}PrNuIT z1?kHR2ylV)Pmmk)STRyddMuY%d9nzIs~|;I0SOd%4M?mYOJ31PrXabgG^K))g+wEb zf-c1bc+x9rYe*&qpMMpVtO{NmkVApf*jx(Enbzl3@YiorMgau_3@GdX%>NnXM5UOj z#5cy5P~dc7X$4Lf{ieX_qVfuyE~=!!>7uF%Oc!~q8cLi#3Sl6N<=fU`Ssm4Ix~RTt zgtilnMyla-QBws@kF-$W^hj$1c>FtE(oR*J9_h#c{}jR*$n;2O7swdu>c-sU?hIs| zgX2pc>%Ckc`hDD(1@D)f+#kSWG9;}cWT2`zXEcw3$L16_Oo6kOj!-b6mXtAC!P^i4 z;}pPECf7Sr!GL-mAybq%mQPdQ)JqKHpp>&D%Pa*!odwKwfiyPEjamB}Nb*7j&M9z- z0J;D8WKN39RmIN~xk`aE64okk4*Yrrj#--&Of(mEUIosT-gX6SIA4G7QsNl0SAk>5 z0R>K}hZ%(N&`3C2ns>|v()tr_%*xwSl20pm+C{)Q2Vnj^=qlubsx%H2a9Ke%Q^++1 z=?u7`;3FJ(q9wN#Z0#lBo`N#H1w2&nq7MU)^+XAK0YxFt6|@>CAVR_6ega-9DA8ZQ z8wKzN%4NJ)&}x8yPYN2DLcbco^Y6@1QSoc!_Guh5D*YAwWk7&}WJ4rNOa(_x8L<^C zA1NB~6od^EkWfLM;Q%=QBvCTo=#7qjSrvhhA^iklzQ;!KLss^ZLvaSEIfKT&}*z^5pX@jT6%rob7_q`(=@vlQ%| zY9`iPCC+%BufQ44ixfEHd8quaaucxm4h1^%*6!M6{BhK>nkYsu40x|2k z8?$1sk>m&kr~Vc2QbEEE4B%Qz$$*Wb@?JsXtpYwN7_vjaR|V^L3h-;}nzehE0DlF6 z`ve3ifD>8npO^;l`hW6(kl3mMZ?dcsPeBaR*n|q;wv{!KC~&$XxdNvHQYmmcAgu!F z0IdHRlsFxbS%K35*%UY(@QVVc19B^HIv}3{rvnNqa5|uf09pT?4k)fFP6w1!;B-J4 z1x^S2&R_(@J#`&9f0|N)~K{ol?|pT9ToT)&{@Gs140!zt?!}0X>V@@ zPJ8<)FwON?1C%)J9jw42 zIPIOuKo$&m;^l6g;{rL_^W2!bo-9xRZ@jF(SV4y80+xA{gxW$@Du7#F&a+0r;Yb1N z6zn!&qk~w+0s{CHa9+y~U4cM>XY*cCNAqDK#7nU7Wu-$+Y z3Sxc}jnfLE8gNd*&?r)<=Yo=>rkcwNelg&hg1rXZP%zXShT969<8n`d)A0`#I354Q z0T};I$3IsUr{g0OI352|fz$DC6gVCKUV+o`pA!0Gq^ z1y0AuRN!=cYz0oo$5Y^Rd_o0I$0sp>$G_9@$yLSa_*4pG%u`&hYYAz+Vn$ zW*5kW$m+)2|>|3LML7DR3;St-!IYo&v|RhE4eTOZvkx zt%<7SNi3E%SKwIIN`YfpTLusK7*xz4Svt5ty3}%GR{Ru_+(iMLD9imvHzlP_2|X1I zNGEyvCAX5$Ie|0q<`STnXB2$ z0I%C)1DP4w2Q-UQ?_mW}Ev~go`w=DZ7}e=fK&E8g#td|5%h ziUO`F$Zo(57vTI;LsV|N#9D0XxTnCW^q~T$nkNdJYMv`_s)d^BRI5zCBtWyE_Uu$_l9U^fhl%|{7x=ndyL>WN)h8XI3f5YONfg`@C%TL@k@&k{4OE{zfcG< z+X#N$4KaR&4T4`8^FW51D8KN87{9gz!7n30@H<8j{9X_Qzug0|(FlGO2Qhx327+HD zf#4T8AeI=xuQDL^$q4>;H)8yMUkLseYEztq_#c)f$*H4K86h^Eu%UZaQ-`0!r3#t|j) z$+~8ZBZ>sAi4i5rq-ojkowsw1Bhu5J#t}h5crWpPEJx6i@1toG6>Xk3cQ<^=5|env z_bF*+teqMZ3v}%dbZXaaLh<(F{|Ze*JDNnq3R?Uls}*gUsIK}Er*9gO2w#GOeQ9W3 zOrx^w2bIKyiu}*0)juRneP*iP;LtES(=;M?(5COB87M6Ee5rZ;4|wYBT|&3~Kob|r z+dQA!1M7ZBqBMCINsi4wV*lo7fz*tux<-h~R!3zz)oLD*GiZlKBb(zmytut7i2iLJ z5sa^*FqqnPzvRLTq0);&3*kc>SzAPuln;YU9-otPwTQ?xb;yCB1UL#u98De_lgHzu zAuS_P(xDa+3Gp?H^(|4w>5!dL9}RtBByB13$9T%fRlifh=qu#*{eDep**YRq z0zD>&e&AHIHHP%T?^&)Oyz?rB?x*x^B9ha()@a0qAK6W2=f7tusAjd@fjq+ThV1{c zXAU~^eKZAiYy-2;{lF4^H$MOSA%zaLiAWfoXX|9z7aEa{i+|u~5S?oqk(%NK-;@J& z??>FAEeyQ%JxfOu+M=y^{Z_1#?CEF^vm4*D>_Jz*kEWsY?Jz7vJq;|?j=cSY7E?`ifRyj$$Fg^TkPbgJpi zOV;kzxcIrnKd1O-EC0l8gP)Ha%F3aX{1c0RYVgl>PAJczcO2TsKmYO11O7?I370sO zfJ2G-Cl~+BXSNwX9xEEh=W_fY|D@+=Y5uv&(bxR5fq!iNdCWg|`6m;r6y~2<9L>w2 zApWVuKgIax2q!$_pQZehhFJ*zTwQ5;m}zQ#qhrD5Yf;NU(Bs$MdXUXr>gN8DgM7hGX`SECC5_JkP#!&#^BS|_-quC z)6RwzK6{PN!Lbw+v3h$jMHI55N8|6A=Ij)a37@zO=@gMA2A{^pr=pPRb}FQW(VR{Z z*<$e7Y z7<`HwpPgQuv9rStUdy1e@5Xjk*-tk*N2JB)X1;We;7`1y?GlmEpU-p@dzdF1b?p+7 zDhZ#H2bps+1h)`k4$bcpQ4ME6UzdpAac0TaHKK4_J{Kd68vzkUeY!>zPr}wC#^+)P zJ{Lnwr^8(%iUsmX7_kQw5E}6tmaHnF5yfKhNq7*(<~VdY4Q&&VgqDOx#Dk4nLL>N- zG*3e#3gOEy>AFRv&cvmfx8mfDBF<{wR^yYl`FGVPZ_92GQ!8Y@z$AJ+{75KiLO1jq zzSLq^sdOCjruIgBIbZP&>n|>W9|>)#;f5~an<|FotL=u8HE=^|o4TQe_)LoRhFXq& zk;bo#cgWZm54%yw*B41B@bimg-e;d)bO;OR8xe!`aueQxQY1YWiq^oX9->OZ}@qpeb`AGx|UFuU?$C&WTJL zP%?V;k;=B2VnS*085I)>KIn$#;kzk@CI8QaysPF$ zwn^#t(Hn1Dmj^$_o8#F zo+YAgc~U0w7U}&mL&cDlT<+~T(2`L0FgG*;4w?;X0?*7Qv;Z!dO(-#3FPqSD4b6b} zWoxB(<<6H+awa~<-Qy(Q!fBQXQ{&6^TnaZdA+;0g zZG8)l8l~4X3fYh;uXoM9S2J_w*u?p>=YfWV`sH^+!wWc}-d4R#CfAM3zj{~MuLdMe z%(s75iAvCrP^>x}^8V`oI-o*Yz9+QiHUg2*q_%EoUpo$YTUL4fHGNtiYc(AJBB4p} z%Vxp;GXgWkPY+ zx}oWCoMnCRKDzMcp9vv+V{R3NPb%X_>OP!Nna~J$p)#Rwa6e^272$Wvga*OilnG6` z<%TlC!<04Od$!fv{lyx;<8nX1LzMB(QVX7;OlSyPLYYwWX8ulSxaEc(X{bskmwgI# zLzB95$m^T)c51xDFS&-6IHeg6C`)E?$UA+_+v2OzPT{mn7;VNG%0xUdkWgmU-^il-SSbP;pQgr4J(iU~c#ZMq57!T7hXdb2%$7udq{ zmdiLF2_m7_XrT#3LvNZ;YFt^FP@b=Ds6@2r4!h*c;optM-0$+_d}@#%cn`62|AmL3orfp$~8+ zVeRscZSsD7ivsBDC|0{XAQCDC4-O{u7_J*kXfRwhm{96+9P)PE_5O3*BEIjau($i{PM-p2MXqd{I;`)34M8W(3$m$9w z2-ah7_80HJWGt|o$wzoKF#Zs}!JUB#B@cB&kKn(+u#RwCVD0ucO!VPKZ{t-U9UKps z?e($8x}oOqG+>w)E(T1fFnkM`&~`W#Frl6BCSXFB;YPrOw!(ja2^F8~h91IUfMHAE zDZqr{EXZj;eD1gSX24 zk3k&@@DoF8Gq#kQ-R4)Ym)wLxv5DM-4kdI$)39yay5b#K?bD6YIrt%?H6FXZ&4%&m zncdI|?DH1Z+j^HO29NV~7ux0YZX5sU$?w7ZOwxLSecaX&@0zop@@5U@=aSYN?6bC3 zcpty})VW41eni>Rnp{Wn-YMBRy?1DZ&vdW=KdiL;+e1@ABe1X8gbrgvvk3(Zc0>MS zIOMGw{H6GqklCE`HMS(1&CIQ^7ukfWU=y+lZNcti6IzewZYGonPwPym6!saL&|*AK zvSxcPP5Tn9f7-iTZa+M{F*}7*;t_@kUBdGY>#p~G?61AsmBd<$|GMEBgV`MXo6ilU z#-3ioPGU2!36;YxUK4tW?Yq`t@5)|Z?b#vWTt?N{0nS$4=h$d#Hti-z?uH7aaYN^^ zr`DvNz-C$#T9m^L9mnojE8P1e-nUI@{FZy?<@vTVtKS!I>08X|RjZ+Ux!D?OURv fnIf2+!mdcOq4Ga$hm=rnYx>jxjEUa8Tjl;gPKYFL diff --git a/master/.doctrees/index.doctree b/master/.doctrees/index.doctree index 9808f85d1c85f70db9b05ed24fbafaa4a92d04a6..961a2473ea7ec91fe530d0b9dff8c9575e9ac205 100644 GIT binary patch delta 64 zcmcb1mg(AArVTBOhDDYp8Rn&#<@yH6Y34?TCZ-l?76ulnmdOSN=4mMgW@+YWX@({i SCTXTXoMM`sxOpq1;!*(1D-`Ge delta 64 zcmcb1mg(AArVTBOh89`Id0Ay;rTT`Jrl#f=mX=AzX{nZ`DJh2L=BbG(DamHWhDN3- UCduXoCTU5j$(Eb9GAb?w0NKnHSO5S3 diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 4ee3b0b76b7392563bcecffaae3152a8100a4adb..6940f54511c387c55d5d9e8e8827cc7e10edeb9c 100644 GIT binary patch delta 63 zcmca|oAJtR#tn-Z4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 ROwvq&IK?zMaq$(#900a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w TOp?tFOwy84lPwotVax#l(A5<} diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index 54baa388e..26fc7a6f6 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -113,10 +113,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:25.084315Z", - "iopub.status.busy": "2024-07-09T06:06:25.083964Z", - "iopub.status.idle": "2024-07-09T06:06:26.267371Z", - "shell.execute_reply": "2024-07-09T06:06:26.266737Z" + "iopub.execute_input": "2024-07-09T06:21:39.342775Z", + "iopub.status.busy": "2024-07-09T06:21:39.342610Z", + "iopub.status.idle": "2024-07-09T06:21:40.557607Z", + "shell.execute_reply": "2024-07-09T06:21:40.556995Z" }, "nbsphinx": "hidden" }, @@ -126,7 +126,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -151,10 +151,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.270038Z", - "iopub.status.busy": "2024-07-09T06:06:26.269730Z", - "iopub.status.idle": "2024-07-09T06:06:26.287304Z", - "shell.execute_reply": "2024-07-09T06:06:26.286864Z" + "iopub.execute_input": "2024-07-09T06:21:40.560493Z", + "iopub.status.busy": "2024-07-09T06:21:40.560042Z", + "iopub.status.idle": "2024-07-09T06:21:40.577948Z", + "shell.execute_reply": "2024-07-09T06:21:40.577491Z" } }, "outputs": [], @@ -195,10 +195,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.289513Z", - "iopub.status.busy": "2024-07-09T06:06:26.289028Z", - "iopub.status.idle": "2024-07-09T06:06:26.433358Z", - "shell.execute_reply": "2024-07-09T06:06:26.432848Z" + "iopub.execute_input": "2024-07-09T06:21:40.580339Z", + "iopub.status.busy": "2024-07-09T06:21:40.579867Z", + "iopub.status.idle": "2024-07-09T06:21:40.741573Z", + "shell.execute_reply": "2024-07-09T06:21:40.741011Z" } }, "outputs": [ @@ -305,10 +305,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.462697Z", - "iopub.status.busy": "2024-07-09T06:06:26.462329Z", - "iopub.status.idle": "2024-07-09T06:06:26.465925Z", - "shell.execute_reply": "2024-07-09T06:06:26.465401Z" + "iopub.execute_input": "2024-07-09T06:21:40.772745Z", + "iopub.status.busy": "2024-07-09T06:21:40.772251Z", + "iopub.status.idle": "2024-07-09T06:21:40.776261Z", + "shell.execute_reply": "2024-07-09T06:21:40.775690Z" } }, "outputs": [], @@ -329,10 +329,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.467989Z", - "iopub.status.busy": "2024-07-09T06:06:26.467659Z", - "iopub.status.idle": "2024-07-09T06:06:26.475739Z", - "shell.execute_reply": "2024-07-09T06:06:26.475315Z" + "iopub.execute_input": "2024-07-09T06:21:40.778286Z", + "iopub.status.busy": "2024-07-09T06:21:40.777978Z", + "iopub.status.idle": "2024-07-09T06:21:40.786779Z", + "shell.execute_reply": "2024-07-09T06:21:40.786361Z" } }, "outputs": [], @@ -384,10 +384,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.477750Z", - "iopub.status.busy": "2024-07-09T06:06:26.477428Z", - "iopub.status.idle": "2024-07-09T06:06:26.480003Z", - "shell.execute_reply": "2024-07-09T06:06:26.479567Z" + "iopub.execute_input": "2024-07-09T06:21:40.789179Z", + "iopub.status.busy": "2024-07-09T06:21:40.788741Z", + "iopub.status.idle": "2024-07-09T06:21:40.791702Z", + "shell.execute_reply": "2024-07-09T06:21:40.791239Z" } }, "outputs": [], @@ -409,10 +409,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.481856Z", - "iopub.status.busy": "2024-07-09T06:06:26.481562Z", - "iopub.status.idle": "2024-07-09T06:06:26.996055Z", - "shell.execute_reply": "2024-07-09T06:06:26.995448Z" + "iopub.execute_input": "2024-07-09T06:21:40.793718Z", + "iopub.status.busy": "2024-07-09T06:21:40.793392Z", + "iopub.status.idle": "2024-07-09T06:21:41.315603Z", + "shell.execute_reply": "2024-07-09T06:21:41.314985Z" } }, "outputs": [], @@ -446,10 +446,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:26.998478Z", - "iopub.status.busy": "2024-07-09T06:06:26.998289Z", - "iopub.status.idle": "2024-07-09T06:06:28.809978Z", - "shell.execute_reply": "2024-07-09T06:06:28.809418Z" + "iopub.execute_input": "2024-07-09T06:21:41.318231Z", + "iopub.status.busy": "2024-07-09T06:21:41.317889Z", + "iopub.status.idle": "2024-07-09T06:21:43.227263Z", + "shell.execute_reply": "2024-07-09T06:21:43.226653Z" } }, "outputs": [ @@ -481,10 +481,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.812571Z", - "iopub.status.busy": "2024-07-09T06:06:28.812027Z", - "iopub.status.idle": "2024-07-09T06:06:28.821730Z", - "shell.execute_reply": "2024-07-09T06:06:28.821221Z" + "iopub.execute_input": "2024-07-09T06:21:43.229927Z", + "iopub.status.busy": "2024-07-09T06:21:43.229282Z", + "iopub.status.idle": "2024-07-09T06:21:43.240181Z", + "shell.execute_reply": "2024-07-09T06:21:43.239728Z" } }, "outputs": [ @@ -605,10 +605,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.823721Z", - "iopub.status.busy": "2024-07-09T06:06:28.823421Z", - "iopub.status.idle": "2024-07-09T06:06:28.827343Z", - "shell.execute_reply": "2024-07-09T06:06:28.826871Z" + "iopub.execute_input": "2024-07-09T06:21:43.242259Z", + "iopub.status.busy": "2024-07-09T06:21:43.241975Z", + "iopub.status.idle": "2024-07-09T06:21:43.246137Z", + "shell.execute_reply": "2024-07-09T06:21:43.245712Z" } }, "outputs": [], @@ -633,10 +633,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.829425Z", - "iopub.status.busy": "2024-07-09T06:06:28.829036Z", - "iopub.status.idle": "2024-07-09T06:06:28.836443Z", - "shell.execute_reply": "2024-07-09T06:06:28.836000Z" + "iopub.execute_input": "2024-07-09T06:21:43.248251Z", + "iopub.status.busy": "2024-07-09T06:21:43.247934Z", + "iopub.status.idle": "2024-07-09T06:21:43.255132Z", + "shell.execute_reply": "2024-07-09T06:21:43.254674Z" } }, "outputs": [], @@ -658,10 +658,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.838340Z", - "iopub.status.busy": "2024-07-09T06:06:28.838075Z", - "iopub.status.idle": "2024-07-09T06:06:28.949448Z", - "shell.execute_reply": "2024-07-09T06:06:28.948981Z" + "iopub.execute_input": "2024-07-09T06:21:43.257227Z", + "iopub.status.busy": "2024-07-09T06:21:43.256904Z", + "iopub.status.idle": "2024-07-09T06:21:43.368112Z", + "shell.execute_reply": "2024-07-09T06:21:43.367612Z" } }, "outputs": [ @@ -691,10 +691,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.951565Z", - "iopub.status.busy": "2024-07-09T06:06:28.951228Z", - "iopub.status.idle": "2024-07-09T06:06:28.953982Z", - "shell.execute_reply": "2024-07-09T06:06:28.953520Z" + "iopub.execute_input": "2024-07-09T06:21:43.370406Z", + "iopub.status.busy": "2024-07-09T06:21:43.370066Z", + "iopub.status.idle": "2024-07-09T06:21:43.372782Z", + "shell.execute_reply": "2024-07-09T06:21:43.372354Z" } }, "outputs": [], @@ -715,10 +715,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:28.956108Z", - "iopub.status.busy": "2024-07-09T06:06:28.955684Z", - "iopub.status.idle": "2024-07-09T06:06:30.896584Z", - "shell.execute_reply": "2024-07-09T06:06:30.895896Z" + "iopub.execute_input": "2024-07-09T06:21:43.374828Z", + "iopub.status.busy": "2024-07-09T06:21:43.374407Z", + "iopub.status.idle": "2024-07-09T06:21:45.339078Z", + "shell.execute_reply": "2024-07-09T06:21:45.338438Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:30.899682Z", - "iopub.status.busy": "2024-07-09T06:06:30.898894Z", - "iopub.status.idle": "2024-07-09T06:06:30.911329Z", - "shell.execute_reply": "2024-07-09T06:06:30.910707Z" + "iopub.execute_input": "2024-07-09T06:21:45.342064Z", + "iopub.status.busy": "2024-07-09T06:21:45.341327Z", + "iopub.status.idle": "2024-07-09T06:21:45.352590Z", + "shell.execute_reply": "2024-07-09T06:21:45.352125Z" } }, "outputs": [ @@ -771,10 +771,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:30.913543Z", - "iopub.status.busy": "2024-07-09T06:06:30.913182Z", - "iopub.status.idle": "2024-07-09T06:06:30.953207Z", - "shell.execute_reply": "2024-07-09T06:06:30.952600Z" + "iopub.execute_input": "2024-07-09T06:21:45.354672Z", + "iopub.status.busy": "2024-07-09T06:21:45.354342Z", + "iopub.status.idle": "2024-07-09T06:21:45.396625Z", + "shell.execute_reply": "2024-07-09T06:21:45.396172Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index 49d0a3d6c..4b6fd48a4 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:35.079549Z", - "iopub.status.busy": "2024-07-09T06:06:35.079116Z", - "iopub.status.idle": "2024-07-09T06:06:38.019377Z", - "shell.execute_reply": "2024-07-09T06:06:38.018803Z" + "iopub.execute_input": "2024-07-09T06:21:49.240434Z", + "iopub.status.busy": "2024-07-09T06:21:49.240266Z", + "iopub.status.idle": "2024-07-09T06:21:52.341784Z", + "shell.execute_reply": "2024-07-09T06:21:52.341296Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.022045Z", - "iopub.status.busy": "2024-07-09T06:06:38.021617Z", - "iopub.status.idle": "2024-07-09T06:06:38.025035Z", - "shell.execute_reply": "2024-07-09T06:06:38.024496Z" + "iopub.execute_input": "2024-07-09T06:21:52.344435Z", + "iopub.status.busy": "2024-07-09T06:21:52.343997Z", + "iopub.status.idle": "2024-07-09T06:21:52.347958Z", + "shell.execute_reply": "2024-07-09T06:21:52.347446Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.027049Z", - "iopub.status.busy": "2024-07-09T06:06:38.026720Z", - "iopub.status.idle": "2024-07-09T06:06:38.029772Z", - "shell.execute_reply": "2024-07-09T06:06:38.029271Z" + "iopub.execute_input": "2024-07-09T06:21:52.350024Z", + "iopub.status.busy": "2024-07-09T06:21:52.349635Z", + "iopub.status.idle": "2024-07-09T06:21:52.352754Z", + "shell.execute_reply": "2024-07-09T06:21:52.352222Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.031757Z", - "iopub.status.busy": "2024-07-09T06:06:38.031434Z", - "iopub.status.idle": "2024-07-09T06:06:38.085093Z", - "shell.execute_reply": "2024-07-09T06:06:38.084605Z" + "iopub.execute_input": "2024-07-09T06:21:52.354801Z", + "iopub.status.busy": "2024-07-09T06:21:52.354380Z", + "iopub.status.idle": "2024-07-09T06:21:52.405560Z", + "shell.execute_reply": "2024-07-09T06:21:52.405035Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.087064Z", - "iopub.status.busy": "2024-07-09T06:06:38.086870Z", - "iopub.status.idle": "2024-07-09T06:06:38.090289Z", - "shell.execute_reply": "2024-07-09T06:06:38.089858Z" + "iopub.execute_input": "2024-07-09T06:21:52.407560Z", + "iopub.status.busy": "2024-07-09T06:21:52.407242Z", + "iopub.status.idle": "2024-07-09T06:21:52.410852Z", + "shell.execute_reply": "2024-07-09T06:21:52.410392Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.092235Z", - "iopub.status.busy": "2024-07-09T06:06:38.091917Z", - "iopub.status.idle": "2024-07-09T06:06:38.095330Z", - "shell.execute_reply": "2024-07-09T06:06:38.094771Z" + "iopub.execute_input": "2024-07-09T06:21:52.412798Z", + "iopub.status.busy": "2024-07-09T06:21:52.412490Z", + "iopub.status.idle": "2024-07-09T06:21:52.415836Z", + "shell.execute_reply": "2024-07-09T06:21:52.415299Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed'}\n" + "Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.097201Z", - "iopub.status.busy": "2024-07-09T06:06:38.097021Z", - "iopub.status.idle": "2024-07-09T06:06:38.100009Z", - "shell.execute_reply": "2024-07-09T06:06:38.099483Z" + "iopub.execute_input": "2024-07-09T06:21:52.417781Z", + "iopub.status.busy": "2024-07-09T06:21:52.417462Z", + "iopub.status.idle": "2024-07-09T06:21:52.420529Z", + "shell.execute_reply": "2024-07-09T06:21:52.420017Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.102116Z", - "iopub.status.busy": "2024-07-09T06:06:38.101794Z", - "iopub.status.idle": "2024-07-09T06:06:38.104967Z", - "shell.execute_reply": "2024-07-09T06:06:38.104527Z" + "iopub.execute_input": "2024-07-09T06:21:52.422617Z", + "iopub.status.busy": "2024-07-09T06:21:52.422214Z", + "iopub.status.idle": "2024-07-09T06:21:52.425416Z", + "shell.execute_reply": "2024-07-09T06:21:52.424998Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.106909Z", - "iopub.status.busy": "2024-07-09T06:06:38.106584Z", - "iopub.status.idle": "2024-07-09T06:06:43.730716Z", - "shell.execute_reply": "2024-07-09T06:06:43.730160Z" + "iopub.execute_input": "2024-07-09T06:21:52.427244Z", + "iopub.status.busy": "2024-07-09T06:21:52.427078Z", + "iopub.status.idle": "2024-07-09T06:21:56.745262Z", + "shell.execute_reply": "2024-07-09T06:21:56.744632Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "26eb168f10234c1588ad18073bbb9d24", + "model_id": "c040ce84f01d40379935c57a437135d2", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6908f28507f34ca293495da144a9ebf5", + "model_id": "c7e479504bac453bb70c779f5c0f3525", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb390d327367437688e1b2f6a2dc8c9d", + "model_id": "e38763de16664cf4b837920d4bc2ace8", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a73ef35dae948bfb3a13cced094eae0", + "model_id": "d426400e6f5f4f559bce90df2411bfab", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70dd46a3067b49b0ab8a7a6d042f9eee", + "model_id": "223652b12d77470d806f5f9b123b1cde", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dbc5896906b4403e91373c6f95c7f8a3", + "model_id": "94487f86ff8a4e3fa1c870682ab05381", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0341643702b4f93b9c82872cc026fbf", + "model_id": "ae2d10a9a0bd42468482e2cffacc15e6", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.733456Z", - "iopub.status.busy": "2024-07-09T06:06:43.733062Z", - "iopub.status.idle": "2024-07-09T06:06:43.736049Z", - "shell.execute_reply": "2024-07-09T06:06:43.735560Z" + "iopub.execute_input": "2024-07-09T06:21:56.747914Z", + "iopub.status.busy": "2024-07-09T06:21:56.747699Z", + "iopub.status.idle": "2024-07-09T06:21:56.750422Z", + "shell.execute_reply": "2024-07-09T06:21:56.749907Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.737924Z", - "iopub.status.busy": "2024-07-09T06:06:43.737747Z", - "iopub.status.idle": "2024-07-09T06:06:43.740304Z", - "shell.execute_reply": "2024-07-09T06:06:43.739878Z" + "iopub.execute_input": "2024-07-09T06:21:56.752430Z", + "iopub.status.busy": "2024-07-09T06:21:56.752042Z", + "iopub.status.idle": "2024-07-09T06:21:56.754593Z", + "shell.execute_reply": "2024-07-09T06:21:56.754165Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.742146Z", - "iopub.status.busy": "2024-07-09T06:06:43.741975Z", - "iopub.status.idle": "2024-07-09T06:06:46.363303Z", - "shell.execute_reply": "2024-07-09T06:06:46.362662Z" + "iopub.execute_input": "2024-07-09T06:21:56.756400Z", + "iopub.status.busy": "2024-07-09T06:21:56.756229Z", + "iopub.status.idle": "2024-07-09T06:21:59.390602Z", + "shell.execute_reply": "2024-07-09T06:21:59.389981Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.366416Z", - "iopub.status.busy": "2024-07-09T06:06:46.365598Z", - "iopub.status.idle": "2024-07-09T06:06:46.373329Z", - "shell.execute_reply": "2024-07-09T06:06:46.372785Z" + "iopub.execute_input": "2024-07-09T06:21:59.393398Z", + "iopub.status.busy": "2024-07-09T06:21:59.392860Z", + "iopub.status.idle": "2024-07-09T06:21:59.400402Z", + "shell.execute_reply": "2024-07-09T06:21:59.399893Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.375605Z", - "iopub.status.busy": "2024-07-09T06:06:46.375281Z", - "iopub.status.idle": "2024-07-09T06:06:46.379045Z", - "shell.execute_reply": "2024-07-09T06:06:46.378491Z" + "iopub.execute_input": "2024-07-09T06:21:59.402483Z", + "iopub.status.busy": "2024-07-09T06:21:59.402085Z", + "iopub.status.idle": "2024-07-09T06:21:59.406027Z", + "shell.execute_reply": "2024-07-09T06:21:59.405499Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.381102Z", - "iopub.status.busy": "2024-07-09T06:06:46.380806Z", - "iopub.status.idle": "2024-07-09T06:06:46.383982Z", - "shell.execute_reply": "2024-07-09T06:06:46.383448Z" + "iopub.execute_input": "2024-07-09T06:21:59.408118Z", + "iopub.status.busy": "2024-07-09T06:21:59.407818Z", + "iopub.status.idle": "2024-07-09T06:21:59.410977Z", + "shell.execute_reply": "2024-07-09T06:21:59.410424Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.385913Z", - "iopub.status.busy": "2024-07-09T06:06:46.385614Z", - "iopub.status.idle": "2024-07-09T06:06:46.388541Z", - "shell.execute_reply": "2024-07-09T06:06:46.388027Z" + "iopub.execute_input": "2024-07-09T06:21:59.413097Z", + "iopub.status.busy": "2024-07-09T06:21:59.412678Z", + "iopub.status.idle": "2024-07-09T06:21:59.415713Z", + "shell.execute_reply": "2024-07-09T06:21:59.415177Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.390536Z", - "iopub.status.busy": "2024-07-09T06:06:46.390129Z", - "iopub.status.idle": "2024-07-09T06:06:46.397248Z", - "shell.execute_reply": "2024-07-09T06:06:46.396712Z" + "iopub.execute_input": "2024-07-09T06:21:59.417737Z", + "iopub.status.busy": "2024-07-09T06:21:59.417358Z", + "iopub.status.idle": "2024-07-09T06:21:59.424003Z", + "shell.execute_reply": "2024-07-09T06:21:59.423469Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.399521Z", - "iopub.status.busy": "2024-07-09T06:06:46.399107Z", - "iopub.status.idle": "2024-07-09T06:06:46.622657Z", - "shell.execute_reply": "2024-07-09T06:06:46.622135Z" + "iopub.execute_input": "2024-07-09T06:21:59.425974Z", + "iopub.status.busy": "2024-07-09T06:21:59.425797Z", + "iopub.status.idle": "2024-07-09T06:21:59.673438Z", + "shell.execute_reply": "2024-07-09T06:21:59.672833Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.625021Z", - "iopub.status.busy": "2024-07-09T06:06:46.624624Z", - "iopub.status.idle": "2024-07-09T06:06:46.797852Z", - "shell.execute_reply": "2024-07-09T06:06:46.797313Z" + "iopub.execute_input": "2024-07-09T06:21:59.676761Z", + "iopub.status.busy": "2024-07-09T06:21:59.675669Z", + "iopub.status.idle": "2024-07-09T06:21:59.855719Z", + "shell.execute_reply": "2024-07-09T06:21:59.855182Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.801087Z", - "iopub.status.busy": "2024-07-09T06:06:46.800154Z", - "iopub.status.idle": "2024-07-09T06:06:46.805038Z", - "shell.execute_reply": "2024-07-09T06:06:46.804526Z" + "iopub.execute_input": "2024-07-09T06:21:59.859528Z", + "iopub.status.busy": "2024-07-09T06:21:59.858566Z", + "iopub.status.idle": "2024-07-09T06:21:59.863516Z", + "shell.execute_reply": "2024-07-09T06:21:59.863020Z" }, "nbsphinx": "hidden" }, @@ -1105,43 +1105,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01bdf1dfe43a4d93b1d5a846d7215f58": { + "02b94161e37b406ca4394b9eef1538df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", + "placeholder": "​", + "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 411kB/s]" } }, - "09202840b02144009b85bc9e81486cfe": { + "099c115234a74616930a360edf785b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "165f21fd1ca447ce9d79edfc85a1646e": { + "0a197c7bd153480582add67b25b8f2f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1194,7 +1197,95 @@ "width": null } }, - "1a6c425339d741d0b672365a0a6a634f": { + "0e46a040636f42ec8521fb06f931e645": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "123ee23c99d742a99e006c7f7848cb12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "1551da70235541d895b9fec440352f36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "15a6d72a11a043799df4757893a899a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "17285e4ef9524c7db1413a860ffd8f3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,7 +1338,7 @@ "width": null } }, - "1c0d84c997084ec7a7b1982850af771f": { + "173164fe2c1547519e6c06d76b0453fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1300,7 +1391,96 @@ "width": null } }, - "1c33fb4949914270b7542061aa7f5869": { + "1cf39d974f3c4a31847e7e38d1e470ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "223652b12d77470d806f5f9b123b1cde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", + "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", + "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533" + ], + "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", + "tabbable": null, + "tooltip": null + } + }, + "2b6fe019e99740eb96bba95f2db47822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", + "placeholder": "​", + "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 9.45MB/s]" + } + }, + "2bb10e84663246cb9e4f076f752038ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2e3f9444da9b4549808e0df67c27c05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1353,7 +1533,7 @@ "width": null } }, - "1c886bf965cf47cd8dad183a9a7ea37e": { + "2e72d09cf08e4ed7a0f0a490217d3b47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1369,23 +1549,25 @@ "description_width": "" } }, - "1d3698bebaea44ee81bf48d55a3da73b": { + "3be04749419a4f8eba9590fbe0ee90f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1e04214439b34bb39bd577a6b905f385": { + "3dadb3df17ab4dcb82e012b2ce2d596f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,57 +1582,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dfdd82544b204d99bf73fb297209e882", + "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", "placeholder": "​", - "style": "IPY_MODEL_3fcd103bcf444b3e9d7dacf02f7d0555", + "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "26eb168f10234c1588ad18073bbb9d24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e04214439b34bb39bd577a6b905f385", - "IPY_MODEL_d2f9ed6fa0ca4f829f4b4c9130690381", - "IPY_MODEL_53b3a3c50e68458897df10772c0c4950" - ], - "layout": "IPY_MODEL_90c4eaa9081242faa986d85fd429328c", - "tabbable": null, - "tooltip": null - } - }, - "2afee7ea53434f6d89d7c20a88feb305": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 48.0/48.0 [00:00<00:00, 8.77kB/s]" } }, - "2b31d509f412422e8332fcaf6b6c2694": { + "411b3739073b43ef84da6df0cf4aba60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,7 +1643,23 @@ "width": null } }, - "3694f2923a9e4c32bfb24bc1252e9b8f": { + "4c78b67d28c6446baefef5e6235114af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50cf7dc92d4a4dd998c121b070e7c523": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1556,23 +1712,30 @@ "width": null } }, - "37605bcf5bf54465b5b89a0177cdc60a": { + "51455100d2844aaf843bf237faae621e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", + "placeholder": "​", + "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "3fcd103bcf444b3e9d7dacf02f7d0555": { + "52e25954ff904f37a41a6faf200c6f04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1590,25 +1753,60 @@ "text_color": null } }, - "47ca90e12b40435b9fd8c5bfa1cc221d": { - "model_module": "@jupyter-widgets/controls", + "56328dda0453461194507f7896809a58": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49d02ed65af34513bf68cff2532199bc": { + "597d3b6693934a35be0907fceb4d0350": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1859,7 @@ "width": null } }, - "51bf1675356f432587b92cd14c7f82a2": { + "5a9dca54fcd34a26b3e76425f4cfc533": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1676,79 +1874,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae30011dcb26468c8b0b6b82df3ca527", + "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", "placeholder": "​", - "style": "IPY_MODEL_8775a8c91f3c4a05904fd4855d8811cf", + "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 13.6MB/s]" } }, - "527ebdd433604e84a97c498e49952e49": { + "5cdde541facd4993a93cd8eb368b2d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "53877237a70b400cb0bdef2d1e4da5e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb1cab0be90341f2a872bba3c4f5d6b1", - "placeholder": "​", - "style": "IPY_MODEL_687f08592bed4074bebe2f495d225c50", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "53b3a3c50e68458897df10772c0c4950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9269cd46d227497980a20e184df669bb", - "placeholder": "​", - "style": "IPY_MODEL_527ebdd433604e84a97c498e49952e49", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 65.3kB/s]" + "bar_color": null, + "description_width": "" } }, - "54446d6d66ed40fcb39ca2dd0e52b91d": { + "630457c365244ae1ab9ffcac69becf0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1801,41 +1951,56 @@ "width": null } }, - "58d151e1dec841068bb3e5ea2a92bf8d": { + "6601ca50f2504f04b6cfe7a18c9b4b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", + "placeholder": "​", + "style": "IPY_MODEL_913da8393f324205890c3c685524e256", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 126kB/s]" } }, - "63b95cc7b3804f828a5027882e9297fc": { + "6e292337346c488586bf3e2ac3a4a4d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "687f08592bed4074bebe2f495d225c50": { + "7069c4f7c30946f989dfcde6fa323b5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1853,31 +2018,7 @@ "text_color": null } }, - "6908f28507f34ca293495da144a9ebf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_53877237a70b400cb0bdef2d1e4da5e0", - "IPY_MODEL_ac878a5347e5407d984a6450f0782ccf", - "IPY_MODEL_6f600754a26f42428a3619804a3b3dd3" - ], - "layout": "IPY_MODEL_a2e4ed336ac942fb95366722a3fe131b", - "tabbable": null, - "tooltip": null - } - }, - "6ba2643509aa4ba28f45e6d56c26a610": { + "706af1e525724a4ea27ff6ae91e2d592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1930,30 +2071,7 @@ "width": null } }, - "6f600754a26f42428a3619804a3b3dd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ba2643509aa4ba28f45e6d56c26a610", - "placeholder": "​", - "style": "IPY_MODEL_ca1b57d86847492c9b297c02fc76cdb9", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" - } - }, - "6fdb113b1df248a19d9acd305460659f": { + "72719d99e16045d7bb4a1a75b55e01d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,31 +2124,60 @@ "width": null } }, - "70dd46a3067b49b0ab8a7a6d042f9eee": { - "model_module": "@jupyter-widgets/controls", + "7410928828ea4cb785ed34533ad7a38b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b60ae06c542046c18779ebad0e050786", - "IPY_MODEL_fb47c5e63669405d8b0f658221868569", - "IPY_MODEL_cf508e03d2364ab487717da959fbc5f6" - ], - "layout": "IPY_MODEL_ca23b68c35994190a9b183937f99bef0", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "72723446148c4e4eaf10d2bc9a5a7aa0": { + "76546dbd183d4a7e9e641657709c45c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2045,15 +2192,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c0d84c997084ec7a7b1982850af771f", + "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", "placeholder": "​", - "style": "IPY_MODEL_2afee7ea53434f6d89d7c20a88feb305", + "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": "tokenizer.json: 100%" } }, - "813a3a0872a942708cd6a9346d4eafce": { + "7bc8ca2ed8c34db6b844e1f99c112f8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2106,7 +2253,7 @@ "width": null } }, - "847b6e3d28fe47989ff071d37ae0a736": { + "7ffdf87c7ec64036b49757ac96c5536d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2124,7 +2271,7 @@ "text_color": null } }, - "8775a8c91f3c4a05904fd4855d8811cf": { + "8d9ed5fd9baa4685b3b1df7e90e11a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2142,40 +2289,16 @@ "text_color": null } }, - "8a73ef35dae948bfb3a13cced094eae0": { - "model_module": "@jupyter-widgets/controls", + "8f9ef7f1a1f74518887b8021028b126b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72723446148c4e4eaf10d2bc9a5a7aa0", - "IPY_MODEL_e0a1667bb19e41ffab1775d1cc89d2f2", - "IPY_MODEL_febb0cb6c81c4e63826fecf678c5cb82" - ], - "layout": "IPY_MODEL_bfd0773475e040f3adaeb618a404adba", - "tabbable": null, - "tooltip": null - } - }, - "90c4eaa9081242faa986d85fd429328c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -2219,60 +2342,43 @@ "width": null } }, - "9269cd46d227497980a20e184df669bb": { - "model_module": "@jupyter-widgets/base", + "913da8393f324205890c3c685524e256": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "934707dc065d4f9b89b50d33e0cbc3f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "971f3be7589f424fb59cf1afd44b5a01": { + "93ebdc142e3847ae90d0ce31029d5577": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2288,66 +2394,59 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f99a3294523546e88e70530fed3f99f6", + "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b78ee6ec02a04a198056f10b84c9c0f6", + "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", "tabbable": null, "tooltip": null, "value": 48.0 } }, - "9b13d15c1ebf4bbab634d6a5ef436130": { + "94487f86ff8a4e3fa1c870682ab05381": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b31d509f412422e8332fcaf6b6c2694", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d513be80490b4fb9a218bd185c374f60", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51455100d2844aaf843bf237faae621e", + "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", + "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f" + ], + "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", "tabbable": null, - "tooltip": null, - "value": 231508.0 + "tooltip": null } }, - "9c5fb5a31e9f4d389fd58cc6bf03ee2d": { + "94c15cadc74a4c81a5adb003090f1d31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6fdb113b1df248a19d9acd305460659f", - "placeholder": "​", - "style": "IPY_MODEL_cd8bce3acd8043d99418cf1e98c1ffd3", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 119kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a16e8e1cc73e44bd8b38739fc3f7349e": { + "9a5e0536f69540db9b1730bd6d61ea81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2400,7 +2499,48 @@ "width": null } }, - "a2e4ed336ac942fb95366722a3fe131b": { + "a066253245154949a867510c4f4ca674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2a9d5d37de04498978de14e105cf28b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", + "placeholder": "​", + "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.8kB/s]" + } + }, + "a5729edb12634053b4bf3c1bf046eded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2453,128 +2593,147 @@ "width": null } }, - "a6454eb33f0747e5941afecdf65c31ca": { + "ae2d10a9a0bd42468482e2cffacc15e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", + "IPY_MODEL_15a6d72a11a043799df4757893a899a0", + "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822" + ], + "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", + "tabbable": null, + "tooltip": null } }, - "ac878a5347e5407d984a6450f0782ccf": { + "b5d24981d5e842e399fcf3e5da26ef85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3694f2923a9e4c32bfb24bc1252e9b8f", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1d3698bebaea44ee81bf48d55a3da73b", + "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", + "placeholder": "​", + "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": "README.md: 100%" } }, - "adf9f85cadca4af3b40ebf03eba16fa7": { + "b8db1c5c0aea469698bab78a92251cea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c65afacf969543d192a5d2494cc1c534", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37605bcf5bf54465b5b89a0177cdc60a", + "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", + "placeholder": "​", + "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "vocab.txt: 100%" } }, - "ae30011dcb26468c8b0b6b82df3ca527": { - "model_module": "@jupyter-widgets/base", + "c040ce84f01d40379935c57a437135d2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", + "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", + "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b" + ], + "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", + "tabbable": null, + "tooltip": null + } + }, + "c0f39ccef0bc464cb68eed457c4b8878": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", + "placeholder": "​", + "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "c17f319f7c23417c9a96df1d497a5396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", + "placeholder": "​", + "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "b3f20f2c522c44e99afe7b665f90476a": { + "c512fd4195da47a7a6905726b34e5e3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,46 +2786,49 @@ "width": null } }, - "b60ae06c542046c18779ebad0e050786": { + "c6f873e46ffd45dca333eca1e6c1e98b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ebda3f8c7f4441939a8f25ada957bda9", - "placeholder": "​", - "style": "IPY_MODEL_01bdf1dfe43a4d93b1d5a846d7215f58", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b78ee6ec02a04a198056f10b84c9c0f6": { + "c7e479504bac453bb70c779f5c0f3525": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", + "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", + "IPY_MODEL_02b94161e37b406ca4394b9eef1538df" + ], + "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", + "tabbable": null, + "tooltip": null } }, - "bfd0773475e040f3adaeb618a404adba": { + "cd106c03eda44df88946464b5e303d19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2719,7 +2881,7 @@ "width": null } }, - "c65afacf969543d192a5d2494cc1c534": { + "d1d88dae8067491696275aca69858030": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,7 +2934,7 @@ "width": null } }, - "ca1b57d86847492c9b297c02fc76cdb9": { + "d24b7d8cbfdc460e8b4363433bab3e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2790,7 +2952,7 @@ "text_color": null } }, - "ca23b68c35994190a9b183937f99bef0": { + "d2bc83af02974b4997b26d27c8043218": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,83 +3005,31 @@ "width": null } }, - "cb1cab0be90341f2a872bba3c4f5d6b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cc704a8505d043a78e762cb092fbf583": { + "d426400e6f5f4f559bce90df2411bfab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e8e17c5187f94971b594066cb042052e", - "placeholder": "​", - "style": "IPY_MODEL_d73ca9d21de341c1b49acece38eb3a86", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", + "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", + "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558" + ], + "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.51kB/s]" + "tooltip": null } }, - "cd8bce3acd8043d99418cf1e98c1ffd3": { + "d60ecde8bd1144dea8b8174f951c1ac9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2937,30 +3047,60 @@ "text_color": null } }, - "cf508e03d2364ab487717da959fbc5f6": { - "model_module": "@jupyter-widgets/controls", + "de3971382db3445da34fe599b2fd18c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3f20f2c522c44e99afe7b665f90476a", - "placeholder": "​", - "style": "IPY_MODEL_63b95cc7b3804f828a5027882e9297fc", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 16.2MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cf623252efaa4cadbfbcc762f85bb14f": { + "de9073d79ed24b348d5dcbd2cda64aaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3013,31 +3153,7 @@ "width": null } }, - "d0341643702b4f93b9c82872cc026fbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3a35ea4124b44ef9df6e0dae4a35972", - "IPY_MODEL_9b13d15c1ebf4bbab634d6a5ef436130", - "IPY_MODEL_f98d6ded2c7945df810ca80e9bd7a4a2" - ], - "layout": "IPY_MODEL_1a6c425339d741d0b672365a0a6a634f", - "tabbable": null, - "tooltip": null - } - }, - "d19a720fd38e43d9a44c01e6b604e36f": { + "debf497c726c49c19699637de9ea5396": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3090,91 +3206,70 @@ "width": null } }, - "d2f9ed6fa0ca4f829f4b4c9130690381": { + "e38763de16664cf4b837920d4bc2ace8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a16e8e1cc73e44bd8b38739fc3f7349e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6454eb33f0747e5941afecdf65c31ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", + "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", + "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20" + ], + "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", "tabbable": null, - "tooltip": null, - "value": 391.0 + "tooltip": null } }, - "d513be80490b4fb9a218bd185c374f60": { + "e914425948fb4ee4aeae1d90e350d558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", + "placeholder": "​", + "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 272MB/s]" } }, - "d73ca9d21de341c1b49acece38eb3a86": { + "e9d6ec450b2e48dcb5295b0addb03a08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dbc5896906b4403e91373c6f95c7f8a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e9ab3e84bf9c4f5e8e81eef5bd3fe849", - "IPY_MODEL_971f3be7589f424fb59cf1afd44b5a01", - "IPY_MODEL_cc704a8505d043a78e762cb092fbf583" - ], - "layout": "IPY_MODEL_813a3a0872a942708cd6a9346d4eafce", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "dfdd82544b204d99bf73fb297209e882": { + "f18185f7bfb34126ae47151814798ae9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3227,7 +3322,7 @@ "width": null } }, - "e0a1667bb19e41ffab1775d1cc89d2f2": { + "f28aab9da31b46fb80c0504babe16527": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3243,17 +3338,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf623252efaa4cadbfbcc762f85bb14f", + "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_58d151e1dec841068bb3e5ea2a92bf8d", + "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "e8e17c5187f94971b594066cb042052e": { + "f3ae141956064ff593c8324cddc63a9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f3d7b3156603425383cb4b2911ba3193": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3306,30 +3417,7 @@ "width": null } }, - "e9ab3e84bf9c4f5e8e81eef5bd3fe849": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_165f21fd1ca447ce9d79edfc85a1646e", - "placeholder": "​", - "style": "IPY_MODEL_847b6e3d28fe47989ff071d37ae0a736", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "ebda3f8c7f4441939a8f25ada957bda9": { + "f549e9ac8a50477798f2e9234e06003d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3382,48 +3470,56 @@ "width": null } }, - "ee015b6a5dd54462901d4fb785310f8f": { + "f5517afea1ad41e8ae488f9341fe54ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", + "placeholder": "​", + "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "f3a35ea4124b44ef9df6e0dae4a35972": { + "f5d710bb5f824ac6a960165532df517a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54446d6d66ed40fcb39ca2dd0e52b91d", - "placeholder": "​", - "style": "IPY_MODEL_47ca90e12b40435b9fd8c5bfa1cc221d", + "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 466062.0 } }, - "f57ceb2a8d51416491d48e1b29e3dfcb": { + "f7269a835d6543bb94a6753b3052198e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3476,30 +3572,7 @@ "width": null } }, - "f98d6ded2c7945df810ca80e9bd7a4a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d02ed65af34513bf68cff2532199bc", - "placeholder": "​", - "style": "IPY_MODEL_ee015b6a5dd54462901d4fb785310f8f", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 36.5MB/s]" - } - }, - "f99a3294523546e88e70530fed3f99f6": { + "fbabc79ad62741eeb0adf64606e0278c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3551,79 +3624,6 @@ "visibility": null, "width": null } - }, - "fb390d327367437688e1b2f6a2dc8c9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51bf1675356f432587b92cd14c7f82a2", - "IPY_MODEL_adf9f85cadca4af3b40ebf03eba16fa7", - "IPY_MODEL_9c5fb5a31e9f4d389fd58cc6bf03ee2d" - ], - "layout": "IPY_MODEL_d19a720fd38e43d9a44c01e6b604e36f", - "tabbable": null, - "tooltip": null - } - }, - "fb47c5e63669405d8b0f658221868569": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f57ceb2a8d51416491d48e1b29e3dfcb", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1c886bf965cf47cd8dad183a9a7ea37e", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "febb0cb6c81c4e63826fecf678c5cb82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c33fb4949914270b7542061aa7f5869", - "placeholder": "​", - "style": "IPY_MODEL_09202840b02144009b85bc9e81486cfe", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 33.7MB/s]" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 11569e3e3..dc2c54cfa 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:49.864043Z", - "iopub.status.busy": "2024-07-09T06:06:49.863867Z", - "iopub.status.idle": "2024-07-09T06:06:54.860734Z", - "shell.execute_reply": "2024-07-09T06:06:54.860126Z" + "iopub.execute_input": "2024-07-09T06:22:03.233428Z", + "iopub.status.busy": "2024-07-09T06:22:03.232964Z", + "iopub.status.idle": "2024-07-09T06:22:08.850474Z", + "shell.execute_reply": "2024-07-09T06:22:08.849914Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.863462Z", - "iopub.status.busy": "2024-07-09T06:06:54.863090Z", - "iopub.status.idle": "2024-07-09T06:06:54.866371Z", - "shell.execute_reply": "2024-07-09T06:06:54.865843Z" + "iopub.execute_input": "2024-07-09T06:22:08.853152Z", + "iopub.status.busy": "2024-07-09T06:22:08.852690Z", + "iopub.status.idle": "2024-07-09T06:22:08.855934Z", + "shell.execute_reply": "2024-07-09T06:22:08.855477Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.868423Z", - "iopub.status.busy": "2024-07-09T06:06:54.868116Z", - "iopub.status.idle": "2024-07-09T06:06:54.872674Z", - "shell.execute_reply": "2024-07-09T06:06:54.872145Z" + "iopub.execute_input": "2024-07-09T06:22:08.857959Z", + "iopub.status.busy": "2024-07-09T06:22:08.857632Z", + "iopub.status.idle": "2024-07-09T06:22:08.861976Z", + "shell.execute_reply": "2024-07-09T06:22:08.861565Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.874945Z", - "iopub.status.busy": "2024-07-09T06:06:54.874555Z", - "iopub.status.idle": "2024-07-09T06:06:56.580748Z", - "shell.execute_reply": "2024-07-09T06:06:56.579989Z" + "iopub.execute_input": "2024-07-09T06:22:08.864012Z", + "iopub.status.busy": "2024-07-09T06:22:08.863632Z", + "iopub.status.idle": "2024-07-09T06:22:10.501197Z", + "shell.execute_reply": "2024-07-09T06:22:10.500598Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.583790Z", - "iopub.status.busy": "2024-07-09T06:06:56.583297Z", - "iopub.status.idle": "2024-07-09T06:06:56.593857Z", - "shell.execute_reply": "2024-07-09T06:06:56.593338Z" + "iopub.execute_input": "2024-07-09T06:22:10.503804Z", + "iopub.status.busy": "2024-07-09T06:22:10.503416Z", + "iopub.status.idle": "2024-07-09T06:22:10.513980Z", + "shell.execute_reply": "2024-07-09T06:22:10.513523Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.596127Z", - "iopub.status.busy": "2024-07-09T06:06:56.595810Z", - "iopub.status.idle": "2024-07-09T06:06:56.601311Z", - "shell.execute_reply": "2024-07-09T06:06:56.600761Z" + "iopub.execute_input": "2024-07-09T06:22:10.516180Z", + "iopub.status.busy": "2024-07-09T06:22:10.515850Z", + "iopub.status.idle": "2024-07-09T06:22:10.521399Z", + "shell.execute_reply": "2024-07-09T06:22:10.520894Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.603390Z", - "iopub.status.busy": "2024-07-09T06:06:56.602982Z", - "iopub.status.idle": "2024-07-09T06:06:57.047045Z", - "shell.execute_reply": "2024-07-09T06:06:57.046468Z" + "iopub.execute_input": "2024-07-09T06:22:10.523550Z", + "iopub.status.busy": "2024-07-09T06:22:10.523111Z", + "iopub.status.idle": "2024-07-09T06:22:10.966866Z", + "shell.execute_reply": "2024-07-09T06:22:10.966371Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:57.049476Z", - "iopub.status.busy": "2024-07-09T06:06:57.049058Z", - "iopub.status.idle": "2024-07-09T06:06:58.055039Z", - "shell.execute_reply": "2024-07-09T06:06:58.054558Z" + "iopub.execute_input": "2024-07-09T06:22:10.969003Z", + "iopub.status.busy": "2024-07-09T06:22:10.968716Z", + "iopub.status.idle": "2024-07-09T06:22:11.621713Z", + "shell.execute_reply": "2024-07-09T06:22:11.621235Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.057389Z", - "iopub.status.busy": "2024-07-09T06:06:58.057042Z", - "iopub.status.idle": "2024-07-09T06:06:58.075363Z", - "shell.execute_reply": "2024-07-09T06:06:58.074904Z" + "iopub.execute_input": "2024-07-09T06:22:11.624138Z", + "iopub.status.busy": "2024-07-09T06:22:11.623795Z", + "iopub.status.idle": "2024-07-09T06:22:11.641645Z", + "shell.execute_reply": "2024-07-09T06:22:11.641200Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.077543Z", - "iopub.status.busy": "2024-07-09T06:06:58.077109Z", - "iopub.status.idle": "2024-07-09T06:06:58.080313Z", - "shell.execute_reply": "2024-07-09T06:06:58.079788Z" + "iopub.execute_input": "2024-07-09T06:22:11.643659Z", + "iopub.status.busy": "2024-07-09T06:22:11.643333Z", + "iopub.status.idle": "2024-07-09T06:22:11.646457Z", + "shell.execute_reply": "2024-07-09T06:22:11.645916Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.082226Z", - "iopub.status.busy": "2024-07-09T06:06:58.081919Z", - "iopub.status.idle": "2024-07-09T06:07:12.215902Z", - "shell.execute_reply": "2024-07-09T06:07:12.215321Z" + "iopub.execute_input": "2024-07-09T06:22:11.648482Z", + "iopub.status.busy": "2024-07-09T06:22:11.648101Z", + "iopub.status.idle": "2024-07-09T06:22:26.104216Z", + "shell.execute_reply": "2024-07-09T06:22:26.103596Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.218512Z", - "iopub.status.busy": "2024-07-09T06:07:12.218295Z", - "iopub.status.idle": "2024-07-09T06:07:12.221837Z", - "shell.execute_reply": "2024-07-09T06:07:12.221338Z" + "iopub.execute_input": "2024-07-09T06:22:26.106855Z", + "iopub.status.busy": "2024-07-09T06:22:26.106613Z", + "iopub.status.idle": "2024-07-09T06:22:26.110484Z", + "shell.execute_reply": "2024-07-09T06:22:26.109922Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.223870Z", - "iopub.status.busy": "2024-07-09T06:07:12.223561Z", - "iopub.status.idle": "2024-07-09T06:07:12.934288Z", - "shell.execute_reply": "2024-07-09T06:07:12.933709Z" + "iopub.execute_input": "2024-07-09T06:22:26.112655Z", + "iopub.status.busy": "2024-07-09T06:22:26.112225Z", + "iopub.status.idle": "2024-07-09T06:22:26.806714Z", + "shell.execute_reply": "2024-07-09T06:22:26.806127Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.938010Z", - "iopub.status.busy": "2024-07-09T06:07:12.937076Z", - "iopub.status.idle": "2024-07-09T06:07:12.943726Z", - "shell.execute_reply": "2024-07-09T06:07:12.943251Z" + "iopub.execute_input": "2024-07-09T06:22:26.809582Z", + "iopub.status.busy": "2024-07-09T06:22:26.809200Z", + "iopub.status.idle": "2024-07-09T06:22:26.813988Z", + "shell.execute_reply": "2024-07-09T06:22:26.813500Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.947206Z", - "iopub.status.busy": "2024-07-09T06:07:12.946282Z", - "iopub.status.idle": "2024-07-09T06:07:13.044938Z", - "shell.execute_reply": "2024-07-09T06:07:13.044401Z" + "iopub.execute_input": "2024-07-09T06:22:26.817256Z", + "iopub.status.busy": "2024-07-09T06:22:26.816338Z", + "iopub.status.idle": "2024-07-09T06:22:26.913005Z", + "shell.execute_reply": "2024-07-09T06:22:26.912463Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.047402Z", - "iopub.status.busy": "2024-07-09T06:07:13.046885Z", - "iopub.status.idle": "2024-07-09T06:07:13.058728Z", - "shell.execute_reply": "2024-07-09T06:07:13.058266Z" + "iopub.execute_input": "2024-07-09T06:22:26.915328Z", + "iopub.status.busy": "2024-07-09T06:22:26.914958Z", + "iopub.status.idle": "2024-07-09T06:22:26.927202Z", + "shell.execute_reply": "2024-07-09T06:22:26.926711Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.060668Z", - "iopub.status.busy": "2024-07-09T06:07:13.060408Z", - "iopub.status.idle": "2024-07-09T06:07:13.068309Z", - "shell.execute_reply": "2024-07-09T06:07:13.067858Z" + "iopub.execute_input": "2024-07-09T06:22:26.929241Z", + "iopub.status.busy": "2024-07-09T06:22:26.928921Z", + "iopub.status.idle": "2024-07-09T06:22:26.936556Z", + "shell.execute_reply": "2024-07-09T06:22:26.936102Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.070443Z", - "iopub.status.busy": "2024-07-09T06:07:13.070120Z", - "iopub.status.idle": "2024-07-09T06:07:13.074136Z", - "shell.execute_reply": "2024-07-09T06:07:13.073600Z" + "iopub.execute_input": "2024-07-09T06:22:26.938661Z", + "iopub.status.busy": "2024-07-09T06:22:26.938342Z", + "iopub.status.idle": "2024-07-09T06:22:26.942738Z", + "shell.execute_reply": "2024-07-09T06:22:26.942303Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.076148Z", - "iopub.status.busy": "2024-07-09T06:07:13.075822Z", - "iopub.status.idle": "2024-07-09T06:07:13.081201Z", - "shell.execute_reply": "2024-07-09T06:07:13.080730Z" + "iopub.execute_input": "2024-07-09T06:22:26.944805Z", + "iopub.status.busy": "2024-07-09T06:22:26.944495Z", + "iopub.status.idle": "2024-07-09T06:22:26.949937Z", + "shell.execute_reply": "2024-07-09T06:22:26.949446Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.083236Z", - "iopub.status.busy": "2024-07-09T06:07:13.082820Z", - "iopub.status.idle": "2024-07-09T06:07:13.194939Z", - "shell.execute_reply": "2024-07-09T06:07:13.194383Z" + "iopub.execute_input": "2024-07-09T06:22:26.951973Z", + "iopub.status.busy": "2024-07-09T06:22:26.951651Z", + "iopub.status.idle": "2024-07-09T06:22:27.069852Z", + "shell.execute_reply": "2024-07-09T06:22:27.069287Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.197176Z", - "iopub.status.busy": "2024-07-09T06:07:13.196823Z", - "iopub.status.idle": "2024-07-09T06:07:13.304107Z", - "shell.execute_reply": "2024-07-09T06:07:13.303548Z" + "iopub.execute_input": "2024-07-09T06:22:27.072192Z", + "iopub.status.busy": "2024-07-09T06:22:27.071729Z", + "iopub.status.idle": "2024-07-09T06:22:27.179313Z", + "shell.execute_reply": "2024-07-09T06:22:27.178807Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.306217Z", - "iopub.status.busy": "2024-07-09T06:07:13.305912Z", - "iopub.status.idle": "2024-07-09T06:07:13.409689Z", - "shell.execute_reply": "2024-07-09T06:07:13.409121Z" + "iopub.execute_input": "2024-07-09T06:22:27.181419Z", + "iopub.status.busy": "2024-07-09T06:22:27.181072Z", + "iopub.status.idle": "2024-07-09T06:22:27.284684Z", + "shell.execute_reply": "2024-07-09T06:22:27.284186Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.411687Z", - "iopub.status.busy": "2024-07-09T06:07:13.411504Z", - "iopub.status.idle": "2024-07-09T06:07:13.513457Z", - "shell.execute_reply": "2024-07-09T06:07:13.512985Z" + "iopub.execute_input": "2024-07-09T06:22:27.286639Z", + "iopub.status.busy": "2024-07-09T06:22:27.286466Z", + "iopub.status.idle": "2024-07-09T06:22:27.389984Z", + "shell.execute_reply": "2024-07-09T06:22:27.389427Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.515573Z", - "iopub.status.busy": "2024-07-09T06:07:13.515239Z", - "iopub.status.idle": "2024-07-09T06:07:13.518447Z", - "shell.execute_reply": "2024-07-09T06:07:13.517912Z" + "iopub.execute_input": "2024-07-09T06:22:27.392223Z", + "iopub.status.busy": "2024-07-09T06:22:27.391882Z", + "iopub.status.idle": "2024-07-09T06:22:27.395109Z", + "shell.execute_reply": "2024-07-09T06:22:27.394562Z" }, "nbsphinx": "hidden" }, @@ -1392,23 +1392,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0449d39929844d5da948a065a35aeafc": { + "030f1aa243f74fa89a56e4a7afd62228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0712b5725fb444f6b11533e1aeb7e0d9": { + "0378871c4f2e413ea8000172dab79c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,7 +1463,7 @@ "width": null } }, - "0b47da1d6d3545c9963557edea183fed": { + "07f71655f74d435e83d929c621c5fa4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1476,31 +1478,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30ef09eb9ae7482faf1bdf6f05e62bbc", + "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", "placeholder": "​", - "style": "IPY_MODEL_194b5e6a002d4e1ea093db6cc3b04171", + "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "0fccfd304e924a65b05ce79e773c1b54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "label_encoder.txt: 100%" } }, - "123fcf3742424688a13533cede820c84": { + "13ce66a6db5846b19c327782fc330062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1553,7 +1539,53 @@ "width": null } }, - "13c388d3c4fd49ecb28abaf90751ecde": { + "184d81198c9f44339286502f77c93c88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", + "placeholder": "​", + "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 308MB/s]" + } + }, + "1a71755eaad3434f8376750eb9e21dca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", + "placeholder": "​", + "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "1ae5dfdbfc244f20b5e6a0872942a6b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,25 +1638,7 @@ "width": null } }, - "194b5e6a002d4e1ea093db6cc3b04171": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "195a6822a9d34059bfa57fa7dc2ea08a": { + "1b0ceb5f33ac4b4db24eb1efc0185a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1677,30 +1691,7 @@ "width": null } }, - "20865132107248018abd462fe8cb3cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2150fa8e732943099d5831902db8f05d", - "placeholder": "​", - "style": "IPY_MODEL_c6bf7d77f5a84f6880ec30d9f0e0221f", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 231MB/s]" - } - }, - "2150fa8e732943099d5831902db8f05d": { + "1bc0bb9f226044e2879bd45c2c9361b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1744,7 @@ "width": null } }, - "22a24b2c2ee44a4e92a3d4a384dda5fc": { + "2301b773af73470cb4968e5546eedca9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1768,42 +1759,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_54cf50f88da84bffa7c85bfec67a7e76", - "IPY_MODEL_be3b22f2a8d24e5fbc993ff804b948c4", - "IPY_MODEL_f05f7401b7ca48d39ce3f36de43cdf9f" + "IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", + "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", + "IPY_MODEL_184d81198c9f44339286502f77c93c88" ], - "layout": "IPY_MODEL_0712b5725fb444f6b11533e1aeb7e0d9", + "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", "tabbable": null, "tooltip": null } }, - "267c1283364b495e946ce40cc2e6c806": { + "2585d650431e4e389f7c2cb8af3ba22a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_615bae4fcc4b4def9e73b5dacc94cbf8", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_637271f5d4814034a20ed354b1562d5f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2843461d0fe54d07aa7c7464d5d97e6f": { + "25e28f77411f4b358cd7cb1316e7612d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,7 +1837,93 @@ "width": null } }, - "2a17845087ce4fb3bbf3f5361d27da45": { + "2d8898b4bffa4ce2b6f9d1610b45d2d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30534447f05f4c18b825551758a727d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_335c2445e0c0490f9984409ca39867c4", + "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", + "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890" + ], + "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", + "tabbable": null, + "tooltip": null + } + }, + "3231f300a42b4b8b99131e14ee8de6fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", + "placeholder": "​", + "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 7.45MB/s]" + } + }, + "335c2445e0c0490f9984409ca39867c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", + "placeholder": "​", + "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "3a0699a91dd3428f82bdfb374fb55e76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1872,17 +1939,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6641399ed52c4fab995e3dc94bbf4259", - "max": 128619.0, + "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0449d39929844d5da948a065a35aeafc", + "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 16887676.0 } }, - "2a18010cbd624cd48e9f02d08aaa10b9": { + "3ce9242cc785425291f31afd9dfc53a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1935,7 +2002,7 @@ "width": null } }, - "2a67df8bf81140f6a7d6468fddb34306": { + "3cea818f8d7f4614aa0ad2ec7b5348af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1953,7 +2020,7 @@ "text_color": null } }, - "2ec4c5dfe0504a16be106752751957ac": { + "482e270b3b2347b69272e33a3b7fe67a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,113 +2073,67 @@ "width": null } }, - "30ef09eb9ae7482faf1bdf6f05e62bbc": { - "model_module": "@jupyter-widgets/base", + "4c7ed89197a84102acf6416893e2d15b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "4ea3400f8dfa41de89365044c0f8cb8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a8a38a009f545a8944469f67a622d68": { - "model_module": "@jupyter-widgets/base", + "524d49fe9932444b9e6f4ad40ee2b836": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f4b565a51d24d85a9ea442bcfffae19": { + "548b97dd6b2146f6a9d554e5016ead75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2130,60 +2151,7 @@ "text_color": null } }, - "456321c963d040b38655d316d4a4add5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c19af69d62042f9b12a2bd44b9b4160": { + "5977ad08502f404892f9c3a89a020623": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2198,34 +2166,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0b47da1d6d3545c9963557edea183fed", - "IPY_MODEL_267c1283364b495e946ce40cc2e6c806", - "IPY_MODEL_93cddea59dd04f8fa3866059fe250a88" + "IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", + "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", + "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350" ], - "layout": "IPY_MODEL_195a6822a9d34059bfa57fa7dc2ea08a", + "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", "tabbable": null, "tooltip": null } }, - "4c64103fc4704d84a0b363bc803074fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "54cf50f88da84bffa7c85bfec67a7e76": { + "5b76f8ffb6354f24af0b35f6de244350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2240,84 +2190,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2843461d0fe54d07aa7c7464d5d97e6f", + "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", "placeholder": "​", - "style": "IPY_MODEL_4c64103fc4704d84a0b363bc803074fa", + "style": "IPY_MODEL_6398640d39d74482925348e964477d91", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 799kB/s]" } }, - "615bae4fcc4b4def9e73b5dacc94cbf8": { - "model_module": "@jupyter-widgets/base", + "5f7d007ea0b342b4a93dafc5282e07b1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "637271f5d4814034a20ed354b1562d5f": { + "6398640d39d74482925348e964477d91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "63942fab728d45799bfc2eefc024a7a4": { + "678f7e339f5149e181d689627ef3a751": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2370,7 +2287,7 @@ "width": null } }, - "6641399ed52c4fab995e3dc94bbf4259": { + "6a19b58ad5ac45dab732546ed937e951": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2423,33 +2340,30 @@ "width": null } }, - "70187e117f274ba7be34ee5a90087194": { + "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a8a38a009f545a8944469f67a622d68", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e11e60943fb4e2a9e9b14f836623a69", + "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", + "placeholder": "​", + "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "hyperparams.yaml: 100%" } }, - "788e28d38e2c400babcb0d314178f05f": { + "7515de987da94ef9a2d5455c30f1c2a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2464,31 +2378,63 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b7ea56d4b66546b38668ab8d80c352bd", + "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", "placeholder": "​", - "style": "IPY_MODEL_c90423f88db44167a1af99e50e8c0910", + "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 783kB/s]" + "value": "classifier.ckpt: 100%" } }, - "7e11e60943fb4e2a9e9b14f836623a69": { + "8cdbf19960b9483e9551e22643732a3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", + "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", + "IPY_MODEL_f72f986090fb419b8286e7286897e414" + ], + "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", + "tabbable": null, + "tooltip": null } }, - "939e1338c4514c3995a25094689cac39": { + "9234ebf1cac34261acd10dca3480e239": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", + "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", + "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe" + ], + "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", + "tabbable": null, + "tooltip": null + } + }, + "9b8c3f610f304fec945b68d663dc6f1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2541,30 +2487,7 @@ "width": null } }, - "93cddea59dd04f8fa3866059fe250a88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97c23900ef8b4bda83e2deb33f286e96", - "placeholder": "​", - "style": "IPY_MODEL_a4ee50184cd04a398f50ea40231b48f5", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 185MB/s]" - } - }, - "97c23900ef8b4bda83e2deb33f286e96": { + "9d721b1baf0c4e31970159ee84bcb8b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2617,57 +2540,23 @@ "width": null } }, - "a037f28a17554d22ae65d83ae3cb1295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_63942fab728d45799bfc2eefc024a7a4", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce1e2432d0004fffb3a515990af2e883", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "a11ca78e63eb4beeaa82f3e24c7dda66": { + "9eabbbb13d5e47fca4e356bee0501603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_facfb0cddea846c28095adc63697d300", - "IPY_MODEL_2a17845087ce4fb3bbf3f5361d27da45", - "IPY_MODEL_bcf4d70b1b41401ebb167cd30923698e" - ], - "layout": "IPY_MODEL_2a18010cbd624cd48e9f02d08aaa10b9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a4ee50184cd04a398f50ea40231b48f5": { + "a337d23527c34d92b63a1ecf6707124c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2685,49 +2574,113 @@ "text_color": null } }, - "a4ef0c0a14fa48d5a66728f16010ab81": { - "model_module": "@jupyter-widgets/controls", + "a3d79d00b77e420fb3bba762b3d9a0b6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b24547478f104455bc3f0621eb0ef31d": { - "model_module": "@jupyter-widgets/controls", + "a63baebd86ae43c990c6edc598a4879b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d75488175f804c07a186b79fbdfbb0b9", - "IPY_MODEL_a037f28a17554d22ae65d83ae3cb1295", - "IPY_MODEL_20865132107248018abd462fe8cb3cb6" - ], - "layout": "IPY_MODEL_939e1338c4514c3995a25094689cac39", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b7ea56d4b66546b38668ab8d80c352bd": { + "a962521435da44439fc8023f973b16bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2780,7 +2733,7 @@ "width": null } }, - "bcf4d70b1b41401ebb167cd30923698e": { + "b56b7a0332dc4e1c84a140c42ac16890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2795,83 +2748,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da7d96a45d7249f5857c4b5b6e2f6781", + "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", "placeholder": "​", - "style": "IPY_MODEL_f121cf50447e4cd1b84e10660f4c6858", + "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 8.45MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 193MB/s]" } }, - "be3b22f2a8d24e5fbc993ff804b948c4": { + "ca119d618680421aa4275a9c3bc6ada4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9e3d1ea843b4dd08836724ceb2184ff", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0fccfd304e924a65b05ce79e773c1b54", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c14b346779ea4cb3920d9eef5802fbd6": { + "da2148b68dd645dd98ed41c8058bb817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e16eb6da1ebc41ca80ca339c7037d837", - "IPY_MODEL_70187e117f274ba7be34ee5a90087194", - "IPY_MODEL_788e28d38e2c400babcb0d314178f05f" - ], - "layout": "IPY_MODEL_13c388d3c4fd49ecb28abaf90751ecde", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", "tabbable": null, - "tooltip": null - } - }, - "c6bf7d77f5a84f6880ec30d9f0e0221f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 3201.0 } }, - "c90423f88db44167a1af99e50e8c0910": { + "dce66522f3ac4607beae79e69e93745d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2889,7 +2818,7 @@ "text_color": null } }, - "c9e3d1ea843b4dd08836724ceb2184ff": { + "e0a6be03adc34387b1154d4540a2cc94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2942,7 +2871,33 @@ "width": null } }, - "ce1e2432d0004fffb3a515990af2e883": { + "e79c27b29e1c44bf9369d333f8526228": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "e7c617a65a6045ee945688614263ebc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2958,30 +2913,33 @@ "description_width": "" } }, - "d75488175f804c07a186b79fbdfbb0b9": { + "e9afc86b1d7747a8a5ffc78856b7be99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ec4c5dfe0504a16be106752751957ac", - "placeholder": "​", - "style": "IPY_MODEL_a4ef0c0a14fa48d5a66728f16010ab81", + "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "da7d96a45d7249f5857c4b5b6e2f6781": { + "eae9e35f11f747b58461317babdc3291": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3034,30 +2992,60 @@ "width": null } }, - "e16eb6da1ebc41ca80ca339c7037d837": { - "model_module": "@jupyter-widgets/controls", + "f39fc7e456254975882ada6d5b90254c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee674df35f7341e9a94912143a281079", - "placeholder": "​", - "style": "IPY_MODEL_e5b7443a6873473f92d8003c993c8774", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e5b7443a6873473f92d8003c993c8774": { + "f416c4b535bc4e10bf36f83830f8a6fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3075,7 +3063,7 @@ "text_color": null } }, - "ee674df35f7341e9a94912143a281079": { + "f47e6197a8974dacb497edf4211afa8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3128,7 +3116,7 @@ "width": null } }, - "f05f7401b7ca48d39ce3f36de43cdf9f": { + "f72f986090fb419b8286e7286897e414": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3143,53 +3131,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_123fcf3742424688a13533cede820c84", + "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", "placeholder": "​", - "style": "IPY_MODEL_3f4b565a51d24d85a9ea442bcfffae19", + "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 472kB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" } }, - "f121cf50447e4cd1b84e10660f4c6858": { - "model_module": "@jupyter-widgets/controls", + "fdbd1eb302114bcc85c0208f1bf7e7db": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "facfb0cddea846c28095adc63697d300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_456321c963d040b38655d316d4a4add5", - "placeholder": "​", - "style": "IPY_MODEL_2a67df8bf81140f6a7d6468fddb34306", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index d8c1583bb..73ef9d94b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:17.104713Z", - "iopub.status.busy": "2024-07-09T06:07:17.104537Z", - "iopub.status.idle": "2024-07-09T06:07:18.265236Z", - "shell.execute_reply": "2024-07-09T06:07:18.264675Z" + "iopub.execute_input": "2024-07-09T06:22:31.204629Z", + "iopub.status.busy": "2024-07-09T06:22:31.204447Z", + "iopub.status.idle": "2024-07-09T06:22:32.372754Z", + "shell.execute_reply": "2024-07-09T06:22:32.372127Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.267865Z", - "iopub.status.busy": "2024-07-09T06:07:18.267429Z", - "iopub.status.idle": "2024-07-09T06:07:18.270517Z", - "shell.execute_reply": "2024-07-09T06:07:18.270070Z" + "iopub.execute_input": "2024-07-09T06:22:32.375331Z", + "iopub.status.busy": "2024-07-09T06:22:32.374890Z", + "iopub.status.idle": "2024-07-09T06:22:32.377978Z", + "shell.execute_reply": "2024-07-09T06:22:32.377441Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.272623Z", - "iopub.status.busy": "2024-07-09T06:07:18.272315Z", - "iopub.status.idle": "2024-07-09T06:07:18.280981Z", - "shell.execute_reply": "2024-07-09T06:07:18.280528Z" + "iopub.execute_input": "2024-07-09T06:22:32.380095Z", + "iopub.status.busy": "2024-07-09T06:22:32.379830Z", + "iopub.status.idle": "2024-07-09T06:22:32.388412Z", + "shell.execute_reply": "2024-07-09T06:22:32.387959Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.282961Z", - "iopub.status.busy": "2024-07-09T06:07:18.282658Z", - "iopub.status.idle": "2024-07-09T06:07:18.287681Z", - "shell.execute_reply": "2024-07-09T06:07:18.287134Z" + "iopub.execute_input": "2024-07-09T06:22:32.390372Z", + "iopub.status.busy": "2024-07-09T06:22:32.390051Z", + "iopub.status.idle": "2024-07-09T06:22:32.394799Z", + "shell.execute_reply": "2024-07-09T06:22:32.394245Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.289696Z", - "iopub.status.busy": "2024-07-09T06:07:18.289396Z", - "iopub.status.idle": "2024-07-09T06:07:18.471428Z", - "shell.execute_reply": "2024-07-09T06:07:18.470899Z" + "iopub.execute_input": "2024-07-09T06:22:32.396873Z", + "iopub.status.busy": "2024-07-09T06:22:32.396576Z", + "iopub.status.idle": "2024-07-09T06:22:32.582697Z", + "shell.execute_reply": "2024-07-09T06:22:32.582077Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.473985Z", - "iopub.status.busy": "2024-07-09T06:07:18.473651Z", - "iopub.status.idle": "2024-07-09T06:07:18.848606Z", - "shell.execute_reply": "2024-07-09T06:07:18.847988Z" + "iopub.execute_input": "2024-07-09T06:22:32.585043Z", + "iopub.status.busy": "2024-07-09T06:22:32.584844Z", + "iopub.status.idle": "2024-07-09T06:22:32.959426Z", + "shell.execute_reply": "2024-07-09T06:22:32.958831Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.850909Z", - "iopub.status.busy": "2024-07-09T06:07:18.850607Z", - "iopub.status.idle": "2024-07-09T06:07:18.874812Z", - "shell.execute_reply": "2024-07-09T06:07:18.874352Z" + "iopub.execute_input": "2024-07-09T06:22:32.961607Z", + "iopub.status.busy": "2024-07-09T06:22:32.961418Z", + "iopub.status.idle": "2024-07-09T06:22:32.984249Z", + "shell.execute_reply": "2024-07-09T06:22:32.983819Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.877306Z", - "iopub.status.busy": "2024-07-09T06:07:18.876942Z", - "iopub.status.idle": "2024-07-09T06:07:18.888512Z", - "shell.execute_reply": "2024-07-09T06:07:18.887949Z" + "iopub.execute_input": "2024-07-09T06:22:32.986453Z", + "iopub.status.busy": "2024-07-09T06:22:32.986022Z", + "iopub.status.idle": "2024-07-09T06:22:32.997152Z", + "shell.execute_reply": "2024-07-09T06:22:32.996629Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.890878Z", - "iopub.status.busy": "2024-07-09T06:07:18.890562Z", - "iopub.status.idle": "2024-07-09T06:07:20.924393Z", - "shell.execute_reply": "2024-07-09T06:07:20.923804Z" + "iopub.execute_input": "2024-07-09T06:22:32.999567Z", + "iopub.status.busy": "2024-07-09T06:22:32.999237Z", + "iopub.status.idle": "2024-07-09T06:22:35.072126Z", + "shell.execute_reply": "2024-07-09T06:22:35.071432Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.926686Z", - "iopub.status.busy": "2024-07-09T06:07:20.926410Z", - "iopub.status.idle": "2024-07-09T06:07:20.949428Z", - "shell.execute_reply": "2024-07-09T06:07:20.948894Z" + "iopub.execute_input": "2024-07-09T06:22:35.074948Z", + "iopub.status.busy": "2024-07-09T06:22:35.074462Z", + "iopub.status.idle": "2024-07-09T06:22:35.096631Z", + "shell.execute_reply": "2024-07-09T06:22:35.096147Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.951661Z", - "iopub.status.busy": "2024-07-09T06:07:20.951461Z", - "iopub.status.idle": "2024-07-09T06:07:20.970546Z", - "shell.execute_reply": "2024-07-09T06:07:20.970043Z" + "iopub.execute_input": "2024-07-09T06:22:35.098742Z", + "iopub.status.busy": "2024-07-09T06:22:35.098472Z", + "iopub.status.idle": "2024-07-09T06:22:35.116671Z", + "shell.execute_reply": "2024-07-09T06:22:35.116210Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.972589Z", - "iopub.status.busy": "2024-07-09T06:07:20.972401Z", - "iopub.status.idle": "2024-07-09T06:07:20.987323Z", - "shell.execute_reply": "2024-07-09T06:07:20.986871Z" + "iopub.execute_input": "2024-07-09T06:22:35.118721Z", + "iopub.status.busy": "2024-07-09T06:22:35.118381Z", + "iopub.status.idle": "2024-07-09T06:22:35.132562Z", + "shell.execute_reply": "2024-07-09T06:22:35.132113Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.989414Z", - "iopub.status.busy": "2024-07-09T06:07:20.989082Z", - "iopub.status.idle": "2024-07-09T06:07:21.008745Z", - "shell.execute_reply": "2024-07-09T06:07:21.008145Z" + "iopub.execute_input": "2024-07-09T06:22:35.134629Z", + "iopub.status.busy": "2024-07-09T06:22:35.134293Z", + "iopub.status.idle": "2024-07-09T06:22:35.152969Z", + "shell.execute_reply": "2024-07-09T06:22:35.152458Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1a2d9de663414b3197830208500bd4c4", + "model_id": "74c24ad981f147efb352816e9dafec11", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.010907Z", - "iopub.status.busy": "2024-07-09T06:07:21.010568Z", - "iopub.status.idle": "2024-07-09T06:07:21.026290Z", - "shell.execute_reply": "2024-07-09T06:07:21.025716Z" + "iopub.execute_input": "2024-07-09T06:22:35.154841Z", + "iopub.status.busy": "2024-07-09T06:22:35.154670Z", + "iopub.status.idle": "2024-07-09T06:22:35.169134Z", + "shell.execute_reply": "2024-07-09T06:22:35.168685Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.028755Z", - "iopub.status.busy": "2024-07-09T06:07:21.028398Z", - "iopub.status.idle": "2024-07-09T06:07:21.034384Z", - "shell.execute_reply": "2024-07-09T06:07:21.033940Z" + "iopub.execute_input": "2024-07-09T06:22:35.170991Z", + "iopub.status.busy": "2024-07-09T06:22:35.170807Z", + "iopub.status.idle": "2024-07-09T06:22:35.176614Z", + "shell.execute_reply": "2024-07-09T06:22:35.176098Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.036570Z", - "iopub.status.busy": "2024-07-09T06:07:21.036166Z", - "iopub.status.idle": "2024-07-09T06:07:21.054691Z", - "shell.execute_reply": "2024-07-09T06:07:21.054210Z" + "iopub.execute_input": "2024-07-09T06:22:35.178580Z", + "iopub.status.busy": "2024-07-09T06:22:35.178328Z", + "iopub.status.idle": "2024-07-09T06:22:35.196553Z", + "shell.execute_reply": "2024-07-09T06:22:35.196112Z" } }, "outputs": [ @@ -1447,54 +1447,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0ca28b9c23f6452c95c38d0043efadcc": { + "00d78c11cb114efca0b0c49d7e0cb9be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7456c78e6a0f4d568c70ed7a6535115d", - "placeholder": "​", - "style": "IPY_MODEL_fe301e732a514ec286d6c27d70994344", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13017.52 examples/s]" - } - }, - "1a2d9de663414b3197830208500bd4c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55a34ec37114452c9d8c054c182cbc52", - "IPY_MODEL_d0bd7cf6b2524951ac939fb65399ac64", - "IPY_MODEL_0ca28b9c23f6452c95c38d0043efadcc" - ], - "layout": "IPY_MODEL_d5c5823e33414b1f899751731a81a142", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "35c38181cf4b4429a72e3b23df75ccbe": { + "110ab4d837414033a320250c8a01f402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1547,7 +1518,23 @@ "width": null } }, - "54de8bdcfc254280ad482cd4c4ba0ed9": { + "1b9a95ea9570469c89df3c913719453d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "39e9da6fa70e44bea4cd6db6fbb2a1b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1600,30 +1587,7 @@ "width": null } }, - "55a34ec37114452c9d8c054c182cbc52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35c38181cf4b4429a72e3b23df75ccbe", - "placeholder": "​", - "style": "IPY_MODEL_fbc6c2a9ffc3454292e17169e84293d9", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "7456c78e6a0f4d568c70ed7a6535115d": { + "4f663e6b17ca4c42bf50adc567d16ba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,49 +1640,7 @@ "width": null } }, - "98ecc16b617a454daf4d29b486be43d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d0bd7cf6b2524951ac939fb65399ac64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54de8bdcfc254280ad482cd4c4ba0ed9", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_98ecc16b617a454daf4d29b486be43d2", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "d5c5823e33414b1f899751731a81a142": { + "53f5526f4be149a09e57d6eddb464297": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,25 +1693,103 @@ "width": null } }, - "fbc6c2a9ffc3454292e17169e84293d9": { + "74c24ad981f147efb352816e9dafec11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", + "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", + "IPY_MODEL_9c62609186764ad4b5447a66b1294674" + ], + "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", + "tabbable": null, + "tooltip": null + } + }, + "9c62609186764ad4b5447a66b1294674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", + "placeholder": "​", + "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13749.43 examples/s]" + } + }, + "cb3e52e8971843afb00d0a4e915483f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", + "placeholder": "​", + "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "ce349bf1dbe749ccb7ed3c31e8593c0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "fe301e732a514ec286d6c27d70994344": { + "f0a497561f9e46278d786855f5eaad3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index 94ecb8df7..ce137ebae 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:23.680348Z", - "iopub.status.busy": "2024-07-09T06:07:23.679942Z", - "iopub.status.idle": "2024-07-09T06:07:24.840040Z", - "shell.execute_reply": "2024-07-09T06:07:24.839424Z" + "iopub.execute_input": "2024-07-09T06:22:37.993129Z", + "iopub.status.busy": "2024-07-09T06:22:37.992951Z", + "iopub.status.idle": "2024-07-09T06:22:39.161512Z", + "shell.execute_reply": "2024-07-09T06:22:39.160977Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.842750Z", - "iopub.status.busy": "2024-07-09T06:07:24.842323Z", - "iopub.status.idle": "2024-07-09T06:07:24.845243Z", - "shell.execute_reply": "2024-07-09T06:07:24.844804Z" + "iopub.execute_input": "2024-07-09T06:22:39.163953Z", + "iopub.status.busy": "2024-07-09T06:22:39.163675Z", + "iopub.status.idle": "2024-07-09T06:22:39.167013Z", + "shell.execute_reply": "2024-07-09T06:22:39.166442Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.847453Z", - "iopub.status.busy": "2024-07-09T06:07:24.847128Z", - "iopub.status.idle": "2024-07-09T06:07:24.855930Z", - "shell.execute_reply": "2024-07-09T06:07:24.855505Z" + "iopub.execute_input": "2024-07-09T06:22:39.169075Z", + "iopub.status.busy": "2024-07-09T06:22:39.168891Z", + "iopub.status.idle": "2024-07-09T06:22:39.178038Z", + "shell.execute_reply": "2024-07-09T06:22:39.177537Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.857929Z", - "iopub.status.busy": "2024-07-09T06:07:24.857595Z", - "iopub.status.idle": "2024-07-09T06:07:24.862104Z", - "shell.execute_reply": "2024-07-09T06:07:24.861695Z" + "iopub.execute_input": "2024-07-09T06:22:39.180209Z", + "iopub.status.busy": "2024-07-09T06:22:39.179770Z", + "iopub.status.idle": "2024-07-09T06:22:39.185024Z", + "shell.execute_reply": "2024-07-09T06:22:39.184472Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.864146Z", - "iopub.status.busy": "2024-07-09T06:07:24.863823Z", - "iopub.status.idle": "2024-07-09T06:07:25.049949Z", - "shell.execute_reply": "2024-07-09T06:07:25.049442Z" + "iopub.execute_input": "2024-07-09T06:22:39.187067Z", + "iopub.status.busy": "2024-07-09T06:22:39.186875Z", + "iopub.status.idle": "2024-07-09T06:22:39.372545Z", + "shell.execute_reply": "2024-07-09T06:22:39.372057Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.052422Z", - "iopub.status.busy": "2024-07-09T06:07:25.052091Z", - "iopub.status.idle": "2024-07-09T06:07:25.423667Z", - "shell.execute_reply": "2024-07-09T06:07:25.423083Z" + "iopub.execute_input": "2024-07-09T06:22:39.375070Z", + "iopub.status.busy": "2024-07-09T06:22:39.374695Z", + "iopub.status.idle": "2024-07-09T06:22:39.746103Z", + "shell.execute_reply": "2024-07-09T06:22:39.745532Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.426087Z", - "iopub.status.busy": "2024-07-09T06:07:25.425645Z", - "iopub.status.idle": "2024-07-09T06:07:25.428553Z", - "shell.execute_reply": "2024-07-09T06:07:25.428031Z" + "iopub.execute_input": "2024-07-09T06:22:39.748354Z", + "iopub.status.busy": "2024-07-09T06:22:39.747948Z", + "iopub.status.idle": "2024-07-09T06:22:39.750850Z", + "shell.execute_reply": "2024-07-09T06:22:39.750287Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.430704Z", - "iopub.status.busy": "2024-07-09T06:07:25.430393Z", - "iopub.status.idle": "2024-07-09T06:07:25.464950Z", - "shell.execute_reply": "2024-07-09T06:07:25.464317Z" + "iopub.execute_input": "2024-07-09T06:22:39.752967Z", + "iopub.status.busy": "2024-07-09T06:22:39.752650Z", + "iopub.status.idle": "2024-07-09T06:22:39.786581Z", + "shell.execute_reply": "2024-07-09T06:22:39.786005Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.467723Z", - "iopub.status.busy": "2024-07-09T06:07:25.467379Z", - "iopub.status.idle": "2024-07-09T06:07:27.572119Z", - "shell.execute_reply": "2024-07-09T06:07:27.571460Z" + "iopub.execute_input": "2024-07-09T06:22:39.788986Z", + "iopub.status.busy": "2024-07-09T06:22:39.788562Z", + "iopub.status.idle": "2024-07-09T06:22:41.833490Z", + "shell.execute_reply": "2024-07-09T06:22:41.832904Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.574872Z", - "iopub.status.busy": "2024-07-09T06:07:27.574321Z", - "iopub.status.idle": "2024-07-09T06:07:27.593711Z", - "shell.execute_reply": "2024-07-09T06:07:27.593214Z" + "iopub.execute_input": "2024-07-09T06:22:41.836099Z", + "iopub.status.busy": "2024-07-09T06:22:41.835607Z", + "iopub.status.idle": "2024-07-09T06:22:41.853902Z", + "shell.execute_reply": "2024-07-09T06:22:41.853447Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.595950Z", - "iopub.status.busy": "2024-07-09T06:07:27.595603Z", - "iopub.status.idle": "2024-07-09T06:07:27.602371Z", - "shell.execute_reply": "2024-07-09T06:07:27.601951Z" + "iopub.execute_input": "2024-07-09T06:22:41.855942Z", + "iopub.status.busy": "2024-07-09T06:22:41.855674Z", + "iopub.status.idle": "2024-07-09T06:22:41.862009Z", + "shell.execute_reply": "2024-07-09T06:22:41.861577Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.604397Z", - "iopub.status.busy": "2024-07-09T06:07:27.604145Z", - "iopub.status.idle": "2024-07-09T06:07:27.609899Z", - "shell.execute_reply": "2024-07-09T06:07:27.609354Z" + "iopub.execute_input": "2024-07-09T06:22:41.864048Z", + "iopub.status.busy": "2024-07-09T06:22:41.863746Z", + "iopub.status.idle": "2024-07-09T06:22:41.869497Z", + "shell.execute_reply": "2024-07-09T06:22:41.869049Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.612024Z", - "iopub.status.busy": "2024-07-09T06:07:27.611722Z", - "iopub.status.idle": "2024-07-09T06:07:27.622179Z", - "shell.execute_reply": "2024-07-09T06:07:27.621619Z" + "iopub.execute_input": "2024-07-09T06:22:41.871525Z", + "iopub.status.busy": "2024-07-09T06:22:41.871197Z", + "iopub.status.idle": "2024-07-09T06:22:41.881508Z", + "shell.execute_reply": "2024-07-09T06:22:41.881073Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.624399Z", - "iopub.status.busy": "2024-07-09T06:07:27.624005Z", - "iopub.status.idle": "2024-07-09T06:07:27.633408Z", - "shell.execute_reply": "2024-07-09T06:07:27.632881Z" + "iopub.execute_input": "2024-07-09T06:22:41.883405Z", + "iopub.status.busy": "2024-07-09T06:22:41.883229Z", + "iopub.status.idle": "2024-07-09T06:22:41.892315Z", + "shell.execute_reply": "2024-07-09T06:22:41.891876Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.635347Z", - "iopub.status.busy": "2024-07-09T06:07:27.635173Z", - "iopub.status.idle": "2024-07-09T06:07:27.642142Z", - "shell.execute_reply": "2024-07-09T06:07:27.641593Z" + "iopub.execute_input": "2024-07-09T06:22:41.894287Z", + "iopub.status.busy": "2024-07-09T06:22:41.894105Z", + "iopub.status.idle": "2024-07-09T06:22:41.900998Z", + "shell.execute_reply": "2024-07-09T06:22:41.900471Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.644222Z", - "iopub.status.busy": "2024-07-09T06:07:27.643908Z", - "iopub.status.idle": "2024-07-09T06:07:27.653100Z", - "shell.execute_reply": "2024-07-09T06:07:27.652566Z" + "iopub.execute_input": "2024-07-09T06:22:41.903078Z", + "iopub.status.busy": "2024-07-09T06:22:41.902737Z", + "iopub.status.idle": "2024-07-09T06:22:41.912055Z", + "shell.execute_reply": "2024-07-09T06:22:41.911568Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.655280Z", - "iopub.status.busy": "2024-07-09T06:07:27.654836Z", - "iopub.status.idle": "2024-07-09T06:07:27.669689Z", - "shell.execute_reply": "2024-07-09T06:07:27.669228Z" + "iopub.execute_input": "2024-07-09T06:22:41.914091Z", + "iopub.status.busy": "2024-07-09T06:22:41.913764Z", + "iopub.status.idle": "2024-07-09T06:22:41.929676Z", + "shell.execute_reply": "2024-07-09T06:22:41.929121Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index 40dc490de..7643450d8 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:30.416656Z", - "iopub.status.busy": "2024-07-09T06:07:30.416476Z", - "iopub.status.idle": "2024-07-09T06:07:33.393782Z", - "shell.execute_reply": "2024-07-09T06:07:33.393218Z" + "iopub.execute_input": "2024-07-09T06:22:44.582459Z", + "iopub.status.busy": "2024-07-09T06:22:44.582285Z", + "iopub.status.idle": "2024-07-09T06:22:47.462723Z", + "shell.execute_reply": "2024-07-09T06:22:47.462156Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.396250Z", - "iopub.status.busy": "2024-07-09T06:07:33.395935Z", - "iopub.status.idle": "2024-07-09T06:07:33.399661Z", - "shell.execute_reply": "2024-07-09T06:07:33.399144Z" + "iopub.execute_input": "2024-07-09T06:22:47.465496Z", + "iopub.status.busy": "2024-07-09T06:22:47.464992Z", + "iopub.status.idle": "2024-07-09T06:22:47.468609Z", + "shell.execute_reply": "2024-07-09T06:22:47.468171Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.401587Z", - "iopub.status.busy": "2024-07-09T06:07:33.401397Z", - "iopub.status.idle": "2024-07-09T06:07:45.169276Z", - "shell.execute_reply": "2024-07-09T06:07:45.168703Z" + "iopub.execute_input": "2024-07-09T06:22:47.470675Z", + "iopub.status.busy": "2024-07-09T06:22:47.470354Z", + "iopub.status.idle": "2024-07-09T06:22:59.043271Z", + "shell.execute_reply": "2024-07-09T06:22:59.042771Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd4605541b5149cd9d1ad54f08320d7b", + "model_id": "06dcb12093be456cb352de6ce861659f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "196041f8fc64445d902757f8bc0461b5", + "model_id": "790aee9705fa42f79ce0f8850fc28992", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2bba1ab8083649288982f535f9854291", + "model_id": "215e8fef035f4d37a36a704de452b760", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b922928633d406296c2f7f4a11c363c", + "model_id": "e74d0f623f774aa5a1554c10228f1654", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "65b19b2b747d4d5281997036b3117f72", + "model_id": "f85257acca8547839184b5f056eac10e", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d5400b6588744d192a0e142668a676a", + "model_id": "e9632dad724b4651afed5367d50e22c4", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8d5e4eb0eb4406c95b64e0c2246c01b", + "model_id": "f9b540e1a55a4d16ad1b5a90f594ee47", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4b166c77d384273866541f5ccf30e60", + "model_id": "22b9600afaf14805a96622049f592034", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.171479Z", - "iopub.status.busy": "2024-07-09T06:07:45.171278Z", - "iopub.status.idle": "2024-07-09T06:07:45.175170Z", - "shell.execute_reply": "2024-07-09T06:07:45.174637Z" + "iopub.execute_input": "2024-07-09T06:22:59.045398Z", + "iopub.status.busy": "2024-07-09T06:22:59.045117Z", + "iopub.status.idle": "2024-07-09T06:22:59.048809Z", + "shell.execute_reply": "2024-07-09T06:22:59.048389Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.177179Z", - "iopub.status.busy": "2024-07-09T06:07:45.176847Z", - "iopub.status.idle": "2024-07-09T06:07:56.743400Z", - "shell.execute_reply": "2024-07-09T06:07:56.742700Z" + "iopub.execute_input": "2024-07-09T06:22:59.050786Z", + "iopub.status.busy": "2024-07-09T06:22:59.050475Z", + "iopub.status.idle": "2024-07-09T06:23:10.550360Z", + "shell.execute_reply": "2024-07-09T06:23:10.549830Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e4710c1045041a7af16f0ee012a9646", + "model_id": "4dc3098204c343329173882a90c17240", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:56.746074Z", - "iopub.status.busy": "2024-07-09T06:07:56.745817Z", - "iopub.status.idle": "2024-07-09T06:08:15.057962Z", - "shell.execute_reply": "2024-07-09T06:08:15.057324Z" + "iopub.execute_input": "2024-07-09T06:23:10.553016Z", + "iopub.status.busy": "2024-07-09T06:23:10.552718Z", + "iopub.status.idle": "2024-07-09T06:23:28.623727Z", + "shell.execute_reply": "2024-07-09T06:23:28.623090Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.060710Z", - "iopub.status.busy": "2024-07-09T06:08:15.060486Z", - "iopub.status.idle": "2024-07-09T06:08:15.065482Z", - "shell.execute_reply": "2024-07-09T06:08:15.065002Z" + "iopub.execute_input": "2024-07-09T06:23:28.626614Z", + "iopub.status.busy": "2024-07-09T06:23:28.626243Z", + "iopub.status.idle": "2024-07-09T06:23:28.631908Z", + "shell.execute_reply": "2024-07-09T06:23:28.631461Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.067609Z", - "iopub.status.busy": "2024-07-09T06:08:15.067259Z", - "iopub.status.idle": "2024-07-09T06:08:15.071263Z", - "shell.execute_reply": "2024-07-09T06:08:15.070812Z" + "iopub.execute_input": "2024-07-09T06:23:28.633766Z", + "iopub.status.busy": "2024-07-09T06:23:28.633587Z", + "iopub.status.idle": "2024-07-09T06:23:28.637822Z", + "shell.execute_reply": "2024-07-09T06:23:28.637289Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.073356Z", - "iopub.status.busy": "2024-07-09T06:08:15.072969Z", - "iopub.status.idle": "2024-07-09T06:08:15.081979Z", - "shell.execute_reply": "2024-07-09T06:08:15.081440Z" + "iopub.execute_input": "2024-07-09T06:23:28.640034Z", + "iopub.status.busy": "2024-07-09T06:23:28.639708Z", + "iopub.status.idle": "2024-07-09T06:23:28.648404Z", + "shell.execute_reply": "2024-07-09T06:23:28.647970Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.083945Z", - "iopub.status.busy": "2024-07-09T06:08:15.083772Z", - "iopub.status.idle": "2024-07-09T06:08:15.110709Z", - "shell.execute_reply": "2024-07-09T06:08:15.110077Z" + "iopub.execute_input": "2024-07-09T06:23:28.650474Z", + "iopub.status.busy": "2024-07-09T06:23:28.650156Z", + "iopub.status.idle": "2024-07-09T06:23:28.677896Z", + "shell.execute_reply": "2024-07-09T06:23:28.677458Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.113263Z", - "iopub.status.busy": "2024-07-09T06:08:15.112899Z", - "iopub.status.idle": "2024-07-09T06:08:48.018465Z", - "shell.execute_reply": "2024-07-09T06:08:48.017880Z" + "iopub.execute_input": "2024-07-09T06:23:28.679944Z", + "iopub.status.busy": "2024-07-09T06:23:28.679632Z", + "iopub.status.idle": "2024-07-09T06:24:00.730609Z", + "shell.execute_reply": "2024-07-09T06:24:00.729889Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.828\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.752\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.643\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.660\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6b554b734a6e4e3d9fb6f3ff5d0940c2", + "model_id": "2d1e313f048a4f3a8de23b028b96ac30", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7b6edba21c23485a95c2c8d3aab79786", + "model_id": "2fc5c7705c8a411696033cba51b98414", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.772\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.676\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.618\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.516\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "891956e6cdf34df29d3132aa55b99817", + "model_id": "2441a271713941f58f78b8fda33f4ac6", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "39f435f587fd4607806141736054b6df", + "model_id": "3e2096230a38431c8485c89adab185e8", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.851\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.705\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.922\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.374\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62c3c15d8c074e74816c7b8d0fba7678", + "model_id": "e85162633bd84b0c8065890dd355820b", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6cbd56b47e648efb6391b45895679f0", + "model_id": "b587a2728e9640d8a9ca1b92d99742fb", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.020876Z", - "iopub.status.busy": "2024-07-09T06:08:48.020635Z", - "iopub.status.idle": "2024-07-09T06:08:48.034832Z", - "shell.execute_reply": "2024-07-09T06:08:48.034409Z" + "iopub.execute_input": "2024-07-09T06:24:00.733259Z", + "iopub.status.busy": "2024-07-09T06:24:00.732863Z", + "iopub.status.idle": "2024-07-09T06:24:00.747461Z", + "shell.execute_reply": "2024-07-09T06:24:00.746842Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.036973Z", - "iopub.status.busy": "2024-07-09T06:08:48.036566Z", - "iopub.status.idle": "2024-07-09T06:08:48.515541Z", - "shell.execute_reply": "2024-07-09T06:08:48.514904Z" + "iopub.execute_input": "2024-07-09T06:24:00.750028Z", + "iopub.status.busy": "2024-07-09T06:24:00.749413Z", + "iopub.status.idle": "2024-07-09T06:24:01.220584Z", + "shell.execute_reply": "2024-07-09T06:24:01.220037Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.518205Z", - "iopub.status.busy": "2024-07-09T06:08:48.518003Z", - "iopub.status.idle": "2024-07-09T06:10:24.891504Z", - "shell.execute_reply": "2024-07-09T06:10:24.890865Z" + "iopub.execute_input": "2024-07-09T06:24:01.222996Z", + "iopub.status.busy": "2024-07-09T06:24:01.222634Z", + "iopub.status.idle": "2024-07-09T06:25:37.104449Z", + "shell.execute_reply": "2024-07-09T06:25:37.103860Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1e3abfce0184ef19c5c108ae494316b", + "model_id": "6a90dd6a6a2443a98bde0d45de0efdde", "version_major": 2, "version_minor": 0 }, @@ -1144,10 +1144,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:24.894040Z", - "iopub.status.busy": "2024-07-09T06:10:24.893621Z", - "iopub.status.idle": "2024-07-09T06:10:25.338187Z", - "shell.execute_reply": "2024-07-09T06:10:25.337650Z" + "iopub.execute_input": "2024-07-09T06:25:37.106884Z", + "iopub.status.busy": "2024-07-09T06:25:37.106446Z", + "iopub.status.idle": "2024-07-09T06:25:37.555548Z", + "shell.execute_reply": "2024-07-09T06:25:37.554986Z" } }, "outputs": [ @@ -1293,10 +1293,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.341041Z", - "iopub.status.busy": "2024-07-09T06:10:25.340571Z", - "iopub.status.idle": "2024-07-09T06:10:25.402746Z", - "shell.execute_reply": "2024-07-09T06:10:25.402151Z" + "iopub.execute_input": "2024-07-09T06:25:37.558429Z", + "iopub.status.busy": "2024-07-09T06:25:37.557965Z", + "iopub.status.idle": "2024-07-09T06:25:37.620886Z", + "shell.execute_reply": "2024-07-09T06:25:37.620404Z" } }, "outputs": [ @@ -1400,10 +1400,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.405453Z", - "iopub.status.busy": "2024-07-09T06:10:25.405037Z", - "iopub.status.idle": "2024-07-09T06:10:25.413465Z", - "shell.execute_reply": "2024-07-09T06:10:25.413028Z" + "iopub.execute_input": "2024-07-09T06:25:37.623179Z", + "iopub.status.busy": "2024-07-09T06:25:37.622863Z", + "iopub.status.idle": "2024-07-09T06:25:37.632155Z", + "shell.execute_reply": "2024-07-09T06:25:37.631723Z" } }, "outputs": [ @@ -1533,10 +1533,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.415625Z", - "iopub.status.busy": "2024-07-09T06:10:25.415232Z", - "iopub.status.idle": "2024-07-09T06:10:25.419976Z", - "shell.execute_reply": "2024-07-09T06:10:25.419444Z" + "iopub.execute_input": "2024-07-09T06:25:37.634200Z", + "iopub.status.busy": "2024-07-09T06:25:37.633914Z", + "iopub.status.idle": "2024-07-09T06:25:37.638563Z", + "shell.execute_reply": "2024-07-09T06:25:37.638106Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1582,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.421866Z", - "iopub.status.busy": "2024-07-09T06:10:25.421691Z", - "iopub.status.idle": "2024-07-09T06:10:25.930458Z", - "shell.execute_reply": "2024-07-09T06:10:25.929824Z" + "iopub.execute_input": "2024-07-09T06:25:37.640623Z", + "iopub.status.busy": "2024-07-09T06:25:37.640325Z", + "iopub.status.idle": "2024-07-09T06:25:38.149293Z", + "shell.execute_reply": "2024-07-09T06:25:38.148744Z" } }, "outputs": [ @@ -1620,10 +1620,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.932930Z", - "iopub.status.busy": "2024-07-09T06:10:25.932562Z", - "iopub.status.idle": "2024-07-09T06:10:25.941214Z", - "shell.execute_reply": "2024-07-09T06:10:25.940770Z" + "iopub.execute_input": "2024-07-09T06:25:38.151396Z", + "iopub.status.busy": "2024-07-09T06:25:38.151125Z", + "iopub.status.idle": "2024-07-09T06:25:38.159704Z", + "shell.execute_reply": "2024-07-09T06:25:38.159246Z" } }, "outputs": [ @@ -1790,10 +1790,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.943232Z", - "iopub.status.busy": "2024-07-09T06:10:25.942999Z", - "iopub.status.idle": "2024-07-09T06:10:25.950325Z", - "shell.execute_reply": "2024-07-09T06:10:25.949767Z" + "iopub.execute_input": "2024-07-09T06:25:38.161796Z", + "iopub.status.busy": "2024-07-09T06:25:38.161530Z", + "iopub.status.idle": "2024-07-09T06:25:38.168634Z", + "shell.execute_reply": "2024-07-09T06:25:38.168169Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1869,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.952276Z", - "iopub.status.busy": "2024-07-09T06:10:25.952098Z", - "iopub.status.idle": "2024-07-09T06:10:26.694503Z", - "shell.execute_reply": "2024-07-09T06:10:26.693947Z" + "iopub.execute_input": "2024-07-09T06:25:38.170647Z", + "iopub.status.busy": "2024-07-09T06:25:38.170331Z", + "iopub.status.idle": "2024-07-09T06:25:38.896076Z", + "shell.execute_reply": "2024-07-09T06:25:38.895490Z" } }, "outputs": [ @@ -1909,10 +1909,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.697087Z", - "iopub.status.busy": "2024-07-09T06:10:26.696892Z", - "iopub.status.idle": "2024-07-09T06:10:26.712697Z", - "shell.execute_reply": "2024-07-09T06:10:26.712178Z" + "iopub.execute_input": "2024-07-09T06:25:38.898304Z", + "iopub.status.busy": "2024-07-09T06:25:38.897893Z", + "iopub.status.idle": "2024-07-09T06:25:38.913887Z", + "shell.execute_reply": "2024-07-09T06:25:38.913315Z" } }, "outputs": [ @@ -2069,10 +2069,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.714884Z", - "iopub.status.busy": "2024-07-09T06:10:26.714554Z", - "iopub.status.idle": "2024-07-09T06:10:26.720001Z", - "shell.execute_reply": "2024-07-09T06:10:26.719578Z" + "iopub.execute_input": "2024-07-09T06:25:38.916427Z", + "iopub.status.busy": "2024-07-09T06:25:38.916013Z", + "iopub.status.idle": "2024-07-09T06:25:38.921757Z", + "shell.execute_reply": "2024-07-09T06:25:38.921224Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2117,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.721955Z", - "iopub.status.busy": "2024-07-09T06:10:26.721631Z", - "iopub.status.idle": "2024-07-09T06:10:27.109651Z", - "shell.execute_reply": "2024-07-09T06:10:27.109044Z" + "iopub.execute_input": "2024-07-09T06:25:38.924037Z", + "iopub.status.busy": "2024-07-09T06:25:38.923722Z", + "iopub.status.idle": "2024-07-09T06:25:39.389398Z", + "shell.execute_reply": "2024-07-09T06:25:39.388872Z" } }, "outputs": [ @@ -2202,10 +2202,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.112053Z", - "iopub.status.busy": "2024-07-09T06:10:27.111865Z", - "iopub.status.idle": "2024-07-09T06:10:27.121489Z", - "shell.execute_reply": "2024-07-09T06:10:27.120936Z" + "iopub.execute_input": "2024-07-09T06:25:39.392016Z", + "iopub.status.busy": "2024-07-09T06:25:39.391689Z", + "iopub.status.idle": "2024-07-09T06:25:39.400809Z", + "shell.execute_reply": "2024-07-09T06:25:39.400322Z" } }, "outputs": [ @@ -2230,47 +2230,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2333,10 +2333,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.123756Z", - "iopub.status.busy": "2024-07-09T06:10:27.123578Z", - "iopub.status.idle": "2024-07-09T06:10:27.128344Z", - "shell.execute_reply": "2024-07-09T06:10:27.127804Z" + "iopub.execute_input": "2024-07-09T06:25:39.403252Z", + "iopub.status.busy": "2024-07-09T06:25:39.402932Z", + "iopub.status.idle": "2024-07-09T06:25:39.408523Z", + "shell.execute_reply": "2024-07-09T06:25:39.408038Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2373,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.130472Z", - "iopub.status.busy": "2024-07-09T06:10:27.130300Z", - "iopub.status.idle": "2024-07-09T06:10:27.307299Z", - "shell.execute_reply": "2024-07-09T06:10:27.306712Z" + "iopub.execute_input": "2024-07-09T06:25:39.410787Z", + "iopub.status.busy": "2024-07-09T06:25:39.410472Z", + "iopub.status.idle": "2024-07-09T06:25:39.613099Z", + "shell.execute_reply": "2024-07-09T06:25:39.612513Z" } }, "outputs": [ @@ -2418,10 +2418,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.309453Z", - "iopub.status.busy": "2024-07-09T06:10:27.309267Z", - "iopub.status.idle": "2024-07-09T06:10:27.317287Z", - "shell.execute_reply": "2024-07-09T06:10:27.316770Z" + "iopub.execute_input": "2024-07-09T06:25:39.615178Z", + "iopub.status.busy": "2024-07-09T06:25:39.615000Z", + "iopub.status.idle": "2024-07-09T06:25:39.623056Z", + "shell.execute_reply": "2024-07-09T06:25:39.622584Z" } }, "outputs": [ @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.319255Z", - "iopub.status.busy": "2024-07-09T06:10:27.319003Z", - "iopub.status.idle": "2024-07-09T06:10:27.489162Z", - "shell.execute_reply": "2024-07-09T06:10:27.488581Z" + "iopub.execute_input": "2024-07-09T06:25:39.624851Z", + "iopub.status.busy": "2024-07-09T06:25:39.624680Z", + "iopub.status.idle": "2024-07-09T06:25:39.818392Z", + "shell.execute_reply": "2024-07-09T06:25:39.817872Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.491411Z", - "iopub.status.busy": "2024-07-09T06:10:27.491227Z", - "iopub.status.idle": "2024-07-09T06:10:27.495468Z", - "shell.execute_reply": "2024-07-09T06:10:27.494923Z" + "iopub.execute_input": "2024-07-09T06:25:39.820461Z", + "iopub.status.busy": "2024-07-09T06:25:39.820284Z", + "iopub.status.idle": "2024-07-09T06:25:39.824833Z", + "shell.execute_reply": "2024-07-09T06:25:39.824377Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2590,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00bb56c3f68a4c468fa0c17bd9c4777a": { + "0048ce4822394612977d54522f371396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03645e2db82a48cea591a8ecc43409ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "048da9b24b0844fdaaadce1da85d3915": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2679,72 @@ "width": null } }, - "00d54377b2e443bdb88c0393deaac935": { + "04cca25384c24b1c94d911de385adc2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7175568282174c17aabd5b48f20140b2", + "placeholder": "​", + "style": "IPY_MODEL_803df58ad8f246a7aa7af05b01bbbdd2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0640dc756fe54e39ba89546a15f279be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06dcb12093be456cb352de6ce861659f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8381331e81c54cd79cb929ba488eab91", + "IPY_MODEL_a81bc963e07b4ca2a4b8dde6b946165b", + "IPY_MODEL_4886dc2baffe47ecb690143c953f17a9" + ], + "layout": "IPY_MODEL_fd9234c25dae4c37a35f1e4d52af48c6", + "tabbable": null, + "tooltip": null + } + }, + "07de4e87697443a892880c15d1e511c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,30 +2797,23 @@ "width": null } }, - "01d6ba701f1e47b693b47938240dfc44": { + "086f6f5b94bf449da8bf7c1157f5c8a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4eb9a8fc2a49139695cf9c6270a915", - "placeholder": "​", - "style": "IPY_MODEL_dc13e0ad81f143a2b5d4c0a44532f5b5", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1312.46it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "01ecc56aeeab431f9b9070473e2195df": { + "0a5df6da0ddb43b7937c82e97c6d8d54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,33 +2866,7 @@ "width": null } }, - "03823f9501e94f56beacf1613576e9dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132dc7af6bdb48ac9a6f0c3fd813002f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5f09acaac394bb5bdceb2dc492585cb", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "04be2e19fc3542cba1d0cb7b9b407a95": { + "0b18d70977e84a5b881906cb08d32a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2816,7 +2884,60 @@ "text_color": null } }, - "069041277d62430c89d63c6ea9627b6a": { + "0b3fb420b49940f589e153c0d5c3fdec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d1066339f76479d8d58e5ae35748f5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2831,15 +2952,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e416714bbcb4438b9179a39662ae3c9d", + "layout": "IPY_MODEL_15c58bf8ec2c41c58fdc7ce58a27b6fd", "placeholder": "​", - "style": "IPY_MODEL_5c28da92a87748afb024889018deb170", + "style": "IPY_MODEL_5a7bae3cefc94a02b58e9ad0e52aacfa", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.37MB/s]" + "value": "Downloading data: 100%" } }, - "075db8536d174c2c9ea47cd94e70d981": { + "13c0b9289c5e4e8f92a21c0307aae6db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2857,7 +2978,7 @@ "text_color": null } }, - "0f8c591a5a474389ba8bdbce5f559954": { + "140978469fad46c2b6b98809eddb12e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2910,23 +3031,30 @@ "width": null } }, - "131b0789bcf143a599cbd6e57b98a768": { + "1524351aaa084a11ad505c11404bdbea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8df85e649d6248f69af1b8b2c06dc535", + "placeholder": "​", + "style": "IPY_MODEL_2b0a6e80cee24c8d92776690977c796c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.34it/s]" } }, - "132dc7af6bdb48ac9a6f0c3fd813002f": { + "15c58bf8ec2c41c58fdc7ce58a27b6fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2979,30 +3107,7 @@ "width": null } }, - "1347b08ce056434db43829c852acae6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df1f220280f9444e97bb1f2206036724", - "placeholder": "​", - "style": "IPY_MODEL_228decf3fc7b4b14998553b0f2546e6d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 107MB/s]" - } - }, - "1706e87bbedf4666b19fb67afd605807": { + "160801910dde40a3bc9f92bb4e901944": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3055,7 +3160,23 @@ "width": null } }, - "17bfd66f1c9b453f99645c87eb6daec1": { + "19246b6d91f14aaa9f10d7cb83049531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19a410fe62c9469fbbfdb218f3a51fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3070,55 +3191,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2fc5097f7a2449695b74f340b163dbd", + "layout": "IPY_MODEL_508d1420c3244c5c83b9ed16155ada6e", "placeholder": "​", - "style": "IPY_MODEL_d596fca544e54787848bb610c63e3218", + "style": "IPY_MODEL_336fcd5623114b3099304ef7c8d0fd99", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + "value": " 4/4 [00:00<00:00, 1277.68it/s]" } }, - "18c247743d574b23859f998162e74050": { + "1a69c5c720624a26a9ef7b1cf11811fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "196041f8fc64445d902757f8bc0461b5": { + "1a70726215b842018678da6d06100009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9a72ec9f2e6549f79a8b592fdf22dc2e", - "IPY_MODEL_a9cebeca318244728411d7a1bbbcfdcd", - "IPY_MODEL_55bf2248b3bc475c842bccc8c8152be0" - ], - "layout": "IPY_MODEL_cb4004f3b5e94f01b3f04c2f61489f80", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "19d308a458ec4a08b9d2bad00f5870f3": { + "1c78106bc0d64791b1920a0bba595880": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,47 +3286,7 @@ "width": null } }, - "1bc1f27f582a448a8c9266309f30be75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1d5400b6588744d192a0e142668a676a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c3da49dd6970428a9727fd888d6a07ee", - "IPY_MODEL_ebf23d88069d459aae84207ff5363fab", - "IPY_MODEL_17bfd66f1c9b453f99645c87eb6daec1" - ], - "layout": "IPY_MODEL_4ebecbf20fe3449fba89b686ed581905", - "tabbable": null, - "tooltip": null - } - }, - "1df9db75114848a59f7fdd0ce91a687a": { + "1d30818e74e74811938c25e51402dba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,96 +3339,46 @@ "width": null } }, - "21206f0ccea44b46b11d0821d3cdadbe": { + "1e43c58cbb0d4962913d5ebbcdf1554a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2eb285ef00d8424b940fcd52e171abf0", + "placeholder": "​", + "style": "IPY_MODEL_d5a9c110896c475face60d8f33b9046c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "228decf3fc7b4b14998553b0f2546e6d": { + "1f62a32153e44d988bd8265c95d6522b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "240c2ebe5dc54104a1f10d985ffba975": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "bar_color": null, + "description_width": "" } }, - "2449bbbcd46a43e6aae3c8afbb81bdb3": { + "209c42932bea4cfc866adc42d1e0bc34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3371,7 +3396,7 @@ "text_color": null } }, - "2574510c0f7f417e8dfc009e4994bec3": { + "20a3b73248e646e4993c7afc88dc3bb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3386,74 +3411,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ea5cb47ef6f4603b0653421aab46523", + "layout": "IPY_MODEL_9954def9bc864f319508e65fe36fe98b", "placeholder": "​", - "style": "IPY_MODEL_66c810aedffc439696fd6bacef156446", + "style": "IPY_MODEL_1a69c5c720624a26a9ef7b1cf11811fb", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "26b1a5eb544f41938059bcde43ece5ec": { + "215e8fef035f4d37a36a704de452b760": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1706e87bbedf4666b19fb67afd605807", - "placeholder": "​", - "style": "IPY_MODEL_88cbcf1a55e0425d8c8c3c335d271c37", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e89a1ca0e0b746b0b9349efd7a426e3f", + "IPY_MODEL_5bf0bcb594a046af91590125b69df952", + "IPY_MODEL_4d61ebc6154b44ea91518cfb38cf00b9" + ], + "layout": "IPY_MODEL_7eb94f5f7a9746bfbb719504013c7326", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.87it/s]" - } - }, - "28443daff12b402baed64f1b5d0fc8e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "28f8261f18b84882ba428c63eace54e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "29170a403a424dcfacc506b91190a1dc": { + "2183a55cd7d345069c3ac605305b0edb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3471,7 +3461,7 @@ "text_color": null } }, - "298221d0cc1446ce993bdb7c7803efb8": { + "21e26b29d83741a0ac17ca8718fb5ef5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3524,71 +3514,7 @@ "width": null } }, - "2a2dc27f67c34e2982043a2f79c14de3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2bba1ab8083649288982f535f9854291": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7517aec27ff84cf4adb25156adf9883c", - "IPY_MODEL_54c6bc5d398440fe8ad2de672c36b9ae", - "IPY_MODEL_1347b08ce056434db43829c852acae6f" - ], - "layout": "IPY_MODEL_00d54377b2e443bdb88c0393deaac935", - "tabbable": null, - "tooltip": null - } - }, - "2e4710c1045041a7af16f0ee012a9646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b385c56f713245438f036b829b7057eb", - "IPY_MODEL_a9e6164c82aa48da9b7f39e1e8611e10", - "IPY_MODEL_4aaa65f93be449728c2f251b5174dd7d" - ], - "layout": "IPY_MODEL_79d18d37893e49a38abd5c29b0b4f81e", - "tabbable": null, - "tooltip": null - } - }, - "2f4eb9a8fc2a49139695cf9c6270a915": { + "2221768dfac3448cabb0bbf2bb0d5d7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3641,7 +3567,31 @@ "width": null } }, - "2fa3f38780ca4859b7969d5d2a4fcd61": { + "22b9600afaf14805a96622049f592034": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d81d5ebb400493cbbee965c4f1d82c3", + "IPY_MODEL_c25be99949354d9b93261eb01cd7f371", + "IPY_MODEL_3f09c19718b949a48059dec191d9df88" + ], + "layout": "IPY_MODEL_2a8e473785f54b5380a3af0bd5ee8ec5", + "tabbable": null, + "tooltip": null + } + }, + "2397a262e2ab4faaa19c65aadd199f4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3656,15 +3606,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ad393e55e6bf45c8b5e243058a28d53f", + "layout": "IPY_MODEL_7c7a25483bae4f619cfe4afba2815a1e", "placeholder": "​", - "style": "IPY_MODEL_6fb209a0dcd9424dbd5459259cf91e81", + "style": "IPY_MODEL_24343e388fcd48f38c917201d72dce78", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.91it/s]" + "value": " 40/40 [00:00<00:00, 66.55it/s]" } }, - "3174d80e40c24cac9b15db890d599220": { + "24133d82571542d193f42c0273b76a7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3717,91 +3667,67 @@ "width": null } }, - "325cae4479044735a8d7717951188993": { + "24343e388fcd48f38c917201d72dce78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "33cdba775984444396b1d4c9f0a95c94": { + "2441a271713941f58f78b8fda33f4ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39a6f7c0982449d28b821be6784720b2", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44680a52cd6e4c6aa0004d8a0bd638a8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49f26873e5144310b3a59d54e3402106", + "IPY_MODEL_fe504683f63741bdac7f7f37aacf03d2", + "IPY_MODEL_8c5b91a2c962426c9d74153961b3f44d" + ], + "layout": "IPY_MODEL_b391fb64df85406aa863198b38de27eb", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "3522c629e18843719c6dbc2cad7d7fc4": { + "273c6aaed1d14c19893916ddb87297a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "359b79f7c9b0473b9551b61fbe8b7e7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e02cdb3570024c49bb96ffcbc8948970", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6feb8a8c3d3a4938bea5e24915a122fb", - "tabbable": null, - "tooltip": null, - "value": 29515.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "368cc0e1d6734409878e33ca4d54012a": { + "2a8e473785f54b5380a3af0bd5ee8ec5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3780,49 @@ "width": null } }, - "38b582305d03499a81383d2c820015ba": { + "2b0a6e80cee24c8d92776690977c796c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2d1e313f048a4f3a8de23b028b96ac30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01a831193cb480fa8538ccac1625826", + "IPY_MODEL_7c16646bae234611b7eed4f389c43a78", + "IPY_MODEL_1524351aaa084a11ad505c11404bdbea" + ], + "layout": "IPY_MODEL_5e63e2472a434921a76445a39db78557", + "tabbable": null, + "tooltip": null + } + }, + "2eb285ef00d8424b940fcd52e171abf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,7 +3875,31 @@ "width": null } }, - "39a6f7c0982449d28b821be6784720b2": { + "2fc5c7705c8a411696033cba51b98414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_380f5576d14c4aa3957661b21a817720", + "IPY_MODEL_c5e5cf9a26c0498cbbbc47b2b513a358", + "IPY_MODEL_67bcc9c1c8ee40d6910452f187311cd2" + ], + "layout": "IPY_MODEL_512f0fdef9fd429cad8c5f4ed2059739", + "tabbable": null, + "tooltip": null + } + }, + "3352d2afb83f411eb34ef57cd4914610": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3960,31 +3952,7 @@ "width": null } }, - "39f435f587fd4607806141736054b6df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e1e3e01b912477595f0702fa3d3043b", - "IPY_MODEL_be3f3fec721448b1942e5f66a28630e9", - "IPY_MODEL_2fa3f38780ca4859b7969d5d2a4fcd61" - ], - "layout": "IPY_MODEL_3174d80e40c24cac9b15db890d599220", - "tabbable": null, - "tooltip": null - } - }, - "3b6fd5946d154ca3b3c1477ecd5510ab": { + "336fcd5623114b3099304ef7c8d0fd99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4002,31 +3970,7 @@ "text_color": null } }, - "3b922928633d406296c2f7f4a11c363c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd5289f0713644e7a085dd0fa5a5b4a7", - "IPY_MODEL_359b79f7c9b0473b9551b61fbe8b7e7d", - "IPY_MODEL_069041277d62430c89d63c6ea9627b6a" - ], - "layout": "IPY_MODEL_6a1e82417b0d4e5bb80cf02543cd79ff", - "tabbable": null, - "tooltip": null - } - }, - "3bf0b89a3d92407d832df29196d61ea2": { + "3382045b67e54a7092879295b3f663f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4079,7 +4023,7 @@ "width": null } }, - "3cc740083d8443cba7eb914038225918": { + "345c5ca93fa94badbbf86dcc2fde77a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4094,33 +4038,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b6286c3ea93414bb16571506e25d347", + "layout": "IPY_MODEL_408df73b367a48808418e0ac16815aef", "placeholder": "​", - "style": "IPY_MODEL_eb2f621f64a84dc8bd2155d241bd5e62", + "style": "IPY_MODEL_fd5d6bff1fad4857abafef9b11b3dfe4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.56it/s]" + "value": " 40/40 [00:00<00:00, 60.26it/s]" } }, - "3e69f9cf29d34cc381b10a6789979acf": { + "36e9f11e672e4c928d6b86537f21d20f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "426a8afc214b479baaeb9e8377e0f0d4": { + "380f5576d14c4aa3957661b21a817720": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4135,57 +4077,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1df9db75114848a59f7fdd0ce91a687a", + "layout": "IPY_MODEL_3a15e0a1dbb8487daf29b7db56d34511", "placeholder": "​", - "style": "IPY_MODEL_21206f0ccea44b46b11d0821d3cdadbe", + "style": "IPY_MODEL_b0b21430f5b9446195933039b4632b6f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8649.10 examples/s]" + "value": "100%" } }, - "44680a52cd6e4c6aa0004d8a0bd638a8": { + "3956333acd4649dd8a66f905633d9a1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "44f00a50f1674a53a847ced00a1a1aa8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4aae17914634179ba6ea992729761fb", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_18c247743d574b23859f998162e74050", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "470825afc5e34409afa12f9805c6eba9": { + "3a15e0a1dbb8487daf29b7db56d34511": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4238,25 +4156,7 @@ "width": null } }, - "49cd0886c40048d5b78db2aa719fc1d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4aaa65f93be449728c2f251b5174dd7d": { + "3a97aab207204e0fb9a0b492587021ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4271,54 +4171,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcec722d627145cf96d7bad0f67e25d9", + "layout": "IPY_MODEL_a8ef0954dcca4870a833eda0e973e2a0", "placeholder": "​", - "style": "IPY_MODEL_8a076d7eb59e4537abfac89fa37372e4", + "style": "IPY_MODEL_6a37073f2b7d4c349bb87cb4719c587d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 4855.77 examples/s]" + "value": "Downloading data: 100%" } }, - "4ab3adf0bd104266a806b7d828f8ca0b": { + "3c579cf673fd400b97b03f32b9b95e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4b257b19650e432a91a32e404b137423": { + "3cf5000751a1413faba426291a215dff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c6d8c2c52594f15b9ce9a2fff3b28d0", - "placeholder": "​", - "style": "IPY_MODEL_d5b1e2ede532485f989cdd9654c0c392", + "layout": "IPY_MODEL_a035588db59040fda6d47042d64418a5", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8995f1250ad74a90bfc13b5eff00a2fd", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 29515.0 + } + }, + "3e2096230a38431c8485c89adab185e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5970145c544541c3a0c064690e3b8bc8", + "IPY_MODEL_dde263477419437a9af2ca03171dadcd", + "IPY_MODEL_2397a262e2ab4faaa19c65aadd199f4d" + ], + "layout": "IPY_MODEL_634d98e457d644a884fc562b0b5d877b", + "tabbable": null, + "tooltip": null } }, - "4b27bedd5f134f52a7334e3638e784cb": { + "3e9e0a7872664289907ea9b2a0c0f428": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4371,8 +4300,31 @@ "width": null } }, - "4b6286c3ea93414bb16571506e25d347": { - "model_module": "@jupyter-widgets/base", + "3f09c19718b949a48059dec191d9df88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6ef56fd6db2466da0273fed8540bed9", + "placeholder": "​", + "style": "IPY_MODEL_5edfca35fc1e45d7850bbe3d5ac2afb4", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8732.57 examples/s]" + } + }, + "3f14c7dcb14b4ff9b9a6110a6ebeea9a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -4424,7 +4376,23 @@ "width": null } }, - "4c10d499b1454a9db990b1eee7d30416": { + "3faa0e46f82e4e81b929be6c700311ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "408df73b367a48808418e0ac16815aef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4477,7 +4445,7 @@ "width": null } }, - "4ebecbf20fe3449fba89b686ed581905": { + "436dcfd1d6524d58997ebd20abd27ac3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4530,7 +4498,67 @@ "width": null } }, - "50962242a0be4c5fb1f19bd9ba3796a1": { + "440697a08c6346efa46be2fb03bac8e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4586a50b001c47b39290a335d19b949d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a5df6da0ddb43b7937c82e97c6d8d54", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a70726215b842018678da6d06100009", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "4803cfdca0f84916a50f60b8c4611a48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48054868536d4802a306884dbdf93ced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4546,7 +4574,100 @@ "description_width": "" } }, - "50b772c22a484ec39d88b6aca3ce2b03": { + "4886dc2baffe47ecb690143c953f17a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21e26b29d83741a0ac17ca8718fb5ef5", + "placeholder": "​", + "style": "IPY_MODEL_0048ce4822394612977d54522f371396", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 627kB/s]" + } + }, + "49f26873e5144310b3a59d54e3402106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3382045b67e54a7092879295b3f663f8", + "placeholder": "​", + "style": "IPY_MODEL_dc05e2e419574abb89ddec85c5fcc81d", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4d61ebc6154b44ea91518cfb38cf00b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c670dd237db04ca9a6e63e4d35cecdb4", + "placeholder": "​", + "style": "IPY_MODEL_0b18d70977e84a5b881906cb08d32a0b", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 105MB/s]" + } + }, + "4dc3098204c343329173882a90c17240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e43c58cbb0d4962913d5ebbcdf1554a", + "IPY_MODEL_6968618e0c5047b4ace24b3be9d82b40", + "IPY_MODEL_5522e860260648818409cb45e8e8fe97" + ], + "layout": "IPY_MODEL_d83e3a00a6514bd7867d7bbbe2edf9f5", + "tabbable": null, + "tooltip": null + } + }, + "508d1420c3244c5c83b9ed16155ada6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4599,7 +4720,7 @@ "width": null } }, - "52ea11b6adb8407e88b4de65546300dd": { + "512f0fdef9fd429cad8c5f4ed2059739": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4652,7 +4773,7 @@ "width": null } }, - "54c6bc5d398440fe8ad2de672c36b9ae": { + "51598d19ee6b4333a63b1d6da5fa14e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4668,40 +4789,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01ecc56aeeab431f9b9070473e2195df", - "max": 26421880.0, + "layout": "IPY_MODEL_a7643f32743c4af6897aa249c9d0be2f", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3522c629e18843719c6dbc2cad7d7fc4", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "55bf2248b3bc475c842bccc8c8152be0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58285b3b0ec3462d94bb77a7c7b43914", - "placeholder": "​", - "style": "IPY_MODEL_b8a9635845a942c4b071429b568defb1", + "style": "IPY_MODEL_36e9f11e672e4c928d6b86537f21d20f", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.39MB/s]" + "value": 60000.0 } }, - "57b1914593884597ab649943b81cf1e8": { + "517e9a88dd474cac8c7f7723d261a5fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4754,7 +4852,56 @@ "width": null } }, - "581b0a844bed446d8fcd2fd92a517bb6": { + "5522e860260648818409cb45e8e8fe97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5aee2c22e48477b9f398e4ad03d9e34", + "placeholder": "​", + "style": "IPY_MODEL_dd31c22f11524a368f9eb1cd18be16f2", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7326.12 examples/s]" + } + }, + "5789650eb64d4dbab1f8c667a5fd4cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed9503bde9bc41e0912e3c94c2a43266", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3faa0e46f82e4e81b929be6c700311ef", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "59346cab1ea9483584b6020a911d0be8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4807,86 +4954,30 @@ "width": null } }, - "58285b3b0ec3462d94bb77a7c7b43914": { - "model_module": "@jupyter-widgets/base", + "5970145c544541c3a0c064690e3b8bc8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5aa1f846986f48738dc22ad6b5fc5eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e6d9becff77b42d59be635fa6580a8e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_325cae4479044735a8d7717951188993", + "layout": "IPY_MODEL_6c31a58fa1bb416c8d82c1038eab5edc", + "placeholder": "​", + "style": "IPY_MODEL_9266dd3df82b430c88bf828066284aab", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "5c28da92a87748afb024889018deb170": { + "5a7bae3cefc94a02b58e9ad0e52aacfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4904,60 +4995,33 @@ "text_color": null } }, - "5f5ef63b6a614a69883bfa94a9302743": { - "model_module": "@jupyter-widgets/base", + "5bf0bcb594a046af91590125b69df952": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d2d50b86148485fb3e3884e2b2bbf34", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6cdfc2ba48ab4f3a9a18b3b28c17641a", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "609338d8355747b9bd1491ce89b327f5": { + "5d4e96503b8040e196dd68f00001b30a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5010,31 +5074,23 @@ "width": null } }, - "62c3c15d8c074e74816c7b8d0fba7678": { + "5dcfa0777e6540998053e4a29b29b806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df585fd875034d5cae08c4684ad20c2f", - "IPY_MODEL_ff5dd94e778e4a3a9a4f34a8b29844b2", - "IPY_MODEL_3cc740083d8443cba7eb914038225918" - ], - "layout": "IPY_MODEL_891a944220b3422db752100ab9244125", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "630337ea4da741c9ae70a52fa0e78a29": { + "5e63e2472a434921a76445a39db78557": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5087,31 +5143,33 @@ "width": null } }, - "65b19b2b747d4d5281997036b3117f72": { + "5ea8be39dce64842a42fe020b19fc090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_71842d6d22e64009a0383929004a685e", - "IPY_MODEL_ec65d1696272499aae2176b681d4abeb", - "IPY_MODEL_873b3e16fd5c47d1ac1a455bab6f19c9" - ], - "layout": "IPY_MODEL_c5b34df732014977a42409332881088e", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f537f948c654bed919b428785993db0", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_76b1d6ca14ca4c4d962e620e94507dff", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "66c810aedffc439696fd6bacef156446": { + "5edfca35fc1e45d7850bbe3d5ac2afb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5129,30 +5187,25 @@ "text_color": null } }, - "678ad1f4e5ca473e8370433fa2fc17b1": { + "612489c1401e49c9bb846fee02bd9f6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00bb56c3f68a4c468fa0c17bd9c4777a", - "placeholder": "​", - "style": "IPY_MODEL_9bfbe5f7520948028e0423e3a007e614", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68f7c63cc3134dab9aed0bfa7436f944": { + "6198d3b6f1a04ba4a34a5d2018c9b155": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5205,7 +5258,7 @@ "width": null } }, - "6a1e82417b0d4e5bb80cf02543cd79ff": { + "634d98e457d644a884fc562b0b5d877b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5258,75 +5311,106 @@ "width": null } }, - "6b5517a69839448db9d026068acf99a3": { + "63ef519d04dc4bbd9c67f568f10d54d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82cb4f38207f47d5b97c3ecb4462795c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_131b0789bcf143a599cbd6e57b98a768", + "layout": "IPY_MODEL_24133d82571542d193f42c0273b76a7d", + "placeholder": "​", + "style": "IPY_MODEL_801840cd919742fdbe5c2e8072b678cd", "tabbable": null, "tooltip": null, - "value": 4.0 + "value": "Downloading readme: 100%" } }, - "6b554b734a6e4e3d9fb6f3ff5d0940c2": { - "model_module": "@jupyter-widgets/controls", + "66f7cb4e6bf441a09c4dc48e13bc4fc0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2574510c0f7f417e8dfc009e4994bec3", - "IPY_MODEL_5aa1f846986f48738dc22ad6b5fc5eb9", - "IPY_MODEL_26b1a5eb544f41938059bcde43ece5ec" - ], - "layout": "IPY_MODEL_630337ea4da741c9ae70a52fa0e78a29", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6d04fdcfce89428dbf6319ffe1ba350f": { + "67bcc9c1c8ee40d6910452f187311cd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa87a07117a74232955cb6e2e8b66aa9", + "placeholder": "​", + "style": "IPY_MODEL_3c579cf673fd400b97b03f32b9b95e1d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.84it/s]" } }, - "6d5c548246bf4bdbb636d3a3766345a4": { + "6968618e0c5047b4ace24b3be9d82b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5342,17 +5426,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_733bc7ecc3ea4fc398ecd2611d214af7", + "layout": "IPY_MODEL_59346cab1ea9483584b6020a911d0be8", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1bc1f27f582a448a8c9266309f30be75", + "style": "IPY_MODEL_4803cfdca0f84916a50f60b8c4611a48", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "6e6489c700d54df69ff90b573c906911": { + "6a0d54aeee9e43a2a6613a32708b583c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5405,65 +5489,12 @@ "width": null } }, - "6ea5cb47ef6f4603b0653421aab46523": { - "model_module": "@jupyter-widgets/base", + "6a37073f2b7d4c349bb87cb4719c587d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6fb209a0dcd9424dbd5459259cf91e81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, @@ -5476,46 +5507,31 @@ "text_color": null } }, - "6feb8a8c3d3a4938bea5e24915a122fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "71842d6d22e64009a0383929004a685e": { + "6a90dd6a6a2443a98bde0d45de0efdde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68f7c63cc3134dab9aed0bfa7436f944", - "placeholder": "​", - "style": "IPY_MODEL_bf849ce1955e49498468867578cb2b82", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_702d10c13f464c7f9144c3ec519a43d5", + "IPY_MODEL_51598d19ee6b4333a63b1d6da5fa14e0", + "IPY_MODEL_f8b91b2b5043498da2181511d46d09c8" + ], + "layout": "IPY_MODEL_6ff8decb43474cec8270bc1aef096a09", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "721e1e458b6f49229779a9de4609ca92": { + "6c31a58fa1bb416c8d82c1038eab5edc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5568,7 +5584,7 @@ "width": null } }, - "733bc7ecc3ea4fc398ecd2611d214af7": { + "6cd8c1cd5f2447968f787deb71aa5bd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5621,30 +5637,7 @@ "width": null } }, - "7517aec27ff84cf4adb25156adf9883c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c436f7262e954289901a6f4e89035f4d", - "placeholder": "​", - "style": "IPY_MODEL_92f6dc8906c04997862913bc427ad476", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "7556d3f58c814407862942b3f781e8a6": { + "6cdfc2ba48ab4f3a9a18b3b28c17641a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5660,7 +5653,7 @@ "description_width": "" } }, - "77ba2f60a09d41d3a6e43c6821ec0634": { + "6f537f948c654bed919b428785993db0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5713,7 +5706,7 @@ "width": null } }, - "7816d15cde184da3b4900d3062e666d2": { + "6ff8decb43474cec8270bc1aef096a09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5766,25 +5759,30 @@ "width": null } }, - "79c09ae007724b7da175f15e77c939b5": { + "702d10c13f464c7f9144c3ec519a43d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc0cfa74fd9b478baa3776548265f98f", + "placeholder": "​", + "style": "IPY_MODEL_273c6aaed1d14c19893916ddb87297a8", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "79d18d37893e49a38abd5c29b0b4f81e": { + "7175568282174c17aabd5b48f20140b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5837,7 +5835,91 @@ "width": null } }, - "79e3577f86234a258c9acd26c706e0ff": { + "76b1d6ca14ca4c4d962e620e94507dff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "76d4d52a162a40a6aad6c51613675dd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "790aee9705fa42f79ce0f8850fc28992": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63ef519d04dc4bbd9c67f568f10d54d8", + "IPY_MODEL_7dbb1c566226438c82092b5954494254", + "IPY_MODEL_91cb9b53980c47cd817c545014defd09" + ], + "layout": "IPY_MODEL_9fa40d4368164452af5dec4576e541a7", + "tabbable": null, + "tooltip": null + } + }, + "7c16646bae234611b7eed4f389c43a78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9afd660dbeb04470a375320dc78c044c", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_48054868536d4802a306884dbdf93ced", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "7c7a25483bae4f619cfe4afba2815a1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5890,31 +5972,23 @@ "width": null } }, - "7b6edba21c23485a95c2c8d3aab79786": { + "7d3d1214cad84f609b2ae65551813ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba73c157fdb94c65b92dba1069f61646", - "IPY_MODEL_81c0397a4d694cb2b7b9202a67b12054", - "IPY_MODEL_a07c4d7451e740a3b7cfc737ab615ac9" - ], - "layout": "IPY_MODEL_be7e225c537c47daaef5f0ac239d1f05", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "80c62a5efa2b42ce85de10d4f9638e15": { + "7d81d5ebb400493cbbee965c4f1d82c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5929,33 +6003,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed87086cfa9c41729602000b60ca20f5", + "layout": "IPY_MODEL_f74501f2cd3a424a9fd976bc8add6990", "placeholder": "​", - "style": "IPY_MODEL_a262c4ae9287449fa95c34bde946bb1d", + "style": "IPY_MODEL_8689ad17b83c46c1ab297ec243208f64", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.48it/s]" - } - }, - "81af3bb4d3be46abb3e8fec013b0ab4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating test split: 100%" } }, - "81c0397a4d694cb2b7b9202a67b12054": { + "7dbb1c566226438c82092b5954494254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5971,17 +6027,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_470825afc5e34409afa12f9805c6eba9", - "max": 40.0, + "layout": "IPY_MODEL_6cd8c1cd5f2447968f787deb71aa5bd8", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4ab3adf0bd104266a806b7d828f8ca0b", + "style": "IPY_MODEL_e73b799b5ff64804a99810863c6f0533", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 8845.0 } }, - "8253cf2e395646f0a170750f8c426d62": { + "7eb94f5f7a9746bfbb719504013c7326": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6034,83 +6090,59 @@ "width": null } }, - "82cb4f38207f47d5b97c3ecb4462795c": { - "model_module": "@jupyter-widgets/base", + "801840cd919742fdbe5c2e8072b678cd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "833c213f3dfb4616b0ac1c52e439ec3e": { + "803df58ad8f246a7aa7af05b01bbbdd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff23c9d5761b436eb1d73a55e8f32ea8", - "placeholder": "​", - "style": "IPY_MODEL_8dfdad83c03f4aa08bc19fe37e73bb03", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "805ea7e6fe75453dab92e83969f8fe93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "873b3e16fd5c47d1ac1a455bab6f19c9": { + "82fc78533dbc46d08a781919716d2335": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6125,57 +6157,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f5ef63b6a614a69883bfa94a9302743", + "layout": "IPY_MODEL_5d4e96503b8040e196dd68f00001b30a", "placeholder": "​", - "style": "IPY_MODEL_075db8536d174c2c9ea47cd94e70d981", + "style": "IPY_MODEL_0640dc756fe54e39ba89546a15f279be", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 68.4MB/s]" - } - }, - "88cbcf1a55e0425d8c8c3c335d271c37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating train split: 100%" } }, - "891956e6cdf34df29d3132aa55b99817": { + "8381331e81c54cd79cb929ba488eab91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4b257b19650e432a91a32e404b137423", - "IPY_MODEL_cf2c1748546e4ac4918f44c9de22b1d4", - "IPY_MODEL_a9fbbe85922f431a91157ec285ca35be" - ], - "layout": "IPY_MODEL_9608c18d1d874f2a9e8d6ff6a53ac7ef", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_048da9b24b0844fdaaadce1da85d3915", + "placeholder": "​", + "style": "IPY_MODEL_612489c1401e49c9bb846fee02bd9f6d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "891a944220b3422db752100ab9244125": { + "85ab7c6aa7b341d69b9dc923ebdfa7c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6228,7 +6241,25 @@ "width": null } }, - "89b3cf05a743439f91b59abfd6f0b25b": { + "8689ad17b83c46c1ab297ec243208f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8739c6ff8d994ba4be0b2287de3e0173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6281,7 +6312,7 @@ "width": null } }, - "8a076d7eb59e4537abfac89fa37372e4": { + "888473885a6149dd8b3df8549f631e20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6299,7 +6330,23 @@ "text_color": null } }, - "8bdc65fac0044ed3a719c0c1889ba9d6": { + "8995f1250ad74a90bfc13b5eff00a2fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8acff64b052e48dc9e676ca2f1f20446": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6315,7 +6362,30 @@ "description_width": "" } }, - "8c6d8c2c52594f15b9ce9a2fff3b28d0": { + "8c5b91a2c962426c9d74153961b3f44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e9e0a7872664289907ea9b2a0c0f428", + "placeholder": "​", + "style": "IPY_MODEL_888473885a6149dd8b3df8549f631e20", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.73it/s]" + } + }, + "8df85e649d6248f69af1b8b2c06dc535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6368,79 +6438,7 @@ "width": null } }, - "8dfdad83c03f4aa08bc19fe37e73bb03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8fc9906f7a0341708627692f8489b35b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "92f6dc8906c04997862913bc427ad476": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95485d5b8522435ea8f08eb2d854a336": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9608c18d1d874f2a9e8d6ff6a53ac7ef": { + "9141cd35031b41548bc5618a17448a0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6493,23 +6491,7 @@ "width": null } }, - "999494066dab42bbb02dd47224780e98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a72ec9f2e6549f79a8b592fdf22dc2e": { + "91cb9b53980c47cd817c545014defd09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6524,15 +6506,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4db64e04ecf453bb64e410e92717688", + "layout": "IPY_MODEL_2221768dfac3448cabb0bbf2bb0d5d7c", "placeholder": "​", - "style": "IPY_MODEL_79c09ae007724b7da175f15e77c939b5", + "style": "IPY_MODEL_2183a55cd7d345069c3ac605305b0edb", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 8.85k/8.85k [00:00<00:00, 1.44MB/s]" } }, - "9bfbe5f7520948028e0423e3a007e614": { + "9266dd3df82b430c88bf828066284aab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6550,7 +6532,7 @@ "text_color": null } }, - "9e1e3e01b912477595f0702fa3d3043b": { + "94f306cf8ec749379c45de871b0e7b5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6565,194 +6547,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bf0b89a3d92407d832df29196d61ea2", + "layout": "IPY_MODEL_a859e810938d4055a256a729f8d389ce", "placeholder": "​", - "style": "IPY_MODEL_81af3bb4d3be46abb3e8fec013b0ab4c", + "style": "IPY_MODEL_bcdb721a85b449cd9eaf7819dc3550dc", "tabbable": null, "tooltip": null, "value": "100%" } }, - "a07c4d7451e740a3b7cfc737ab615ac9": { - "model_module": "@jupyter-widgets/controls", + "9954def9bc864f319508e65fe36fe98b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_609338d8355747b9bd1491ce89b327f5", - "placeholder": "​", - "style": "IPY_MODEL_ac3a48d859e24de49589b8e6fcbf6e56", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.12it/s]" - } - }, - "a262c4ae9287449fa95c34bde946bb1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a6cbd56b47e648efb6391b45895679f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3158013f4864de583ab980afefd55af", - "IPY_MODEL_03823f9501e94f56beacf1613576e9dc", - "IPY_MODEL_80c62a5efa2b42ce85de10d4f9638e15" - ], - "layout": "IPY_MODEL_f60c654fb5a84d09a6d3b2f8c92cc4c5", - "tabbable": null, - "tooltip": null - } - }, - "a71dfc2757d34c75bb330c1eb6ea11e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7816d15cde184da3b4900d3062e666d2", - "placeholder": "​", - "style": "IPY_MODEL_28443daff12b402baed64f1b5d0fc8e2", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "a84982db10294fb58f5db219f440a873": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9cebeca318244728411d7a1bbbcfdcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57b1914593884597ab649943b81cf1e8", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7556d3f58c814407862942b3f781e8a6", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "a9e6164c82aa48da9b7f39e1e8611e10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d308a458ec4a08b9d2bad00f5870f3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc71489cf7d84e93b1534d74c859b3fa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "a9fbbe85922f431a91157ec285ca35be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_581b0a844bed446d8fcd2fd92a517bb6", - "placeholder": "​", - "style": "IPY_MODEL_29170a403a424dcfacc506b91190a1dc", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.75it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ab7bf39143554ffc9ed393ecb6bf2fe4": { + "9afd660dbeb04470a375320dc78c044c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6805,25 +6661,7 @@ "width": null } }, - "ac3a48d859e24de49589b8e6fcbf6e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ad393e55e6bf45c8b5e243058a28d53f": { + "9d2d50b86148485fb3e3884e2b2bbf34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6876,48 +6714,7 @@ "width": null } }, - "b0d76730d77645b19085de29499a07e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b385c56f713245438f036b829b7057eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_79e3577f86234a258c9acd26c706e0ff", - "placeholder": "​", - "style": "IPY_MODEL_6d04fdcfce89428dbf6319ffe1ba350f", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "b5f09acaac394bb5bdceb2dc492585cb": { + "9d6e31ccf4dd4aceabf442d6436fa02c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6933,71 +6730,113 @@ "description_width": "" } }, - "b8a9635845a942c4b071429b568defb1": { - "model_module": "@jupyter-widgets/controls", + "9fa40d4368164452af5dec4576e541a7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ba73c157fdb94c65b92dba1069f61646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b27bedd5f134f52a7334e3638e784cb", - "placeholder": "​", - "style": "IPY_MODEL_c274e57ac9594c50af93c3bf8136acce", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bbe3d4342b5941289611bd0fc91aa385": { - "model_module": "@jupyter-widgets/controls", + "a035588db59040fda6d47042d64418a5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_298221d0cc1446ce993bdb7c7803efb8", - "placeholder": "​", - "style": "IPY_MODEL_95485d5b8522435ea8f08eb2d854a336", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8715.25 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc002711d08c4670abb04d02bc7b008a": { + "a07fabe6cd554c4281f06c189fb7f17a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7050,7 +6889,7 @@ "width": null } }, - "bcec722d627145cf96d7bad0f67e25d9": { + "a7643f32743c4af6897aa249c9d0be2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7103,7 +6942,7 @@ "width": null } }, - "be3f3fec721448b1942e5f66a28630e9": { + "a81bc963e07b4ca2a4b8dde6b946165b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7119,17 +6958,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c10d499b1454a9db990b1eee7d30416", - "max": 40.0, + "layout": "IPY_MODEL_66f7cb4e6bf441a09c4dc48e13bc4fc0", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8bdc65fac0044ed3a719c0c1889ba9d6", + "style": "IPY_MODEL_086f6f5b94bf449da8bf7c1157f5c8a3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 4833.0 } }, - "be7e225c537c47daaef5f0ac239d1f05": { + "a859e810938d4055a256a729f8d389ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7182,25 +7021,60 @@ "width": null } }, - "bf849ce1955e49498468867578cb2b82": { - "model_module": "@jupyter-widgets/controls", + "a8ef0954dcca4870a833eda0e973e2a0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c274e57ac9594c50af93c3bf8136acce": { + "b0b21430f5b9446195933039b4632b6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7218,7 +7092,7 @@ "text_color": null } }, - "c2fc5097f7a2449695b74f340b163dbd": { + "b391fb64df85406aa863198b38de27eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7271,30 +7145,31 @@ "width": null } }, - "c3da49dd6970428a9727fd888d6a07ee": { + "b587a2728e9640d8a9ca1b92d99742fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fabf70fcbd2f415f93e6e8b9c17f4861", - "placeholder": "​", - "style": "IPY_MODEL_b0d76730d77645b19085de29499a07e9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04cca25384c24b1c94d911de385adc2e", + "IPY_MODEL_ed241b0fef474a6687201441ac67dd74", + "IPY_MODEL_ea9573c409424d8a8bac15fff0b2b7d0" + ], + "layout": "IPY_MODEL_cad3cae7738f47d5bf0f64d262df886c", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "c436f7262e954289901a6f4e89035f4d": { + "b6ef56fd6db2466da0273fed8540bed9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7347,31 +7222,7 @@ "width": null } }, - "c4b166c77d384273866541f5ccf30e60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_833c213f3dfb4616b0ac1c52e439ec3e", - "IPY_MODEL_e724d9b3e35a45acb354091fe5c23aeb", - "IPY_MODEL_bbe3d4342b5941289611bd0fc91aa385" - ], - "layout": "IPY_MODEL_77ba2f60a09d41d3a6e43c6821ec0634", - "tabbable": null, - "tooltip": null - } - }, - "c5b34df732014977a42409332881088e": { + "b75b2dcda03043c19e92f21428536acc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7424,47 +7275,7 @@ "width": null } }, - "c764ea439fb0433c9474557f8e8c6684": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c8d5e4eb0eb4406c95b64e0c2246c01b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cab1ddd99c6a471290bfd2b4f876e7a2", - "IPY_MODEL_6d5c548246bf4bdbb636d3a3766345a4", - "IPY_MODEL_426a8afc214b479baaeb9e8377e0f0d4" - ], - "layout": "IPY_MODEL_0f8c591a5a474389ba8bdbce5f559954", - "tabbable": null, - "tooltip": null - } - }, - "cab1ddd99c6a471290bfd2b4f876e7a2": { + "bbad93a33def4b229788aa20849516bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7479,15 +7290,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_240c2ebe5dc54104a1f10d985ffba975", + "layout": "IPY_MODEL_0b3fb420b49940f589e153c0d5c3fdec", "placeholder": "​", - "style": "IPY_MODEL_8fc9906f7a0341708627692f8489b35b", + "style": "IPY_MODEL_209c42932bea4cfc866adc42d1e0bc34", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 60000/60000 [00:07<00:00, 8701.18 examples/s]" } }, - "cb4004f3b5e94f01b3f04c2f61489f80": { + "bc0cfa74fd9b478baa3776548265f98f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7540,23 +7351,25 @@ "width": null } }, - "cc71489cf7d84e93b1534d74c859b3fa": { + "bcdb721a85b449cd9eaf7819dc3550dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cca83903b79f4db49ff544e07d3fffbd": { + "bf1ddb949cc4482ba290bb117f55ea82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7609,53 +7422,86 @@ "width": null } }, - "cd5289f0713644e7a085dd0fa5a5b4a7": { - "model_module": "@jupyter-widgets/controls", + "c1a678c9161a478e8d2196917db2dad8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52ea11b6adb8407e88b4de65546300dd", - "placeholder": "​", - "style": "IPY_MODEL_3e69f9cf29d34cc381b10a6789979acf", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ce6dcb58e792427c8f87d9ed29b4f0a9": { + "c25be99949354d9b93261eb01cd7f371": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38b582305d03499a81383d2c820015ba", - "placeholder": "​", - "style": "IPY_MODEL_28f8261f18b84882ba428c63eace54e3", + "layout": "IPY_MODEL_a07fabe6cd554c4281f06c189fb7f17a", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_805ea7e6fe75453dab92e83969f8fe93", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 10000.0 } }, - "cf2c1748546e4ac4918f44c9de22b1d4": { + "c5e5cf9a26c0498cbbbc47b2b513a358": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7671,41 +7517,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_721e1e458b6f49229779a9de4609ca92", + "layout": "IPY_MODEL_9141cd35031b41548bc5618a17448a0e", "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2a2dc27f67c34e2982043a2f79c14de3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "cf7b401abca245b48479f04da4bf569b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_678ad1f4e5ca473e8370433fa2fc17b1", - "IPY_MODEL_6b5517a69839448db9d026068acf99a3", - "IPY_MODEL_01d6ba701f1e47b693b47938240dfc44" - ], - "layout": "IPY_MODEL_50b772c22a484ec39d88b6aca3ce2b03", + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d3d1214cad84f609b2ae65551813ff8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "d4aae17914634179ba6ea992729761fb": { + "c670dd237db04ca9a6e63e4d35cecdb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7758,7 +7580,7 @@ "width": null } }, - "d4db64e04ecf453bb64e410e92717688": { + "cad3cae7738f47d5bf0f64d262df886c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7811,7 +7633,7 @@ "width": null } }, - "d596fca544e54787848bb610c63e3218": { + "cf54f0b1ea01482a8a59acd889c89c88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7829,48 +7651,51 @@ "text_color": null } }, - "d5b1e2ede532485f989cdd9654c0c392": { + "d2d061b68a1d431fa7d7e4082cdce543": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_160801910dde40a3bc9f92bb4e901944", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f62a32153e44d988bd8265c95d6522b", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 } }, - "d645a9bbf7dd4b8889a99d24f9a5908b": { + "d5a9c110896c475face60d8f33b9046c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da92e7e27e6440389d193937e123694c", - "placeholder": "​", - "style": "IPY_MODEL_2449bbbcd46a43e6aae3c8afbb81bdb3", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1698.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "da92e7e27e6440389d193937e123694c": { + "d5aee2c22e48477b9f398e4ad03d9e34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7923,7 +7748,7 @@ "width": null } }, - "db6c9d2e8a9344f28325f582fc86210b": { + "d83e3a00a6514bd7867d7bbbe2edf9f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7976,7 +7801,43 @@ "width": null } }, - "dc13e0ad81f143a2b5d4c0a44532f5b5": { + "d9809a0d4cae4531973e9be895c2f08e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc05e2e419574abb89ddec85c5fcc81d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd31c22f11524a368f9eb1cd18be16f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7994,7 +7855,33 @@ "text_color": null } }, - "dd4605541b5149cd9d1ad54f08320d7b": { + "dde263477419437a9af2ca03171dadcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b75b2dcda03043c19e92f21428536acc", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8acff64b052e48dc9e676ca2f1f20446", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "de21539b01914576913a0b51a048b56f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8009,16 +7896,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a71dfc2757d34c75bb330c1eb6ea11e6", - "IPY_MODEL_33cdba775984444396b1d4c9f0a95c94", - "IPY_MODEL_fc047f3aaf0b4e4a871a8806135acc87" + "IPY_MODEL_e40aeb47074d4ecb90098770f4839946", + "IPY_MODEL_4586a50b001c47b39290a335d19b949d", + "IPY_MODEL_19a410fe62c9469fbbfdb218f3a51fc8" ], - "layout": "IPY_MODEL_ab7bf39143554ffc9ed393ecb6bf2fe4", + "layout": "IPY_MODEL_3352d2afb83f411eb34ef57cd4914610", "tabbable": null, "tooltip": null } }, - "df1f220280f9444e97bb1f2206036724": { + "df295f854e794a6dacc9fe1281979049": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c78106bc0d64791b1920a0bba595880", + "placeholder": "​", + "style": "IPY_MODEL_03645e2db82a48cea591a8ecc43409ac", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + } + }, + "dfc1a61d6aca4ccca4fce1f46c9b016e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8071,7 +7981,7 @@ "width": null } }, - "df585fd875034d5cae08c4684ad20c2f": { + "e31270e184e04922b08349a65c597693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8086,68 +7996,143 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cca83903b79f4db49ff544e07d3fffbd", + "layout": "IPY_MODEL_517e9a88dd474cac8c7f7723d261a5fe", "placeholder": "​", - "style": "IPY_MODEL_49cd0886c40048d5b78db2aa719fc1d0", + "style": "IPY_MODEL_d9809a0d4cae4531973e9be895c2f08e", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" } }, - "e02cdb3570024c49bb96ffcbc8948970": { - "model_module": "@jupyter-widgets/base", + "e40aeb47074d4ecb90098770f4839946": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a0d54aeee9e43a2a6613a32708b583c", + "placeholder": "​", + "style": "IPY_MODEL_76d4d52a162a40a6aad6c51613675dd9", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e716b663d19a4155af04eb17f142c03c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e73b799b5ff64804a99810863c6f0533": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e74d0f623f774aa5a1554c10228f1654": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3a97aab207204e0fb9a0b492587021ad", + "IPY_MODEL_3cf5000751a1413faba426291a215dff", + "IPY_MODEL_e31270e184e04922b08349a65c597693" + ], + "layout": "IPY_MODEL_436dcfd1d6524d58997ebd20abd27ac3", + "tabbable": null, + "tooltip": null + } + }, + "e85162633bd84b0c8065890dd355820b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94f306cf8ec749379c45de871b0e7b5e", + "IPY_MODEL_fa1df74fd9f543a1bcb1d473ae793b1c", + "IPY_MODEL_345c5ca93fa94badbbf86dcc2fde77a6" + ], + "layout": "IPY_MODEL_f061db9de67c4b4c92b189d2906d780c", + "tabbable": null, + "tooltip": null + } + }, + "e89a1ca0e0b746b0b9349efd7a426e3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8739c6ff8d994ba4be0b2287de3e0173", + "placeholder": "​", + "style": "IPY_MODEL_3956333acd4649dd8a66f905633d9a1e", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e1e3abfce0184ef19c5c108ae494316b": { + "e9632dad724b4651afed5367d50e22c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8162,69 +8147,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ce6dcb58e792427c8f87d9ed29b4f0a9", - "IPY_MODEL_44f00a50f1674a53a847ced00a1a1aa8", - "IPY_MODEL_d645a9bbf7dd4b8889a99d24f9a5908b" + "IPY_MODEL_20a3b73248e646e4993c7afc88dc3bb7", + "IPY_MODEL_5789650eb64d4dbab1f8c667a5fd4cf6", + "IPY_MODEL_df295f854e794a6dacc9fe1281979049" ], - "layout": "IPY_MODEL_edc3d19afcb14bf9a3ec0e41f62a44b4", + "layout": "IPY_MODEL_ec3cdb9f36064f85ac05856111e8b6e8", "tabbable": null, "tooltip": null } }, - "e416714bbcb4438b9179a39662ae3c9d": { - "model_module": "@jupyter-widgets/base", + "ea9573c409424d8a8bac15fff0b2b7d0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1a678c9161a478e8d2196917db2dad8", + "placeholder": "​", + "style": "IPY_MODEL_cf54f0b1ea01482a8a59acd889c89c88", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.52it/s]" } }, - "e6d9becff77b42d59be635fa6580a8e8": { + "ec3cdb9f36064f85ac05856111e8b6e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8277,77 +8232,7 @@ "width": null } }, - "e724d9b3e35a45acb354091fe5c23aeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_368cc0e1d6734409878e33ca4d54012a", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c764ea439fb0433c9474557f8e8c6684", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "eb2f621f64a84dc8bd2155d241bd5e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ebf23d88069d459aae84207ff5363fab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e6489c700d54df69ff90b573c906911", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_50962242a0be4c5fb1f19bd9ba3796a1", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "ec65d1696272499aae2176b681d4abeb": { + "ed241b0fef474a6687201441ac67dd74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8363,17 +8248,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc002711d08c4670abb04d02bc7b008a", - "max": 4422102.0, + "layout": "IPY_MODEL_dfc1a61d6aca4ccca4fce1f46c9b016e", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a84982db10294fb58f5db219f440a873", + "style": "IPY_MODEL_19246b6d91f14aaa9f10d7cb83049531", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 40.0 } }, - "ed87086cfa9c41729602000b60ca20f5": { + "ed9503bde9bc41e0912e3c94c2a43266": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8426,7 +8311,30 @@ "width": null } }, - "edc3d19afcb14bf9a3ec0e41f62a44b4": { + "f01a831193cb480fa8538ccac1625826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_140978469fad46c2b6b98809eddb12e7", + "placeholder": "​", + "style": "IPY_MODEL_13c0b9289c5e4e8f92a21c0307aae6db", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f061db9de67c4b4c92b189d2906d780c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8479,7 +8387,7 @@ "width": null } }, - "f3158013f4864de583ab980afefd55af": { + "f512ea72b63a45489078a0f45d052131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8494,15 +8402,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db6c9d2e8a9344f28325f582fc86210b", + "layout": "IPY_MODEL_85ab7c6aa7b341d69b9dc923ebdfa7c4", "placeholder": "​", - "style": "IPY_MODEL_04be2e19fc3542cba1d0cb7b9b407a95", + "style": "IPY_MODEL_e716b663d19a4155af04eb17f142c03c", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4.42M/4.42M [00:00<00:00, 70.5MB/s]" } }, - "f60c654fb5a84d09a6d3b2f8c92cc4c5": { + "f74501f2cd3a424a9fd976bc8add6990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8555,7 +8463,104 @@ "width": null } }, - "fabf70fcbd2f415f93e6e8b9c17f4861": { + "f85257acca8547839184b5f056eac10e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0d1066339f76479d8d58e5ae35748f5b", + "IPY_MODEL_d2d061b68a1d431fa7d7e4082cdce543", + "IPY_MODEL_f512ea72b63a45489078a0f45d052131" + ], + "layout": "IPY_MODEL_6198d3b6f1a04ba4a34a5d2018c9b155", + "tabbable": null, + "tooltip": null + } + }, + "f8b91b2b5043498da2181511d46d09c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_07de4e87697443a892880c15d1e511c6", + "placeholder": "​", + "style": "IPY_MODEL_440697a08c6346efa46be2fb03bac8e0", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1657.88it/s]" + } + }, + "f9b540e1a55a4d16ad1b5a90f594ee47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82fc78533dbc46d08a781919716d2335", + "IPY_MODEL_5ea8be39dce64842a42fe020b19fc090", + "IPY_MODEL_bbad93a33def4b229788aa20849516bd" + ], + "layout": "IPY_MODEL_1d30818e74e74811938c25e51402dba7", + "tabbable": null, + "tooltip": null + } + }, + "fa1df74fd9f543a1bcb1d473ae793b1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf1ddb949cc4482ba290bb117f55ea82", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5dcfa0777e6540998053e4a29b29b806", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fa87a07117a74232955cb6e2e8b66aa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8608,30 +8613,25 @@ "width": null } }, - "fc047f3aaf0b4e4a871a8806135acc87": { + "fd5d6bff1fad4857abafef9b11b3dfe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_89b3cf05a743439f91b59abfd6f0b25b", - "placeholder": "​", - "style": "IPY_MODEL_3b6fd5946d154ca3b3c1477ecd5510ab", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 617kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ff23c9d5761b436eb1d73a55e8f32ea8": { + "fd9234c25dae4c37a35f1e4d52af48c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8684,7 +8684,7 @@ "width": null } }, - "ff5dd94e778e4a3a9a4f34a8b29844b2": { + "fe504683f63741bdac7f7f37aacf03d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8700,11 +8700,11 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8253cf2e395646f0a170750f8c426d62", + "layout": "IPY_MODEL_3f14c7dcb14b4ff9b9a6110a6ebeea9a", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_999494066dab42bbb02dd47224780e98", + "style": "IPY_MODEL_9d6e31ccf4dd4aceabf442d6436fa02c", "tabbable": null, "tooltip": null, "value": 40.0 diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index b258b462c..49189d5a3 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:31.954471Z", - "iopub.status.busy": "2024-07-09T06:10:31.954063Z", - "iopub.status.idle": "2024-07-09T06:10:33.062774Z", - "shell.execute_reply": "2024-07-09T06:10:33.062218Z" + "iopub.execute_input": "2024-07-09T06:25:43.397675Z", + "iopub.status.busy": "2024-07-09T06:25:43.397521Z", + "iopub.status.idle": "2024-07-09T06:25:44.500416Z", + "shell.execute_reply": "2024-07-09T06:25:44.499930Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.065325Z", - "iopub.status.busy": "2024-07-09T06:10:33.064874Z", - "iopub.status.idle": "2024-07-09T06:10:33.082725Z", - "shell.execute_reply": "2024-07-09T06:10:33.082160Z" + "iopub.execute_input": "2024-07-09T06:25:44.503054Z", + "iopub.status.busy": "2024-07-09T06:25:44.502594Z", + "iopub.status.idle": "2024-07-09T06:25:44.520286Z", + "shell.execute_reply": "2024-07-09T06:25:44.519788Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.085238Z", - "iopub.status.busy": "2024-07-09T06:10:33.084866Z", - "iopub.status.idle": "2024-07-09T06:10:33.122428Z", - "shell.execute_reply": "2024-07-09T06:10:33.121889Z" + "iopub.execute_input": "2024-07-09T06:25:44.522768Z", + "iopub.status.busy": "2024-07-09T06:25:44.522335Z", + "iopub.status.idle": "2024-07-09T06:25:44.561412Z", + "shell.execute_reply": "2024-07-09T06:25:44.560787Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.124701Z", - "iopub.status.busy": "2024-07-09T06:10:33.124258Z", - "iopub.status.idle": "2024-07-09T06:10:33.127662Z", - "shell.execute_reply": "2024-07-09T06:10:33.127234Z" + "iopub.execute_input": "2024-07-09T06:25:44.563603Z", + "iopub.status.busy": "2024-07-09T06:25:44.563330Z", + "iopub.status.idle": "2024-07-09T06:25:44.566773Z", + "shell.execute_reply": "2024-07-09T06:25:44.566347Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.129795Z", - "iopub.status.busy": "2024-07-09T06:10:33.129342Z", - "iopub.status.idle": "2024-07-09T06:10:33.137253Z", - "shell.execute_reply": "2024-07-09T06:10:33.136681Z" + "iopub.execute_input": "2024-07-09T06:25:44.568882Z", + "iopub.status.busy": "2024-07-09T06:25:44.568557Z", + "iopub.status.idle": "2024-07-09T06:25:44.576133Z", + "shell.execute_reply": "2024-07-09T06:25:44.575666Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.139475Z", - "iopub.status.busy": "2024-07-09T06:10:33.139068Z", - "iopub.status.idle": "2024-07-09T06:10:33.141754Z", - "shell.execute_reply": "2024-07-09T06:10:33.141219Z" + "iopub.execute_input": "2024-07-09T06:25:44.578213Z", + "iopub.status.busy": "2024-07-09T06:25:44.577888Z", + "iopub.status.idle": "2024-07-09T06:25:44.580359Z", + "shell.execute_reply": "2024-07-09T06:25:44.579938Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.143704Z", - "iopub.status.busy": "2024-07-09T06:10:33.143398Z", - "iopub.status.idle": "2024-07-09T06:10:36.054194Z", - "shell.execute_reply": "2024-07-09T06:10:36.053560Z" + "iopub.execute_input": "2024-07-09T06:25:44.582404Z", + "iopub.status.busy": "2024-07-09T06:25:44.582006Z", + "iopub.status.idle": "2024-07-09T06:25:47.496435Z", + "shell.execute_reply": "2024-07-09T06:25:47.495884Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.057163Z", - "iopub.status.busy": "2024-07-09T06:10:36.056695Z", - "iopub.status.idle": "2024-07-09T06:10:36.066132Z", - "shell.execute_reply": "2024-07-09T06:10:36.065594Z" + "iopub.execute_input": "2024-07-09T06:25:47.499186Z", + "iopub.status.busy": "2024-07-09T06:25:47.498702Z", + "iopub.status.idle": "2024-07-09T06:25:47.508351Z", + "shell.execute_reply": "2024-07-09T06:25:47.507924Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.068240Z", - "iopub.status.busy": "2024-07-09T06:10:36.067922Z", - "iopub.status.idle": "2024-07-09T06:10:37.919153Z", - "shell.execute_reply": "2024-07-09T06:10:37.918499Z" + "iopub.execute_input": "2024-07-09T06:25:47.510494Z", + "iopub.status.busy": "2024-07-09T06:25:47.510083Z", + "iopub.status.idle": "2024-07-09T06:25:49.420464Z", + "shell.execute_reply": "2024-07-09T06:25:49.419867Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.921685Z", - "iopub.status.busy": "2024-07-09T06:10:37.921227Z", - "iopub.status.idle": "2024-07-09T06:10:37.939600Z", - "shell.execute_reply": "2024-07-09T06:10:37.939159Z" + "iopub.execute_input": "2024-07-09T06:25:49.423063Z", + "iopub.status.busy": "2024-07-09T06:25:49.422479Z", + "iopub.status.idle": "2024-07-09T06:25:49.441395Z", + "shell.execute_reply": "2024-07-09T06:25:49.440922Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.941611Z", - "iopub.status.busy": "2024-07-09T06:10:37.941224Z", - "iopub.status.idle": "2024-07-09T06:10:37.949046Z", - "shell.execute_reply": "2024-07-09T06:10:37.948512Z" + "iopub.execute_input": "2024-07-09T06:25:49.443532Z", + "iopub.status.busy": "2024-07-09T06:25:49.443194Z", + "iopub.status.idle": "2024-07-09T06:25:49.451051Z", + "shell.execute_reply": "2024-07-09T06:25:49.450614Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.950940Z", - "iopub.status.busy": "2024-07-09T06:10:37.950650Z", - "iopub.status.idle": "2024-07-09T06:10:37.959497Z", - "shell.execute_reply": "2024-07-09T06:10:37.958941Z" + "iopub.execute_input": "2024-07-09T06:25:49.453099Z", + "iopub.status.busy": "2024-07-09T06:25:49.452774Z", + "iopub.status.idle": "2024-07-09T06:25:49.461948Z", + "shell.execute_reply": "2024-07-09T06:25:49.461497Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.961570Z", - "iopub.status.busy": "2024-07-09T06:10:37.961245Z", - "iopub.status.idle": "2024-07-09T06:10:37.968825Z", - "shell.execute_reply": "2024-07-09T06:10:37.968376Z" + "iopub.execute_input": "2024-07-09T06:25:49.463968Z", + "iopub.status.busy": "2024-07-09T06:25:49.463653Z", + "iopub.status.idle": "2024-07-09T06:25:49.471593Z", + "shell.execute_reply": "2024-07-09T06:25:49.471011Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.970802Z", - "iopub.status.busy": "2024-07-09T06:10:37.970481Z", - "iopub.status.idle": "2024-07-09T06:10:37.978940Z", - "shell.execute_reply": "2024-07-09T06:10:37.978487Z" + "iopub.execute_input": "2024-07-09T06:25:49.473529Z", + "iopub.status.busy": "2024-07-09T06:25:49.473356Z", + "iopub.status.idle": "2024-07-09T06:25:49.482335Z", + "shell.execute_reply": "2024-07-09T06:25:49.481895Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.980895Z", - "iopub.status.busy": "2024-07-09T06:10:37.980578Z", - "iopub.status.idle": "2024-07-09T06:10:37.987894Z", - "shell.execute_reply": "2024-07-09T06:10:37.987444Z" + "iopub.execute_input": "2024-07-09T06:25:49.484408Z", + "iopub.status.busy": "2024-07-09T06:25:49.484080Z", + "iopub.status.idle": "2024-07-09T06:25:49.491499Z", + "shell.execute_reply": "2024-07-09T06:25:49.491016Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.989860Z", - "iopub.status.busy": "2024-07-09T06:10:37.989565Z", - "iopub.status.idle": "2024-07-09T06:10:37.996677Z", - "shell.execute_reply": "2024-07-09T06:10:37.996133Z" + "iopub.execute_input": "2024-07-09T06:25:49.493531Z", + "iopub.status.busy": "2024-07-09T06:25:49.493203Z", + "iopub.status.idle": "2024-07-09T06:25:49.500767Z", + "shell.execute_reply": "2024-07-09T06:25:49.500318Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.998801Z", - "iopub.status.busy": "2024-07-09T06:10:37.998404Z", - "iopub.status.idle": "2024-07-09T06:10:38.006720Z", - "shell.execute_reply": "2024-07-09T06:10:38.006170Z" + "iopub.execute_input": "2024-07-09T06:25:49.502816Z", + "iopub.status.busy": "2024-07-09T06:25:49.502476Z", + "iopub.status.idle": "2024-07-09T06:25:49.511060Z", + "shell.execute_reply": "2024-07-09T06:25:49.510478Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index 79b7e466e..007861577 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:40.535594Z", - "iopub.status.busy": "2024-07-09T06:10:40.535117Z", - "iopub.status.idle": "2024-07-09T06:10:43.126940Z", - "shell.execute_reply": "2024-07-09T06:10:43.126369Z" + "iopub.execute_input": "2024-07-09T06:25:52.110367Z", + "iopub.status.busy": "2024-07-09T06:25:52.110187Z", + "iopub.status.idle": "2024-07-09T06:25:54.784149Z", + "shell.execute_reply": "2024-07-09T06:25:54.783592Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.129363Z", - "iopub.status.busy": "2024-07-09T06:10:43.129085Z", - "iopub.status.idle": "2024-07-09T06:10:43.132156Z", - "shell.execute_reply": "2024-07-09T06:10:43.131728Z" + "iopub.execute_input": "2024-07-09T06:25:54.786763Z", + "iopub.status.busy": "2024-07-09T06:25:54.786450Z", + "iopub.status.idle": "2024-07-09T06:25:54.790234Z", + "shell.execute_reply": "2024-07-09T06:25:54.789808Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.134177Z", - "iopub.status.busy": "2024-07-09T06:10:43.133850Z", - "iopub.status.idle": "2024-07-09T06:10:43.136808Z", - "shell.execute_reply": "2024-07-09T06:10:43.136399Z" + "iopub.execute_input": "2024-07-09T06:25:54.792282Z", + "iopub.status.busy": "2024-07-09T06:25:54.791960Z", + "iopub.status.idle": "2024-07-09T06:25:54.795130Z", + "shell.execute_reply": "2024-07-09T06:25:54.794637Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.138812Z", - "iopub.status.busy": "2024-07-09T06:10:43.138552Z", - "iopub.status.idle": "2024-07-09T06:10:43.177660Z", - "shell.execute_reply": "2024-07-09T06:10:43.177223Z" + "iopub.execute_input": "2024-07-09T06:25:54.797237Z", + "iopub.status.busy": "2024-07-09T06:25:54.796891Z", + "iopub.status.idle": "2024-07-09T06:25:54.839838Z", + "shell.execute_reply": "2024-07-09T06:25:54.839268Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.179619Z", - "iopub.status.busy": "2024-07-09T06:10:43.179241Z", - "iopub.status.idle": "2024-07-09T06:10:43.182896Z", - "shell.execute_reply": "2024-07-09T06:10:43.182371Z" + "iopub.execute_input": "2024-07-09T06:25:54.842013Z", + "iopub.status.busy": "2024-07-09T06:25:54.841618Z", + "iopub.status.idle": "2024-07-09T06:25:54.845269Z", + "shell.execute_reply": "2024-07-09T06:25:54.844799Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n" + "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.184918Z", - "iopub.status.busy": "2024-07-09T06:10:43.184590Z", - "iopub.status.idle": "2024-07-09T06:10:43.187433Z", - "shell.execute_reply": "2024-07-09T06:10:43.186872Z" + "iopub.execute_input": "2024-07-09T06:25:54.847533Z", + "iopub.status.busy": "2024-07-09T06:25:54.847103Z", + "iopub.status.idle": "2024-07-09T06:25:54.850442Z", + "shell.execute_reply": "2024-07-09T06:25:54.849920Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.189544Z", - "iopub.status.busy": "2024-07-09T06:10:43.189224Z", - "iopub.status.idle": "2024-07-09T06:10:46.827935Z", - "shell.execute_reply": "2024-07-09T06:10:46.827389Z" + "iopub.execute_input": "2024-07-09T06:25:54.852582Z", + "iopub.status.busy": "2024-07-09T06:25:54.852188Z", + "iopub.status.idle": "2024-07-09T06:25:59.138875Z", + "shell.execute_reply": "2024-07-09T06:25:59.138241Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:46.830697Z", - "iopub.status.busy": "2024-07-09T06:10:46.830289Z", - "iopub.status.idle": "2024-07-09T06:10:47.705352Z", - "shell.execute_reply": "2024-07-09T06:10:47.704778Z" + "iopub.execute_input": "2024-07-09T06:25:59.141607Z", + "iopub.status.busy": "2024-07-09T06:25:59.141219Z", + "iopub.status.idle": "2024-07-09T06:26:00.038840Z", + "shell.execute_reply": "2024-07-09T06:26:00.038252Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.709046Z", - "iopub.status.busy": "2024-07-09T06:10:47.708102Z", - "iopub.status.idle": "2024-07-09T06:10:47.712144Z", - "shell.execute_reply": "2024-07-09T06:10:47.711648Z" + "iopub.execute_input": "2024-07-09T06:26:00.041846Z", + "iopub.status.busy": "2024-07-09T06:26:00.041473Z", + "iopub.status.idle": "2024-07-09T06:26:00.044333Z", + "shell.execute_reply": "2024-07-09T06:26:00.043847Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.715606Z", - "iopub.status.busy": "2024-07-09T06:10:47.714676Z", - "iopub.status.idle": "2024-07-09T06:10:49.613175Z", - "shell.execute_reply": "2024-07-09T06:10:49.612550Z" + "iopub.execute_input": "2024-07-09T06:26:00.046828Z", + "iopub.status.busy": "2024-07-09T06:26:00.046455Z", + "iopub.status.idle": "2024-07-09T06:26:02.001666Z", + "shell.execute_reply": "2024-07-09T06:26:02.000979Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.617209Z", - "iopub.status.busy": "2024-07-09T06:10:49.615926Z", - "iopub.status.idle": "2024-07-09T06:10:49.641459Z", - "shell.execute_reply": "2024-07-09T06:10:49.640965Z" + "iopub.execute_input": "2024-07-09T06:26:02.005648Z", + "iopub.status.busy": "2024-07-09T06:26:02.004357Z", + "iopub.status.idle": "2024-07-09T06:26:02.029990Z", + "shell.execute_reply": "2024-07-09T06:26:02.029487Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.644905Z", - "iopub.status.busy": "2024-07-09T06:10:49.644000Z", - "iopub.status.idle": "2024-07-09T06:10:49.655340Z", - "shell.execute_reply": "2024-07-09T06:10:49.654769Z" + "iopub.execute_input": "2024-07-09T06:26:02.033668Z", + "iopub.status.busy": "2024-07-09T06:26:02.032688Z", + "iopub.status.idle": "2024-07-09T06:26:02.043061Z", + "shell.execute_reply": "2024-07-09T06:26:02.042510Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.657493Z", - "iopub.status.busy": "2024-07-09T06:10:49.657322Z", - "iopub.status.idle": "2024-07-09T06:10:49.662434Z", - "shell.execute_reply": "2024-07-09T06:10:49.661886Z" + "iopub.execute_input": "2024-07-09T06:26:02.045235Z", + "iopub.status.busy": "2024-07-09T06:26:02.044844Z", + "iopub.status.idle": "2024-07-09T06:26:02.049066Z", + "shell.execute_reply": "2024-07-09T06:26:02.048544Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.664404Z", - "iopub.status.busy": "2024-07-09T06:10:49.664233Z", - "iopub.status.idle": "2024-07-09T06:10:49.671717Z", - "shell.execute_reply": "2024-07-09T06:10:49.671181Z" + "iopub.execute_input": "2024-07-09T06:26:02.050976Z", + "iopub.status.busy": "2024-07-09T06:26:02.050656Z", + "iopub.status.idle": "2024-07-09T06:26:02.056885Z", + "shell.execute_reply": "2024-07-09T06:26:02.056368Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.673760Z", - "iopub.status.busy": "2024-07-09T06:10:49.673436Z", - "iopub.status.idle": "2024-07-09T06:10:49.679943Z", - "shell.execute_reply": "2024-07-09T06:10:49.679422Z" + "iopub.execute_input": "2024-07-09T06:26:02.058842Z", + "iopub.status.busy": "2024-07-09T06:26:02.058553Z", + "iopub.status.idle": "2024-07-09T06:26:02.064989Z", + "shell.execute_reply": "2024-07-09T06:26:02.064469Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.681898Z", - "iopub.status.busy": "2024-07-09T06:10:49.681599Z", - "iopub.status.idle": "2024-07-09T06:10:49.687322Z", - "shell.execute_reply": "2024-07-09T06:10:49.686783Z" + "iopub.execute_input": "2024-07-09T06:26:02.067209Z", + "iopub.status.busy": "2024-07-09T06:26:02.066773Z", + "iopub.status.idle": "2024-07-09T06:26:02.072793Z", + "shell.execute_reply": "2024-07-09T06:26:02.072374Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.689368Z", - "iopub.status.busy": "2024-07-09T06:10:49.688972Z", - "iopub.status.idle": "2024-07-09T06:10:49.697716Z", - "shell.execute_reply": "2024-07-09T06:10:49.697194Z" + "iopub.execute_input": "2024-07-09T06:26:02.074940Z", + "iopub.status.busy": "2024-07-09T06:26:02.074490Z", + "iopub.status.idle": "2024-07-09T06:26:02.083051Z", + "shell.execute_reply": "2024-07-09T06:26:02.082510Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.699771Z", - "iopub.status.busy": "2024-07-09T06:10:49.699457Z", - "iopub.status.idle": "2024-07-09T06:10:49.704782Z", - "shell.execute_reply": "2024-07-09T06:10:49.704251Z" + "iopub.execute_input": "2024-07-09T06:26:02.085157Z", + "iopub.status.busy": "2024-07-09T06:26:02.084826Z", + "iopub.status.idle": "2024-07-09T06:26:02.090319Z", + "shell.execute_reply": "2024-07-09T06:26:02.089787Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.706759Z", - "iopub.status.busy": "2024-07-09T06:10:49.706448Z", - "iopub.status.idle": "2024-07-09T06:10:49.711619Z", - "shell.execute_reply": "2024-07-09T06:10:49.711154Z" + "iopub.execute_input": "2024-07-09T06:26:02.092426Z", + "iopub.status.busy": "2024-07-09T06:26:02.092121Z", + "iopub.status.idle": "2024-07-09T06:26:02.097472Z", + "shell.execute_reply": "2024-07-09T06:26:02.096931Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.713635Z", - "iopub.status.busy": "2024-07-09T06:10:49.713315Z", - "iopub.status.idle": "2024-07-09T06:10:49.716766Z", - "shell.execute_reply": "2024-07-09T06:10:49.716331Z" + "iopub.execute_input": "2024-07-09T06:26:02.099674Z", + "iopub.status.busy": "2024-07-09T06:26:02.099271Z", + "iopub.status.idle": "2024-07-09T06:26:02.103221Z", + "shell.execute_reply": "2024-07-09T06:26:02.102687Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.718751Z", - "iopub.status.busy": "2024-07-09T06:10:49.718428Z", - "iopub.status.idle": "2024-07-09T06:10:49.723391Z", - "shell.execute_reply": "2024-07-09T06:10:49.722940Z" + "iopub.execute_input": "2024-07-09T06:26:02.105280Z", + "iopub.status.busy": "2024-07-09T06:26:02.104977Z", + "iopub.status.idle": "2024-07-09T06:26:02.110409Z", + "shell.execute_reply": "2024-07-09T06:26:02.109860Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb index 0177ed6a5..8fba9ce06 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:52.942544Z", - "iopub.status.busy": "2024-07-09T06:10:52.942073Z", - "iopub.status.idle": "2024-07-09T06:10:53.345681Z", - "shell.execute_reply": "2024-07-09T06:10:53.345198Z" + "iopub.execute_input": "2024-07-09T06:26:06.359120Z", + "iopub.status.busy": "2024-07-09T06:26:06.358944Z", + "iopub.status.idle": "2024-07-09T06:26:06.770440Z", + "shell.execute_reply": "2024-07-09T06:26:06.769872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.348217Z", - "iopub.status.busy": "2024-07-09T06:10:53.347881Z", - "iopub.status.idle": "2024-07-09T06:10:53.473155Z", - "shell.execute_reply": "2024-07-09T06:10:53.472597Z" + "iopub.execute_input": "2024-07-09T06:26:06.772937Z", + "iopub.status.busy": "2024-07-09T06:26:06.772696Z", + "iopub.status.idle": "2024-07-09T06:26:06.900862Z", + "shell.execute_reply": "2024-07-09T06:26:06.900374Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.475525Z", - "iopub.status.busy": "2024-07-09T06:10:53.475127Z", - "iopub.status.idle": "2024-07-09T06:10:53.497388Z", - "shell.execute_reply": "2024-07-09T06:10:53.496815Z" + "iopub.execute_input": "2024-07-09T06:26:06.903167Z", + "iopub.status.busy": "2024-07-09T06:26:06.902756Z", + "iopub.status.idle": "2024-07-09T06:26:06.925318Z", + "shell.execute_reply": "2024-07-09T06:26:06.924766Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.499731Z", - "iopub.status.busy": "2024-07-09T06:10:53.499527Z", - "iopub.status.idle": "2024-07-09T06:10:56.136141Z", - "shell.execute_reply": "2024-07-09T06:10:56.135492Z" + "iopub.execute_input": "2024-07-09T06:26:06.927949Z", + "iopub.status.busy": "2024-07-09T06:26:06.927455Z", + "iopub.status.idle": "2024-07-09T06:26:09.660674Z", + "shell.execute_reply": "2024-07-09T06:26:09.660045Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", + " 0.356959\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", + "2 outlier 0.356959 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:56.138887Z", - "iopub.status.busy": "2024-07-09T06:10:56.138378Z", - "iopub.status.idle": "2024-07-09T06:11:04.045173Z", - "shell.execute_reply": "2024-07-09T06:11:04.044648Z" + "iopub.execute_input": "2024-07-09T06:26:09.663103Z", + "iopub.status.busy": "2024-07-09T06:26:09.662695Z", + "iopub.status.idle": "2024-07-09T06:26:17.697818Z", + "shell.execute_reply": "2024-07-09T06:26:17.697224Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.047461Z", - "iopub.status.busy": "2024-07-09T06:11:04.047110Z", - "iopub.status.idle": "2024-07-09T06:11:04.191376Z", - "shell.execute_reply": "2024-07-09T06:11:04.190647Z" + "iopub.execute_input": "2024-07-09T06:26:17.700276Z", + "iopub.status.busy": "2024-07-09T06:26:17.699925Z", + "iopub.status.idle": "2024-07-09T06:26:17.841746Z", + "shell.execute_reply": "2024-07-09T06:26:17.841256Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.194109Z", - "iopub.status.busy": "2024-07-09T06:11:04.193645Z", - "iopub.status.idle": "2024-07-09T06:11:05.510979Z", - "shell.execute_reply": "2024-07-09T06:11:05.510497Z" + "iopub.execute_input": "2024-07-09T06:26:17.844287Z", + "iopub.status.busy": "2024-07-09T06:26:17.843913Z", + "iopub.status.idle": "2024-07-09T06:26:19.164893Z", + "shell.execute_reply": "2024-07-09T06:26:19.164379Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.513170Z", - "iopub.status.busy": "2024-07-09T06:11:05.512973Z", - "iopub.status.idle": "2024-07-09T06:11:05.957490Z", - "shell.execute_reply": "2024-07-09T06:11:05.956884Z" + "iopub.execute_input": "2024-07-09T06:26:19.167019Z", + "iopub.status.busy": "2024-07-09T06:26:19.166813Z", + "iopub.status.idle": "2024-07-09T06:26:19.597782Z", + "shell.execute_reply": "2024-07-09T06:26:19.597208Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.959868Z", - "iopub.status.busy": "2024-07-09T06:11:05.959401Z", - "iopub.status.idle": "2024-07-09T06:11:05.968391Z", - "shell.execute_reply": "2024-07-09T06:11:05.967953Z" + "iopub.execute_input": "2024-07-09T06:26:19.600017Z", + "iopub.status.busy": "2024-07-09T06:26:19.599671Z", + "iopub.status.idle": "2024-07-09T06:26:19.608754Z", + "shell.execute_reply": "2024-07-09T06:26:19.608320Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.970302Z", - "iopub.status.busy": "2024-07-09T06:11:05.970122Z", - "iopub.status.idle": "2024-07-09T06:11:05.987977Z", - "shell.execute_reply": "2024-07-09T06:11:05.987543Z" + "iopub.execute_input": "2024-07-09T06:26:19.610758Z", + "iopub.status.busy": "2024-07-09T06:26:19.610582Z", + "iopub.status.idle": "2024-07-09T06:26:19.629174Z", + "shell.execute_reply": "2024-07-09T06:26:19.628714Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.989813Z", - "iopub.status.busy": "2024-07-09T06:11:05.989642Z", - "iopub.status.idle": "2024-07-09T06:11:06.209533Z", - "shell.execute_reply": "2024-07-09T06:11:06.208915Z" + "iopub.execute_input": "2024-07-09T06:26:19.631274Z", + "iopub.status.busy": "2024-07-09T06:26:19.630949Z", + "iopub.status.idle": "2024-07-09T06:26:19.855473Z", + "shell.execute_reply": "2024-07-09T06:26:19.854937Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.212253Z", - "iopub.status.busy": "2024-07-09T06:11:06.211863Z", - "iopub.status.idle": "2024-07-09T06:11:06.230982Z", - "shell.execute_reply": "2024-07-09T06:11:06.230519Z" + "iopub.execute_input": "2024-07-09T06:26:19.857897Z", + "iopub.status.busy": "2024-07-09T06:26:19.857717Z", + "iopub.status.idle": "2024-07-09T06:26:19.876254Z", + "shell.execute_reply": "2024-07-09T06:26:19.875785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.232972Z", - "iopub.status.busy": "2024-07-09T06:11:06.232702Z", - "iopub.status.idle": "2024-07-09T06:11:06.397652Z", - "shell.execute_reply": "2024-07-09T06:11:06.397123Z" + "iopub.execute_input": "2024-07-09T06:26:19.878330Z", + "iopub.status.busy": "2024-07-09T06:26:19.878123Z", + "iopub.status.idle": "2024-07-09T06:26:20.020972Z", + "shell.execute_reply": "2024-07-09T06:26:20.020418Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.399867Z", - "iopub.status.busy": "2024-07-09T06:11:06.399536Z", - "iopub.status.idle": "2024-07-09T06:11:06.409014Z", - "shell.execute_reply": "2024-07-09T06:11:06.408593Z" + "iopub.execute_input": "2024-07-09T06:26:20.023234Z", + "iopub.status.busy": "2024-07-09T06:26:20.023054Z", + "iopub.status.idle": "2024-07-09T06:26:20.033881Z", + "shell.execute_reply": "2024-07-09T06:26:20.033455Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.411108Z", - "iopub.status.busy": "2024-07-09T06:11:06.410779Z", - "iopub.status.idle": "2024-07-09T06:11:06.419899Z", - "shell.execute_reply": "2024-07-09T06:11:06.419375Z" + "iopub.execute_input": "2024-07-09T06:26:20.036017Z", + "iopub.status.busy": "2024-07-09T06:26:20.035683Z", + "iopub.status.idle": "2024-07-09T06:26:20.045307Z", + "shell.execute_reply": "2024-07-09T06:26:20.044756Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.421833Z", - "iopub.status.busy": "2024-07-09T06:11:06.421517Z", - "iopub.status.idle": "2024-07-09T06:11:06.463296Z", - "shell.execute_reply": "2024-07-09T06:11:06.462727Z" + "iopub.execute_input": "2024-07-09T06:26:20.047404Z", + "iopub.status.busy": "2024-07-09T06:26:20.047075Z", + "iopub.status.idle": "2024-07-09T06:26:20.077571Z", + "shell.execute_reply": "2024-07-09T06:26:20.077104Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.465213Z", - "iopub.status.busy": "2024-07-09T06:11:06.464909Z", - "iopub.status.idle": "2024-07-09T06:11:06.467608Z", - "shell.execute_reply": "2024-07-09T06:11:06.467074Z" + "iopub.execute_input": "2024-07-09T06:26:20.079806Z", + "iopub.status.busy": "2024-07-09T06:26:20.079460Z", + "iopub.status.idle": "2024-07-09T06:26:20.082272Z", + "shell.execute_reply": "2024-07-09T06:26:20.081824Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.469481Z", - "iopub.status.busy": "2024-07-09T06:11:06.469198Z", - "iopub.status.idle": "2024-07-09T06:11:06.487639Z", - "shell.execute_reply": "2024-07-09T06:11:06.487096Z" + "iopub.execute_input": "2024-07-09T06:26:20.084214Z", + "iopub.status.busy": "2024-07-09T06:26:20.083951Z", + "iopub.status.idle": "2024-07-09T06:26:20.103369Z", + "shell.execute_reply": "2024-07-09T06:26:20.102920Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.489617Z", - "iopub.status.busy": "2024-07-09T06:11:06.489312Z", - "iopub.status.idle": "2024-07-09T06:11:06.493367Z", - "shell.execute_reply": "2024-07-09T06:11:06.492952Z" + "iopub.execute_input": "2024-07-09T06:26:20.105637Z", + "iopub.status.busy": "2024-07-09T06:26:20.105313Z", + "iopub.status.idle": "2024-07-09T06:26:20.109592Z", + "shell.execute_reply": "2024-07-09T06:26:20.109129Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.495289Z", - "iopub.status.busy": "2024-07-09T06:11:06.495116Z", - "iopub.status.idle": "2024-07-09T06:11:06.522255Z", - "shell.execute_reply": "2024-07-09T06:11:06.521808Z" + "iopub.execute_input": "2024-07-09T06:26:20.111735Z", + "iopub.status.busy": "2024-07-09T06:26:20.111418Z", + "iopub.status.idle": "2024-07-09T06:26:20.140670Z", + "shell.execute_reply": "2024-07-09T06:26:20.140161Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.524284Z", - "iopub.status.busy": "2024-07-09T06:11:06.523987Z", - "iopub.status.idle": "2024-07-09T06:11:06.892253Z", - "shell.execute_reply": "2024-07-09T06:11:06.891794Z" + "iopub.execute_input": "2024-07-09T06:26:20.143010Z", + "iopub.status.busy": "2024-07-09T06:26:20.142558Z", + "iopub.status.idle": "2024-07-09T06:26:20.467470Z", + "shell.execute_reply": "2024-07-09T06:26:20.466812Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.894473Z", - "iopub.status.busy": "2024-07-09T06:11:06.894138Z", - "iopub.status.idle": "2024-07-09T06:11:06.897200Z", - "shell.execute_reply": "2024-07-09T06:11:06.896678Z" + "iopub.execute_input": "2024-07-09T06:26:20.469860Z", + "iopub.status.busy": "2024-07-09T06:26:20.469461Z", + "iopub.status.idle": "2024-07-09T06:26:20.472834Z", + "shell.execute_reply": "2024-07-09T06:26:20.472304Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.899347Z", - "iopub.status.busy": "2024-07-09T06:11:06.899013Z", - "iopub.status.idle": "2024-07-09T06:11:06.911828Z", - "shell.execute_reply": "2024-07-09T06:11:06.911372Z" + "iopub.execute_input": "2024-07-09T06:26:20.474846Z", + "iopub.status.busy": "2024-07-09T06:26:20.474545Z", + "iopub.status.idle": "2024-07-09T06:26:20.487539Z", + "shell.execute_reply": "2024-07-09T06:26:20.487103Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.913860Z", - "iopub.status.busy": "2024-07-09T06:11:06.913532Z", - "iopub.status.idle": "2024-07-09T06:11:06.926512Z", - "shell.execute_reply": "2024-07-09T06:11:06.926088Z" + "iopub.execute_input": "2024-07-09T06:26:20.489598Z", + "iopub.status.busy": "2024-07-09T06:26:20.489254Z", + "iopub.status.idle": "2024-07-09T06:26:20.502494Z", + "shell.execute_reply": "2024-07-09T06:26:20.502059Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.928478Z", - "iopub.status.busy": "2024-07-09T06:11:06.928157Z", - "iopub.status.idle": "2024-07-09T06:11:06.937772Z", - "shell.execute_reply": "2024-07-09T06:11:06.937343Z" + "iopub.execute_input": "2024-07-09T06:26:20.504650Z", + "iopub.status.busy": "2024-07-09T06:26:20.504262Z", + "iopub.status.idle": "2024-07-09T06:26:20.514526Z", + "shell.execute_reply": "2024-07-09T06:26:20.513953Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.939820Z", - "iopub.status.busy": "2024-07-09T06:11:06.939507Z", - "iopub.status.idle": "2024-07-09T06:11:06.948609Z", - "shell.execute_reply": "2024-07-09T06:11:06.948081Z" + "iopub.execute_input": "2024-07-09T06:26:20.516777Z", + "iopub.status.busy": "2024-07-09T06:26:20.516378Z", + "iopub.status.idle": "2024-07-09T06:26:20.525636Z", + "shell.execute_reply": "2024-07-09T06:26:20.525158Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.950589Z", - "iopub.status.busy": "2024-07-09T06:11:06.950273Z", - "iopub.status.idle": "2024-07-09T06:11:06.953656Z", - "shell.execute_reply": "2024-07-09T06:11:06.953231Z" + "iopub.execute_input": "2024-07-09T06:26:20.527730Z", + "iopub.status.busy": "2024-07-09T06:26:20.527427Z", + "iopub.status.idle": "2024-07-09T06:26:20.531215Z", + "shell.execute_reply": "2024-07-09T06:26:20.530643Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.955684Z", - "iopub.status.busy": "2024-07-09T06:11:06.955363Z", - "iopub.status.idle": "2024-07-09T06:11:07.005178Z", - "shell.execute_reply": "2024-07-09T06:11:07.004737Z" + "iopub.execute_input": "2024-07-09T06:26:20.533369Z", + "iopub.status.busy": "2024-07-09T06:26:20.532978Z", + "iopub.status.idle": "2024-07-09T06:26:20.584716Z", + "shell.execute_reply": "2024-07-09T06:26:20.584160Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.007278Z", - "iopub.status.busy": "2024-07-09T06:11:07.006978Z", - "iopub.status.idle": "2024-07-09T06:11:07.012518Z", - "shell.execute_reply": "2024-07-09T06:11:07.012098Z" + "iopub.execute_input": "2024-07-09T06:26:20.587026Z", + "iopub.status.busy": "2024-07-09T06:26:20.586732Z", + "iopub.status.idle": "2024-07-09T06:26:20.592456Z", + "shell.execute_reply": "2024-07-09T06:26:20.592020Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.014465Z", - "iopub.status.busy": "2024-07-09T06:11:07.014161Z", - "iopub.status.idle": "2024-07-09T06:11:07.024669Z", - "shell.execute_reply": "2024-07-09T06:11:07.024221Z" + "iopub.execute_input": "2024-07-09T06:26:20.594421Z", + "iopub.status.busy": "2024-07-09T06:26:20.594113Z", + "iopub.status.idle": "2024-07-09T06:26:20.604649Z", + "shell.execute_reply": "2024-07-09T06:26:20.604215Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.026593Z", - "iopub.status.busy": "2024-07-09T06:11:07.026273Z", - "iopub.status.idle": "2024-07-09T06:11:07.237791Z", - "shell.execute_reply": "2024-07-09T06:11:07.237173Z" + "iopub.execute_input": "2024-07-09T06:26:20.606620Z", + "iopub.status.busy": "2024-07-09T06:26:20.606292Z", + "iopub.status.idle": "2024-07-09T06:26:20.783133Z", + "shell.execute_reply": "2024-07-09T06:26:20.782497Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.239996Z", - "iopub.status.busy": "2024-07-09T06:11:07.239645Z", - "iopub.status.idle": "2024-07-09T06:11:07.246938Z", - "shell.execute_reply": "2024-07-09T06:11:07.246490Z" + "iopub.execute_input": "2024-07-09T06:26:20.785456Z", + "iopub.status.busy": "2024-07-09T06:26:20.785275Z", + "iopub.status.idle": "2024-07-09T06:26:20.793330Z", + "shell.execute_reply": "2024-07-09T06:26:20.792773Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.249025Z", - "iopub.status.busy": "2024-07-09T06:11:07.248700Z", - "iopub.status.idle": "2024-07-09T06:11:13.254461Z", - "shell.execute_reply": "2024-07-09T06:11:13.253971Z" + "iopub.execute_input": "2024-07-09T06:26:20.795475Z", + "iopub.status.busy": "2024-07-09T06:26:20.795196Z", + "iopub.status.idle": "2024-07-09T06:26:26.499101Z", + "shell.execute_reply": "2024-07-09T06:26:26.498454Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:20, 8397815.81it/s]" + " 0%| | 851968/170498071 [00:00<00:22, 7672499.19it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9797632/170498071 [00:00<00:02, 53891570.80it/s]" + " 6%|▌ | 10125312/170498071 [00:00<00:02, 55503706.90it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18186240/170498071 [00:00<00:02, 67271366.92it/s]" + " 12%|█▏ | 20086784/170498071 [00:00<00:02, 75141107.06it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26836992/170498071 [00:00<00:01, 74765057.23it/s]" + " 18%|█▊ | 30867456/170498071 [00:00<00:01, 87824521.95it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35782656/170498071 [00:00<00:01, 79953812.72it/s]" + " 24%|██▍ | 40960000/170498071 [00:00<00:01, 92491731.79it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44433408/170498071 [00:00<00:01, 82133729.89it/s]" + " 30%|███ | 51609600/170498071 [00:00<00:01, 97114538.99it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 53313536/170498071 [00:00<00:01, 84295199.10it/s]" + " 36%|███▋ | 61898752/170498071 [00:00<00:01, 98927626.10it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61800448/170498071 [00:00<00:01, 83129927.83it/s]" + " 42%|████▏ | 71860224/170498071 [00:00<00:01, 98135286.77it/s]" ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71041024/170498071 [00:00<00:01, 85883974.57it/s]" + " 48%|████▊ | 82149376/170498071 [00:00<00:00, 99557055.65it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 79659008/170498071 [00:01<00:01, 84046894.98it/s]" + " 54%|█████▍ | 92143616/170498071 [00:01<00:00, 99457801.69it/s]" ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88113152/170498071 [00:01<00:01, 81203827.56it/s]" + " 60%|██████ | 102531072/170498071 [00:01<00:00, 100788217.51it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 74533497.60it/s]" + " 66%|██████▌ | 112918528/170498071 [00:01<00:00, 101593672.45it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 104792064/170498071 [00:01<00:00, 77401455.40it/s]" + " 72%|███████▏ | 123273216/170498071 [00:01<00:00, 102077027.78it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 112984064/170498071 [00:01<00:00, 78643113.14it/s]" + " 78%|███████▊ | 133496832/170498071 [00:01<00:00, 101792169.97it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121143296/170498071 [00:01<00:00, 79360199.69it/s]" + " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 102376551.47it/s]" ] }, { @@ -3907,7 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129138688/170498071 [00:01<00:00, 76918262.43it/s]" + " 90%|█████████ | 154140672/170498071 [00:01<00:00, 100826537.56it/s]" ] }, { @@ -3915,7 +3915,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 137920512/170498071 [00:01<00:00, 80018807.83it/s]" + " 97%|█████████▋| 164593664/170498071 [00:01<00:00, 101825649.23it/s]" ] }, { @@ -3923,31 +3923,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 145981440/170498071 [00:01<00:00, 77133636.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 154402816/170498071 [00:01<00:00, 79111347.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 162365440/170498071 [00:02<00:00, 76269291.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 77333951.88it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s] " ] }, { @@ -4021,10 +3997,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.257185Z", - "iopub.status.busy": "2024-07-09T06:11:13.256590Z", - "iopub.status.idle": "2024-07-09T06:11:13.323923Z", - "shell.execute_reply": "2024-07-09T06:11:13.323486Z" + "iopub.execute_input": "2024-07-09T06:26:26.501872Z", + "iopub.status.busy": "2024-07-09T06:26:26.501334Z", + "iopub.status.idle": "2024-07-09T06:26:26.568877Z", + "shell.execute_reply": "2024-07-09T06:26:26.568264Z" } }, "outputs": [], @@ -4046,10 +4022,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.326012Z", - "iopub.status.busy": "2024-07-09T06:11:13.325680Z", - "iopub.status.idle": "2024-07-09T06:11:13.366116Z", - "shell.execute_reply": "2024-07-09T06:11:13.365711Z" + "iopub.execute_input": "2024-07-09T06:26:26.571436Z", + "iopub.status.busy": "2024-07-09T06:26:26.571213Z", + "iopub.status.idle": "2024-07-09T06:26:26.612980Z", + "shell.execute_reply": "2024-07-09T06:26:26.612387Z" } }, "outputs": [], @@ -4083,10 +4059,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.368146Z", - "iopub.status.busy": "2024-07-09T06:11:13.367823Z", - "iopub.status.idle": "2024-07-09T06:11:14.824593Z", - "shell.execute_reply": "2024-07-09T06:11:14.824054Z" + "iopub.execute_input": "2024-07-09T06:26:26.615590Z", + "iopub.status.busy": "2024-07-09T06:26:26.615223Z", + "iopub.status.idle": "2024-07-09T06:26:28.007434Z", + "shell.execute_reply": "2024-07-09T06:26:28.006820Z" } }, "outputs": [ @@ -4160,10 +4136,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:14.826794Z", - "iopub.status.busy": "2024-07-09T06:11:14.826486Z", - "iopub.status.idle": "2024-07-09T06:11:15.661596Z", - "shell.execute_reply": "2024-07-09T06:11:15.661072Z" + "iopub.execute_input": "2024-07-09T06:26:28.009673Z", + "iopub.status.busy": "2024-07-09T06:26:28.009331Z", + "iopub.status.idle": "2024-07-09T06:26:28.820192Z", + "shell.execute_reply": "2024-07-09T06:26:28.819683Z" } }, "outputs": [ @@ -4178,7 +4154,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "391d66fc80844e98a6b7127eea20e3ba", + "model_id": "716f2c676ad44e9fb6218d0b8625a9c5", "version_major": 2, "version_minor": 0 }, @@ -4202,7 +4178,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03ddc5e5c2af4ed382e0c99cc2aa646b", + "model_id": "ea4f3639cd404344b740181a60e6dfe1", "version_major": 2, "version_minor": 0 }, @@ -4452,54 +4428,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03ddc5e5c2af4ed382e0c99cc2aa646b": { - "model_module": "@jupyter-widgets/controls", + "0f799df441bb4d05a6a28c61f333f046": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3f8a482431f34e2faae193d10e76980a", - "IPY_MODEL_c325cd32b1d14cc4b5ca8e321dc31d90", - "IPY_MODEL_1a09c3aa59a94a799c0b7a82b5718e4d" - ], - "layout": "IPY_MODEL_57556e8423424a75b5760334a13aa4a6", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1a09c3aa59a94a799c0b7a82b5718e4d": { - "model_module": "@jupyter-widgets/controls", + "294a1c481a4c46e5bc9df718d9565bc7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9a1aba8237e45ea957d852a6d53dcc4", - "placeholder": "​", - "style": "IPY_MODEL_65a45dea02f74c5bbcacb4916148fb86", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 691.49it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1f06ca8d0f284b2faa6dfcacfef924f4": { + "2b6cc201cb424f5298894e3085cf6d74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4517,23 +4552,7 @@ "text_color": null } }, - "309173506dba4f15b8b7213882a655e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3150f0f2d0bf48d380ee22cb6a6ec59c": { + "31bd0ebee4be4b6995b1299029dfd4ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4548,55 +4567,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4faae3cf9dec4bff8d6b153958974cb0", + "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", "placeholder": "​", - "style": "IPY_MODEL_1f06ca8d0f284b2faa6dfcacfef924f4", + "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", "tabbable": null, "tooltip": null, "value": "100%" } }, - "351acb9554dd4c3b842bf386e04513a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "391d66fc80844e98a6b7127eea20e3ba": { + "37549aa8f96049628f56685e9b488f6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3150f0f2d0bf48d380ee22cb6a6ec59c", - "IPY_MODEL_8bd3259d18d64ab0a7ab19d9a309e286", - "IPY_MODEL_bfa11543be8f43068f62cfed9db531cd" - ], - "layout": "IPY_MODEL_887298b3add949feb4bb13ea5dee1afe", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "3f8a482431f34e2faae193d10e76980a": { + "43460e1d74ff44b6bdf8b3639d60c64c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4611,15 +4616,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7522155776ea4756a28dddb027c64cce", + "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", "placeholder": "​", - "style": "IPY_MODEL_6d00dcfbb71a473cbf9e476243985f81", + "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", "tabbable": null, "tooltip": null, "value": "100%" } }, - "4faae3cf9dec4bff8d6b153958974cb0": { + "4550b40c93134694b00bc701007e4553": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,7 +4677,23 @@ "width": null } }, - "57556e8423424a75b5760334a13aa4a6": { + "58c201af515141f191ad32c13265a546": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "59f5cfbd0629486ba546f97d01ea7fed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4725,7 +4746,47 @@ "width": null } }, - "5f942cc81ac44594bd238162231ac7ac": { + "716f2c676ad44e9fb6218d0b8625a9c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", + "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", + "IPY_MODEL_df74cf1241974d8dba64d522788976ea" + ], + "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", + "tabbable": null, + "tooltip": null + } + }, + "75e04c762f744d54adf55d90a052c562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75f430393fb34cad87ddab50d62eb686": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4778,7 +4839,30 @@ "width": null } }, - "65a45dea02f74c5bbcacb4916148fb86": { + "a58aa13dc64e47faa0cc93bb6652151b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", + "placeholder": "​", + "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 681.83it/s]" + } + }, + "b3b4bdc005f14648a26d1a16f3cf9fbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4796,7 +4880,7 @@ "text_color": null } }, - "66f3914610164bc59a81d0274162760b": { + "cdbb5130f8d045468526e3f842f2ee28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4849,7 +4933,7 @@ "width": null } }, - "6d00dcfbb71a473cbf9e476243985f81": { + "d12154805bed4fff8e2d01bf4f786af1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,113 +4951,48 @@ "text_color": null } }, - "7522155776ea4756a28dddb027c64cce": { - "model_module": "@jupyter-widgets/base", + "dee7e34112e0456e8e72f2a3ac0efa77": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "887298b3add949feb4bb13ea5dee1afe": { - "model_module": "@jupyter-widgets/base", + "df74cf1241974d8dba64d522788976ea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", + "placeholder": "​", + "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 800.04it/s]" } }, - "8bd3259d18d64ab0a7ab19d9a309e286": { + "e56f4d7332994f4e8edf32b758ca794d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4989,17 +5008,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f942cc81ac44594bd238162231ac7ac", + "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_309173506dba4f15b8b7213882a655e4", + "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "b9a1aba8237e45ea957d852a6d53dcc4": { + "ea4f3639cd404344b740181a60e6dfe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", + "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", + "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b" + ], + "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", + "tabbable": null, + "tooltip": null + } + }, + "ef0ce0626f2f42ccab835c3082d23f11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5052,30 +5095,7 @@ "width": null } }, - "bfa11543be8f43068f62cfed9db531cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66f3914610164bc59a81d0274162760b", - "placeholder": "​", - "style": "IPY_MODEL_ed6f32f260df411fabc8f0fbfee24aec", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 737.31it/s]" - } - }, - "c10a765f9e4f4c4cbaaba7f898a15d5b": { + "f9df9fb0ad7f4fe6b179e8db8621c60f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5127,50 +5147,6 @@ "visibility": null, "width": null } - }, - "c325cd32b1d14cc4b5ca8e321dc31d90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c10a765f9e4f4c4cbaaba7f898a15d5b", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_351acb9554dd4c3b842bf386e04513a3", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ed6f32f260df411fabc8f0fbfee24aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index f5cecb764..b7c82c939 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:19.727862Z", - "iopub.status.busy": "2024-07-09T06:11:19.727411Z", - "iopub.status.idle": "2024-07-09T06:11:20.814659Z", - "shell.execute_reply": "2024-07-09T06:11:20.814067Z" + "iopub.execute_input": "2024-07-09T06:26:32.925528Z", + "iopub.status.busy": "2024-07-09T06:26:32.925364Z", + "iopub.status.idle": "2024-07-09T06:26:34.040278Z", + "shell.execute_reply": "2024-07-09T06:26:34.039721Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.817130Z", - "iopub.status.busy": "2024-07-09T06:11:20.816860Z", - "iopub.status.idle": "2024-07-09T06:11:20.819597Z", - "shell.execute_reply": "2024-07-09T06:11:20.819174Z" + "iopub.execute_input": "2024-07-09T06:26:34.042937Z", + "iopub.status.busy": "2024-07-09T06:26:34.042544Z", + "iopub.status.idle": "2024-07-09T06:26:34.045384Z", + "shell.execute_reply": "2024-07-09T06:26:34.044944Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.821615Z", - "iopub.status.busy": "2024-07-09T06:11:20.821440Z", - "iopub.status.idle": "2024-07-09T06:11:20.832707Z", - "shell.execute_reply": "2024-07-09T06:11:20.832259Z" + "iopub.execute_input": "2024-07-09T06:26:34.047662Z", + "iopub.status.busy": "2024-07-09T06:26:34.047230Z", + "iopub.status.idle": "2024-07-09T06:26:34.058799Z", + "shell.execute_reply": "2024-07-09T06:26:34.058355Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.834603Z", - "iopub.status.busy": "2024-07-09T06:11:20.834431Z", - "iopub.status.idle": "2024-07-09T06:11:25.081972Z", - "shell.execute_reply": "2024-07-09T06:11:25.081390Z" + "iopub.execute_input": "2024-07-09T06:26:34.060975Z", + "iopub.status.busy": "2024-07-09T06:26:34.060630Z", + "iopub.status.idle": "2024-07-09T06:26:39.033668Z", + "shell.execute_reply": "2024-07-09T06:26:39.033084Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 139cbc83e..593067553 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:27.310302Z", - "iopub.status.busy": "2024-07-09T06:11:27.310136Z", - "iopub.status.idle": "2024-07-09T06:11:28.393086Z", - "shell.execute_reply": "2024-07-09T06:11:28.392489Z" + "iopub.execute_input": "2024-07-09T06:26:41.303187Z", + "iopub.status.busy": "2024-07-09T06:26:41.302823Z", + "iopub.status.idle": "2024-07-09T06:26:42.450257Z", + "shell.execute_reply": "2024-07-09T06:26:42.449747Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.395722Z", - "iopub.status.busy": "2024-07-09T06:11:28.395447Z", - "iopub.status.idle": "2024-07-09T06:11:28.398796Z", - "shell.execute_reply": "2024-07-09T06:11:28.398282Z" + "iopub.execute_input": "2024-07-09T06:26:42.453168Z", + "iopub.status.busy": "2024-07-09T06:26:42.452624Z", + "iopub.status.idle": "2024-07-09T06:26:42.456109Z", + "shell.execute_reply": "2024-07-09T06:26:42.455577Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.400817Z", - "iopub.status.busy": "2024-07-09T06:11:28.400506Z", - "iopub.status.idle": "2024-07-09T06:11:31.516039Z", - "shell.execute_reply": "2024-07-09T06:11:31.515428Z" + "iopub.execute_input": "2024-07-09T06:26:42.458324Z", + "iopub.status.busy": "2024-07-09T06:26:42.457999Z", + "iopub.status.idle": "2024-07-09T06:26:45.758135Z", + "shell.execute_reply": "2024-07-09T06:26:45.757518Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.519139Z", - "iopub.status.busy": "2024-07-09T06:11:31.518418Z", - "iopub.status.idle": "2024-07-09T06:11:31.550351Z", - "shell.execute_reply": "2024-07-09T06:11:31.549782Z" + "iopub.execute_input": "2024-07-09T06:26:45.761341Z", + "iopub.status.busy": "2024-07-09T06:26:45.760502Z", + "iopub.status.idle": "2024-07-09T06:26:45.799809Z", + "shell.execute_reply": "2024-07-09T06:26:45.799118Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.553016Z", - "iopub.status.busy": "2024-07-09T06:11:31.552724Z", - "iopub.status.idle": "2024-07-09T06:11:31.580753Z", - "shell.execute_reply": "2024-07-09T06:11:31.580187Z" + "iopub.execute_input": "2024-07-09T06:26:45.802392Z", + "iopub.status.busy": "2024-07-09T06:26:45.802142Z", + "iopub.status.idle": "2024-07-09T06:26:45.837536Z", + "shell.execute_reply": "2024-07-09T06:26:45.836818Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.583249Z", - "iopub.status.busy": "2024-07-09T06:11:31.582857Z", - "iopub.status.idle": "2024-07-09T06:11:31.585897Z", - "shell.execute_reply": "2024-07-09T06:11:31.585452Z" + "iopub.execute_input": "2024-07-09T06:26:45.840174Z", + "iopub.status.busy": "2024-07-09T06:26:45.839915Z", + "iopub.status.idle": "2024-07-09T06:26:45.842992Z", + "shell.execute_reply": "2024-07-09T06:26:45.842523Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.587847Z", - "iopub.status.busy": "2024-07-09T06:11:31.587536Z", - "iopub.status.idle": "2024-07-09T06:11:31.589987Z", - "shell.execute_reply": "2024-07-09T06:11:31.589558Z" + "iopub.execute_input": "2024-07-09T06:26:45.845075Z", + "iopub.status.busy": "2024-07-09T06:26:45.844811Z", + "iopub.status.idle": "2024-07-09T06:26:45.847393Z", + "shell.execute_reply": "2024-07-09T06:26:45.846951Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.592096Z", - "iopub.status.busy": "2024-07-09T06:11:31.591837Z", - "iopub.status.idle": "2024-07-09T06:11:31.616513Z", - "shell.execute_reply": "2024-07-09T06:11:31.615966Z" + "iopub.execute_input": "2024-07-09T06:26:45.849512Z", + "iopub.status.busy": "2024-07-09T06:26:45.849230Z", + "iopub.status.idle": "2024-07-09T06:26:45.873850Z", + "shell.execute_reply": "2024-07-09T06:26:45.873252Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a882aeebfb54110a2ffcfd1c2a492d4", + "model_id": "3e1a0cbaae1e45e19806d88ecdce7389", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b7cd48702a2947cfbce95f0292f5ba90", + "model_id": "684088a7b56b4b3aa39b109dfa860ac6", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.622436Z", - "iopub.status.busy": "2024-07-09T06:11:31.622223Z", - "iopub.status.idle": "2024-07-09T06:11:31.628767Z", - "shell.execute_reply": "2024-07-09T06:11:31.628236Z" + "iopub.execute_input": "2024-07-09T06:26:45.880372Z", + "iopub.status.busy": "2024-07-09T06:26:45.879962Z", + "iopub.status.idle": "2024-07-09T06:26:45.886615Z", + "shell.execute_reply": "2024-07-09T06:26:45.886081Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.630960Z", - "iopub.status.busy": "2024-07-09T06:11:31.630707Z", - "iopub.status.idle": "2024-07-09T06:11:31.634055Z", - "shell.execute_reply": "2024-07-09T06:11:31.633635Z" + "iopub.execute_input": "2024-07-09T06:26:45.888785Z", + "iopub.status.busy": "2024-07-09T06:26:45.888399Z", + "iopub.status.idle": "2024-07-09T06:26:45.891884Z", + "shell.execute_reply": "2024-07-09T06:26:45.891348Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.636034Z", - "iopub.status.busy": "2024-07-09T06:11:31.635717Z", - "iopub.status.idle": "2024-07-09T06:11:31.641760Z", - "shell.execute_reply": "2024-07-09T06:11:31.641333Z" + "iopub.execute_input": "2024-07-09T06:26:45.893965Z", + "iopub.status.busy": "2024-07-09T06:26:45.893580Z", + "iopub.status.idle": "2024-07-09T06:26:45.899933Z", + "shell.execute_reply": "2024-07-09T06:26:45.899439Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.643818Z", - "iopub.status.busy": "2024-07-09T06:11:31.643504Z", - "iopub.status.idle": "2024-07-09T06:11:31.673492Z", - "shell.execute_reply": "2024-07-09T06:11:31.672940Z" + "iopub.execute_input": "2024-07-09T06:26:45.901957Z", + "iopub.status.busy": "2024-07-09T06:26:45.901564Z", + "iopub.status.idle": "2024-07-09T06:26:45.938412Z", + "shell.execute_reply": "2024-07-09T06:26:45.937735Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.675988Z", - "iopub.status.busy": "2024-07-09T06:11:31.675744Z", - "iopub.status.idle": "2024-07-09T06:11:31.705573Z", - "shell.execute_reply": "2024-07-09T06:11:31.705028Z" + "iopub.execute_input": "2024-07-09T06:26:45.941344Z", + "iopub.status.busy": "2024-07-09T06:26:45.940842Z", + "iopub.status.idle": "2024-07-09T06:26:45.977181Z", + "shell.execute_reply": "2024-07-09T06:26:45.976594Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.708142Z", - "iopub.status.busy": "2024-07-09T06:11:31.707852Z", - "iopub.status.idle": "2024-07-09T06:11:31.825928Z", - "shell.execute_reply": "2024-07-09T06:11:31.825339Z" + "iopub.execute_input": "2024-07-09T06:26:45.979821Z", + "iopub.status.busy": "2024-07-09T06:26:45.979575Z", + "iopub.status.idle": "2024-07-09T06:26:46.104854Z", + "shell.execute_reply": "2024-07-09T06:26:46.104267Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.828701Z", - "iopub.status.busy": "2024-07-09T06:11:31.828028Z", - "iopub.status.idle": "2024-07-09T06:11:34.791968Z", - "shell.execute_reply": "2024-07-09T06:11:34.791331Z" + "iopub.execute_input": "2024-07-09T06:26:46.107771Z", + "iopub.status.busy": "2024-07-09T06:26:46.106984Z", + "iopub.status.idle": "2024-07-09T06:26:49.148445Z", + "shell.execute_reply": "2024-07-09T06:26:49.147812Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.794094Z", - "iopub.status.busy": "2024-07-09T06:11:34.793894Z", - "iopub.status.idle": "2024-07-09T06:11:34.852114Z", - "shell.execute_reply": "2024-07-09T06:11:34.851633Z" + "iopub.execute_input": "2024-07-09T06:26:49.150871Z", + "iopub.status.busy": "2024-07-09T06:26:49.150502Z", + "iopub.status.idle": "2024-07-09T06:26:49.209147Z", + "shell.execute_reply": "2024-07-09T06:26:49.208576Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.853981Z", - "iopub.status.busy": "2024-07-09T06:11:34.853803Z", - "iopub.status.idle": "2024-07-09T06:11:34.893549Z", - "shell.execute_reply": "2024-07-09T06:11:34.893064Z" + "iopub.execute_input": "2024-07-09T06:26:49.211500Z", + "iopub.status.busy": "2024-07-09T06:26:49.211164Z", + "iopub.status.idle": "2024-07-09T06:26:49.251723Z", + "shell.execute_reply": "2024-07-09T06:26:49.251225Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "7247e540", + "id": "a54c40cb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "da879a50", + "id": "bab2f717", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "c4df3634", + "id": "4a53b370", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9d690d9d", + "id": "209659fa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.895567Z", - "iopub.status.busy": "2024-07-09T06:11:34.895385Z", - "iopub.status.idle": "2024-07-09T06:11:34.902785Z", - "shell.execute_reply": "2024-07-09T06:11:34.902359Z" + "iopub.execute_input": "2024-07-09T06:26:49.253937Z", + "iopub.status.busy": "2024-07-09T06:26:49.253593Z", + "iopub.status.idle": "2024-07-09T06:26:49.261348Z", + "shell.execute_reply": "2024-07-09T06:26:49.260803Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ff01b6f9", + "id": "c433c793", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7c1cad4d", + "id": "74646b5a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.904752Z", - "iopub.status.busy": "2024-07-09T06:11:34.904575Z", - "iopub.status.idle": "2024-07-09T06:11:34.922778Z", - "shell.execute_reply": "2024-07-09T06:11:34.922347Z" + "iopub.execute_input": "2024-07-09T06:26:49.263459Z", + "iopub.status.busy": "2024-07-09T06:26:49.263127Z", + "iopub.status.idle": "2024-07-09T06:26:49.282109Z", + "shell.execute_reply": "2024-07-09T06:26:49.281556Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "33e36c44", + "id": "9a0f1590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.924880Z", - "iopub.status.busy": "2024-07-09T06:11:34.924490Z", - "iopub.status.idle": "2024-07-09T06:11:34.927841Z", - "shell.execute_reply": "2024-07-09T06:11:34.927308Z" + "iopub.execute_input": "2024-07-09T06:26:49.284265Z", + "iopub.status.busy": "2024-07-09T06:26:49.283854Z", + "iopub.status.idle": "2024-07-09T06:26:49.287329Z", + "shell.execute_reply": "2024-07-09T06:26:49.286782Z" } }, "outputs": [ @@ -1622,85 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "074f2bcc255940edb9bdaf05c41c3bb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d927b738e5b476e8416885f23d1cceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "114f58093d9047e5ba3e39df4eb4657c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12829dee5c694554b8d985bb46ff443b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132060852c5a493ea0001fec443ca1d2", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d927b738e5b476e8416885f23d1cceb", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "132060852c5a493ea0001fec443ca1d2": { + "06e039af78aa4922a7a5727f3929196b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1675,25 @@ "width": null } }, - "29ef3629c9a64dd1af78acbfcd298cef": { + "24abf0a07e174ecfb6ec768926bd9a35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2b835234c6594eaa9d659e33328d4ec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,23 +1746,7 @@ "width": null } }, - "3f162310e387401b85497edaa975d469": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4a882aeebfb54110a2ffcfd1c2a492d4": { + "3e1a0cbaae1e45e19806d88ecdce7389": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1837,16 +1761,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d64f4fd144a4d2da78ee7005e80a4f2", - "IPY_MODEL_58dcac96496e467aae9cf8175b1c353f", - "IPY_MODEL_7faa44b6c17e453eb485bbbb6e97570d" + "IPY_MODEL_ea0eb1e345874ebda4377832a5d148a1", + "IPY_MODEL_d3065c15065244f0a790856a85909914", + "IPY_MODEL_7420a4a93f6b475c9704a92f12d85f23" ], - "layout": "IPY_MODEL_d5d1c5ea3e5d482f94bf0d53fc4a1ad4", + "layout": "IPY_MODEL_66c7a500b9334da2b1849d287af9b402", "tabbable": null, "tooltip": null } }, - "5170546b7aec4a93b276eaea8d93cd04": { + "49c52b91517445ea95a2cdd6bcf7b607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1861,15 +1785,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ef3629c9a64dd1af78acbfcd298cef", + "layout": "IPY_MODEL_bf6180ca73df49bea8de92466f822aab", "placeholder": "​", - "style": "IPY_MODEL_b1b635c929d044d28128d92d893544bb", + "style": "IPY_MODEL_24abf0a07e174ecfb6ec768926bd9a35", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1448409.42it/s]" + "value": " 10000/? [00:00<00:00, 1540041.86it/s]" } }, - "58dcac96496e467aae9cf8175b1c353f": { + "4a2ecebbfc494ed9b2bada7d47085eaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1885,17 +1809,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d66327ec2a19429dae4bba06ae275a22", + "layout": "IPY_MODEL_4fbbfa9cd03647f4813a04fc8a4abc42", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f162310e387401b85497edaa975d469", + "style": "IPY_MODEL_e22f6064eadd4807ae9f756d8590121c", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "64218fdf8f77412189de02f82f9cd88a": { + "4fbbfa9cd03647f4813a04fc8a4abc42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1948,7 +1872,7 @@ "width": null } }, - "6869b651699240d3891714e1dfe045e5": { + "5fcc8c6298f24a3fbf1ca1a58c292bd3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2001,7 +1925,7 @@ "width": null } }, - "68cb1231213f4268acd070c5795648f7": { + "66c7a500b9334da2b1849d287af9b402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2054,53 +1978,49 @@ "width": null } }, - "6d64f4fd144a4d2da78ee7005e80a4f2": { + "684088a7b56b4b3aa39b109dfa860ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6cde3bfe98640e49abbf66bcb38b16d", - "placeholder": "​", - "style": "IPY_MODEL_e3811b0ca1b54da2a8ec0b7be16c3b75", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2ae6b9df4f8490b96524164e46e65fc", + "IPY_MODEL_4a2ecebbfc494ed9b2bada7d47085eaa", + "IPY_MODEL_49c52b91517445ea95a2cdd6bcf7b607" + ], + "layout": "IPY_MODEL_7ec4490b5e064efd8d912a372922e930", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "7faa44b6c17e453eb485bbbb6e97570d": { + "6a7594e4ad2a4a2f97e56b5e1a6a9890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_64218fdf8f77412189de02f82f9cd88a", - "placeholder": "​", - "style": "IPY_MODEL_074f2bcc255940edb9bdaf05c41c3bb6", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1094289.96it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2af7ceec77b462294a589dbc36ef86f": { + "7420a4a93f6b475c9704a92f12d85f23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2115,33 +2035,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68cb1231213f4268acd070c5795648f7", + "layout": "IPY_MODEL_b618cbdb66e74802ac612b08fdd271ca", "placeholder": "​", - "style": "IPY_MODEL_114f58093d9047e5ba3e39df4eb4657c", + "style": "IPY_MODEL_6a7594e4ad2a4a2f97e56b5e1a6a9890", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "b1b635c929d044d28128d92d893544bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 10000/? [00:00<00:00, 1046300.30it/s]" } }, - "b6cde3bfe98640e49abbf66bcb38b16d": { + "7ec4490b5e064efd8d912a372922e930": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2194,31 +2096,23 @@ "width": null } }, - "b7cd48702a2947cfbce95f0292f5ba90": { + "8d038adf74b94c00ba237beeafd03a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2af7ceec77b462294a589dbc36ef86f", - "IPY_MODEL_12829dee5c694554b8d985bb46ff443b", - "IPY_MODEL_5170546b7aec4a93b276eaea8d93cd04" - ], - "layout": "IPY_MODEL_6869b651699240d3891714e1dfe045e5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d5d1c5ea3e5d482f94bf0d53fc4a1ad4": { + "b618cbdb66e74802ac612b08fdd271ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2271,7 +2165,7 @@ "width": null } }, - "d66327ec2a19429dae4bba06ae275a22": { + "bf6180ca73df49bea8de92466f822aab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,7 +2218,113 @@ "width": null } }, - "e3811b0ca1b54da2a8ec0b7be16c3b75": { + "c26ba877617a46b5983aa98f97f6f4e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3065c15065244f0a790856a85909914": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b835234c6594eaa9d659e33328d4ec6", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d038adf74b94c00ba237beeafd03a45", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "e22f6064eadd4807ae9f756d8590121c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2ae6b9df4f8490b96524164e46e65fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_06e039af78aa4922a7a5727f3929196b", + "placeholder": "​", + "style": "IPY_MODEL_ecb5b9b407b34ccdac02fdba74200b01", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "ea0eb1e345874ebda4377832a5d148a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fcc8c6298f24a3fbf1ca1a58c292bd3", + "placeholder": "​", + "style": "IPY_MODEL_c26ba877617a46b5983aa98f97f6f4e6", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "ecb5b9b407b34ccdac02fdba74200b01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb index d8338a1c7..1a1804c33 100644 --- a/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/improving_ml_performance.ipynb @@ -62,10 +62,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:38.074917Z", - "iopub.status.busy": "2024-07-09T06:11:38.074738Z", - "iopub.status.idle": "2024-07-09T06:11:39.177755Z", - "shell.execute_reply": "2024-07-09T06:11:39.177136Z" + "iopub.execute_input": "2024-07-09T06:26:53.572917Z", + "iopub.status.busy": "2024-07-09T06:26:53.572738Z", + "iopub.status.idle": "2024-07-09T06:26:54.710376Z", + "shell.execute_reply": "2024-07-09T06:26:54.709717Z" }, "nbsphinx": "hidden" }, @@ -75,7 +75,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -101,10 +101,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.180393Z", - "iopub.status.busy": "2024-07-09T06:11:39.180112Z", - "iopub.status.idle": "2024-07-09T06:11:39.183849Z", - "shell.execute_reply": "2024-07-09T06:11:39.183327Z" + "iopub.execute_input": "2024-07-09T06:26:54.713150Z", + "iopub.status.busy": "2024-07-09T06:26:54.712711Z", + "iopub.status.idle": "2024-07-09T06:26:54.717207Z", + "shell.execute_reply": "2024-07-09T06:26:54.716666Z" } }, "outputs": [], @@ -142,10 +142,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.185853Z", - "iopub.status.busy": "2024-07-09T06:11:39.185471Z", - "iopub.status.idle": "2024-07-09T06:11:39.421540Z", - "shell.execute_reply": "2024-07-09T06:11:39.420989Z" + "iopub.execute_input": "2024-07-09T06:26:54.719478Z", + "iopub.status.busy": "2024-07-09T06:26:54.719131Z", + "iopub.status.idle": "2024-07-09T06:26:54.915038Z", + "shell.execute_reply": "2024-07-09T06:26:54.914515Z" } }, "outputs": [ @@ -275,10 +275,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.423563Z", - "iopub.status.busy": "2024-07-09T06:11:39.423353Z", - "iopub.status.idle": "2024-07-09T06:11:39.429110Z", - "shell.execute_reply": "2024-07-09T06:11:39.428591Z" + "iopub.execute_input": "2024-07-09T06:26:54.917264Z", + "iopub.status.busy": "2024-07-09T06:26:54.916924Z", + "iopub.status.idle": "2024-07-09T06:26:54.922778Z", + "shell.execute_reply": "2024-07-09T06:26:54.922239Z" } }, "outputs": [], @@ -314,10 +314,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.431253Z", - "iopub.status.busy": "2024-07-09T06:11:39.430930Z", - "iopub.status.idle": "2024-07-09T06:11:39.437847Z", - "shell.execute_reply": "2024-07-09T06:11:39.437407Z" + "iopub.execute_input": "2024-07-09T06:26:54.925001Z", + "iopub.status.busy": "2024-07-09T06:26:54.924597Z", + "iopub.status.idle": "2024-07-09T06:26:54.931679Z", + "shell.execute_reply": "2024-07-09T06:26:54.931113Z" } }, "outputs": [ @@ -420,10 +420,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.439692Z", - "iopub.status.busy": "2024-07-09T06:11:39.439519Z", - "iopub.status.idle": "2024-07-09T06:11:39.444051Z", - "shell.execute_reply": "2024-07-09T06:11:39.443626Z" + "iopub.execute_input": "2024-07-09T06:26:54.933695Z", + "iopub.status.busy": "2024-07-09T06:26:54.933374Z", + "iopub.status.idle": "2024-07-09T06:26:54.937844Z", + "shell.execute_reply": "2024-07-09T06:26:54.937411Z" } }, "outputs": [], @@ -451,10 +451,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.445820Z", - "iopub.status.busy": "2024-07-09T06:11:39.445641Z", - "iopub.status.idle": "2024-07-09T06:11:39.451360Z", - "shell.execute_reply": "2024-07-09T06:11:39.450923Z" + "iopub.execute_input": "2024-07-09T06:26:54.939828Z", + "iopub.status.busy": "2024-07-09T06:26:54.939504Z", + "iopub.status.idle": "2024-07-09T06:26:54.945245Z", + "shell.execute_reply": "2024-07-09T06:26:54.944792Z" } }, "outputs": [], @@ -490,10 +490,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.453310Z", - "iopub.status.busy": "2024-07-09T06:11:39.453005Z", - "iopub.status.idle": "2024-07-09T06:11:39.457095Z", - "shell.execute_reply": "2024-07-09T06:11:39.456561Z" + "iopub.execute_input": "2024-07-09T06:26:54.947250Z", + "iopub.status.busy": "2024-07-09T06:26:54.946896Z", + "iopub.status.idle": "2024-07-09T06:26:54.950932Z", + "shell.execute_reply": "2024-07-09T06:26:54.950488Z" } }, "outputs": [], @@ -508,10 +508,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.459051Z", - "iopub.status.busy": "2024-07-09T06:11:39.458713Z", - "iopub.status.idle": "2024-07-09T06:11:39.521965Z", - "shell.execute_reply": "2024-07-09T06:11:39.521403Z" + "iopub.execute_input": "2024-07-09T06:26:54.952888Z", + "iopub.status.busy": "2024-07-09T06:26:54.952594Z", + "iopub.status.idle": "2024-07-09T06:26:55.016618Z", + "shell.execute_reply": "2024-07-09T06:26:55.015980Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.524898Z", - "iopub.status.busy": "2024-07-09T06:11:39.524546Z", - "iopub.status.idle": "2024-07-09T06:11:39.537157Z", - "shell.execute_reply": "2024-07-09T06:11:39.536649Z" + "iopub.execute_input": "2024-07-09T06:26:55.019431Z", + "iopub.status.busy": "2024-07-09T06:26:55.018865Z", + "iopub.status.idle": "2024-07-09T06:26:55.029533Z", + "shell.execute_reply": "2024-07-09T06:26:55.029057Z" } }, "outputs": [ @@ -726,10 +726,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.540541Z", - "iopub.status.busy": "2024-07-09T06:11:39.539543Z", - "iopub.status.idle": "2024-07-09T06:11:39.560886Z", - "shell.execute_reply": "2024-07-09T06:11:39.560377Z" + "iopub.execute_input": "2024-07-09T06:26:55.032677Z", + "iopub.status.busy": "2024-07-09T06:26:55.031768Z", + "iopub.status.idle": "2024-07-09T06:26:55.053007Z", + "shell.execute_reply": "2024-07-09T06:26:55.052525Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.563641Z", - "iopub.status.busy": "2024-07-09T06:11:39.563221Z", - "iopub.status.idle": "2024-07-09T06:11:39.568664Z", - "shell.execute_reply": "2024-07-09T06:11:39.568157Z" + "iopub.execute_input": "2024-07-09T06:26:55.056439Z", + "iopub.status.busy": "2024-07-09T06:26:55.055527Z", + "iopub.status.idle": "2024-07-09T06:26:55.061337Z", + "shell.execute_reply": "2024-07-09T06:26:55.060850Z" } }, "outputs": [ @@ -970,10 +970,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.571166Z", - "iopub.status.busy": "2024-07-09T06:11:39.570962Z", - "iopub.status.idle": "2024-07-09T06:11:39.576330Z", - "shell.execute_reply": "2024-07-09T06:11:39.575803Z" + "iopub.execute_input": "2024-07-09T06:26:55.064742Z", + "iopub.status.busy": "2024-07-09T06:26:55.063844Z", + "iopub.status.idle": "2024-07-09T06:26:55.069832Z", + "shell.execute_reply": "2024-07-09T06:26:55.069351Z" } }, "outputs": [ @@ -1007,10 +1007,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.579222Z", - "iopub.status.busy": "2024-07-09T06:11:39.578978Z", - "iopub.status.idle": "2024-07-09T06:11:39.589987Z", - "shell.execute_reply": "2024-07-09T06:11:39.589598Z" + "iopub.execute_input": "2024-07-09T06:26:55.073279Z", + "iopub.status.busy": "2024-07-09T06:26:55.072375Z", + "iopub.status.idle": "2024-07-09T06:26:55.083605Z", + "shell.execute_reply": "2024-07-09T06:26:55.083211Z" } }, "outputs": [ @@ -1207,10 +1207,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.591768Z", - "iopub.status.busy": "2024-07-09T06:11:39.591603Z", - "iopub.status.idle": "2024-07-09T06:11:39.595987Z", - "shell.execute_reply": "2024-07-09T06:11:39.595574Z" + "iopub.execute_input": "2024-07-09T06:26:55.086287Z", + "iopub.status.busy": "2024-07-09T06:26:55.085572Z", + "iopub.status.idle": "2024-07-09T06:26:55.090541Z", + "shell.execute_reply": "2024-07-09T06:26:55.090006Z" } }, "outputs": [], @@ -1236,10 +1236,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.597998Z", - "iopub.status.busy": "2024-07-09T06:11:39.597671Z", - "iopub.status.idle": "2024-07-09T06:11:39.701510Z", - "shell.execute_reply": "2024-07-09T06:11:39.700999Z" + "iopub.execute_input": "2024-07-09T06:26:55.092949Z", + "iopub.status.busy": "2024-07-09T06:26:55.092629Z", + "iopub.status.idle": "2024-07-09T06:26:55.197433Z", + "shell.execute_reply": "2024-07-09T06:26:55.196909Z" } }, "outputs": [ @@ -1713,10 +1713,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.703592Z", - "iopub.status.busy": "2024-07-09T06:11:39.703317Z", - "iopub.status.idle": "2024-07-09T06:11:39.709189Z", - "shell.execute_reply": "2024-07-09T06:11:39.708705Z" + "iopub.execute_input": "2024-07-09T06:26:55.199599Z", + "iopub.status.busy": "2024-07-09T06:26:55.199328Z", + "iopub.status.idle": "2024-07-09T06:26:55.205311Z", + "shell.execute_reply": "2024-07-09T06:26:55.204815Z" } }, "outputs": [], @@ -1740,10 +1740,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.711392Z", - "iopub.status.busy": "2024-07-09T06:11:39.711064Z", - "iopub.status.idle": "2024-07-09T06:11:41.651348Z", - "shell.execute_reply": "2024-07-09T06:11:41.650672Z" + "iopub.execute_input": "2024-07-09T06:26:55.207624Z", + "iopub.status.busy": "2024-07-09T06:26:55.207315Z", + "iopub.status.idle": "2024-07-09T06:26:57.128251Z", + "shell.execute_reply": "2024-07-09T06:26:57.127642Z" } }, "outputs": [ @@ -1955,10 +1955,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.655133Z", - "iopub.status.busy": "2024-07-09T06:11:41.654057Z", - "iopub.status.idle": "2024-07-09T06:11:41.668625Z", - "shell.execute_reply": "2024-07-09T06:11:41.668134Z" + "iopub.execute_input": "2024-07-09T06:26:57.131390Z", + "iopub.status.busy": "2024-07-09T06:26:57.130806Z", + "iopub.status.idle": "2024-07-09T06:26:57.144118Z", + "shell.execute_reply": "2024-07-09T06:26:57.143599Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.672036Z", - "iopub.status.busy": "2024-07-09T06:11:41.671132Z", - "iopub.status.idle": "2024-07-09T06:11:41.674984Z", - "shell.execute_reply": "2024-07-09T06:11:41.674508Z" + "iopub.execute_input": "2024-07-09T06:26:57.146831Z", + "iopub.status.busy": "2024-07-09T06:26:57.146463Z", + "iopub.status.idle": "2024-07-09T06:26:57.149377Z", + "shell.execute_reply": "2024-07-09T06:26:57.148891Z" } }, "outputs": [], @@ -2092,10 +2092,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.678357Z", - "iopub.status.busy": "2024-07-09T06:11:41.677451Z", - "iopub.status.idle": "2024-07-09T06:11:41.682864Z", - "shell.execute_reply": "2024-07-09T06:11:41.682375Z" + "iopub.execute_input": "2024-07-09T06:26:57.151654Z", + "iopub.status.busy": "2024-07-09T06:26:57.151283Z", + "iopub.status.idle": "2024-07-09T06:26:57.155840Z", + "shell.execute_reply": "2024-07-09T06:26:57.155317Z" } }, "outputs": [], @@ -2119,10 +2119,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.686265Z", - "iopub.status.busy": "2024-07-09T06:11:41.685365Z", - "iopub.status.idle": "2024-07-09T06:11:41.714433Z", - "shell.execute_reply": "2024-07-09T06:11:41.713889Z" + "iopub.execute_input": "2024-07-09T06:26:57.158157Z", + "iopub.status.busy": "2024-07-09T06:26:57.157788Z", + "iopub.status.idle": "2024-07-09T06:26:57.167772Z", + "shell.execute_reply": "2024-07-09T06:26:57.167300Z" } }, "outputs": [ @@ -2162,10 +2162,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.716900Z", - "iopub.status.busy": "2024-07-09T06:11:41.716509Z", - "iopub.status.idle": "2024-07-09T06:11:42.186387Z", - "shell.execute_reply": "2024-07-09T06:11:42.185860Z" + "iopub.execute_input": "2024-07-09T06:26:57.170046Z", + "iopub.status.busy": "2024-07-09T06:26:57.169694Z", + "iopub.status.idle": "2024-07-09T06:26:57.642079Z", + "shell.execute_reply": "2024-07-09T06:26:57.641537Z" } }, "outputs": [], @@ -2196,10 +2196,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.189028Z", - "iopub.status.busy": "2024-07-09T06:11:42.188720Z", - "iopub.status.idle": "2024-07-09T06:11:42.313557Z", - "shell.execute_reply": "2024-07-09T06:11:42.312910Z" + "iopub.execute_input": "2024-07-09T06:26:57.644886Z", + "iopub.status.busy": "2024-07-09T06:26:57.644506Z", + "iopub.status.idle": "2024-07-09T06:26:57.765208Z", + "shell.execute_reply": "2024-07-09T06:26:57.764592Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.317275Z", - "iopub.status.busy": "2024-07-09T06:11:42.316163Z", - "iopub.status.idle": "2024-07-09T06:11:42.324825Z", - "shell.execute_reply": "2024-07-09T06:11:42.324349Z" + "iopub.execute_input": "2024-07-09T06:26:57.767934Z", + "iopub.status.busy": "2024-07-09T06:26:57.767539Z", + "iopub.status.idle": "2024-07-09T06:26:57.774227Z", + "shell.execute_reply": "2024-07-09T06:26:57.773733Z" } }, "outputs": [ @@ -2443,10 +2443,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.328314Z", - "iopub.status.busy": "2024-07-09T06:11:42.327266Z", - "iopub.status.idle": "2024-07-09T06:11:42.335221Z", - "shell.execute_reply": "2024-07-09T06:11:42.334720Z" + "iopub.execute_input": "2024-07-09T06:26:57.777381Z", + "iopub.status.busy": "2024-07-09T06:26:57.776332Z", + "iopub.status.idle": "2024-07-09T06:26:57.784838Z", + "shell.execute_reply": "2024-07-09T06:26:57.784346Z" } }, "outputs": [ @@ -2479,10 +2479,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.338646Z", - "iopub.status.busy": "2024-07-09T06:11:42.337607Z", - "iopub.status.idle": "2024-07-09T06:11:42.344830Z", - "shell.execute_reply": "2024-07-09T06:11:42.344359Z" + "iopub.execute_input": "2024-07-09T06:26:57.788740Z", + "iopub.status.busy": "2024-07-09T06:26:57.787559Z", + "iopub.status.idle": "2024-07-09T06:26:57.795543Z", + "shell.execute_reply": "2024-07-09T06:26:57.795055Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.348222Z", - "iopub.status.busy": "2024-07-09T06:11:42.347202Z", - "iopub.status.idle": "2024-07-09T06:11:42.353201Z", - "shell.execute_reply": "2024-07-09T06:11:42.352734Z" + "iopub.execute_input": "2024-07-09T06:26:57.799183Z", + "iopub.status.busy": "2024-07-09T06:26:57.798006Z", + "iopub.status.idle": "2024-07-09T06:26:57.804472Z", + "shell.execute_reply": "2024-07-09T06:26:57.803989Z" } }, "outputs": [ @@ -2544,10 +2544,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.356588Z", - "iopub.status.busy": "2024-07-09T06:11:42.355570Z", - "iopub.status.idle": "2024-07-09T06:11:42.360784Z", - "shell.execute_reply": "2024-07-09T06:11:42.360243Z" + "iopub.execute_input": "2024-07-09T06:26:57.808096Z", + "iopub.status.busy": "2024-07-09T06:26:57.807195Z", + "iopub.status.idle": "2024-07-09T06:26:57.812308Z", + "shell.execute_reply": "2024-07-09T06:26:57.811777Z" } }, "outputs": [], @@ -2571,10 +2571,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.362781Z", - "iopub.status.busy": "2024-07-09T06:11:42.362457Z", - "iopub.status.idle": "2024-07-09T06:11:42.432148Z", - "shell.execute_reply": "2024-07-09T06:11:42.431625Z" + "iopub.execute_input": "2024-07-09T06:26:57.814541Z", + "iopub.status.busy": "2024-07-09T06:26:57.814291Z", + "iopub.status.idle": "2024-07-09T06:26:57.894429Z", + "shell.execute_reply": "2024-07-09T06:26:57.893893Z" } }, "outputs": [ @@ -3054,10 +3054,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.434389Z", - "iopub.status.busy": "2024-07-09T06:11:42.433972Z", - "iopub.status.idle": "2024-07-09T06:11:42.442830Z", - "shell.execute_reply": "2024-07-09T06:11:42.442287Z" + "iopub.execute_input": "2024-07-09T06:26:57.896631Z", + "iopub.status.busy": "2024-07-09T06:26:57.896354Z", + "iopub.status.idle": "2024-07-09T06:26:57.906205Z", + "shell.execute_reply": "2024-07-09T06:26:57.905633Z" } }, "outputs": [ @@ -3113,10 +3113,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.445160Z", - "iopub.status.busy": "2024-07-09T06:11:42.444683Z", - "iopub.status.idle": "2024-07-09T06:11:42.447719Z", - "shell.execute_reply": "2024-07-09T06:11:42.447244Z" + "iopub.execute_input": "2024-07-09T06:26:57.910159Z", + "iopub.status.busy": "2024-07-09T06:26:57.909684Z", + "iopub.status.idle": "2024-07-09T06:26:57.912488Z", + "shell.execute_reply": "2024-07-09T06:26:57.912033Z" } }, "outputs": [], @@ -3152,10 +3152,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.449643Z", - "iopub.status.busy": "2024-07-09T06:11:42.449346Z", - "iopub.status.idle": "2024-07-09T06:11:42.458347Z", - "shell.execute_reply": "2024-07-09T06:11:42.457952Z" + "iopub.execute_input": "2024-07-09T06:26:57.914998Z", + "iopub.status.busy": "2024-07-09T06:26:57.914575Z", + "iopub.status.idle": "2024-07-09T06:26:57.923907Z", + "shell.execute_reply": "2024-07-09T06:26:57.923469Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.460548Z", - "iopub.status.busy": "2024-07-09T06:11:42.460124Z", - "iopub.status.idle": "2024-07-09T06:11:42.466711Z", - "shell.execute_reply": "2024-07-09T06:11:42.466317Z" + "iopub.execute_input": "2024-07-09T06:26:57.925928Z", + "iopub.status.busy": "2024-07-09T06:26:57.925621Z", + "iopub.status.idle": "2024-07-09T06:26:57.932179Z", + "shell.execute_reply": "2024-07-09T06:26:57.931737Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.468698Z", - "iopub.status.busy": "2024-07-09T06:11:42.468382Z", - "iopub.status.idle": "2024-07-09T06:11:42.471498Z", - "shell.execute_reply": "2024-07-09T06:11:42.471070Z" + "iopub.execute_input": "2024-07-09T06:26:57.934245Z", + "iopub.status.busy": "2024-07-09T06:26:57.933861Z", + "iopub.status.idle": "2024-07-09T06:26:57.937104Z", + "shell.execute_reply": "2024-07-09T06:26:57.936671Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.473490Z", - "iopub.status.busy": "2024-07-09T06:11:42.473168Z", - "iopub.status.idle": "2024-07-09T06:11:46.154478Z", - "shell.execute_reply": "2024-07-09T06:11:46.153968Z" + "iopub.execute_input": "2024-07-09T06:26:57.938975Z", + "iopub.status.busy": "2024-07-09T06:26:57.938647Z", + "iopub.status.idle": "2024-07-09T06:27:01.641872Z", + "shell.execute_reply": "2024-07-09T06:27:01.641360Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.156899Z", - "iopub.status.busy": "2024-07-09T06:11:46.156558Z", - "iopub.status.idle": "2024-07-09T06:11:46.159512Z", - "shell.execute_reply": "2024-07-09T06:11:46.159123Z" + "iopub.execute_input": "2024-07-09T06:27:01.644959Z", + "iopub.status.busy": "2024-07-09T06:27:01.644089Z", + "iopub.status.idle": "2024-07-09T06:27:01.648019Z", + "shell.execute_reply": "2024-07-09T06:27:01.647564Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.161459Z", - "iopub.status.busy": "2024-07-09T06:11:46.161146Z", - "iopub.status.idle": "2024-07-09T06:11:46.164332Z", - "shell.execute_reply": "2024-07-09T06:11:46.163782Z" + "iopub.execute_input": "2024-07-09T06:27:01.649958Z", + "iopub.status.busy": "2024-07-09T06:27:01.649677Z", + "iopub.status.idle": "2024-07-09T06:27:01.652295Z", + "shell.execute_reply": "2024-07-09T06:27:01.651802Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 2996d7ede..e7571dfc6 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:49.091711Z", - "iopub.status.busy": "2024-07-09T06:11:49.091553Z", - "iopub.status.idle": "2024-07-09T06:11:50.232481Z", - "shell.execute_reply": "2024-07-09T06:11:50.231945Z" + "iopub.execute_input": "2024-07-09T06:27:04.830463Z", + "iopub.status.busy": "2024-07-09T06:27:04.830294Z", + "iopub.status.idle": "2024-07-09T06:27:06.025206Z", + "shell.execute_reply": "2024-07-09T06:27:06.024596Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.235078Z", - "iopub.status.busy": "2024-07-09T06:11:50.234645Z", - "iopub.status.idle": "2024-07-09T06:11:50.408424Z", - "shell.execute_reply": "2024-07-09T06:11:50.407907Z" + "iopub.execute_input": "2024-07-09T06:27:06.027800Z", + "iopub.status.busy": "2024-07-09T06:27:06.027471Z", + "iopub.status.idle": "2024-07-09T06:27:06.212766Z", + "shell.execute_reply": "2024-07-09T06:27:06.212206Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.410863Z", - "iopub.status.busy": "2024-07-09T06:11:50.410584Z", - "iopub.status.idle": "2024-07-09T06:11:50.421585Z", - "shell.execute_reply": "2024-07-09T06:11:50.421178Z" + "iopub.execute_input": "2024-07-09T06:27:06.215365Z", + "iopub.status.busy": "2024-07-09T06:27:06.215033Z", + "iopub.status.idle": "2024-07-09T06:27:06.226517Z", + "shell.execute_reply": "2024-07-09T06:27:06.226088Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.423540Z", - "iopub.status.busy": "2024-07-09T06:11:50.423276Z", - "iopub.status.idle": "2024-07-09T06:11:50.658194Z", - "shell.execute_reply": "2024-07-09T06:11:50.657603Z" + "iopub.execute_input": "2024-07-09T06:27:06.228721Z", + "iopub.status.busy": "2024-07-09T06:27:06.228284Z", + "iopub.status.idle": "2024-07-09T06:27:06.463202Z", + "shell.execute_reply": "2024-07-09T06:27:06.462603Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.660770Z", - "iopub.status.busy": "2024-07-09T06:11:50.660310Z", - "iopub.status.idle": "2024-07-09T06:11:50.686483Z", - "shell.execute_reply": "2024-07-09T06:11:50.686061Z" + "iopub.execute_input": "2024-07-09T06:27:06.465737Z", + "iopub.status.busy": "2024-07-09T06:27:06.465380Z", + "iopub.status.idle": "2024-07-09T06:27:06.491353Z", + "shell.execute_reply": "2024-07-09T06:27:06.490841Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.688646Z", - "iopub.status.busy": "2024-07-09T06:11:50.688370Z", - "iopub.status.idle": "2024-07-09T06:11:52.702920Z", - "shell.execute_reply": "2024-07-09T06:11:52.702319Z" + "iopub.execute_input": "2024-07-09T06:27:06.493408Z", + "iopub.status.busy": "2024-07-09T06:27:06.493075Z", + "iopub.status.idle": "2024-07-09T06:27:08.559484Z", + "shell.execute_reply": "2024-07-09T06:27:08.558857Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.705397Z", - "iopub.status.busy": "2024-07-09T06:11:52.705057Z", - "iopub.status.idle": "2024-07-09T06:11:52.722879Z", - "shell.execute_reply": "2024-07-09T06:11:52.722437Z" + "iopub.execute_input": "2024-07-09T06:27:08.561982Z", + "iopub.status.busy": "2024-07-09T06:27:08.561454Z", + "iopub.status.idle": "2024-07-09T06:27:08.579506Z", + "shell.execute_reply": "2024-07-09T06:27:08.578938Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.724954Z", - "iopub.status.busy": "2024-07-09T06:11:52.724772Z", - "iopub.status.idle": "2024-07-09T06:11:54.183986Z", - "shell.execute_reply": "2024-07-09T06:11:54.183375Z" + "iopub.execute_input": "2024-07-09T06:27:08.581768Z", + "iopub.status.busy": "2024-07-09T06:27:08.581433Z", + "iopub.status.idle": "2024-07-09T06:27:10.041147Z", + "shell.execute_reply": "2024-07-09T06:27:10.040535Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.186907Z", - "iopub.status.busy": "2024-07-09T06:11:54.186075Z", - "iopub.status.idle": "2024-07-09T06:11:54.200134Z", - "shell.execute_reply": "2024-07-09T06:11:54.199558Z" + "iopub.execute_input": "2024-07-09T06:27:10.043766Z", + "iopub.status.busy": "2024-07-09T06:27:10.043148Z", + "iopub.status.idle": "2024-07-09T06:27:10.056923Z", + "shell.execute_reply": "2024-07-09T06:27:10.056388Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.202306Z", - "iopub.status.busy": "2024-07-09T06:11:54.202000Z", - "iopub.status.idle": "2024-07-09T06:11:54.277250Z", - "shell.execute_reply": "2024-07-09T06:11:54.276637Z" + "iopub.execute_input": "2024-07-09T06:27:10.059184Z", + "iopub.status.busy": "2024-07-09T06:27:10.058724Z", + "iopub.status.idle": "2024-07-09T06:27:10.131352Z", + "shell.execute_reply": "2024-07-09T06:27:10.130748Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.279643Z", - "iopub.status.busy": "2024-07-09T06:11:54.279420Z", - "iopub.status.idle": "2024-07-09T06:11:54.491334Z", - "shell.execute_reply": "2024-07-09T06:11:54.490753Z" + "iopub.execute_input": "2024-07-09T06:27:10.133987Z", + "iopub.status.busy": "2024-07-09T06:27:10.133447Z", + "iopub.status.idle": "2024-07-09T06:27:10.342019Z", + "shell.execute_reply": "2024-07-09T06:27:10.341476Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.493562Z", - "iopub.status.busy": "2024-07-09T06:11:54.493205Z", - "iopub.status.idle": "2024-07-09T06:11:54.509795Z", - "shell.execute_reply": "2024-07-09T06:11:54.509342Z" + "iopub.execute_input": "2024-07-09T06:27:10.344306Z", + "iopub.status.busy": "2024-07-09T06:27:10.343957Z", + "iopub.status.idle": "2024-07-09T06:27:10.361242Z", + "shell.execute_reply": "2024-07-09T06:27:10.360779Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.511753Z", - "iopub.status.busy": "2024-07-09T06:11:54.511488Z", - "iopub.status.idle": "2024-07-09T06:11:54.520675Z", - "shell.execute_reply": "2024-07-09T06:11:54.520247Z" + "iopub.execute_input": "2024-07-09T06:27:10.363517Z", + "iopub.status.busy": "2024-07-09T06:27:10.363117Z", + "iopub.status.idle": "2024-07-09T06:27:10.372893Z", + "shell.execute_reply": "2024-07-09T06:27:10.372453Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.522665Z", - "iopub.status.busy": "2024-07-09T06:11:54.522333Z", - "iopub.status.idle": "2024-07-09T06:11:54.604475Z", - "shell.execute_reply": "2024-07-09T06:11:54.603871Z" + "iopub.execute_input": "2024-07-09T06:27:10.375119Z", + "iopub.status.busy": "2024-07-09T06:27:10.374773Z", + "iopub.status.idle": "2024-07-09T06:27:10.461355Z", + "shell.execute_reply": "2024-07-09T06:27:10.460793Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.606814Z", - "iopub.status.busy": "2024-07-09T06:11:54.606624Z", - "iopub.status.idle": "2024-07-09T06:11:54.727974Z", - "shell.execute_reply": "2024-07-09T06:11:54.727317Z" + "iopub.execute_input": "2024-07-09T06:27:10.463772Z", + "iopub.status.busy": "2024-07-09T06:27:10.463410Z", + "iopub.status.idle": "2024-07-09T06:27:10.595934Z", + "shell.execute_reply": "2024-07-09T06:27:10.595287Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.730454Z", - "iopub.status.busy": "2024-07-09T06:11:54.730077Z", - "iopub.status.idle": "2024-07-09T06:11:54.733732Z", - "shell.execute_reply": "2024-07-09T06:11:54.733202Z" + "iopub.execute_input": "2024-07-09T06:27:10.598470Z", + "iopub.status.busy": "2024-07-09T06:27:10.598089Z", + "iopub.status.idle": "2024-07-09T06:27:10.601819Z", + "shell.execute_reply": "2024-07-09T06:27:10.601299Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.735775Z", - "iopub.status.busy": "2024-07-09T06:11:54.735487Z", - "iopub.status.idle": "2024-07-09T06:11:54.739241Z", - "shell.execute_reply": "2024-07-09T06:11:54.738694Z" + "iopub.execute_input": "2024-07-09T06:27:10.603912Z", + "iopub.status.busy": "2024-07-09T06:27:10.603638Z", + "iopub.status.idle": "2024-07-09T06:27:10.607432Z", + "shell.execute_reply": "2024-07-09T06:27:10.606860Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.741323Z", - "iopub.status.busy": "2024-07-09T06:11:54.740932Z", - "iopub.status.idle": "2024-07-09T06:11:54.777496Z", - "shell.execute_reply": "2024-07-09T06:11:54.776969Z" + "iopub.execute_input": "2024-07-09T06:27:10.609489Z", + "iopub.status.busy": "2024-07-09T06:27:10.609167Z", + "iopub.status.idle": "2024-07-09T06:27:10.645674Z", + "shell.execute_reply": "2024-07-09T06:27:10.645104Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.779687Z", - "iopub.status.busy": "2024-07-09T06:11:54.779360Z", - "iopub.status.idle": "2024-07-09T06:11:54.820499Z", - "shell.execute_reply": "2024-07-09T06:11:54.820015Z" + "iopub.execute_input": "2024-07-09T06:27:10.647737Z", + "iopub.status.busy": "2024-07-09T06:27:10.647426Z", + "iopub.status.idle": "2024-07-09T06:27:10.688357Z", + "shell.execute_reply": "2024-07-09T06:27:10.687867Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.822731Z", - "iopub.status.busy": "2024-07-09T06:11:54.822374Z", - "iopub.status.idle": "2024-07-09T06:11:54.940268Z", - "shell.execute_reply": "2024-07-09T06:11:54.939702Z" + "iopub.execute_input": "2024-07-09T06:27:10.690497Z", + "iopub.status.busy": "2024-07-09T06:27:10.690152Z", + "iopub.status.idle": "2024-07-09T06:27:10.784906Z", + "shell.execute_reply": "2024-07-09T06:27:10.784195Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.942914Z", - "iopub.status.busy": "2024-07-09T06:11:54.942544Z", - "iopub.status.idle": "2024-07-09T06:11:55.028728Z", - "shell.execute_reply": "2024-07-09T06:11:55.028139Z" + "iopub.execute_input": "2024-07-09T06:27:10.787438Z", + "iopub.status.busy": "2024-07-09T06:27:10.787205Z", + "iopub.status.idle": "2024-07-09T06:27:10.875324Z", + "shell.execute_reply": "2024-07-09T06:27:10.874533Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.031345Z", - "iopub.status.busy": "2024-07-09T06:11:55.030861Z", - "iopub.status.idle": "2024-07-09T06:11:55.242842Z", - "shell.execute_reply": "2024-07-09T06:11:55.242258Z" + "iopub.execute_input": "2024-07-09T06:27:10.877938Z", + "iopub.status.busy": "2024-07-09T06:27:10.877489Z", + "iopub.status.idle": "2024-07-09T06:27:11.089399Z", + "shell.execute_reply": "2024-07-09T06:27:11.088722Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.245126Z", - "iopub.status.busy": "2024-07-09T06:11:55.244793Z", - "iopub.status.idle": "2024-07-09T06:11:55.420459Z", - "shell.execute_reply": "2024-07-09T06:11:55.419832Z" + "iopub.execute_input": "2024-07-09T06:27:11.091873Z", + "iopub.status.busy": "2024-07-09T06:27:11.091658Z", + "iopub.status.idle": "2024-07-09T06:27:11.278736Z", + "shell.execute_reply": "2024-07-09T06:27:11.278122Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.422976Z", - "iopub.status.busy": "2024-07-09T06:11:55.422514Z", - "iopub.status.idle": "2024-07-09T06:11:55.428850Z", - "shell.execute_reply": "2024-07-09T06:11:55.428412Z" + "iopub.execute_input": "2024-07-09T06:27:11.281105Z", + "iopub.status.busy": "2024-07-09T06:27:11.280730Z", + "iopub.status.idle": "2024-07-09T06:27:11.286566Z", + "shell.execute_reply": "2024-07-09T06:27:11.286117Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.431061Z", - "iopub.status.busy": "2024-07-09T06:11:55.430598Z", - "iopub.status.idle": "2024-07-09T06:11:55.646899Z", - "shell.execute_reply": "2024-07-09T06:11:55.646337Z" + "iopub.execute_input": "2024-07-09T06:27:11.288560Z", + "iopub.status.busy": "2024-07-09T06:27:11.288235Z", + "iopub.status.idle": "2024-07-09T06:27:11.502240Z", + "shell.execute_reply": "2024-07-09T06:27:11.501640Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.649268Z", - "iopub.status.busy": "2024-07-09T06:11:55.648816Z", - "iopub.status.idle": "2024-07-09T06:11:56.713232Z", - "shell.execute_reply": "2024-07-09T06:11:56.712681Z" + "iopub.execute_input": "2024-07-09T06:27:11.504499Z", + "iopub.status.busy": "2024-07-09T06:27:11.504154Z", + "iopub.status.idle": "2024-07-09T06:27:12.558282Z", + "shell.execute_reply": "2024-07-09T06:27:12.557776Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index 4649d4e78..345a175cf 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:59.986964Z", - "iopub.status.busy": "2024-07-09T06:11:59.986785Z", - "iopub.status.idle": "2024-07-09T06:12:01.075285Z", - "shell.execute_reply": "2024-07-09T06:12:01.074633Z" + "iopub.execute_input": "2024-07-09T06:27:15.909512Z", + "iopub.status.busy": "2024-07-09T06:27:15.909333Z", + "iopub.status.idle": "2024-07-09T06:27:17.025416Z", + "shell.execute_reply": "2024-07-09T06:27:17.024860Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.077824Z", - "iopub.status.busy": "2024-07-09T06:12:01.077551Z", - "iopub.status.idle": "2024-07-09T06:12:01.080727Z", - "shell.execute_reply": "2024-07-09T06:12:01.080279Z" + "iopub.execute_input": "2024-07-09T06:27:17.028078Z", + "iopub.status.busy": "2024-07-09T06:27:17.027788Z", + "iopub.status.idle": "2024-07-09T06:27:17.031022Z", + "shell.execute_reply": "2024-07-09T06:27:17.030547Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.082717Z", - "iopub.status.busy": "2024-07-09T06:12:01.082412Z", - "iopub.status.idle": "2024-07-09T06:12:01.090048Z", - "shell.execute_reply": "2024-07-09T06:12:01.089520Z" + "iopub.execute_input": "2024-07-09T06:27:17.033112Z", + "iopub.status.busy": "2024-07-09T06:27:17.032789Z", + "iopub.status.idle": "2024-07-09T06:27:17.040343Z", + "shell.execute_reply": "2024-07-09T06:27:17.039908Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.091972Z", - "iopub.status.busy": "2024-07-09T06:12:01.091665Z", - "iopub.status.idle": "2024-07-09T06:12:01.138589Z", - "shell.execute_reply": "2024-07-09T06:12:01.138119Z" + "iopub.execute_input": "2024-07-09T06:27:17.042282Z", + "iopub.status.busy": "2024-07-09T06:27:17.041970Z", + "iopub.status.idle": "2024-07-09T06:27:17.094153Z", + "shell.execute_reply": "2024-07-09T06:27:17.093528Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.140553Z", - "iopub.status.busy": "2024-07-09T06:12:01.140222Z", - "iopub.status.idle": "2024-07-09T06:12:01.156429Z", - "shell.execute_reply": "2024-07-09T06:12:01.156000Z" + "iopub.execute_input": "2024-07-09T06:27:17.096794Z", + "iopub.status.busy": "2024-07-09T06:27:17.096411Z", + "iopub.status.idle": "2024-07-09T06:27:17.113492Z", + "shell.execute_reply": "2024-07-09T06:27:17.113050Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.158339Z", - "iopub.status.busy": "2024-07-09T06:12:01.158075Z", - "iopub.status.idle": "2024-07-09T06:12:01.161727Z", - "shell.execute_reply": "2024-07-09T06:12:01.161308Z" + "iopub.execute_input": "2024-07-09T06:27:17.115656Z", + "iopub.status.busy": "2024-07-09T06:27:17.115325Z", + "iopub.status.idle": "2024-07-09T06:27:17.119055Z", + "shell.execute_reply": "2024-07-09T06:27:17.118574Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.163745Z", - "iopub.status.busy": "2024-07-09T06:12:01.163423Z", - "iopub.status.idle": "2024-07-09T06:12:01.176542Z", - "shell.execute_reply": "2024-07-09T06:12:01.176139Z" + "iopub.execute_input": "2024-07-09T06:27:17.121058Z", + "iopub.status.busy": "2024-07-09T06:27:17.120762Z", + "iopub.status.idle": "2024-07-09T06:27:17.134516Z", + "shell.execute_reply": "2024-07-09T06:27:17.134084Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.178481Z", - "iopub.status.busy": "2024-07-09T06:12:01.178099Z", - "iopub.status.idle": "2024-07-09T06:12:01.203843Z", - "shell.execute_reply": "2024-07-09T06:12:01.203299Z" + "iopub.execute_input": "2024-07-09T06:27:17.136707Z", + "iopub.status.busy": "2024-07-09T06:27:17.136279Z", + "iopub.status.idle": "2024-07-09T06:27:17.162081Z", + "shell.execute_reply": "2024-07-09T06:27:17.161647Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.206126Z", - "iopub.status.busy": "2024-07-09T06:12:01.205741Z", - "iopub.status.idle": "2024-07-09T06:12:03.063366Z", - "shell.execute_reply": "2024-07-09T06:12:03.062689Z" + "iopub.execute_input": "2024-07-09T06:27:17.164409Z", + "iopub.status.busy": "2024-07-09T06:27:17.163994Z", + "iopub.status.idle": "2024-07-09T06:27:19.093254Z", + "shell.execute_reply": "2024-07-09T06:27:19.092676Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.065913Z", - "iopub.status.busy": "2024-07-09T06:12:03.065623Z", - "iopub.status.idle": "2024-07-09T06:12:03.072446Z", - "shell.execute_reply": "2024-07-09T06:12:03.071908Z" + "iopub.execute_input": "2024-07-09T06:27:19.095800Z", + "iopub.status.busy": "2024-07-09T06:27:19.095336Z", + "iopub.status.idle": "2024-07-09T06:27:19.102192Z", + "shell.execute_reply": "2024-07-09T06:27:19.101750Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.074438Z", - "iopub.status.busy": "2024-07-09T06:12:03.074140Z", - "iopub.status.idle": "2024-07-09T06:12:03.086651Z", - "shell.execute_reply": "2024-07-09T06:12:03.086112Z" + "iopub.execute_input": "2024-07-09T06:27:19.104190Z", + "iopub.status.busy": "2024-07-09T06:27:19.103866Z", + "iopub.status.idle": "2024-07-09T06:27:19.116533Z", + "shell.execute_reply": "2024-07-09T06:27:19.116058Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.088655Z", - "iopub.status.busy": "2024-07-09T06:12:03.088360Z", - "iopub.status.idle": "2024-07-09T06:12:03.094477Z", - "shell.execute_reply": "2024-07-09T06:12:03.093962Z" + "iopub.execute_input": "2024-07-09T06:27:19.118619Z", + "iopub.status.busy": "2024-07-09T06:27:19.118287Z", + "iopub.status.idle": "2024-07-09T06:27:19.124788Z", + "shell.execute_reply": "2024-07-09T06:27:19.124346Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.096562Z", - "iopub.status.busy": "2024-07-09T06:12:03.096263Z", - "iopub.status.idle": "2024-07-09T06:12:03.098957Z", - "shell.execute_reply": "2024-07-09T06:12:03.098421Z" + "iopub.execute_input": "2024-07-09T06:27:19.126835Z", + "iopub.status.busy": "2024-07-09T06:27:19.126514Z", + "iopub.status.idle": "2024-07-09T06:27:19.129039Z", + "shell.execute_reply": "2024-07-09T06:27:19.128622Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.100872Z", - "iopub.status.busy": "2024-07-09T06:12:03.100570Z", - "iopub.status.idle": "2024-07-09T06:12:03.104053Z", - "shell.execute_reply": "2024-07-09T06:12:03.103519Z" + "iopub.execute_input": "2024-07-09T06:27:19.131096Z", + "iopub.status.busy": "2024-07-09T06:27:19.130774Z", + "iopub.status.idle": "2024-07-09T06:27:19.134005Z", + "shell.execute_reply": "2024-07-09T06:27:19.133516Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.106062Z", - "iopub.status.busy": "2024-07-09T06:12:03.105700Z", - "iopub.status.idle": "2024-07-09T06:12:03.108276Z", - "shell.execute_reply": "2024-07-09T06:12:03.107858Z" + "iopub.execute_input": "2024-07-09T06:27:19.136079Z", + "iopub.status.busy": "2024-07-09T06:27:19.135766Z", + "iopub.status.idle": "2024-07-09T06:27:19.138223Z", + "shell.execute_reply": "2024-07-09T06:27:19.137811Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.110307Z", - "iopub.status.busy": "2024-07-09T06:12:03.109902Z", - "iopub.status.idle": "2024-07-09T06:12:03.113725Z", - "shell.execute_reply": "2024-07-09T06:12:03.113303Z" + "iopub.execute_input": "2024-07-09T06:27:19.140207Z", + "iopub.status.busy": "2024-07-09T06:27:19.139883Z", + "iopub.status.idle": "2024-07-09T06:27:19.144100Z", + "shell.execute_reply": "2024-07-09T06:27:19.143647Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.115691Z", - "iopub.status.busy": "2024-07-09T06:12:03.115395Z", - "iopub.status.idle": "2024-07-09T06:12:03.144399Z", - "shell.execute_reply": "2024-07-09T06:12:03.143867Z" + "iopub.execute_input": "2024-07-09T06:27:19.146159Z", + "iopub.status.busy": "2024-07-09T06:27:19.145854Z", + "iopub.status.idle": "2024-07-09T06:27:19.174449Z", + "shell.execute_reply": "2024-07-09T06:27:19.173890Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.146446Z", - "iopub.status.busy": "2024-07-09T06:12:03.146148Z", - "iopub.status.idle": "2024-07-09T06:12:03.150634Z", - "shell.execute_reply": "2024-07-09T06:12:03.150114Z" + "iopub.execute_input": "2024-07-09T06:27:19.177021Z", + "iopub.status.busy": "2024-07-09T06:27:19.176539Z", + "iopub.status.idle": "2024-07-09T06:27:19.181309Z", + "shell.execute_reply": "2024-07-09T06:27:19.180812Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 940de2088..9c34ac22c 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:06.009775Z", - "iopub.status.busy": "2024-07-09T06:12:06.009294Z", - "iopub.status.idle": "2024-07-09T06:12:07.146220Z", - "shell.execute_reply": "2024-07-09T06:12:07.145677Z" + "iopub.execute_input": "2024-07-09T06:27:22.153886Z", + "iopub.status.busy": "2024-07-09T06:27:22.153426Z", + "iopub.status.idle": "2024-07-09T06:27:23.311889Z", + "shell.execute_reply": "2024-07-09T06:27:23.311338Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.148904Z", - "iopub.status.busy": "2024-07-09T06:12:07.148494Z", - "iopub.status.idle": "2024-07-09T06:12:07.339029Z", - "shell.execute_reply": "2024-07-09T06:12:07.338432Z" + "iopub.execute_input": "2024-07-09T06:27:23.314428Z", + "iopub.status.busy": "2024-07-09T06:27:23.313980Z", + "iopub.status.idle": "2024-07-09T06:27:23.508688Z", + "shell.execute_reply": "2024-07-09T06:27:23.508123Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.341669Z", - "iopub.status.busy": "2024-07-09T06:12:07.341302Z", - "iopub.status.idle": "2024-07-09T06:12:07.354860Z", - "shell.execute_reply": "2024-07-09T06:12:07.354382Z" + "iopub.execute_input": "2024-07-09T06:27:23.511393Z", + "iopub.status.busy": "2024-07-09T06:27:23.510929Z", + "iopub.status.idle": "2024-07-09T06:27:23.524862Z", + "shell.execute_reply": "2024-07-09T06:27:23.524396Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.356939Z", - "iopub.status.busy": "2024-07-09T06:12:07.356615Z", - "iopub.status.idle": "2024-07-09T06:12:10.024538Z", - "shell.execute_reply": "2024-07-09T06:12:10.023896Z" + "iopub.execute_input": "2024-07-09T06:27:23.527208Z", + "iopub.status.busy": "2024-07-09T06:27:23.526603Z", + "iopub.status.idle": "2024-07-09T06:27:26.126394Z", + "shell.execute_reply": "2024-07-09T06:27:26.125810Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:10.026913Z", - "iopub.status.busy": "2024-07-09T06:12:10.026490Z", - "iopub.status.idle": "2024-07-09T06:12:11.384283Z", - "shell.execute_reply": "2024-07-09T06:12:11.383744Z" + "iopub.execute_input": "2024-07-09T06:27:26.128599Z", + "iopub.status.busy": "2024-07-09T06:27:26.128270Z", + "iopub.status.idle": "2024-07-09T06:27:27.468768Z", + "shell.execute_reply": "2024-07-09T06:27:27.468127Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.386832Z", - "iopub.status.busy": "2024-07-09T06:12:11.386489Z", - "iopub.status.idle": "2024-07-09T06:12:11.390443Z", - "shell.execute_reply": "2024-07-09T06:12:11.389901Z" + "iopub.execute_input": "2024-07-09T06:27:27.471344Z", + "iopub.status.busy": "2024-07-09T06:27:27.471010Z", + "iopub.status.idle": "2024-07-09T06:27:27.475004Z", + "shell.execute_reply": "2024-07-09T06:27:27.474434Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.392453Z", - "iopub.status.busy": "2024-07-09T06:12:11.392156Z", - "iopub.status.idle": "2024-07-09T06:12:13.350265Z", - "shell.execute_reply": "2024-07-09T06:12:13.349664Z" + "iopub.execute_input": "2024-07-09T06:27:27.477072Z", + "iopub.status.busy": "2024-07-09T06:27:27.476759Z", + "iopub.status.idle": "2024-07-09T06:27:29.490391Z", + "shell.execute_reply": "2024-07-09T06:27:29.489818Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.352635Z", - "iopub.status.busy": "2024-07-09T06:12:13.352287Z", - "iopub.status.idle": "2024-07-09T06:12:13.360007Z", - "shell.execute_reply": "2024-07-09T06:12:13.359539Z" + "iopub.execute_input": "2024-07-09T06:27:29.492995Z", + "iopub.status.busy": "2024-07-09T06:27:29.492468Z", + "iopub.status.idle": "2024-07-09T06:27:29.500292Z", + "shell.execute_reply": "2024-07-09T06:27:29.499734Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.362027Z", - "iopub.status.busy": "2024-07-09T06:12:13.361726Z", - "iopub.status.idle": "2024-07-09T06:12:15.951530Z", - "shell.execute_reply": "2024-07-09T06:12:15.950920Z" + "iopub.execute_input": "2024-07-09T06:27:29.502433Z", + "iopub.status.busy": "2024-07-09T06:27:29.502113Z", + "iopub.status.idle": "2024-07-09T06:27:32.049416Z", + "shell.execute_reply": "2024-07-09T06:27:32.048812Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.953826Z", - "iopub.status.busy": "2024-07-09T06:12:15.953477Z", - "iopub.status.idle": "2024-07-09T06:12:15.956917Z", - "shell.execute_reply": "2024-07-09T06:12:15.956384Z" + "iopub.execute_input": "2024-07-09T06:27:32.051592Z", + "iopub.status.busy": "2024-07-09T06:27:32.051401Z", + "iopub.status.idle": "2024-07-09T06:27:32.055077Z", + "shell.execute_reply": "2024-07-09T06:27:32.054480Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.958940Z", - "iopub.status.busy": "2024-07-09T06:12:15.958612Z", - "iopub.status.idle": "2024-07-09T06:12:15.961923Z", - "shell.execute_reply": "2024-07-09T06:12:15.961492Z" + "iopub.execute_input": "2024-07-09T06:27:32.057199Z", + "iopub.status.busy": "2024-07-09T06:27:32.056870Z", + "iopub.status.idle": "2024-07-09T06:27:32.060234Z", + "shell.execute_reply": "2024-07-09T06:27:32.059802Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.963899Z", - "iopub.status.busy": "2024-07-09T06:12:15.963576Z", - "iopub.status.idle": "2024-07-09T06:12:15.967078Z", - "shell.execute_reply": "2024-07-09T06:12:15.966654Z" + "iopub.execute_input": "2024-07-09T06:27:32.062198Z", + "iopub.status.busy": "2024-07-09T06:27:32.061876Z", + "iopub.status.idle": "2024-07-09T06:27:32.065020Z", + "shell.execute_reply": "2024-07-09T06:27:32.064573Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index 552c5a63a..949e5b545 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:18.540918Z", - "iopub.status.busy": "2024-07-09T06:12:18.540757Z", - "iopub.status.idle": "2024-07-09T06:12:19.680849Z", - "shell.execute_reply": "2024-07-09T06:12:19.680297Z" + "iopub.execute_input": "2024-07-09T06:27:34.654632Z", + "iopub.status.busy": "2024-07-09T06:27:34.654465Z", + "iopub.status.idle": "2024-07-09T06:27:35.815092Z", + "shell.execute_reply": "2024-07-09T06:27:35.814455Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:19.683207Z", - "iopub.status.busy": "2024-07-09T06:12:19.682952Z", - "iopub.status.idle": "2024-07-09T06:12:20.782328Z", - "shell.execute_reply": "2024-07-09T06:12:20.781710Z" + "iopub.execute_input": "2024-07-09T06:27:35.817596Z", + "iopub.status.busy": "2024-07-09T06:27:35.817178Z", + "iopub.status.idle": "2024-07-09T06:27:37.096670Z", + "shell.execute_reply": "2024-07-09T06:27:37.095921Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.784972Z", - "iopub.status.busy": "2024-07-09T06:12:20.784608Z", - "iopub.status.idle": "2024-07-09T06:12:20.787687Z", - "shell.execute_reply": "2024-07-09T06:12:20.787270Z" + "iopub.execute_input": "2024-07-09T06:27:37.099444Z", + "iopub.status.busy": "2024-07-09T06:27:37.099077Z", + "iopub.status.idle": "2024-07-09T06:27:37.102193Z", + "shell.execute_reply": "2024-07-09T06:27:37.101773Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.789706Z", - "iopub.status.busy": "2024-07-09T06:12:20.789390Z", - "iopub.status.idle": "2024-07-09T06:12:20.795637Z", - "shell.execute_reply": "2024-07-09T06:12:20.795205Z" + "iopub.execute_input": "2024-07-09T06:27:37.104293Z", + "iopub.status.busy": "2024-07-09T06:27:37.103979Z", + "iopub.status.idle": "2024-07-09T06:27:37.110147Z", + "shell.execute_reply": "2024-07-09T06:27:37.109740Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.797653Z", - "iopub.status.busy": "2024-07-09T06:12:20.797314Z", - "iopub.status.idle": "2024-07-09T06:12:21.282480Z", - "shell.execute_reply": "2024-07-09T06:12:21.281912Z" + "iopub.execute_input": "2024-07-09T06:27:37.112184Z", + "iopub.status.busy": "2024-07-09T06:27:37.111923Z", + "iopub.status.idle": "2024-07-09T06:27:37.598528Z", + "shell.execute_reply": "2024-07-09T06:27:37.597913Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.285356Z", - "iopub.status.busy": "2024-07-09T06:12:21.285011Z", - "iopub.status.idle": "2024-07-09T06:12:21.290021Z", - "shell.execute_reply": "2024-07-09T06:12:21.289526Z" + "iopub.execute_input": "2024-07-09T06:27:37.601014Z", + "iopub.status.busy": "2024-07-09T06:27:37.600572Z", + "iopub.status.idle": "2024-07-09T06:27:37.605747Z", + "shell.execute_reply": "2024-07-09T06:27:37.605308Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.292135Z", - "iopub.status.busy": "2024-07-09T06:12:21.291713Z", - "iopub.status.idle": "2024-07-09T06:12:21.295440Z", - "shell.execute_reply": "2024-07-09T06:12:21.295008Z" + "iopub.execute_input": "2024-07-09T06:27:37.607641Z", + "iopub.status.busy": "2024-07-09T06:27:37.607468Z", + "iopub.status.idle": "2024-07-09T06:27:37.611290Z", + "shell.execute_reply": "2024-07-09T06:27:37.610844Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.297473Z", - "iopub.status.busy": "2024-07-09T06:12:21.297149Z", - "iopub.status.idle": "2024-07-09T06:12:22.149730Z", - "shell.execute_reply": "2024-07-09T06:12:22.149063Z" + "iopub.execute_input": "2024-07-09T06:27:37.613342Z", + "iopub.status.busy": "2024-07-09T06:27:37.613034Z", + "iopub.status.idle": "2024-07-09T06:27:38.555539Z", + "shell.execute_reply": "2024-07-09T06:27:38.555016Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.152147Z", - "iopub.status.busy": "2024-07-09T06:12:22.151777Z", - "iopub.status.idle": "2024-07-09T06:12:22.372019Z", - "shell.execute_reply": "2024-07-09T06:12:22.371560Z" + "iopub.execute_input": "2024-07-09T06:27:38.557847Z", + "iopub.status.busy": "2024-07-09T06:27:38.557649Z", + "iopub.status.idle": "2024-07-09T06:27:38.851691Z", + "shell.execute_reply": "2024-07-09T06:27:38.851100Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.374207Z", - "iopub.status.busy": "2024-07-09T06:12:22.373800Z", - "iopub.status.idle": "2024-07-09T06:12:22.378360Z", - "shell.execute_reply": "2024-07-09T06:12:22.377817Z" + "iopub.execute_input": "2024-07-09T06:27:38.853964Z", + "iopub.status.busy": "2024-07-09T06:27:38.853618Z", + "iopub.status.idle": "2024-07-09T06:27:38.858060Z", + "shell.execute_reply": "2024-07-09T06:27:38.857615Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.380601Z", - "iopub.status.busy": "2024-07-09T06:12:22.380269Z", - "iopub.status.idle": "2024-07-09T06:12:22.827294Z", - "shell.execute_reply": "2024-07-09T06:12:22.826799Z" + "iopub.execute_input": "2024-07-09T06:27:38.860047Z", + "iopub.status.busy": "2024-07-09T06:27:38.859765Z", + "iopub.status.idle": "2024-07-09T06:27:39.310110Z", + "shell.execute_reply": "2024-07-09T06:27:39.309501Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.829350Z", - "iopub.status.busy": "2024-07-09T06:12:22.829090Z", - "iopub.status.idle": "2024-07-09T06:12:23.159105Z", - "shell.execute_reply": "2024-07-09T06:12:23.158480Z" + "iopub.execute_input": "2024-07-09T06:27:39.312865Z", + "iopub.status.busy": "2024-07-09T06:27:39.312462Z", + "iopub.status.idle": "2024-07-09T06:27:39.647092Z", + "shell.execute_reply": "2024-07-09T06:27:39.646475Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.161413Z", - "iopub.status.busy": "2024-07-09T06:12:23.161230Z", - "iopub.status.idle": "2024-07-09T06:12:23.525420Z", - "shell.execute_reply": "2024-07-09T06:12:23.524856Z" + "iopub.execute_input": "2024-07-09T06:27:39.649619Z", + "iopub.status.busy": "2024-07-09T06:27:39.649296Z", + "iopub.status.idle": "2024-07-09T06:27:40.011855Z", + "shell.execute_reply": "2024-07-09T06:27:40.011238Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.528578Z", - "iopub.status.busy": "2024-07-09T06:12:23.528384Z", - "iopub.status.idle": "2024-07-09T06:12:23.963657Z", - "shell.execute_reply": "2024-07-09T06:12:23.963056Z" + "iopub.execute_input": "2024-07-09T06:27:40.014685Z", + "iopub.status.busy": "2024-07-09T06:27:40.014328Z", + "iopub.status.idle": "2024-07-09T06:27:40.429827Z", + "shell.execute_reply": "2024-07-09T06:27:40.429292Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.967971Z", - "iopub.status.busy": "2024-07-09T06:12:23.967513Z", - "iopub.status.idle": "2024-07-09T06:12:24.415572Z", - "shell.execute_reply": "2024-07-09T06:12:24.414915Z" + "iopub.execute_input": "2024-07-09T06:27:40.434217Z", + "iopub.status.busy": "2024-07-09T06:27:40.433815Z", + "iopub.status.idle": "2024-07-09T06:27:40.880331Z", + "shell.execute_reply": "2024-07-09T06:27:40.879705Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.418819Z", - "iopub.status.busy": "2024-07-09T06:12:24.418433Z", - "iopub.status.idle": "2024-07-09T06:12:24.633283Z", - "shell.execute_reply": "2024-07-09T06:12:24.632674Z" + "iopub.execute_input": "2024-07-09T06:27:40.882426Z", + "iopub.status.busy": "2024-07-09T06:27:40.882229Z", + "iopub.status.idle": "2024-07-09T06:27:41.097056Z", + "shell.execute_reply": "2024-07-09T06:27:41.096510Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.635545Z", - "iopub.status.busy": "2024-07-09T06:12:24.635179Z", - "iopub.status.idle": "2024-07-09T06:12:24.835048Z", - "shell.execute_reply": "2024-07-09T06:12:24.834421Z" + "iopub.execute_input": "2024-07-09T06:27:41.099352Z", + "iopub.status.busy": "2024-07-09T06:27:41.098978Z", + "iopub.status.idle": "2024-07-09T06:27:41.279647Z", + "shell.execute_reply": "2024-07-09T06:27:41.279135Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.837392Z", - "iopub.status.busy": "2024-07-09T06:12:24.837055Z", - "iopub.status.idle": "2024-07-09T06:12:24.839948Z", - "shell.execute_reply": "2024-07-09T06:12:24.839511Z" + "iopub.execute_input": "2024-07-09T06:27:41.282138Z", + "iopub.status.busy": "2024-07-09T06:27:41.281802Z", + "iopub.status.idle": "2024-07-09T06:27:41.284795Z", + "shell.execute_reply": "2024-07-09T06:27:41.284347Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.842025Z", - "iopub.status.busy": "2024-07-09T06:12:24.841705Z", - "iopub.status.idle": "2024-07-09T06:12:25.813473Z", - "shell.execute_reply": "2024-07-09T06:12:25.812857Z" + "iopub.execute_input": "2024-07-09T06:27:41.286727Z", + "iopub.status.busy": "2024-07-09T06:27:41.286354Z", + "iopub.status.idle": "2024-07-09T06:27:42.233918Z", + "shell.execute_reply": "2024-07-09T06:27:42.233305Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.816037Z", - "iopub.status.busy": "2024-07-09T06:12:25.815657Z", - "iopub.status.idle": "2024-07-09T06:12:25.972932Z", - "shell.execute_reply": "2024-07-09T06:12:25.972181Z" + "iopub.execute_input": "2024-07-09T06:27:42.236357Z", + "iopub.status.busy": "2024-07-09T06:27:42.236129Z", + "iopub.status.idle": "2024-07-09T06:27:42.414922Z", + "shell.execute_reply": "2024-07-09T06:27:42.414319Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.975551Z", - "iopub.status.busy": "2024-07-09T06:12:25.975177Z", - "iopub.status.idle": "2024-07-09T06:12:26.197045Z", - "shell.execute_reply": "2024-07-09T06:12:26.196445Z" + "iopub.execute_input": "2024-07-09T06:27:42.417052Z", + "iopub.status.busy": "2024-07-09T06:27:42.416742Z", + "iopub.status.idle": "2024-07-09T06:27:42.567516Z", + "shell.execute_reply": "2024-07-09T06:27:42.566950Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.199182Z", - "iopub.status.busy": "2024-07-09T06:12:26.198971Z", - "iopub.status.idle": "2024-07-09T06:12:26.909973Z", - "shell.execute_reply": "2024-07-09T06:12:26.909345Z" + "iopub.execute_input": "2024-07-09T06:27:42.569723Z", + "iopub.status.busy": "2024-07-09T06:27:42.569386Z", + "iopub.status.idle": "2024-07-09T06:27:43.238504Z", + "shell.execute_reply": "2024-07-09T06:27:43.237885Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.912306Z", - "iopub.status.busy": "2024-07-09T06:12:26.912113Z", - "iopub.status.idle": "2024-07-09T06:12:26.915710Z", - "shell.execute_reply": "2024-07-09T06:12:26.915268Z" + "iopub.execute_input": "2024-07-09T06:27:43.240966Z", + "iopub.status.busy": "2024-07-09T06:27:43.240541Z", + "iopub.status.idle": "2024-07-09T06:27:43.244348Z", + "shell.execute_reply": "2024-07-09T06:27:43.243899Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index ef13a6be5..5a34daff0 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:29.114173Z", - "iopub.status.busy": "2024-07-09T06:12:29.114013Z", - "iopub.status.idle": "2024-07-09T06:12:31.813402Z", - "shell.execute_reply": "2024-07-09T06:12:31.812863Z" + "iopub.execute_input": "2024-07-09T06:27:45.444339Z", + "iopub.status.busy": "2024-07-09T06:27:45.443934Z", + "iopub.status.idle": "2024-07-09T06:27:48.220490Z", + "shell.execute_reply": "2024-07-09T06:27:48.219850Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:31.816019Z", - "iopub.status.busy": "2024-07-09T06:12:31.815566Z", - "iopub.status.idle": "2024-07-09T06:12:32.129315Z", - "shell.execute_reply": "2024-07-09T06:12:32.128775Z" + "iopub.execute_input": "2024-07-09T06:27:48.223134Z", + "iopub.status.busy": "2024-07-09T06:27:48.222782Z", + "iopub.status.idle": "2024-07-09T06:27:48.551328Z", + "shell.execute_reply": "2024-07-09T06:27:48.550787Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.131878Z", - "iopub.status.busy": "2024-07-09T06:12:32.131486Z", - "iopub.status.idle": "2024-07-09T06:12:32.135688Z", - "shell.execute_reply": "2024-07-09T06:12:32.135276Z" + "iopub.execute_input": "2024-07-09T06:27:48.553939Z", + "iopub.status.busy": "2024-07-09T06:27:48.553405Z", + "iopub.status.idle": "2024-07-09T06:27:48.557550Z", + "shell.execute_reply": "2024-07-09T06:27:48.557027Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.137627Z", - "iopub.status.busy": "2024-07-09T06:12:32.137303Z", - "iopub.status.idle": "2024-07-09T06:12:38.133619Z", - "shell.execute_reply": "2024-07-09T06:12:38.133066Z" + "iopub.execute_input": "2024-07-09T06:27:48.559562Z", + "iopub.status.busy": "2024-07-09T06:27:48.559266Z", + "iopub.status.idle": "2024-07-09T06:27:53.022684Z", + "shell.execute_reply": "2024-07-09T06:27:53.022093Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 753664/170498071 [00:00<00:22, 7533055.14it/s]" + " 1%| | 884736/170498071 [00:00<00:20, 8089244.09it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3440640/170498071 [00:00<00:08, 18808186.49it/s]" + " 6%|▌ | 10289152/170498071 [00:00<00:02, 56739816.87it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6324224/170498071 [00:00<00:07, 23199285.68it/s]" + " 12%|█▏ | 20709376/170498071 [00:00<00:01, 77845103.95it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9666560/170498071 [00:00<00:05, 27197953.48it/s]" + " 18%|█▊ | 31522816/170498071 [00:00<00:01, 89510002.96it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13664256/170498071 [00:00<00:04, 31743822.23it/s]" + " 25%|██▍ | 42237952/170498071 [00:00<00:01, 95784414.02it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 19103744/170498071 [00:00<00:03, 39286747.61it/s]" + " 31%|███ | 53182464/170498071 [00:00<00:01, 100337282.40it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 24346624/170498071 [00:00<00:03, 43433867.11it/s]" + " 37%|███▋ | 63504384/170498071 [00:00<00:01, 101255669.81it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29786112/170498071 [00:00<00:03, 46673827.94it/s]" + " 43%|████▎ | 74022912/170498071 [00:00<00:00, 102422137.80it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35094528/170498071 [00:00<00:02, 48663639.53it/s]" + " 50%|████▉ | 84574208/170498071 [00:00<00:00, 103317034.01it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41123840/170498071 [00:01<00:02, 52228428.18it/s]" + " 56%|█████▌ | 94928896/170498071 [00:01<00:00, 103108871.70it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 46661632/170498071 [00:01<00:02, 53081926.67it/s]" + " 62%|██████▏ | 106004480/170498071 [00:01<00:00, 105346208.26it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:01<00:02, 52946728.47it/s]" + " 68%|██████▊ | 116654080/170498071 [00:01<00:00, 105629779.29it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 57311232/170498071 [00:01<00:02, 52526789.19it/s]" + " 75%|███████▍ | 127434752/170498071 [00:01<00:00, 106225044.57it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62619648/170498071 [00:01<00:02, 52620946.91it/s]" + " 81%|████████ | 138084352/170498071 [00:01<00:00, 105442269.14it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67928064/170498071 [00:01<00:01, 52748561.88it/s]" + " 87%|████████▋ | 148799488/170498071 [00:01<00:00, 105804424.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 52564510.79it/s]" + " 94%|█████████▎| 159744000/170498071 [00:01<00:00, 106833768.32it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78479360/170498071 [00:01<00:01, 52150842.99it/s]" + "100%|█████████▉| 170491904/170498071 [00:01<00:00, 107010972.25it/s]" ] }, { @@ -388,119 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 83722240/170498071 [00:01<00:01, 52125723.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88997888/170498071 [00:01<00:01, 52299811.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 94273536/170498071 [00:02<00:01, 52413230.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 99516416/170498071 [00:02<00:01, 52173520.09it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 104759296/170498071 [00:02<00:01, 52218238.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 110034944/170498071 [00:02<00:01, 52258499.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 115343360/170498071 [00:02<00:01, 52472747.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121339904/170498071 [00:02<00:00, 54675432.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 128352256/170498071 [00:02<00:00, 59232462.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 135004160/170498071 [00:02<00:00, 61391731.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 142835712/170498071 [00:02<00:00, 66388150.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 151289856/170498071 [00:02<00:00, 71709682.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 158760960/170498071 [00:03<00:00, 72569444.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 166035456/170498071 [00:03<00:00, 63066107.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 52539309.75it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s] " ] }, { @@ -618,10 +506,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.135847Z", - "iopub.status.busy": "2024-07-09T06:12:38.135509Z", - "iopub.status.idle": "2024-07-09T06:12:38.140271Z", - "shell.execute_reply": "2024-07-09T06:12:38.139735Z" + "iopub.execute_input": "2024-07-09T06:27:53.024946Z", + "iopub.status.busy": "2024-07-09T06:27:53.024611Z", + "iopub.status.idle": "2024-07-09T06:27:53.029364Z", + "shell.execute_reply": "2024-07-09T06:27:53.028817Z" }, "nbsphinx": "hidden" }, @@ -672,10 +560,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.142240Z", - "iopub.status.busy": "2024-07-09T06:12:38.141970Z", - "iopub.status.idle": "2024-07-09T06:12:38.683191Z", - "shell.execute_reply": "2024-07-09T06:12:38.682615Z" + "iopub.execute_input": "2024-07-09T06:27:53.031408Z", + "iopub.status.busy": "2024-07-09T06:27:53.031096Z", + "iopub.status.idle": "2024-07-09T06:27:53.577241Z", + "shell.execute_reply": "2024-07-09T06:27:53.576593Z" } }, "outputs": [ @@ -708,10 +596,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.685213Z", - "iopub.status.busy": "2024-07-09T06:12:38.685033Z", - "iopub.status.idle": "2024-07-09T06:12:39.190392Z", - "shell.execute_reply": "2024-07-09T06:12:39.189791Z" + "iopub.execute_input": "2024-07-09T06:27:53.579601Z", + "iopub.status.busy": "2024-07-09T06:27:53.579322Z", + "iopub.status.idle": "2024-07-09T06:27:54.102985Z", + "shell.execute_reply": "2024-07-09T06:27:54.102360Z" } }, "outputs": [ @@ -749,10 +637,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.192564Z", - "iopub.status.busy": "2024-07-09T06:12:39.192364Z", - "iopub.status.idle": "2024-07-09T06:12:39.195681Z", - "shell.execute_reply": "2024-07-09T06:12:39.195250Z" + "iopub.execute_input": "2024-07-09T06:27:54.105484Z", + "iopub.status.busy": "2024-07-09T06:27:54.105073Z", + "iopub.status.idle": "2024-07-09T06:27:54.108602Z", + "shell.execute_reply": "2024-07-09T06:27:54.108156Z" } }, "outputs": [], @@ -775,17 +663,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.197505Z", - "iopub.status.busy": "2024-07-09T06:12:39.197332Z", - "iopub.status.idle": "2024-07-09T06:12:51.543036Z", - "shell.execute_reply": "2024-07-09T06:12:51.542330Z" + "iopub.execute_input": "2024-07-09T06:27:54.110579Z", + "iopub.status.busy": "2024-07-09T06:27:54.110395Z", + "iopub.status.idle": "2024-07-09T06:28:06.643708Z", + "shell.execute_reply": "2024-07-09T06:28:06.643176Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca6046bdc6394abb8a985e631993257b", + "model_id": "17e3dce4b40a4cb8a2b240ec353e0eae", "version_major": 2, "version_minor": 0 }, @@ -844,10 +732,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:51.545576Z", - "iopub.status.busy": "2024-07-09T06:12:51.545155Z", - "iopub.status.idle": "2024-07-09T06:12:53.675656Z", - "shell.execute_reply": "2024-07-09T06:12:53.674998Z" + "iopub.execute_input": "2024-07-09T06:28:06.646239Z", + "iopub.status.busy": "2024-07-09T06:28:06.645832Z", + "iopub.status.idle": "2024-07-09T06:28:08.702608Z", + "shell.execute_reply": "2024-07-09T06:28:08.701924Z" } }, "outputs": [ @@ -891,10 +779,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.678465Z", - "iopub.status.busy": "2024-07-09T06:12:53.678008Z", - "iopub.status.idle": "2024-07-09T06:12:53.932263Z", - "shell.execute_reply": "2024-07-09T06:12:53.931720Z" + "iopub.execute_input": "2024-07-09T06:28:08.705102Z", + "iopub.status.busy": "2024-07-09T06:28:08.704635Z", + "iopub.status.idle": "2024-07-09T06:28:08.961907Z", + "shell.execute_reply": "2024-07-09T06:28:08.960875Z" } }, "outputs": [ @@ -930,10 +818,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.935174Z", - "iopub.status.busy": "2024-07-09T06:12:53.934820Z", - "iopub.status.idle": "2024-07-09T06:12:54.601757Z", - "shell.execute_reply": "2024-07-09T06:12:54.601178Z" + "iopub.execute_input": "2024-07-09T06:28:08.965548Z", + "iopub.status.busy": "2024-07-09T06:28:08.964610Z", + "iopub.status.idle": "2024-07-09T06:28:09.623328Z", + "shell.execute_reply": "2024-07-09T06:28:09.622779Z" } }, "outputs": [ @@ -983,10 +871,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.604780Z", - "iopub.status.busy": "2024-07-09T06:12:54.604444Z", - "iopub.status.idle": "2024-07-09T06:12:54.941815Z", - "shell.execute_reply": "2024-07-09T06:12:54.941333Z" + "iopub.execute_input": "2024-07-09T06:28:09.627057Z", + "iopub.status.busy": "2024-07-09T06:28:09.626207Z", + "iopub.status.idle": "2024-07-09T06:28:09.967511Z", + "shell.execute_reply": "2024-07-09T06:28:09.966954Z" } }, "outputs": [ @@ -1034,10 +922,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.943967Z", - "iopub.status.busy": "2024-07-09T06:12:54.943776Z", - "iopub.status.idle": "2024-07-09T06:12:55.187139Z", - "shell.execute_reply": "2024-07-09T06:12:55.186558Z" + "iopub.execute_input": "2024-07-09T06:28:09.969885Z", + "iopub.status.busy": "2024-07-09T06:28:09.969463Z", + "iopub.status.idle": "2024-07-09T06:28:10.214869Z", + "shell.execute_reply": "2024-07-09T06:28:10.214223Z" } }, "outputs": [ @@ -1093,10 +981,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.189615Z", - "iopub.status.busy": "2024-07-09T06:12:55.189398Z", - "iopub.status.idle": "2024-07-09T06:12:55.284535Z", - "shell.execute_reply": "2024-07-09T06:12:55.284038Z" + "iopub.execute_input": "2024-07-09T06:28:10.217596Z", + "iopub.status.busy": "2024-07-09T06:28:10.217139Z", + "iopub.status.idle": "2024-07-09T06:28:10.308655Z", + "shell.execute_reply": "2024-07-09T06:28:10.308107Z" } }, "outputs": [], @@ -1117,10 +1005,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.286976Z", - "iopub.status.busy": "2024-07-09T06:12:55.286581Z", - "iopub.status.idle": "2024-07-09T06:13:05.614875Z", - "shell.execute_reply": "2024-07-09T06:13:05.614249Z" + "iopub.execute_input": "2024-07-09T06:28:10.310977Z", + "iopub.status.busy": "2024-07-09T06:28:10.310791Z", + "iopub.status.idle": "2024-07-09T06:28:20.594421Z", + "shell.execute_reply": "2024-07-09T06:28:20.593788Z" } }, "outputs": [ @@ -1157,10 +1045,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:05.617192Z", - "iopub.status.busy": "2024-07-09T06:13:05.616989Z", - "iopub.status.idle": "2024-07-09T06:13:07.827467Z", - "shell.execute_reply": "2024-07-09T06:13:07.826891Z" + "iopub.execute_input": "2024-07-09T06:28:20.596810Z", + "iopub.status.busy": "2024-07-09T06:28:20.596554Z", + "iopub.status.idle": "2024-07-09T06:28:22.741544Z", + "shell.execute_reply": "2024-07-09T06:28:22.741042Z" } }, "outputs": [ @@ -1191,10 +1079,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:07.830162Z", - "iopub.status.busy": "2024-07-09T06:13:07.829583Z", - "iopub.status.idle": "2024-07-09T06:13:08.038042Z", - "shell.execute_reply": "2024-07-09T06:13:08.037537Z" + "iopub.execute_input": "2024-07-09T06:28:22.744305Z", + "iopub.status.busy": "2024-07-09T06:28:22.743745Z", + "iopub.status.idle": "2024-07-09T06:28:22.953993Z", + "shell.execute_reply": "2024-07-09T06:28:22.953376Z" } }, "outputs": [], @@ -1208,10 +1096,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.040467Z", - "iopub.status.busy": "2024-07-09T06:13:08.040116Z", - "iopub.status.idle": "2024-07-09T06:13:08.043191Z", - "shell.execute_reply": "2024-07-09T06:13:08.042744Z" + "iopub.execute_input": "2024-07-09T06:28:22.956589Z", + "iopub.status.busy": "2024-07-09T06:28:22.956213Z", + "iopub.status.idle": "2024-07-09T06:28:22.959468Z", + "shell.execute_reply": "2024-07-09T06:28:22.958900Z" } }, "outputs": [], @@ -1233,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.045228Z", - "iopub.status.busy": "2024-07-09T06:13:08.044834Z", - "iopub.status.idle": "2024-07-09T06:13:08.052977Z", - "shell.execute_reply": "2024-07-09T06:13:08.052453Z" + "iopub.execute_input": "2024-07-09T06:28:22.961611Z", + "iopub.status.busy": "2024-07-09T06:28:22.961200Z", + "iopub.status.idle": "2024-07-09T06:28:22.969422Z", + "shell.execute_reply": "2024-07-09T06:28:22.968855Z" }, "nbsphinx": "hidden" }, @@ -1281,7 +1169,54 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07e9815832504753931806b6d58f0b58": { + "0bf96112dc8a4e0ca41d5e7ae1ebcf56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83246a4b1973465e91e701740cd527e6", + "placeholder": "​", + "style": "IPY_MODEL_aaff29c1d12b464a90fcdf95eeb1a265", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 287MB/s]" + } + }, + "17e3dce4b40a4cb8a2b240ec353e0eae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce4ca1db437c42df9608894483bf3780", + "IPY_MODEL_f925fed948884b0e9a39e8a060169585", + "IPY_MODEL_0bf96112dc8a4e0ca41d5e7ae1ebcf56" + ], + "layout": "IPY_MODEL_64e12728195f4391b6280124850b845f", + "tabbable": null, + "tooltip": null + } + }, + "64e12728195f4391b6280124850b845f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1334,41 +1269,7 @@ "width": null } }, - "26725f9df2f94d3ea6293ec28ead7c10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c1e61197b9041c2979207dbd79421ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f3f248148ef4e539a3ca4f9afbd62ae": { + "83246a4b1973465e91e701740cd527e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1421,98 +1322,7 @@ "width": null } }, - "aedd690df73d48378ef4e0ccedca1f2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6116745dca947648a98ff8dddef3db4", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26725f9df2f94d3ea6293ec28ead7c10", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "c6fbd30ad1b64135acf648295aae87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c843c3709f5d465786f56b6c642b06be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07e9815832504753931806b6d58f0b58", - "placeholder": "​", - "style": "IPY_MODEL_c6fbd30ad1b64135acf648295aae87b4", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 282MB/s]" - } - }, - "ca6046bdc6394abb8a985e631993257b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eeba128ad2734250a58229daf256d2be", - "IPY_MODEL_aedd690df73d48378ef4e0ccedca1f2f", - "IPY_MODEL_c843c3709f5d465786f56b6c642b06be" - ], - "layout": "IPY_MODEL_f7b6602f97fb4af9a7103ad7383ccc0b", - "tabbable": null, - "tooltip": null - } - }, - "e6116745dca947648a98ff8dddef3db4": { + "847a0080121d45e79b430fce2ac8676d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1565,7 +1375,41 @@ "width": null } }, - "eeba128ad2734250a58229daf256d2be": { + "aaff29c1d12b464a90fcdf95eeb1a265": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "afec228371694b259b4beb453ed5662e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce4ca1db437c42df9608894483bf3780": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1580,15 +1424,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f3f248148ef4e539a3ca4f9afbd62ae", + "layout": "IPY_MODEL_847a0080121d45e79b430fce2ac8676d", "placeholder": "​", - "style": "IPY_MODEL_2c1e61197b9041c2979207dbd79421ed", + "style": "IPY_MODEL_f68e78a7cc7d408cb71b2a049145349d", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "f7b6602f97fb4af9a7103ad7383ccc0b": { + "f68e78a7cc7d408cb71b2a049145349d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f839052ce8de441fa54a98bf191b0352": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1640,6 +1502,32 @@ "visibility": null, "width": null } + }, + "f925fed948884b0e9a39e8a060169585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f839052ce8de441fa54a98bf191b0352", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_afec228371694b259b4beb453ed5662e", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index fc3d493cb..9a21f3bf0 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:12.198906Z", - "iopub.status.busy": "2024-07-09T06:13:12.198717Z", - "iopub.status.idle": "2024-07-09T06:13:13.395705Z", - "shell.execute_reply": "2024-07-09T06:13:13.395147Z" + "iopub.execute_input": "2024-07-09T06:28:27.147640Z", + "iopub.status.busy": "2024-07-09T06:28:27.147460Z", + "iopub.status.idle": "2024-07-09T06:28:28.302447Z", + "shell.execute_reply": "2024-07-09T06:28:28.301888Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.398528Z", - "iopub.status.busy": "2024-07-09T06:13:13.397970Z", - "iopub.status.idle": "2024-07-09T06:13:13.416454Z", - "shell.execute_reply": "2024-07-09T06:13:13.415844Z" + "iopub.execute_input": "2024-07-09T06:28:28.304997Z", + "iopub.status.busy": "2024-07-09T06:28:28.304730Z", + "iopub.status.idle": "2024-07-09T06:28:28.321957Z", + "shell.execute_reply": "2024-07-09T06:28:28.321531Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.419243Z", - "iopub.status.busy": "2024-07-09T06:13:13.418769Z", - "iopub.status.idle": "2024-07-09T06:13:13.422066Z", - "shell.execute_reply": "2024-07-09T06:13:13.421519Z" + "iopub.execute_input": "2024-07-09T06:28:28.324137Z", + "iopub.status.busy": "2024-07-09T06:28:28.323717Z", + "iopub.status.idle": "2024-07-09T06:28:28.326748Z", + "shell.execute_reply": "2024-07-09T06:28:28.326302Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.424342Z", - "iopub.status.busy": "2024-07-09T06:13:13.424031Z", - "iopub.status.idle": "2024-07-09T06:13:13.502698Z", - "shell.execute_reply": "2024-07-09T06:13:13.502157Z" + "iopub.execute_input": "2024-07-09T06:28:28.328783Z", + "iopub.status.busy": "2024-07-09T06:28:28.328478Z", + "iopub.status.idle": "2024-07-09T06:28:28.398404Z", + "shell.execute_reply": "2024-07-09T06:28:28.397873Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.505024Z", - "iopub.status.busy": "2024-07-09T06:13:13.504684Z", - "iopub.status.idle": "2024-07-09T06:13:13.692827Z", - "shell.execute_reply": "2024-07-09T06:13:13.692311Z" + "iopub.execute_input": "2024-07-09T06:28:28.400685Z", + "iopub.status.busy": "2024-07-09T06:28:28.400280Z", + "iopub.status.idle": "2024-07-09T06:28:28.580610Z", + "shell.execute_reply": "2024-07-09T06:28:28.580004Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.695582Z", - "iopub.status.busy": "2024-07-09T06:13:13.695101Z", - "iopub.status.idle": "2024-07-09T06:13:13.913575Z", - "shell.execute_reply": "2024-07-09T06:13:13.912963Z" + "iopub.execute_input": "2024-07-09T06:28:28.583196Z", + "iopub.status.busy": "2024-07-09T06:28:28.582842Z", + "iopub.status.idle": "2024-07-09T06:28:28.825147Z", + "shell.execute_reply": "2024-07-09T06:28:28.824546Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.916022Z", - "iopub.status.busy": "2024-07-09T06:13:13.915716Z", - "iopub.status.idle": "2024-07-09T06:13:13.920472Z", - "shell.execute_reply": "2024-07-09T06:13:13.919999Z" + "iopub.execute_input": "2024-07-09T06:28:28.827512Z", + "iopub.status.busy": "2024-07-09T06:28:28.827171Z", + "iopub.status.idle": "2024-07-09T06:28:28.831561Z", + "shell.execute_reply": "2024-07-09T06:28:28.831115Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.922631Z", - "iopub.status.busy": "2024-07-09T06:13:13.922302Z", - "iopub.status.idle": "2024-07-09T06:13:13.928584Z", - "shell.execute_reply": "2024-07-09T06:13:13.928040Z" + "iopub.execute_input": "2024-07-09T06:28:28.833597Z", + "iopub.status.busy": "2024-07-09T06:28:28.833194Z", + "iopub.status.idle": "2024-07-09T06:28:28.839457Z", + "shell.execute_reply": "2024-07-09T06:28:28.838888Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.930747Z", - "iopub.status.busy": "2024-07-09T06:13:13.930457Z", - "iopub.status.idle": "2024-07-09T06:13:13.933055Z", - "shell.execute_reply": "2024-07-09T06:13:13.932620Z" + "iopub.execute_input": "2024-07-09T06:28:28.841676Z", + "iopub.status.busy": "2024-07-09T06:28:28.841286Z", + "iopub.status.idle": "2024-07-09T06:28:28.843833Z", + "shell.execute_reply": "2024-07-09T06:28:28.843413Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.934875Z", - "iopub.status.busy": "2024-07-09T06:13:13.934702Z", - "iopub.status.idle": "2024-07-09T06:13:22.688532Z", - "shell.execute_reply": "2024-07-09T06:13:22.687882Z" + "iopub.execute_input": "2024-07-09T06:28:28.845847Z", + "iopub.status.busy": "2024-07-09T06:28:28.845459Z", + "iopub.status.idle": "2024-07-09T06:28:37.416310Z", + "shell.execute_reply": "2024-07-09T06:28:37.415785Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.691605Z", - "iopub.status.busy": "2024-07-09T06:13:22.691183Z", - "iopub.status.idle": "2024-07-09T06:13:22.699311Z", - "shell.execute_reply": "2024-07-09T06:13:22.698788Z" + "iopub.execute_input": "2024-07-09T06:28:37.419117Z", + "iopub.status.busy": "2024-07-09T06:28:37.418506Z", + "iopub.status.idle": "2024-07-09T06:28:37.425880Z", + "shell.execute_reply": "2024-07-09T06:28:37.425420Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.701375Z", - "iopub.status.busy": "2024-07-09T06:13:22.701132Z", - "iopub.status.idle": "2024-07-09T06:13:22.705382Z", - "shell.execute_reply": "2024-07-09T06:13:22.704977Z" + "iopub.execute_input": "2024-07-09T06:28:37.427928Z", + "iopub.status.busy": "2024-07-09T06:28:37.427621Z", + "iopub.status.idle": "2024-07-09T06:28:37.431159Z", + "shell.execute_reply": "2024-07-09T06:28:37.430715Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.707406Z", - "iopub.status.busy": "2024-07-09T06:13:22.707081Z", - "iopub.status.idle": "2024-07-09T06:13:22.710090Z", - "shell.execute_reply": "2024-07-09T06:13:22.709573Z" + "iopub.execute_input": "2024-07-09T06:28:37.433108Z", + "iopub.status.busy": "2024-07-09T06:28:37.432812Z", + "iopub.status.idle": "2024-07-09T06:28:37.436103Z", + "shell.execute_reply": "2024-07-09T06:28:37.435676Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.712167Z", - "iopub.status.busy": "2024-07-09T06:13:22.711850Z", - "iopub.status.idle": "2024-07-09T06:13:22.714709Z", - "shell.execute_reply": "2024-07-09T06:13:22.714294Z" + "iopub.execute_input": "2024-07-09T06:28:37.437855Z", + "iopub.status.busy": "2024-07-09T06:28:37.437689Z", + "iopub.status.idle": "2024-07-09T06:28:37.440738Z", + "shell.execute_reply": "2024-07-09T06:28:37.440200Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.716596Z", - "iopub.status.busy": "2024-07-09T06:13:22.716303Z", - "iopub.status.idle": "2024-07-09T06:13:22.724381Z", - "shell.execute_reply": "2024-07-09T06:13:22.723941Z" + "iopub.execute_input": "2024-07-09T06:28:37.442722Z", + "iopub.status.busy": "2024-07-09T06:28:37.442340Z", + "iopub.status.idle": "2024-07-09T06:28:37.450065Z", + "shell.execute_reply": "2024-07-09T06:28:37.449543Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.726307Z", - "iopub.status.busy": "2024-07-09T06:13:22.725983Z", - "iopub.status.idle": "2024-07-09T06:13:22.728617Z", - "shell.execute_reply": "2024-07-09T06:13:22.728073Z" + "iopub.execute_input": "2024-07-09T06:28:37.452147Z", + "iopub.status.busy": "2024-07-09T06:28:37.451829Z", + "iopub.status.idle": "2024-07-09T06:28:37.454273Z", + "shell.execute_reply": "2024-07-09T06:28:37.453859Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.730747Z", - "iopub.status.busy": "2024-07-09T06:13:22.730427Z", - "iopub.status.idle": "2024-07-09T06:13:22.850115Z", - "shell.execute_reply": "2024-07-09T06:13:22.849630Z" + "iopub.execute_input": "2024-07-09T06:28:37.456308Z", + "iopub.status.busy": "2024-07-09T06:28:37.455998Z", + "iopub.status.idle": "2024-07-09T06:28:37.574042Z", + "shell.execute_reply": "2024-07-09T06:28:37.573412Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.852276Z", - "iopub.status.busy": "2024-07-09T06:13:22.852104Z", - "iopub.status.idle": "2024-07-09T06:13:22.957693Z", - "shell.execute_reply": "2024-07-09T06:13:22.957175Z" + "iopub.execute_input": "2024-07-09T06:28:37.576401Z", + "iopub.status.busy": "2024-07-09T06:28:37.576035Z", + "iopub.status.idle": "2024-07-09T06:28:37.676628Z", + "shell.execute_reply": "2024-07-09T06:28:37.676092Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.959831Z", - "iopub.status.busy": "2024-07-09T06:13:22.959658Z", - "iopub.status.idle": "2024-07-09T06:13:23.439329Z", - "shell.execute_reply": "2024-07-09T06:13:23.438815Z" + "iopub.execute_input": "2024-07-09T06:28:37.678829Z", + "iopub.status.busy": "2024-07-09T06:28:37.678655Z", + "iopub.status.idle": "2024-07-09T06:28:38.159157Z", + "shell.execute_reply": "2024-07-09T06:28:38.158544Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.441676Z", - "iopub.status.busy": "2024-07-09T06:13:23.441277Z", - "iopub.status.idle": "2024-07-09T06:13:23.530814Z", - "shell.execute_reply": "2024-07-09T06:13:23.530253Z" + "iopub.execute_input": "2024-07-09T06:28:38.161651Z", + "iopub.status.busy": "2024-07-09T06:28:38.161475Z", + "iopub.status.idle": "2024-07-09T06:28:38.250789Z", + "shell.execute_reply": "2024-07-09T06:28:38.250230Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.533156Z", - "iopub.status.busy": "2024-07-09T06:13:23.532707Z", - "iopub.status.idle": "2024-07-09T06:13:23.541181Z", - "shell.execute_reply": "2024-07-09T06:13:23.540639Z" + "iopub.execute_input": "2024-07-09T06:28:38.252951Z", + "iopub.status.busy": "2024-07-09T06:28:38.252776Z", + "iopub.status.idle": "2024-07-09T06:28:38.261091Z", + "shell.execute_reply": "2024-07-09T06:28:38.260672Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.543142Z", - "iopub.status.busy": "2024-07-09T06:13:23.542832Z", - "iopub.status.idle": "2024-07-09T06:13:23.545507Z", - "shell.execute_reply": "2024-07-09T06:13:23.544989Z" + "iopub.execute_input": "2024-07-09T06:28:38.262975Z", + "iopub.status.busy": "2024-07-09T06:28:38.262781Z", + "iopub.status.idle": "2024-07-09T06:28:38.265296Z", + "shell.execute_reply": "2024-07-09T06:28:38.264887Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.547414Z", - "iopub.status.busy": "2024-07-09T06:13:23.547118Z", - "iopub.status.idle": "2024-07-09T06:13:28.999446Z", - "shell.execute_reply": "2024-07-09T06:13:28.998830Z" + "iopub.execute_input": "2024-07-09T06:28:38.267254Z", + "iopub.status.busy": "2024-07-09T06:28:38.266967Z", + "iopub.status.idle": "2024-07-09T06:28:43.570047Z", + "shell.execute_reply": "2024-07-09T06:28:43.569491Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.002183Z", - "iopub.status.busy": "2024-07-09T06:13:29.001812Z", - "iopub.status.idle": "2024-07-09T06:13:29.010474Z", - "shell.execute_reply": "2024-07-09T06:13:29.010043Z" + "iopub.execute_input": "2024-07-09T06:28:43.572470Z", + "iopub.status.busy": "2024-07-09T06:28:43.572094Z", + "iopub.status.idle": "2024-07-09T06:28:43.580386Z", + "shell.execute_reply": "2024-07-09T06:28:43.579870Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.012589Z", - "iopub.status.busy": "2024-07-09T06:13:29.012252Z", - "iopub.status.idle": "2024-07-09T06:13:29.076214Z", - "shell.execute_reply": "2024-07-09T06:13:29.075749Z" + "iopub.execute_input": "2024-07-09T06:28:43.582347Z", + "iopub.status.busy": "2024-07-09T06:28:43.582046Z", + "iopub.status.idle": "2024-07-09T06:28:43.650473Z", + "shell.execute_reply": "2024-07-09T06:28:43.649884Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 35fcbdb46..ae5ebc560 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:32.263903Z", - "iopub.status.busy": "2024-07-09T06:13:32.263444Z", - "iopub.status.idle": "2024-07-09T06:13:33.822952Z", - "shell.execute_reply": "2024-07-09T06:13:33.822301Z" + "iopub.execute_input": "2024-07-09T06:28:46.574289Z", + "iopub.status.busy": "2024-07-09T06:28:46.574108Z", + "iopub.status.idle": "2024-07-09T06:28:48.491596Z", + "shell.execute_reply": "2024-07-09T06:28:48.490918Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:33.825573Z", - "iopub.status.busy": "2024-07-09T06:13:33.825207Z", - "iopub.status.idle": "2024-07-09T06:14:27.650668Z", - "shell.execute_reply": "2024-07-09T06:14:27.649954Z" + "iopub.execute_input": "2024-07-09T06:28:48.494276Z", + "iopub.status.busy": "2024-07-09T06:28:48.493843Z", + "iopub.status.idle": "2024-07-09T06:29:39.569009Z", + "shell.execute_reply": "2024-07-09T06:29:39.568435Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:27.653222Z", - "iopub.status.busy": "2024-07-09T06:14:27.653011Z", - "iopub.status.idle": "2024-07-09T06:14:28.771581Z", - "shell.execute_reply": "2024-07-09T06:14:28.771057Z" + "iopub.execute_input": "2024-07-09T06:29:39.571515Z", + "iopub.status.busy": "2024-07-09T06:29:39.571138Z", + "iopub.status.idle": "2024-07-09T06:29:40.663339Z", + "shell.execute_reply": "2024-07-09T06:29:40.662734Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.774053Z", - "iopub.status.busy": "2024-07-09T06:14:28.773695Z", - "iopub.status.idle": "2024-07-09T06:14:28.776783Z", - "shell.execute_reply": "2024-07-09T06:14:28.776354Z" + "iopub.execute_input": "2024-07-09T06:29:40.665937Z", + "iopub.status.busy": "2024-07-09T06:29:40.665611Z", + "iopub.status.idle": "2024-07-09T06:29:40.669025Z", + "shell.execute_reply": "2024-07-09T06:29:40.668588Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.778806Z", - "iopub.status.busy": "2024-07-09T06:14:28.778477Z", - "iopub.status.idle": "2024-07-09T06:14:28.782186Z", - "shell.execute_reply": "2024-07-09T06:14:28.781759Z" + "iopub.execute_input": "2024-07-09T06:29:40.671153Z", + "iopub.status.busy": "2024-07-09T06:29:40.670839Z", + "iopub.status.idle": "2024-07-09T06:29:40.674594Z", + "shell.execute_reply": "2024-07-09T06:29:40.674175Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.784027Z", - "iopub.status.busy": "2024-07-09T06:14:28.783855Z", - "iopub.status.idle": "2024-07-09T06:14:28.787452Z", - "shell.execute_reply": "2024-07-09T06:14:28.786991Z" + "iopub.execute_input": "2024-07-09T06:29:40.676662Z", + "iopub.status.busy": "2024-07-09T06:29:40.676404Z", + "iopub.status.idle": "2024-07-09T06:29:40.679978Z", + "shell.execute_reply": "2024-07-09T06:29:40.679552Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.789360Z", - "iopub.status.busy": "2024-07-09T06:14:28.789019Z", - "iopub.status.idle": "2024-07-09T06:14:28.791733Z", - "shell.execute_reply": "2024-07-09T06:14:28.791313Z" + "iopub.execute_input": "2024-07-09T06:29:40.681969Z", + "iopub.status.busy": "2024-07-09T06:29:40.681683Z", + "iopub.status.idle": "2024-07-09T06:29:40.684443Z", + "shell.execute_reply": "2024-07-09T06:29:40.684006Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.793686Z", - "iopub.status.busy": "2024-07-09T06:14:28.793292Z", - "iopub.status.idle": "2024-07-09T06:15:02.604368Z", - "shell.execute_reply": "2024-07-09T06:15:02.603753Z" + "iopub.execute_input": "2024-07-09T06:29:40.686418Z", + "iopub.status.busy": "2024-07-09T06:29:40.686015Z", + "iopub.status.idle": "2024-07-09T06:30:13.548442Z", + "shell.execute_reply": "2024-07-09T06:30:13.547829Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fa6ffbf69764ada9bcdda240d9f5c3f", + "model_id": "6cc3388bab2643c8b90c9272aea123fd", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f569c0971e0640b980797b7457fa4061", + "model_id": "c10054699f0e464a82009f0a5e0c578c", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:02.606910Z", - "iopub.status.busy": "2024-07-09T06:15:02.606698Z", - "iopub.status.idle": "2024-07-09T06:15:03.279409Z", - "shell.execute_reply": "2024-07-09T06:15:03.278841Z" + "iopub.execute_input": "2024-07-09T06:30:13.551052Z", + "iopub.status.busy": "2024-07-09T06:30:13.550744Z", + "iopub.status.idle": "2024-07-09T06:30:14.218934Z", + "shell.execute_reply": "2024-07-09T06:30:14.218385Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:03.282056Z", - "iopub.status.busy": "2024-07-09T06:15:03.281412Z", - "iopub.status.idle": "2024-07-09T06:15:06.180396Z", - "shell.execute_reply": "2024-07-09T06:15:06.179922Z" + "iopub.execute_input": "2024-07-09T06:30:14.221301Z", + "iopub.status.busy": "2024-07-09T06:30:14.220857Z", + "iopub.status.idle": "2024-07-09T06:30:17.059729Z", + "shell.execute_reply": "2024-07-09T06:30:17.059140Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:06.182583Z", - "iopub.status.busy": "2024-07-09T06:15:06.182401Z", - "iopub.status.idle": "2024-07-09T06:15:38.554360Z", - "shell.execute_reply": "2024-07-09T06:15:38.553782Z" + "iopub.execute_input": "2024-07-09T06:30:17.061913Z", + "iopub.status.busy": "2024-07-09T06:30:17.061694Z", + "iopub.status.idle": "2024-07-09T06:30:49.094226Z", + "shell.execute_reply": "2024-07-09T06:30:49.093651Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf5249d5bbbf4d75b55c111b8b11a61a", + "model_id": "7019068b213142edb33e86d2e73ee210", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:38.556564Z", - "iopub.status.busy": "2024-07-09T06:15:38.556234Z", - "iopub.status.idle": "2024-07-09T06:15:53.166671Z", - "shell.execute_reply": "2024-07-09T06:15:53.166045Z" + "iopub.execute_input": "2024-07-09T06:30:49.096361Z", + "iopub.status.busy": "2024-07-09T06:30:49.096022Z", + "iopub.status.idle": "2024-07-09T06:31:03.308031Z", + "shell.execute_reply": "2024-07-09T06:31:03.307471Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:53.169302Z", - "iopub.status.busy": "2024-07-09T06:15:53.168958Z", - "iopub.status.idle": "2024-07-09T06:15:56.853260Z", - "shell.execute_reply": "2024-07-09T06:15:56.852720Z" + "iopub.execute_input": "2024-07-09T06:31:03.310669Z", + "iopub.status.busy": "2024-07-09T06:31:03.310203Z", + "iopub.status.idle": "2024-07-09T06:31:07.123611Z", + "shell.execute_reply": "2024-07-09T06:31:07.123110Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:56.855531Z", - "iopub.status.busy": "2024-07-09T06:15:56.855184Z", - "iopub.status.idle": "2024-07-09T06:15:58.250274Z", - "shell.execute_reply": "2024-07-09T06:15:58.249712Z" + "iopub.execute_input": "2024-07-09T06:31:07.125567Z", + "iopub.status.busy": "2024-07-09T06:31:07.125390Z", + "iopub.status.idle": "2024-07-09T06:31:08.517470Z", + "shell.execute_reply": "2024-07-09T06:31:08.516908Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c948217428084bd496b3f2a49594566f", + "model_id": "fd89a714f4bd4881ac3bcdde2e818698", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.252845Z", - "iopub.status.busy": "2024-07-09T06:15:58.252506Z", - "iopub.status.idle": "2024-07-09T06:15:58.281395Z", - "shell.execute_reply": "2024-07-09T06:15:58.280832Z" + "iopub.execute_input": "2024-07-09T06:31:08.519948Z", + "iopub.status.busy": "2024-07-09T06:31:08.519605Z", + "iopub.status.idle": "2024-07-09T06:31:08.546961Z", + "shell.execute_reply": "2024-07-09T06:31:08.546404Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.284015Z", - "iopub.status.busy": "2024-07-09T06:15:58.283595Z", - "iopub.status.idle": "2024-07-09T06:16:04.233068Z", - "shell.execute_reply": "2024-07-09T06:16:04.232567Z" + "iopub.execute_input": "2024-07-09T06:31:08.549370Z", + "iopub.status.busy": "2024-07-09T06:31:08.549025Z", + "iopub.status.idle": "2024-07-09T06:31:14.598098Z", + "shell.execute_reply": "2024-07-09T06:31:14.597530Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:04.235360Z", - "iopub.status.busy": "2024-07-09T06:16:04.234853Z", - "iopub.status.idle": "2024-07-09T06:16:04.290105Z", - "shell.execute_reply": "2024-07-09T06:16:04.289560Z" + "iopub.execute_input": "2024-07-09T06:31:14.600337Z", + "iopub.status.busy": "2024-07-09T06:31:14.600147Z", + "iopub.status.idle": "2024-07-09T06:31:14.656339Z", + "shell.execute_reply": "2024-07-09T06:31:14.655805Z" }, "nbsphinx": "hidden" }, @@ -1038,31 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1fa6ffbf69764ada9bcdda240d9f5c3f": { + "02d9a746ed0046739aa78a6ce0085ff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493c9eefef1b48dab54e40072abd5f34", - "IPY_MODEL_cfd0057aa0524fdabff5f5ef309b8944", - "IPY_MODEL_de3dc131ede549fc9a4eab8ed54190fa" - ], - "layout": "IPY_MODEL_3e770c86a7ed47528817561e0996c8f8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", + "placeholder": "​", + "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 30/30 [00:20<00:00,  1.44it/s]" } }, - "25c74ae19d60408e99632f175a792eaa": { + "0b2d6256d1c542d285214e15fc92fe65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,43 +1114,7 @@ "width": null } }, - "2616637ba3464f08933830c12d469b83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "27c16fceefe04f7ea1c6208a3b02d91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31c0461c7cc145fba8fc1a686d641734": { + "0c20fddef0b54b239fafa2cc41c63236": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1204,25 +1167,7 @@ "width": null } }, - "3dd8300efe074538b752b933fe4dccd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3e770c86a7ed47528817561e0996c8f8": { + "0dd5218cedde49baa055e8096ed30926": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1275,7 +1220,69 @@ "width": null } }, - "3feb2ecf671242cfa780179115940fac": { + "14896ca89fcc44339c2b6527f1f9f9dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "176760f869904a7fa39445bdd88719b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d504401538154719844d7826ee272589", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "228b0d40b0924b7a97e4d0957e103746": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "22fe02c2e99045d8821cfc15a94e4936": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1328,53 +1335,7 @@ "width": null } }, - "493c9eefef1b48dab54e40072abd5f34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3feb2ecf671242cfa780179115940fac", - "placeholder": "​", - "style": "IPY_MODEL_54ca08a32df543b592283e0378c9fcfe", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "4c9d0984d39a4f0e881a09e0550d87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fdf393fca40427f8a2bd92d317d3dae", - "placeholder": "​", - "style": "IPY_MODEL_85a0fa984b144cfa898831e10209e74d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "4ccbc45f2aeb4c9c85627198b276be79": { + "279d7517839d43c89b15e2c5c84c7be9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1427,7 +1388,7 @@ "width": null } }, - "4e9c5d98329c476daf5bb5ab626f75ea": { + "2abe5ecefb664d2bafb6bfe15ea93d0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1480,7 +1441,7 @@ "width": null } }, - "51e9e889a46e4f308aff8141e478e0b2": { + "32a85d515d9e4eaba06dcc77490cad82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1498,23 +1459,7 @@ "text_color": null } }, - "542ef1339f3c4f27a392d3e6f794359f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "54ca08a32df543b592283e0378c9fcfe": { + "3f51ef64ff6b45ebb8b941ba2ee62b5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1532,7 +1477,7 @@ "text_color": null } }, - "573a0e4f1aa3447bbec12012eaef0dc3": { + "403d955a5e56429185a7d79c76b3f942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1547,15 +1492,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aacd42748d294de29a7979f5b0d21f14", + "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", "placeholder": "​", - "style": "IPY_MODEL_8e68f9ece6dd446bbcea41ee789d666e", + "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 810.84it/s]" } }, - "58a5fd3630694826904227c50dce4a58": { + "44a6a6e2aca946a1a5360a07e3b508d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,7 +1553,7 @@ "width": null } }, - "606739628a3c43e188dfb8e4ab4161c1": { + "5330888ec41a4abab567527c6e1ffd41": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1606,25 @@ "width": null } }, - "6483135474b1449087c991fb32524a5d": { + "57f13be2c99544fb9cc14d43a41b2771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5b9e311328344481b090157819e78c90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1677,7 +1640,7 @@ "description_width": "" } }, - "7da8b6c3ea2a4772a5fe093e05addc72": { + "6483735a58b043b6b18bce9fcea7af01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1693,70 +1656,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d509507d60244ddcba41140131d9be1f", - "max": 4997683.0, + "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fd786bb433b84b77bb5a3892748ee7a8", + "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", "tabbable": null, "tooltip": null, - "value": 4997683.0 - } - }, - "7fdf393fca40427f8a2bd92d317d3dae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 30.0 } }, - "85a0fa984b144cfa898831e10209e74d": { + "6584bb27a7154628a8d459aca88dc035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1774,94 +1684,101 @@ "text_color": null } }, - "8aad8f225cf6422eb201fc5ce1fc9f8e": { - "model_module": "@jupyter-widgets/base", + "6cc3388bab2643c8b90c9272aea123fd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", + "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", + "IPY_MODEL_403d955a5e56429185a7d79c76b3f942" + ], + "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", + "tabbable": null, + "tooltip": null } }, - "8e68f9ece6dd446bbcea41ee789d666e": { + "7019068b213142edb33e86d2e73ee210": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", + "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", + "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108" + ], + "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", + "tabbable": null, + "tooltip": null } }, - "a211fbc91ad7428f88de83462ce179b1": { + "7b951463c2014d63996109b04919b6f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", + "placeholder": "​", + "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.76it/s]" + } + }, + "7f68c4f29617499499ee2c05c5a6a108": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", + "placeholder": "​", + "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 157127.94it/s]" } }, - "a28f14e157a54c3bb2ba09f5232ee9c6": { + "83e9f786fc2e45a789ee9639166df7d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1914,33 +1831,7 @@ "width": null } }, - "a8b97972238e423b884d9df90c31735c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25c74ae19d60408e99632f175a792eaa", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6483135474b1449087c991fb32524a5d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "aacd42748d294de29a7979f5b0d21f14": { + "855c64f84945411a9db3c53deb7492c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1993,30 +1884,7 @@ "width": null } }, - "b49ea13e3a12486a97be815b76759ed6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e0fbe3dac5a0495f8995783e2dd80711", - "placeholder": "​", - "style": "IPY_MODEL_27c16fceefe04f7ea1c6208a3b02d91a", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155973.49it/s]" - } - }, - "b931d7f32e6b41668d503c6a2ff41333": { + "95f6f8f5058e4a999e52cf9ee97471a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2069,7 +1937,7 @@ "width": null } }, - "beaa3af60b7746888d20c45dbdce9842": { + "97c988acb93f44548e72b7e6785373ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2122,73 +1990,49 @@ "width": null } }, - "bf5249d5bbbf4d75b55c111b8b11a61a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_573a0e4f1aa3447bbec12012eaef0dc3", - "IPY_MODEL_7da8b6c3ea2a4772a5fe093e05addc72", - "IPY_MODEL_b49ea13e3a12486a97be815b76759ed6" - ], - "layout": "IPY_MODEL_58a5fd3630694826904227c50dce4a58", - "tabbable": null, - "tooltip": null - } - }, - "c5ef52d1a9d646df84e1139d4d1089db": { + "9af440153d4e4cdf94b2cf7fabd36183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c948217428084bd496b3f2a49594566f": { + "a35e0222d4f14c66bf3c3a5aa2572142": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d07a9489d84e4b4880dfa0c9d8716d8c", - "IPY_MODEL_a8b97972238e423b884d9df90c31735c", - "IPY_MODEL_e6bc426565cb49ba80b9007e05438975" - ], - "layout": "IPY_MODEL_606739628a3c43e188dfb8e4ab4161c1", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "cfd0057aa0524fdabff5f5ef309b8944": { + "ae57c0974e774c6890338ba8b17d0191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2204,17 +2048,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31c0461c7cc145fba8fc1a686d641734", - "max": 30.0, + "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_542ef1339f3c4f27a392d3e6f794359f", + "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "d07a9489d84e4b4880dfa0c9d8716d8c": { + "b6e063e50c2b4445910ce5e867fbd918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2229,15 +2073,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_beaa3af60b7746888d20c45dbdce9842", + "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", "placeholder": "​", - "style": "IPY_MODEL_51e9e889a46e4f308aff8141e478e0b2", + "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": "number of examples processed for checking labels: 100%" + } + }, + "c10054699f0e464a82009f0a5e0c578c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", + "IPY_MODEL_176760f869904a7fa39445bdd88719b2", + "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9" + ], + "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", + "tabbable": null, + "tooltip": null } }, - "d509507d60244ddcba41140131d9be1f": { + "c498db02e0b04391a5861cb923082075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2290,30 +2158,131 @@ "width": null } }, - "d67f58d8b5b14e59b0b843789281945d": { + "c9163ef783e742f3acc05346e5afcb64": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce1dd22f0d6b4012a51c48ad29dcaa8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce3e640376574f9e8d585bcb85603e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b931d7f32e6b41668d503c6a2ff41333", - "placeholder": "​", - "style": "IPY_MODEL_2616637ba3464f08933830c12d469b83", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "de3dc131ede549fc9a4eab8ed54190fa": { + "cf3b18d1306748afa8e938ecd97912de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2328,15 +2297,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ccbc45f2aeb4c9c85627198b276be79", + "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", "placeholder": "​", - "style": "IPY_MODEL_c5ef52d1a9d646df84e1139d4d1089db", + "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 819.82it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e0fbe3dac5a0495f8995783e2dd80711": { + "d1f1c3debd3a4626adf70f52c88e15f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2389,7 +2358,23 @@ "width": null } }, - "e6bc426565cb49ba80b9007e05438975": { + "d504401538154719844d7826ee272589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d8a1c7ffaa334c438eb48081a604d215": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2404,41 +2389,72 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e9c5d98329c476daf5bb5ab626f75ea", + "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", "placeholder": "​", - "style": "IPY_MODEL_3dd8300efe074538b752b933fe4dccd5", + "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.71it/s]" + "value": "100%" } }, - "f0e42a3ba88a4b12846e1d20b351a59e": { + "db6c02d349084e498c97e2e6ed714f28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2897f5daefd4d14a83b5100fa9e108f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fade87555302435dbdddd0ecd183f382": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8aad8f225cf6422eb201fc5ce1fc9f8e", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a211fbc91ad7428f88de83462ce179b1", + "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", + "placeholder": "​", + "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "f569c0971e0640b980797b7457fa4061": { + "fd89a714f4bd4881ac3bcdde2e818698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2453,30 +2469,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4c9d0984d39a4f0e881a09e0550d87b4", - "IPY_MODEL_f0e42a3ba88a4b12846e1d20b351a59e", - "IPY_MODEL_d67f58d8b5b14e59b0b843789281945d" + "IPY_MODEL_fade87555302435dbdddd0ecd183f382", + "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", + "IPY_MODEL_7b951463c2014d63996109b04919b6f0" ], - "layout": "IPY_MODEL_a28f14e157a54c3bb2ba09f5232ee9c6", + "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", "tabbable": null, "tooltip": null } - }, - "fd786bb433b84b77bb5a3892748ee7a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index ad51fe8e1..f95fb9e96 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:06.596442Z", - "iopub.status.busy": "2024-07-09T06:16:06.596270Z", - "iopub.status.idle": "2024-07-09T06:16:07.602980Z", - "shell.execute_reply": "2024-07-09T06:16:07.602333Z" + "iopub.execute_input": "2024-07-09T06:31:16.799869Z", + "iopub.status.busy": "2024-07-09T06:31:16.799691Z", + "iopub.status.idle": "2024-07-09T06:31:17.988936Z", + "shell.execute_reply": "2024-07-09T06:31:17.988319Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:06-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-09 06:31:16-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,7 +94,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.97, 2400:52e0:1a00::941:1\r\n", + "169.150.236.97, 2400:52e0:1a00::1029:1\r\n", "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " ] }, @@ -123,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.04MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.22MB/s in 0.2s \r\n", "\r\n", - "2024-07-09 06:16:06 (5.04 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-09 06:31:17 (5.22 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:07-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.224.233, 3.5.25.180, 52.216.58.97, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.224.233|:443... connected.\r\n", + "--2024-07-09 06:31:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.171.25, 54.231.130.41, 52.216.52.217, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.171.25|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -170,7 +170,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", "\r\n", - "2024-07-09 06:16:07 (174 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-09 06:31:17 (179 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:07.605304Z", - "iopub.status.busy": "2024-07-09T06:16:07.605103Z", - "iopub.status.idle": "2024-07-09T06:16:08.819007Z", - "shell.execute_reply": "2024-07-09T06:16:08.818469Z" + "iopub.execute_input": "2024-07-09T06:31:17.991436Z", + "iopub.status.busy": "2024-07-09T06:31:17.991070Z", + "iopub.status.idle": "2024-07-09T06:31:19.289852Z", + "shell.execute_reply": "2024-07-09T06:31:19.289351Z" }, "nbsphinx": "hidden" }, @@ -201,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.821606Z", - "iopub.status.busy": "2024-07-09T06:16:08.821202Z", - "iopub.status.idle": "2024-07-09T06:16:08.824585Z", - "shell.execute_reply": "2024-07-09T06:16:08.824057Z" + "iopub.execute_input": "2024-07-09T06:31:19.292366Z", + "iopub.status.busy": "2024-07-09T06:31:19.291931Z", + "iopub.status.idle": "2024-07-09T06:31:19.295209Z", + "shell.execute_reply": "2024-07-09T06:31:19.294745Z" } }, "outputs": [], @@ -280,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.826607Z", - "iopub.status.busy": "2024-07-09T06:16:08.826214Z", - "iopub.status.idle": "2024-07-09T06:16:08.829147Z", - "shell.execute_reply": "2024-07-09T06:16:08.828713Z" + "iopub.execute_input": "2024-07-09T06:31:19.297359Z", + "iopub.status.busy": "2024-07-09T06:31:19.297049Z", + "iopub.status.idle": "2024-07-09T06:31:19.300013Z", + "shell.execute_reply": "2024-07-09T06:31:19.299557Z" }, "nbsphinx": "hidden" }, @@ -301,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.831190Z", - "iopub.status.busy": "2024-07-09T06:16:08.830751Z", - "iopub.status.idle": "2024-07-09T06:16:17.805664Z", - "shell.execute_reply": "2024-07-09T06:16:17.805113Z" + "iopub.execute_input": "2024-07-09T06:31:19.302022Z", + "iopub.status.busy": "2024-07-09T06:31:19.301697Z", + "iopub.status.idle": "2024-07-09T06:31:28.335757Z", + "shell.execute_reply": "2024-07-09T06:31:28.335203Z" } }, "outputs": [], @@ -378,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.808345Z", - "iopub.status.busy": "2024-07-09T06:16:17.807911Z", - "iopub.status.idle": "2024-07-09T06:16:17.813277Z", - "shell.execute_reply": "2024-07-09T06:16:17.812858Z" + "iopub.execute_input": "2024-07-09T06:31:28.338200Z", + "iopub.status.busy": "2024-07-09T06:31:28.337845Z", + "iopub.status.idle": "2024-07-09T06:31:28.343280Z", + "shell.execute_reply": "2024-07-09T06:31:28.342837Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.815382Z", - "iopub.status.busy": "2024-07-09T06:16:17.814963Z", - "iopub.status.idle": "2024-07-09T06:16:18.150000Z", - "shell.execute_reply": "2024-07-09T06:16:18.149429Z" + "iopub.execute_input": "2024-07-09T06:31:28.345254Z", + "iopub.status.busy": "2024-07-09T06:31:28.344923Z", + "iopub.status.idle": "2024-07-09T06:31:28.685882Z", + "shell.execute_reply": "2024-07-09T06:31:28.685329Z" } }, "outputs": [], @@ -461,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.152493Z", - "iopub.status.busy": "2024-07-09T06:16:18.152061Z", - "iopub.status.idle": "2024-07-09T06:16:18.156514Z", - "shell.execute_reply": "2024-07-09T06:16:18.155980Z" + "iopub.execute_input": "2024-07-09T06:31:28.688450Z", + "iopub.status.busy": "2024-07-09T06:31:28.688108Z", + "iopub.status.idle": "2024-07-09T06:31:28.692422Z", + "shell.execute_reply": "2024-07-09T06:31:28.691913Z" } }, "outputs": [ @@ -536,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.158568Z", - "iopub.status.busy": "2024-07-09T06:16:18.158265Z", - "iopub.status.idle": "2024-07-09T06:16:20.671476Z", - "shell.execute_reply": "2024-07-09T06:16:20.670677Z" + "iopub.execute_input": "2024-07-09T06:31:28.694566Z", + "iopub.status.busy": "2024-07-09T06:31:28.694154Z", + "iopub.status.idle": "2024-07-09T06:31:31.218610Z", + "shell.execute_reply": "2024-07-09T06:31:31.217915Z" } }, "outputs": [], @@ -561,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.674624Z", - "iopub.status.busy": "2024-07-09T06:16:20.674042Z", - "iopub.status.idle": "2024-07-09T06:16:20.678383Z", - "shell.execute_reply": "2024-07-09T06:16:20.677819Z" + "iopub.execute_input": "2024-07-09T06:31:31.221635Z", + "iopub.status.busy": "2024-07-09T06:31:31.220890Z", + "iopub.status.idle": "2024-07-09T06:31:31.224904Z", + "shell.execute_reply": "2024-07-09T06:31:31.224377Z" } }, "outputs": [ @@ -600,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.680295Z", - "iopub.status.busy": "2024-07-09T06:16:20.680123Z", - "iopub.status.idle": "2024-07-09T06:16:20.685724Z", - "shell.execute_reply": "2024-07-09T06:16:20.685271Z" + "iopub.execute_input": "2024-07-09T06:31:31.226850Z", + "iopub.status.busy": "2024-07-09T06:31:31.226675Z", + "iopub.status.idle": "2024-07-09T06:31:31.232224Z", + "shell.execute_reply": "2024-07-09T06:31:31.231711Z" } }, "outputs": [ @@ -781,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.687532Z", - "iopub.status.busy": "2024-07-09T06:16:20.687366Z", - "iopub.status.idle": "2024-07-09T06:16:20.713548Z", - "shell.execute_reply": "2024-07-09T06:16:20.713113Z" + "iopub.execute_input": "2024-07-09T06:31:31.234195Z", + "iopub.status.busy": "2024-07-09T06:31:31.233868Z", + "iopub.status.idle": "2024-07-09T06:31:31.260501Z", + "shell.execute_reply": "2024-07-09T06:31:31.260037Z" } }, "outputs": [ @@ -886,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.715379Z", - "iopub.status.busy": "2024-07-09T06:16:20.715213Z", - "iopub.status.idle": "2024-07-09T06:16:20.719260Z", - "shell.execute_reply": "2024-07-09T06:16:20.718723Z" + "iopub.execute_input": "2024-07-09T06:31:31.262698Z", + "iopub.status.busy": "2024-07-09T06:31:31.262368Z", + "iopub.status.idle": "2024-07-09T06:31:31.266471Z", + "shell.execute_reply": "2024-07-09T06:31:31.265953Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.721189Z", - "iopub.status.busy": "2024-07-09T06:16:20.721015Z", - "iopub.status.idle": "2024-07-09T06:16:22.122879Z", - "shell.execute_reply": "2024-07-09T06:16:22.122387Z" + "iopub.execute_input": "2024-07-09T06:31:31.268473Z", + "iopub.status.busy": "2024-07-09T06:31:31.268157Z", + "iopub.status.idle": "2024-07-09T06:31:32.664554Z", + "shell.execute_reply": "2024-07-09T06:31:32.664039Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:22.124941Z", - "iopub.status.busy": "2024-07-09T06:16:22.124756Z", - "iopub.status.idle": "2024-07-09T06:16:22.128748Z", - "shell.execute_reply": "2024-07-09T06:16:22.128306Z" + "iopub.execute_input": "2024-07-09T06:31:32.666738Z", + "iopub.status.busy": "2024-07-09T06:31:32.666392Z", + "iopub.status.idle": "2024-07-09T06:31:32.670504Z", + "shell.execute_reply": "2024-07-09T06:31:32.670046Z" }, "nbsphinx": "hidden" }, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 39a8006d6a561898807e6bda6d2ac1131e24ab35..446a917b60ab5b882647de88542e37c5f684b538 100644 GIT binary patch delta 62 zcmX>tep-A(E~8tep-A(E~BAEmT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0=6Q^|TmW-p6BPge diff --git a/master/.doctrees/tutorials/clean_learning/tabular.doctree b/master/.doctrees/tutorials/clean_learning/tabular.doctree index c8fa15559dd1aec0b21e656f6a8ac03a0fa1e1ff..d0b8a46a8ff31202e982ed48140f8748afcffe3e 100644 GIT binary patch delta 64 zcmcb6i}~&?<_%{!4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 SOwvq&IK?zMar0l!gvS8s3KlN_ delta 64 zcmcb6i}~&?<_%{!4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w UOp?tFOwy84lPx#@fSeqeL1vPEP1r_pS!jC_sAUE%f)?O zALn@-$9bIWyL;Y)ch5WUlR5NeE4Jy+UHkd9BxKE~kR}^qk`09D9Er+0XDW=y68}dT z+`+%idF`g|TX(GLZrU-~eP&11-G|>_zGG2+cwMoe%Xh5ozP)2<_of}Ix-afHulwGe zpZw1kKX~Uay0=ZOIQyD(>#f&rzh?8+TW)kWr_Ect^LJg)Ep{zFD{OPyufY#)ymtG_ z)z!-SjV;BwU9x*|cjK-l-Iu49b;Yiw<>sB;`(Inyy=T{^|INqd|Ebe`&s}@EhxRO+ zH{97^V_UnI?yb5X-Mi?F!M>Vpbzj=Ewwv}W?pAvz>jT#mi@Q7asQ>b>9(-i)!Btft zf`o+ICo~GewY6LZsh!}Oav53o%|my!FCs52Jov!_M^CSUPC{Ergm*zm?!6{KYnx>t znM)=IpKDvxeD3HEUp~D`+-SvPqDmlUVs1j0uc$S2T!AoYPCoV=$xFe=lEH57}I=HHo7!TG)Ets=55u$?58e0yY z)<otC)uT3V9&n-3RfbTW_Hb1Ic0Trk`+4_!usnA%K5#iCyNJ*%Hc(# zj9kY=gs{eHgIW}c5*acxe)=?{gQvl1T7t*AdaT^EMqOw=`|-86Y+1H*=jv)%mcl0M zf^mQp4InX@CCj)-MBxFN4G-U_1;?61TG;#AQ^l8yskS#-hQRACzk2Is8$NN#rCVDv zl+9e-c4N!7tgin$SuR4Nj67Lv-gf!&{v`y|vI>N!=!C%g87mZid6_ujk@l`w(!8w* z+IXcSGk9B}yh}M{)H>smQsHX%ERyt>3n%U=DjG7k(Q1)-5Xf~Sbkac4NCDm?xEe`% zPVdp@%NL8z=-9Tt{!p=@HTL;a$kQ_q7iU&fbE-rJ7*Q#-q&DGXDr)5k=pu*Sk#7S% zI;f)PG{N4bpwR$1YzCSjXC=!>RBZ6v`cP+L-XKvs9!!P&q)~#(SmM@ZoH5Dhm;yr8 zSA45jT<=;`&gotLc<~TmXY@AeBX^dxqHVkAm)}2sRxIfNt6ioE1g9A=A~}X^S1wr! zB$jpvV{eq3XH5c#rIjLQOK|@nTIy7GnGq6HCbf$Iygrt62tyfDMHAOvAOpb3R(P9I zra-G$)7NGks%qH;tADk>WRoMqi>3%wJ^O`X4;L`L?$Ha)Cy1w=!B9WGDuA6V`=(i(SfkDA*4)v04fEqOiEEm9iY~X zHUo}m3tR7gzMxf0R52jD>t8RHPD-mI_exm~a&=t#1UA+=BrhU};pijf!ajLdmhuQ< zv^?W9j7Vci;6WKFnLsU^iY3qkG=Oh11LtHYSru~94oPksebC$g)8g5pGdjK;oToK* zzuInpt608!#3 zf{K$?kG?T-jP%;h)hE3bebPg9L10F06ObK{W1vHVk1RlJ3g_Ig=$QAE0P~f?>#6{B z#FJ_Cm68!|(y^kuw^+)IbKU~Ds23`GLjvjdDIVQLz5mr>(NJf$MXuMKR&K0X0uL+h z&!?4Vb+ivAIF_ObTtu(D5s*;X0!k>$)7p$Ap&Xhq#Z?A{1q0!hJvs`@X;PvG==^a} z1*$W|Y1RQEi0WXSh4x14X7vDz2KurkWM7fd&gh7;Uu_ROJh7}IjyCw`BZx;B)DVM? zSK2e_A;_}o9k~P&WKxlYuE$^*g-}V(ctasFtfYau(A#~e#0kKO0&?35lf6huxa1Oz zmLx7olyZm{ts(oGvJ*##tdBfj==%F}CKlD#O_lT4FwHJIE-qzbO2lAUY(O_!YXW7| z6HSs1lJy&a9=UR2GsM;CzHvsOwY<>G(t(P8=d6@W&s^PhchiN|X*=4*Zxt(sb;gjL z+-1U`2hk5$ysC;!2SWsB)J)e|(%>)~GTa-HfI=h_CoEyKfniY}d1at3?*%eOO^Nq1 z8%Uv`kf4Mrv==PqrZ;Nt>YV9PYYARIx3avVVxwd00l9tV1LfQ*d*_3;E`rq1ex;`2 z%n-{&CBigh$^bZ_w2bCRfAmApGQn}qQ*fxWK$A7T+2ag-snJ!bh{QG=$)dsh3d&4s zjVlo{4CwI2XUgvsot7;Oq-E;{z}Fk9Ab}5PBQ4~X&`yJ+2?VAB943f=H!M5gqXxG4 z96`VULv-be3(j#DJVAS+JAL}M<&(uEnmG`g$N^*mVT?c33Z)22&q4AY8s2AtFfBm` z&0GV@BZAU_j@*7x`To`XLUlsXStk=L4V4u{Fo_;+iRQ2=RD{rV^_%;OhPNA?Jknbk z0Q*;;Dxf4=9_J*o$}Rahv*P6FJLA(8SB*ZG>G$fxe$L?yL2Iyy@JzT1s0uVC1ZAJPVAp!MH3k9vliQ{N`MQ`FxKEHuf|eK?Q=<5C}t^Q9)#C0eYt$zNRzSt%Rb1YfBd?*r zF4h;6_4-cv?n!E>ky-l;^h9>Tn9~$VOJP^Tr5lsc0r+` zJ0>UZfrTL9dTQn!&%0l+tRdSDO+L=^jJ&C8b%PUH{4b(!4a@~Yz+oF$~{p?^PB_pg7pb1 zqla$!##x;RoRm3Q@31#O9(;9RA8;e#+G$@)%;0I}RYpR?GlZHU$y?a?S(>~z;IME^lKtP_abvNZdXv`gdz|dCZFJ0w%YUq zSvjyvT3%^pxwYgbnYp^<(%3P(1n%9)qYX^U`oP_#IeXRL-_`$b+v!`rv2FfUiq@1 delta 13367 zcmeHNTa2Am74|<<0tH)Bp~HRtpMpi8boTuMF$Uu$5Ggdo1ffmYSIeaZ!X-pnS|}m$ z7GsY12ML$P3l9=35agAI{7Txg?Uw6zp1Yyx=RNED@!t9VH}{;;7$`oG&Z`@L(bll#~0ThZ^` zKihxtzEk>f->Lmg_n+S1y-$AlPd)Sa{XaXuVJdm5Os0f!5vVlAMQVuV-g_IF=>PrD zedR^u)wR!@cVOYzMp*>g)GXPPT5 zxK_p_>RDEf#bAPs!|jTTy6v8L0oxg;dCD9HB`b`_2OZ@hq)4ntE|KAO#YNqATYt6Y zxJHv0g>sxI?S=Kkd3@HXNCe9^rPOU#7ZyD;|LUsan&^Wx7WbmO5QHa7x#mG-D}&C) z@u6YGMV(Z1#VMenM2vgbT(RQUp-FB<~a@Oh9)6dRVs~)U= z+eAX#mGBH9;4X#m(Rgk&w>j{v@!Eq+w$I$WV$LZcMe>|yqJ>V<3hHtSF)JB3 zZLfR2THC&SeQ&ni^JFz>uj}=muVZ&>QDsMh6WK7Eg%<%=L2xnLw3~lWoisRfL+=k& zQ?Mbm|9Yg_R8O`cw9TF#X}|wyb$lIjjD|_L!-$ATHgF|-W;G)=88cYe1fOc2L!^ZJ zkOfxam7CBvVCdk^)VujV8NICzjGDI<^-td7VL8Zkt$ymf!-t!?)nGqa-IJKI}1 zxbjEUBUMu{!nd#7(<4O#IgwS1WXH>nL}Rk9-$_(jLHvDK8(~kWppM+TIN%PnF4Ml zmODOSOom|y4iJJrsTzq4q#4&v6E6q}*gmGrB26MXnaBVR{i13LN7GS!PCizW5$fK1 zsXDDu-Z7+ENvv}Me>Yjkq@q-TDW@nIy-E`t^-@OzBmtZ(*ehgiz8;Z>%Gbrvc)WwC?%pq-6}( zxR`A=GPnqabD1MpA&S8F9)y;iUJSf~C8B-(El^y^iXp{)_0QGujZ2&mN@MT{S!IF& zNR&4$W*!_!VH~Rfl5~((6#p$8krwhg3L|AShSHEn^iWGA7OJ%562Z!uG}4_@i~ffD!z5yi=Xgs2n||+|!tuFpk=2U5K1Wp@@=poD`b?i4qdW zw*V#%b{EuyOp`T%<_usB8LzQHW{*UPZ)6dg1s4&n# zP(jdQk@;YqM8)Bb5M1fVQEalwM~-CWgOALtgA35_C~cq(sbC;i&=VtyI;XQV%8peB zv5YVyh$o%yB?N*5nGwPn<|@dETQ~PkX%Fm}Sv`Q*e+WdEya!3EU?{v%+<@^C?q8cA zgEt?XJW95Vd@GoeM!0)w<;?7->H3>)znGAV2-&dZ4hHJwe51bneYxp#gx-Znf`AYt zbBC(YD{7noB}YG4I9%PlqF7Rnp;&srrQj+=>@wgMu9J08{L%xx*{0x;8&P1EIwTKW z7A5VfNK29byRzFR9&=bE0cbD=>CvL3%L24#V%Ix>M0E&guDf?%Mu7)wkA=`kP!(1X zkcua$2n}Nt>PRYklmTC>>dAKa_N8-sn-QWDZ5TfIe0%*Td#f6hJ&-X542ANIT5cU$ z6%x;CrN+08MlfWh~YrMkQZsbhq z>~`UTnJpXDMz#oV=oWDgVZvp{(3Uvs5loirjCwrfv6wFPQ@WsAJ9zK+)z_;%h38p{ zIpn#Ck-2pBj zP(3Aq&V|jWLs3v_U<);?8q2d}9k|{IRX{b=T-ZQ~=o-B&bowA!{jx0uzvzY}D&&B6@WWQUbCBC2gQ!OcxR)rvZgK zQD=cp#|2(fI5V~TFPNcolaK6N(Cwp}X3pIp=^}Y) zD4IHspyYNa?;uP2c37b|pBo1X3j@njRYIBp=dB0g1%YQD8oP4r;-UHpGp>V zK3zM{)ke99=%`acz!#2mC}>0(4sj1(i9^!}MZoyQN=^JR3JWi`Oe>Zmbtz^GH+Mu? zo{UcWM2|WUu5WL=Yeuel@Pfl18UEUS?AGsYUvu?zs4yKWOos~pZRWL%6{kamMZ=8g zP+>Y$m@xBM%4E}_!fMlT3#S f)1gA4H9j3GEE<0;ZN(IB?!yfg1{f+lb^N~p0xLS+ diff --git a/master/.doctrees/tutorials/datalab/audio.doctree b/master/.doctrees/tutorials/datalab/audio.doctree index feb43605349020952b4ea98f529951d2d1c643a6..37ee7fac618223e4e58bdde9d7ccceb6116ae73e 100644 GIT binary patch delta 8818 zcmeHMO^9Vz5$5^sAU!HGl1Y$&{qD3;BTUlgr_P@{#Ry7bGR!6t;#lV|5hbG|q99=w zE`nyEBbrMVLbe(R3gQDrovby>5M3mgY$VL4cUhVE-FNRycO&Vua`y&$7R}+-sjBa% zPW3AXanos~5h6B!sJ3*y?JP|#{{*W~f7>>N4vY-&x;dt;-EB@Fy%cW(Xd7rTEfn$d@+ zp6niO2Y>TV%g^>9`lPFsqH004q(CNGpRLt7*(&Rl$;yzA!R2ft3TCV2kd2{YgtUdT zTVH&>`|F~&NfO)QDho}rh?rcKCD*8;$~C1m^8NFo8FTpP!BVtB4qrc5%IB_j=T}0b zOim`Ms*u!$y%0h=l{vbQ?E3oM-IcCqtzA~yD3>(lprX|*ORClhCl#gjMcMsju>vA$ z@Kyv-BS}<8c_f7Yd~o>sfRCM9-}piIn?>Jx)d)NA!O{+Af7pHIg8k;__rLr2 z-qTNC==Z7)=zbw%m7(B__lh&{W?~TdO_~AbQ;t=JU_}h%bqU7EqLd}=v|^ps-}!g< ztHrfeU-l63OOJf@@PpKcV4_8z}5-0|x2uD+Gh06g9^9K5qU)fXDXw2}!mF}*YT&>u{+pjM#_07;oW`B70jpdo1Ey!MC_Ld9j6oN>$`ueL&u&k1_iEw8V6BQ|9 z)wX)=wWywL<%wl|990b>p;aD_B~L6#BvPCtm?lP{02xmX>8Bi8A;%oPc3;pB9kL5) z2SqADUkxb(L{%-h<^Yj0n%&$IfzlIzB}}CxJ+#1pUmznp`aehbFcjJx61=|%UU z-a21h(GW``DHQ2t27Ih?rJ{}ImQa}LGR(cOh#-F?4m!hajq<7pWIv-)vO{-GVTML% z0&bmkMwA$ek~#5gU#*}MEL$-rYQ4MDeR`z~=u~0*&^wCSK-FD>tifBIm1;Qub9l~s z2g}F0-i|~kk#)$9$g7}6c__gGr!GSoH!jwj=s>$#VR8nxNL-P*sWum=hc+92!H64y z^OQ*|=4@d%x_j>n;i!k@2=|X#C@CqXn`<;*mleYCiaQ$OfREIC7P-=L*6MzMJ38olaSsp1bZ{^ViXfqGAq(BZe$tQ*h1`} zt+?TQ#eZGuUROgE-#d>!RaV%oEx;8$4TEP1wlzTFpioE?O7Wm!^w7JhTS^NVozq;MCMQOST3;~N+kydwhx4!9GPp*w%yBxQJ|_Xy zA3xnFn;*&d+&dT`TUi~FZzZ{y46@d7TB=G!Q!ESbRKSQ~c@xD$~Te|9qv}>)}~NIk-_&z+ALJIRyh} z9bGNf@dVAD3TqM=8Z+)9b3u*AcQhsZYJ5P?KBtw&=q3cxLC2T<~5?jIm2u z$tg<#qQSvMQNx>Wp*ipEochV)TB|w78Pvk%@zbrE-8Q>cRukXq>n?LK6?583WR4)=}QeaQPQVz&E`?LK6?583WRw)>FrFM|DcAA&W~b|2E*No;ne co9)haAF|zt{O_Lb|Gf`!>*qgw>i4Jr3j+(~f&c&j delta 8784 zcmeHL&8uBk73X?Sk9g?zVzWQi-g|9l5i3}%ZOBB?8urK9N|m%$>_kch z2OV@E1@(}DLlG$y3&I798pqOMQ3pzNA~loD9NG4F-aRjQFX-F{?9`=$E=Jp_Ii=fcKb`r(@aYTY+n>Amy{GqIeDT7# zuYxw&1p^ciQS(`AG$lGo4x(z@qH8oJ8Oo*@5u!9>EZIuQG7yHE$?Q#+VbqL&& z2D;enYAPjC$&ELcHp6qnxnP2BU@2=-mXc9Yt)r}+H`TQX&-BoiTBGryXv5Ze{KDuY zk}pE4;Nm^JG%^{rL6?)1*z)>lSvJB886#p#v5uTPIwNmEgBOcIDqOHJq6Jnl@q z$+;{dp(B7PJ}G4?2}DIjTeC04W<@$oufDxLySaH~cx^SROra)S{oJa9LU;=W1K5*h zXjomq*(-bi&b?mUOIL^U(+}P7!1U5jhVx?##n`CO6KBexxD`_+TiXnKiGJ?p+2I_C zI0X$XRRM~Tp$OoaGFE5eHa-03;bWVdH`c#gjS+;x$z6ngQsV~Tdaqn;Vw_6MOEbN? zTc!d2C)IT`)4p+m-4l0N2K7&#L84eKp>A%;1&CG!E|TKu@^y$aq~mMDNJYoge5~Fm zGA(8e>g7t%=1khFg=xL#InJFPERTQPyRAc};aN{^>*ky5^IM|X#JF?dE;gVkafI0T z*r3+lnCd~a*~G>mT8meaEaXUVU4s7cVAgwMlaEKJwiod9^Y@{dKsg1d$^0-0xZ$AV zQ5Wk~|LJ#NV%^#YY`cFod}tK$foijmZ%bNYiWIfcWRqd7Lfky~iy5CT2g3h(##h0% zXeujZXR|FF!Um4~ht(+BOZH%z}X)&X$Ki$kb-Sx6_-bUy}$^q{{E+A^Q z*{)kr$b(_J@%ZqOMPdq+-;gy`DX3v<*&?a97*%RU5HF9iECGg4-K2vKo9qd?FBt%#h<#Wv*)^bY=RbzSJzdz<5Q>%h_-|GIZwcj(q@=`P(yk0}K` zOLb5@&<^cmPD5_Yxsh>)-J@lAevBqE&65tS0yc=*z`7)TExeIYY~mH17z zIg63WAd1m3u63$U-+XMiJa&s8aP5O%7(Tp5&I3*bDGvz=6BqF1px-cvM3_^zwfFu# zV7N&>R0Ole8gaOJq!^DkZ?!^IEh6qR+@#X7I*4725NuchAM?EHW5AfI7DwpRbz6*@ zPR*^a{rAhm{$9m-qEF;1sDZS>E+E{y?8P8%@CFh0*v@7C3WEHoGb0WwWWt8= zlN~QjU}B>hR7RjguYhcZ1r{7X8uY=kG|{Q4=O#4f#}i9#d3O3M!y^~@Q97C)feUb4 z6?hZoevBakJ%D<1N=eVMbr6U5G}1$0@m3I;MN+~XfZ&YX0%kOSXlt$WF846!WJun_ zv)*;x;aRVvEzjE3;nnU2VyiN{^~Y}gapKBl$&9=8M?C6byYyPbT>Nsb1>kn+}Pujoi)*rj|$8P?rAk>t3h@Bb8RpPbdf9+g-O{X0Oo&k%hwNFjKWq6`v}RU`vX``YIHI-72H*VwzN+sMX8 zcJ&`DjM+l-=o1^%0Ni^^CoY;7O|j%pw>}QDao4zba2vwi-InG`~e3S z|AsE*OfHTNwz>%3siokci*$6Txwl2?;_2enEyJ7S`8|1_Y^{uMt&A_P9R_<}KDfWM z^k@#8QpP$LWKK@S2*xBIBWVdjMI^&9heYmq)o-hQb@NLNUPKp@))E1O1ZS+|f?LIT zC>yYOyk0%)oNCW(R14o~g)!L>DU(nrEcX$upy4sW^Aue(zrjwl$G6$-vD(>01UhIi z9?M3bF$x#Z>X1-Iu`@gKk-e^_V$otK>mZasr@)hwE(fiobDnf_af6*~KCH2cc6*h* zuex=te`447p`i>R9khG~79qIJExsUK&nb z*x*RWtVc9M=OX7QQ}&T)m!?y}4$Z$W$7X)Oc=L9X%^c!j&MVQZZnDWbDpFR+BuANs zTnb?n7zy5j2i%R;D27uV`5*F~YS+elFRQ0r4>dhoPhYulYw_B`rOQ_rJ2H!ZPj}fi reRsB5{>~=$!8Ty$n*I;=qPqnLZ5;hb2W>oPY408Dy*lz6s_a49 diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 79c9337f8143e9fdc6d68f2a9f7a8051fcff37ed..929792ffc9ce25370536757e944165e0cfda8760 100644 GIT binary patch delta 72 zcmaELjpNldjty5h4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 aOwvq&IK?zMv6+>tot2AmJ1ZAcsv-cD$ra83 delta 72 zcmaELjpNldjty5h4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w cOp?tFOwy84lP#NBx!PH|7`L->F{LU30H^8}J^%m! diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index a1b17aecf3e3a90124a4ee648b30be88243df8a1..a03fc50a160d016c8725b55efdbd77bed76fdb41 100644 GIT binary patch delta 32547 zcmeI5d#q(wUB`3oJ@?#cJGGR~Ok3-mb6N^z==9E7d+qfC)MCH{<4Jry6>LeV&&`0nU3Btrk6d!aX#upS?wI()3KkMvs@0@!n zd;N!rIi$33?!M=@*W>s5eShEI_cwj$cP9`1?&PDNI8VOS=Wn#Pzv(BBiL$Yo%(ZKr zaJ4UmuuUaQW1B|iE^jpdt#nzO{@3$<>$<5hRT*R^yb5)$O&OHVs@jybGty|^oO|Ab?vRtO_67f^<^y@=d@_b%z2;9zbf_6={sI>^}dPJwQK4|DBa|h zvV}5*6?w%QX2BZ4H@!3U%<1qwm+qU^Hm^iuGSyg{7lkgQ)_EyKmbr%Y<@0w+J#_j- zH;wmA8>cgEi?S@7&aG2kx;*GcXj2z_V?F<>)I+DQxS6l2y-`_JR5r^)ZnP|#y3)$n zN{c$n%EenH9ySEUl(@w=tUmCC%d%DIf! zDkW=<=l71}L#MO%e&_4gtZpCpmcfBjZ+Y@LYaIN^C$Bv9nXi=3{PDi_7cLl_cj^O= ze`)FGm!0~ZukP=Db$sdzU;VXj{G)OE*!6?+-uuJ{mmXOdy{diu+QGM;y5h+f?)lm2 zlTZHf+BBka%Wx-uj^2TsPLV#WjOV+LIR!E^FU@(ct`bEzM#FkFLyE_dv?FRCI)NA#Ir zQI&XT_Vgs~G{+TpTCXdc@9gisqwMc9{G_|2?Yo{o_|o=|uWf(n$l!v-Z+BaJ-4V8S z@!MbbGn3{_!zx@(3*PaXOG@Km>s=+?ZG#<|M|tWOWV5+t&Q5h{o>kz_TB$B*lJ(=*xJGN zzDw5*wV(Xb+OyhEo?N@UJ-PGQZ#>3lpMGrZy6%zxivRcN%Xq||UAv_F>=kFXKl{0} zeChnF?u(xtd1~gfPc%7*CsSELkM4jQF2#H70SFRXOI5# z#;wDNaHcVh4nB{M`KoY%Uz1YXCMM+B;IYwtgK^Zyg?%S?+u(b0O>8mp%lSo2ITs7AoJ&27kBl$YA1>lS;|j$r3@w!msDT@!TO=-Go0uKyUvf#tH!U6zsXG2tx;nGzstRKx(Y2j8{+@L<9lQ^RDT zXqq~=bs3BoGFPS7s*$#soxOVW&|utevVH6`!z^X5m47yL@4IRJnxmP0%Xb|+@rJAJ zxZ~*bs;2Up%F9ewMGfAiSkVm|U+Ju9c>k8SJTN=?y7kwyp#Ea3J^qS~gY6BEtnZ&) z^x*K0!JUail2>8=Y*hyesBG^24LMj`?hM&-n1#l3Df7i?&BZZxO9?b znIwx>4JAp=%`8F?Av78PsB~r9GoRnszNndWii(oBP^nxC<4Xm==5&M(qUKHCKD=yp z*MZI77)-n*as;is6J>6>0k|?wiVId?H_^FY()QU;ZDx~xqoIB9vY}|7^~1wa`|!gX zN3P5BSDy1i59a`6RK`h@6C;WS^jPNFnpzWL>>{Kj=!f>~FYNZf#F4q(KGlC|b-w%Q z#Ln$_;54N2b2Y;12@4O+(&g(32!i~zigVr$iS-9BNt)Lo8CnQedZvl}-}2@QQ_ zi}ulrhR0g_xs8h^&MF+EX&jYA&Wnax1n3$92^m+~_K6?azNS;tST@T^3f)9zC`G&|p$i*U7RFe38u!m)@(~b2%+Em8sQ?u=~(pny{74WeB2KtUWd$((oUi4T zk##5yF)8GEU2rVYm7Fwx6C!lJmbBa6^Zrda>9@Md0IHl?efAJOuq=?{{l@!Vft4J5NinLyYl@U^N^rdz&BVNA92m}>d6d@x8 ziW~|!_(Fu-XAlM=lSQ}aF3lw@i}uDp9m#R8WxE3|pEuRg*1q6SI0`(jbfty&%~X{c z2-2pWJ^0i*2!vF{E3payn^xp)Rr|p8BXKuS=G#$2Nvh|VoxLXHZ@stcn_?XB@K z4lNLJ(ry?h&Y*pD*vNAdYTXMKu)hZJOe}j}>ii+cYI=h2T zoy#Ros@m;Di5t4dK_Nu@wogTT`R~sk9-5?9M)}j>%c(R1wB-YvRl@fd3a=s9=4?7_lFK+YujA%{9bXfZ*WBqynZn3mTp_^@vMFq3`D&My)Kxm~ zcD2iMDdX+?4~)KVny?*Wo)hg04~{ORe}UhG#?>W^KTsDYv$R-suxi0HGl1i*!?7-G zC~8&KO&OCh5E#O(s6-9K;n>9qaPS;mjzuMfA@li$L~g0AxFxmbceTx36U)-eyMk_- zuv~T5wcm16EM+>Ui(pGr@UAN7iu&NIlB$Rs%9fV-?17_{*N3e%fj0zA!)?>AfG@9u zv~(MQ*6rs$zp))bK*?EMLk8382nr21wN#u=Q>MGM)V-z^McNLueAzXl zYmUKdEGIl8J;|6up;nEMq);SkoR8$|11sq=d9p(^E8e#Lfx(^q2er3OOI%U4+eZ^S zC!^Q>K(%>jnp)BvQ%>rNybfDTeB_SS!gDTE)>OMit}?Tf>BnR&G6qD0%jz6jVNNH| zNVGyIDcc)gv%Vsg`cY3Fna`=-6Zj$WNIEx&8? zdF|KQ^$XgM+tCGM(qb%4SdlXz;D}sYZO9G^k_6)8CpQ+Q-Ci^R4UNX?4C30pBzm4ExXX&)n2Qz zSs=5BFvqgAl+GrU0@Pu>43b72$(DYR*KT&^_VwE!9hAv+omGJbT;x;unI!L)Wv+7a zU@ZH#Yq_e)zznoEYfG>(70piH)G`B+QaI%ceA#c+i4I@(TV3|JyZ&cgkLyx_iG8Dt z;8gJHQfQ}*lu%T`%)~u_sbt@DCZ8Vt3J%tP8oNCvaU0F>DoiReuoW)o_OqYgI25^(n}=f{a-_xRK~b#J?I|i#(vgz1zI9d2j=y;H@L(KM zdkwA>wC;20JTK@)&=Q4AQ{K;>^{FAGU$03=+u~E3a%%hS`55(IJH`DgGLR_o-yC;$ zD)^dCddyJlGN5rzMk>Ms)D|s6Df2*o#4FMl^sqx@cC-Ncp2qY9dA%{+IniH(TVgsxR;1)WV6a_iG0b0YHAr%lzmffkoy7X1k z7N`{nhhUFCMy(6nx*+&ArSLQP@aW4>|NUk~`|Xd8Zs3OYnr%8-p+E-R+G;Nkmh6B z^=8s`q#?)sM%#~GHk9r3Z5vm#fARC9OGZ}6E&8C3|NQ9EsjQT6(oul%my@u@j=n&x zX~mF#w@JuxzZ|DM`x8K=u0Ts2(eC7=`){V${dE7Xg(~{le|%wdD7mW6&kAH_MF8+s zQDKFL$p#inI$|IQ-!9$H3ECpiea-c>FvSYVg@-X$o_LAsi@wg)oA=YP(V_NS5wE~& zWH0b0;fuUhS^7V*23YVRla%QX{>tdal+k$y;M#dUU9|HxX~p$v|`l)Dy(S4nfR&R8w8U z)W#lGNfV2<0Qx;%R#hOfm`3v1@t@ixOG6lyF;pONf)t5zF%REP_^4or(Hop=Wh89- zd7_&n%ytWc`#&~R*_Lk4{M_)eX$FkVt>P6MLc3NDs6$a1*ytL7t7lLAV{AAjBx{SR zEOA16>MY#4?{@C#%%KeH+pTjcEw!Q!G-~*3a#fHpzJpeQh>u*bK$4+- zO)RmRAP$gnB_Ax|l6cc$r3~1K3d0H5Mqy~RRnT3;_IjDtM?PZU1mN%x3E+9b)^!E# zfIx#%iL@94<)V|;{{m%u_VjJ98mtm{Kc{xWG4U|cyKeEznr#F^TBe#Hlf&zA@=JkYlCa&L{mf8K=?e6jUZy#o^^xIK z$HbP(m#QK%pO-*9FBzAggJ+SYN+%c-h|)N3^FfOI*%9-R&5@diJhZ z_}itE#G>ZzHl@%c1}X{~8DN8{Gf{icIFlA_0!-o})*wKrB;yQaL8>5up?>08YE9#l zCK;(>p2oPlx@9u*~-tD=gGH>hNuq=vYsg9k?xX|oRW zreyaEjF>p0J^3kdDff6+V#l&=?;0mob^Yn#3nnPv^3ul19)to7^(K8wkQAYcx})&R z#TcQLR$W;#Xj4V_2mZ?EU2OO+%7iZMb;Lb%0=Nqz$wb*+fF7p3N-ahsicy_vSrw9a z0j?EZhGeDJcG-2y=5D6qGzt0>3#9=mNy4&ln;I^Gj#4utje_(mNMmkpj)&21$0N~% z)Fr}xs+khXep`$6k-^wEnc*_V+MLE8oCLHuBqpGZ9<}IF*+lhQZO?p^?sUJ=cr&y1 z);}DcKcUM^q(Bmvfe7M6l(3uy@l2GEo7rLw4j>VyWi%%?*R%u`lOR(#2D#=U40KM$ zbq-M2Mj?fj~c#+JRNEJ22W>^s9-JMOnz?|bxm|oyWaA1*vF%&o)6oF&~tuSmx z0ZqkBV7G0MHe!liBfm zqkyM(n5l&|*k&CQXS64A5n}u9=N@*ycjL%GG0n|c$HbaCmm3H8Gunp8+)H31x<>k4 z2!|0BXgJ39!OyO5>vT2p8E_6NJNf{0Z>Xcthwwav9hCaA$8qH=SUC7TcqOnFN=W1( zRu!~GRgjC6IQO_-^A4>^1d}P#J3cq1qVn|4nZ|V>EE-UmX7V+I7p-E&xDAQ}tx{%u zc^Vm@M|)fsNUc#8muS+&+%*?1-7!KviqkU6Of1AB_$`iAA+<-xYs2i!6|~%vW*2y} z-)cF>lVj8~Y@Q1A^q>V9K}HQn+M`B{t~Nslz*S@bxk5Ndw4*k4Ox2>^k1cuXV{pWc zH{m{AiUUK_k}Hs3Lv=y((@%?Pe}r09Z4viVazaM-nylM+;+h%w5wRQv6N7UzbVoF&`wv9dyBU$hRV;Tuo!Bk2 zz>tTgiB*+di3Smj7=gZ65u0LB9M~{z(m*D}PT@{x6wv_$hoQ3u>Le8UsAoqS=*WT$ zVa#q+Bk24JNqe9(+91uNK@18a51`COC0kYYV{eO1vy{Qkof7uiv(HA@7*iO6BdgKZ zXAa>zQ{PdQSm82`94p~A-?4FgNMC@wh3E=mk!2J-gK{Iv+(~>MQ zC+jb;B9hS@z8fBx^&sy+cIpvBJ3>YLtDTceog;xXwWUQNn4ZWHO1pqdGJ?UcM@8qN zy8Q3;4-dxuraP#Zu)HT>U42w%OFl&&0+~-!Af@3=h=WwbNOJ-q zCd$51(kwF}sVVF2Zdu}tcIPGCe?9l`CW)Op*DXsd%eN1Fdh_+|C+^;O-D>`GHUHT+ za=M!T+&eaVZX{+k|GAp~T+M$z^T_TVDr7bP`SoL`tNG8>{O33PliZeD*Q@!@)%@q4 z$o_5^HYW}mEoL$X-uI4{i^Pju^)U4I~=QB;7 zuI4{i^Pj8v&(-`Ve`>*M{&UyR>1zIS?^J6ieoPHvo|{ijjbg6mKl|oRSM#5%`Onq- z=W71*nI}#=x&tkC-^A%^{&V+OYnQ-Q^Pj8v&(-|r@^JE=?)GZ_b7$;yHUGJq|NQz9 z-90+S)%@o-96(*of3D^~pZVY7wVMB2&3`Wbu(s9w=l103o^hJh{3n0b(!6L}&3~@u zKUedgJO2i#)%+*(rmOkS)%@q~>D<-)XZOcAuI4{?51p>&KmUKvf6kcy{J@3(3q6!) Aq5uE@ delta 32982 zcmeI5d#q(=dET|p*=L`z8EaxQ9@{u`_QnC@vCZ-N*0;W!O^O|bKcFF)K!YHr=DVyF za0mum(>9VZZZ1{r2<(i*LQ2X-r7cOC%9D|@15xpe0=W?7VpXX~+9sYRQ7&BVHi=aK zk^a8D_Lo7s#J}(k!)Kyif>QeD6@&|AFqKJFQl%BnnL_Fyg)ogN7jHH6(CKUM;;jTbTogeoYfV)p z;YwfBqAInvUK{PZof>%P^mB=~iZ-dbszXtSiUmfeg0AW!mSv@5A-eM$dg%0j{rK__<hu-=^dG-yTGo{jMHEG)xDwv@ zM(C!f>q3;?>8gFt6{8=T_CKRfmp}H(@7c7aZT-teM^C=<+3PkcdGgU`Uwra6z7n73 z=ZD%4yN88j*R@~0 zY4oC#*FJme!52?I`s}Z4%yhtyf{~TioQO=W3A&L@qf+52PNcga0}q|P<}Y^-PfgHu z3ceJvl$BN9saSG|()(bXv3dV~a5nIeo?o&#irX8;oP6l(N83j)8(rPL|H$alO)czl z8&9;yj*M>Ydt$MnUtW3QTb93`H?nSTJ3PAmd0y;xvVHEd(I;1)*!K~-4ek95H_dMIRIopSC7;!thmv3r+;>73$ z%ir#{^yMc;w?FU8%T4{tjUz7TehZ7ueB;5N-ZcNz&3XTH8D$hI*;tsWHkB1Pda$Wz zf;ZaO?rsh|G@lfsmmZ#a9Yaz&RHoLIt-0mWiBKua2^rU%e3IZi^o)PavH8Zgj^1u& zwWy^JO(Zths&0gfinw8YUAamM-373rhyLZw_mAc`-@kF{p7wwL!N$?{>AxCH+W-Cs z8&|cD{Lj&D`--PGu59b4H?C-}x|&y?yL#iA_R;*aPoMwUuRp!<^7in#eUF%P8!v2s z^^f-b>|dSZ4X*v;y`P=<%h3(zkU0y zkH7u$AN_piRkOdT!#}v2 z%wO@8Ubh5$2D*XzSkbw5qf%yeea&%!=CkqA03l zeG!tD*3ZR#_AV2!^TKhyG~u=)Cxa&7U6425gtDzj|EE z25gt@DV}O?`Q5F{+ug^vUb15WlCde2H=(&nqTRj%E#L&@@!C{CZVa-WuU;uEC`8F=OF@N!|k@7r#<@2%H8@W9Qp>!_teL+L^_2;gm^ zs}t$2jzNc}Z0c%$>eS}F#+RlJKucwYhU;6 zulkO=hpy@Vr-%0Ly0_lk{>AT2j!g%a*1q`EL`U96!OycF4s4cASGWV{F= z#3se|+=sZ^AHQPq#nGVcD}Q$D&e?!f-JU%%zU4&z@Vmw0SOMn?2wc^%sgw-)50xlt zR~qV*_EZ}0U0CCYHNGwiV@iNq^1`S_sM?t5qzmokpWeQD{(+<0|9q`{3< z#SO{^C{oU!`0)1G(X`*LZSQ!~mY5BgR4d;1>7U=aYNo)yDoEgcl$9=%t3oiw z8;Wg|)qqysw^X(MnbWbG~gqh0&IX! zCYh%7W3KbZe|hr}+=*-$q9TZqUWx{nOl2Z_g6ec|zCHCYsbb-IvjNLZ`{Td0^@geJ zH63#lDO&T}TSum`l4S0ZEaxETARh}sDz9qm3ZQn?IenKUa2lN=FF;QbX%-Ryeayp;UqmOAvv!J@duQYv!|iHvipdHef%s=iabg?(`Za zGAt9{^|RCne55FC(Kw2S+L;g*Khf}g#ESVH|7Lve_;`tP!HqT983XJo>?HA~Xi8P- zdj9l>w$6;ELRKae7I>>P2{dugwsg^|(nnwG`BVR83wIkbxX5%@&_#nGrg6c@(?NIBwq3KkN8M3-vsqnkhUmC1X@$9wtK96t8k?ANw&v)*%&@qpv> zU&{kdIj~>N!p;8ThVhlN{&h*!-f?<-Vp)LzwP<%II0ESvTdU&)@ca5AYJ6dYBm3)xcxWV;Ajz^L0`YO|8w zW&@^+_L^tOZ@S-hSmd|%7oOcZJXK|``2zPpSn_XeZK!Z?suwNUja4s`wWd^y3!6Oa?^g`Gn?eLRhQGAf~bU4 z3`MGHYIa*tLK7AMCC0UP{Ik89d8fbikVD+D)#9@Mti0Lpc>{O#K!O|CH=m2k|8>Lo z*sOnbP18Q}SK}LZA`WLL{fK>)HiZxPO9JZNvD!Zk^;#2LRy$PP$F#utLE?dj+_sM%y#8huTgse$z4B% z?yegRTJn@vUXwi~i*S{9lKrY$_Ia<$FAPUul?25Z>M>A}uMB-bB14g!T`47JmiQ-Y zIy*^GO42xt!dKKuV2I4)y7|cAYSVt(vI`pnW>;&;SG{cVvR!R=tCb`dDU#_67@C$O zVk+dStO_S3y+g=k+tof@0W#2{>%jNy!L3I|5B8tcfy~u^OY5-TH;4A_LY^B~THWP2 zdL!gBn!7pMr-ta?xFRS+9L2FkKDNCRRt26^R`eVL1d3`XZD?#J7rZo1`|i;$+tpwN znKC?g33Q0(aeE8uG46+K{4y~vTyNk5i1u1DdEIQlw&=3mr_JOA(*}~kz=woXHkF|F zOHL!nx=6RRvU+7jGr}xQ49UNZu5z0;r?8rkLa-oDy7}3Yn_NWlJLx?oP2ZL()jLCJ z$?9y<`LWLT2JIF{w&n3&d+iffk42_XUba&ZE_A;kMYWwR=HKn@@Dbkcc3dthq7(vcJ^w&wz125*6-vLcB9q4Jd zq}_cy$-rS8bgur3c)+;^c1h$^_Nv{gpPT#aVi6nV0r#Y|s1% ziK0to14d)pzIpQ6oqn4gG5Pf)<3m&A2CxB9HkhIgCc$`UM1$KCx{b;C7`z>*V^w2R zNzcZDe`@@M>j%Y3uMf7N^CQYgp9JtuMRJ3zt;C-s@qlZ`TP`o*fJNfW8@2_Rv(I9N zn4*?kGr-%0Ne8o7hKDkI?Gn!XahfpGtlA~c4EYxwSsUb^>md4EQ zI6Q%m4G}1Apdr~Upn#1I-3+ZsL@EIQMl@PtwV9?aQ58oDp<4lbX;edClI3_FrfjbV zFl4v=*0Ym4XQJP(>N3}VJ3F~-CyPCZnJQr&35@5C<2Qo^bHzoG-$1>SGo=Wm$%QdY9IRu ztX;2Vykxh7gc{L zl8nix`HRi?%xH$V$%ES>N0}WhP)Y=sBZsMr29%WjjTGH)(08?Bzrj#-OAiICf;8J!6JBw6PoGDEoup2KswhV1y zV{03cs^LGo=$B=qAFzupLC`y;^a=^n&xZ{Z{39hr7Ie&8H^QX$d68dvGY) zEE;DcH{pd5rIO5K{z^-R3rnS|z-turQq`o#!q%Zo=p?M!+V>(zx_TJQk5G{n>JyYlXZeVRIekahap>0BGQ^zXbKf2t( zr=rMmw4zx_^gA&^je+PIlc))}0z!dsf#enjk~{NT&~hC}^N!j~^8$J}N=gqwNm~=i zl;x0XF&9rxzC1#m+iO~OS+3tIh%a~BTC&{X9pi9#Lp0E66n#ls5Mq&h4F=V9u|jf9 zb)wOeA{sA9S9rVt6@lM1wE%LeVug%69;78_lNM3;Rq$opXPOr<=D`%Iz4Ny1V|&f+ zUh9xhi)QzLWtiPBOuie|sE($Dm4UDVO*KvC=vhp+CM7SjQ5(>=KtF=YVkM5s5-7ug8K`3rjq(;M0XCY-2bLNBAoGwjPVY^@`X>gFHAWY#3f{&;wX+Blwvq7fv6{#F@p~zx*K`Q~!0~^UTp~GCq z?p?d066U<`11$Nw0o%HL=*af1GYVZe9J*I~=F<}Wnw}KN!cvAt*YgM;rzqq;dv_Z37T?|*- zXSPez3l#TF|6zRHuG+O`1;YVBB!vVe6yz}UjE65pr3B2bfy?Fm%;&aQS-<-GJokvB z4V=&cC^mF8_dD9a*2TTdHXB$Jtqgi>vkLf9DvEoR2_iV{hPD|k+CtHG0rGUY{Wx5` zq;-o<3s3}R^U#W@E>Jj7lYjX4w~lrBY=-iL{v;GGL|v8na~Kqwv2?EjNP`l+lWq-J zUAWn-*C-5V$Mv6?Y#*9df&NgP5*iR$H8f}ehUoYam2rYqoYMt_=Aj)8@nLA4Qc1zG zd18HpO}Dhq5HQW@vcuCsEo8kla4GNU^Zj$y4Mp3U^!{<#w<&>?4V}Rx4p*M)HZd z=uiU9c!8wLki|)NF#PmJVfZ_iWWcWKlJS7u3x(sPT{u{|E6NoI1KigoL6g**yA1%y zMxo{dV~`D+JsNUgC}LkK>p!CdO0A(=x!=QvHtxKK4XmnTAa@L9GCY-n6>1oWD(P@I z?>IYlK0?EP4%)EG+87dd_LNMTPmYE1cumqS$^)ivs7lx>#RzRmvdAj1l(s2Vr zvB6m;x%9AptFG)ktn4?r?4~U|4A@9CFM(0`4oL|zzjl1O1{n}_;rto15ZuAw*JYh* zSUWx=frPoVtvG-68)0c@Xb_m!Z0#k{bm zB3Md$ZXk*fB7d2Oqi~6&MeXOEV%iFigP|44phVM&hqC9B7RavX%L82Ub)06z2zxHL zrX?)_<%q7PpnyRYLlDW7*B){q-SwGmAN|O7Iqf$ZJAd*E$t{&$rf6wop$5#N4MoMo zV57_uIQ&UBfsTYPQtm_JQNS3wkpvO28ZbAv0J z39cAV)yvkzfYm+l*l%^UCA};NomlZHnGv5QGQr6rho)i2{1t~qgVy2lU9dy*-aCyp zKli3hd}`oq4xp}~tGM5(@(K5B+4*MKbYMX%!bYk=G~;D0nFy<(h7s1%-_P_UbswkD zT}ubnU@#I{JeROUA6%47BLl=~e`bdPpP?tt^OFnp0Td;imUo;ae1i=nH^OjNGVis_ zdd+tEYC2%H>zO?{*}h~Nqo+*=wHLa#d2||`fsR?!%FPW1 zngc$DP(e>Dt?H8!T#usd%!WYdWZb!s$XMi!C0Avs2pq7z)F%y@MV|zU{QUUR9Yz}o zM7g!%=r^Fb5?UESR>}+qbkfOAk^~nJpy^7{X!e-gMer+y!hx6&XVO@A``vM*$YQ7p z8PbNKg3P1l1q2Jy9{eR7`~2*7*0S_lM)A2|Y9KB9%r3<&3-m?yddbadwSUIoCt{Wg z$tEfgh#XoLB@8ig9lGw&+4O|KUj5UJEuVHDwK#B2&3-Q$xTXgh00TQ`b9wmEccHZ! zSlO~Xge*%D6s_Tj>C*r{b3aCM$(Y$I=C@}Z@f4PV7#b0M(t4&DOp?h=G1VX3or z$9#fl3luV8>NG|@YueKyk7&?xaw$XWg_8JpN7G)*NGCJbF&i+w0>XCC?o)@Bh?lvi zlpiuaW1?&QBKDrUA zU}c#&1)ln*M!KZ@(&hS10~Hq+b-*m}DI>8O|E8x$=|_KE7`}I)DCt-POc&3P zVL{nX#ei*cK+$H#eu~5vPola?WFDkZL)r^)@6g!NpMbN^ zDkO+RRl%!et>7X7%pz20s$r&@2$3sGm@;_B%uGOP zM(u$#o?_Y&fAB8a-38yYaG~n$H(j-FL-jQqFuiQ{(VMAqe6;%;02tnL97$a)O)8&03D$3WL(pzATvPUW;716_}SuE#+4jnJ;gK-XiS>oL&f zpzeWjn)MjyMZ>4-G0^oG=*545RyTj!eWSs840JsPx|ly*kAbeoK-XiS>oL&f@acLC zbY*gOJqEfS16_}SUOcXQU{q~A2Ko&KP}gIi>oL&9Uk$q+16_}SKJWPHdJMGtYYF>@ QCI6m}fzBBN{pXkcA7`R**#H0l diff --git a/master/.doctrees/tutorials/datalab/index.doctree b/master/.doctrees/tutorials/datalab/index.doctree index f48c4879e2e1a358290738b43b83eaa2129b7712..c97012d4a78b17755c17ffbc69674f3e7a859205 100644 GIT binary patch delta 62 zcmZ23wOndLBBNoErAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRy5#5k2308;l7v;Y7A delta 62 zcmZ23wOndLBBP;2mT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0=1GiGxdCCA6C?lt diff --git a/master/.doctrees/tutorials/datalab/tabular.doctree b/master/.doctrees/tutorials/datalab/tabular.doctree index e7e64be9904ec5b43cc423452617b372d5b354a1..28f8227a53fd67380beea1245dbf04a4614ae649 100644 GIT binary patch delta 68 zcmcb(j{V{~_6_?u4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 WOwvq&IK?zMvH3mc_V=8ONoN5ip%)hb delta 68 zcmcb(j{V{~_6_?u4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w YOp?tFOwy84lP#Oyb8dgn$(VE&05$>_hX4Qo diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 8d70b36e853d3e6ce654324685b85173c439a9e9..92a3bcb73c7fc65e14f6507846fe73e70b188fc9 100644 GIT binary patch delta 618 zcmZ2EnRDf2&J8;_4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 zOwvq&IK?zMaq~;grIC|$Q=}(1rD#p&O;MP5*wT9P!W$BkZBo>yUz23y zpL`&hXY%`Gxyfgel_&Qli%&k0;zpiEkF;|l$%%Q%sW~z6B}IvO#c8QU>N*PQ)9rUK zDo(CRm!Hg(A;k<5Feqh|p1e9;a`N*Rf-)c_>8T|pnR)3k@x=v+MX53I$%#cNAo0ol zFQuhHjIzw)#F+T}qL}#H#Nv|FBCvv(+UXb7m}DkfWkd~x#bVP7Dj7K^@6K%Ihj<(A z>&b#SYLgFSOH3BYmH>Ge6ySUyZzN|V=B1~`7i8v54#<)bgL)g{YlNo_Zi+JlRZmXH W7MZM*ZAv@SoBeaP`{yu5-30*RI@weJ delta 536 zcmZ2EnRDf2&J8;_4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w zOp?tFOwy84lPx#D=B0OLwRAjPZj`-x16s^gZlNBcS zB}-4XN|Bx{ogzPZWwO@f&&e{APo%g}Xo5%DIgzr=;>4Kv{Gyon+{EIN)S~3XqLj%S z)8!}kzm%SQCS7K-f4a0la$;U`YEDdiNl{{6aawB8WQ9!0$=sQe)9rUKDzd2SD5y^l zEM=5rR*$Kjeo>7{X0laA6irMPn_f`K$T@j;X0s5;;XrpIJNtdM3^3HBh0;??N;31( zhk&*)M0iUk+pRT>!v5 B!3zKY diff --git a/master/.doctrees/tutorials/datalab/workflows.doctree b/master/.doctrees/tutorials/datalab/workflows.doctree index b95d5a25d09fcaad2114d5b8dd3553f124f5a234..57cf4807f1be578cba727bea1046f5a4d2315ea7 100644 GIT binary patch delta 10636 zcmeHMTWnOv8P=LPw3rlvFaZ(33u)7qIQGmrGjq-%w!vU?H`v^QLlXPkrsnDk7lQ&e zLDy5ZLoTyU!05qsCO`1Sw&mRAK$%cLG zLs#<3v;X<$|Gxh=mp#Wmo_6fxX@kEVSJQ3Nc60aUo+|7KQzw*J!opTydl;L-$6S~~ z5Nc7u)W>I@Q{{JfJF9kf?C$o0{;n}|F3c{SyFO-LSlRkE3jf`RUAP(CDpBK+_Tw@2 zuXD=`^{s!T{r>(UC_x74ZkwwPwpm9+{p;X5^94JTjIk>+9$t zd4NM%mSRVbo<}c~<>(oC^g>yV9!=_v&+u68-GnN&(0O@o6Kc$fjg`qeqHX4p<>-YJ zbM!)4j$TMHOHain6y_*~yt5QLdO}%_9!vU{qZi6@^mrb; z&&`f(dlEIIim$)fEtBs*iE5)-jJ2Yr(Qs8OS`iIjZbgmJ@Y7bbE*dUtLz|-EuiDU~ z(Xitov^W|zIcQBZoK%5&qT#U$P}t$3nn*gB9zOmsNMBA5N7S%1y;{h+wdg+CSBW(F zk%wkxJ{jyuJt@x=5<05h;-gs+=zbrqkA@4XfYs~(@Gn=P1!*fpo?M2e%1VqLh-O_6 zMgu7aFj^Q%4+t>ufk5*j>1~1LN5k_3a9{cX;5O@-9_li-F-h4_9xiJ~v&Mn%vTL;pOgYBpxO;wkN>Qb}68$GYv45V%tK&pZQsZI){+P0u2qg1!Rw3}O?OvqN4 zc8x&@KG+H&=;WEc7&6RBlc{`Z--f0~wr_DXKf|q|Bg!qMGa9htCa~z*4lHI`z@p7U z^V2RI8eJ>_y} zi}G}!27NE`;&KhlnpB$^6rKu7XDyl=slHMRN!q^)7+l!}48FA+Y&Gu&2IqD|owhAN ziy~vSdmtHy_MnAnie?HIFI3_A#~w(={<>_Xu!%#ZeLd*m$mqEqG%wRq*t(%o>0StQ z^!I@e9?>I5t-S2s6IS%az zIjW9^x0j>3EHf%JqhJSt-M|W9cVk7`^Ft7i-j%2>oi`#s4bU_>a7aE^dNAhzopIEL3rF#C zk-B*09uM;zjq{yi^BrQd&alxD_Nyn@;^kuWbYHw&M2%g%TrgR@T%0dnF5rMsyj&!I zf|13`Me%Y`yj+B>P`q5Eejoo|T`m&pa&f6-oWWdTxXfU3!zt8|@%87Y(B<*)6xT}U zjgp!2r~PPMmUPnJOUmWc)2J_F>MN&_p8lHn^J(<9m`Wbpw(Aj$=V5huv6*QYCS{c- zk-zv4YMK5u4>#|sl0!>NCd-GuKv&C1b)M;iU!wbyFK))lsxQ&@uhn@c|C8R^Xl33f ziND@PWwmjWaG`tL0KF1!XiKZ8|_hSWdX{sROEH}AnzjkWUBjiWuU>94^;VNp%h9<{994UUCsfgiWWcA&!S}QY zQe`M1SN}}=B(9=DJwbFzY?Jzy?>by%SJzDy36lp-LQQ%^<`HGumu9 z_-pN+MCatOO|iZLx%1{I7R#DiS{ql_H>_+eRJhsNg#tL|i3(XVtlbwcPCy{JTQbsb)g4=Zbbo6jigG~5sWZGi6Ay{d_(t$p>vjO;@plb zH%vxt$FYRXF}1mF3C5N2z;>x+2`*I$mn9qWPq9J_QvFzv0QBQ5lL=~I!#0F#P|xu# z)At>hVV~=P%jKj~YH3SVu}^fusD+su_^Q=}73gXya#dxR7Iy^6Q^kLqrB<)N4Fc+_ zKW^JUEo)D3I+VoWU`cjI93R1p`%hu(~1VcH6UQsTPQ$IRi5Zh4#t!!QJ< zJj#1M`pDfAm)&Uv$~UKr3k6X1Wn7LK)~3V@xtVIr$A`5e#jUcqRTj6(;#OJQD#K%J XajS$gY@t2m|81)@6T?%+UY!14q2aC6 delta 10650 zcmeHMTW}P|6|EILN&p8;Aq<59E!c4qETrj~o|zsj2?PibAdq+&8L-sz3KpQ11d^bP zB=92!2LeV^x)SpcRf&@nU`xiSt+I_x@|9E>Q2v}$CE)xdsRCjuKe1y&dS_dAA1v%= zKC&Mw_1-ys&$;*Z?dje<^4YW_pG_P3?bs^Xs<*XvcXw4_+b}F@+m0Uiw&8i$vV7)w zuBl_q@Q7=vByfD!uJB^+u8Li;u1?n<=omBS;_PvAH$>>gRn70A@ZYV-#oPX!A~C+P z?Px^&Yj2$)J`LR1_V~c&tK$cH+dkw&+sAxkpnKBjT?peztQAeYc-cld8>~u^zSAjqOm&qED=E&a~kiHZ6xu&tW4uY(~1R zKh}eD5Qnx5V5~>WfeUR}I6Vh0v}NH)0yjP_V!mfHDp$hb`MJ%gJ}WmgUAL5N<*;Sp zLWxhLEB#qhh z+124K&!gJp;u~mmO87_5qiVSpBh6^J9IkFgE9LNXGpd)v&zsSDIjn0zo8|CVE$CS} zj6IE(%3%XTYvpiK8S0V4BV_<+b5NDE4yA@$=7IHeYIs8o$E9`)Ub7B8#{0{W!asG< z%=9NiJ;^7f=|)UO;Y}WzB}w;rXoDOstN>NBec-=RfflB`VE#rOn##*n^n{#s(;rPF zA5_sIY3&Wb!N&obFRgb2v_KBeW8gjcec)}>(j(M(WK%-2E+VYkhGvb0*m=hqp(1>6 zcpEB}K8LoU+LTm{AE-&r{*HWJ^8$#vrGuz40;1Xph-zs?%SNTP!nE71uuSlFn0DQO z6nwlLQqXRu$D;GFCJmN|W!nxkUHZObq6KMT4IdI=3Cw81j#{9iV<)JXNkK&mMGI0P z6Mn}RAvf59UZMw)y)GX{KHVi43|407>h3{(uwM^!0TKi(uf zU4KTf{jwdZ@JT!Pc(fzEAV#tv0zX=ivmMY>TPs1t$x3i=qY^}nbfTrHNKHQ6Dk2@M zLf@59T&aRtld98`VkVQ)UXA8T=$UFL(!SlG;OcHr@U1TJ)z}3J&UL{$ZCQvGOJ~*H zP>ciJXi-X{mE=_yiS+!v8;Y^7CKD7kaR}PmgXT%6=X%imbWdUHhM;kKAkpP}K-$4Q zAgyXKTAZ3nlPxs382DTELTnS3z`DJ?7gBO&38duC5=e9=7ljN6s1^L)MAiuC2_U&VR zsCGPT7FbOrVJdImFD87|hoVxt$v<=AS_^5@l{<)K>WrL$nU~U zFm1+dCLnHa0^;E&@NncPTFdL6Lr-NLpwo`paN#IiE|M3o?BijM zqj9cNY_3CW#u-)~Vedb|7A_Z~r~AU?LN<2ca-s6V<>Gwdasda7!sR0I6$~$2E(({6 z!sQ}tg~H_``Th9+>T(emmy63qW3e6(V%V0)Hy%f|X&--f99m9 zXILlwt*DewJ%Reurk**0wA9D=pH86nf~ne5J9a;#s`FKGd9f^A*KGrrQ_6q-AJjDc z0S{l;UBQQ!7ft3*e}%4&He<^J!s;f4( zbVD^ghmimq4s|RI>y&EDGz_2c#y6G8{Mx^j$Krj*l&(lAbv#`&Y!6eZ5z-OIMR_9mH@s?7-KRBU`i;{pbUv~rB^IhTufso)} zLo60*Tf}u#850gv(`D3C1C0_#6O&9YaG4wUfvu4sjA<$#`cRp`MNDzN=BLVEqdGR! zK+Nz|Cm>YhUiE!Va~+eJzH8WS{J=kyk0Pac6!6(^DQYyY01=YP-##Tm5(`MIBVu9| zo5T@BjABpKEFwx}nW~cvsnqubP75?s^#X!%z#NwfwN4;J66W)UH|R^auHIKSV>m7jzwqg+B&DVw=6n`QcJU` zql=$qZDI$$LmUU|J~KSu$1LziS7E+Z5>iX}#FFAi_?M@Y*?j2N$|Ldi$;E3U{SU9& z9HF7Ep{cok&63(x&3V?YnTgJqzd2ilbB;!ol4!m#6WMu^-@Bj`mtxT|rsxb`EJRl< zTE-k^1ypPw*zgQl@2GBwE_KB3+r$$;Wa|zkniJ^M^i^VDo$1+a8FfWdx}q~3>|x@H z?l43L__~HYSI3^Mh7%Hf`Nv2;39>EoDM+=YWoQ}}KgC<7&xmE1OrxIXIbs#NrqD84 zWYbes&kY>0OA46oI*BA$rbcv|8Ue)#iTAf4Wp6bbCFq?skW;#CR*Gk%o5wW>R5unF)U1dKIynJg$pF&3r{Lz<5w>!ry|jO zDr8s>7h#6IshTz}Cw5wI8kS+0zF1j05qpSb2qC7b>x78~#t4ho#FZGz|4w>9Yc@vu z^OP>L+wv{oO!UK(NxVdF@-ZXIlxUtP!{j{4w~Q!<3UAE98?*4n%SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 gOwvq&IK?zMvH2}$`&&*%AZ7w$=Iw7eS@hon0AlAGwg3PC delta 80 zcmbR9NqEjD;SGB@4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w hOp?tFOwy84lP#Oya<;$aWCUU+AZFhFmXk&QJpg!!93}t& diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index 5234aaf49d9ed9b76c853d4bfd881496d1ce56bc..a2479d799c9fc5c89faebc332e63de68eda19409 100644 GIT binary patch delta 3874 zcmeHJO^aMb6r~Fn8AuRuj63_y5LXVFTUEEd5Okvp!7<}fB!pXEn4KR{2^a>Ai)cU$ zAv_i0#xNTR8WL=>FoXCDoQ*C8LEHql*(7*h&)CdJm|6?H=tno)SGUeR_ngzWuN=O8 zcN+g09?&rtE*L_$7=YKO`^;99$mV5Z{fW!J6$9} zibO>gG(`pvHhW)EPQ_^-E`RpTN6n&}aP7}So%IOblZ(bijG9P?C?VuZ-U1~%J*rs* z*Pb|k_xj}S_0d;9cPe^ql*VLDz(N!^ zjfKVi)vhtZ<&!J@jV*DsYl360k3Bt|1J)QTg~VF2=qh@t39u&5T*ZX@=1`QX7Ay-k zXWk1(B~)kFR#;wA$+R=GsT4cjg^~)Nosicfho~ZDav2>fk`=#GJJsU2afkl?S@Fua z(Y$|bQ$W9dRV<9b7SMsJ^F$bwA|~1?S9MT92HRiyo!OdtOIK1fap2oUHlvg&fvP#u zFlmS&C%bA?RBU9&!^&I2J2Uu;hI0hvMte_~8D#s2Z)OcDdTKB%jd+0Z<BxxEUCkNwUG-ev!2n_dnGKkI~H}*}yh+t7H9NKZpzM pXku*haGZzZ!_#>ljt~ETF;n6^9OvOU56Ay!IJ(K9`{Krte*oO4YMB54 delta 3864 zcmeHJy^CE{5a(S|BoGlX(Jt@qqLoYbe9ZY61Z}hs3~DJF!kKgCfGI>#7X(AVSVRM2 zh~cV`%CHC$HAH-*FhTqe)%o%wyu-0K$)UcY$o zo6Q3{p0ux?+}L<)U88d$B9g6)t`r>tr&6-F+PDHaD5%64FWkO=<=X878=v-&Vl;`F zDmlVLN&gsS)?u> zK6C5J?ADdZXFvAEdusyAFdD&NNeo0u`NSr;WX$lw>F&Xq`l)+)-;t`lv0AZ>0hFfb z00WnlFbHx#{BXWIG`sUjcW%5cDKX|6b#SD!b+#_v`serEFO&8Jci!%f z^>**(IILXiVoyF7wj|O-4~hX3QT3iO*+|-#Mc>yx7Bo{EwI-F57FkL%DRNd6h_%m_ zf}08O8d4Q-vyVRLzL*?o^nP-yQ@xP4XWKcB_2Jx^ zj;0=rjmTari z`&H=@ObG^aWDz9FY zE@If6V2q*KyElz7ocfqa%c?NiRxm!MTvSlm1#})_9Ul1Wu5){>p}MHh7E}-fkyycE zsUXhuF68YPN(EG6-)aqIHtJ1?ykU)7U#5 zlmky8iPi}%84)ybl6otojsCxjt2x5BU>eOwh1Lhj<6{62LE%v_I|AvWNAga4L<6eW zh&pIsT`DVZ>~;pSb!m16vL)c|h&6mmyQ^Cy-V0SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 iOwvq&IK?zMv6+#poso+Xh?#(x8Hic7Gjg#;Edca^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w jOp?tFOwy84lP#MWx!M`I7=f4xh?#+yWjiAmYt#||yto*0 diff --git a/master/.doctrees/tutorials/indepth_overview.doctree b/master/.doctrees/tutorials/indepth_overview.doctree index 6f44d1d18dbeffa07a04b3421852c38536859724..e5cf9f95a181b9f4fb0e01ab9d7dd7ef7eb8e22d 100644 GIT binary patch delta 76 zcmZ3wlXvM(-VFyh4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 dOwvq&IK?zMvH2rs`$tYjAZFVBk&}5#5CGbW8N~nq delta 76 zcmZ3wlXvM(-VFyh4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w fOp?tFOwy84lP#M+a<+fuWCUWS?H@Urw*&zI?rRz~ diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 669a4eed21826515134e715ae7ed1e29edb19476..0f911f20b963ce18e84592842df4b261454dfa83 100644 GIT binary patch delta 62 zcmaDW@m69(AfsWCrAdZ)X=b^;L2{b8k)esHMVf_yMXF`8fq{8iih)_0d0LvGiG@j; QDG;ZaCMRxgVtma70B}ANaR2}S delta 62 zcmaDW@m69(Afus0mT_KISy`#Rp{1#*xrL==l5tw9rD;lvp}Bc#VoFM~nX#dfX^Kg* Rxq(SqQfjj0<|fA1TmXLG6X5^= diff --git a/master/.doctrees/tutorials/multiannotator.doctree b/master/.doctrees/tutorials/multiannotator.doctree index 03c8795cc9a80acfe7968c254cd4a2059a6a1e3f..98ed264b0f0518411022d8d43c9372fe2b602413 100644 GIT binary patch delta 72 zcmeyif#cf-jtzS_4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 aOwvq&IK?zMvH2}$`&&-N?Qc1mI{5&ZSr|wF delta 72 zcmeyif#cf-jtzS_4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w cOp?tFOwy84lP#Oya<;$aWZeFilc|#r0IPZ!xBvhE diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index eec52b4cd6b3a671d829eae1cdda0abbca5c29d4..56da7a842689dd83c018e7e9d3b738be193b4aea 100644 GIT binary patch delta 80 zcmaFyo%zLg<_(uPZHp{TGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 iOwvq&IK?zMQ9mU=xmdqAzqBYhb#fuI)@Dnt^&bI-&l~gr delta 80 zcmaFyo%zLg<_(uPZ7s5l^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w kOp?tFOwy84lP&dA@{^18i}Op1l2a!aGHY$NpF diff --git a/master/.doctrees/tutorials/object_detection.doctree b/master/.doctrees/tutorials/object_detection.doctree index e14416902469ea6bb522cb46c63c3c70f34b89d0..d7a6ab65bfbf86032ac34e0a1e5c107eccfc77c1 100644 GIT binary patch delta 72 zcmbPwoMY;7jtvJm4T~&IGR#Xe%k>SC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 bOwvq&IK?zMvH2rs`$ta3?H@UrmPi5sauyfr delta 72 zcmbPwoMY;7jtvJm4K1>a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w cOp?tFOwy84lP#M+a<+fuWZeFdlWB=00E9OfS^xk5 diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index 6dbd8725093d204f77243983afa6a81baf8dd942..8f41ee7b889a12f92cb205657333eed7058657bb 100644 GIT binary patch delta 2148 zcmeH|J8P9e5QbTiKu|<5mqyL!L9C9+?C$I>rqWm_IVhq?2qElM1Hp(!#3FbB3on(Y z_(-r(u`_Ta;K4!!JF&?x@B;pgi0gr1#ACk7F2zoY3&#LP0qTV@%owfMFqh3I zcJiOG9q#)89sB#z>_YSN%c8m8&-HZ+H=p{q-2<~>qHAFFV|X!EP!)Ob5gmd>@3du( zAw`^y@f_)0W?rX1B$4!U=GPgX1$h5hD~rq zk~%7FmG>$jXzvtt%mSLcI2=tUcd#r@lRfRL=g2Y{is&s3`962c;}{Z83tkNJH+MjWjx+gxr9t($ImbtiA!YyL@nq9IdOy@saD( zwZ+AHQIi-cQ%qAM67sx@lKmPZY5`88NSi1RZtaG$HBS25cc#cgaywgQ%bC@3_X6AM; zwNh$ht>-CP2|%@u4j?E_nFJ9u5y{73msi`LUhU#1CZ}c;be3 zobB=7J9+=#AB{~nzP!SXBVnSl-MH~AyxV>-27}uUmOsJEejJ=4Liv^gE1dVnStDbX zV=ZS=`^KZ^_ez(RdtUS{;HW57T1W`a3av!zsgw)=#Kggi;@BiQ)Lf~f;l15VX(p3} z#F7=jqf^ZC7?{a!>Oc!Ti7L%nKo3#3ivY?JNScE%T$`9gBq79%LlY}jXHlj298u@n zh(4ln7GKYx%eVxe6dy*=@nWiu_7(T9qXSqZo|rIHtfS{79S=?<>yih>T->59(3TZe zdrJfj%xcSs1`pZ_Mq}}2AQSGsfetorUP23*arBNd)B9Jlg+TR4{@Eu8B>#7Aki}C7It2N-&>6Hbj+jSQk}_zL8c(@n9C6tg-s( z-diKpxw#syChe6X`OI|k!sWy?B|IM)H#~$u{1%lZWoYeIifi+zqxtv_nnUwt(N!~n za~Fq3>lX&j4vv;wa@x9G=3sTCR;*k>ow!tCcIS0@FLv9x+s@r~?)abipY0rO9=(gc G9sUU|qGvb& diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 516fd5081690cd6f33a92a3c322a732c777c86a1..e5db8463d6816fb25220d025dc54cc71720a0b70 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213VUeXthIwgbxxPVinz@moiK#`Jg@Hw?WwL>Rd0L8rS( SNt!7TrSC)69(wO-wD)EDS7CEt3rl%+pc~%+k!$(hN;3 XOwvq&IK?zMvH2a^RmjyO7#sbO-;=$EG?6a(^4%>Q&J4g%~KOoQj*P#4UJ4w YOp?tFOwy84lP#N{a&CXh$#{J_05c~SrT_o{ diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 63c8a10a4c6a89cd533d93e1412b997fcb01dfd7..7152536e5b023c744b23049d402d8cea8f6fa748 100644 GIT binary patch delta 7708 zcmeHLU8`MJ73FAb6Wdy~xk=h)@3VWg73?Kj{zSxL#`{c)qf(X`!dZb{jf1ubGi4XY!R}d`tERKE8NxZq}UC+XS%y1#=?y=^Y zbBr-(cCNj$bM2Kke}6=NgUt*6!ugBaB2}-Xu~bP=;Ut8wS-9$Jm4-~Uh-_2%-p-NN zc8<&tA3}T>aR~7d#4U(h5r+}enU5lFL)?zI1MxA$orsSkK7sfo;x5Ed#0KIR;yB_2 z;%>w}hj5C3h5coORB9ir#mS1e0THuR6dt~rJvTziY)Y7Puqt=C7R>kX5loZR4 zHBaqc@9=o?z8?)W69+F%H8C3^8Iq1E=b{Qpa!kuFHcw4o{M}af_xlF+iHSmrtgA8B zQ1L4I;yhXHbqtF?z1V&2P|pGXDx}rf6q9mg6BRn6hM2XJ<8NQQ5fS_~JvtFw9I24jD^Khwhh`LSNU@pN~jPlhQ+ zp^BJ*S>gsxA~~f6DmlLXUbnFr&UDWl>UFiURA*{+(by6rn#af(R4Goy@duZ?yBBXh z-T!hnPgUdoS!&_Dp-=;OpsA$Ho~6p;2eba@;vcU6)oeHz-rMor7dkN<3~lrH{@HGO z{Qe#NL*v%D?!iIiY?Y)`P-w$31YvCSrdGjQUlvAQ+nil_t|Z6 zip=?!x4-$^=A}zp!zSD6Dpe~i6%&}bSacSb!rpip=z4MoGktvhGCJ_xzjU`RuHD;T zn!Va6TG<5j=`Vlf`6s^g*cTpuzSXZcpKiRK+I((n{O1q5V?!&q=~X^GzVlXh%RIzl zODZ)wXR?X`Kg3$3ErE3wdHD)Mwqi*`LW#X(GA4Uc4r=0+C0@*a-2G(MOYgiB6@tLR z1h7;yxE*sQ!Y_?4p6S7YiF|`<;Ewat{S!^tDGwS_kvS_>MFyjURKdywzGTHYg+O(c zLs7)O+8j#FCQC@Hjuxt00~aZ%j#n;s$CrINL|25<#fqe&K?*EI!aI@kHD==Lf^C>>O0Qb$pcjdmfYf=_sw2%AexBY)mX6eASaK-l(cW!tFG~!-kro zTYPY}`}(2wfVrQHjWXJs=@lB?d-Lhmo8BN}BR8{`j2cs;Cs&gy215!>gMq_f=Nx)E zucm{+MlM=Ptw_TrNJhaJRy|2BnAuq@$=GX5@k*&|u)8D&gVjj~8-lXajx$X?koAil zxY&SQ+F}cJX^U_~pyK|M8CzJelBp(X15dJXU03H?1+v*no4J^RCKoQJ1l7Pw6Obq_ z_s7}1hFr*7Yqd~D+YC?7Szs2Gq^qXAgIf!C$;Ae&nsV44fBjVdXm3CbR}=p>~Z{n=m!XJw)fP)3slTMvWRaKJsnGWf_=8mHkta88sKloX8V zoh3&Hty)^VIT&3nvuOffcg5r5-=66=w%ndURC&(cN-&OL;E6b5`clazGReonE75H4 zR{Q*~QL=rG77p&weWzQGcY|`RrE?|ZoUE40WJ*p@jV1AquCM?2 z`uYU%3B)H6Ylu%FZb96NID(j+`847-#O;VX5T8NZiMR{#S;XfMcO#A>HW0@U#}S`L zd;xI};>7g&`sS&x46+7WYpj-?rH}*1lygudGFOvy9iM!A^R@P=H_mQuO#l1%=0`_{ zYAh$gP8MNFME1h5i;j$|frOQdFSbri@x^x^8DcexIGY$_rR+>JCP^uyk5UFJ!{TGj zQ}gQ`88`3!*^rpLl8%%Yo?<4pXp9QPhRImFEVy}U_Qm&ix_{m~Xqg0AnOsVeOpU?U zgu8j0ElH;1H8y>H$^+(6ui`}v5onP!POomjm z5XOZd@B%f5SgWa~R4q7qCK~bCyQjksx~r4s6~?W{`ZHUHU!aa3o$dSpkVaKfwN5Hh zsRrkTbSx#FN7RrO)eMGG5I$&?t05f?E9G?&+WEva)iS>ElkWKRy{G$MP6lF~xRi?W zBY9L}sE`m&g_upn1L5rNQA8v2c=XeUM$yW{J3^be0a-|ik7D5aRt78OdQ#K{}0 zoMa!Bv#~gyo)`U#=uQF9vJ8x-*<3vpDK%%xQh3gBUpZU3=$xdMB^N^|mIIX#eaVI- zi#mRMwL3cfm+gOr${WcSC8bvKc}b5v*FCt)C%t;^<=yW;yM5`>&akbEb0T>gT*>5& z@?JV)K|E%geDzD{H8?(p-tOYlhVO#xrkqw`_%weO1Z;u%r~AD`ZV375wGu%Mz_YNm*lJ8S;$y)%#q$ zCaZAJag@`^JKfJGLluQo&|t6+6s7WHi_A(yZDcT9_EXL`GS4XY#L!B-;GCY%Pj|OEI!%;*}&>2=R!$$iK603#VgQr^$dV_|o;^s8GZ!Sb=GaKQu6^aP6O$;O@38-Y| zSmYGu29d4Vc^e~XjTT1dVl+Xck&b*RF1-Iv_lwDv%fUyRbO|tJ2a_-rdIoPXv!TgN zKc4jem<)}Cb^PrE{Zp-k%%EG3BB-U|vBFqsU64yUQN>VtwV3ip`k_ zWu$^4ac}s8wf2DH8K(oZq{;w<6Y4C$wveiXQbkUBiP=`>g*`MA&+Or$Z7Ib43s)!t z^CWa5K`$`YRLq_jKy^_$V-}O>#(W@AE=gO{%$PBOVkVWzs+p%pp)$*bkG=cH?$?tc z664>x=zyUBc7u7Ycxj@u4zif-vYuArMLmtYVFs(+84GV6Pji3Iqv~cRN@LjRleC|R z#seo=TP^HtzOxJ=MIxwODiq9~6E+6LMa>H*Z1wOUsT!zN2T!-&^9BW5W$mLNJkU`n z5@-}8e8C8yRmD62I0JZ7j3qCw4VGXT+K`)@2n+8LGrUnNOql^{3MT{!eFO!ZQrg22 z!B!Xv=gK0%lC(+V-t768$=2a%!`uh^!_$tJ&vo+cr@Qq&7BD7ME1(W!J$zaTOm8`& zjqJz2)ox=toavsyz$OdB)!=RxMAN`+tzLqV+mu8mh8ziTh8yT9ITBKPRSfpAe8yJ|Ur5Ko{ znWv>0npl{mnF4W&X>#J`pPau<8Eq$9yGpVc8(JAoJ`i2SVrXDwxw+qglaa~DXz~L$ zd2W!5xq^nNo{`b!{8&ath*Ex!#hNC1M#hGEhUSKPMy5Inrckc2fu4yWkZYu8WN4-b zrY76QNAV!5o_xW;B#6DOS?e>dD4Zhdjp}^oXpBxaH zha7y`0bzsOeg2a#eC3?15Edq($;!Z>t7~LnWTIC;948F(D0 delta 1031 zcmX^5glqE?E|vz?shk^Gj&K@UWEtmWm6et18(Ny0np;>}CK;!tTAHS$7@C`>CZ?n$ zn;9D#nWmT|n;V#k+HFkg0Y^do{_1Zp@o5t zf+nK#mUYgRZWTfsu)>fw``MrGkN(6_#YSX|g~BAE8jB zD5xmHa|(woUfE2*dw5jR9d2tlbDp6lbWKCSgbImbxPxusZGp` P3?R^|&$v~eNo*4Ul%Nfs diff --git a/master/_modules/cleanlab/count.html b/master/_modules/cleanlab/count.html index 2590524b1..28c86b10a 100644 --- a/master/_modules/cleanlab/count.html +++ b/master/_modules/cleanlab/count.html @@ -1211,6 +1211,7 @@

Source code for cleanlab.count

Let’s print the first example in the train set.

@@ -880,43 +880,43 @@

2. Load and format the text dataset
-
+
-
+
-
+
-
+
-
+
-
+
-
+
@@ -1213,7 +1213,7 @@

4. Train a more robust model from noisy labels -{"state": {"a16e8e1cc73e44bd8b38739fc3f7349e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a6454eb33f0747e5941afecdf65c31ca": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d2f9ed6fa0ca4f829f4b4c9130690381": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a16e8e1cc73e44bd8b38739fc3f7349e", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a6454eb33f0747e5941afecdf65c31ca", "tabbable": null, "tooltip": null, "value": 391.0}}, "dfdd82544b204d99bf73fb297209e882": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3fcd103bcf444b3e9d7dacf02f7d0555": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1e04214439b34bb39bd577a6b905f385": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dfdd82544b204d99bf73fb297209e882", "placeholder": "\u200b", "style": "IPY_MODEL_3fcd103bcf444b3e9d7dacf02f7d0555", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "9269cd46d227497980a20e184df669bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "527ebdd433604e84a97c498e49952e49": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53b3a3c50e68458897df10772c0c4950": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9269cd46d227497980a20e184df669bb", "placeholder": "\u200b", "style": "IPY_MODEL_527ebdd433604e84a97c498e49952e49", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200765.3kB/s]"}}, "90c4eaa9081242faa986d85fd429328c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "26eb168f10234c1588ad18073bbb9d24": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1e04214439b34bb39bd577a6b905f385", "IPY_MODEL_d2f9ed6fa0ca4f829f4b4c9130690381", "IPY_MODEL_53b3a3c50e68458897df10772c0c4950"], "layout": "IPY_MODEL_90c4eaa9081242faa986d85fd429328c", "tabbable": null, "tooltip": null}}, "3694f2923a9e4c32bfb24bc1252e9b8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1d3698bebaea44ee81bf48d55a3da73b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ac878a5347e5407d984a6450f0782ccf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3694f2923a9e4c32bfb24bc1252e9b8f", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1d3698bebaea44ee81bf48d55a3da73b", "tabbable": null, "tooltip": null, "value": 2211.0}}, "cb1cab0be90341f2a872bba3c4f5d6b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "687f08592bed4074bebe2f495d225c50": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "53877237a70b400cb0bdef2d1e4da5e0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cb1cab0be90341f2a872bba3c4f5d6b1", "placeholder": "\u200b", "style": "IPY_MODEL_687f08592bed4074bebe2f495d225c50", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "6ba2643509aa4ba28f45e6d56c26a610": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca1b57d86847492c9b297c02fc76cdb9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6f600754a26f42428a3619804a3b3dd3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6ba2643509aa4ba28f45e6d56c26a610", "placeholder": "\u200b", "style": "IPY_MODEL_ca1b57d86847492c9b297c02fc76cdb9", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007387kB/s]"}}, "a2e4ed336ac942fb95366722a3fe131b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6908f28507f34ca293495da144a9ebf5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_53877237a70b400cb0bdef2d1e4da5e0", "IPY_MODEL_ac878a5347e5407d984a6450f0782ccf", "IPY_MODEL_6f600754a26f42428a3619804a3b3dd3"], "layout": "IPY_MODEL_a2e4ed336ac942fb95366722a3fe131b", "tabbable": null, "tooltip": null}}, "c65afacf969543d192a5d2494cc1c534": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "37605bcf5bf54465b5b89a0177cdc60a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "adf9f85cadca4af3b40ebf03eba16fa7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c65afacf969543d192a5d2494cc1c534", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_37605bcf5bf54465b5b89a0177cdc60a", "tabbable": null, "tooltip": null, "value": 665.0}}, "ae30011dcb26468c8b0b6b82df3ca527": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8775a8c91f3c4a05904fd4855d8811cf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "51bf1675356f432587b92cd14c7f82a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ae30011dcb26468c8b0b6b82df3ca527", "placeholder": "\u200b", "style": "IPY_MODEL_8775a8c91f3c4a05904fd4855d8811cf", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "6fdb113b1df248a19d9acd305460659f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "cd8bce3acd8043d99418cf1e98c1ffd3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c5fb5a31e9f4d389fd58cc6bf03ee2d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6fdb113b1df248a19d9acd305460659f", "placeholder": "\u200b", "style": "IPY_MODEL_cd8bce3acd8043d99418cf1e98c1ffd3", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007119kB/s]"}}, "d19a720fd38e43d9a44c01e6b604e36f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fb390d327367437688e1b2f6a2dc8c9d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_51bf1675356f432587b92cd14c7f82a2", "IPY_MODEL_adf9f85cadca4af3b40ebf03eba16fa7", "IPY_MODEL_9c5fb5a31e9f4d389fd58cc6bf03ee2d"], "layout": "IPY_MODEL_d19a720fd38e43d9a44c01e6b604e36f", "tabbable": null, "tooltip": null}}, "cf623252efaa4cadbfbcc762f85bb14f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58d151e1dec841068bb3e5ea2a92bf8d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e0a1667bb19e41ffab1775d1cc89d2f2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf623252efaa4cadbfbcc762f85bb14f", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_58d151e1dec841068bb3e5ea2a92bf8d", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "1c0d84c997084ec7a7b1982850af771f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2afee7ea53434f6d89d7c20a88feb305": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "72723446148c4e4eaf10d2bc9a5a7aa0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c0d84c997084ec7a7b1982850af771f", "placeholder": "\u200b", "style": "IPY_MODEL_2afee7ea53434f6d89d7c20a88feb305", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "1c33fb4949914270b7542061aa7f5869": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "09202840b02144009b85bc9e81486cfe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "febb0cb6c81c4e63826fecf678c5cb82": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1c33fb4949914270b7542061aa7f5869", "placeholder": "\u200b", "style": "IPY_MODEL_09202840b02144009b85bc9e81486cfe", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:01<00:00,\u200733.7MB/s]"}}, "bfd0773475e040f3adaeb618a404adba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8a73ef35dae948bfb3a13cced094eae0": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_72723446148c4e4eaf10d2bc9a5a7aa0", "IPY_MODEL_e0a1667bb19e41ffab1775d1cc89d2f2", "IPY_MODEL_febb0cb6c81c4e63826fecf678c5cb82"], "layout": "IPY_MODEL_bfd0773475e040f3adaeb618a404adba", "tabbable": null, "tooltip": null}}, "f57ceb2a8d51416491d48e1b29e3dfcb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c886bf965cf47cd8dad183a9a7ea37e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fb47c5e63669405d8b0f658221868569": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f57ceb2a8d51416491d48e1b29e3dfcb", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1c886bf965cf47cd8dad183a9a7ea37e", "tabbable": null, "tooltip": null, "value": 466062.0}}, "ebda3f8c7f4441939a8f25ada957bda9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01bdf1dfe43a4d93b1d5a846d7215f58": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b60ae06c542046c18779ebad0e050786": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ebda3f8c7f4441939a8f25ada957bda9", "placeholder": "\u200b", "style": "IPY_MODEL_01bdf1dfe43a4d93b1d5a846d7215f58", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "b3f20f2c522c44e99afe7b665f90476a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "63b95cc7b3804f828a5027882e9297fc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf508e03d2364ab487717da959fbc5f6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b3f20f2c522c44e99afe7b665f90476a", "placeholder": "\u200b", "style": "IPY_MODEL_63b95cc7b3804f828a5027882e9297fc", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200716.2MB/s]"}}, "ca23b68c35994190a9b183937f99bef0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "70dd46a3067b49b0ab8a7a6d042f9eee": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b60ae06c542046c18779ebad0e050786", "IPY_MODEL_fb47c5e63669405d8b0f658221868569", "IPY_MODEL_cf508e03d2364ab487717da959fbc5f6"], "layout": "IPY_MODEL_ca23b68c35994190a9b183937f99bef0", "tabbable": null, "tooltip": null}}, "f99a3294523546e88e70530fed3f99f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b78ee6ec02a04a198056f10b84c9c0f6": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "971f3be7589f424fb59cf1afd44b5a01": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f99a3294523546e88e70530fed3f99f6", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b78ee6ec02a04a198056f10b84c9c0f6", "tabbable": null, "tooltip": null, "value": 48.0}}, "165f21fd1ca447ce9d79edfc85a1646e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "847b6e3d28fe47989ff071d37ae0a736": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e9ab3e84bf9c4f5e8e81eef5bd3fe849": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_165f21fd1ca447ce9d79edfc85a1646e", "placeholder": "\u200b", "style": "IPY_MODEL_847b6e3d28fe47989ff071d37ae0a736", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "e8e17c5187f94971b594066cb042052e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d73ca9d21de341c1b49acece38eb3a86": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cc704a8505d043a78e762cb092fbf583": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e8e17c5187f94971b594066cb042052e", "placeholder": "\u200b", "style": "IPY_MODEL_d73ca9d21de341c1b49acece38eb3a86", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.51kB/s]"}}, "813a3a0872a942708cd6a9346d4eafce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dbc5896906b4403e91373c6f95c7f8a3": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e9ab3e84bf9c4f5e8e81eef5bd3fe849", "IPY_MODEL_971f3be7589f424fb59cf1afd44b5a01", "IPY_MODEL_cc704a8505d043a78e762cb092fbf583"], "layout": "IPY_MODEL_813a3a0872a942708cd6a9346d4eafce", "tabbable": null, "tooltip": null}}, "2b31d509f412422e8332fcaf6b6c2694": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d513be80490b4fb9a218bd185c374f60": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9b13d15c1ebf4bbab634d6a5ef436130": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2b31d509f412422e8332fcaf6b6c2694", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d513be80490b4fb9a218bd185c374f60", "tabbable": null, "tooltip": null, "value": 231508.0}}, "54446d6d66ed40fcb39ca2dd0e52b91d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "47ca90e12b40435b9fd8c5bfa1cc221d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f3a35ea4124b44ef9df6e0dae4a35972": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_54446d6d66ed40fcb39ca2dd0e52b91d", "placeholder": "\u200b", "style": "IPY_MODEL_47ca90e12b40435b9fd8c5bfa1cc221d", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "49d02ed65af34513bf68cff2532199bc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ee015b6a5dd54462901d4fb785310f8f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f98d6ded2c7945df810ca80e9bd7a4a2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_49d02ed65af34513bf68cff2532199bc", "placeholder": "\u200b", "style": "IPY_MODEL_ee015b6a5dd54462901d4fb785310f8f", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200736.5MB/s]"}}, "1a6c425339d741d0b672365a0a6a634f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d0341643702b4f93b9c82872cc026fbf": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f3a35ea4124b44ef9df6e0dae4a35972", "IPY_MODEL_9b13d15c1ebf4bbab634d6a5ef436130", "IPY_MODEL_f98d6ded2c7945df810ca80e9bd7a4a2"], "layout": "IPY_MODEL_1a6c425339d741d0b672365a0a6a634f", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"411b3739073b43ef84da6df0cf4aba60": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9d6ec450b2e48dcb5295b0addb03a08": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "123ee23c99d742a99e006c7f7848cb12": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", "tabbable": null, "tooltip": null, "value": 391.0}}, "f3d7b3156603425383cb4b2911ba3193": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94c15cadc74a4c81a5adb003090f1d31": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f5517afea1ad41e8ae488f9341fe54ca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", "placeholder": "\u200b", "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f7269a835d6543bb94a6753b3052198e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7ffdf87c7ec64036b49757ac96c5536d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a2a9d5d37de04498978de14e105cf28b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", "placeholder": "\u200b", "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200766.8kB/s]"}}, "f549e9ac8a50477798f2e9234e06003d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c040ce84f01d40379935c57a437135d2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b"], "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", "tabbable": null, "tooltip": null}}, "cd106c03eda44df88946464b5e303d19": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c78b67d28c6446baefef5e6235114af": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1cf39d974f3c4a31847e7e38d1e470ca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", "tabbable": null, "tooltip": null, "value": 2211.0}}, "173164fe2c1547519e6c06d76b0453fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1551da70235541d895b9fec440352f36": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b5d24981d5e842e399fcf3e5da26ef85": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", "placeholder": "\u200b", "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "706af1e525724a4ea27ff6ae91e2d592": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "52e25954ff904f37a41a6faf200c6f04": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02b94161e37b406ca4394b9eef1538df": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", "placeholder": "\u200b", "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007411kB/s]"}}, "de3971382db3445da34fe599b2fd18c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c7e479504bac453bb70c779f5c0f3525": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", "IPY_MODEL_02b94161e37b406ca4394b9eef1538df"], "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", "tabbable": null, "tooltip": null}}, "debf497c726c49c19699637de9ea5396": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5cdde541facd4993a93cd8eb368b2d0e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6e292337346c488586bf3e2ac3a4a4d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", "tabbable": null, "tooltip": null, "value": 665.0}}, "d1d88dae8067491696275aca69858030": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a066253245154949a867510c4f4ca674": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c0f39ccef0bc464cb68eed457c4b8878": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", "placeholder": "\u200b", "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "597d3b6693934a35be0907fceb4d0350": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "913da8393f324205890c3c685524e256": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6601ca50f2504f04b6cfe7a18c9b4b20": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", "placeholder": "\u200b", "style": "IPY_MODEL_913da8393f324205890c3c685524e256", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007126kB/s]"}}, "7410928828ea4cb785ed34533ad7a38b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e38763de16664cf4b837920d4bc2ace8": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20"], "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", "tabbable": null, "tooltip": null}}, "de9073d79ed24b348d5dcbd2cda64aaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2bb10e84663246cb9e4f076f752038ee": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f28aab9da31b46fb80c0504babe16527": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "7bc8ca2ed8c34db6b844e1f99c112f8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0e46a040636f42ec8521fb06f931e645": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c17f319f7c23417c9a96df1d497a5396": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", "placeholder": "\u200b", "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "0a197c7bd153480582add67b25b8f2f6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d60ecde8bd1144dea8b8174f951c1ac9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e914425948fb4ee4aeae1d90e350d558": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", "placeholder": "\u200b", "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007272MB/s]"}}, "50cf7dc92d4a4dd998c121b070e7c523": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d426400e6f5f4f559bce90df2411bfab": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558"], "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", "tabbable": null, "tooltip": null}}, "d2bc83af02974b4997b26d27c8043218": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2e72d09cf08e4ed7a0f0a490217d3b47": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f5d710bb5f824ac6a960165532df517a": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", "tabbable": null, "tooltip": null, "value": 466062.0}}, "fbabc79ad62741eeb0adf64606e0278c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6f873e46ffd45dca333eca1e6c1e98b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "76546dbd183d4a7e9e641657709c45c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", "placeholder": "\u200b", "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "c512fd4195da47a7a6905726b34e5e3a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d24b7d8cbfdc460e8b4363433bab3e91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5a9dca54fcd34a26b3e76425f4cfc533": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", "placeholder": "\u200b", "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200713.6MB/s]"}}, "9a5e0536f69540db9b1730bd6d61ea81": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "223652b12d77470d806f5f9b123b1cde": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533"], "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", "tabbable": null, "tooltip": null}}, "a5729edb12634053b4bf3c1bf046eded": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "099c115234a74616930a360edf785b2b": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "93ebdc142e3847ae90d0ce31029d5577": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", "tabbable": null, "tooltip": null, "value": 48.0}}, "8f9ef7f1a1f74518887b8021028b126b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3be04749419a4f8eba9590fbe0ee90f1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "51455100d2844aaf843bf237faae621e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", "placeholder": "\u200b", "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "2e3f9444da9b4549808e0df67c27c05a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "934707dc065d4f9b89b50d33e0cbc3f6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3dadb3df17ab4dcb82e012b2ce2d596f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", "placeholder": "\u200b", "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.77kB/s]"}}, "72719d99e16045d7bb4a1a75b55e01d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "94487f86ff8a4e3fa1c870682ab05381": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_51455100d2844aaf843bf237faae621e", "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f"], "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", "tabbable": null, "tooltip": null}}, "f18185f7bfb34126ae47151814798ae9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f3ae141956064ff593c8324cddc63a9e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "15a6d72a11a043799df4757893a899a0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", "tabbable": null, "tooltip": null, "value": 231508.0}}, "56328dda0453461194507f7896809a58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7069c4f7c30946f989dfcde6fa323b5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b8db1c5c0aea469698bab78a92251cea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", "placeholder": "\u200b", "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "630457c365244ae1ab9ffcac69becf0e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d9ed5fd9baa4685b3b1df7e90e11a1a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2b6fe019e99740eb96bba95f2db47822": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", "placeholder": "\u200b", "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20079.45MB/s]"}}, "17285e4ef9524c7db1413a860ffd8f3d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae2d10a9a0bd42468482e2cffacc15e6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", "IPY_MODEL_15a6d72a11a043799df4757893a899a0", "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822"], "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index 49d0a3d6c..4b6fd48a4 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:35.079549Z", - "iopub.status.busy": "2024-07-09T06:06:35.079116Z", - "iopub.status.idle": "2024-07-09T06:06:38.019377Z", - "shell.execute_reply": "2024-07-09T06:06:38.018803Z" + "iopub.execute_input": "2024-07-09T06:21:49.240434Z", + "iopub.status.busy": "2024-07-09T06:21:49.240266Z", + "iopub.status.idle": "2024-07-09T06:21:52.341784Z", + "shell.execute_reply": "2024-07-09T06:21:52.341296Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.022045Z", - "iopub.status.busy": "2024-07-09T06:06:38.021617Z", - "iopub.status.idle": "2024-07-09T06:06:38.025035Z", - "shell.execute_reply": "2024-07-09T06:06:38.024496Z" + "iopub.execute_input": "2024-07-09T06:21:52.344435Z", + "iopub.status.busy": "2024-07-09T06:21:52.343997Z", + "iopub.status.idle": "2024-07-09T06:21:52.347958Z", + "shell.execute_reply": "2024-07-09T06:21:52.347446Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.027049Z", - "iopub.status.busy": "2024-07-09T06:06:38.026720Z", - "iopub.status.idle": "2024-07-09T06:06:38.029772Z", - "shell.execute_reply": "2024-07-09T06:06:38.029271Z" + "iopub.execute_input": "2024-07-09T06:21:52.350024Z", + "iopub.status.busy": "2024-07-09T06:21:52.349635Z", + "iopub.status.idle": "2024-07-09T06:21:52.352754Z", + "shell.execute_reply": "2024-07-09T06:21:52.352222Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.031757Z", - "iopub.status.busy": "2024-07-09T06:06:38.031434Z", - "iopub.status.idle": "2024-07-09T06:06:38.085093Z", - "shell.execute_reply": "2024-07-09T06:06:38.084605Z" + "iopub.execute_input": "2024-07-09T06:21:52.354801Z", + "iopub.status.busy": "2024-07-09T06:21:52.354380Z", + "iopub.status.idle": "2024-07-09T06:21:52.405560Z", + "shell.execute_reply": "2024-07-09T06:21:52.405035Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.087064Z", - "iopub.status.busy": "2024-07-09T06:06:38.086870Z", - "iopub.status.idle": "2024-07-09T06:06:38.090289Z", - "shell.execute_reply": "2024-07-09T06:06:38.089858Z" + "iopub.execute_input": "2024-07-09T06:21:52.407560Z", + "iopub.status.busy": "2024-07-09T06:21:52.407242Z", + "iopub.status.idle": "2024-07-09T06:21:52.410852Z", + "shell.execute_reply": "2024-07-09T06:21:52.410392Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.092235Z", - "iopub.status.busy": "2024-07-09T06:06:38.091917Z", - "iopub.status.idle": "2024-07-09T06:06:38.095330Z", - "shell.execute_reply": "2024-07-09T06:06:38.094771Z" + "iopub.execute_input": "2024-07-09T06:21:52.412798Z", + "iopub.status.busy": "2024-07-09T06:21:52.412490Z", + "iopub.status.idle": "2024-07-09T06:21:52.415836Z", + "shell.execute_reply": "2024-07-09T06:21:52.415299Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed'}\n" + "Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.097201Z", - "iopub.status.busy": "2024-07-09T06:06:38.097021Z", - "iopub.status.idle": "2024-07-09T06:06:38.100009Z", - "shell.execute_reply": "2024-07-09T06:06:38.099483Z" + "iopub.execute_input": "2024-07-09T06:21:52.417781Z", + "iopub.status.busy": "2024-07-09T06:21:52.417462Z", + "iopub.status.idle": "2024-07-09T06:21:52.420529Z", + "shell.execute_reply": "2024-07-09T06:21:52.420017Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.102116Z", - "iopub.status.busy": "2024-07-09T06:06:38.101794Z", - "iopub.status.idle": "2024-07-09T06:06:38.104967Z", - "shell.execute_reply": "2024-07-09T06:06:38.104527Z" + "iopub.execute_input": "2024-07-09T06:21:52.422617Z", + "iopub.status.busy": "2024-07-09T06:21:52.422214Z", + "iopub.status.idle": "2024-07-09T06:21:52.425416Z", + "shell.execute_reply": "2024-07-09T06:21:52.424998Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:38.106909Z", - "iopub.status.busy": "2024-07-09T06:06:38.106584Z", - "iopub.status.idle": "2024-07-09T06:06:43.730716Z", - "shell.execute_reply": "2024-07-09T06:06:43.730160Z" + "iopub.execute_input": "2024-07-09T06:21:52.427244Z", + "iopub.status.busy": "2024-07-09T06:21:52.427078Z", + "iopub.status.idle": "2024-07-09T06:21:56.745262Z", + "shell.execute_reply": "2024-07-09T06:21:56.744632Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "26eb168f10234c1588ad18073bbb9d24", + "model_id": "c040ce84f01d40379935c57a437135d2", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6908f28507f34ca293495da144a9ebf5", + "model_id": "c7e479504bac453bb70c779f5c0f3525", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "fb390d327367437688e1b2f6a2dc8c9d", + "model_id": "e38763de16664cf4b837920d4bc2ace8", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "8a73ef35dae948bfb3a13cced094eae0", + "model_id": "d426400e6f5f4f559bce90df2411bfab", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "70dd46a3067b49b0ab8a7a6d042f9eee", + "model_id": "223652b12d77470d806f5f9b123b1cde", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dbc5896906b4403e91373c6f95c7f8a3", + "model_id": "94487f86ff8a4e3fa1c870682ab05381", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "d0341643702b4f93b9c82872cc026fbf", + "model_id": "ae2d10a9a0bd42468482e2cffacc15e6", "version_major": 2, "version_minor": 0 }, @@ -601,10 +601,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.733456Z", - "iopub.status.busy": "2024-07-09T06:06:43.733062Z", - "iopub.status.idle": "2024-07-09T06:06:43.736049Z", - "shell.execute_reply": "2024-07-09T06:06:43.735560Z" + "iopub.execute_input": "2024-07-09T06:21:56.747914Z", + "iopub.status.busy": "2024-07-09T06:21:56.747699Z", + "iopub.status.idle": "2024-07-09T06:21:56.750422Z", + "shell.execute_reply": "2024-07-09T06:21:56.749907Z" } }, "outputs": [], @@ -626,10 +626,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.737924Z", - "iopub.status.busy": "2024-07-09T06:06:43.737747Z", - "iopub.status.idle": "2024-07-09T06:06:43.740304Z", - "shell.execute_reply": "2024-07-09T06:06:43.739878Z" + "iopub.execute_input": "2024-07-09T06:21:56.752430Z", + "iopub.status.busy": "2024-07-09T06:21:56.752042Z", + "iopub.status.idle": "2024-07-09T06:21:56.754593Z", + "shell.execute_reply": "2024-07-09T06:21:56.754165Z" } }, "outputs": [], @@ -644,10 +644,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:43.742146Z", - "iopub.status.busy": "2024-07-09T06:06:43.741975Z", - "iopub.status.idle": "2024-07-09T06:06:46.363303Z", - "shell.execute_reply": "2024-07-09T06:06:46.362662Z" + "iopub.execute_input": "2024-07-09T06:21:56.756400Z", + "iopub.status.busy": "2024-07-09T06:21:56.756229Z", + "iopub.status.idle": "2024-07-09T06:21:59.390602Z", + "shell.execute_reply": "2024-07-09T06:21:59.389981Z" }, "scrolled": true }, @@ -670,10 +670,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.366416Z", - "iopub.status.busy": "2024-07-09T06:06:46.365598Z", - "iopub.status.idle": "2024-07-09T06:06:46.373329Z", - "shell.execute_reply": "2024-07-09T06:06:46.372785Z" + "iopub.execute_input": "2024-07-09T06:21:59.393398Z", + "iopub.status.busy": "2024-07-09T06:21:59.392860Z", + "iopub.status.idle": "2024-07-09T06:21:59.400402Z", + "shell.execute_reply": "2024-07-09T06:21:59.399893Z" } }, "outputs": [ @@ -774,10 +774,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.375605Z", - "iopub.status.busy": "2024-07-09T06:06:46.375281Z", - "iopub.status.idle": "2024-07-09T06:06:46.379045Z", - "shell.execute_reply": "2024-07-09T06:06:46.378491Z" + "iopub.execute_input": "2024-07-09T06:21:59.402483Z", + "iopub.status.busy": "2024-07-09T06:21:59.402085Z", + "iopub.status.idle": "2024-07-09T06:21:59.406027Z", + "shell.execute_reply": "2024-07-09T06:21:59.405499Z" } }, "outputs": [], @@ -791,10 +791,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.381102Z", - "iopub.status.busy": "2024-07-09T06:06:46.380806Z", - "iopub.status.idle": "2024-07-09T06:06:46.383982Z", - "shell.execute_reply": "2024-07-09T06:06:46.383448Z" + "iopub.execute_input": "2024-07-09T06:21:59.408118Z", + "iopub.status.busy": "2024-07-09T06:21:59.407818Z", + "iopub.status.idle": "2024-07-09T06:21:59.410977Z", + "shell.execute_reply": "2024-07-09T06:21:59.410424Z" } }, "outputs": [ @@ -829,10 +829,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.385913Z", - "iopub.status.busy": "2024-07-09T06:06:46.385614Z", - "iopub.status.idle": "2024-07-09T06:06:46.388541Z", - "shell.execute_reply": "2024-07-09T06:06:46.388027Z" + "iopub.execute_input": "2024-07-09T06:21:59.413097Z", + "iopub.status.busy": "2024-07-09T06:21:59.412678Z", + "iopub.status.idle": "2024-07-09T06:21:59.415713Z", + "shell.execute_reply": "2024-07-09T06:21:59.415177Z" } }, "outputs": [], @@ -852,10 +852,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.390536Z", - "iopub.status.busy": "2024-07-09T06:06:46.390129Z", - "iopub.status.idle": "2024-07-09T06:06:46.397248Z", - "shell.execute_reply": "2024-07-09T06:06:46.396712Z" + "iopub.execute_input": "2024-07-09T06:21:59.417737Z", + "iopub.status.busy": "2024-07-09T06:21:59.417358Z", + "iopub.status.idle": "2024-07-09T06:21:59.424003Z", + "shell.execute_reply": "2024-07-09T06:21:59.423469Z" } }, "outputs": [ @@ -980,10 +980,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.399521Z", - "iopub.status.busy": "2024-07-09T06:06:46.399107Z", - "iopub.status.idle": "2024-07-09T06:06:46.622657Z", - "shell.execute_reply": "2024-07-09T06:06:46.622135Z" + "iopub.execute_input": "2024-07-09T06:21:59.425974Z", + "iopub.status.busy": "2024-07-09T06:21:59.425797Z", + "iopub.status.idle": "2024-07-09T06:21:59.673438Z", + "shell.execute_reply": "2024-07-09T06:21:59.672833Z" }, "scrolled": true }, @@ -1022,10 +1022,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.625021Z", - "iopub.status.busy": "2024-07-09T06:06:46.624624Z", - "iopub.status.idle": "2024-07-09T06:06:46.797852Z", - "shell.execute_reply": "2024-07-09T06:06:46.797313Z" + "iopub.execute_input": "2024-07-09T06:21:59.676761Z", + "iopub.status.busy": "2024-07-09T06:21:59.675669Z", + "iopub.status.idle": "2024-07-09T06:21:59.855719Z", + "shell.execute_reply": "2024-07-09T06:21:59.855182Z" }, "scrolled": true }, @@ -1058,10 +1058,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:46.801087Z", - "iopub.status.busy": "2024-07-09T06:06:46.800154Z", - "iopub.status.idle": "2024-07-09T06:06:46.805038Z", - "shell.execute_reply": "2024-07-09T06:06:46.804526Z" + "iopub.execute_input": "2024-07-09T06:21:59.859528Z", + "iopub.status.busy": "2024-07-09T06:21:59.858566Z", + "iopub.status.idle": "2024-07-09T06:21:59.863516Z", + "shell.execute_reply": "2024-07-09T06:21:59.863020Z" }, "nbsphinx": "hidden" }, @@ -1105,43 +1105,46 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01bdf1dfe43a4d93b1d5a846d7215f58": { + "02b94161e37b406ca4394b9eef1538df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_706af1e525724a4ea27ff6ae91e2d592", + "placeholder": "​", + "style": "IPY_MODEL_52e25954ff904f37a41a6faf200c6f04", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 411kB/s]" } }, - "09202840b02144009b85bc9e81486cfe": { + "099c115234a74616930a360edf785b2b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "165f21fd1ca447ce9d79edfc85a1646e": { + "0a197c7bd153480582add67b25b8f2f6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1194,7 +1197,95 @@ "width": null } }, - "1a6c425339d741d0b672365a0a6a634f": { + "0e46a040636f42ec8521fb06f931e645": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "123ee23c99d742a99e006c7f7848cb12": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_411b3739073b43ef84da6df0cf4aba60", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9d6ec450b2e48dcb5295b0addb03a08", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "1551da70235541d895b9fec440352f36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "15a6d72a11a043799df4757893a899a0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f18185f7bfb34126ae47151814798ae9", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f3ae141956064ff593c8324cddc63a9e", + "tabbable": null, + "tooltip": null, + "value": 231508.0 + } + }, + "17285e4ef9524c7db1413a860ffd8f3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1247,7 +1338,7 @@ "width": null } }, - "1c0d84c997084ec7a7b1982850af771f": { + "173164fe2c1547519e6c06d76b0453fc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1300,7 +1391,96 @@ "width": null } }, - "1c33fb4949914270b7542061aa7f5869": { + "1cf39d974f3c4a31847e7e38d1e470ca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cd106c03eda44df88946464b5e303d19", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_4c78b67d28c6446baefef5e6235114af", + "tabbable": null, + "tooltip": null, + "value": 2211.0 + } + }, + "223652b12d77470d806f5f9b123b1cde": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_76546dbd183d4a7e9e641657709c45c4", + "IPY_MODEL_f5d710bb5f824ac6a960165532df517a", + "IPY_MODEL_5a9dca54fcd34a26b3e76425f4cfc533" + ], + "layout": "IPY_MODEL_9a5e0536f69540db9b1730bd6d61ea81", + "tabbable": null, + "tooltip": null + } + }, + "2b6fe019e99740eb96bba95f2db47822": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_630457c365244ae1ab9ffcac69becf0e", + "placeholder": "​", + "style": "IPY_MODEL_8d9ed5fd9baa4685b3b1df7e90e11a1a", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 9.45MB/s]" + } + }, + "2bb10e84663246cb9e4f076f752038ee": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "2e3f9444da9b4549808e0df67c27c05a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1353,7 +1533,7 @@ "width": null } }, - "1c886bf965cf47cd8dad183a9a7ea37e": { + "2e72d09cf08e4ed7a0f0a490217d3b47": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1369,23 +1549,25 @@ "description_width": "" } }, - "1d3698bebaea44ee81bf48d55a3da73b": { + "3be04749419a4f8eba9590fbe0ee90f1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1e04214439b34bb39bd577a6b905f385": { + "3dadb3df17ab4dcb82e012b2ce2d596f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1400,57 +1582,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_dfdd82544b204d99bf73fb297209e882", + "layout": "IPY_MODEL_2e3f9444da9b4549808e0df67c27c05a", "placeholder": "​", - "style": "IPY_MODEL_3fcd103bcf444b3e9d7dacf02f7d0555", + "style": "IPY_MODEL_934707dc065d4f9b89b50d33e0cbc3f6", "tabbable": null, "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "26eb168f10234c1588ad18073bbb9d24": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1e04214439b34bb39bd577a6b905f385", - "IPY_MODEL_d2f9ed6fa0ca4f829f4b4c9130690381", - "IPY_MODEL_53b3a3c50e68458897df10772c0c4950" - ], - "layout": "IPY_MODEL_90c4eaa9081242faa986d85fd429328c", - "tabbable": null, - "tooltip": null - } - }, - "2afee7ea53434f6d89d7c20a88feb305": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 48.0/48.0 [00:00<00:00, 8.77kB/s]" } }, - "2b31d509f412422e8332fcaf6b6c2694": { + "411b3739073b43ef84da6df0cf4aba60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1503,7 +1643,23 @@ "width": null } }, - "3694f2923a9e4c32bfb24bc1252e9b8f": { + "4c78b67d28c6446baefef5e6235114af": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "50cf7dc92d4a4dd998c121b070e7c523": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1556,23 +1712,30 @@ "width": null } }, - "37605bcf5bf54465b5b89a0177cdc60a": { + "51455100d2844aaf843bf237faae621e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8f9ef7f1a1f74518887b8021028b126b", + "placeholder": "​", + "style": "IPY_MODEL_3be04749419a4f8eba9590fbe0ee90f1", + "tabbable": null, + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "3fcd103bcf444b3e9d7dacf02f7d0555": { + "52e25954ff904f37a41a6faf200c6f04": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1590,25 +1753,60 @@ "text_color": null } }, - "47ca90e12b40435b9fd8c5bfa1cc221d": { - "model_module": "@jupyter-widgets/controls", + "56328dda0453461194507f7896809a58": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "49d02ed65af34513bf68cff2532199bc": { + "597d3b6693934a35be0907fceb4d0350": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1859,7 @@ "width": null } }, - "51bf1675356f432587b92cd14c7f82a2": { + "5a9dca54fcd34a26b3e76425f4cfc533": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1676,79 +1874,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ae30011dcb26468c8b0b6b82df3ca527", + "layout": "IPY_MODEL_c512fd4195da47a7a6905726b34e5e3a", "placeholder": "​", - "style": "IPY_MODEL_8775a8c91f3c4a05904fd4855d8811cf", + "style": "IPY_MODEL_d24b7d8cbfdc460e8b4363433bab3e91", "tabbable": null, "tooltip": null, - "value": "config.json: 100%" + "value": " 466k/466k [00:00<00:00, 13.6MB/s]" } }, - "527ebdd433604e84a97c498e49952e49": { + "5cdde541facd4993a93cd8eb368b2d0e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "53877237a70b400cb0bdef2d1e4da5e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cb1cab0be90341f2a872bba3c4f5d6b1", - "placeholder": "​", - "style": "IPY_MODEL_687f08592bed4074bebe2f495d225c50", - "tabbable": null, - "tooltip": null, - "value": "README.md: 100%" - } - }, - "53b3a3c50e68458897df10772c0c4950": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9269cd46d227497980a20e184df669bb", - "placeholder": "​", - "style": "IPY_MODEL_527ebdd433604e84a97c498e49952e49", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 65.3kB/s]" + "bar_color": null, + "description_width": "" } }, - "54446d6d66ed40fcb39ca2dd0e52b91d": { + "630457c365244ae1ab9ffcac69becf0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1801,41 +1951,56 @@ "width": null } }, - "58d151e1dec841068bb3e5ea2a92bf8d": { + "6601ca50f2504f04b6cfe7a18c9b4b20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_597d3b6693934a35be0907fceb4d0350", + "placeholder": "​", + "style": "IPY_MODEL_913da8393f324205890c3c685524e256", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 126kB/s]" } }, - "63b95cc7b3804f828a5027882e9297fc": { + "6e292337346c488586bf3e2ac3a4a4d4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_debf497c726c49c19699637de9ea5396", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5cdde541facd4993a93cd8eb368b2d0e", + "tabbable": null, + "tooltip": null, + "value": 665.0 } }, - "687f08592bed4074bebe2f495d225c50": { + "7069c4f7c30946f989dfcde6fa323b5f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1853,31 +2018,7 @@ "text_color": null } }, - "6908f28507f34ca293495da144a9ebf5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_53877237a70b400cb0bdef2d1e4da5e0", - "IPY_MODEL_ac878a5347e5407d984a6450f0782ccf", - "IPY_MODEL_6f600754a26f42428a3619804a3b3dd3" - ], - "layout": "IPY_MODEL_a2e4ed336ac942fb95366722a3fe131b", - "tabbable": null, - "tooltip": null - } - }, - "6ba2643509aa4ba28f45e6d56c26a610": { + "706af1e525724a4ea27ff6ae91e2d592": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1930,30 +2071,7 @@ "width": null } }, - "6f600754a26f42428a3619804a3b3dd3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6ba2643509aa4ba28f45e6d56c26a610", - "placeholder": "​", - "style": "IPY_MODEL_ca1b57d86847492c9b297c02fc76cdb9", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 387kB/s]" - } - }, - "6fdb113b1df248a19d9acd305460659f": { + "72719d99e16045d7bb4a1a75b55e01d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,31 +2124,60 @@ "width": null } }, - "70dd46a3067b49b0ab8a7a6d042f9eee": { - "model_module": "@jupyter-widgets/controls", + "7410928828ea4cb785ed34533ad7a38b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b60ae06c542046c18779ebad0e050786", - "IPY_MODEL_fb47c5e63669405d8b0f658221868569", - "IPY_MODEL_cf508e03d2364ab487717da959fbc5f6" - ], - "layout": "IPY_MODEL_ca23b68c35994190a9b183937f99bef0", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "72723446148c4e4eaf10d2bc9a5a7aa0": { + "76546dbd183d4a7e9e641657709c45c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2045,15 +2192,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1c0d84c997084ec7a7b1982850af771f", + "layout": "IPY_MODEL_fbabc79ad62741eeb0adf64606e0278c", "placeholder": "​", - "style": "IPY_MODEL_2afee7ea53434f6d89d7c20a88feb305", + "style": "IPY_MODEL_c6f873e46ffd45dca333eca1e6c1e98b", "tabbable": null, "tooltip": null, - "value": "pytorch_model.bin: 100%" + "value": "tokenizer.json: 100%" } }, - "813a3a0872a942708cd6a9346d4eafce": { + "7bc8ca2ed8c34db6b844e1f99c112f8e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2106,7 +2253,7 @@ "width": null } }, - "847b6e3d28fe47989ff071d37ae0a736": { + "7ffdf87c7ec64036b49757ac96c5536d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2124,7 +2271,7 @@ "text_color": null } }, - "8775a8c91f3c4a05904fd4855d8811cf": { + "8d9ed5fd9baa4685b3b1df7e90e11a1a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2142,40 +2289,16 @@ "text_color": null } }, - "8a73ef35dae948bfb3a13cced094eae0": { - "model_module": "@jupyter-widgets/controls", + "8f9ef7f1a1f74518887b8021028b126b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_72723446148c4e4eaf10d2bc9a5a7aa0", - "IPY_MODEL_e0a1667bb19e41ffab1775d1cc89d2f2", - "IPY_MODEL_febb0cb6c81c4e63826fecf678c5cb82" - ], - "layout": "IPY_MODEL_bfd0773475e040f3adaeb618a404adba", - "tabbable": null, - "tooltip": null - } - }, - "90c4eaa9081242faa986d85fd429328c": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, @@ -2219,60 +2342,43 @@ "width": null } }, - "9269cd46d227497980a20e184df669bb": { - "model_module": "@jupyter-widgets/base", + "913da8393f324205890c3c685524e256": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "934707dc065d4f9b89b50d33e0cbc3f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "971f3be7589f424fb59cf1afd44b5a01": { + "93ebdc142e3847ae90d0ce31029d5577": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2288,66 +2394,59 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f99a3294523546e88e70530fed3f99f6", + "layout": "IPY_MODEL_a5729edb12634053b4bf3c1bf046eded", "max": 48.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_b78ee6ec02a04a198056f10b84c9c0f6", + "style": "IPY_MODEL_099c115234a74616930a360edf785b2b", "tabbable": null, "tooltip": null, "value": 48.0 } }, - "9b13d15c1ebf4bbab634d6a5ef436130": { + "94487f86ff8a4e3fa1c870682ab05381": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2b31d509f412422e8332fcaf6b6c2694", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d513be80490b4fb9a218bd185c374f60", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_51455100d2844aaf843bf237faae621e", + "IPY_MODEL_93ebdc142e3847ae90d0ce31029d5577", + "IPY_MODEL_3dadb3df17ab4dcb82e012b2ce2d596f" + ], + "layout": "IPY_MODEL_72719d99e16045d7bb4a1a75b55e01d2", "tabbable": null, - "tooltip": null, - "value": 231508.0 + "tooltip": null } }, - "9c5fb5a31e9f4d389fd58cc6bf03ee2d": { + "94c15cadc74a4c81a5adb003090f1d31": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6fdb113b1df248a19d9acd305460659f", - "placeholder": "​", - "style": "IPY_MODEL_cd8bce3acd8043d99418cf1e98c1ffd3", - "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 119kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a16e8e1cc73e44bd8b38739fc3f7349e": { + "9a5e0536f69540db9b1730bd6d61ea81": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2400,7 +2499,48 @@ "width": null } }, - "a2e4ed336ac942fb95366722a3fe131b": { + "a066253245154949a867510c4f4ca674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2a9d5d37de04498978de14e105cf28b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f7269a835d6543bb94a6753b3052198e", + "placeholder": "​", + "style": "IPY_MODEL_7ffdf87c7ec64036b49757ac96c5536d", + "tabbable": null, + "tooltip": null, + "value": " 391/391 [00:00<00:00, 66.8kB/s]" + } + }, + "a5729edb12634053b4bf3c1bf046eded": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2453,128 +2593,147 @@ "width": null } }, - "a6454eb33f0747e5941afecdf65c31ca": { + "ae2d10a9a0bd42468482e2cffacc15e6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b8db1c5c0aea469698bab78a92251cea", + "IPY_MODEL_15a6d72a11a043799df4757893a899a0", + "IPY_MODEL_2b6fe019e99740eb96bba95f2db47822" + ], + "layout": "IPY_MODEL_17285e4ef9524c7db1413a860ffd8f3d", + "tabbable": null, + "tooltip": null } }, - "ac878a5347e5407d984a6450f0782ccf": { + "b5d24981d5e842e399fcf3e5da26ef85": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3694f2923a9e4c32bfb24bc1252e9b8f", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1d3698bebaea44ee81bf48d55a3da73b", + "layout": "IPY_MODEL_173164fe2c1547519e6c06d76b0453fc", + "placeholder": "​", + "style": "IPY_MODEL_1551da70235541d895b9fec440352f36", "tabbable": null, "tooltip": null, - "value": 2211.0 + "value": "README.md: 100%" } }, - "adf9f85cadca4af3b40ebf03eba16fa7": { + "b8db1c5c0aea469698bab78a92251cea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c65afacf969543d192a5d2494cc1c534", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_37605bcf5bf54465b5b89a0177cdc60a", + "layout": "IPY_MODEL_56328dda0453461194507f7896809a58", + "placeholder": "​", + "style": "IPY_MODEL_7069c4f7c30946f989dfcde6fa323b5f", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": "vocab.txt: 100%" } }, - "ae30011dcb26468c8b0b6b82df3ca527": { - "model_module": "@jupyter-widgets/base", + "c040ce84f01d40379935c57a437135d2": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f5517afea1ad41e8ae488f9341fe54ca", + "IPY_MODEL_123ee23c99d742a99e006c7f7848cb12", + "IPY_MODEL_a2a9d5d37de04498978de14e105cf28b" + ], + "layout": "IPY_MODEL_f549e9ac8a50477798f2e9234e06003d", + "tabbable": null, + "tooltip": null + } + }, + "c0f39ccef0bc464cb68eed457c4b8878": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d1d88dae8067491696275aca69858030", + "placeholder": "​", + "style": "IPY_MODEL_a066253245154949a867510c4f4ca674", + "tabbable": null, + "tooltip": null, + "value": "config.json: 100%" + } + }, + "c17f319f7c23417c9a96df1d497a5396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7bc8ca2ed8c34db6b844e1f99c112f8e", + "placeholder": "​", + "style": "IPY_MODEL_0e46a040636f42ec8521fb06f931e645", + "tabbable": null, + "tooltip": null, + "value": "pytorch_model.bin: 100%" } }, - "b3f20f2c522c44e99afe7b665f90476a": { + "c512fd4195da47a7a6905726b34e5e3a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2627,46 +2786,49 @@ "width": null } }, - "b60ae06c542046c18779ebad0e050786": { + "c6f873e46ffd45dca333eca1e6c1e98b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ebda3f8c7f4441939a8f25ada957bda9", - "placeholder": "​", - "style": "IPY_MODEL_01bdf1dfe43a4d93b1d5a846d7215f58", - "tabbable": null, - "tooltip": null, - "value": "tokenizer.json: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "b78ee6ec02a04a198056f10b84c9c0f6": { + "c7e479504bac453bb70c779f5c0f3525": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b5d24981d5e842e399fcf3e5da26ef85", + "IPY_MODEL_1cf39d974f3c4a31847e7e38d1e470ca", + "IPY_MODEL_02b94161e37b406ca4394b9eef1538df" + ], + "layout": "IPY_MODEL_de3971382db3445da34fe599b2fd18c0", + "tabbable": null, + "tooltip": null } }, - "bfd0773475e040f3adaeb618a404adba": { + "cd106c03eda44df88946464b5e303d19": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2719,7 +2881,7 @@ "width": null } }, - "c65afacf969543d192a5d2494cc1c534": { + "d1d88dae8067491696275aca69858030": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,7 +2934,7 @@ "width": null } }, - "ca1b57d86847492c9b297c02fc76cdb9": { + "d24b7d8cbfdc460e8b4363433bab3e91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2790,7 +2952,7 @@ "text_color": null } }, - "ca23b68c35994190a9b183937f99bef0": { + "d2bc83af02974b4997b26d27c8043218": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2843,83 +3005,31 @@ "width": null } }, - "cb1cab0be90341f2a872bba3c4f5d6b1": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "cc704a8505d043a78e762cb092fbf583": { + "d426400e6f5f4f559bce90df2411bfab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e8e17c5187f94971b594066cb042052e", - "placeholder": "​", - "style": "IPY_MODEL_d73ca9d21de341c1b49acece38eb3a86", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c17f319f7c23417c9a96df1d497a5396", + "IPY_MODEL_f28aab9da31b46fb80c0504babe16527", + "IPY_MODEL_e914425948fb4ee4aeae1d90e350d558" + ], + "layout": "IPY_MODEL_50cf7dc92d4a4dd998c121b070e7c523", "tabbable": null, - "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.51kB/s]" + "tooltip": null } }, - "cd8bce3acd8043d99418cf1e98c1ffd3": { + "d60ecde8bd1144dea8b8174f951c1ac9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2937,30 +3047,60 @@ "text_color": null } }, - "cf508e03d2364ab487717da959fbc5f6": { - "model_module": "@jupyter-widgets/controls", + "de3971382db3445da34fe599b2fd18c0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b3f20f2c522c44e99afe7b665f90476a", - "placeholder": "​", - "style": "IPY_MODEL_63b95cc7b3804f828a5027882e9297fc", - "tabbable": null, - "tooltip": null, - "value": " 466k/466k [00:00<00:00, 16.2MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "cf623252efaa4cadbfbcc762f85bb14f": { + "de9073d79ed24b348d5dcbd2cda64aaa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3013,31 +3153,7 @@ "width": null } }, - "d0341643702b4f93b9c82872cc026fbf": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3a35ea4124b44ef9df6e0dae4a35972", - "IPY_MODEL_9b13d15c1ebf4bbab634d6a5ef436130", - "IPY_MODEL_f98d6ded2c7945df810ca80e9bd7a4a2" - ], - "layout": "IPY_MODEL_1a6c425339d741d0b672365a0a6a634f", - "tabbable": null, - "tooltip": null - } - }, - "d19a720fd38e43d9a44c01e6b604e36f": { + "debf497c726c49c19699637de9ea5396": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3090,91 +3206,70 @@ "width": null } }, - "d2f9ed6fa0ca4f829f4b4c9130690381": { + "e38763de16664cf4b837920d4bc2ace8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a16e8e1cc73e44bd8b38739fc3f7349e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a6454eb33f0747e5941afecdf65c31ca", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c0f39ccef0bc464cb68eed457c4b8878", + "IPY_MODEL_6e292337346c488586bf3e2ac3a4a4d4", + "IPY_MODEL_6601ca50f2504f04b6cfe7a18c9b4b20" + ], + "layout": "IPY_MODEL_7410928828ea4cb785ed34533ad7a38b", "tabbable": null, - "tooltip": null, - "value": 391.0 + "tooltip": null } }, - "d513be80490b4fb9a218bd185c374f60": { + "e914425948fb4ee4aeae1d90e350d558": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a197c7bd153480582add67b25b8f2f6", + "placeholder": "​", + "style": "IPY_MODEL_d60ecde8bd1144dea8b8174f951c1ac9", + "tabbable": null, + "tooltip": null, + "value": " 54.2M/54.2M [00:00<00:00, 272MB/s]" } }, - "d73ca9d21de341c1b49acece38eb3a86": { + "e9d6ec450b2e48dcb5295b0addb03a08": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "dbc5896906b4403e91373c6f95c7f8a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e9ab3e84bf9c4f5e8e81eef5bd3fe849", - "IPY_MODEL_971f3be7589f424fb59cf1afd44b5a01", - "IPY_MODEL_cc704a8505d043a78e762cb092fbf583" - ], - "layout": "IPY_MODEL_813a3a0872a942708cd6a9346d4eafce", - "tabbable": null, - "tooltip": null + "bar_color": null, + "description_width": "" } }, - "dfdd82544b204d99bf73fb297209e882": { + "f18185f7bfb34126ae47151814798ae9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3227,7 +3322,7 @@ "width": null } }, - "e0a1667bb19e41ffab1775d1cc89d2f2": { + "f28aab9da31b46fb80c0504babe16527": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -3243,17 +3338,33 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cf623252efaa4cadbfbcc762f85bb14f", + "layout": "IPY_MODEL_de9073d79ed24b348d5dcbd2cda64aaa", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_58d151e1dec841068bb3e5ea2a92bf8d", + "style": "IPY_MODEL_2bb10e84663246cb9e4f076f752038ee", "tabbable": null, "tooltip": null, "value": 54245363.0 } }, - "e8e17c5187f94971b594066cb042052e": { + "f3ae141956064ff593c8324cddc63a9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "f3d7b3156603425383cb4b2911ba3193": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3306,30 +3417,7 @@ "width": null } }, - "e9ab3e84bf9c4f5e8e81eef5bd3fe849": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_165f21fd1ca447ce9d79edfc85a1646e", - "placeholder": "​", - "style": "IPY_MODEL_847b6e3d28fe47989ff071d37ae0a736", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" - } - }, - "ebda3f8c7f4441939a8f25ada957bda9": { + "f549e9ac8a50477798f2e9234e06003d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3382,48 +3470,56 @@ "width": null } }, - "ee015b6a5dd54462901d4fb785310f8f": { + "f5517afea1ad41e8ae488f9341fe54ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f3d7b3156603425383cb4b2911ba3193", + "placeholder": "​", + "style": "IPY_MODEL_94c15cadc74a4c81a5adb003090f1d31", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "f3a35ea4124b44ef9df6e0dae4a35972": { + "f5d710bb5f824ac6a960165532df517a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_54446d6d66ed40fcb39ca2dd0e52b91d", - "placeholder": "​", - "style": "IPY_MODEL_47ca90e12b40435b9fd8c5bfa1cc221d", + "layout": "IPY_MODEL_d2bc83af02974b4997b26d27c8043218", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2e72d09cf08e4ed7a0f0a490217d3b47", "tabbable": null, "tooltip": null, - "value": "vocab.txt: 100%" + "value": 466062.0 } }, - "f57ceb2a8d51416491d48e1b29e3dfcb": { + "f7269a835d6543bb94a6753b3052198e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3476,30 +3572,7 @@ "width": null } }, - "f98d6ded2c7945df810ca80e9bd7a4a2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_49d02ed65af34513bf68cff2532199bc", - "placeholder": "​", - "style": "IPY_MODEL_ee015b6a5dd54462901d4fb785310f8f", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 36.5MB/s]" - } - }, - "f99a3294523546e88e70530fed3f99f6": { + "fbabc79ad62741eeb0adf64606e0278c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3551,79 +3624,6 @@ "visibility": null, "width": null } - }, - "fb390d327367437688e1b2f6a2dc8c9d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_51bf1675356f432587b92cd14c7f82a2", - "IPY_MODEL_adf9f85cadca4af3b40ebf03eba16fa7", - "IPY_MODEL_9c5fb5a31e9f4d389fd58cc6bf03ee2d" - ], - "layout": "IPY_MODEL_d19a720fd38e43d9a44c01e6b604e36f", - "tabbable": null, - "tooltip": null - } - }, - "fb47c5e63669405d8b0f658221868569": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f57ceb2a8d51416491d48e1b29e3dfcb", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1c886bf965cf47cd8dad183a9a7ea37e", - "tabbable": null, - "tooltip": null, - "value": 466062.0 - } - }, - "febb0cb6c81c4e63826fecf678c5cb82": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1c33fb4949914270b7542061aa7f5869", - "placeholder": "​", - "style": "IPY_MODEL_09202840b02144009b85bc9e81486cfe", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:01<00:00, 33.7MB/s]" - } } }, "version_major": 2, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index dae36fcda..fe6c1ed1b 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -1347,7 +1347,7 @@

5. Use cleanlab to find label issues -{"state": {"c9e3d1ea843b4dd08836724ceb2184ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0fccfd304e924a65b05ce79e773c1b54": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "be3b22f2a8d24e5fbc993ff804b948c4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c9e3d1ea843b4dd08836724ceb2184ff", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0fccfd304e924a65b05ce79e773c1b54", "tabbable": null, "tooltip": null, "value": 2041.0}}, "2843461d0fe54d07aa7c7464d5d97e6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c64103fc4704d84a0b363bc803074fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "54cf50f88da84bffa7c85bfec67a7e76": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2843461d0fe54d07aa7c7464d5d97e6f", "placeholder": "\u200b", "style": "IPY_MODEL_4c64103fc4704d84a0b363bc803074fa", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "123fcf3742424688a13533cede820c84": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f4b565a51d24d85a9ea442bcfffae19": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f05f7401b7ca48d39ce3f36de43cdf9f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_123fcf3742424688a13533cede820c84", "placeholder": "\u200b", "style": "IPY_MODEL_3f4b565a51d24d85a9ea442bcfffae19", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007472kB/s]"}}, "0712b5725fb444f6b11533e1aeb7e0d9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22a24b2c2ee44a4e92a3d4a384dda5fc": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_54cf50f88da84bffa7c85bfec67a7e76", "IPY_MODEL_be3b22f2a8d24e5fbc993ff804b948c4", "IPY_MODEL_f05f7401b7ca48d39ce3f36de43cdf9f"], "layout": "IPY_MODEL_0712b5725fb444f6b11533e1aeb7e0d9", "tabbable": null, "tooltip": null}}, "615bae4fcc4b4def9e73b5dacc94cbf8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "637271f5d4814034a20ed354b1562d5f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "267c1283364b495e946ce40cc2e6c806": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_615bae4fcc4b4def9e73b5dacc94cbf8", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_637271f5d4814034a20ed354b1562d5f", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "30ef09eb9ae7482faf1bdf6f05e62bbc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "194b5e6a002d4e1ea093db6cc3b04171": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0b47da1d6d3545c9963557edea183fed": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30ef09eb9ae7482faf1bdf6f05e62bbc", "placeholder": "\u200b", "style": "IPY_MODEL_194b5e6a002d4e1ea093db6cc3b04171", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "97c23900ef8b4bda83e2deb33f286e96": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4ee50184cd04a398f50ea40231b48f5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93cddea59dd04f8fa3866059fe250a88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97c23900ef8b4bda83e2deb33f286e96", "placeholder": "\u200b", "style": "IPY_MODEL_a4ee50184cd04a398f50ea40231b48f5", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007185MB/s]"}}, "195a6822a9d34059bfa57fa7dc2ea08a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c19af69d62042f9b12a2bd44b9b4160": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_0b47da1d6d3545c9963557edea183fed", "IPY_MODEL_267c1283364b495e946ce40cc2e6c806", "IPY_MODEL_93cddea59dd04f8fa3866059fe250a88"], "layout": "IPY_MODEL_195a6822a9d34059bfa57fa7dc2ea08a", "tabbable": null, "tooltip": null}}, "3a8a38a009f545a8944469f67a622d68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7e11e60943fb4e2a9e9b14f836623a69": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "70187e117f274ba7be34ee5a90087194": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3a8a38a009f545a8944469f67a622d68", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7e11e60943fb4e2a9e9b14f836623a69", "tabbable": null, "tooltip": null, "value": 3201.0}}, "ee674df35f7341e9a94912143a281079": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e5b7443a6873473f92d8003c993c8774": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e16eb6da1ebc41ca80ca339c7037d837": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ee674df35f7341e9a94912143a281079", "placeholder": "\u200b", "style": "IPY_MODEL_e5b7443a6873473f92d8003c993c8774", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "b7ea56d4b66546b38668ab8d80c352bd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c90423f88db44167a1af99e50e8c0910": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "788e28d38e2c400babcb0d314178f05f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b7ea56d4b66546b38668ab8d80c352bd", "placeholder": "\u200b", "style": "IPY_MODEL_c90423f88db44167a1af99e50e8c0910", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007783kB/s]"}}, "13c388d3c4fd49ecb28abaf90751ecde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c14b346779ea4cb3920d9eef5802fbd6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_e16eb6da1ebc41ca80ca339c7037d837", "IPY_MODEL_70187e117f274ba7be34ee5a90087194", "IPY_MODEL_788e28d38e2c400babcb0d314178f05f"], "layout": "IPY_MODEL_13c388d3c4fd49ecb28abaf90751ecde", "tabbable": null, "tooltip": null}}, "63942fab728d45799bfc2eefc024a7a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce1e2432d0004fffb3a515990af2e883": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a037f28a17554d22ae65d83ae3cb1295": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63942fab728d45799bfc2eefc024a7a4", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ce1e2432d0004fffb3a515990af2e883", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "2ec4c5dfe0504a16be106752751957ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a4ef0c0a14fa48d5a66728f16010ab81": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d75488175f804c07a186b79fbdfbb0b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2ec4c5dfe0504a16be106752751957ac", "placeholder": "\u200b", "style": "IPY_MODEL_a4ef0c0a14fa48d5a66728f16010ab81", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "2150fa8e732943099d5831902db8f05d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c6bf7d77f5a84f6880ec30d9f0e0221f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "20865132107248018abd462fe8cb3cb6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2150fa8e732943099d5831902db8f05d", "placeholder": "\u200b", "style": "IPY_MODEL_c6bf7d77f5a84f6880ec30d9f0e0221f", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007231MB/s]"}}, "939e1338c4514c3995a25094689cac39": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b24547478f104455bc3f0621eb0ef31d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d75488175f804c07a186b79fbdfbb0b9", "IPY_MODEL_a037f28a17554d22ae65d83ae3cb1295", "IPY_MODEL_20865132107248018abd462fe8cb3cb6"], "layout": "IPY_MODEL_939e1338c4514c3995a25094689cac39", "tabbable": null, "tooltip": null}}, "6641399ed52c4fab995e3dc94bbf4259": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0449d39929844d5da948a065a35aeafc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "2a17845087ce4fb3bbf3f5361d27da45": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6641399ed52c4fab995e3dc94bbf4259", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0449d39929844d5da948a065a35aeafc", "tabbable": null, "tooltip": null, "value": 128619.0}}, "456321c963d040b38655d316d4a4add5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a67df8bf81140f6a7d6468fddb34306": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "facfb0cddea846c28095adc63697d300": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_456321c963d040b38655d316d4a4add5", "placeholder": "\u200b", "style": "IPY_MODEL_2a67df8bf81140f6a7d6468fddb34306", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "da7d96a45d7249f5857c4b5b6e2f6781": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f121cf50447e4cd1b84e10660f4c6858": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bcf4d70b1b41401ebb167cd30923698e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_da7d96a45d7249f5857c4b5b6e2f6781", "placeholder": "\u200b", "style": "IPY_MODEL_f121cf50447e4cd1b84e10660f4c6858", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20078.45MB/s]"}}, "2a18010cbd624cd48e9f02d08aaa10b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a11ca78e63eb4beeaa82f3e24c7dda66": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_facfb0cddea846c28095adc63697d300", "IPY_MODEL_2a17845087ce4fb3bbf3f5361d27da45", "IPY_MODEL_bcf4d70b1b41401ebb167cd30923698e"], "layout": "IPY_MODEL_2a18010cbd624cd48e9f02d08aaa10b9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"13ce66a6db5846b19c327782fc330062": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2585d650431e4e389f7c2cb8af3ba22a": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e9afc86b1d7747a8a5ffc78856b7be99": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", "tabbable": null, "tooltip": null, "value": 2041.0}}, "9b8c3f610f304fec945b68d663dc6f1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "548b97dd6b2146f6a9d554e5016ead75": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", "placeholder": "\u200b", "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "0378871c4f2e413ea8000172dab79c64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a337d23527c34d92b63a1ecf6707124c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f72f986090fb419b8286e7286897e414": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", "placeholder": "\u200b", "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007476kB/s]"}}, "f39fc7e456254975882ada6d5b90254c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8cdbf19960b9483e9551e22643732a3c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", "IPY_MODEL_f72f986090fb419b8286e7286897e414"], "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", "tabbable": null, "tooltip": null}}, "eae9e35f11f747b58461317babdc3291": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9eabbbb13d5e47fca4e356bee0501603": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3a0699a91dd3428f82bdfb374fb55e76": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "a63baebd86ae43c990c6edc598a4879b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3cea818f8d7f4614aa0ad2ec7b5348af": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "335c2445e0c0490f9984409ca39867c4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", "placeholder": "\u200b", "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "1bc0bb9f226044e2879bd45c2c9361b8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f416c4b535bc4e10bf36f83830f8a6fa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b56b7a0332dc4e1c84a140c42ac16890": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", "placeholder": "\u200b", "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007193MB/s]"}}, "3ce9242cc785425291f31afd9dfc53a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "30534447f05f4c18b825551758a727d5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_335c2445e0c0490f9984409ca39867c4", "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890"], "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", "tabbable": null, "tooltip": null}}, "e0a6be03adc34387b1154d4540a2cc94": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7c617a65a6045ee945688614263ebc7": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "da2148b68dd645dd98ed41c8058bb817": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", "tabbable": null, "tooltip": null, "value": 3201.0}}, "678f7e339f5149e181d689627ef3a751": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5f7d007ea0b342b4a93dafc5282e07b1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1a71755eaad3434f8376750eb9e21dca": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", "placeholder": "\u200b", "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "25e28f77411f4b358cd7cb1316e7612d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6398640d39d74482925348e964477d91": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5b76f8ffb6354f24af0b35f6de244350": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", "placeholder": "\u200b", "style": "IPY_MODEL_6398640d39d74482925348e964477d91", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007799kB/s]"}}, "fdbd1eb302114bcc85c0208f1bf7e7db": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5977ad08502f404892f9c3a89a020623": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350"], "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", "tabbable": null, "tooltip": null}}, "f47e6197a8974dacb497edf4211afa8b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "524d49fe9932444b9e6f4ad40ee2b836": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e79c27b29e1c44bf9369d333f8526228": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "1b0ceb5f33ac4b4db24eb1efc0185a90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "030f1aa243f74fa89a56e4a7afd62228": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7515de987da94ef9a2d5455c30f1c2a5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", "placeholder": "\u200b", "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "a962521435da44439fc8023f973b16bb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dce66522f3ac4607beae79e69e93745d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "184d81198c9f44339286502f77c93c88": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", "placeholder": "\u200b", "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007308MB/s]"}}, "9d721b1baf0c4e31970159ee84bcb8b1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2301b773af73470cb4968e5546eedca9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", "IPY_MODEL_184d81198c9f44339286502f77c93c88"], "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", "tabbable": null, "tooltip": null}}, "1ae5dfdbfc244f20b5e6a0872942a6b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d8898b4bffa4ce2b6f9d1610b45d2d5": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "4c7ed89197a84102acf6416893e2d15b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", "tabbable": null, "tooltip": null, "value": 128619.0}}, "a3d79d00b77e420fb3bba762b3d9a0b6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca119d618680421aa4275a9c3bc6ada4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "07f71655f74d435e83d929c621c5fa4c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", "placeholder": "\u200b", "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "482e270b3b2347b69272e33a3b7fe67a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4ea3400f8dfa41de89365044c0f8cb8a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3231f300a42b4b8b99131e14ee8de6fe": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", "placeholder": "\u200b", "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20077.45MB/s]"}}, "6a19b58ad5ac45dab732546ed937e951": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9234ebf1cac34261acd10dca3480e239": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe"], "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 11569e3e3..dc2c54cfa 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:49.864043Z", - "iopub.status.busy": "2024-07-09T06:06:49.863867Z", - "iopub.status.idle": "2024-07-09T06:06:54.860734Z", - "shell.execute_reply": "2024-07-09T06:06:54.860126Z" + "iopub.execute_input": "2024-07-09T06:22:03.233428Z", + "iopub.status.busy": "2024-07-09T06:22:03.232964Z", + "iopub.status.idle": "2024-07-09T06:22:08.850474Z", + "shell.execute_reply": "2024-07-09T06:22:08.849914Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.863462Z", - "iopub.status.busy": "2024-07-09T06:06:54.863090Z", - "iopub.status.idle": "2024-07-09T06:06:54.866371Z", - "shell.execute_reply": "2024-07-09T06:06:54.865843Z" + "iopub.execute_input": "2024-07-09T06:22:08.853152Z", + "iopub.status.busy": "2024-07-09T06:22:08.852690Z", + "iopub.status.idle": "2024-07-09T06:22:08.855934Z", + "shell.execute_reply": "2024-07-09T06:22:08.855477Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.868423Z", - "iopub.status.busy": "2024-07-09T06:06:54.868116Z", - "iopub.status.idle": "2024-07-09T06:06:54.872674Z", - "shell.execute_reply": "2024-07-09T06:06:54.872145Z" + "iopub.execute_input": "2024-07-09T06:22:08.857959Z", + "iopub.status.busy": "2024-07-09T06:22:08.857632Z", + "iopub.status.idle": "2024-07-09T06:22:08.861976Z", + "shell.execute_reply": "2024-07-09T06:22:08.861565Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:54.874945Z", - "iopub.status.busy": "2024-07-09T06:06:54.874555Z", - "iopub.status.idle": "2024-07-09T06:06:56.580748Z", - "shell.execute_reply": "2024-07-09T06:06:56.579989Z" + "iopub.execute_input": "2024-07-09T06:22:08.864012Z", + "iopub.status.busy": "2024-07-09T06:22:08.863632Z", + "iopub.status.idle": "2024-07-09T06:22:10.501197Z", + "shell.execute_reply": "2024-07-09T06:22:10.500598Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.583790Z", - "iopub.status.busy": "2024-07-09T06:06:56.583297Z", - "iopub.status.idle": "2024-07-09T06:06:56.593857Z", - "shell.execute_reply": "2024-07-09T06:06:56.593338Z" + "iopub.execute_input": "2024-07-09T06:22:10.503804Z", + "iopub.status.busy": "2024-07-09T06:22:10.503416Z", + "iopub.status.idle": "2024-07-09T06:22:10.513980Z", + "shell.execute_reply": "2024-07-09T06:22:10.513523Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.596127Z", - "iopub.status.busy": "2024-07-09T06:06:56.595810Z", - "iopub.status.idle": "2024-07-09T06:06:56.601311Z", - "shell.execute_reply": "2024-07-09T06:06:56.600761Z" + "iopub.execute_input": "2024-07-09T06:22:10.516180Z", + "iopub.status.busy": "2024-07-09T06:22:10.515850Z", + "iopub.status.idle": "2024-07-09T06:22:10.521399Z", + "shell.execute_reply": "2024-07-09T06:22:10.520894Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:56.603390Z", - "iopub.status.busy": "2024-07-09T06:06:56.602982Z", - "iopub.status.idle": "2024-07-09T06:06:57.047045Z", - "shell.execute_reply": "2024-07-09T06:06:57.046468Z" + "iopub.execute_input": "2024-07-09T06:22:10.523550Z", + "iopub.status.busy": "2024-07-09T06:22:10.523111Z", + "iopub.status.idle": "2024-07-09T06:22:10.966866Z", + "shell.execute_reply": "2024-07-09T06:22:10.966371Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:57.049476Z", - "iopub.status.busy": "2024-07-09T06:06:57.049058Z", - "iopub.status.idle": "2024-07-09T06:06:58.055039Z", - "shell.execute_reply": "2024-07-09T06:06:58.054558Z" + "iopub.execute_input": "2024-07-09T06:22:10.969003Z", + "iopub.status.busy": "2024-07-09T06:22:10.968716Z", + "iopub.status.idle": "2024-07-09T06:22:11.621713Z", + "shell.execute_reply": "2024-07-09T06:22:11.621235Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.057389Z", - "iopub.status.busy": "2024-07-09T06:06:58.057042Z", - "iopub.status.idle": "2024-07-09T06:06:58.075363Z", - "shell.execute_reply": "2024-07-09T06:06:58.074904Z" + "iopub.execute_input": "2024-07-09T06:22:11.624138Z", + "iopub.status.busy": "2024-07-09T06:22:11.623795Z", + "iopub.status.idle": "2024-07-09T06:22:11.641645Z", + "shell.execute_reply": "2024-07-09T06:22:11.641200Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.077543Z", - "iopub.status.busy": "2024-07-09T06:06:58.077109Z", - "iopub.status.idle": "2024-07-09T06:06:58.080313Z", - "shell.execute_reply": "2024-07-09T06:06:58.079788Z" + "iopub.execute_input": "2024-07-09T06:22:11.643659Z", + "iopub.status.busy": "2024-07-09T06:22:11.643333Z", + "iopub.status.idle": "2024-07-09T06:22:11.646457Z", + "shell.execute_reply": "2024-07-09T06:22:11.645916Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:06:58.082226Z", - "iopub.status.busy": "2024-07-09T06:06:58.081919Z", - "iopub.status.idle": "2024-07-09T06:07:12.215902Z", - "shell.execute_reply": "2024-07-09T06:07:12.215321Z" + "iopub.execute_input": "2024-07-09T06:22:11.648482Z", + "iopub.status.busy": "2024-07-09T06:22:11.648101Z", + "iopub.status.idle": "2024-07-09T06:22:26.104216Z", + "shell.execute_reply": "2024-07-09T06:22:26.103596Z" }, "id": "2FSQ2GR9R_YA" }, @@ -617,10 +617,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.218512Z", - "iopub.status.busy": "2024-07-09T06:07:12.218295Z", - "iopub.status.idle": "2024-07-09T06:07:12.221837Z", - "shell.execute_reply": "2024-07-09T06:07:12.221338Z" + "iopub.execute_input": "2024-07-09T06:22:26.106855Z", + "iopub.status.busy": "2024-07-09T06:22:26.106613Z", + "iopub.status.idle": "2024-07-09T06:22:26.110484Z", + "shell.execute_reply": "2024-07-09T06:22:26.109922Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -680,10 +680,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.223870Z", - "iopub.status.busy": "2024-07-09T06:07:12.223561Z", - "iopub.status.idle": "2024-07-09T06:07:12.934288Z", - "shell.execute_reply": "2024-07-09T06:07:12.933709Z" + "iopub.execute_input": "2024-07-09T06:22:26.112655Z", + "iopub.status.busy": "2024-07-09T06:22:26.112225Z", + "iopub.status.idle": "2024-07-09T06:22:26.806714Z", + "shell.execute_reply": "2024-07-09T06:22:26.806127Z" }, "id": "i_drkY9YOcw4" }, @@ -717,10 +717,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.938010Z", - "iopub.status.busy": "2024-07-09T06:07:12.937076Z", - "iopub.status.idle": "2024-07-09T06:07:12.943726Z", - "shell.execute_reply": "2024-07-09T06:07:12.943251Z" + "iopub.execute_input": "2024-07-09T06:22:26.809582Z", + "iopub.status.busy": "2024-07-09T06:22:26.809200Z", + "iopub.status.idle": "2024-07-09T06:22:26.813988Z", + "shell.execute_reply": "2024-07-09T06:22:26.813500Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -767,10 +767,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:12.947206Z", - "iopub.status.busy": "2024-07-09T06:07:12.946282Z", - "iopub.status.idle": "2024-07-09T06:07:13.044938Z", - "shell.execute_reply": "2024-07-09T06:07:13.044401Z" + "iopub.execute_input": "2024-07-09T06:22:26.817256Z", + "iopub.status.busy": "2024-07-09T06:22:26.816338Z", + "iopub.status.idle": "2024-07-09T06:22:26.913005Z", + "shell.execute_reply": "2024-07-09T06:22:26.912463Z" } }, "outputs": [ @@ -807,10 +807,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.047402Z", - "iopub.status.busy": "2024-07-09T06:07:13.046885Z", - "iopub.status.idle": "2024-07-09T06:07:13.058728Z", - "shell.execute_reply": "2024-07-09T06:07:13.058266Z" + "iopub.execute_input": "2024-07-09T06:22:26.915328Z", + "iopub.status.busy": "2024-07-09T06:22:26.914958Z", + "iopub.status.idle": "2024-07-09T06:22:26.927202Z", + "shell.execute_reply": "2024-07-09T06:22:26.926711Z" }, "scrolled": true }, @@ -870,10 +870,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.060668Z", - "iopub.status.busy": "2024-07-09T06:07:13.060408Z", - "iopub.status.idle": "2024-07-09T06:07:13.068309Z", - "shell.execute_reply": "2024-07-09T06:07:13.067858Z" + "iopub.execute_input": "2024-07-09T06:22:26.929241Z", + "iopub.status.busy": "2024-07-09T06:22:26.928921Z", + "iopub.status.idle": "2024-07-09T06:22:26.936556Z", + "shell.execute_reply": "2024-07-09T06:22:26.936102Z" } }, "outputs": [ @@ -977,10 +977,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.070443Z", - "iopub.status.busy": "2024-07-09T06:07:13.070120Z", - "iopub.status.idle": "2024-07-09T06:07:13.074136Z", - "shell.execute_reply": "2024-07-09T06:07:13.073600Z" + "iopub.execute_input": "2024-07-09T06:22:26.938661Z", + "iopub.status.busy": "2024-07-09T06:22:26.938342Z", + "iopub.status.idle": "2024-07-09T06:22:26.942738Z", + "shell.execute_reply": "2024-07-09T06:22:26.942303Z" } }, "outputs": [ @@ -1018,10 +1018,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.076148Z", - "iopub.status.busy": "2024-07-09T06:07:13.075822Z", - "iopub.status.idle": "2024-07-09T06:07:13.081201Z", - "shell.execute_reply": "2024-07-09T06:07:13.080730Z" + "iopub.execute_input": "2024-07-09T06:22:26.944805Z", + "iopub.status.busy": "2024-07-09T06:22:26.944495Z", + "iopub.status.idle": "2024-07-09T06:22:26.949937Z", + "shell.execute_reply": "2024-07-09T06:22:26.949446Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1148,10 +1148,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.083236Z", - "iopub.status.busy": "2024-07-09T06:07:13.082820Z", - "iopub.status.idle": "2024-07-09T06:07:13.194939Z", - "shell.execute_reply": "2024-07-09T06:07:13.194383Z" + "iopub.execute_input": "2024-07-09T06:22:26.951973Z", + "iopub.status.busy": "2024-07-09T06:22:26.951651Z", + "iopub.status.idle": "2024-07-09T06:22:27.069852Z", + "shell.execute_reply": "2024-07-09T06:22:27.069287Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1205,10 +1205,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.197176Z", - "iopub.status.busy": "2024-07-09T06:07:13.196823Z", - "iopub.status.idle": "2024-07-09T06:07:13.304107Z", - "shell.execute_reply": "2024-07-09T06:07:13.303548Z" + "iopub.execute_input": "2024-07-09T06:22:27.072192Z", + "iopub.status.busy": "2024-07-09T06:22:27.071729Z", + "iopub.status.idle": "2024-07-09T06:22:27.179313Z", + "shell.execute_reply": "2024-07-09T06:22:27.178807Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1253,10 +1253,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.306217Z", - "iopub.status.busy": "2024-07-09T06:07:13.305912Z", - "iopub.status.idle": "2024-07-09T06:07:13.409689Z", - "shell.execute_reply": "2024-07-09T06:07:13.409121Z" + "iopub.execute_input": "2024-07-09T06:22:27.181419Z", + "iopub.status.busy": "2024-07-09T06:22:27.181072Z", + "iopub.status.idle": "2024-07-09T06:22:27.284684Z", + "shell.execute_reply": "2024-07-09T06:22:27.284186Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1297,10 +1297,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.411687Z", - "iopub.status.busy": "2024-07-09T06:07:13.411504Z", - "iopub.status.idle": "2024-07-09T06:07:13.513457Z", - "shell.execute_reply": "2024-07-09T06:07:13.512985Z" + "iopub.execute_input": "2024-07-09T06:22:27.286639Z", + "iopub.status.busy": "2024-07-09T06:22:27.286466Z", + "iopub.status.idle": "2024-07-09T06:22:27.389984Z", + "shell.execute_reply": "2024-07-09T06:22:27.389427Z" } }, "outputs": [ @@ -1348,10 +1348,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:13.515573Z", - "iopub.status.busy": "2024-07-09T06:07:13.515239Z", - "iopub.status.idle": "2024-07-09T06:07:13.518447Z", - "shell.execute_reply": "2024-07-09T06:07:13.517912Z" + "iopub.execute_input": "2024-07-09T06:22:27.392223Z", + "iopub.status.busy": "2024-07-09T06:22:27.391882Z", + "iopub.status.idle": "2024-07-09T06:22:27.395109Z", + "shell.execute_reply": "2024-07-09T06:22:27.394562Z" }, "nbsphinx": "hidden" }, @@ -1392,23 +1392,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0449d39929844d5da948a065a35aeafc": { + "030f1aa243f74fa89a56e4a7afd62228": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "0712b5725fb444f6b11533e1aeb7e0d9": { + "0378871c4f2e413ea8000172dab79c64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1461,7 +1463,7 @@ "width": null } }, - "0b47da1d6d3545c9963557edea183fed": { + "07f71655f74d435e83d929c621c5fa4c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1476,31 +1478,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30ef09eb9ae7482faf1bdf6f05e62bbc", + "layout": "IPY_MODEL_a3d79d00b77e420fb3bba762b3d9a0b6", "placeholder": "​", - "style": "IPY_MODEL_194b5e6a002d4e1ea093db6cc3b04171", + "style": "IPY_MODEL_ca119d618680421aa4275a9c3bc6ada4", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" - } - }, - "0fccfd304e924a65b05ce79e773c1b54": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": "label_encoder.txt: 100%" } }, - "123fcf3742424688a13533cede820c84": { + "13ce66a6db5846b19c327782fc330062": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1553,7 +1539,53 @@ "width": null } }, - "13c388d3c4fd49ecb28abaf90751ecde": { + "184d81198c9f44339286502f77c93c88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a962521435da44439fc8023f973b16bb", + "placeholder": "​", + "style": "IPY_MODEL_dce66522f3ac4607beae79e69e93745d", + "tabbable": null, + "tooltip": null, + "value": " 15.9M/15.9M [00:00<00:00, 308MB/s]" + } + }, + "1a71755eaad3434f8376750eb9e21dca": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_678f7e339f5149e181d689627ef3a751", + "placeholder": "​", + "style": "IPY_MODEL_5f7d007ea0b342b4a93dafc5282e07b1", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "1ae5dfdbfc244f20b5e6a0872942a6b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1606,25 +1638,7 @@ "width": null } }, - "194b5e6a002d4e1ea093db6cc3b04171": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "195a6822a9d34059bfa57fa7dc2ea08a": { + "1b0ceb5f33ac4b4db24eb1efc0185a90": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1677,30 +1691,7 @@ "width": null } }, - "20865132107248018abd462fe8cb3cb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2150fa8e732943099d5831902db8f05d", - "placeholder": "​", - "style": "IPY_MODEL_c6bf7d77f5a84f6880ec30d9f0e0221f", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 231MB/s]" - } - }, - "2150fa8e732943099d5831902db8f05d": { + "1bc0bb9f226044e2879bd45c2c9361b8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1744,7 @@ "width": null } }, - "22a24b2c2ee44a4e92a3d4a384dda5fc": { + "2301b773af73470cb4968e5546eedca9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1768,42 +1759,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_54cf50f88da84bffa7c85bfec67a7e76", - "IPY_MODEL_be3b22f2a8d24e5fbc993ff804b948c4", - "IPY_MODEL_f05f7401b7ca48d39ce3f36de43cdf9f" + "IPY_MODEL_7515de987da94ef9a2d5455c30f1c2a5", + "IPY_MODEL_e79c27b29e1c44bf9369d333f8526228", + "IPY_MODEL_184d81198c9f44339286502f77c93c88" ], - "layout": "IPY_MODEL_0712b5725fb444f6b11533e1aeb7e0d9", + "layout": "IPY_MODEL_9d721b1baf0c4e31970159ee84bcb8b1", "tabbable": null, "tooltip": null } }, - "267c1283364b495e946ce40cc2e6c806": { + "2585d650431e4e389f7c2cb8af3ba22a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_615bae4fcc4b4def9e73b5dacc94cbf8", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_637271f5d4814034a20ed354b1562d5f", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "2843461d0fe54d07aa7c7464d5d97e6f": { + "25e28f77411f4b358cd7cb1316e7612d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1856,7 +1837,93 @@ "width": null } }, - "2a17845087ce4fb3bbf3f5361d27da45": { + "2d8898b4bffa4ce2b6f9d1610b45d2d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "30534447f05f4c18b825551758a727d5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_335c2445e0c0490f9984409ca39867c4", + "IPY_MODEL_3a0699a91dd3428f82bdfb374fb55e76", + "IPY_MODEL_b56b7a0332dc4e1c84a140c42ac16890" + ], + "layout": "IPY_MODEL_3ce9242cc785425291f31afd9dfc53a7", + "tabbable": null, + "tooltip": null + } + }, + "3231f300a42b4b8b99131e14ee8de6fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_482e270b3b2347b69272e33a3b7fe67a", + "placeholder": "​", + "style": "IPY_MODEL_4ea3400f8dfa41de89365044c0f8cb8a", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 7.45MB/s]" + } + }, + "335c2445e0c0490f9984409ca39867c4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a63baebd86ae43c990c6edc598a4879b", + "placeholder": "​", + "style": "IPY_MODEL_3cea818f8d7f4614aa0ad2ec7b5348af", + "tabbable": null, + "tooltip": null, + "value": "embedding_model.ckpt: 100%" + } + }, + "3a0699a91dd3428f82bdfb374fb55e76": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1872,17 +1939,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6641399ed52c4fab995e3dc94bbf4259", - "max": 128619.0, + "layout": "IPY_MODEL_eae9e35f11f747b58461317babdc3291", + "max": 16887676.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0449d39929844d5da948a065a35aeafc", + "style": "IPY_MODEL_9eabbbb13d5e47fca4e356bee0501603", "tabbable": null, "tooltip": null, - "value": 128619.0 + "value": 16887676.0 } }, - "2a18010cbd624cd48e9f02d08aaa10b9": { + "3ce9242cc785425291f31afd9dfc53a7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1935,7 +2002,7 @@ "width": null } }, - "2a67df8bf81140f6a7d6468fddb34306": { + "3cea818f8d7f4614aa0ad2ec7b5348af": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1953,7 +2020,7 @@ "text_color": null } }, - "2ec4c5dfe0504a16be106752751957ac": { + "482e270b3b2347b69272e33a3b7fe67a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,113 +2073,67 @@ "width": null } }, - "30ef09eb9ae7482faf1bdf6f05e62bbc": { - "model_module": "@jupyter-widgets/base", + "4c7ed89197a84102acf6416893e2d15b": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ae5dfdbfc244f20b5e6a0872942a6b6", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2d8898b4bffa4ce2b6f9d1610b45d2d5", + "tabbable": null, + "tooltip": null, + "value": 128619.0 + } + }, + "4ea3400f8dfa41de89365044c0f8cb8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a8a38a009f545a8944469f67a622d68": { - "model_module": "@jupyter-widgets/base", + "524d49fe9932444b9e6f4ad40ee2b836": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "3f4b565a51d24d85a9ea442bcfffae19": { + "548b97dd6b2146f6a9d554e5016ead75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2130,60 +2151,7 @@ "text_color": null } }, - "456321c963d040b38655d316d4a4add5": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "4c19af69d62042f9b12a2bd44b9b4160": { + "5977ad08502f404892f9c3a89a020623": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2198,34 +2166,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0b47da1d6d3545c9963557edea183fed", - "IPY_MODEL_267c1283364b495e946ce40cc2e6c806", - "IPY_MODEL_93cddea59dd04f8fa3866059fe250a88" + "IPY_MODEL_1a71755eaad3434f8376750eb9e21dca", + "IPY_MODEL_da2148b68dd645dd98ed41c8058bb817", + "IPY_MODEL_5b76f8ffb6354f24af0b35f6de244350" ], - "layout": "IPY_MODEL_195a6822a9d34059bfa57fa7dc2ea08a", + "layout": "IPY_MODEL_fdbd1eb302114bcc85c0208f1bf7e7db", "tabbable": null, "tooltip": null } }, - "4c64103fc4704d84a0b363bc803074fa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "54cf50f88da84bffa7c85bfec67a7e76": { + "5b76f8ffb6354f24af0b35f6de244350": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2240,84 +2190,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2843461d0fe54d07aa7c7464d5d97e6f", + "layout": "IPY_MODEL_25e28f77411f4b358cd7cb1316e7612d", "placeholder": "​", - "style": "IPY_MODEL_4c64103fc4704d84a0b363bc803074fa", + "style": "IPY_MODEL_6398640d39d74482925348e964477d91", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 3.20k/3.20k [00:00<00:00, 799kB/s]" } }, - "615bae4fcc4b4def9e73b5dacc94cbf8": { - "model_module": "@jupyter-widgets/base", + "5f7d007ea0b342b4a93dafc5282e07b1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "637271f5d4814034a20ed354b1562d5f": { + "6398640d39d74482925348e964477d91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "63942fab728d45799bfc2eefc024a7a4": { + "678f7e339f5149e181d689627ef3a751": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2370,7 +2287,7 @@ "width": null } }, - "6641399ed52c4fab995e3dc94bbf4259": { + "6a19b58ad5ac45dab732546ed937e951": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2423,33 +2340,30 @@ "width": null } }, - "70187e117f274ba7be34ee5a90087194": { + "6c14a6e7fa0341e0bc7d1edfb2b2dfcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3a8a38a009f545a8944469f67a622d68", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7e11e60943fb4e2a9e9b14f836623a69", + "layout": "IPY_MODEL_9b8c3f610f304fec945b68d663dc6f1f", + "placeholder": "​", + "style": "IPY_MODEL_548b97dd6b2146f6a9d554e5016ead75", "tabbable": null, "tooltip": null, - "value": 3201.0 + "value": "hyperparams.yaml: 100%" } }, - "788e28d38e2c400babcb0d314178f05f": { + "7515de987da94ef9a2d5455c30f1c2a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2464,31 +2378,63 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b7ea56d4b66546b38668ab8d80c352bd", + "layout": "IPY_MODEL_1b0ceb5f33ac4b4db24eb1efc0185a90", "placeholder": "​", - "style": "IPY_MODEL_c90423f88db44167a1af99e50e8c0910", + "style": "IPY_MODEL_030f1aa243f74fa89a56e4a7afd62228", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 783kB/s]" + "value": "classifier.ckpt: 100%" } }, - "7e11e60943fb4e2a9e9b14f836623a69": { + "8cdbf19960b9483e9551e22643732a3c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6c14a6e7fa0341e0bc7d1edfb2b2dfcc", + "IPY_MODEL_e9afc86b1d7747a8a5ffc78856b7be99", + "IPY_MODEL_f72f986090fb419b8286e7286897e414" + ], + "layout": "IPY_MODEL_f39fc7e456254975882ada6d5b90254c", + "tabbable": null, + "tooltip": null } }, - "939e1338c4514c3995a25094689cac39": { + "9234ebf1cac34261acd10dca3480e239": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_07f71655f74d435e83d929c621c5fa4c", + "IPY_MODEL_4c7ed89197a84102acf6416893e2d15b", + "IPY_MODEL_3231f300a42b4b8b99131e14ee8de6fe" + ], + "layout": "IPY_MODEL_6a19b58ad5ac45dab732546ed937e951", + "tabbable": null, + "tooltip": null + } + }, + "9b8c3f610f304fec945b68d663dc6f1f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2541,30 +2487,7 @@ "width": null } }, - "93cddea59dd04f8fa3866059fe250a88": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_97c23900ef8b4bda83e2deb33f286e96", - "placeholder": "​", - "style": "IPY_MODEL_a4ee50184cd04a398f50ea40231b48f5", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 185MB/s]" - } - }, - "97c23900ef8b4bda83e2deb33f286e96": { + "9d721b1baf0c4e31970159ee84bcb8b1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2617,57 +2540,23 @@ "width": null } }, - "a037f28a17554d22ae65d83ae3cb1295": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_63942fab728d45799bfc2eefc024a7a4", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ce1e2432d0004fffb3a515990af2e883", - "tabbable": null, - "tooltip": null, - "value": 15856877.0 - } - }, - "a11ca78e63eb4beeaa82f3e24c7dda66": { + "9eabbbb13d5e47fca4e356bee0501603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_facfb0cddea846c28095adc63697d300", - "IPY_MODEL_2a17845087ce4fb3bbf3f5361d27da45", - "IPY_MODEL_bcf4d70b1b41401ebb167cd30923698e" - ], - "layout": "IPY_MODEL_2a18010cbd624cd48e9f02d08aaa10b9", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a4ee50184cd04a398f50ea40231b48f5": { + "a337d23527c34d92b63a1ecf6707124c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2685,49 +2574,113 @@ "text_color": null } }, - "a4ef0c0a14fa48d5a66728f16010ab81": { - "model_module": "@jupyter-widgets/controls", + "a3d79d00b77e420fb3bba762b3d9a0b6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b24547478f104455bc3f0621eb0ef31d": { - "model_module": "@jupyter-widgets/controls", + "a63baebd86ae43c990c6edc598a4879b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d75488175f804c07a186b79fbdfbb0b9", - "IPY_MODEL_a037f28a17554d22ae65d83ae3cb1295", - "IPY_MODEL_20865132107248018abd462fe8cb3cb6" - ], - "layout": "IPY_MODEL_939e1338c4514c3995a25094689cac39", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "b7ea56d4b66546b38668ab8d80c352bd": { + "a962521435da44439fc8023f973b16bb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2780,7 +2733,7 @@ "width": null } }, - "bcf4d70b1b41401ebb167cd30923698e": { + "b56b7a0332dc4e1c84a140c42ac16890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2795,83 +2748,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_da7d96a45d7249f5857c4b5b6e2f6781", + "layout": "IPY_MODEL_1bc0bb9f226044e2879bd45c2c9361b8", "placeholder": "​", - "style": "IPY_MODEL_f121cf50447e4cd1b84e10660f4c6858", + "style": "IPY_MODEL_f416c4b535bc4e10bf36f83830f8a6fa", "tabbable": null, "tooltip": null, - "value": " 129k/129k [00:00<00:00, 8.45MB/s]" + "value": " 16.9M/16.9M [00:00<00:00, 193MB/s]" } }, - "be3b22f2a8d24e5fbc993ff804b948c4": { + "ca119d618680421aa4275a9c3bc6ada4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c9e3d1ea843b4dd08836724ceb2184ff", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0fccfd304e924a65b05ce79e773c1b54", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c14b346779ea4cb3920d9eef5802fbd6": { + "da2148b68dd645dd98ed41c8058bb817": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e16eb6da1ebc41ca80ca339c7037d837", - "IPY_MODEL_70187e117f274ba7be34ee5a90087194", - "IPY_MODEL_788e28d38e2c400babcb0d314178f05f" - ], - "layout": "IPY_MODEL_13c388d3c4fd49ecb28abaf90751ecde", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e0a6be03adc34387b1154d4540a2cc94", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e7c617a65a6045ee945688614263ebc7", "tabbable": null, - "tooltip": null - } - }, - "c6bf7d77f5a84f6880ec30d9f0e0221f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": 3201.0 } }, - "c90423f88db44167a1af99e50e8c0910": { + "dce66522f3ac4607beae79e69e93745d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2889,7 +2818,7 @@ "text_color": null } }, - "c9e3d1ea843b4dd08836724ceb2184ff": { + "e0a6be03adc34387b1154d4540a2cc94": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2942,7 +2871,33 @@ "width": null } }, - "ce1e2432d0004fffb3a515990af2e883": { + "e79c27b29e1c44bf9369d333f8526228": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f47e6197a8974dacb497edf4211afa8b", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_524d49fe9932444b9e6f4ad40ee2b836", + "tabbable": null, + "tooltip": null, + "value": 15856877.0 + } + }, + "e7c617a65a6045ee945688614263ebc7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2958,30 +2913,33 @@ "description_width": "" } }, - "d75488175f804c07a186b79fbdfbb0b9": { + "e9afc86b1d7747a8a5ffc78856b7be99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2ec4c5dfe0504a16be106752751957ac", - "placeholder": "​", - "style": "IPY_MODEL_a4ef0c0a14fa48d5a66728f16010ab81", + "layout": "IPY_MODEL_13ce66a6db5846b19c327782fc330062", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2585d650431e4e389f7c2cb8af3ba22a", "tabbable": null, "tooltip": null, - "value": "classifier.ckpt: 100%" + "value": 2041.0 } }, - "da7d96a45d7249f5857c4b5b6e2f6781": { + "eae9e35f11f747b58461317babdc3291": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3034,30 +2992,60 @@ "width": null } }, - "e16eb6da1ebc41ca80ca339c7037d837": { - "model_module": "@jupyter-widgets/controls", + "f39fc7e456254975882ada6d5b90254c": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ee674df35f7341e9a94912143a281079", - "placeholder": "​", - "style": "IPY_MODEL_e5b7443a6873473f92d8003c993c8774", - "tabbable": null, - "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "e5b7443a6873473f92d8003c993c8774": { + "f416c4b535bc4e10bf36f83830f8a6fa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3075,7 +3063,7 @@ "text_color": null } }, - "ee674df35f7341e9a94912143a281079": { + "f47e6197a8974dacb497edf4211afa8b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3128,7 +3116,7 @@ "width": null } }, - "f05f7401b7ca48d39ce3f36de43cdf9f": { + "f72f986090fb419b8286e7286897e414": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3143,53 +3131,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_123fcf3742424688a13533cede820c84", + "layout": "IPY_MODEL_0378871c4f2e413ea8000172dab79c64", "placeholder": "​", - "style": "IPY_MODEL_3f4b565a51d24d85a9ea442bcfffae19", + "style": "IPY_MODEL_a337d23527c34d92b63a1ecf6707124c", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 472kB/s]" + "value": " 2.04k/2.04k [00:00<00:00, 476kB/s]" } }, - "f121cf50447e4cd1b84e10660f4c6858": { - "model_module": "@jupyter-widgets/controls", + "fdbd1eb302114bcc85c0208f1bf7e7db": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "facfb0cddea846c28095adc63697d300": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_456321c963d040b38655d316d4a4add5", - "placeholder": "​", - "style": "IPY_MODEL_2a67df8bf81140f6a7d6468fddb34306", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index b484262ed..687422936 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1291,7 +1291,7 @@

Functionality 3: Save and load Datalab objects

-
+
@@ -1566,7 +1566,7 @@

Functionality 4: Adding a custom IssueManager -{"state": {"54de8bdcfc254280ad482cd4c4ba0ed9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "98ecc16b617a454daf4d29b486be43d2": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d0bd7cf6b2524951ac939fb65399ac64": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_54de8bdcfc254280ad482cd4c4ba0ed9", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_98ecc16b617a454daf4d29b486be43d2", "tabbable": null, "tooltip": null, "value": 132.0}}, "35c38181cf4b4429a72e3b23df75ccbe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fbc6c2a9ffc3454292e17169e84293d9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "55a34ec37114452c9d8c054c182cbc52": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_35c38181cf4b4429a72e3b23df75ccbe", "placeholder": "\u200b", "style": "IPY_MODEL_fbc6c2a9ffc3454292e17169e84293d9", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "7456c78e6a0f4d568c70ed7a6535115d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe301e732a514ec286d6c27d70994344": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "0ca28b9c23f6452c95c38d0043efadcc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7456c78e6a0f4d568c70ed7a6535115d", "placeholder": "\u200b", "style": "IPY_MODEL_fe301e732a514ec286d6c27d70994344", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713017.52\u2007examples/s]"}}, "d5c5823e33414b1f899751731a81a142": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1a2d9de663414b3197830208500bd4c4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_55a34ec37114452c9d8c054c182cbc52", "IPY_MODEL_d0bd7cf6b2524951ac939fb65399ac64", "IPY_MODEL_0ca28b9c23f6452c95c38d0043efadcc"], "layout": "IPY_MODEL_d5c5823e33414b1f899751731a81a142", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"4f663e6b17ca4c42bf50adc567d16ba7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1b9a95ea9570469c89df3c913719453d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ce349bf1dbe749ccb7ed3c31e8593c0e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", "tabbable": null, "tooltip": null, "value": 132.0}}, "110ab4d837414033a320250c8a01f402": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00d78c11cb114efca0b0c49d7e0cb9be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cb3e52e8971843afb00d0a4e915483f5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", "placeholder": "\u200b", "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "53f5526f4be149a09e57d6eddb464297": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f0a497561f9e46278d786855f5eaad3a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9c62609186764ad4b5447a66b1294674": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", "placeholder": "\u200b", "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200713749.43\u2007examples/s]"}}, "39e9da6fa70e44bea4cd6db6fbb2a1b9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "74c24ad981f147efb352816e9dafec11": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", "IPY_MODEL_9c62609186764ad4b5447a66b1294674"], "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index d8c1583bb..73ef9d94b 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:17.104713Z", - "iopub.status.busy": "2024-07-09T06:07:17.104537Z", - "iopub.status.idle": "2024-07-09T06:07:18.265236Z", - "shell.execute_reply": "2024-07-09T06:07:18.264675Z" + "iopub.execute_input": "2024-07-09T06:22:31.204629Z", + "iopub.status.busy": "2024-07-09T06:22:31.204447Z", + "iopub.status.idle": "2024-07-09T06:22:32.372754Z", + "shell.execute_reply": "2024-07-09T06:22:32.372127Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.267865Z", - "iopub.status.busy": "2024-07-09T06:07:18.267429Z", - "iopub.status.idle": "2024-07-09T06:07:18.270517Z", - "shell.execute_reply": "2024-07-09T06:07:18.270070Z" + "iopub.execute_input": "2024-07-09T06:22:32.375331Z", + "iopub.status.busy": "2024-07-09T06:22:32.374890Z", + "iopub.status.idle": "2024-07-09T06:22:32.377978Z", + "shell.execute_reply": "2024-07-09T06:22:32.377441Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.272623Z", - "iopub.status.busy": "2024-07-09T06:07:18.272315Z", - "iopub.status.idle": "2024-07-09T06:07:18.280981Z", - "shell.execute_reply": "2024-07-09T06:07:18.280528Z" + "iopub.execute_input": "2024-07-09T06:22:32.380095Z", + "iopub.status.busy": "2024-07-09T06:22:32.379830Z", + "iopub.status.idle": "2024-07-09T06:22:32.388412Z", + "shell.execute_reply": "2024-07-09T06:22:32.387959Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.282961Z", - "iopub.status.busy": "2024-07-09T06:07:18.282658Z", - "iopub.status.idle": "2024-07-09T06:07:18.287681Z", - "shell.execute_reply": "2024-07-09T06:07:18.287134Z" + "iopub.execute_input": "2024-07-09T06:22:32.390372Z", + "iopub.status.busy": "2024-07-09T06:22:32.390051Z", + "iopub.status.idle": "2024-07-09T06:22:32.394799Z", + "shell.execute_reply": "2024-07-09T06:22:32.394245Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.289696Z", - "iopub.status.busy": "2024-07-09T06:07:18.289396Z", - "iopub.status.idle": "2024-07-09T06:07:18.471428Z", - "shell.execute_reply": "2024-07-09T06:07:18.470899Z" + "iopub.execute_input": "2024-07-09T06:22:32.396873Z", + "iopub.status.busy": "2024-07-09T06:22:32.396576Z", + "iopub.status.idle": "2024-07-09T06:22:32.582697Z", + "shell.execute_reply": "2024-07-09T06:22:32.582077Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.473985Z", - "iopub.status.busy": "2024-07-09T06:07:18.473651Z", - "iopub.status.idle": "2024-07-09T06:07:18.848606Z", - "shell.execute_reply": "2024-07-09T06:07:18.847988Z" + "iopub.execute_input": "2024-07-09T06:22:32.585043Z", + "iopub.status.busy": "2024-07-09T06:22:32.584844Z", + "iopub.status.idle": "2024-07-09T06:22:32.959426Z", + "shell.execute_reply": "2024-07-09T06:22:32.958831Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.850909Z", - "iopub.status.busy": "2024-07-09T06:07:18.850607Z", - "iopub.status.idle": "2024-07-09T06:07:18.874812Z", - "shell.execute_reply": "2024-07-09T06:07:18.874352Z" + "iopub.execute_input": "2024-07-09T06:22:32.961607Z", + "iopub.status.busy": "2024-07-09T06:22:32.961418Z", + "iopub.status.idle": "2024-07-09T06:22:32.984249Z", + "shell.execute_reply": "2024-07-09T06:22:32.983819Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.877306Z", - "iopub.status.busy": "2024-07-09T06:07:18.876942Z", - "iopub.status.idle": "2024-07-09T06:07:18.888512Z", - "shell.execute_reply": "2024-07-09T06:07:18.887949Z" + "iopub.execute_input": "2024-07-09T06:22:32.986453Z", + "iopub.status.busy": "2024-07-09T06:22:32.986022Z", + "iopub.status.idle": "2024-07-09T06:22:32.997152Z", + "shell.execute_reply": "2024-07-09T06:22:32.996629Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:18.890878Z", - "iopub.status.busy": "2024-07-09T06:07:18.890562Z", - "iopub.status.idle": "2024-07-09T06:07:20.924393Z", - "shell.execute_reply": "2024-07-09T06:07:20.923804Z" + "iopub.execute_input": "2024-07-09T06:22:32.999567Z", + "iopub.status.busy": "2024-07-09T06:22:32.999237Z", + "iopub.status.idle": "2024-07-09T06:22:35.072126Z", + "shell.execute_reply": "2024-07-09T06:22:35.071432Z" } }, "outputs": [ @@ -714,10 +714,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.926686Z", - "iopub.status.busy": "2024-07-09T06:07:20.926410Z", - "iopub.status.idle": "2024-07-09T06:07:20.949428Z", - "shell.execute_reply": "2024-07-09T06:07:20.948894Z" + "iopub.execute_input": "2024-07-09T06:22:35.074948Z", + "iopub.status.busy": "2024-07-09T06:22:35.074462Z", + "iopub.status.idle": "2024-07-09T06:22:35.096631Z", + "shell.execute_reply": "2024-07-09T06:22:35.096147Z" } }, "outputs": [ @@ -830,10 +830,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.951661Z", - "iopub.status.busy": "2024-07-09T06:07:20.951461Z", - "iopub.status.idle": "2024-07-09T06:07:20.970546Z", - "shell.execute_reply": "2024-07-09T06:07:20.970043Z" + "iopub.execute_input": "2024-07-09T06:22:35.098742Z", + "iopub.status.busy": "2024-07-09T06:22:35.098472Z", + "iopub.status.idle": "2024-07-09T06:22:35.116671Z", + "shell.execute_reply": "2024-07-09T06:22:35.116210Z" } }, "outputs": [ @@ -937,10 +937,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.972589Z", - "iopub.status.busy": "2024-07-09T06:07:20.972401Z", - "iopub.status.idle": "2024-07-09T06:07:20.987323Z", - "shell.execute_reply": "2024-07-09T06:07:20.986871Z" + "iopub.execute_input": "2024-07-09T06:22:35.118721Z", + "iopub.status.busy": "2024-07-09T06:22:35.118381Z", + "iopub.status.idle": "2024-07-09T06:22:35.132562Z", + "shell.execute_reply": "2024-07-09T06:22:35.132113Z" } }, "outputs": [ @@ -1075,17 +1075,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:20.989414Z", - "iopub.status.busy": "2024-07-09T06:07:20.989082Z", - "iopub.status.idle": "2024-07-09T06:07:21.008745Z", - "shell.execute_reply": "2024-07-09T06:07:21.008145Z" + "iopub.execute_input": "2024-07-09T06:22:35.134629Z", + "iopub.status.busy": "2024-07-09T06:22:35.134293Z", + "iopub.status.idle": "2024-07-09T06:22:35.152969Z", + "shell.execute_reply": "2024-07-09T06:22:35.152458Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1a2d9de663414b3197830208500bd4c4", + "model_id": "74c24ad981f147efb352816e9dafec11", "version_major": 2, "version_minor": 0 }, @@ -1121,10 +1121,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.010907Z", - "iopub.status.busy": "2024-07-09T06:07:21.010568Z", - "iopub.status.idle": "2024-07-09T06:07:21.026290Z", - "shell.execute_reply": "2024-07-09T06:07:21.025716Z" + "iopub.execute_input": "2024-07-09T06:22:35.154841Z", + "iopub.status.busy": "2024-07-09T06:22:35.154670Z", + "iopub.status.idle": "2024-07-09T06:22:35.169134Z", + "shell.execute_reply": "2024-07-09T06:22:35.168685Z" } }, "outputs": [ @@ -1247,10 +1247,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.028755Z", - "iopub.status.busy": "2024-07-09T06:07:21.028398Z", - "iopub.status.idle": "2024-07-09T06:07:21.034384Z", - "shell.execute_reply": "2024-07-09T06:07:21.033940Z" + "iopub.execute_input": "2024-07-09T06:22:35.170991Z", + "iopub.status.busy": "2024-07-09T06:22:35.170807Z", + "iopub.status.idle": "2024-07-09T06:22:35.176614Z", + "shell.execute_reply": "2024-07-09T06:22:35.176098Z" } }, "outputs": [], @@ -1307,10 +1307,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:21.036570Z", - "iopub.status.busy": "2024-07-09T06:07:21.036166Z", - "iopub.status.idle": "2024-07-09T06:07:21.054691Z", - "shell.execute_reply": "2024-07-09T06:07:21.054210Z" + "iopub.execute_input": "2024-07-09T06:22:35.178580Z", + "iopub.status.busy": "2024-07-09T06:22:35.178328Z", + "iopub.status.idle": "2024-07-09T06:22:35.196553Z", + "shell.execute_reply": "2024-07-09T06:22:35.196112Z" } }, "outputs": [ @@ -1447,54 +1447,25 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0ca28b9c23f6452c95c38d0043efadcc": { + "00d78c11cb114efca0b0c49d7e0cb9be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7456c78e6a0f4d568c70ed7a6535115d", - "placeholder": "​", - "style": "IPY_MODEL_fe301e732a514ec286d6c27d70994344", - "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 13017.52 examples/s]" - } - }, - "1a2d9de663414b3197830208500bd4c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_55a34ec37114452c9d8c054c182cbc52", - "IPY_MODEL_d0bd7cf6b2524951ac939fb65399ac64", - "IPY_MODEL_0ca28b9c23f6452c95c38d0043efadcc" - ], - "layout": "IPY_MODEL_d5c5823e33414b1f899751731a81a142", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "35c38181cf4b4429a72e3b23df75ccbe": { + "110ab4d837414033a320250c8a01f402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1547,7 +1518,23 @@ "width": null } }, - "54de8bdcfc254280ad482cd4c4ba0ed9": { + "1b9a95ea9570469c89df3c913719453d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "39e9da6fa70e44bea4cd6db6fbb2a1b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1600,30 +1587,7 @@ "width": null } }, - "55a34ec37114452c9d8c054c182cbc52": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_35c38181cf4b4429a72e3b23df75ccbe", - "placeholder": "​", - "style": "IPY_MODEL_fbc6c2a9ffc3454292e17169e84293d9", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" - } - }, - "7456c78e6a0f4d568c70ed7a6535115d": { + "4f663e6b17ca4c42bf50adc567d16ba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1676,49 +1640,7 @@ "width": null } }, - "98ecc16b617a454daf4d29b486be43d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "d0bd7cf6b2524951ac939fb65399ac64": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_54de8bdcfc254280ad482cd4c4ba0ed9", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_98ecc16b617a454daf4d29b486be43d2", - "tabbable": null, - "tooltip": null, - "value": 132.0 - } - }, - "d5c5823e33414b1f899751731a81a142": { + "53f5526f4be149a09e57d6eddb464297": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1771,25 +1693,103 @@ "width": null } }, - "fbc6c2a9ffc3454292e17169e84293d9": { + "74c24ad981f147efb352816e9dafec11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb3e52e8971843afb00d0a4e915483f5", + "IPY_MODEL_ce349bf1dbe749ccb7ed3c31e8593c0e", + "IPY_MODEL_9c62609186764ad4b5447a66b1294674" + ], + "layout": "IPY_MODEL_39e9da6fa70e44bea4cd6db6fbb2a1b9", + "tabbable": null, + "tooltip": null + } + }, + "9c62609186764ad4b5447a66b1294674": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_53f5526f4be149a09e57d6eddb464297", + "placeholder": "​", + "style": "IPY_MODEL_f0a497561f9e46278d786855f5eaad3a", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 13749.43 examples/s]" + } + }, + "cb3e52e8971843afb00d0a4e915483f5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_110ab4d837414033a320250c8a01f402", + "placeholder": "​", + "style": "IPY_MODEL_00d78c11cb114efca0b0c49d7e0cb9be", + "tabbable": null, + "tooltip": null, + "value": "Saving the dataset (1/1 shards): 100%" + } + }, + "ce349bf1dbe749ccb7ed3c31e8593c0e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4f663e6b17ca4c42bf50adc567d16ba7", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1b9a95ea9570469c89df3c913719453d", + "tabbable": null, + "tooltip": null, + "value": 132.0 } }, - "fe301e732a514ec286d6c27d70994344": { + "f0a497561f9e46278d786855f5eaad3a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index 94ecb8df7..ce137ebae 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:23.680348Z", - "iopub.status.busy": "2024-07-09T06:07:23.679942Z", - "iopub.status.idle": "2024-07-09T06:07:24.840040Z", - "shell.execute_reply": "2024-07-09T06:07:24.839424Z" + "iopub.execute_input": "2024-07-09T06:22:37.993129Z", + "iopub.status.busy": "2024-07-09T06:22:37.992951Z", + "iopub.status.idle": "2024-07-09T06:22:39.161512Z", + "shell.execute_reply": "2024-07-09T06:22:39.160977Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.842750Z", - "iopub.status.busy": "2024-07-09T06:07:24.842323Z", - "iopub.status.idle": "2024-07-09T06:07:24.845243Z", - "shell.execute_reply": "2024-07-09T06:07:24.844804Z" + "iopub.execute_input": "2024-07-09T06:22:39.163953Z", + "iopub.status.busy": "2024-07-09T06:22:39.163675Z", + "iopub.status.idle": "2024-07-09T06:22:39.167013Z", + "shell.execute_reply": "2024-07-09T06:22:39.166442Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.847453Z", - "iopub.status.busy": "2024-07-09T06:07:24.847128Z", - "iopub.status.idle": "2024-07-09T06:07:24.855930Z", - "shell.execute_reply": "2024-07-09T06:07:24.855505Z" + "iopub.execute_input": "2024-07-09T06:22:39.169075Z", + "iopub.status.busy": "2024-07-09T06:22:39.168891Z", + "iopub.status.idle": "2024-07-09T06:22:39.178038Z", + "shell.execute_reply": "2024-07-09T06:22:39.177537Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.857929Z", - "iopub.status.busy": "2024-07-09T06:07:24.857595Z", - "iopub.status.idle": "2024-07-09T06:07:24.862104Z", - "shell.execute_reply": "2024-07-09T06:07:24.861695Z" + "iopub.execute_input": "2024-07-09T06:22:39.180209Z", + "iopub.status.busy": "2024-07-09T06:22:39.179770Z", + "iopub.status.idle": "2024-07-09T06:22:39.185024Z", + "shell.execute_reply": "2024-07-09T06:22:39.184472Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:24.864146Z", - "iopub.status.busy": "2024-07-09T06:07:24.863823Z", - "iopub.status.idle": "2024-07-09T06:07:25.049949Z", - "shell.execute_reply": "2024-07-09T06:07:25.049442Z" + "iopub.execute_input": "2024-07-09T06:22:39.187067Z", + "iopub.status.busy": "2024-07-09T06:22:39.186875Z", + "iopub.status.idle": "2024-07-09T06:22:39.372545Z", + "shell.execute_reply": "2024-07-09T06:22:39.372057Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.052422Z", - "iopub.status.busy": "2024-07-09T06:07:25.052091Z", - "iopub.status.idle": "2024-07-09T06:07:25.423667Z", - "shell.execute_reply": "2024-07-09T06:07:25.423083Z" + "iopub.execute_input": "2024-07-09T06:22:39.375070Z", + "iopub.status.busy": "2024-07-09T06:22:39.374695Z", + "iopub.status.idle": "2024-07-09T06:22:39.746103Z", + "shell.execute_reply": "2024-07-09T06:22:39.745532Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.426087Z", - "iopub.status.busy": "2024-07-09T06:07:25.425645Z", - "iopub.status.idle": "2024-07-09T06:07:25.428553Z", - "shell.execute_reply": "2024-07-09T06:07:25.428031Z" + "iopub.execute_input": "2024-07-09T06:22:39.748354Z", + "iopub.status.busy": "2024-07-09T06:22:39.747948Z", + "iopub.status.idle": "2024-07-09T06:22:39.750850Z", + "shell.execute_reply": "2024-07-09T06:22:39.750287Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.430704Z", - "iopub.status.busy": "2024-07-09T06:07:25.430393Z", - "iopub.status.idle": "2024-07-09T06:07:25.464950Z", - "shell.execute_reply": "2024-07-09T06:07:25.464317Z" + "iopub.execute_input": "2024-07-09T06:22:39.752967Z", + "iopub.status.busy": "2024-07-09T06:22:39.752650Z", + "iopub.status.idle": "2024-07-09T06:22:39.786581Z", + "shell.execute_reply": "2024-07-09T06:22:39.786005Z" } }, "outputs": [], @@ -638,10 +638,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:25.467723Z", - "iopub.status.busy": "2024-07-09T06:07:25.467379Z", - "iopub.status.idle": "2024-07-09T06:07:27.572119Z", - "shell.execute_reply": "2024-07-09T06:07:27.571460Z" + "iopub.execute_input": "2024-07-09T06:22:39.788986Z", + "iopub.status.busy": "2024-07-09T06:22:39.788562Z", + "iopub.status.idle": "2024-07-09T06:22:41.833490Z", + "shell.execute_reply": "2024-07-09T06:22:41.832904Z" } }, "outputs": [ @@ -685,10 +685,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.574872Z", - "iopub.status.busy": "2024-07-09T06:07:27.574321Z", - "iopub.status.idle": "2024-07-09T06:07:27.593711Z", - "shell.execute_reply": "2024-07-09T06:07:27.593214Z" + "iopub.execute_input": "2024-07-09T06:22:41.836099Z", + "iopub.status.busy": "2024-07-09T06:22:41.835607Z", + "iopub.status.idle": "2024-07-09T06:22:41.853902Z", + "shell.execute_reply": "2024-07-09T06:22:41.853447Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.595950Z", - "iopub.status.busy": "2024-07-09T06:07:27.595603Z", - "iopub.status.idle": "2024-07-09T06:07:27.602371Z", - "shell.execute_reply": "2024-07-09T06:07:27.601951Z" + "iopub.execute_input": "2024-07-09T06:22:41.855942Z", + "iopub.status.busy": "2024-07-09T06:22:41.855674Z", + "iopub.status.idle": "2024-07-09T06:22:41.862009Z", + "shell.execute_reply": "2024-07-09T06:22:41.861577Z" } }, "outputs": [ @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.604397Z", - "iopub.status.busy": "2024-07-09T06:07:27.604145Z", - "iopub.status.idle": "2024-07-09T06:07:27.609899Z", - "shell.execute_reply": "2024-07-09T06:07:27.609354Z" + "iopub.execute_input": "2024-07-09T06:22:41.864048Z", + "iopub.status.busy": "2024-07-09T06:22:41.863746Z", + "iopub.status.idle": "2024-07-09T06:22:41.869497Z", + "shell.execute_reply": "2024-07-09T06:22:41.869049Z" } }, "outputs": [ @@ -1005,10 +1005,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.612024Z", - "iopub.status.busy": "2024-07-09T06:07:27.611722Z", - "iopub.status.idle": "2024-07-09T06:07:27.622179Z", - "shell.execute_reply": "2024-07-09T06:07:27.621619Z" + "iopub.execute_input": "2024-07-09T06:22:41.871525Z", + "iopub.status.busy": "2024-07-09T06:22:41.871197Z", + "iopub.status.idle": "2024-07-09T06:22:41.881508Z", + "shell.execute_reply": "2024-07-09T06:22:41.881073Z" } }, "outputs": [ @@ -1200,10 +1200,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.624399Z", - "iopub.status.busy": "2024-07-09T06:07:27.624005Z", - "iopub.status.idle": "2024-07-09T06:07:27.633408Z", - "shell.execute_reply": "2024-07-09T06:07:27.632881Z" + "iopub.execute_input": "2024-07-09T06:22:41.883405Z", + "iopub.status.busy": "2024-07-09T06:22:41.883229Z", + "iopub.status.idle": "2024-07-09T06:22:41.892315Z", + "shell.execute_reply": "2024-07-09T06:22:41.891876Z" } }, "outputs": [ @@ -1319,10 +1319,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.635347Z", - "iopub.status.busy": "2024-07-09T06:07:27.635173Z", - "iopub.status.idle": "2024-07-09T06:07:27.642142Z", - "shell.execute_reply": "2024-07-09T06:07:27.641593Z" + "iopub.execute_input": "2024-07-09T06:22:41.894287Z", + "iopub.status.busy": "2024-07-09T06:22:41.894105Z", + "iopub.status.idle": "2024-07-09T06:22:41.900998Z", + "shell.execute_reply": "2024-07-09T06:22:41.900471Z" }, "scrolled": true }, @@ -1447,10 +1447,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.644222Z", - "iopub.status.busy": "2024-07-09T06:07:27.643908Z", - "iopub.status.idle": "2024-07-09T06:07:27.653100Z", - "shell.execute_reply": "2024-07-09T06:07:27.652566Z" + "iopub.execute_input": "2024-07-09T06:22:41.903078Z", + "iopub.status.busy": "2024-07-09T06:22:41.902737Z", + "iopub.status.idle": "2024-07-09T06:22:41.912055Z", + "shell.execute_reply": "2024-07-09T06:22:41.911568Z" } }, "outputs": [ @@ -1553,10 +1553,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:27.655280Z", - "iopub.status.busy": "2024-07-09T06:07:27.654836Z", - "iopub.status.idle": "2024-07-09T06:07:27.669689Z", - "shell.execute_reply": "2024-07-09T06:07:27.669228Z" + "iopub.execute_input": "2024-07-09T06:22:41.914091Z", + "iopub.status.busy": "2024-07-09T06:22:41.913764Z", + "iopub.status.idle": "2024-07-09T06:22:41.929676Z", + "shell.execute_reply": "2024-07-09T06:22:41.929121Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index ed81ecff3..957106402 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -727,49 +727,49 @@

2. Fetch and normalize the Fashion-MNIST dataset

-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+

Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

@@ -1082,7 +1082,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1114,7 +1114,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1146,7 +1146,7 @@

5. Compute out-of-sample predicted probabilities and feature embeddings
-
+
@@ -1937,35 +1937,35 @@

Dark images - dark_score is_dark_issue + dark_score 34848 - 0.203922 True + 0.203922 50270 - 0.204588 True + 0.204588 3936 - 0.213098 True + 0.213098 733 - 0.217686 True + 0.217686 8094 - 0.230118 True + 0.230118 @@ -2115,7 +2115,7 @@

Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index 40dc490de..7643450d8 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:30.416656Z", - "iopub.status.busy": "2024-07-09T06:07:30.416476Z", - "iopub.status.idle": "2024-07-09T06:07:33.393782Z", - "shell.execute_reply": "2024-07-09T06:07:33.393218Z" + "iopub.execute_input": "2024-07-09T06:22:44.582459Z", + "iopub.status.busy": "2024-07-09T06:22:44.582285Z", + "iopub.status.idle": "2024-07-09T06:22:47.462723Z", + "shell.execute_reply": "2024-07-09T06:22:47.462156Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.396250Z", - "iopub.status.busy": "2024-07-09T06:07:33.395935Z", - "iopub.status.idle": "2024-07-09T06:07:33.399661Z", - "shell.execute_reply": "2024-07-09T06:07:33.399144Z" + "iopub.execute_input": "2024-07-09T06:22:47.465496Z", + "iopub.status.busy": "2024-07-09T06:22:47.464992Z", + "iopub.status.idle": "2024-07-09T06:22:47.468609Z", + "shell.execute_reply": "2024-07-09T06:22:47.468171Z" } }, "outputs": [], @@ -152,17 +152,17 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:33.401587Z", - "iopub.status.busy": "2024-07-09T06:07:33.401397Z", - "iopub.status.idle": "2024-07-09T06:07:45.169276Z", - "shell.execute_reply": "2024-07-09T06:07:45.168703Z" + "iopub.execute_input": "2024-07-09T06:22:47.470675Z", + "iopub.status.busy": "2024-07-09T06:22:47.470354Z", + "iopub.status.idle": "2024-07-09T06:22:59.043271Z", + "shell.execute_reply": "2024-07-09T06:22:59.042771Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "dd4605541b5149cd9d1ad54f08320d7b", + "model_id": "06dcb12093be456cb352de6ce861659f", "version_major": 2, "version_minor": 0 }, @@ -176,7 +176,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "196041f8fc64445d902757f8bc0461b5", + "model_id": "790aee9705fa42f79ce0f8850fc28992", "version_major": 2, "version_minor": 0 }, @@ -190,7 +190,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2bba1ab8083649288982f535f9854291", + "model_id": "215e8fef035f4d37a36a704de452b760", "version_major": 2, "version_minor": 0 }, @@ -204,7 +204,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3b922928633d406296c2f7f4a11c363c", + "model_id": "e74d0f623f774aa5a1554c10228f1654", "version_major": 2, "version_minor": 0 }, @@ -218,7 +218,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "65b19b2b747d4d5281997036b3117f72", + "model_id": "f85257acca8547839184b5f056eac10e", "version_major": 2, "version_minor": 0 }, @@ -232,7 +232,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1d5400b6588744d192a0e142668a676a", + "model_id": "e9632dad724b4651afed5367d50e22c4", "version_major": 2, "version_minor": 0 }, @@ -246,7 +246,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c8d5e4eb0eb4406c95b64e0c2246c01b", + "model_id": "f9b540e1a55a4d16ad1b5a90f594ee47", "version_major": 2, "version_minor": 0 }, @@ -260,7 +260,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c4b166c77d384273866541f5ccf30e60", + "model_id": "22b9600afaf14805a96622049f592034", "version_major": 2, "version_minor": 0 }, @@ -302,10 +302,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.171479Z", - "iopub.status.busy": "2024-07-09T06:07:45.171278Z", - "iopub.status.idle": "2024-07-09T06:07:45.175170Z", - "shell.execute_reply": "2024-07-09T06:07:45.174637Z" + "iopub.execute_input": "2024-07-09T06:22:59.045398Z", + "iopub.status.busy": "2024-07-09T06:22:59.045117Z", + "iopub.status.idle": "2024-07-09T06:22:59.048809Z", + "shell.execute_reply": "2024-07-09T06:22:59.048389Z" } }, "outputs": [ @@ -330,17 +330,17 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:45.177179Z", - "iopub.status.busy": "2024-07-09T06:07:45.176847Z", - "iopub.status.idle": "2024-07-09T06:07:56.743400Z", - "shell.execute_reply": "2024-07-09T06:07:56.742700Z" + "iopub.execute_input": "2024-07-09T06:22:59.050786Z", + "iopub.status.busy": "2024-07-09T06:22:59.050475Z", + "iopub.status.idle": "2024-07-09T06:23:10.550360Z", + "shell.execute_reply": "2024-07-09T06:23:10.549830Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2e4710c1045041a7af16f0ee012a9646", + "model_id": "4dc3098204c343329173882a90c17240", "version_major": 2, "version_minor": 0 }, @@ -378,10 +378,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:07:56.746074Z", - "iopub.status.busy": "2024-07-09T06:07:56.745817Z", - "iopub.status.idle": "2024-07-09T06:08:15.057962Z", - "shell.execute_reply": "2024-07-09T06:08:15.057324Z" + "iopub.execute_input": "2024-07-09T06:23:10.553016Z", + "iopub.status.busy": "2024-07-09T06:23:10.552718Z", + "iopub.status.idle": "2024-07-09T06:23:28.623727Z", + "shell.execute_reply": "2024-07-09T06:23:28.623090Z" } }, "outputs": [], @@ -414,10 +414,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.060710Z", - "iopub.status.busy": "2024-07-09T06:08:15.060486Z", - "iopub.status.idle": "2024-07-09T06:08:15.065482Z", - "shell.execute_reply": "2024-07-09T06:08:15.065002Z" + "iopub.execute_input": "2024-07-09T06:23:28.626614Z", + "iopub.status.busy": "2024-07-09T06:23:28.626243Z", + "iopub.status.idle": "2024-07-09T06:23:28.631908Z", + "shell.execute_reply": "2024-07-09T06:23:28.631461Z" } }, "outputs": [], @@ -455,10 +455,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.067609Z", - "iopub.status.busy": "2024-07-09T06:08:15.067259Z", - "iopub.status.idle": "2024-07-09T06:08:15.071263Z", - "shell.execute_reply": "2024-07-09T06:08:15.070812Z" + "iopub.execute_input": "2024-07-09T06:23:28.633766Z", + "iopub.status.busy": "2024-07-09T06:23:28.633587Z", + "iopub.status.idle": "2024-07-09T06:23:28.637822Z", + "shell.execute_reply": "2024-07-09T06:23:28.637289Z" }, "nbsphinx": "hidden" }, @@ -595,10 +595,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.073356Z", - "iopub.status.busy": "2024-07-09T06:08:15.072969Z", - "iopub.status.idle": "2024-07-09T06:08:15.081979Z", - "shell.execute_reply": "2024-07-09T06:08:15.081440Z" + "iopub.execute_input": "2024-07-09T06:23:28.640034Z", + "iopub.status.busy": "2024-07-09T06:23:28.639708Z", + "iopub.status.idle": "2024-07-09T06:23:28.648404Z", + "shell.execute_reply": "2024-07-09T06:23:28.647970Z" }, "nbsphinx": "hidden" }, @@ -723,10 +723,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.083945Z", - "iopub.status.busy": "2024-07-09T06:08:15.083772Z", - "iopub.status.idle": "2024-07-09T06:08:15.110709Z", - "shell.execute_reply": "2024-07-09T06:08:15.110077Z" + "iopub.execute_input": "2024-07-09T06:23:28.650474Z", + "iopub.status.busy": "2024-07-09T06:23:28.650156Z", + "iopub.status.idle": "2024-07-09T06:23:28.677896Z", + "shell.execute_reply": "2024-07-09T06:23:28.677458Z" } }, "outputs": [], @@ -763,10 +763,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:15.113263Z", - "iopub.status.busy": "2024-07-09T06:08:15.112899Z", - "iopub.status.idle": "2024-07-09T06:08:48.018465Z", - "shell.execute_reply": "2024-07-09T06:08:48.017880Z" + "iopub.execute_input": "2024-07-09T06:23:28.679944Z", + "iopub.status.busy": "2024-07-09T06:23:28.679632Z", + "iopub.status.idle": "2024-07-09T06:24:00.730609Z", + "shell.execute_reply": "2024-07-09T06:24:00.729889Z" } }, "outputs": [ @@ -782,21 +782,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.828\n" + "epoch: 1 loss: 0.482 test acc: 86.720 time_taken: 4.752\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.643\n", + "epoch: 2 loss: 0.329 test acc: 88.195 time_taken: 4.660\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6b554b734a6e4e3d9fb6f3ff5d0940c2", + "model_id": "2d1e313f048a4f3a8de23b028b96ac30", "version_major": 2, "version_minor": 0 }, @@ -817,7 +817,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "7b6edba21c23485a95c2c8d3aab79786", + "model_id": "2fc5c7705c8a411696033cba51b98414", "version_major": 2, "version_minor": 0 }, @@ -840,21 +840,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.772\n" + "epoch: 1 loss: 0.493 test acc: 87.060 time_taken: 4.676\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.618\n", + "epoch: 2 loss: 0.330 test acc: 88.505 time_taken: 4.516\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "891956e6cdf34df29d3132aa55b99817", + "model_id": "2441a271713941f58f78b8fda33f4ac6", "version_major": 2, "version_minor": 0 }, @@ -875,7 +875,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "39f435f587fd4607806141736054b6df", + "model_id": "3e2096230a38431c8485c89adab185e8", "version_major": 2, "version_minor": 0 }, @@ -898,21 +898,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.851\n" + "epoch: 1 loss: 0.476 test acc: 86.340 time_taken: 4.705\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ - "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.922\n", + "epoch: 2 loss: 0.328 test acc: 86.310 time_taken: 4.374\n", "Computing feature embeddings ...\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "62c3c15d8c074e74816c7b8d0fba7678", + "model_id": "e85162633bd84b0c8065890dd355820b", "version_major": 2, "version_minor": 0 }, @@ -933,7 +933,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a6cbd56b47e648efb6391b45895679f0", + "model_id": "b587a2728e9640d8a9ca1b92d99742fb", "version_major": 2, "version_minor": 0 }, @@ -1012,10 +1012,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.020876Z", - "iopub.status.busy": "2024-07-09T06:08:48.020635Z", - "iopub.status.idle": "2024-07-09T06:08:48.034832Z", - "shell.execute_reply": "2024-07-09T06:08:48.034409Z" + "iopub.execute_input": "2024-07-09T06:24:00.733259Z", + "iopub.status.busy": "2024-07-09T06:24:00.732863Z", + "iopub.status.idle": "2024-07-09T06:24:00.747461Z", + "shell.execute_reply": "2024-07-09T06:24:00.746842Z" } }, "outputs": [], @@ -1040,10 +1040,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.036973Z", - "iopub.status.busy": "2024-07-09T06:08:48.036566Z", - "iopub.status.idle": "2024-07-09T06:08:48.515541Z", - "shell.execute_reply": "2024-07-09T06:08:48.514904Z" + "iopub.execute_input": "2024-07-09T06:24:00.750028Z", + "iopub.status.busy": "2024-07-09T06:24:00.749413Z", + "iopub.status.idle": "2024-07-09T06:24:01.220584Z", + "shell.execute_reply": "2024-07-09T06:24:01.220037Z" } }, "outputs": [], @@ -1063,10 +1063,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:08:48.518205Z", - "iopub.status.busy": "2024-07-09T06:08:48.518003Z", - "iopub.status.idle": "2024-07-09T06:10:24.891504Z", - "shell.execute_reply": "2024-07-09T06:10:24.890865Z" + "iopub.execute_input": "2024-07-09T06:24:01.222996Z", + "iopub.status.busy": "2024-07-09T06:24:01.222634Z", + "iopub.status.idle": "2024-07-09T06:25:37.104449Z", + "shell.execute_reply": "2024-07-09T06:25:37.103860Z" } }, "outputs": [ @@ -1105,7 +1105,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e1e3abfce0184ef19c5c108ae494316b", + "model_id": "6a90dd6a6a2443a98bde0d45de0efdde", "version_major": 2, "version_minor": 0 }, @@ -1144,10 +1144,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:24.894040Z", - "iopub.status.busy": "2024-07-09T06:10:24.893621Z", - "iopub.status.idle": "2024-07-09T06:10:25.338187Z", - "shell.execute_reply": "2024-07-09T06:10:25.337650Z" + "iopub.execute_input": "2024-07-09T06:25:37.106884Z", + "iopub.status.busy": "2024-07-09T06:25:37.106446Z", + "iopub.status.idle": "2024-07-09T06:25:37.555548Z", + "shell.execute_reply": "2024-07-09T06:25:37.554986Z" } }, "outputs": [ @@ -1293,10 +1293,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.341041Z", - "iopub.status.busy": "2024-07-09T06:10:25.340571Z", - "iopub.status.idle": "2024-07-09T06:10:25.402746Z", - "shell.execute_reply": "2024-07-09T06:10:25.402151Z" + "iopub.execute_input": "2024-07-09T06:25:37.558429Z", + "iopub.status.busy": "2024-07-09T06:25:37.557965Z", + "iopub.status.idle": "2024-07-09T06:25:37.620886Z", + "shell.execute_reply": "2024-07-09T06:25:37.620404Z" } }, "outputs": [ @@ -1400,10 +1400,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.405453Z", - "iopub.status.busy": "2024-07-09T06:10:25.405037Z", - "iopub.status.idle": "2024-07-09T06:10:25.413465Z", - "shell.execute_reply": "2024-07-09T06:10:25.413028Z" + "iopub.execute_input": "2024-07-09T06:25:37.623179Z", + "iopub.status.busy": "2024-07-09T06:25:37.622863Z", + "iopub.status.idle": "2024-07-09T06:25:37.632155Z", + "shell.execute_reply": "2024-07-09T06:25:37.631723Z" } }, "outputs": [ @@ -1533,10 +1533,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.415625Z", - "iopub.status.busy": "2024-07-09T06:10:25.415232Z", - "iopub.status.idle": "2024-07-09T06:10:25.419976Z", - "shell.execute_reply": "2024-07-09T06:10:25.419444Z" + "iopub.execute_input": "2024-07-09T06:25:37.634200Z", + "iopub.status.busy": "2024-07-09T06:25:37.633914Z", + "iopub.status.idle": "2024-07-09T06:25:37.638563Z", + "shell.execute_reply": "2024-07-09T06:25:37.638106Z" }, "nbsphinx": "hidden" }, @@ -1582,10 +1582,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.421866Z", - "iopub.status.busy": "2024-07-09T06:10:25.421691Z", - "iopub.status.idle": "2024-07-09T06:10:25.930458Z", - "shell.execute_reply": "2024-07-09T06:10:25.929824Z" + "iopub.execute_input": "2024-07-09T06:25:37.640623Z", + "iopub.status.busy": "2024-07-09T06:25:37.640325Z", + "iopub.status.idle": "2024-07-09T06:25:38.149293Z", + "shell.execute_reply": "2024-07-09T06:25:38.148744Z" } }, "outputs": [ @@ -1620,10 +1620,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.932930Z", - "iopub.status.busy": "2024-07-09T06:10:25.932562Z", - "iopub.status.idle": "2024-07-09T06:10:25.941214Z", - "shell.execute_reply": "2024-07-09T06:10:25.940770Z" + "iopub.execute_input": "2024-07-09T06:25:38.151396Z", + "iopub.status.busy": "2024-07-09T06:25:38.151125Z", + "iopub.status.idle": "2024-07-09T06:25:38.159704Z", + "shell.execute_reply": "2024-07-09T06:25:38.159246Z" } }, "outputs": [ @@ -1790,10 +1790,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.943232Z", - "iopub.status.busy": "2024-07-09T06:10:25.942999Z", - "iopub.status.idle": "2024-07-09T06:10:25.950325Z", - "shell.execute_reply": "2024-07-09T06:10:25.949767Z" + "iopub.execute_input": "2024-07-09T06:25:38.161796Z", + "iopub.status.busy": "2024-07-09T06:25:38.161530Z", + "iopub.status.idle": "2024-07-09T06:25:38.168634Z", + "shell.execute_reply": "2024-07-09T06:25:38.168169Z" }, "nbsphinx": "hidden" }, @@ -1869,10 +1869,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:25.952276Z", - "iopub.status.busy": "2024-07-09T06:10:25.952098Z", - "iopub.status.idle": "2024-07-09T06:10:26.694503Z", - "shell.execute_reply": "2024-07-09T06:10:26.693947Z" + "iopub.execute_input": "2024-07-09T06:25:38.170647Z", + "iopub.status.busy": "2024-07-09T06:25:38.170331Z", + "iopub.status.idle": "2024-07-09T06:25:38.896076Z", + "shell.execute_reply": "2024-07-09T06:25:38.895490Z" } }, "outputs": [ @@ -1909,10 +1909,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.697087Z", - "iopub.status.busy": "2024-07-09T06:10:26.696892Z", - "iopub.status.idle": "2024-07-09T06:10:26.712697Z", - "shell.execute_reply": "2024-07-09T06:10:26.712178Z" + "iopub.execute_input": "2024-07-09T06:25:38.898304Z", + "iopub.status.busy": "2024-07-09T06:25:38.897893Z", + "iopub.status.idle": "2024-07-09T06:25:38.913887Z", + "shell.execute_reply": "2024-07-09T06:25:38.913315Z" } }, "outputs": [ @@ -2069,10 +2069,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.714884Z", - "iopub.status.busy": "2024-07-09T06:10:26.714554Z", - "iopub.status.idle": "2024-07-09T06:10:26.720001Z", - "shell.execute_reply": "2024-07-09T06:10:26.719578Z" + "iopub.execute_input": "2024-07-09T06:25:38.916427Z", + "iopub.status.busy": "2024-07-09T06:25:38.916013Z", + "iopub.status.idle": "2024-07-09T06:25:38.921757Z", + "shell.execute_reply": "2024-07-09T06:25:38.921224Z" }, "nbsphinx": "hidden" }, @@ -2117,10 +2117,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:26.721955Z", - "iopub.status.busy": "2024-07-09T06:10:26.721631Z", - "iopub.status.idle": "2024-07-09T06:10:27.109651Z", - "shell.execute_reply": "2024-07-09T06:10:27.109044Z" + "iopub.execute_input": "2024-07-09T06:25:38.924037Z", + "iopub.status.busy": "2024-07-09T06:25:38.923722Z", + "iopub.status.idle": "2024-07-09T06:25:39.389398Z", + "shell.execute_reply": "2024-07-09T06:25:39.388872Z" } }, "outputs": [ @@ -2202,10 +2202,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.112053Z", - "iopub.status.busy": "2024-07-09T06:10:27.111865Z", - "iopub.status.idle": "2024-07-09T06:10:27.121489Z", - "shell.execute_reply": "2024-07-09T06:10:27.120936Z" + "iopub.execute_input": "2024-07-09T06:25:39.392016Z", + "iopub.status.busy": "2024-07-09T06:25:39.391689Z", + "iopub.status.idle": "2024-07-09T06:25:39.400809Z", + "shell.execute_reply": "2024-07-09T06:25:39.400322Z" } }, "outputs": [ @@ -2230,47 +2230,47 @@ " \n", " \n", " \n", - " dark_score\n", " is_dark_issue\n", + " dark_score\n", " \n", " \n", " \n", " \n", " 34848\n", - " 0.203922\n", " True\n", + " 0.203922\n", " \n", " \n", " 50270\n", - " 0.204588\n", " True\n", + " 0.204588\n", " \n", " \n", " 3936\n", - " 0.213098\n", " True\n", + " 0.213098\n", " \n", " \n", " 733\n", - " 0.217686\n", " True\n", + " 0.217686\n", " \n", " \n", " 8094\n", - " 0.230118\n", " True\n", + " 0.230118\n", " \n", " \n", "\n", "

" ], "text/plain": [ - " dark_score is_dark_issue\n", - "34848 0.203922 True\n", - "50270 0.204588 True\n", - "3936 0.213098 True\n", - "733 0.217686 True\n", - "8094 0.230118 True" + " is_dark_issue dark_score\n", + "34848 True 0.203922\n", + "50270 True 0.204588\n", + "3936 True 0.213098\n", + "733 True 0.217686\n", + "8094 True 0.230118" ] }, "execution_count": 26, @@ -2333,10 +2333,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.123756Z", - "iopub.status.busy": "2024-07-09T06:10:27.123578Z", - "iopub.status.idle": "2024-07-09T06:10:27.128344Z", - "shell.execute_reply": "2024-07-09T06:10:27.127804Z" + "iopub.execute_input": "2024-07-09T06:25:39.403252Z", + "iopub.status.busy": "2024-07-09T06:25:39.402932Z", + "iopub.status.idle": "2024-07-09T06:25:39.408523Z", + "shell.execute_reply": "2024-07-09T06:25:39.408038Z" }, "nbsphinx": "hidden" }, @@ -2373,10 +2373,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.130472Z", - "iopub.status.busy": "2024-07-09T06:10:27.130300Z", - "iopub.status.idle": "2024-07-09T06:10:27.307299Z", - "shell.execute_reply": "2024-07-09T06:10:27.306712Z" + "iopub.execute_input": "2024-07-09T06:25:39.410787Z", + "iopub.status.busy": "2024-07-09T06:25:39.410472Z", + "iopub.status.idle": "2024-07-09T06:25:39.613099Z", + "shell.execute_reply": "2024-07-09T06:25:39.612513Z" } }, "outputs": [ @@ -2418,10 +2418,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.309453Z", - "iopub.status.busy": "2024-07-09T06:10:27.309267Z", - "iopub.status.idle": "2024-07-09T06:10:27.317287Z", - "shell.execute_reply": "2024-07-09T06:10:27.316770Z" + "iopub.execute_input": "2024-07-09T06:25:39.615178Z", + "iopub.status.busy": "2024-07-09T06:25:39.615000Z", + "iopub.status.idle": "2024-07-09T06:25:39.623056Z", + "shell.execute_reply": "2024-07-09T06:25:39.622584Z" } }, "outputs": [ @@ -2507,10 +2507,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.319255Z", - "iopub.status.busy": "2024-07-09T06:10:27.319003Z", - "iopub.status.idle": "2024-07-09T06:10:27.489162Z", - "shell.execute_reply": "2024-07-09T06:10:27.488581Z" + "iopub.execute_input": "2024-07-09T06:25:39.624851Z", + "iopub.status.busy": "2024-07-09T06:25:39.624680Z", + "iopub.status.idle": "2024-07-09T06:25:39.818392Z", + "shell.execute_reply": "2024-07-09T06:25:39.817872Z" } }, "outputs": [ @@ -2550,10 +2550,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:27.491411Z", - "iopub.status.busy": "2024-07-09T06:10:27.491227Z", - "iopub.status.idle": "2024-07-09T06:10:27.495468Z", - "shell.execute_reply": "2024-07-09T06:10:27.494923Z" + "iopub.execute_input": "2024-07-09T06:25:39.820461Z", + "iopub.status.busy": "2024-07-09T06:25:39.820284Z", + "iopub.status.idle": "2024-07-09T06:25:39.824833Z", + "shell.execute_reply": "2024-07-09T06:25:39.824377Z" }, "nbsphinx": "hidden" }, @@ -2590,7 +2590,43 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00bb56c3f68a4c468fa0c17bd9c4777a": { + "0048ce4822394612977d54522f371396": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "03645e2db82a48cea591a8ecc43409ac": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "048da9b24b0844fdaaadce1da85d3915": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2643,7 +2679,72 @@ "width": null } }, - "00d54377b2e443bdb88c0393deaac935": { + "04cca25384c24b1c94d911de385adc2e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7175568282174c17aabd5b48f20140b2", + "placeholder": "​", + "style": "IPY_MODEL_803df58ad8f246a7aa7af05b01bbbdd2", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "0640dc756fe54e39ba89546a15f279be": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "06dcb12093be456cb352de6ce861659f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8381331e81c54cd79cb929ba488eab91", + "IPY_MODEL_a81bc963e07b4ca2a4b8dde6b946165b", + "IPY_MODEL_4886dc2baffe47ecb690143c953f17a9" + ], + "layout": "IPY_MODEL_fd9234c25dae4c37a35f1e4d52af48c6", + "tabbable": null, + "tooltip": null + } + }, + "07de4e87697443a892880c15d1e511c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2696,30 +2797,23 @@ "width": null } }, - "01d6ba701f1e47b693b47938240dfc44": { + "086f6f5b94bf449da8bf7c1157f5c8a3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2f4eb9a8fc2a49139695cf9c6270a915", - "placeholder": "​", - "style": "IPY_MODEL_dc13e0ad81f143a2b5d4c0a44532f5b5", - "tabbable": null, - "tooltip": null, - "value": " 4/4 [00:00<00:00, 1312.46it/s]" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "01ecc56aeeab431f9b9070473e2195df": { + "0a5df6da0ddb43b7937c82e97c6d8d54": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2772,33 +2866,7 @@ "width": null } }, - "03823f9501e94f56beacf1613576e9dc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132dc7af6bdb48ac9a6f0c3fd813002f", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b5f09acaac394bb5bdceb2dc492585cb", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "04be2e19fc3542cba1d0cb7b9b407a95": { + "0b18d70977e84a5b881906cb08d32a0b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2816,7 +2884,60 @@ "text_color": null } }, - "069041277d62430c89d63c6ea9627b6a": { + "0b3fb420b49940f589e153c0d5c3fdec": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0d1066339f76479d8d58e5ae35748f5b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2831,15 +2952,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e416714bbcb4438b9179a39662ae3c9d", + "layout": "IPY_MODEL_15c58bf8ec2c41c58fdc7ce58a27b6fd", "placeholder": "​", - "style": "IPY_MODEL_5c28da92a87748afb024889018deb170", + "style": "IPY_MODEL_5a7bae3cefc94a02b58e9ad0e52aacfa", "tabbable": null, "tooltip": null, - "value": " 29.5k/29.5k [00:00<00:00, 4.37MB/s]" + "value": "Downloading data: 100%" } }, - "075db8536d174c2c9ea47cd94e70d981": { + "13c0b9289c5e4e8f92a21c0307aae6db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2857,7 +2978,7 @@ "text_color": null } }, - "0f8c591a5a474389ba8bdbce5f559954": { + "140978469fad46c2b6b98809eddb12e7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2910,23 +3031,30 @@ "width": null } }, - "131b0789bcf143a599cbd6e57b98a768": { + "1524351aaa084a11ad505c11404bdbea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8df85e649d6248f69af1b8b2c06dc535", + "placeholder": "​", + "style": "IPY_MODEL_2b0a6e80cee24c8d92776690977c796c", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 60.34it/s]" } }, - "132dc7af6bdb48ac9a6f0c3fd813002f": { + "15c58bf8ec2c41c58fdc7ce58a27b6fd": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2979,30 +3107,7 @@ "width": null } }, - "1347b08ce056434db43829c852acae6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_df1f220280f9444e97bb1f2206036724", - "placeholder": "​", - "style": "IPY_MODEL_228decf3fc7b4b14998553b0f2546e6d", - "tabbable": null, - "tooltip": null, - "value": " 26.4M/26.4M [00:00<00:00, 107MB/s]" - } - }, - "1706e87bbedf4666b19fb67afd605807": { + "160801910dde40a3bc9f92bb4e901944": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3055,7 +3160,23 @@ "width": null } }, - "17bfd66f1c9b453f99645c87eb6daec1": { + "19246b6d91f14aaa9f10d7cb83049531": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "19a410fe62c9469fbbfdb218f3a51fc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3070,55 +3191,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c2fc5097f7a2449695b74f340b163dbd", + "layout": "IPY_MODEL_508d1420c3244c5c83b9ed16155ada6e", "placeholder": "​", - "style": "IPY_MODEL_d596fca544e54787848bb610c63e3218", + "style": "IPY_MODEL_336fcd5623114b3099304ef7c8d0fd99", "tabbable": null, "tooltip": null, - "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + "value": " 4/4 [00:00<00:00, 1277.68it/s]" } }, - "18c247743d574b23859f998162e74050": { + "1a69c5c720624a26a9ef7b1cf11811fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "196041f8fc64445d902757f8bc0461b5": { + "1a70726215b842018678da6d06100009": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9a72ec9f2e6549f79a8b592fdf22dc2e", - "IPY_MODEL_a9cebeca318244728411d7a1bbbcfdcd", - "IPY_MODEL_55bf2248b3bc475c842bccc8c8152be0" - ], - "layout": "IPY_MODEL_cb4004f3b5e94f01b3f04c2f61489f80", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "19d308a458ec4a08b9d2bad00f5870f3": { + "1c78106bc0d64791b1920a0bba595880": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3171,47 +3286,7 @@ "width": null } }, - "1bc1f27f582a448a8c9266309f30be75": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "1d5400b6588744d192a0e142668a676a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c3da49dd6970428a9727fd888d6a07ee", - "IPY_MODEL_ebf23d88069d459aae84207ff5363fab", - "IPY_MODEL_17bfd66f1c9b453f99645c87eb6daec1" - ], - "layout": "IPY_MODEL_4ebecbf20fe3449fba89b686ed581905", - "tabbable": null, - "tooltip": null - } - }, - "1df9db75114848a59f7fdd0ce91a687a": { + "1d30818e74e74811938c25e51402dba7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3264,96 +3339,46 @@ "width": null } }, - "21206f0ccea44b46b11d0821d3cdadbe": { + "1e43c58cbb0d4962913d5ebbcdf1554a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2eb285ef00d8424b940fcd52e171abf0", + "placeholder": "​", + "style": "IPY_MODEL_d5a9c110896c475face60d8f33b9046c", + "tabbable": null, + "tooltip": null, + "value": "Map (num_proc=4): 100%" } }, - "228decf3fc7b4b14998553b0f2546e6d": { + "1f62a32153e44d988bd8265c95d6522b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "240c2ebe5dc54104a1f10d985ffba975": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "bar_color": null, + "description_width": "" } }, - "2449bbbcd46a43e6aae3c8afbb81bdb3": { + "209c42932bea4cfc866adc42d1e0bc34": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3371,7 +3396,7 @@ "text_color": null } }, - "2574510c0f7f417e8dfc009e4994bec3": { + "20a3b73248e646e4993c7afc88dc3bb7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3386,74 +3411,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6ea5cb47ef6f4603b0653421aab46523", + "layout": "IPY_MODEL_9954def9bc864f319508e65fe36fe98b", "placeholder": "​", - "style": "IPY_MODEL_66c810aedffc439696fd6bacef156446", + "style": "IPY_MODEL_1a69c5c720624a26a9ef7b1cf11811fb", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading data: 100%" } }, - "26b1a5eb544f41938059bcde43ece5ec": { + "215e8fef035f4d37a36a704de452b760": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_1706e87bbedf4666b19fb67afd605807", - "placeholder": "​", - "style": "IPY_MODEL_88cbcf1a55e0425d8c8c3c335d271c37", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e89a1ca0e0b746b0b9349efd7a426e3f", + "IPY_MODEL_5bf0bcb594a046af91590125b69df952", + "IPY_MODEL_4d61ebc6154b44ea91518cfb38cf00b9" + ], + "layout": "IPY_MODEL_7eb94f5f7a9746bfbb719504013c7326", "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.87it/s]" - } - }, - "28443daff12b402baed64f1b5d0fc8e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "28f8261f18b84882ba428c63eace54e3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "29170a403a424dcfacc506b91190a1dc": { + "2183a55cd7d345069c3ac605305b0edb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3471,7 +3461,7 @@ "text_color": null } }, - "298221d0cc1446ce993bdb7c7803efb8": { + "21e26b29d83741a0ac17ca8718fb5ef5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3524,71 +3514,7 @@ "width": null } }, - "2a2dc27f67c34e2982043a2f79c14de3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2bba1ab8083649288982f535f9854291": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7517aec27ff84cf4adb25156adf9883c", - "IPY_MODEL_54c6bc5d398440fe8ad2de672c36b9ae", - "IPY_MODEL_1347b08ce056434db43829c852acae6f" - ], - "layout": "IPY_MODEL_00d54377b2e443bdb88c0393deaac935", - "tabbable": null, - "tooltip": null - } - }, - "2e4710c1045041a7af16f0ee012a9646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b385c56f713245438f036b829b7057eb", - "IPY_MODEL_a9e6164c82aa48da9b7f39e1e8611e10", - "IPY_MODEL_4aaa65f93be449728c2f251b5174dd7d" - ], - "layout": "IPY_MODEL_79d18d37893e49a38abd5c29b0b4f81e", - "tabbable": null, - "tooltip": null - } - }, - "2f4eb9a8fc2a49139695cf9c6270a915": { + "2221768dfac3448cabb0bbf2bb0d5d7c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3641,7 +3567,31 @@ "width": null } }, - "2fa3f38780ca4859b7969d5d2a4fcd61": { + "22b9600afaf14805a96622049f592034": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7d81d5ebb400493cbbee965c4f1d82c3", + "IPY_MODEL_c25be99949354d9b93261eb01cd7f371", + "IPY_MODEL_3f09c19718b949a48059dec191d9df88" + ], + "layout": "IPY_MODEL_2a8e473785f54b5380a3af0bd5ee8ec5", + "tabbable": null, + "tooltip": null + } + }, + "2397a262e2ab4faaa19c65aadd199f4d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3656,15 +3606,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ad393e55e6bf45c8b5e243058a28d53f", + "layout": "IPY_MODEL_7c7a25483bae4f619cfe4afba2815a1e", "placeholder": "​", - "style": "IPY_MODEL_6fb209a0dcd9424dbd5459259cf91e81", + "style": "IPY_MODEL_24343e388fcd48f38c917201d72dce78", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 65.91it/s]" + "value": " 40/40 [00:00<00:00, 66.55it/s]" } }, - "3174d80e40c24cac9b15db890d599220": { + "24133d82571542d193f42c0273b76a7d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3717,91 +3667,67 @@ "width": null } }, - "325cae4479044735a8d7717951188993": { + "24343e388fcd48f38c917201d72dce78": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "33cdba775984444396b1d4c9f0a95c94": { + "2441a271713941f58f78b8fda33f4ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_39a6f7c0982449d28b821be6784720b2", - "max": 4833.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_44680a52cd6e4c6aa0004d8a0bd638a8", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_49f26873e5144310b3a59d54e3402106", + "IPY_MODEL_fe504683f63741bdac7f7f37aacf03d2", + "IPY_MODEL_8c5b91a2c962426c9d74153961b3f44d" + ], + "layout": "IPY_MODEL_b391fb64df85406aa863198b38de27eb", "tabbable": null, - "tooltip": null, - "value": 4833.0 + "tooltip": null } }, - "3522c629e18843719c6dbc2cad7d7fc4": { + "273c6aaed1d14c19893916ddb87297a8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "359b79f7c9b0473b9551b61fbe8b7e7d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e02cdb3570024c49bb96ffcbc8948970", - "max": 29515.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6feb8a8c3d3a4938bea5e24915a122fb", - "tabbable": null, - "tooltip": null, - "value": 29515.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "368cc0e1d6734409878e33ca4d54012a": { + "2a8e473785f54b5380a3af0bd5ee8ec5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3854,7 +3780,49 @@ "width": null } }, - "38b582305d03499a81383d2c820015ba": { + "2b0a6e80cee24c8d92776690977c796c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2d1e313f048a4f3a8de23b028b96ac30": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_f01a831193cb480fa8538ccac1625826", + "IPY_MODEL_7c16646bae234611b7eed4f389c43a78", + "IPY_MODEL_1524351aaa084a11ad505c11404bdbea" + ], + "layout": "IPY_MODEL_5e63e2472a434921a76445a39db78557", + "tabbable": null, + "tooltip": null + } + }, + "2eb285ef00d8424b940fcd52e171abf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3907,7 +3875,31 @@ "width": null } }, - "39a6f7c0982449d28b821be6784720b2": { + "2fc5c7705c8a411696033cba51b98414": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_380f5576d14c4aa3957661b21a817720", + "IPY_MODEL_c5e5cf9a26c0498cbbbc47b2b513a358", + "IPY_MODEL_67bcc9c1c8ee40d6910452f187311cd2" + ], + "layout": "IPY_MODEL_512f0fdef9fd429cad8c5f4ed2059739", + "tabbable": null, + "tooltip": null + } + }, + "3352d2afb83f411eb34ef57cd4914610": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3960,31 +3952,7 @@ "width": null } }, - "39f435f587fd4607806141736054b6df": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9e1e3e01b912477595f0702fa3d3043b", - "IPY_MODEL_be3f3fec721448b1942e5f66a28630e9", - "IPY_MODEL_2fa3f38780ca4859b7969d5d2a4fcd61" - ], - "layout": "IPY_MODEL_3174d80e40c24cac9b15db890d599220", - "tabbable": null, - "tooltip": null - } - }, - "3b6fd5946d154ca3b3c1477ecd5510ab": { + "336fcd5623114b3099304ef7c8d0fd99": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4002,31 +3970,7 @@ "text_color": null } }, - "3b922928633d406296c2f7f4a11c363c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cd5289f0713644e7a085dd0fa5a5b4a7", - "IPY_MODEL_359b79f7c9b0473b9551b61fbe8b7e7d", - "IPY_MODEL_069041277d62430c89d63c6ea9627b6a" - ], - "layout": "IPY_MODEL_6a1e82417b0d4e5bb80cf02543cd79ff", - "tabbable": null, - "tooltip": null - } - }, - "3bf0b89a3d92407d832df29196d61ea2": { + "3382045b67e54a7092879295b3f663f8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4079,7 +4023,7 @@ "width": null } }, - "3cc740083d8443cba7eb914038225918": { + "345c5ca93fa94badbbf86dcc2fde77a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4094,33 +4038,31 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4b6286c3ea93414bb16571506e25d347", + "layout": "IPY_MODEL_408df73b367a48808418e0ac16815aef", "placeholder": "​", - "style": "IPY_MODEL_eb2f621f64a84dc8bd2155d241bd5e62", + "style": "IPY_MODEL_fd5d6bff1fad4857abafef9b11b3dfe4", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.56it/s]" + "value": " 40/40 [00:00<00:00, 60.26it/s]" } }, - "3e69f9cf29d34cc381b10a6789979acf": { + "36e9f11e672e4c928d6b86537f21d20f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "426a8afc214b479baaeb9e8377e0f0d4": { + "380f5576d14c4aa3957661b21a817720": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4135,57 +4077,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1df9db75114848a59f7fdd0ce91a687a", + "layout": "IPY_MODEL_3a15e0a1dbb8487daf29b7db56d34511", "placeholder": "​", - "style": "IPY_MODEL_21206f0ccea44b46b11d0821d3cdadbe", + "style": "IPY_MODEL_b0b21430f5b9446195933039b4632b6f", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:07<00:00, 8649.10 examples/s]" + "value": "100%" } }, - "44680a52cd6e4c6aa0004d8a0bd638a8": { + "3956333acd4649dd8a66f905633d9a1e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "44f00a50f1674a53a847ced00a1a1aa8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d4aae17914634179ba6ea992729761fb", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_18c247743d574b23859f998162e74050", - "tabbable": null, - "tooltip": null, - "value": 60000.0 + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "470825afc5e34409afa12f9805c6eba9": { + "3a15e0a1dbb8487daf29b7db56d34511": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4238,25 +4156,7 @@ "width": null } }, - "49cd0886c40048d5b78db2aa719fc1d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4aaa65f93be449728c2f251b5174dd7d": { + "3a97aab207204e0fb9a0b492587021ad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4271,54 +4171,83 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bcec722d627145cf96d7bad0f67e25d9", + "layout": "IPY_MODEL_a8ef0954dcca4870a833eda0e973e2a0", "placeholder": "​", - "style": "IPY_MODEL_8a076d7eb59e4537abfac89fa37372e4", + "style": "IPY_MODEL_6a37073f2b7d4c349bb87cb4719c587d", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 4855.77 examples/s]" + "value": "Downloading data: 100%" } }, - "4ab3adf0bd104266a806b7d828f8ca0b": { + "3c579cf673fd400b97b03f32b9b95e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "4b257b19650e432a91a32e404b137423": { + "3cf5000751a1413faba426291a215dff": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8c6d8c2c52594f15b9ce9a2fff3b28d0", - "placeholder": "​", - "style": "IPY_MODEL_d5b1e2ede532485f989cdd9654c0c392", + "layout": "IPY_MODEL_a035588db59040fda6d47042d64418a5", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8995f1250ad74a90bfc13b5eff00a2fd", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 29515.0 + } + }, + "3e2096230a38431c8485c89adab185e8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_5970145c544541c3a0c064690e3b8bc8", + "IPY_MODEL_dde263477419437a9af2ca03171dadcd", + "IPY_MODEL_2397a262e2ab4faaa19c65aadd199f4d" + ], + "layout": "IPY_MODEL_634d98e457d644a884fc562b0b5d877b", + "tabbable": null, + "tooltip": null } }, - "4b27bedd5f134f52a7334e3638e784cb": { + "3e9e0a7872664289907ea9b2a0c0f428": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4371,8 +4300,31 @@ "width": null } }, - "4b6286c3ea93414bb16571506e25d347": { - "model_module": "@jupyter-widgets/base", + "3f09c19718b949a48059dec191d9df88": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b6ef56fd6db2466da0273fed8540bed9", + "placeholder": "​", + "style": "IPY_MODEL_5edfca35fc1e45d7850bbe3d5ac2afb4", + "tabbable": null, + "tooltip": null, + "value": " 10000/10000 [00:01<00:00, 8732.57 examples/s]" + } + }, + "3f14c7dcb14b4ff9b9a6110a6ebeea9a": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { @@ -4424,7 +4376,23 @@ "width": null } }, - "4c10d499b1454a9db990b1eee7d30416": { + "3faa0e46f82e4e81b929be6c700311ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "408df73b367a48808418e0ac16815aef": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4477,7 +4445,7 @@ "width": null } }, - "4ebecbf20fe3449fba89b686ed581905": { + "436dcfd1d6524d58997ebd20abd27ac3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4530,7 +4498,67 @@ "width": null } }, - "50962242a0be4c5fb1f19bd9ba3796a1": { + "440697a08c6346efa46be2fb03bac8e0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4586a50b001c47b39290a335d19b949d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0a5df6da0ddb43b7937c82e97c6d8d54", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1a70726215b842018678da6d06100009", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "4803cfdca0f84916a50f60b8c4611a48": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "48054868536d4802a306884dbdf93ced": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -4546,7 +4574,100 @@ "description_width": "" } }, - "50b772c22a484ec39d88b6aca3ce2b03": { + "4886dc2baffe47ecb690143c953f17a9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_21e26b29d83741a0ac17ca8718fb5ef5", + "placeholder": "​", + "style": "IPY_MODEL_0048ce4822394612977d54522f371396", + "tabbable": null, + "tooltip": null, + "value": " 4.83k/4.83k [00:00<00:00, 627kB/s]" + } + }, + "49f26873e5144310b3a59d54e3402106": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3382045b67e54a7092879295b3f663f8", + "placeholder": "​", + "style": "IPY_MODEL_dc05e2e419574abb89ddec85c5fcc81d", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "4d61ebc6154b44ea91518cfb38cf00b9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c670dd237db04ca9a6e63e4d35cecdb4", + "placeholder": "​", + "style": "IPY_MODEL_0b18d70977e84a5b881906cb08d32a0b", + "tabbable": null, + "tooltip": null, + "value": " 26.4M/26.4M [00:00<00:00, 105MB/s]" + } + }, + "4dc3098204c343329173882a90c17240": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1e43c58cbb0d4962913d5ebbcdf1554a", + "IPY_MODEL_6968618e0c5047b4ace24b3be9d82b40", + "IPY_MODEL_5522e860260648818409cb45e8e8fe97" + ], + "layout": "IPY_MODEL_d83e3a00a6514bd7867d7bbbe2edf9f5", + "tabbable": null, + "tooltip": null + } + }, + "508d1420c3244c5c83b9ed16155ada6e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4599,7 +4720,7 @@ "width": null } }, - "52ea11b6adb8407e88b4de65546300dd": { + "512f0fdef9fd429cad8c5f4ed2059739": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4652,7 +4773,7 @@ "width": null } }, - "54c6bc5d398440fe8ad2de672c36b9ae": { + "51598d19ee6b4333a63b1d6da5fa14e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4668,40 +4789,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_01ecc56aeeab431f9b9070473e2195df", - "max": 26421880.0, + "layout": "IPY_MODEL_a7643f32743c4af6897aa249c9d0be2f", + "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3522c629e18843719c6dbc2cad7d7fc4", - "tabbable": null, - "tooltip": null, - "value": 26421880.0 - } - }, - "55bf2248b3bc475c842bccc8c8152be0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_58285b3b0ec3462d94bb77a7c7b43914", - "placeholder": "​", - "style": "IPY_MODEL_b8a9635845a942c4b071429b568defb1", + "style": "IPY_MODEL_36e9f11e672e4c928d6b86537f21d20f", "tabbable": null, "tooltip": null, - "value": " 8.85k/8.85k [00:00<00:00, 1.39MB/s]" + "value": 60000.0 } }, - "57b1914593884597ab649943b81cf1e8": { + "517e9a88dd474cac8c7f7723d261a5fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4754,7 +4852,56 @@ "width": null } }, - "581b0a844bed446d8fcd2fd92a517bb6": { + "5522e860260648818409cb45e8e8fe97": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d5aee2c22e48477b9f398e4ad03d9e34", + "placeholder": "​", + "style": "IPY_MODEL_dd31c22f11524a368f9eb1cd18be16f2", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:11<00:00, 7326.12 examples/s]" + } + }, + "5789650eb64d4dbab1f8c667a5fd4cf6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ed9503bde9bc41e0912e3c94c2a43266", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_3faa0e46f82e4e81b929be6c700311ef", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "59346cab1ea9483584b6020a911d0be8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4807,86 +4954,30 @@ "width": null } }, - "58285b3b0ec3462d94bb77a7c7b43914": { - "model_module": "@jupyter-widgets/base", + "5970145c544541c3a0c064690e3b8bc8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "5aa1f846986f48738dc22ad6b5fc5eb9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e6d9becff77b42d59be635fa6580a8e8", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_325cae4479044735a8d7717951188993", + "layout": "IPY_MODEL_6c31a58fa1bb416c8d82c1038eab5edc", + "placeholder": "​", + "style": "IPY_MODEL_9266dd3df82b430c88bf828066284aab", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": "100%" } }, - "5c28da92a87748afb024889018deb170": { + "5a7bae3cefc94a02b58e9ad0e52aacfa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4904,60 +4995,33 @@ "text_color": null } }, - "5f5ef63b6a614a69883bfa94a9302743": { - "model_module": "@jupyter-widgets/base", + "5bf0bcb594a046af91590125b69df952": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9d2d50b86148485fb3e3884e2b2bbf34", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6cdfc2ba48ab4f3a9a18b3b28c17641a", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 } }, - "609338d8355747b9bd1491ce89b327f5": { + "5d4e96503b8040e196dd68f00001b30a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5010,31 +5074,23 @@ "width": null } }, - "62c3c15d8c074e74816c7b8d0fba7678": { + "5dcfa0777e6540998053e4a29b29b806": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_df585fd875034d5cae08c4684ad20c2f", - "IPY_MODEL_ff5dd94e778e4a3a9a4f34a8b29844b2", - "IPY_MODEL_3cc740083d8443cba7eb914038225918" - ], - "layout": "IPY_MODEL_891a944220b3422db752100ab9244125", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "630337ea4da741c9ae70a52fa0e78a29": { + "5e63e2472a434921a76445a39db78557": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5087,31 +5143,33 @@ "width": null } }, - "65b19b2b747d4d5281997036b3117f72": { + "5ea8be39dce64842a42fe020b19fc090": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_71842d6d22e64009a0383929004a685e", - "IPY_MODEL_ec65d1696272499aae2176b681d4abeb", - "IPY_MODEL_873b3e16fd5c47d1ac1a455bab6f19c9" - ], - "layout": "IPY_MODEL_c5b34df732014977a42409332881088e", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6f537f948c654bed919b428785993db0", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_76b1d6ca14ca4c4d962e620e94507dff", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 60000.0 } }, - "66c810aedffc439696fd6bacef156446": { + "5edfca35fc1e45d7850bbe3d5ac2afb4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5129,30 +5187,25 @@ "text_color": null } }, - "678ad1f4e5ca473e8370433fa2fc17b1": { + "612489c1401e49c9bb846fee02bd9f6d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_00bb56c3f68a4c468fa0c17bd9c4777a", - "placeholder": "​", - "style": "IPY_MODEL_9bfbe5f7520948028e0423e3a007e614", - "tabbable": null, - "tooltip": null, - "value": "Computing checksums: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "68f7c63cc3134dab9aed0bfa7436f944": { + "6198d3b6f1a04ba4a34a5d2018c9b155": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5205,7 +5258,7 @@ "width": null } }, - "6a1e82417b0d4e5bb80cf02543cd79ff": { + "634d98e457d644a884fc562b0b5d877b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5258,75 +5311,106 @@ "width": null } }, - "6b5517a69839448db9d026068acf99a3": { + "63ef519d04dc4bbd9c67f568f10d54d8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_82cb4f38207f47d5b97c3ecb4462795c", - "max": 4.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_131b0789bcf143a599cbd6e57b98a768", + "layout": "IPY_MODEL_24133d82571542d193f42c0273b76a7d", + "placeholder": "​", + "style": "IPY_MODEL_801840cd919742fdbe5c2e8072b678cd", "tabbable": null, "tooltip": null, - "value": 4.0 + "value": "Downloading readme: 100%" } }, - "6b554b734a6e4e3d9fb6f3ff5d0940c2": { - "model_module": "@jupyter-widgets/controls", + "66f7cb4e6bf441a09c4dc48e13bc4fc0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2574510c0f7f417e8dfc009e4994bec3", - "IPY_MODEL_5aa1f846986f48738dc22ad6b5fc5eb9", - "IPY_MODEL_26b1a5eb544f41938059bcde43ece5ec" - ], - "layout": "IPY_MODEL_630337ea4da741c9ae70a52fa0e78a29", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "6d04fdcfce89428dbf6319ffe1ba350f": { + "67bcc9c1c8ee40d6910452f187311cd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa87a07117a74232955cb6e2e8b66aa9", + "placeholder": "​", + "style": "IPY_MODEL_3c579cf673fd400b97b03f32b9b95e1d", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 61.84it/s]" } }, - "6d5c548246bf4bdbb636d3a3766345a4": { + "6968618e0c5047b4ace24b3be9d82b40": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5342,17 +5426,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_733bc7ecc3ea4fc398ecd2611d214af7", + "layout": "IPY_MODEL_59346cab1ea9483584b6020a911d0be8", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_1bc1f27f582a448a8c9266309f30be75", + "style": "IPY_MODEL_4803cfdca0f84916a50f60b8c4611a48", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "6e6489c700d54df69ff90b573c906911": { + "6a0d54aeee9e43a2a6613a32708b583c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5405,65 +5489,12 @@ "width": null } }, - "6ea5cb47ef6f4603b0653421aab46523": { - "model_module": "@jupyter-widgets/base", + "6a37073f2b7d4c349bb87cb4719c587d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6fb209a0dcd9424dbd5459259cf91e81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, @@ -5476,46 +5507,31 @@ "text_color": null } }, - "6feb8a8c3d3a4938bea5e24915a122fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "71842d6d22e64009a0383929004a685e": { + "6a90dd6a6a2443a98bde0d45de0efdde": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68f7c63cc3134dab9aed0bfa7436f944", - "placeholder": "​", - "style": "IPY_MODEL_bf849ce1955e49498468867578cb2b82", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_702d10c13f464c7f9144c3ec519a43d5", + "IPY_MODEL_51598d19ee6b4333a63b1d6da5fa14e0", + "IPY_MODEL_f8b91b2b5043498da2181511d46d09c8" + ], + "layout": "IPY_MODEL_6ff8decb43474cec8270bc1aef096a09", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "721e1e458b6f49229779a9de4609ca92": { + "6c31a58fa1bb416c8d82c1038eab5edc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5568,7 +5584,7 @@ "width": null } }, - "733bc7ecc3ea4fc398ecd2611d214af7": { + "6cd8c1cd5f2447968f787deb71aa5bd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5621,30 +5637,7 @@ "width": null } }, - "7517aec27ff84cf4adb25156adf9883c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c436f7262e954289901a6f4e89035f4d", - "placeholder": "​", - "style": "IPY_MODEL_92f6dc8906c04997862913bc427ad476", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" - } - }, - "7556d3f58c814407862942b3f781e8a6": { + "6cdfc2ba48ab4f3a9a18b3b28c17641a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5660,7 +5653,7 @@ "description_width": "" } }, - "77ba2f60a09d41d3a6e43c6821ec0634": { + "6f537f948c654bed919b428785993db0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5713,7 +5706,7 @@ "width": null } }, - "7816d15cde184da3b4900d3062e666d2": { + "6ff8decb43474cec8270bc1aef096a09": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5766,25 +5759,30 @@ "width": null } }, - "79c09ae007724b7da175f15e77c939b5": { + "702d10c13f464c7f9144c3ec519a43d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bc0cfa74fd9b478baa3776548265f98f", + "placeholder": "​", + "style": "IPY_MODEL_273c6aaed1d14c19893916ddb87297a8", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "79d18d37893e49a38abd5c29b0b4f81e": { + "7175568282174c17aabd5b48f20140b2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5837,7 +5835,91 @@ "width": null } }, - "79e3577f86234a258c9acd26c706e0ff": { + "76b1d6ca14ca4c4d962e620e94507dff": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "76d4d52a162a40a6aad6c51613675dd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "790aee9705fa42f79ce0f8850fc28992": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_63ef519d04dc4bbd9c67f568f10d54d8", + "IPY_MODEL_7dbb1c566226438c82092b5954494254", + "IPY_MODEL_91cb9b53980c47cd817c545014defd09" + ], + "layout": "IPY_MODEL_9fa40d4368164452af5dec4576e541a7", + "tabbable": null, + "tooltip": null + } + }, + "7c16646bae234611b7eed4f389c43a78": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9afd660dbeb04470a375320dc78c044c", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_48054868536d4802a306884dbdf93ced", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "7c7a25483bae4f619cfe4afba2815a1e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5890,31 +5972,23 @@ "width": null } }, - "7b6edba21c23485a95c2c8d3aab79786": { + "7d3d1214cad84f609b2ae65551813ff8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ba73c157fdb94c65b92dba1069f61646", - "IPY_MODEL_81c0397a4d694cb2b7b9202a67b12054", - "IPY_MODEL_a07c4d7451e740a3b7cfc737ab615ac9" - ], - "layout": "IPY_MODEL_be7e225c537c47daaef5f0ac239d1f05", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "80c62a5efa2b42ce85de10d4f9638e15": { + "7d81d5ebb400493cbbee965c4f1d82c3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5929,33 +6003,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ed87086cfa9c41729602000b60ca20f5", + "layout": "IPY_MODEL_f74501f2cd3a424a9fd976bc8add6990", "placeholder": "​", - "style": "IPY_MODEL_a262c4ae9287449fa95c34bde946bb1d", + "style": "IPY_MODEL_8689ad17b83c46c1ab297ec243208f64", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.48it/s]" - } - }, - "81af3bb4d3be46abb3e8fec013b0ab4c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating test split: 100%" } }, - "81c0397a4d694cb2b7b9202a67b12054": { + "7dbb1c566226438c82092b5954494254": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -5971,17 +6027,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_470825afc5e34409afa12f9805c6eba9", - "max": 40.0, + "layout": "IPY_MODEL_6cd8c1cd5f2447968f787deb71aa5bd8", + "max": 8845.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_4ab3adf0bd104266a806b7d828f8ca0b", + "style": "IPY_MODEL_e73b799b5ff64804a99810863c6f0533", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 8845.0 } }, - "8253cf2e395646f0a170750f8c426d62": { + "7eb94f5f7a9746bfbb719504013c7326": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6034,83 +6090,59 @@ "width": null } }, - "82cb4f38207f47d5b97c3ecb4462795c": { - "model_module": "@jupyter-widgets/base", + "801840cd919742fdbe5c2e8072b678cd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "833c213f3dfb4616b0ac1c52e439ec3e": { + "803df58ad8f246a7aa7af05b01bbbdd2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ff23c9d5761b436eb1d73a55e8f32ea8", - "placeholder": "​", - "style": "IPY_MODEL_8dfdad83c03f4aa08bc19fe37e73bb03", - "tabbable": null, - "tooltip": null, - "value": "Generating test split: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "805ea7e6fe75453dab92e83969f8fe93": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "873b3e16fd5c47d1ac1a455bab6f19c9": { + "82fc78533dbc46d08a781919716d2335": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6125,57 +6157,38 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f5ef63b6a614a69883bfa94a9302743", + "layout": "IPY_MODEL_5d4e96503b8040e196dd68f00001b30a", "placeholder": "​", - "style": "IPY_MODEL_075db8536d174c2c9ea47cd94e70d981", + "style": "IPY_MODEL_0640dc756fe54e39ba89546a15f279be", "tabbable": null, "tooltip": null, - "value": " 4.42M/4.42M [00:00<00:00, 68.4MB/s]" - } - }, - "88cbcf1a55e0425d8c8c3c335d271c37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": "Generating train split: 100%" } }, - "891956e6cdf34df29d3132aa55b99817": { + "8381331e81c54cd79cb929ba488eab91": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_4b257b19650e432a91a32e404b137423", - "IPY_MODEL_cf2c1748546e4ac4918f44c9de22b1d4", - "IPY_MODEL_a9fbbe85922f431a91157ec285ca35be" - ], - "layout": "IPY_MODEL_9608c18d1d874f2a9e8d6ff6a53ac7ef", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_048da9b24b0844fdaaadce1da85d3915", + "placeholder": "​", + "style": "IPY_MODEL_612489c1401e49c9bb846fee02bd9f6d", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "Downloading builder script: 100%" } }, - "891a944220b3422db752100ab9244125": { + "85ab7c6aa7b341d69b9dc923ebdfa7c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6228,7 +6241,25 @@ "width": null } }, - "89b3cf05a743439f91b59abfd6f0b25b": { + "8689ad17b83c46c1ab297ec243208f64": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "8739c6ff8d994ba4be0b2287de3e0173": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6281,7 +6312,7 @@ "width": null } }, - "8a076d7eb59e4537abfac89fa37372e4": { + "888473885a6149dd8b3df8549f631e20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6299,7 +6330,23 @@ "text_color": null } }, - "8bdc65fac0044ed3a719c0c1889ba9d6": { + "8995f1250ad74a90bfc13b5eff00a2fd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "8acff64b052e48dc9e676ca2f1f20446": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6315,7 +6362,30 @@ "description_width": "" } }, - "8c6d8c2c52594f15b9ce9a2fff3b28d0": { + "8c5b91a2c962426c9d74153961b3f44d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e9e0a7872664289907ea9b2a0c0f428", + "placeholder": "​", + "style": "IPY_MODEL_888473885a6149dd8b3df8549f631e20", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.73it/s]" + } + }, + "8df85e649d6248f69af1b8b2c06dc535": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6368,79 +6438,7 @@ "width": null } }, - "8dfdad83c03f4aa08bc19fe37e73bb03": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "8fc9906f7a0341708627692f8489b35b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "92f6dc8906c04997862913bc427ad476": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "95485d5b8522435ea8f08eb2d854a336": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9608c18d1d874f2a9e8d6ff6a53ac7ef": { + "9141cd35031b41548bc5618a17448a0e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6493,23 +6491,7 @@ "width": null } }, - "999494066dab42bbb02dd47224780e98": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9a72ec9f2e6549f79a8b592fdf22dc2e": { + "91cb9b53980c47cd817c545014defd09": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6524,15 +6506,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d4db64e04ecf453bb64e410e92717688", + "layout": "IPY_MODEL_2221768dfac3448cabb0bbf2bb0d5d7c", "placeholder": "​", - "style": "IPY_MODEL_79c09ae007724b7da175f15e77c939b5", + "style": "IPY_MODEL_2183a55cd7d345069c3ac605305b0edb", "tabbable": null, "tooltip": null, - "value": "Downloading readme: 100%" + "value": " 8.85k/8.85k [00:00<00:00, 1.44MB/s]" } }, - "9bfbe5f7520948028e0423e3a007e614": { + "9266dd3df82b430c88bf828066284aab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -6550,7 +6532,7 @@ "text_color": null } }, - "9e1e3e01b912477595f0702fa3d3043b": { + "94f306cf8ec749379c45de871b0e7b5e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6565,194 +6547,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3bf0b89a3d92407d832df29196d61ea2", + "layout": "IPY_MODEL_a859e810938d4055a256a729f8d389ce", "placeholder": "​", - "style": "IPY_MODEL_81af3bb4d3be46abb3e8fec013b0ab4c", + "style": "IPY_MODEL_bcdb721a85b449cd9eaf7819dc3550dc", "tabbable": null, "tooltip": null, "value": "100%" } }, - "a07c4d7451e740a3b7cfc737ab615ac9": { - "model_module": "@jupyter-widgets/controls", + "9954def9bc864f319508e65fe36fe98b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_609338d8355747b9bd1491ce89b327f5", - "placeholder": "​", - "style": "IPY_MODEL_ac3a48d859e24de49589b8e6fcbf6e56", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 62.12it/s]" - } - }, - "a262c4ae9287449fa95c34bde946bb1d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a6cbd56b47e648efb6391b45895679f0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f3158013f4864de583ab980afefd55af", - "IPY_MODEL_03823f9501e94f56beacf1613576e9dc", - "IPY_MODEL_80c62a5efa2b42ce85de10d4f9638e15" - ], - "layout": "IPY_MODEL_f60c654fb5a84d09a6d3b2f8c92cc4c5", - "tabbable": null, - "tooltip": null - } - }, - "a71dfc2757d34c75bb330c1eb6ea11e6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7816d15cde184da3b4900d3062e666d2", - "placeholder": "​", - "style": "IPY_MODEL_28443daff12b402baed64f1b5d0fc8e2", - "tabbable": null, - "tooltip": null, - "value": "Downloading builder script: 100%" - } - }, - "a84982db10294fb58f5db219f440a873": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a9cebeca318244728411d7a1bbbcfdcd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_57b1914593884597ab649943b81cf1e8", - "max": 8845.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7556d3f58c814407862942b3f781e8a6", - "tabbable": null, - "tooltip": null, - "value": 8845.0 - } - }, - "a9e6164c82aa48da9b7f39e1e8611e10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_19d308a458ec4a08b9d2bad00f5870f3", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cc71489cf7d84e93b1534d74c859b3fa", - "tabbable": null, - "tooltip": null, - "value": 60000.0 - } - }, - "a9fbbe85922f431a91157ec285ca35be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_581b0a844bed446d8fcd2fd92a517bb6", - "placeholder": "​", - "style": "IPY_MODEL_29170a403a424dcfacc506b91190a1dc", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 64.75it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ab7bf39143554ffc9ed393ecb6bf2fe4": { + "9afd660dbeb04470a375320dc78c044c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6805,25 +6661,7 @@ "width": null } }, - "ac3a48d859e24de49589b8e6fcbf6e56": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ad393e55e6bf45c8b5e243058a28d53f": { + "9d2d50b86148485fb3e3884e2b2bbf34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6876,48 +6714,7 @@ "width": null } }, - "b0d76730d77645b19085de29499a07e9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b385c56f713245438f036b829b7057eb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_79e3577f86234a258c9acd26c706e0ff", - "placeholder": "​", - "style": "IPY_MODEL_6d04fdcfce89428dbf6319ffe1ba350f", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "b5f09acaac394bb5bdceb2dc492585cb": { + "9d6e31ccf4dd4aceabf442d6436fa02c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -6933,71 +6730,113 @@ "description_width": "" } }, - "b8a9635845a942c4b071429b568defb1": { - "model_module": "@jupyter-widgets/controls", + "9fa40d4368164452af5dec4576e541a7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ba73c157fdb94c65b92dba1069f61646": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_4b27bedd5f134f52a7334e3638e784cb", - "placeholder": "​", - "style": "IPY_MODEL_c274e57ac9594c50af93c3bf8136acce", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bbe3d4342b5941289611bd0fc91aa385": { - "model_module": "@jupyter-widgets/controls", + "a035588db59040fda6d47042d64418a5": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_298221d0cc1446ce993bdb7c7803efb8", - "placeholder": "​", - "style": "IPY_MODEL_95485d5b8522435ea8f08eb2d854a336", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:01<00:00, 8715.25 examples/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "bc002711d08c4670abb04d02bc7b008a": { + "a07fabe6cd554c4281f06c189fb7f17a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7050,7 +6889,7 @@ "width": null } }, - "bcec722d627145cf96d7bad0f67e25d9": { + "a7643f32743c4af6897aa249c9d0be2f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7103,7 +6942,7 @@ "width": null } }, - "be3f3fec721448b1942e5f66a28630e9": { + "a81bc963e07b4ca2a4b8dde6b946165b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7119,17 +6958,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4c10d499b1454a9db990b1eee7d30416", - "max": 40.0, + "layout": "IPY_MODEL_66f7cb4e6bf441a09c4dc48e13bc4fc0", + "max": 4833.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_8bdc65fac0044ed3a719c0c1889ba9d6", + "style": "IPY_MODEL_086f6f5b94bf449da8bf7c1157f5c8a3", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": 4833.0 } }, - "be7e225c537c47daaef5f0ac239d1f05": { + "a859e810938d4055a256a729f8d389ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7182,25 +7021,60 @@ "width": null } }, - "bf849ce1955e49498468867578cb2b82": { - "model_module": "@jupyter-widgets/controls", + "a8ef0954dcca4870a833eda0e973e2a0": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c274e57ac9594c50af93c3bf8136acce": { + "b0b21430f5b9446195933039b4632b6f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7218,7 +7092,7 @@ "text_color": null } }, - "c2fc5097f7a2449695b74f340b163dbd": { + "b391fb64df85406aa863198b38de27eb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7271,30 +7145,31 @@ "width": null } }, - "c3da49dd6970428a9727fd888d6a07ee": { + "b587a2728e9640d8a9ca1b92d99742fb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fabf70fcbd2f415f93e6e8b9c17f4861", - "placeholder": "​", - "style": "IPY_MODEL_b0d76730d77645b19085de29499a07e9", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_04cca25384c24b1c94d911de385adc2e", + "IPY_MODEL_ed241b0fef474a6687201441ac67dd74", + "IPY_MODEL_ea9573c409424d8a8bac15fff0b2b7d0" + ], + "layout": "IPY_MODEL_cad3cae7738f47d5bf0f64d262df886c", "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "tooltip": null } }, - "c436f7262e954289901a6f4e89035f4d": { + "b6ef56fd6db2466da0273fed8540bed9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7347,31 +7222,7 @@ "width": null } }, - "c4b166c77d384273866541f5ccf30e60": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_833c213f3dfb4616b0ac1c52e439ec3e", - "IPY_MODEL_e724d9b3e35a45acb354091fe5c23aeb", - "IPY_MODEL_bbe3d4342b5941289611bd0fc91aa385" - ], - "layout": "IPY_MODEL_77ba2f60a09d41d3a6e43c6821ec0634", - "tabbable": null, - "tooltip": null - } - }, - "c5b34df732014977a42409332881088e": { + "b75b2dcda03043c19e92f21428536acc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7424,47 +7275,7 @@ "width": null } }, - "c764ea439fb0433c9474557f8e8c6684": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "c8d5e4eb0eb4406c95b64e0c2246c01b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_cab1ddd99c6a471290bfd2b4f876e7a2", - "IPY_MODEL_6d5c548246bf4bdbb636d3a3766345a4", - "IPY_MODEL_426a8afc214b479baaeb9e8377e0f0d4" - ], - "layout": "IPY_MODEL_0f8c591a5a474389ba8bdbce5f559954", - "tabbable": null, - "tooltip": null - } - }, - "cab1ddd99c6a471290bfd2b4f876e7a2": { + "bbad93a33def4b229788aa20849516bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -7479,15 +7290,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_240c2ebe5dc54104a1f10d985ffba975", + "layout": "IPY_MODEL_0b3fb420b49940f589e153c0d5c3fdec", "placeholder": "​", - "style": "IPY_MODEL_8fc9906f7a0341708627692f8489b35b", + "style": "IPY_MODEL_209c42932bea4cfc866adc42d1e0bc34", "tabbable": null, "tooltip": null, - "value": "Generating train split: 100%" + "value": " 60000/60000 [00:07<00:00, 8701.18 examples/s]" } }, - "cb4004f3b5e94f01b3f04c2f61489f80": { + "bc0cfa74fd9b478baa3776548265f98f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7540,23 +7351,25 @@ "width": null } }, - "cc71489cf7d84e93b1534d74c859b3fa": { + "bcdb721a85b449cd9eaf7819dc3550dc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cca83903b79f4db49ff544e07d3fffbd": { + "bf1ddb949cc4482ba290bb117f55ea82": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7609,53 +7422,86 @@ "width": null } }, - "cd5289f0713644e7a085dd0fa5a5b4a7": { - "model_module": "@jupyter-widgets/controls", + "c1a678c9161a478e8d2196917db2dad8": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_52ea11b6adb8407e88b4de65546300dd", - "placeholder": "​", - "style": "IPY_MODEL_3e69f9cf29d34cc381b10a6789979acf", - "tabbable": null, - "tooltip": null, - "value": "Downloading data: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ce6dcb58e792427c8f87d9ed29b4f0a9": { + "c25be99949354d9b93261eb01cd7f371": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_38b582305d03499a81383d2c820015ba", - "placeholder": "​", - "style": "IPY_MODEL_28f8261f18b84882ba428c63eace54e3", + "layout": "IPY_MODEL_a07fabe6cd554c4281f06c189fb7f17a", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_805ea7e6fe75453dab92e83969f8fe93", "tabbable": null, "tooltip": null, - "value": "100%" + "value": 10000.0 } }, - "cf2c1748546e4ac4918f44c9de22b1d4": { + "c5e5cf9a26c0498cbbbc47b2b513a358": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -7671,41 +7517,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_721e1e458b6f49229779a9de4609ca92", + "layout": "IPY_MODEL_9141cd35031b41548bc5618a17448a0e", "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_2a2dc27f67c34e2982043a2f79c14de3", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "cf7b401abca245b48479f04da4bf569b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_678ad1f4e5ca473e8370433fa2fc17b1", - "IPY_MODEL_6b5517a69839448db9d026068acf99a3", - "IPY_MODEL_01d6ba701f1e47b693b47938240dfc44" - ], - "layout": "IPY_MODEL_50b772c22a484ec39d88b6aca3ce2b03", + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7d3d1214cad84f609b2ae65551813ff8", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 } }, - "d4aae17914634179ba6ea992729761fb": { + "c670dd237db04ca9a6e63e4d35cecdb4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7758,7 +7580,7 @@ "width": null } }, - "d4db64e04ecf453bb64e410e92717688": { + "cad3cae7738f47d5bf0f64d262df886c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7811,7 +7633,7 @@ "width": null } }, - "d596fca544e54787848bb610c63e3218": { + "cf54f0b1ea01482a8a59acd889c89c88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7829,48 +7651,51 @@ "text_color": null } }, - "d5b1e2ede532485f989cdd9654c0c392": { + "d2d061b68a1d431fa7d7e4082cdce543": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_160801910dde40a3bc9f92bb4e901944", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f62a32153e44d988bd8265c95d6522b", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 } }, - "d645a9bbf7dd4b8889a99d24f9a5908b": { + "d5a9c110896c475face60d8f33b9046c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_da92e7e27e6440389d193937e123694c", - "placeholder": "​", - "style": "IPY_MODEL_2449bbbcd46a43e6aae3c8afbb81bdb3", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:36<00:00, 1698.45it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "da92e7e27e6440389d193937e123694c": { + "d5aee2c22e48477b9f398e4ad03d9e34": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7923,7 +7748,7 @@ "width": null } }, - "db6c9d2e8a9344f28325f582fc86210b": { + "d83e3a00a6514bd7867d7bbbe2edf9f5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -7976,7 +7801,43 @@ "width": null } }, - "dc13e0ad81f143a2b5d4c0a44532f5b5": { + "d9809a0d4cae4531973e9be895c2f08e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dc05e2e419574abb89ddec85c5fcc81d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "dd31c22f11524a368f9eb1cd18be16f2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -7994,7 +7855,33 @@ "text_color": null } }, - "dd4605541b5149cd9d1ad54f08320d7b": { + "dde263477419437a9af2ca03171dadcd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b75b2dcda03043c19e92f21428536acc", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8acff64b052e48dc9e676ca2f1f20446", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "de21539b01914576913a0b51a048b56f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8009,16 +7896,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a71dfc2757d34c75bb330c1eb6ea11e6", - "IPY_MODEL_33cdba775984444396b1d4c9f0a95c94", - "IPY_MODEL_fc047f3aaf0b4e4a871a8806135acc87" + "IPY_MODEL_e40aeb47074d4ecb90098770f4839946", + "IPY_MODEL_4586a50b001c47b39290a335d19b949d", + "IPY_MODEL_19a410fe62c9469fbbfdb218f3a51fc8" ], - "layout": "IPY_MODEL_ab7bf39143554ffc9ed393ecb6bf2fe4", + "layout": "IPY_MODEL_3352d2afb83f411eb34ef57cd4914610", "tabbable": null, "tooltip": null } }, - "df1f220280f9444e97bb1f2206036724": { + "df295f854e794a6dacc9fe1281979049": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1c78106bc0d64791b1920a0bba595880", + "placeholder": "​", + "style": "IPY_MODEL_03645e2db82a48cea591a8ecc43409ac", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 817kB/s]" + } + }, + "dfc1a61d6aca4ccca4fce1f46c9b016e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8071,7 +7981,7 @@ "width": null } }, - "df585fd875034d5cae08c4684ad20c2f": { + "e31270e184e04922b08349a65c597693": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8086,68 +7996,143 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cca83903b79f4db49ff544e07d3fffbd", + "layout": "IPY_MODEL_517e9a88dd474cac8c7f7723d261a5fe", "placeholder": "​", - "style": "IPY_MODEL_49cd0886c40048d5b78db2aa719fc1d0", + "style": "IPY_MODEL_d9809a0d4cae4531973e9be895c2f08e", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" } }, - "e02cdb3570024c49bb96ffcbc8948970": { - "model_module": "@jupyter-widgets/base", + "e40aeb47074d4ecb90098770f4839946": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a0d54aeee9e43a2a6613a32708b583c", + "placeholder": "​", + "style": "IPY_MODEL_76d4d52a162a40a6aad6c51613675dd9", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" + } + }, + "e716b663d19a4155af04eb17f142c03c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e73b799b5ff64804a99810863c6f0533": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e74d0f623f774aa5a1554c10228f1654": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3a97aab207204e0fb9a0b492587021ad", + "IPY_MODEL_3cf5000751a1413faba426291a215dff", + "IPY_MODEL_e31270e184e04922b08349a65c597693" + ], + "layout": "IPY_MODEL_436dcfd1d6524d58997ebd20abd27ac3", + "tabbable": null, + "tooltip": null + } + }, + "e85162633bd84b0c8065890dd355820b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_94f306cf8ec749379c45de871b0e7b5e", + "IPY_MODEL_fa1df74fd9f543a1bcb1d473ae793b1c", + "IPY_MODEL_345c5ca93fa94badbbf86dcc2fde77a6" + ], + "layout": "IPY_MODEL_f061db9de67c4b4c92b189d2906d780c", + "tabbable": null, + "tooltip": null + } + }, + "e89a1ca0e0b746b0b9349efd7a426e3f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8739c6ff8d994ba4be0b2287de3e0173", + "placeholder": "​", + "style": "IPY_MODEL_3956333acd4649dd8a66f905633d9a1e", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" } }, - "e1e3abfce0184ef19c5c108ae494316b": { + "e9632dad724b4651afed5367d50e22c4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -8162,69 +8147,39 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_ce6dcb58e792427c8f87d9ed29b4f0a9", - "IPY_MODEL_44f00a50f1674a53a847ced00a1a1aa8", - "IPY_MODEL_d645a9bbf7dd4b8889a99d24f9a5908b" + "IPY_MODEL_20a3b73248e646e4993c7afc88dc3bb7", + "IPY_MODEL_5789650eb64d4dbab1f8c667a5fd4cf6", + "IPY_MODEL_df295f854e794a6dacc9fe1281979049" ], - "layout": "IPY_MODEL_edc3d19afcb14bf9a3ec0e41f62a44b4", + "layout": "IPY_MODEL_ec3cdb9f36064f85ac05856111e8b6e8", "tabbable": null, "tooltip": null } }, - "e416714bbcb4438b9179a39662ae3c9d": { - "model_module": "@jupyter-widgets/base", + "ea9573c409424d8a8bac15fff0b2b7d0": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c1a678c9161a478e8d2196917db2dad8", + "placeholder": "​", + "style": "IPY_MODEL_cf54f0b1ea01482a8a59acd889c89c88", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 65.52it/s]" } }, - "e6d9becff77b42d59be635fa6580a8e8": { + "ec3cdb9f36064f85ac05856111e8b6e8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8277,77 +8232,7 @@ "width": null } }, - "e724d9b3e35a45acb354091fe5c23aeb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_368cc0e1d6734409878e33ca4d54012a", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c764ea439fb0433c9474557f8e8c6684", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "eb2f621f64a84dc8bd2155d241bd5e62": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "ebf23d88069d459aae84207ff5363fab": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6e6489c700d54df69ff90b573c906911", - "max": 5148.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_50962242a0be4c5fb1f19bd9ba3796a1", - "tabbable": null, - "tooltip": null, - "value": 5148.0 - } - }, - "ec65d1696272499aae2176b681d4abeb": { + "ed241b0fef474a6687201441ac67dd74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8363,17 +8248,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bc002711d08c4670abb04d02bc7b008a", - "max": 4422102.0, + "layout": "IPY_MODEL_dfc1a61d6aca4ccca4fce1f46c9b016e", + "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_a84982db10294fb58f5db219f440a873", + "style": "IPY_MODEL_19246b6d91f14aaa9f10d7cb83049531", "tabbable": null, "tooltip": null, - "value": 4422102.0 + "value": 40.0 } }, - "ed87086cfa9c41729602000b60ca20f5": { + "ed9503bde9bc41e0912e3c94c2a43266": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8426,7 +8311,30 @@ "width": null } }, - "edc3d19afcb14bf9a3ec0e41f62a44b4": { + "f01a831193cb480fa8538ccac1625826": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_140978469fad46c2b6b98809eddb12e7", + "placeholder": "​", + "style": "IPY_MODEL_13c0b9289c5e4e8f92a21c0307aae6db", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "f061db9de67c4b4c92b189d2906d780c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8479,7 +8387,7 @@ "width": null } }, - "f3158013f4864de583ab980afefd55af": { + "f512ea72b63a45489078a0f45d052131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -8494,15 +8402,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_db6c9d2e8a9344f28325f582fc86210b", + "layout": "IPY_MODEL_85ab7c6aa7b341d69b9dc923ebdfa7c4", "placeholder": "​", - "style": "IPY_MODEL_04be2e19fc3542cba1d0cb7b9b407a95", + "style": "IPY_MODEL_e716b663d19a4155af04eb17f142c03c", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 4.42M/4.42M [00:00<00:00, 70.5MB/s]" } }, - "f60c654fb5a84d09a6d3b2f8c92cc4c5": { + "f74501f2cd3a424a9fd976bc8add6990": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8555,7 +8463,104 @@ "width": null } }, - "fabf70fcbd2f415f93e6e8b9c17f4861": { + "f85257acca8547839184b5f056eac10e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0d1066339f76479d8d58e5ae35748f5b", + "IPY_MODEL_d2d061b68a1d431fa7d7e4082cdce543", + "IPY_MODEL_f512ea72b63a45489078a0f45d052131" + ], + "layout": "IPY_MODEL_6198d3b6f1a04ba4a34a5d2018c9b155", + "tabbable": null, + "tooltip": null + } + }, + "f8b91b2b5043498da2181511d46d09c8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_07de4e87697443a892880c15d1e511c6", + "placeholder": "​", + "style": "IPY_MODEL_440697a08c6346efa46be2fb03bac8e0", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:36<00:00, 1657.88it/s]" + } + }, + "f9b540e1a55a4d16ad1b5a90f594ee47": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_82fc78533dbc46d08a781919716d2335", + "IPY_MODEL_5ea8be39dce64842a42fe020b19fc090", + "IPY_MODEL_bbad93a33def4b229788aa20849516bd" + ], + "layout": "IPY_MODEL_1d30818e74e74811938c25e51402dba7", + "tabbable": null, + "tooltip": null + } + }, + "fa1df74fd9f543a1bcb1d473ae793b1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf1ddb949cc4482ba290bb117f55ea82", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5dcfa0777e6540998053e4a29b29b806", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "fa87a07117a74232955cb6e2e8b66aa9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8608,30 +8613,25 @@ "width": null } }, - "fc047f3aaf0b4e4a871a8806135acc87": { + "fd5d6bff1fad4857abafef9b11b3dfe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_89b3cf05a743439f91b59abfd6f0b25b", - "placeholder": "​", - "style": "IPY_MODEL_3b6fd5946d154ca3b3c1477ecd5510ab", - "tabbable": null, - "tooltip": null, - "value": " 4.83k/4.83k [00:00<00:00, 617kB/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "ff23c9d5761b436eb1d73a55e8f32ea8": { + "fd9234c25dae4c37a35f1e4d52af48c6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -8684,7 +8684,7 @@ "width": null } }, - "ff5dd94e778e4a3a9a4f34a8b29844b2": { + "fe504683f63741bdac7f7f37aacf03d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -8700,11 +8700,11 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8253cf2e395646f0a170750f8c426d62", + "layout": "IPY_MODEL_3f14c7dcb14b4ff9b9a6110a6ebeea9a", "max": 40.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_999494066dab42bbb02dd47224780e98", + "style": "IPY_MODEL_9d6e31ccf4dd4aceabf442d6436fa02c", "tabbable": null, "tooltip": null, "value": 40.0 diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index b258b462c..49189d5a3 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -73,10 +73,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:31.954471Z", - "iopub.status.busy": "2024-07-09T06:10:31.954063Z", - "iopub.status.idle": "2024-07-09T06:10:33.062774Z", - "shell.execute_reply": "2024-07-09T06:10:33.062218Z" + "iopub.execute_input": "2024-07-09T06:25:43.397675Z", + "iopub.status.busy": "2024-07-09T06:25:43.397521Z", + "iopub.status.idle": "2024-07-09T06:25:44.500416Z", + "shell.execute_reply": "2024-07-09T06:25:44.499930Z" }, "nbsphinx": "hidden" }, @@ -86,7 +86,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -111,10 +111,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.065325Z", - "iopub.status.busy": "2024-07-09T06:10:33.064874Z", - "iopub.status.idle": "2024-07-09T06:10:33.082725Z", - "shell.execute_reply": "2024-07-09T06:10:33.082160Z" + "iopub.execute_input": "2024-07-09T06:25:44.503054Z", + "iopub.status.busy": "2024-07-09T06:25:44.502594Z", + "iopub.status.idle": "2024-07-09T06:25:44.520286Z", + "shell.execute_reply": "2024-07-09T06:25:44.519788Z" } }, "outputs": [], @@ -154,10 +154,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.085238Z", - "iopub.status.busy": "2024-07-09T06:10:33.084866Z", - "iopub.status.idle": "2024-07-09T06:10:33.122428Z", - "shell.execute_reply": "2024-07-09T06:10:33.121889Z" + "iopub.execute_input": "2024-07-09T06:25:44.522768Z", + "iopub.status.busy": "2024-07-09T06:25:44.522335Z", + "iopub.status.idle": "2024-07-09T06:25:44.561412Z", + "shell.execute_reply": "2024-07-09T06:25:44.560787Z" } }, "outputs": [ @@ -264,10 +264,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.124701Z", - "iopub.status.busy": "2024-07-09T06:10:33.124258Z", - "iopub.status.idle": "2024-07-09T06:10:33.127662Z", - "shell.execute_reply": "2024-07-09T06:10:33.127234Z" + "iopub.execute_input": "2024-07-09T06:25:44.563603Z", + "iopub.status.busy": "2024-07-09T06:25:44.563330Z", + "iopub.status.idle": "2024-07-09T06:25:44.566773Z", + "shell.execute_reply": "2024-07-09T06:25:44.566347Z" } }, "outputs": [], @@ -288,10 +288,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.129795Z", - "iopub.status.busy": "2024-07-09T06:10:33.129342Z", - "iopub.status.idle": "2024-07-09T06:10:33.137253Z", - "shell.execute_reply": "2024-07-09T06:10:33.136681Z" + "iopub.execute_input": "2024-07-09T06:25:44.568882Z", + "iopub.status.busy": "2024-07-09T06:25:44.568557Z", + "iopub.status.idle": "2024-07-09T06:25:44.576133Z", + "shell.execute_reply": "2024-07-09T06:25:44.575666Z" } }, "outputs": [], @@ -336,10 +336,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.139475Z", - "iopub.status.busy": "2024-07-09T06:10:33.139068Z", - "iopub.status.idle": "2024-07-09T06:10:33.141754Z", - "shell.execute_reply": "2024-07-09T06:10:33.141219Z" + "iopub.execute_input": "2024-07-09T06:25:44.578213Z", + "iopub.status.busy": "2024-07-09T06:25:44.577888Z", + "iopub.status.idle": "2024-07-09T06:25:44.580359Z", + "shell.execute_reply": "2024-07-09T06:25:44.579938Z" } }, "outputs": [], @@ -362,10 +362,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:33.143704Z", - "iopub.status.busy": "2024-07-09T06:10:33.143398Z", - "iopub.status.idle": "2024-07-09T06:10:36.054194Z", - "shell.execute_reply": "2024-07-09T06:10:36.053560Z" + "iopub.execute_input": "2024-07-09T06:25:44.582404Z", + "iopub.status.busy": "2024-07-09T06:25:44.582006Z", + "iopub.status.idle": "2024-07-09T06:25:47.496435Z", + "shell.execute_reply": "2024-07-09T06:25:47.495884Z" } }, "outputs": [], @@ -401,10 +401,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.057163Z", - "iopub.status.busy": "2024-07-09T06:10:36.056695Z", - "iopub.status.idle": "2024-07-09T06:10:36.066132Z", - "shell.execute_reply": "2024-07-09T06:10:36.065594Z" + "iopub.execute_input": "2024-07-09T06:25:47.499186Z", + "iopub.status.busy": "2024-07-09T06:25:47.498702Z", + "iopub.status.idle": "2024-07-09T06:25:47.508351Z", + "shell.execute_reply": "2024-07-09T06:25:47.507924Z" } }, "outputs": [], @@ -436,10 +436,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:36.068240Z", - "iopub.status.busy": "2024-07-09T06:10:36.067922Z", - "iopub.status.idle": "2024-07-09T06:10:37.919153Z", - "shell.execute_reply": "2024-07-09T06:10:37.918499Z" + "iopub.execute_input": "2024-07-09T06:25:47.510494Z", + "iopub.status.busy": "2024-07-09T06:25:47.510083Z", + "iopub.status.idle": "2024-07-09T06:25:49.420464Z", + "shell.execute_reply": "2024-07-09T06:25:49.419867Z" } }, "outputs": [ @@ -476,10 +476,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.921685Z", - "iopub.status.busy": "2024-07-09T06:10:37.921227Z", - "iopub.status.idle": "2024-07-09T06:10:37.939600Z", - "shell.execute_reply": "2024-07-09T06:10:37.939159Z" + "iopub.execute_input": "2024-07-09T06:25:49.423063Z", + "iopub.status.busy": "2024-07-09T06:25:49.422479Z", + "iopub.status.idle": "2024-07-09T06:25:49.441395Z", + "shell.execute_reply": "2024-07-09T06:25:49.440922Z" }, "scrolled": true }, @@ -609,10 +609,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.941611Z", - "iopub.status.busy": "2024-07-09T06:10:37.941224Z", - "iopub.status.idle": "2024-07-09T06:10:37.949046Z", - "shell.execute_reply": "2024-07-09T06:10:37.948512Z" + "iopub.execute_input": "2024-07-09T06:25:49.443532Z", + "iopub.status.busy": "2024-07-09T06:25:49.443194Z", + "iopub.status.idle": "2024-07-09T06:25:49.451051Z", + "shell.execute_reply": "2024-07-09T06:25:49.450614Z" } }, "outputs": [ @@ -716,10 +716,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.950940Z", - "iopub.status.busy": "2024-07-09T06:10:37.950650Z", - "iopub.status.idle": "2024-07-09T06:10:37.959497Z", - "shell.execute_reply": "2024-07-09T06:10:37.958941Z" + "iopub.execute_input": "2024-07-09T06:25:49.453099Z", + "iopub.status.busy": "2024-07-09T06:25:49.452774Z", + "iopub.status.idle": "2024-07-09T06:25:49.461948Z", + "shell.execute_reply": "2024-07-09T06:25:49.461497Z" } }, "outputs": [ @@ -848,10 +848,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.961570Z", - "iopub.status.busy": "2024-07-09T06:10:37.961245Z", - "iopub.status.idle": "2024-07-09T06:10:37.968825Z", - "shell.execute_reply": "2024-07-09T06:10:37.968376Z" + "iopub.execute_input": "2024-07-09T06:25:49.463968Z", + "iopub.status.busy": "2024-07-09T06:25:49.463653Z", + "iopub.status.idle": "2024-07-09T06:25:49.471593Z", + "shell.execute_reply": "2024-07-09T06:25:49.471011Z" } }, "outputs": [ @@ -965,10 +965,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.970802Z", - "iopub.status.busy": "2024-07-09T06:10:37.970481Z", - "iopub.status.idle": "2024-07-09T06:10:37.978940Z", - "shell.execute_reply": "2024-07-09T06:10:37.978487Z" + "iopub.execute_input": "2024-07-09T06:25:49.473529Z", + "iopub.status.busy": "2024-07-09T06:25:49.473356Z", + "iopub.status.idle": "2024-07-09T06:25:49.482335Z", + "shell.execute_reply": "2024-07-09T06:25:49.481895Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.980895Z", - "iopub.status.busy": "2024-07-09T06:10:37.980578Z", - "iopub.status.idle": "2024-07-09T06:10:37.987894Z", - "shell.execute_reply": "2024-07-09T06:10:37.987444Z" + "iopub.execute_input": "2024-07-09T06:25:49.484408Z", + "iopub.status.busy": "2024-07-09T06:25:49.484080Z", + "iopub.status.idle": "2024-07-09T06:25:49.491499Z", + "shell.execute_reply": "2024-07-09T06:25:49.491016Z" } }, "outputs": [ @@ -1197,10 +1197,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.989860Z", - "iopub.status.busy": "2024-07-09T06:10:37.989565Z", - "iopub.status.idle": "2024-07-09T06:10:37.996677Z", - "shell.execute_reply": "2024-07-09T06:10:37.996133Z" + "iopub.execute_input": "2024-07-09T06:25:49.493531Z", + "iopub.status.busy": "2024-07-09T06:25:49.493203Z", + "iopub.status.idle": "2024-07-09T06:25:49.500767Z", + "shell.execute_reply": "2024-07-09T06:25:49.500318Z" } }, "outputs": [ @@ -1300,10 +1300,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:37.998801Z", - "iopub.status.busy": "2024-07-09T06:10:37.998404Z", - "iopub.status.idle": "2024-07-09T06:10:38.006720Z", - "shell.execute_reply": "2024-07-09T06:10:38.006170Z" + "iopub.execute_input": "2024-07-09T06:25:49.502816Z", + "iopub.status.busy": "2024-07-09T06:25:49.502476Z", + "iopub.status.idle": "2024-07-09T06:25:49.511060Z", + "shell.execute_reply": "2024-07-09T06:25:49.510478Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index 194f48736..854b57cf2 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -791,7 +791,7 @@

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}
+Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}
 

Let’s view the i-th example in the dataset:

diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index 79b7e466e..007861577 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:40.535594Z", - "iopub.status.busy": "2024-07-09T06:10:40.535117Z", - "iopub.status.idle": "2024-07-09T06:10:43.126940Z", - "shell.execute_reply": "2024-07-09T06:10:43.126369Z" + "iopub.execute_input": "2024-07-09T06:25:52.110367Z", + "iopub.status.busy": "2024-07-09T06:25:52.110187Z", + "iopub.status.idle": "2024-07-09T06:25:54.784149Z", + "shell.execute_reply": "2024-07-09T06:25:54.783592Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.129363Z", - "iopub.status.busy": "2024-07-09T06:10:43.129085Z", - "iopub.status.idle": "2024-07-09T06:10:43.132156Z", - "shell.execute_reply": "2024-07-09T06:10:43.131728Z" + "iopub.execute_input": "2024-07-09T06:25:54.786763Z", + "iopub.status.busy": "2024-07-09T06:25:54.786450Z", + "iopub.status.idle": "2024-07-09T06:25:54.790234Z", + "shell.execute_reply": "2024-07-09T06:25:54.789808Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.134177Z", - "iopub.status.busy": "2024-07-09T06:10:43.133850Z", - "iopub.status.idle": "2024-07-09T06:10:43.136808Z", - "shell.execute_reply": "2024-07-09T06:10:43.136399Z" + "iopub.execute_input": "2024-07-09T06:25:54.792282Z", + "iopub.status.busy": "2024-07-09T06:25:54.791960Z", + "iopub.status.idle": "2024-07-09T06:25:54.795130Z", + "shell.execute_reply": "2024-07-09T06:25:54.794637Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.138812Z", - "iopub.status.busy": "2024-07-09T06:10:43.138552Z", - "iopub.status.idle": "2024-07-09T06:10:43.177660Z", - "shell.execute_reply": "2024-07-09T06:10:43.177223Z" + "iopub.execute_input": "2024-07-09T06:25:54.797237Z", + "iopub.status.busy": "2024-07-09T06:25:54.796891Z", + "iopub.status.idle": "2024-07-09T06:25:54.839838Z", + "shell.execute_reply": "2024-07-09T06:25:54.839268Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.179619Z", - "iopub.status.busy": "2024-07-09T06:10:43.179241Z", - "iopub.status.idle": "2024-07-09T06:10:43.182896Z", - "shell.execute_reply": "2024-07-09T06:10:43.182371Z" + "iopub.execute_input": "2024-07-09T06:25:54.842013Z", + "iopub.status.busy": "2024-07-09T06:25:54.841618Z", + "iopub.status.idle": "2024-07-09T06:25:54.845269Z", + "shell.execute_reply": "2024-07-09T06:25:54.844799Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'card_about_to_expire', 'apple_pay_or_google_pay', 'getting_spare_card', 'lost_or_stolen_phone', 'cancel_transfer', 'change_pin', 'card_payment_fee_charged', 'supported_cards_and_currencies', 'beneficiary_not_allowed'}\n" + "Classes: {'cancel_transfer', 'supported_cards_and_currencies', 'lost_or_stolen_phone', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'card_about_to_expire', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.184918Z", - "iopub.status.busy": "2024-07-09T06:10:43.184590Z", - "iopub.status.idle": "2024-07-09T06:10:43.187433Z", - "shell.execute_reply": "2024-07-09T06:10:43.186872Z" + "iopub.execute_input": "2024-07-09T06:25:54.847533Z", + "iopub.status.busy": "2024-07-09T06:25:54.847103Z", + "iopub.status.idle": "2024-07-09T06:25:54.850442Z", + "shell.execute_reply": "2024-07-09T06:25:54.849920Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:43.189544Z", - "iopub.status.busy": "2024-07-09T06:10:43.189224Z", - "iopub.status.idle": "2024-07-09T06:10:46.827935Z", - "shell.execute_reply": "2024-07-09T06:10:46.827389Z" + "iopub.execute_input": "2024-07-09T06:25:54.852582Z", + "iopub.status.busy": "2024-07-09T06:25:54.852188Z", + "iopub.status.idle": "2024-07-09T06:25:59.138875Z", + "shell.execute_reply": "2024-07-09T06:25:59.138241Z" } }, "outputs": [ @@ -416,10 +416,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:46.830697Z", - "iopub.status.busy": "2024-07-09T06:10:46.830289Z", - "iopub.status.idle": "2024-07-09T06:10:47.705352Z", - "shell.execute_reply": "2024-07-09T06:10:47.704778Z" + "iopub.execute_input": "2024-07-09T06:25:59.141607Z", + "iopub.status.busy": "2024-07-09T06:25:59.141219Z", + "iopub.status.idle": "2024-07-09T06:26:00.038840Z", + "shell.execute_reply": "2024-07-09T06:26:00.038252Z" }, "scrolled": true }, @@ -451,10 +451,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.709046Z", - "iopub.status.busy": "2024-07-09T06:10:47.708102Z", - "iopub.status.idle": "2024-07-09T06:10:47.712144Z", - "shell.execute_reply": "2024-07-09T06:10:47.711648Z" + "iopub.execute_input": "2024-07-09T06:26:00.041846Z", + "iopub.status.busy": "2024-07-09T06:26:00.041473Z", + "iopub.status.idle": "2024-07-09T06:26:00.044333Z", + "shell.execute_reply": "2024-07-09T06:26:00.043847Z" } }, "outputs": [], @@ -474,10 +474,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:47.715606Z", - "iopub.status.busy": "2024-07-09T06:10:47.714676Z", - "iopub.status.idle": "2024-07-09T06:10:49.613175Z", - "shell.execute_reply": "2024-07-09T06:10:49.612550Z" + "iopub.execute_input": "2024-07-09T06:26:00.046828Z", + "iopub.status.busy": "2024-07-09T06:26:00.046455Z", + "iopub.status.idle": "2024-07-09T06:26:02.001666Z", + "shell.execute_reply": "2024-07-09T06:26:02.000979Z" }, "scrolled": true }, @@ -521,10 +521,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.617209Z", - "iopub.status.busy": "2024-07-09T06:10:49.615926Z", - "iopub.status.idle": "2024-07-09T06:10:49.641459Z", - "shell.execute_reply": "2024-07-09T06:10:49.640965Z" + "iopub.execute_input": "2024-07-09T06:26:02.005648Z", + "iopub.status.busy": "2024-07-09T06:26:02.004357Z", + "iopub.status.idle": "2024-07-09T06:26:02.029990Z", + "shell.execute_reply": "2024-07-09T06:26:02.029487Z" }, "scrolled": true }, @@ -654,10 +654,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.644905Z", - "iopub.status.busy": "2024-07-09T06:10:49.644000Z", - "iopub.status.idle": "2024-07-09T06:10:49.655340Z", - "shell.execute_reply": "2024-07-09T06:10:49.654769Z" + "iopub.execute_input": "2024-07-09T06:26:02.033668Z", + "iopub.status.busy": "2024-07-09T06:26:02.032688Z", + "iopub.status.idle": "2024-07-09T06:26:02.043061Z", + "shell.execute_reply": "2024-07-09T06:26:02.042510Z" }, "scrolled": true }, @@ -767,10 +767,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.657493Z", - "iopub.status.busy": "2024-07-09T06:10:49.657322Z", - "iopub.status.idle": "2024-07-09T06:10:49.662434Z", - "shell.execute_reply": "2024-07-09T06:10:49.661886Z" + "iopub.execute_input": "2024-07-09T06:26:02.045235Z", + "iopub.status.busy": "2024-07-09T06:26:02.044844Z", + "iopub.status.idle": "2024-07-09T06:26:02.049066Z", + "shell.execute_reply": "2024-07-09T06:26:02.048544Z" } }, "outputs": [ @@ -808,10 +808,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.664404Z", - "iopub.status.busy": "2024-07-09T06:10:49.664233Z", - "iopub.status.idle": "2024-07-09T06:10:49.671717Z", - "shell.execute_reply": "2024-07-09T06:10:49.671181Z" + "iopub.execute_input": "2024-07-09T06:26:02.050976Z", + "iopub.status.busy": "2024-07-09T06:26:02.050656Z", + "iopub.status.idle": "2024-07-09T06:26:02.056885Z", + "shell.execute_reply": "2024-07-09T06:26:02.056368Z" } }, "outputs": [ @@ -928,10 +928,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.673760Z", - "iopub.status.busy": "2024-07-09T06:10:49.673436Z", - "iopub.status.idle": "2024-07-09T06:10:49.679943Z", - "shell.execute_reply": "2024-07-09T06:10:49.679422Z" + "iopub.execute_input": "2024-07-09T06:26:02.058842Z", + "iopub.status.busy": "2024-07-09T06:26:02.058553Z", + "iopub.status.idle": "2024-07-09T06:26:02.064989Z", + "shell.execute_reply": "2024-07-09T06:26:02.064469Z" } }, "outputs": [ @@ -1014,10 +1014,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.681898Z", - "iopub.status.busy": "2024-07-09T06:10:49.681599Z", - "iopub.status.idle": "2024-07-09T06:10:49.687322Z", - "shell.execute_reply": "2024-07-09T06:10:49.686783Z" + "iopub.execute_input": "2024-07-09T06:26:02.067209Z", + "iopub.status.busy": "2024-07-09T06:26:02.066773Z", + "iopub.status.idle": "2024-07-09T06:26:02.072793Z", + "shell.execute_reply": "2024-07-09T06:26:02.072374Z" } }, "outputs": [ @@ -1125,10 +1125,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.689368Z", - "iopub.status.busy": "2024-07-09T06:10:49.688972Z", - "iopub.status.idle": "2024-07-09T06:10:49.697716Z", - "shell.execute_reply": "2024-07-09T06:10:49.697194Z" + "iopub.execute_input": "2024-07-09T06:26:02.074940Z", + "iopub.status.busy": "2024-07-09T06:26:02.074490Z", + "iopub.status.idle": "2024-07-09T06:26:02.083051Z", + "shell.execute_reply": "2024-07-09T06:26:02.082510Z" } }, "outputs": [ @@ -1239,10 +1239,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.699771Z", - "iopub.status.busy": "2024-07-09T06:10:49.699457Z", - "iopub.status.idle": "2024-07-09T06:10:49.704782Z", - "shell.execute_reply": "2024-07-09T06:10:49.704251Z" + "iopub.execute_input": "2024-07-09T06:26:02.085157Z", + "iopub.status.busy": "2024-07-09T06:26:02.084826Z", + "iopub.status.idle": "2024-07-09T06:26:02.090319Z", + "shell.execute_reply": "2024-07-09T06:26:02.089787Z" } }, "outputs": [ @@ -1310,10 +1310,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.706759Z", - "iopub.status.busy": "2024-07-09T06:10:49.706448Z", - "iopub.status.idle": "2024-07-09T06:10:49.711619Z", - "shell.execute_reply": "2024-07-09T06:10:49.711154Z" + "iopub.execute_input": "2024-07-09T06:26:02.092426Z", + "iopub.status.busy": "2024-07-09T06:26:02.092121Z", + "iopub.status.idle": "2024-07-09T06:26:02.097472Z", + "shell.execute_reply": "2024-07-09T06:26:02.096931Z" } }, "outputs": [ @@ -1392,10 +1392,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.713635Z", - "iopub.status.busy": "2024-07-09T06:10:49.713315Z", - "iopub.status.idle": "2024-07-09T06:10:49.716766Z", - "shell.execute_reply": "2024-07-09T06:10:49.716331Z" + "iopub.execute_input": "2024-07-09T06:26:02.099674Z", + "iopub.status.busy": "2024-07-09T06:26:02.099271Z", + "iopub.status.idle": "2024-07-09T06:26:02.103221Z", + "shell.execute_reply": "2024-07-09T06:26:02.102687Z" } }, "outputs": [ @@ -1443,10 +1443,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:49.718751Z", - "iopub.status.busy": "2024-07-09T06:10:49.718428Z", - "iopub.status.idle": "2024-07-09T06:10:49.723391Z", - "shell.execute_reply": "2024-07-09T06:10:49.722940Z" + "iopub.execute_input": "2024-07-09T06:26:02.105280Z", + "iopub.status.busy": "2024-07-09T06:26:02.104977Z", + "iopub.status.idle": "2024-07-09T06:26:02.110409Z", + "shell.execute_reply": "2024-07-09T06:26:02.109860Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/datalab/workflows.html b/master/tutorials/datalab/workflows.html index a4152a9e2..0f8301dba 100644 --- a/master/tutorials/datalab/workflows.html +++ b/master/tutorials/datalab/workflows.html @@ -879,7 +879,7 @@

4. Identify Data Issues Using Datalab - +
- - - - - - - - - + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
@@ -3564,7 +3564,7 @@

1. Load the Dataset
-100%|██████████| 170498071/170498071 [00:02<00:00, 77333951.88it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s]
 
-
+
@@ -3896,7 +3896,7 @@

Image-specific property scores in the transformed dataset -{"state": {"5f942cc81ac44594bd238162231ac7ac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "309173506dba4f15b8b7213882a655e4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "8bd3259d18d64ab0a7ab19d9a309e286": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5f942cc81ac44594bd238162231ac7ac", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_309173506dba4f15b8b7213882a655e4", "tabbable": null, "tooltip": null, "value": 200.0}}, "4faae3cf9dec4bff8d6b153958974cb0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f06ca8d0f284b2faa6dfcacfef924f4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3150f0f2d0bf48d380ee22cb6a6ec59c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4faae3cf9dec4bff8d6b153958974cb0", "placeholder": "\u200b", "style": "IPY_MODEL_1f06ca8d0f284b2faa6dfcacfef924f4", "tabbable": null, "tooltip": null, "value": "100%"}}, "66f3914610164bc59a81d0274162760b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ed6f32f260df411fabc8f0fbfee24aec": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "bfa11543be8f43068f62cfed9db531cd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_66f3914610164bc59a81d0274162760b", "placeholder": "\u200b", "style": "IPY_MODEL_ed6f32f260df411fabc8f0fbfee24aec", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007737.31it/s]"}}, "887298b3add949feb4bb13ea5dee1afe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "391d66fc80844e98a6b7127eea20e3ba": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3150f0f2d0bf48d380ee22cb6a6ec59c", "IPY_MODEL_8bd3259d18d64ab0a7ab19d9a309e286", "IPY_MODEL_bfa11543be8f43068f62cfed9db531cd"], "layout": "IPY_MODEL_887298b3add949feb4bb13ea5dee1afe", "tabbable": null, "tooltip": null}}, "c10a765f9e4f4c4cbaaba7f898a15d5b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "351acb9554dd4c3b842bf386e04513a3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c325cd32b1d14cc4b5ca8e321dc31d90": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c10a765f9e4f4c4cbaaba7f898a15d5b", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_351acb9554dd4c3b842bf386e04513a3", "tabbable": null, "tooltip": null, "value": 200.0}}, "7522155776ea4756a28dddb027c64cce": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6d00dcfbb71a473cbf9e476243985f81": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f8a482431f34e2faae193d10e76980a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7522155776ea4756a28dddb027c64cce", "placeholder": "\u200b", "style": "IPY_MODEL_6d00dcfbb71a473cbf9e476243985f81", "tabbable": null, "tooltip": null, "value": "100%"}}, "b9a1aba8237e45ea957d852a6d53dcc4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "65a45dea02f74c5bbcacb4916148fb86": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1a09c3aa59a94a799c0b7a82b5718e4d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b9a1aba8237e45ea957d852a6d53dcc4", "placeholder": "\u200b", "style": "IPY_MODEL_65a45dea02f74c5bbcacb4916148fb86", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007691.49it/s]"}}, "57556e8423424a75b5760334a13aa4a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "03ddc5e5c2af4ed382e0c99cc2aa646b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3f8a482431f34e2faae193d10e76980a", "IPY_MODEL_c325cd32b1d14cc4b5ca8e321dc31d90", "IPY_MODEL_1a09c3aa59a94a799c0b7a82b5718e4d"], "layout": "IPY_MODEL_57556e8423424a75b5760334a13aa4a6", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"59f5cfbd0629486ba546f97d01ea7fed": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "75e04c762f744d54adf55d90a052c562": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e56f4d7332994f4e8edf32b758ca794d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", "tabbable": null, "tooltip": null, "value": 200.0}}, "294a1c481a4c46e5bc9df718d9565bc7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b6cc201cb424f5298894e3085cf6d74": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "43460e1d74ff44b6bdf8b3639d60c64c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", "placeholder": "\u200b", "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", "tabbable": null, "tooltip": null, "value": "100%"}}, "4550b40c93134694b00bc701007e4553": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b3b4bdc005f14648a26d1a16f3cf9fbf": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "df74cf1241974d8dba64d522788976ea": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", "placeholder": "\u200b", "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007800.04it/s]"}}, "f9df9fb0ad7f4fe6b179e8db8621c60f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "716f2c676ad44e9fb6218d0b8625a9c5": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", "IPY_MODEL_df74cf1241974d8dba64d522788976ea"], "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", "tabbable": null, "tooltip": null}}, "cdbb5130f8d045468526e3f842f2ee28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "58c201af515141f191ad32c13265a546": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "37549aa8f96049628f56685e9b488f6c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", "max": 200.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", "tabbable": null, "tooltip": null, "value": 200.0}}, "75f430393fb34cad87ddab50d62eb686": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d12154805bed4fff8e2d01bf4f786af1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "31bd0ebee4be4b6995b1299029dfd4ba": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", "placeholder": "\u200b", "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", "tabbable": null, "tooltip": null, "value": "100%"}}, "0f799df441bb4d05a6a28c61f333f046": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dee7e34112e0456e8e72f2a3ac0efa77": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a58aa13dc64e47faa0cc93bb6652151b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", "placeholder": "\u200b", "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", "tabbable": null, "tooltip": null, "value": "\u2007200/200\u2007[00:00<00:00,\u2007681.83it/s]"}}, "ef0ce0626f2f42ccab835c3082d23f11": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ea4f3639cd404344b740181a60e6dfe1": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b"], "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/workflows.ipynb b/master/tutorials/datalab/workflows.ipynb index 0177ed6a5..8fba9ce06 100644 --- a/master/tutorials/datalab/workflows.ipynb +++ b/master/tutorials/datalab/workflows.ipynb @@ -38,10 +38,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:52.942544Z", - "iopub.status.busy": "2024-07-09T06:10:52.942073Z", - "iopub.status.idle": "2024-07-09T06:10:53.345681Z", - "shell.execute_reply": "2024-07-09T06:10:53.345198Z" + "iopub.execute_input": "2024-07-09T06:26:06.359120Z", + "iopub.status.busy": "2024-07-09T06:26:06.358944Z", + "iopub.status.idle": "2024-07-09T06:26:06.770440Z", + "shell.execute_reply": "2024-07-09T06:26:06.769872Z" } }, "outputs": [], @@ -87,10 +87,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.348217Z", - "iopub.status.busy": "2024-07-09T06:10:53.347881Z", - "iopub.status.idle": "2024-07-09T06:10:53.473155Z", - "shell.execute_reply": "2024-07-09T06:10:53.472597Z" + "iopub.execute_input": "2024-07-09T06:26:06.772937Z", + "iopub.status.busy": "2024-07-09T06:26:06.772696Z", + "iopub.status.idle": "2024-07-09T06:26:06.900862Z", + "shell.execute_reply": "2024-07-09T06:26:06.900374Z" } }, "outputs": [ @@ -181,10 +181,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.475525Z", - "iopub.status.busy": "2024-07-09T06:10:53.475127Z", - "iopub.status.idle": "2024-07-09T06:10:53.497388Z", - "shell.execute_reply": "2024-07-09T06:10:53.496815Z" + "iopub.execute_input": "2024-07-09T06:26:06.903167Z", + "iopub.status.busy": "2024-07-09T06:26:06.902756Z", + "iopub.status.idle": "2024-07-09T06:26:06.925318Z", + "shell.execute_reply": "2024-07-09T06:26:06.924766Z" } }, "outputs": [], @@ -210,10 +210,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:53.499731Z", - "iopub.status.busy": "2024-07-09T06:10:53.499527Z", - "iopub.status.idle": "2024-07-09T06:10:56.136141Z", - "shell.execute_reply": "2024-07-09T06:10:56.135492Z" + "iopub.execute_input": "2024-07-09T06:26:06.927949Z", + "iopub.status.busy": "2024-07-09T06:26:06.927455Z", + "iopub.status.idle": "2024-07-09T06:26:09.660674Z", + "shell.execute_reply": "2024-07-09T06:26:09.660045Z" } }, "outputs": [ @@ -280,7 +280,7 @@ " \n", " 2\n", " outlier\n", - " 0.356958\n", + " 0.356959\n", " 362\n", " \n", " \n", @@ -315,7 +315,7 @@ " issue_type score num_issues\n", "0 null 1.000000 0\n", "1 label 0.991400 52\n", - "2 outlier 0.356958 362\n", + "2 outlier 0.356959 362\n", "3 near_duplicate 0.619565 108\n", "4 non_iid 0.000000 1\n", "5 class_imbalance 0.500000 0\n", @@ -700,10 +700,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:10:56.138887Z", - "iopub.status.busy": "2024-07-09T06:10:56.138378Z", - "iopub.status.idle": "2024-07-09T06:11:04.045173Z", - "shell.execute_reply": "2024-07-09T06:11:04.044648Z" + "iopub.execute_input": "2024-07-09T06:26:09.663103Z", + "iopub.status.busy": "2024-07-09T06:26:09.662695Z", + "iopub.status.idle": "2024-07-09T06:26:17.697818Z", + "shell.execute_reply": "2024-07-09T06:26:17.697224Z" } }, "outputs": [ @@ -804,10 +804,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.047461Z", - "iopub.status.busy": "2024-07-09T06:11:04.047110Z", - "iopub.status.idle": "2024-07-09T06:11:04.191376Z", - "shell.execute_reply": "2024-07-09T06:11:04.190647Z" + "iopub.execute_input": "2024-07-09T06:26:17.700276Z", + "iopub.status.busy": "2024-07-09T06:26:17.699925Z", + "iopub.status.idle": "2024-07-09T06:26:17.841746Z", + "shell.execute_reply": "2024-07-09T06:26:17.841256Z" } }, "outputs": [], @@ -838,10 +838,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:04.194109Z", - "iopub.status.busy": "2024-07-09T06:11:04.193645Z", - "iopub.status.idle": "2024-07-09T06:11:05.510979Z", - "shell.execute_reply": "2024-07-09T06:11:05.510497Z" + "iopub.execute_input": "2024-07-09T06:26:17.844287Z", + "iopub.status.busy": "2024-07-09T06:26:17.843913Z", + "iopub.status.idle": "2024-07-09T06:26:19.164893Z", + "shell.execute_reply": "2024-07-09T06:26:19.164379Z" } }, "outputs": [ @@ -1000,10 +1000,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.513170Z", - "iopub.status.busy": "2024-07-09T06:11:05.512973Z", - "iopub.status.idle": "2024-07-09T06:11:05.957490Z", - "shell.execute_reply": "2024-07-09T06:11:05.956884Z" + "iopub.execute_input": "2024-07-09T06:26:19.167019Z", + "iopub.status.busy": "2024-07-09T06:26:19.166813Z", + "iopub.status.idle": "2024-07-09T06:26:19.597782Z", + "shell.execute_reply": "2024-07-09T06:26:19.597208Z" } }, "outputs": [ @@ -1082,10 +1082,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.959868Z", - "iopub.status.busy": "2024-07-09T06:11:05.959401Z", - "iopub.status.idle": "2024-07-09T06:11:05.968391Z", - "shell.execute_reply": "2024-07-09T06:11:05.967953Z" + "iopub.execute_input": "2024-07-09T06:26:19.600017Z", + "iopub.status.busy": "2024-07-09T06:26:19.599671Z", + "iopub.status.idle": "2024-07-09T06:26:19.608754Z", + "shell.execute_reply": "2024-07-09T06:26:19.608320Z" } }, "outputs": [], @@ -1115,10 +1115,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.970302Z", - "iopub.status.busy": "2024-07-09T06:11:05.970122Z", - "iopub.status.idle": "2024-07-09T06:11:05.987977Z", - "shell.execute_reply": "2024-07-09T06:11:05.987543Z" + "iopub.execute_input": "2024-07-09T06:26:19.610758Z", + "iopub.status.busy": "2024-07-09T06:26:19.610582Z", + "iopub.status.idle": "2024-07-09T06:26:19.629174Z", + "shell.execute_reply": "2024-07-09T06:26:19.628714Z" } }, "outputs": [], @@ -1146,10 +1146,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:05.989813Z", - "iopub.status.busy": "2024-07-09T06:11:05.989642Z", - "iopub.status.idle": "2024-07-09T06:11:06.209533Z", - "shell.execute_reply": "2024-07-09T06:11:06.208915Z" + "iopub.execute_input": "2024-07-09T06:26:19.631274Z", + "iopub.status.busy": "2024-07-09T06:26:19.630949Z", + "iopub.status.idle": "2024-07-09T06:26:19.855473Z", + "shell.execute_reply": "2024-07-09T06:26:19.854937Z" } }, "outputs": [], @@ -1189,10 +1189,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.212253Z", - "iopub.status.busy": "2024-07-09T06:11:06.211863Z", - "iopub.status.idle": "2024-07-09T06:11:06.230982Z", - "shell.execute_reply": "2024-07-09T06:11:06.230519Z" + "iopub.execute_input": "2024-07-09T06:26:19.857897Z", + "iopub.status.busy": "2024-07-09T06:26:19.857717Z", + "iopub.status.idle": "2024-07-09T06:26:19.876254Z", + "shell.execute_reply": "2024-07-09T06:26:19.875785Z" } }, "outputs": [ @@ -1390,10 +1390,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.232972Z", - "iopub.status.busy": "2024-07-09T06:11:06.232702Z", - "iopub.status.idle": "2024-07-09T06:11:06.397652Z", - "shell.execute_reply": "2024-07-09T06:11:06.397123Z" + "iopub.execute_input": "2024-07-09T06:26:19.878330Z", + "iopub.status.busy": "2024-07-09T06:26:19.878123Z", + "iopub.status.idle": "2024-07-09T06:26:20.020972Z", + "shell.execute_reply": "2024-07-09T06:26:20.020418Z" } }, "outputs": [ @@ -1460,10 +1460,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.399867Z", - "iopub.status.busy": "2024-07-09T06:11:06.399536Z", - "iopub.status.idle": "2024-07-09T06:11:06.409014Z", - "shell.execute_reply": "2024-07-09T06:11:06.408593Z" + "iopub.execute_input": "2024-07-09T06:26:20.023234Z", + "iopub.status.busy": "2024-07-09T06:26:20.023054Z", + "iopub.status.idle": "2024-07-09T06:26:20.033881Z", + "shell.execute_reply": "2024-07-09T06:26:20.033455Z" } }, "outputs": [ @@ -1729,10 +1729,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.411108Z", - "iopub.status.busy": "2024-07-09T06:11:06.410779Z", - "iopub.status.idle": "2024-07-09T06:11:06.419899Z", - "shell.execute_reply": "2024-07-09T06:11:06.419375Z" + "iopub.execute_input": "2024-07-09T06:26:20.036017Z", + "iopub.status.busy": "2024-07-09T06:26:20.035683Z", + "iopub.status.idle": "2024-07-09T06:26:20.045307Z", + "shell.execute_reply": "2024-07-09T06:26:20.044756Z" } }, "outputs": [ @@ -1919,10 +1919,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.421833Z", - "iopub.status.busy": "2024-07-09T06:11:06.421517Z", - "iopub.status.idle": "2024-07-09T06:11:06.463296Z", - "shell.execute_reply": "2024-07-09T06:11:06.462727Z" + "iopub.execute_input": "2024-07-09T06:26:20.047404Z", + "iopub.status.busy": "2024-07-09T06:26:20.047075Z", + "iopub.status.idle": "2024-07-09T06:26:20.077571Z", + "shell.execute_reply": "2024-07-09T06:26:20.077104Z" } }, "outputs": [], @@ -1956,10 +1956,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.465213Z", - "iopub.status.busy": "2024-07-09T06:11:06.464909Z", - "iopub.status.idle": "2024-07-09T06:11:06.467608Z", - "shell.execute_reply": "2024-07-09T06:11:06.467074Z" + "iopub.execute_input": "2024-07-09T06:26:20.079806Z", + "iopub.status.busy": "2024-07-09T06:26:20.079460Z", + "iopub.status.idle": "2024-07-09T06:26:20.082272Z", + "shell.execute_reply": "2024-07-09T06:26:20.081824Z" } }, "outputs": [], @@ -1981,10 +1981,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.469481Z", - "iopub.status.busy": "2024-07-09T06:11:06.469198Z", - "iopub.status.idle": "2024-07-09T06:11:06.487639Z", - "shell.execute_reply": "2024-07-09T06:11:06.487096Z" + "iopub.execute_input": "2024-07-09T06:26:20.084214Z", + "iopub.status.busy": "2024-07-09T06:26:20.083951Z", + "iopub.status.idle": "2024-07-09T06:26:20.103369Z", + "shell.execute_reply": "2024-07-09T06:26:20.102920Z" } }, "outputs": [ @@ -2142,10 +2142,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.489617Z", - "iopub.status.busy": "2024-07-09T06:11:06.489312Z", - "iopub.status.idle": "2024-07-09T06:11:06.493367Z", - "shell.execute_reply": "2024-07-09T06:11:06.492952Z" + "iopub.execute_input": "2024-07-09T06:26:20.105637Z", + "iopub.status.busy": "2024-07-09T06:26:20.105313Z", + "iopub.status.idle": "2024-07-09T06:26:20.109592Z", + "shell.execute_reply": "2024-07-09T06:26:20.109129Z" } }, "outputs": [], @@ -2178,10 +2178,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.495289Z", - "iopub.status.busy": "2024-07-09T06:11:06.495116Z", - "iopub.status.idle": "2024-07-09T06:11:06.522255Z", - "shell.execute_reply": "2024-07-09T06:11:06.521808Z" + "iopub.execute_input": "2024-07-09T06:26:20.111735Z", + "iopub.status.busy": "2024-07-09T06:26:20.111418Z", + "iopub.status.idle": "2024-07-09T06:26:20.140670Z", + "shell.execute_reply": "2024-07-09T06:26:20.140161Z" } }, "outputs": [ @@ -2327,10 +2327,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.524284Z", - "iopub.status.busy": "2024-07-09T06:11:06.523987Z", - "iopub.status.idle": "2024-07-09T06:11:06.892253Z", - "shell.execute_reply": "2024-07-09T06:11:06.891794Z" + "iopub.execute_input": "2024-07-09T06:26:20.143010Z", + "iopub.status.busy": "2024-07-09T06:26:20.142558Z", + "iopub.status.idle": "2024-07-09T06:26:20.467470Z", + "shell.execute_reply": "2024-07-09T06:26:20.466812Z" } }, "outputs": [ @@ -2397,10 +2397,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.894473Z", - "iopub.status.busy": "2024-07-09T06:11:06.894138Z", - "iopub.status.idle": "2024-07-09T06:11:06.897200Z", - "shell.execute_reply": "2024-07-09T06:11:06.896678Z" + "iopub.execute_input": "2024-07-09T06:26:20.469860Z", + "iopub.status.busy": "2024-07-09T06:26:20.469461Z", + "iopub.status.idle": "2024-07-09T06:26:20.472834Z", + "shell.execute_reply": "2024-07-09T06:26:20.472304Z" } }, "outputs": [ @@ -2451,10 +2451,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.899347Z", - "iopub.status.busy": "2024-07-09T06:11:06.899013Z", - "iopub.status.idle": "2024-07-09T06:11:06.911828Z", - "shell.execute_reply": "2024-07-09T06:11:06.911372Z" + "iopub.execute_input": "2024-07-09T06:26:20.474846Z", + "iopub.status.busy": "2024-07-09T06:26:20.474545Z", + "iopub.status.idle": "2024-07-09T06:26:20.487539Z", + "shell.execute_reply": "2024-07-09T06:26:20.487103Z" } }, "outputs": [ @@ -2733,10 +2733,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.913860Z", - "iopub.status.busy": "2024-07-09T06:11:06.913532Z", - "iopub.status.idle": "2024-07-09T06:11:06.926512Z", - "shell.execute_reply": "2024-07-09T06:11:06.926088Z" + "iopub.execute_input": "2024-07-09T06:26:20.489598Z", + "iopub.status.busy": "2024-07-09T06:26:20.489254Z", + "iopub.status.idle": "2024-07-09T06:26:20.502494Z", + "shell.execute_reply": "2024-07-09T06:26:20.502059Z" } }, "outputs": [ @@ -3003,10 +3003,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.928478Z", - "iopub.status.busy": "2024-07-09T06:11:06.928157Z", - "iopub.status.idle": "2024-07-09T06:11:06.937772Z", - "shell.execute_reply": "2024-07-09T06:11:06.937343Z" + "iopub.execute_input": "2024-07-09T06:26:20.504650Z", + "iopub.status.busy": "2024-07-09T06:26:20.504262Z", + "iopub.status.idle": "2024-07-09T06:26:20.514526Z", + "shell.execute_reply": "2024-07-09T06:26:20.513953Z" } }, "outputs": [], @@ -3031,10 +3031,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.939820Z", - "iopub.status.busy": "2024-07-09T06:11:06.939507Z", - "iopub.status.idle": "2024-07-09T06:11:06.948609Z", - "shell.execute_reply": "2024-07-09T06:11:06.948081Z" + "iopub.execute_input": "2024-07-09T06:26:20.516777Z", + "iopub.status.busy": "2024-07-09T06:26:20.516378Z", + "iopub.status.idle": "2024-07-09T06:26:20.525636Z", + "shell.execute_reply": "2024-07-09T06:26:20.525158Z" } }, "outputs": [ @@ -3206,10 +3206,10 @@ "execution_count": 27, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.950589Z", - "iopub.status.busy": "2024-07-09T06:11:06.950273Z", - "iopub.status.idle": "2024-07-09T06:11:06.953656Z", - "shell.execute_reply": "2024-07-09T06:11:06.953231Z" + "iopub.execute_input": "2024-07-09T06:26:20.527730Z", + "iopub.status.busy": "2024-07-09T06:26:20.527427Z", + "iopub.status.idle": "2024-07-09T06:26:20.531215Z", + "shell.execute_reply": "2024-07-09T06:26:20.530643Z" } }, "outputs": [], @@ -3241,10 +3241,10 @@ "execution_count": 28, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:06.955684Z", - "iopub.status.busy": "2024-07-09T06:11:06.955363Z", - "iopub.status.idle": "2024-07-09T06:11:07.005178Z", - "shell.execute_reply": "2024-07-09T06:11:07.004737Z" + "iopub.execute_input": "2024-07-09T06:26:20.533369Z", + "iopub.status.busy": "2024-07-09T06:26:20.532978Z", + "iopub.status.idle": "2024-07-09T06:26:20.584716Z", + "shell.execute_reply": "2024-07-09T06:26:20.584160Z" } }, "outputs": [ @@ -3252,230 +3252,230 @@ "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 AgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_scoreAgeGenderLocationAnnual_SpendingNumber_of_TransactionsLast_Purchase_Date|is_null_issuenull_score
8nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.0000008nannannannannanNaTTrue0.000000
1nanFemaleRural6421.1600005.000000NaTFalse0.666667
9nanMaleRural4655.8200001.000000NaTFalse0.666667
14nanMaleRural6790.4600003.000000NaTFalse0.666667
13nanMaleUrban9167.4700004.0000002024-01-02 00:00:00False0.833333
15nanOtherRural5327.9600008.0000002024-01-03 00:00:00False0.833333
056.000000OtherRural4099.6200003.0000002024-01-03 00:00:00False1.000000
246.000000MaleSuburban5436.5500003.0000002024-02-26 00:00:00False1.000000
332.000000FemaleRural4046.6600003.0000002024-03-23 00:00:00False1.000000
460.000000FemaleSuburban3467.6700006.0000002024-03-01 00:00:00False1.000000
525.000000FemaleSuburban4757.3700004.0000002024-01-03 00:00:00False1.000000
638.000000FemaleRural4199.5300006.0000002024-01-03 00:00:00False1.000000
756.000000MaleSuburban4991.7100006.0000002024-04-03 00:00:00False1.000000
1040.000000FemaleRural5584.0200007.0000002024-03-29 00:00:00False1.000000
1128.000000FemaleUrban3102.3200002.0000002024-04-07 00:00:00False1.000000
1228.000000MaleRural6637.99000011.0000002024-04-08 00:00:00False1.000000
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -3551,10 +3551,10 @@ "execution_count": 29, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.007278Z", - "iopub.status.busy": "2024-07-09T06:11:07.006978Z", - "iopub.status.idle": "2024-07-09T06:11:07.012518Z", - "shell.execute_reply": "2024-07-09T06:11:07.012098Z" + "iopub.execute_input": "2024-07-09T06:26:20.587026Z", + "iopub.status.busy": "2024-07-09T06:26:20.586732Z", + "iopub.status.idle": "2024-07-09T06:26:20.592456Z", + "shell.execute_reply": "2024-07-09T06:26:20.592020Z" } }, "outputs": [], @@ -3593,10 +3593,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.014465Z", - "iopub.status.busy": "2024-07-09T06:11:07.014161Z", - "iopub.status.idle": "2024-07-09T06:11:07.024669Z", - "shell.execute_reply": "2024-07-09T06:11:07.024221Z" + "iopub.execute_input": "2024-07-09T06:26:20.594421Z", + "iopub.status.busy": "2024-07-09T06:26:20.594113Z", + "iopub.status.idle": "2024-07-09T06:26:20.604649Z", + "shell.execute_reply": "2024-07-09T06:26:20.604215Z" } }, "outputs": [ @@ -3632,10 +3632,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.026593Z", - "iopub.status.busy": "2024-07-09T06:11:07.026273Z", - "iopub.status.idle": "2024-07-09T06:11:07.237791Z", - "shell.execute_reply": "2024-07-09T06:11:07.237173Z" + "iopub.execute_input": "2024-07-09T06:26:20.606620Z", + "iopub.status.busy": "2024-07-09T06:26:20.606292Z", + "iopub.status.idle": "2024-07-09T06:26:20.783133Z", + "shell.execute_reply": "2024-07-09T06:26:20.782497Z" } }, "outputs": [ @@ -3687,10 +3687,10 @@ "execution_count": 32, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.239996Z", - "iopub.status.busy": "2024-07-09T06:11:07.239645Z", - "iopub.status.idle": "2024-07-09T06:11:07.246938Z", - "shell.execute_reply": "2024-07-09T06:11:07.246490Z" + "iopub.execute_input": "2024-07-09T06:26:20.785456Z", + "iopub.status.busy": "2024-07-09T06:26:20.785275Z", + "iopub.status.idle": "2024-07-09T06:26:20.793330Z", + "shell.execute_reply": "2024-07-09T06:26:20.792773Z" }, "nbsphinx": "hidden" }, @@ -3760,10 +3760,10 @@ "execution_count": 33, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:07.249025Z", - "iopub.status.busy": "2024-07-09T06:11:07.248700Z", - "iopub.status.idle": "2024-07-09T06:11:13.254461Z", - "shell.execute_reply": "2024-07-09T06:11:13.253971Z" + "iopub.execute_input": "2024-07-09T06:26:20.795475Z", + "iopub.status.busy": "2024-07-09T06:26:20.795196Z", + "iopub.status.idle": "2024-07-09T06:26:26.499101Z", + "shell.execute_reply": "2024-07-09T06:26:26.498454Z" } }, "outputs": [ @@ -3787,7 +3787,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 917504/170498071 [00:00<00:20, 8397815.81it/s]" + " 0%| | 851968/170498071 [00:00<00:22, 7672499.19it/s]" ] }, { @@ -3795,7 +3795,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9797632/170498071 [00:00<00:02, 53891570.80it/s]" + " 6%|▌ | 10125312/170498071 [00:00<00:02, 55503706.90it/s]" ] }, { @@ -3803,7 +3803,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 18186240/170498071 [00:00<00:02, 67271366.92it/s]" + " 12%|█▏ | 20086784/170498071 [00:00<00:02, 75141107.06it/s]" ] }, { @@ -3811,7 +3811,7 @@ "output_type": "stream", "text": [ "\r", - " 16%|█▌ | 26836992/170498071 [00:00<00:01, 74765057.23it/s]" + " 18%|█▊ | 30867456/170498071 [00:00<00:01, 87824521.95it/s]" ] }, { @@ -3819,7 +3819,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35782656/170498071 [00:00<00:01, 79953812.72it/s]" + " 24%|██▍ | 40960000/170498071 [00:00<00:01, 92491731.79it/s]" ] }, { @@ -3827,7 +3827,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 44433408/170498071 [00:00<00:01, 82133729.89it/s]" + " 30%|███ | 51609600/170498071 [00:00<00:01, 97114538.99it/s]" ] }, { @@ -3835,7 +3835,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███▏ | 53313536/170498071 [00:00<00:01, 84295199.10it/s]" + " 36%|███▋ | 61898752/170498071 [00:00<00:01, 98927626.10it/s]" ] }, { @@ -3843,7 +3843,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61800448/170498071 [00:00<00:01, 83129927.83it/s]" + " 42%|████▏ | 71860224/170498071 [00:00<00:01, 98135286.77it/s]" ] }, { @@ -3851,7 +3851,7 @@ "output_type": "stream", "text": [ "\r", - " 42%|████▏ | 71041024/170498071 [00:00<00:01, 85883974.57it/s]" + " 48%|████▊ | 82149376/170498071 [00:00<00:00, 99557055.65it/s]" ] }, { @@ -3859,7 +3859,7 @@ "output_type": "stream", "text": [ "\r", - " 47%|████▋ | 79659008/170498071 [00:01<00:01, 84046894.98it/s]" + " 54%|█████▍ | 92143616/170498071 [00:01<00:00, 99457801.69it/s]" ] }, { @@ -3867,7 +3867,7 @@ "output_type": "stream", "text": [ "\r", - " 52%|█████▏ | 88113152/170498071 [00:01<00:01, 81203827.56it/s]" + " 60%|██████ | 102531072/170498071 [00:01<00:00, 100788217.51it/s]" ] }, { @@ -3875,7 +3875,7 @@ "output_type": "stream", "text": [ "\r", - " 56%|█████▋ | 96272384/170498071 [00:01<00:00, 74533497.60it/s]" + " 66%|██████▌ | 112918528/170498071 [00:01<00:00, 101593672.45it/s]" ] }, { @@ -3883,7 +3883,7 @@ "output_type": "stream", "text": [ "\r", - " 61%|██████▏ | 104792064/170498071 [00:01<00:00, 77401455.40it/s]" + " 72%|███████▏ | 123273216/170498071 [00:01<00:00, 102077027.78it/s]" ] }, { @@ -3891,7 +3891,7 @@ "output_type": "stream", "text": [ "\r", - " 66%|██████▋ | 112984064/170498071 [00:01<00:00, 78643113.14it/s]" + " 78%|███████▊ | 133496832/170498071 [00:01<00:00, 101792169.97it/s]" ] }, { @@ -3899,7 +3899,7 @@ "output_type": "stream", "text": [ "\r", - " 71%|███████ | 121143296/170498071 [00:01<00:00, 79360199.69it/s]" + " 84%|████████▍ | 143884288/170498071 [00:01<00:00, 102376551.47it/s]" ] }, { @@ -3907,7 +3907,7 @@ "output_type": "stream", "text": [ "\r", - " 76%|███████▌ | 129138688/170498071 [00:01<00:00, 76918262.43it/s]" + " 90%|█████████ | 154140672/170498071 [00:01<00:00, 100826537.56it/s]" ] }, { @@ -3915,7 +3915,7 @@ "output_type": "stream", "text": [ "\r", - " 81%|████████ | 137920512/170498071 [00:01<00:00, 80018807.83it/s]" + " 97%|█████████▋| 164593664/170498071 [00:01<00:00, 101825649.23it/s]" ] }, { @@ -3923,31 +3923,7 @@ "output_type": "stream", "text": [ "\r", - " 86%|████████▌ | 145981440/170498071 [00:01<00:00, 77133636.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 91%|█████████ | 154402816/170498071 [00:01<00:00, 79111347.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▌| 162365440/170498071 [00:02<00:00, 76269291.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:02<00:00, 77333951.88it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 95733745.71it/s] " ] }, { @@ -4021,10 +3997,10 @@ "execution_count": 34, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.257185Z", - "iopub.status.busy": "2024-07-09T06:11:13.256590Z", - "iopub.status.idle": "2024-07-09T06:11:13.323923Z", - "shell.execute_reply": "2024-07-09T06:11:13.323486Z" + "iopub.execute_input": "2024-07-09T06:26:26.501872Z", + "iopub.status.busy": "2024-07-09T06:26:26.501334Z", + "iopub.status.idle": "2024-07-09T06:26:26.568877Z", + "shell.execute_reply": "2024-07-09T06:26:26.568264Z" } }, "outputs": [], @@ -4046,10 +4022,10 @@ "execution_count": 35, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.326012Z", - "iopub.status.busy": "2024-07-09T06:11:13.325680Z", - "iopub.status.idle": "2024-07-09T06:11:13.366116Z", - "shell.execute_reply": "2024-07-09T06:11:13.365711Z" + "iopub.execute_input": "2024-07-09T06:26:26.571436Z", + "iopub.status.busy": "2024-07-09T06:26:26.571213Z", + "iopub.status.idle": "2024-07-09T06:26:26.612980Z", + "shell.execute_reply": "2024-07-09T06:26:26.612387Z" } }, "outputs": [], @@ -4083,10 +4059,10 @@ "execution_count": 36, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:13.368146Z", - "iopub.status.busy": "2024-07-09T06:11:13.367823Z", - "iopub.status.idle": "2024-07-09T06:11:14.824593Z", - "shell.execute_reply": "2024-07-09T06:11:14.824054Z" + "iopub.execute_input": "2024-07-09T06:26:26.615590Z", + "iopub.status.busy": "2024-07-09T06:26:26.615223Z", + "iopub.status.idle": "2024-07-09T06:26:28.007434Z", + "shell.execute_reply": "2024-07-09T06:26:28.006820Z" } }, "outputs": [ @@ -4160,10 +4136,10 @@ "execution_count": 37, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:14.826794Z", - "iopub.status.busy": "2024-07-09T06:11:14.826486Z", - "iopub.status.idle": "2024-07-09T06:11:15.661596Z", - "shell.execute_reply": "2024-07-09T06:11:15.661072Z" + "iopub.execute_input": "2024-07-09T06:26:28.009673Z", + "iopub.status.busy": "2024-07-09T06:26:28.009331Z", + "iopub.status.idle": "2024-07-09T06:26:28.820192Z", + "shell.execute_reply": "2024-07-09T06:26:28.819683Z" } }, "outputs": [ @@ -4178,7 +4154,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "391d66fc80844e98a6b7127eea20e3ba", + "model_id": "716f2c676ad44e9fb6218d0b8625a9c5", "version_major": 2, "version_minor": 0 }, @@ -4202,7 +4178,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "03ddc5e5c2af4ed382e0c99cc2aa646b", + "model_id": "ea4f3639cd404344b740181a60e6dfe1", "version_major": 2, "version_minor": 0 }, @@ -4452,54 +4428,113 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "03ddc5e5c2af4ed382e0c99cc2aa646b": { - "model_module": "@jupyter-widgets/controls", + "0f799df441bb4d05a6a28c61f333f046": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3f8a482431f34e2faae193d10e76980a", - "IPY_MODEL_c325cd32b1d14cc4b5ca8e321dc31d90", - "IPY_MODEL_1a09c3aa59a94a799c0b7a82b5718e4d" - ], - "layout": "IPY_MODEL_57556e8423424a75b5760334a13aa4a6", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1a09c3aa59a94a799c0b7a82b5718e4d": { - "model_module": "@jupyter-widgets/controls", + "294a1c481a4c46e5bc9df718d9565bc7": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b9a1aba8237e45ea957d852a6d53dcc4", - "placeholder": "​", - "style": "IPY_MODEL_65a45dea02f74c5bbcacb4916148fb86", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 691.49it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1f06ca8d0f284b2faa6dfcacfef924f4": { + "2b6cc201cb424f5298894e3085cf6d74": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4517,23 +4552,7 @@ "text_color": null } }, - "309173506dba4f15b8b7213882a655e4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "3150f0f2d0bf48d380ee22cb6a6ec59c": { + "31bd0ebee4be4b6995b1299029dfd4ba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4548,55 +4567,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4faae3cf9dec4bff8d6b153958974cb0", + "layout": "IPY_MODEL_75f430393fb34cad87ddab50d62eb686", "placeholder": "​", - "style": "IPY_MODEL_1f06ca8d0f284b2faa6dfcacfef924f4", + "style": "IPY_MODEL_d12154805bed4fff8e2d01bf4f786af1", "tabbable": null, "tooltip": null, "value": "100%" } }, - "351acb9554dd4c3b842bf386e04513a3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "391d66fc80844e98a6b7127eea20e3ba": { + "37549aa8f96049628f56685e9b488f6c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3150f0f2d0bf48d380ee22cb6a6ec59c", - "IPY_MODEL_8bd3259d18d64ab0a7ab19d9a309e286", - "IPY_MODEL_bfa11543be8f43068f62cfed9db531cd" - ], - "layout": "IPY_MODEL_887298b3add949feb4bb13ea5dee1afe", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cdbb5130f8d045468526e3f842f2ee28", + "max": 200.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_58c201af515141f191ad32c13265a546", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 200.0 } }, - "3f8a482431f34e2faae193d10e76980a": { + "43460e1d74ff44b6bdf8b3639d60c64c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4611,15 +4616,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7522155776ea4756a28dddb027c64cce", + "layout": "IPY_MODEL_294a1c481a4c46e5bc9df718d9565bc7", "placeholder": "​", - "style": "IPY_MODEL_6d00dcfbb71a473cbf9e476243985f81", + "style": "IPY_MODEL_2b6cc201cb424f5298894e3085cf6d74", "tabbable": null, "tooltip": null, "value": "100%" } }, - "4faae3cf9dec4bff8d6b153958974cb0": { + "4550b40c93134694b00bc701007e4553": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4672,7 +4677,23 @@ "width": null } }, - "57556e8423424a75b5760334a13aa4a6": { + "58c201af515141f191ad32c13265a546": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "59f5cfbd0629486ba546f97d01ea7fed": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4725,7 +4746,47 @@ "width": null } }, - "5f942cc81ac44594bd238162231ac7ac": { + "716f2c676ad44e9fb6218d0b8625a9c5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_43460e1d74ff44b6bdf8b3639d60c64c", + "IPY_MODEL_e56f4d7332994f4e8edf32b758ca794d", + "IPY_MODEL_df74cf1241974d8dba64d522788976ea" + ], + "layout": "IPY_MODEL_f9df9fb0ad7f4fe6b179e8db8621c60f", + "tabbable": null, + "tooltip": null + } + }, + "75e04c762f744d54adf55d90a052c562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "75f430393fb34cad87ddab50d62eb686": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4778,7 +4839,30 @@ "width": null } }, - "65a45dea02f74c5bbcacb4916148fb86": { + "a58aa13dc64e47faa0cc93bb6652151b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0f799df441bb4d05a6a28c61f333f046", + "placeholder": "​", + "style": "IPY_MODEL_dee7e34112e0456e8e72f2a3ac0efa77", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 681.83it/s]" + } + }, + "b3b4bdc005f14648a26d1a16f3cf9fbf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4796,7 +4880,7 @@ "text_color": null } }, - "66f3914610164bc59a81d0274162760b": { + "cdbb5130f8d045468526e3f842f2ee28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4849,7 +4933,7 @@ "width": null } }, - "6d00dcfbb71a473cbf9e476243985f81": { + "d12154805bed4fff8e2d01bf4f786af1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4867,113 +4951,48 @@ "text_color": null } }, - "7522155776ea4756a28dddb027c64cce": { - "model_module": "@jupyter-widgets/base", + "dee7e34112e0456e8e72f2a3ac0efa77": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "887298b3add949feb4bb13ea5dee1afe": { - "model_module": "@jupyter-widgets/base", + "df74cf1241974d8dba64d522788976ea": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4550b40c93134694b00bc701007e4553", + "placeholder": "​", + "style": "IPY_MODEL_b3b4bdc005f14648a26d1a16f3cf9fbf", + "tabbable": null, + "tooltip": null, + "value": " 200/200 [00:00<00:00, 800.04it/s]" } }, - "8bd3259d18d64ab0a7ab19d9a309e286": { + "e56f4d7332994f4e8edf32b758ca794d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4989,17 +5008,41 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_5f942cc81ac44594bd238162231ac7ac", + "layout": "IPY_MODEL_59f5cfbd0629486ba546f97d01ea7fed", "max": 200.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_309173506dba4f15b8b7213882a655e4", + "style": "IPY_MODEL_75e04c762f744d54adf55d90a052c562", "tabbable": null, "tooltip": null, "value": 200.0 } }, - "b9a1aba8237e45ea957d852a6d53dcc4": { + "ea4f3639cd404344b740181a60e6dfe1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_31bd0ebee4be4b6995b1299029dfd4ba", + "IPY_MODEL_37549aa8f96049628f56685e9b488f6c", + "IPY_MODEL_a58aa13dc64e47faa0cc93bb6652151b" + ], + "layout": "IPY_MODEL_ef0ce0626f2f42ccab835c3082d23f11", + "tabbable": null, + "tooltip": null + } + }, + "ef0ce0626f2f42ccab835c3082d23f11": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5052,30 +5095,7 @@ "width": null } }, - "bfa11543be8f43068f62cfed9db531cd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_66f3914610164bc59a81d0274162760b", - "placeholder": "​", - "style": "IPY_MODEL_ed6f32f260df411fabc8f0fbfee24aec", - "tabbable": null, - "tooltip": null, - "value": " 200/200 [00:00<00:00, 737.31it/s]" - } - }, - "c10a765f9e4f4c4cbaaba7f898a15d5b": { + "f9df9fb0ad7f4fe6b179e8db8621c60f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5127,50 +5147,6 @@ "visibility": null, "width": null } - }, - "c325cd32b1d14cc4b5ca8e321dc31d90": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c10a765f9e4f4c4cbaaba7f898a15d5b", - "max": 200.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_351acb9554dd4c3b842bf386e04513a3", - "tabbable": null, - "tooltip": null, - "value": 200.0 - } - }, - "ed6f32f260df411fabc8f0fbfee24aec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } } }, "version_major": 2, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index f5cecb764..b7c82c939 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -70,10 +70,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:19.727862Z", - "iopub.status.busy": "2024-07-09T06:11:19.727411Z", - "iopub.status.idle": "2024-07-09T06:11:20.814659Z", - "shell.execute_reply": "2024-07-09T06:11:20.814067Z" + "iopub.execute_input": "2024-07-09T06:26:32.925528Z", + "iopub.status.busy": "2024-07-09T06:26:32.925364Z", + "iopub.status.idle": "2024-07-09T06:26:34.040278Z", + "shell.execute_reply": "2024-07-09T06:26:34.039721Z" }, "nbsphinx": "hidden" }, @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -110,10 +110,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.817130Z", - "iopub.status.busy": "2024-07-09T06:11:20.816860Z", - "iopub.status.idle": "2024-07-09T06:11:20.819597Z", - "shell.execute_reply": "2024-07-09T06:11:20.819174Z" + "iopub.execute_input": "2024-07-09T06:26:34.042937Z", + "iopub.status.busy": "2024-07-09T06:26:34.042544Z", + "iopub.status.idle": "2024-07-09T06:26:34.045384Z", + "shell.execute_reply": "2024-07-09T06:26:34.044944Z" }, "id": "_UvI80l42iyi" }, @@ -203,10 +203,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.821615Z", - "iopub.status.busy": "2024-07-09T06:11:20.821440Z", - "iopub.status.idle": "2024-07-09T06:11:20.832707Z", - "shell.execute_reply": "2024-07-09T06:11:20.832259Z" + "iopub.execute_input": "2024-07-09T06:26:34.047662Z", + "iopub.status.busy": "2024-07-09T06:26:34.047230Z", + "iopub.status.idle": "2024-07-09T06:26:34.058799Z", + "shell.execute_reply": "2024-07-09T06:26:34.058355Z" }, "nbsphinx": "hidden" }, @@ -285,10 +285,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:20.834603Z", - "iopub.status.busy": "2024-07-09T06:11:20.834431Z", - "iopub.status.idle": "2024-07-09T06:11:25.081972Z", - "shell.execute_reply": "2024-07-09T06:11:25.081390Z" + "iopub.execute_input": "2024-07-09T06:26:34.060975Z", + "iopub.status.busy": "2024-07-09T06:26:34.060630Z", + "iopub.status.idle": "2024-07-09T06:26:39.033668Z", + "shell.execute_reply": "2024-07-09T06:26:39.033084Z" }, "id": "dhTHOg8Pyv5G" }, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 8745dc930..830ac8885 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -831,13 +831,13 @@

How can I find label issues in big datasets with limited memory?

-
+
-
+
@@ -1702,7 +1702,7 @@

Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 139cbc83e..593067553 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:27.310302Z", - "iopub.status.busy": "2024-07-09T06:11:27.310136Z", - "iopub.status.idle": "2024-07-09T06:11:28.393086Z", - "shell.execute_reply": "2024-07-09T06:11:28.392489Z" + "iopub.execute_input": "2024-07-09T06:26:41.303187Z", + "iopub.status.busy": "2024-07-09T06:26:41.302823Z", + "iopub.status.idle": "2024-07-09T06:26:42.450257Z", + "shell.execute_reply": "2024-07-09T06:26:42.449747Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.395722Z", - "iopub.status.busy": "2024-07-09T06:11:28.395447Z", - "iopub.status.idle": "2024-07-09T06:11:28.398796Z", - "shell.execute_reply": "2024-07-09T06:11:28.398282Z" + "iopub.execute_input": "2024-07-09T06:26:42.453168Z", + "iopub.status.busy": "2024-07-09T06:26:42.452624Z", + "iopub.status.idle": "2024-07-09T06:26:42.456109Z", + "shell.execute_reply": "2024-07-09T06:26:42.455577Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:28.400817Z", - "iopub.status.busy": "2024-07-09T06:11:28.400506Z", - "iopub.status.idle": "2024-07-09T06:11:31.516039Z", - "shell.execute_reply": "2024-07-09T06:11:31.515428Z" + "iopub.execute_input": "2024-07-09T06:26:42.458324Z", + "iopub.status.busy": "2024-07-09T06:26:42.457999Z", + "iopub.status.idle": "2024-07-09T06:26:45.758135Z", + "shell.execute_reply": "2024-07-09T06:26:45.757518Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.519139Z", - "iopub.status.busy": "2024-07-09T06:11:31.518418Z", - "iopub.status.idle": "2024-07-09T06:11:31.550351Z", - "shell.execute_reply": "2024-07-09T06:11:31.549782Z" + "iopub.execute_input": "2024-07-09T06:26:45.761341Z", + "iopub.status.busy": "2024-07-09T06:26:45.760502Z", + "iopub.status.idle": "2024-07-09T06:26:45.799809Z", + "shell.execute_reply": "2024-07-09T06:26:45.799118Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.553016Z", - "iopub.status.busy": "2024-07-09T06:11:31.552724Z", - "iopub.status.idle": "2024-07-09T06:11:31.580753Z", - "shell.execute_reply": "2024-07-09T06:11:31.580187Z" + "iopub.execute_input": "2024-07-09T06:26:45.802392Z", + "iopub.status.busy": "2024-07-09T06:26:45.802142Z", + "iopub.status.idle": "2024-07-09T06:26:45.837536Z", + "shell.execute_reply": "2024-07-09T06:26:45.836818Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.583249Z", - "iopub.status.busy": "2024-07-09T06:11:31.582857Z", - "iopub.status.idle": "2024-07-09T06:11:31.585897Z", - "shell.execute_reply": "2024-07-09T06:11:31.585452Z" + "iopub.execute_input": "2024-07-09T06:26:45.840174Z", + "iopub.status.busy": "2024-07-09T06:26:45.839915Z", + "iopub.status.idle": "2024-07-09T06:26:45.842992Z", + "shell.execute_reply": "2024-07-09T06:26:45.842523Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.587847Z", - "iopub.status.busy": "2024-07-09T06:11:31.587536Z", - "iopub.status.idle": "2024-07-09T06:11:31.589987Z", - "shell.execute_reply": "2024-07-09T06:11:31.589558Z" + "iopub.execute_input": "2024-07-09T06:26:45.845075Z", + "iopub.status.busy": "2024-07-09T06:26:45.844811Z", + "iopub.status.idle": "2024-07-09T06:26:45.847393Z", + "shell.execute_reply": "2024-07-09T06:26:45.846951Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.592096Z", - "iopub.status.busy": "2024-07-09T06:11:31.591837Z", - "iopub.status.idle": "2024-07-09T06:11:31.616513Z", - "shell.execute_reply": "2024-07-09T06:11:31.615966Z" + "iopub.execute_input": "2024-07-09T06:26:45.849512Z", + "iopub.status.busy": "2024-07-09T06:26:45.849230Z", + "iopub.status.idle": "2024-07-09T06:26:45.873850Z", + "shell.execute_reply": "2024-07-09T06:26:45.873252Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a882aeebfb54110a2ffcfd1c2a492d4", + "model_id": "3e1a0cbaae1e45e19806d88ecdce7389", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "b7cd48702a2947cfbce95f0292f5ba90", + "model_id": "684088a7b56b4b3aa39b109dfa860ac6", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.622436Z", - "iopub.status.busy": "2024-07-09T06:11:31.622223Z", - "iopub.status.idle": "2024-07-09T06:11:31.628767Z", - "shell.execute_reply": "2024-07-09T06:11:31.628236Z" + "iopub.execute_input": "2024-07-09T06:26:45.880372Z", + "iopub.status.busy": "2024-07-09T06:26:45.879962Z", + "iopub.status.idle": "2024-07-09T06:26:45.886615Z", + "shell.execute_reply": "2024-07-09T06:26:45.886081Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.630960Z", - "iopub.status.busy": "2024-07-09T06:11:31.630707Z", - "iopub.status.idle": "2024-07-09T06:11:31.634055Z", - "shell.execute_reply": "2024-07-09T06:11:31.633635Z" + "iopub.execute_input": "2024-07-09T06:26:45.888785Z", + "iopub.status.busy": "2024-07-09T06:26:45.888399Z", + "iopub.status.idle": "2024-07-09T06:26:45.891884Z", + "shell.execute_reply": "2024-07-09T06:26:45.891348Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.636034Z", - "iopub.status.busy": "2024-07-09T06:11:31.635717Z", - "iopub.status.idle": "2024-07-09T06:11:31.641760Z", - "shell.execute_reply": "2024-07-09T06:11:31.641333Z" + "iopub.execute_input": "2024-07-09T06:26:45.893965Z", + "iopub.status.busy": "2024-07-09T06:26:45.893580Z", + "iopub.status.idle": "2024-07-09T06:26:45.899933Z", + "shell.execute_reply": "2024-07-09T06:26:45.899439Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.643818Z", - "iopub.status.busy": "2024-07-09T06:11:31.643504Z", - "iopub.status.idle": "2024-07-09T06:11:31.673492Z", - "shell.execute_reply": "2024-07-09T06:11:31.672940Z" + "iopub.execute_input": "2024-07-09T06:26:45.901957Z", + "iopub.status.busy": "2024-07-09T06:26:45.901564Z", + "iopub.status.idle": "2024-07-09T06:26:45.938412Z", + "shell.execute_reply": "2024-07-09T06:26:45.937735Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.675988Z", - "iopub.status.busy": "2024-07-09T06:11:31.675744Z", - "iopub.status.idle": "2024-07-09T06:11:31.705573Z", - "shell.execute_reply": "2024-07-09T06:11:31.705028Z" + "iopub.execute_input": "2024-07-09T06:26:45.941344Z", + "iopub.status.busy": "2024-07-09T06:26:45.940842Z", + "iopub.status.idle": "2024-07-09T06:26:45.977181Z", + "shell.execute_reply": "2024-07-09T06:26:45.976594Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.708142Z", - "iopub.status.busy": "2024-07-09T06:11:31.707852Z", - "iopub.status.idle": "2024-07-09T06:11:31.825928Z", - "shell.execute_reply": "2024-07-09T06:11:31.825339Z" + "iopub.execute_input": "2024-07-09T06:26:45.979821Z", + "iopub.status.busy": "2024-07-09T06:26:45.979575Z", + "iopub.status.idle": "2024-07-09T06:26:46.104854Z", + "shell.execute_reply": "2024-07-09T06:26:46.104267Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:31.828701Z", - "iopub.status.busy": "2024-07-09T06:11:31.828028Z", - "iopub.status.idle": "2024-07-09T06:11:34.791968Z", - "shell.execute_reply": "2024-07-09T06:11:34.791331Z" + "iopub.execute_input": "2024-07-09T06:26:46.107771Z", + "iopub.status.busy": "2024-07-09T06:26:46.106984Z", + "iopub.status.idle": "2024-07-09T06:26:49.148445Z", + "shell.execute_reply": "2024-07-09T06:26:49.147812Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.794094Z", - "iopub.status.busy": "2024-07-09T06:11:34.793894Z", - "iopub.status.idle": "2024-07-09T06:11:34.852114Z", - "shell.execute_reply": "2024-07-09T06:11:34.851633Z" + "iopub.execute_input": "2024-07-09T06:26:49.150871Z", + "iopub.status.busy": "2024-07-09T06:26:49.150502Z", + "iopub.status.idle": "2024-07-09T06:26:49.209147Z", + "shell.execute_reply": "2024-07-09T06:26:49.208576Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.853981Z", - "iopub.status.busy": "2024-07-09T06:11:34.853803Z", - "iopub.status.idle": "2024-07-09T06:11:34.893549Z", - "shell.execute_reply": "2024-07-09T06:11:34.893064Z" + "iopub.execute_input": "2024-07-09T06:26:49.211500Z", + "iopub.status.busy": "2024-07-09T06:26:49.211164Z", + "iopub.status.idle": "2024-07-09T06:26:49.251723Z", + "shell.execute_reply": "2024-07-09T06:26:49.251225Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "7247e540", + "id": "a54c40cb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "da879a50", + "id": "bab2f717", "metadata": {}, "source": [ "The instructions for specifying pre-computed data slices/clusters when detecting underperforming groups in a dataset are now covered in detail in the Datalab workflows tutorial.\n", @@ -1338,7 +1338,7 @@ }, { "cell_type": "markdown", - "id": "c4df3634", + "id": "4a53b370", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by Datalab?\n", @@ -1349,13 +1349,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "9d690d9d", + "id": "209659fa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.895567Z", - "iopub.status.busy": "2024-07-09T06:11:34.895385Z", - "iopub.status.idle": "2024-07-09T06:11:34.902785Z", - "shell.execute_reply": "2024-07-09T06:11:34.902359Z" + "iopub.execute_input": "2024-07-09T06:26:49.253937Z", + "iopub.status.busy": "2024-07-09T06:26:49.253593Z", + "iopub.status.idle": "2024-07-09T06:26:49.261348Z", + "shell.execute_reply": "2024-07-09T06:26:49.260803Z" } }, "outputs": [], @@ -1457,7 +1457,7 @@ }, { "cell_type": "markdown", - "id": "ff01b6f9", + "id": "c433c793", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1472,13 +1472,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "7c1cad4d", + "id": "74646b5a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.904752Z", - "iopub.status.busy": "2024-07-09T06:11:34.904575Z", - "iopub.status.idle": "2024-07-09T06:11:34.922778Z", - "shell.execute_reply": "2024-07-09T06:11:34.922347Z" + "iopub.execute_input": "2024-07-09T06:26:49.263459Z", + "iopub.status.busy": "2024-07-09T06:26:49.263127Z", + "iopub.status.idle": "2024-07-09T06:26:49.282109Z", + "shell.execute_reply": "2024-07-09T06:26:49.281556Z" } }, "outputs": [ @@ -1521,13 +1521,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "33e36c44", + "id": "9a0f1590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:34.924880Z", - "iopub.status.busy": "2024-07-09T06:11:34.924490Z", - "iopub.status.idle": "2024-07-09T06:11:34.927841Z", - "shell.execute_reply": "2024-07-09T06:11:34.927308Z" + "iopub.execute_input": "2024-07-09T06:26:49.284265Z", + "iopub.status.busy": "2024-07-09T06:26:49.283854Z", + "iopub.status.idle": "2024-07-09T06:26:49.287329Z", + "shell.execute_reply": "2024-07-09T06:26:49.286782Z" } }, "outputs": [ @@ -1622,85 +1622,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "074f2bcc255940edb9bdaf05c41c3bb6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0d927b738e5b476e8416885f23d1cceb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "114f58093d9047e5ba3e39df4eb4657c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "12829dee5c694554b8d985bb46ff443b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_132060852c5a493ea0001fec443ca1d2", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0d927b738e5b476e8416885f23d1cceb", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "132060852c5a493ea0001fec443ca1d2": { + "06e039af78aa4922a7a5727f3929196b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1753,7 +1675,25 @@ "width": null } }, - "29ef3629c9a64dd1af78acbfcd298cef": { + "24abf0a07e174ecfb6ec768926bd9a35": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "2b835234c6594eaa9d659e33328d4ec6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1806,23 +1746,7 @@ "width": null } }, - "3f162310e387401b85497edaa975d469": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "4a882aeebfb54110a2ffcfd1c2a492d4": { + "3e1a0cbaae1e45e19806d88ecdce7389": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1837,16 +1761,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d64f4fd144a4d2da78ee7005e80a4f2", - "IPY_MODEL_58dcac96496e467aae9cf8175b1c353f", - "IPY_MODEL_7faa44b6c17e453eb485bbbb6e97570d" + "IPY_MODEL_ea0eb1e345874ebda4377832a5d148a1", + "IPY_MODEL_d3065c15065244f0a790856a85909914", + "IPY_MODEL_7420a4a93f6b475c9704a92f12d85f23" ], - "layout": "IPY_MODEL_d5d1c5ea3e5d482f94bf0d53fc4a1ad4", + "layout": "IPY_MODEL_66c7a500b9334da2b1849d287af9b402", "tabbable": null, "tooltip": null } }, - "5170546b7aec4a93b276eaea8d93cd04": { + "49c52b91517445ea95a2cdd6bcf7b607": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1861,15 +1785,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_29ef3629c9a64dd1af78acbfcd298cef", + "layout": "IPY_MODEL_bf6180ca73df49bea8de92466f822aab", "placeholder": "​", - "style": "IPY_MODEL_b1b635c929d044d28128d92d893544bb", + "style": "IPY_MODEL_24abf0a07e174ecfb6ec768926bd9a35", "tabbable": null, "tooltip": null, - "value": " 10000/? [00:00<00:00, 1448409.42it/s]" + "value": " 10000/? [00:00<00:00, 1540041.86it/s]" } }, - "58dcac96496e467aae9cf8175b1c353f": { + "4a2ecebbfc494ed9b2bada7d47085eaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1885,17 +1809,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d66327ec2a19429dae4bba06ae275a22", + "layout": "IPY_MODEL_4fbbfa9cd03647f4813a04fc8a4abc42", "max": 50.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_3f162310e387401b85497edaa975d469", + "style": "IPY_MODEL_e22f6064eadd4807ae9f756d8590121c", "tabbable": null, "tooltip": null, "value": 50.0 } }, - "64218fdf8f77412189de02f82f9cd88a": { + "4fbbfa9cd03647f4813a04fc8a4abc42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1948,7 +1872,7 @@ "width": null } }, - "6869b651699240d3891714e1dfe045e5": { + "5fcc8c6298f24a3fbf1ca1a58c292bd3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2001,7 +1925,7 @@ "width": null } }, - "68cb1231213f4268acd070c5795648f7": { + "66c7a500b9334da2b1849d287af9b402": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2054,53 +1978,49 @@ "width": null } }, - "6d64f4fd144a4d2da78ee7005e80a4f2": { + "684088a7b56b4b3aa39b109dfa860ac6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b6cde3bfe98640e49abbf66bcb38b16d", - "placeholder": "​", - "style": "IPY_MODEL_e3811b0ca1b54da2a8ec0b7be16c3b75", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e2ae6b9df4f8490b96524164e46e65fc", + "IPY_MODEL_4a2ecebbfc494ed9b2bada7d47085eaa", + "IPY_MODEL_49c52b91517445ea95a2cdd6bcf7b607" + ], + "layout": "IPY_MODEL_7ec4490b5e064efd8d912a372922e930", "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: " + "tooltip": null } }, - "7faa44b6c17e453eb485bbbb6e97570d": { + "6a7594e4ad2a4a2f97e56b5e1a6a9890": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_64218fdf8f77412189de02f82f9cd88a", - "placeholder": "​", - "style": "IPY_MODEL_074f2bcc255940edb9bdaf05c41c3bb6", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1094289.96it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2af7ceec77b462294a589dbc36ef86f": { + "7420a4a93f6b475c9704a92f12d85f23": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2115,33 +2035,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_68cb1231213f4268acd070c5795648f7", + "layout": "IPY_MODEL_b618cbdb66e74802ac612b08fdd271ca", "placeholder": "​", - "style": "IPY_MODEL_114f58093d9047e5ba3e39df4eb4657c", + "style": "IPY_MODEL_6a7594e4ad2a4a2f97e56b5e1a6a9890", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "b1b635c929d044d28128d92d893544bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 10000/? [00:00<00:00, 1046300.30it/s]" } }, - "b6cde3bfe98640e49abbf66bcb38b16d": { + "7ec4490b5e064efd8d912a372922e930": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2194,31 +2096,23 @@ "width": null } }, - "b7cd48702a2947cfbce95f0292f5ba90": { + "8d038adf74b94c00ba237beeafd03a45": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_a2af7ceec77b462294a589dbc36ef86f", - "IPY_MODEL_12829dee5c694554b8d985bb46ff443b", - "IPY_MODEL_5170546b7aec4a93b276eaea8d93cd04" - ], - "layout": "IPY_MODEL_6869b651699240d3891714e1dfe045e5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "d5d1c5ea3e5d482f94bf0d53fc4a1ad4": { + "b618cbdb66e74802ac612b08fdd271ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2271,7 +2165,7 @@ "width": null } }, - "d66327ec2a19429dae4bba06ae275a22": { + "bf6180ca73df49bea8de92466f822aab": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2324,7 +2218,113 @@ "width": null } }, - "e3811b0ca1b54da2a8ec0b7be16c3b75": { + "c26ba877617a46b5983aa98f97f6f4e6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d3065c15065244f0a790856a85909914": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2b835234c6594eaa9d659e33328d4ec6", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d038adf74b94c00ba237beeafd03a45", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "e22f6064eadd4807ae9f756d8590121c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2ae6b9df4f8490b96524164e46e65fc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_06e039af78aa4922a7a5727f3929196b", + "placeholder": "​", + "style": "IPY_MODEL_ecb5b9b407b34ccdac02fdba74200b01", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "ea0eb1e345874ebda4377832a5d148a1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fcc8c6298f24a3fbf1ca1a58c292bd3", + "placeholder": "​", + "style": "IPY_MODEL_c26ba877617a46b5983aa98f97f6f4e6", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for estimating thresholds: " + } + }, + "ecb5b9b407b34ccdac02fdba74200b01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", diff --git a/master/tutorials/improving_ml_performance.ipynb b/master/tutorials/improving_ml_performance.ipynb index d8338a1c7..1a1804c33 100644 --- a/master/tutorials/improving_ml_performance.ipynb +++ b/master/tutorials/improving_ml_performance.ipynb @@ -62,10 +62,10 @@ "id": "2d638465", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:38.074917Z", - "iopub.status.busy": "2024-07-09T06:11:38.074738Z", - "iopub.status.idle": "2024-07-09T06:11:39.177755Z", - "shell.execute_reply": "2024-07-09T06:11:39.177136Z" + "iopub.execute_input": "2024-07-09T06:26:53.572917Z", + "iopub.status.busy": "2024-07-09T06:26:53.572738Z", + "iopub.status.idle": "2024-07-09T06:26:54.710376Z", + "shell.execute_reply": "2024-07-09T06:26:54.709717Z" }, "nbsphinx": "hidden" }, @@ -75,7 +75,7 @@ "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -101,10 +101,10 @@ "id": "b0bbf715-47c6-44ea-b15e-89800e62ee04", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.180393Z", - "iopub.status.busy": "2024-07-09T06:11:39.180112Z", - "iopub.status.idle": "2024-07-09T06:11:39.183849Z", - "shell.execute_reply": "2024-07-09T06:11:39.183327Z" + "iopub.execute_input": "2024-07-09T06:26:54.713150Z", + "iopub.status.busy": "2024-07-09T06:26:54.712711Z", + "iopub.status.idle": "2024-07-09T06:26:54.717207Z", + "shell.execute_reply": "2024-07-09T06:26:54.716666Z" } }, "outputs": [], @@ -142,10 +142,10 @@ "id": "c58f8015-d051-411c-9e03-5659cf3ad956", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.185853Z", - "iopub.status.busy": "2024-07-09T06:11:39.185471Z", - "iopub.status.idle": "2024-07-09T06:11:39.421540Z", - "shell.execute_reply": "2024-07-09T06:11:39.420989Z" + "iopub.execute_input": "2024-07-09T06:26:54.719478Z", + "iopub.status.busy": "2024-07-09T06:26:54.719131Z", + "iopub.status.idle": "2024-07-09T06:26:54.915038Z", + "shell.execute_reply": "2024-07-09T06:26:54.914515Z" } }, "outputs": [ @@ -275,10 +275,10 @@ "id": "1b5f50e6-d125-4e61-b63e-4004f0c9099a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.423563Z", - "iopub.status.busy": "2024-07-09T06:11:39.423353Z", - "iopub.status.idle": "2024-07-09T06:11:39.429110Z", - "shell.execute_reply": "2024-07-09T06:11:39.428591Z" + "iopub.execute_input": "2024-07-09T06:26:54.917264Z", + "iopub.status.busy": "2024-07-09T06:26:54.916924Z", + "iopub.status.idle": "2024-07-09T06:26:54.922778Z", + "shell.execute_reply": "2024-07-09T06:26:54.922239Z" } }, "outputs": [], @@ -314,10 +314,10 @@ "id": "a36c21e9-1c32-4df9-bd87-fffeb8c2175f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.431253Z", - "iopub.status.busy": "2024-07-09T06:11:39.430930Z", - "iopub.status.idle": "2024-07-09T06:11:39.437847Z", - "shell.execute_reply": "2024-07-09T06:11:39.437407Z" + "iopub.execute_input": "2024-07-09T06:26:54.925001Z", + "iopub.status.busy": "2024-07-09T06:26:54.924597Z", + "iopub.status.idle": "2024-07-09T06:26:54.931679Z", + "shell.execute_reply": "2024-07-09T06:26:54.931113Z" } }, "outputs": [ @@ -420,10 +420,10 @@ "id": "5f856a3a-8aae-4836-b146-9ab68d8d1c7a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.439692Z", - "iopub.status.busy": "2024-07-09T06:11:39.439519Z", - "iopub.status.idle": "2024-07-09T06:11:39.444051Z", - "shell.execute_reply": "2024-07-09T06:11:39.443626Z" + "iopub.execute_input": "2024-07-09T06:26:54.933695Z", + "iopub.status.busy": "2024-07-09T06:26:54.933374Z", + "iopub.status.idle": "2024-07-09T06:26:54.937844Z", + "shell.execute_reply": "2024-07-09T06:26:54.937411Z" } }, "outputs": [], @@ -451,10 +451,10 @@ "id": "46275634-da56-4e58-9061-8108be2b585d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.445820Z", - "iopub.status.busy": "2024-07-09T06:11:39.445641Z", - "iopub.status.idle": "2024-07-09T06:11:39.451360Z", - "shell.execute_reply": "2024-07-09T06:11:39.450923Z" + "iopub.execute_input": "2024-07-09T06:26:54.939828Z", + "iopub.status.busy": "2024-07-09T06:26:54.939504Z", + "iopub.status.idle": "2024-07-09T06:26:54.945245Z", + "shell.execute_reply": "2024-07-09T06:26:54.944792Z" } }, "outputs": [], @@ -490,10 +490,10 @@ "id": "769c4c5e-a7ff-4e02-bee5-2b2e676aec14", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.453310Z", - "iopub.status.busy": "2024-07-09T06:11:39.453005Z", - "iopub.status.idle": "2024-07-09T06:11:39.457095Z", - "shell.execute_reply": "2024-07-09T06:11:39.456561Z" + "iopub.execute_input": "2024-07-09T06:26:54.947250Z", + "iopub.status.busy": "2024-07-09T06:26:54.946896Z", + "iopub.status.idle": "2024-07-09T06:26:54.950932Z", + "shell.execute_reply": "2024-07-09T06:26:54.950488Z" } }, "outputs": [], @@ -508,10 +508,10 @@ "id": "7ac47c3d-9e87-45b7-9064-bfa45578872e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.459051Z", - "iopub.status.busy": "2024-07-09T06:11:39.458713Z", - "iopub.status.idle": "2024-07-09T06:11:39.521965Z", - "shell.execute_reply": "2024-07-09T06:11:39.521403Z" + "iopub.execute_input": "2024-07-09T06:26:54.952888Z", + "iopub.status.busy": "2024-07-09T06:26:54.952594Z", + "iopub.status.idle": "2024-07-09T06:26:55.016618Z", + "shell.execute_reply": "2024-07-09T06:26:55.015980Z" } }, "outputs": [ @@ -611,10 +611,10 @@ "id": "6cef169e-d15b-4d18-9cb7-8ea589557e6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.524898Z", - "iopub.status.busy": "2024-07-09T06:11:39.524546Z", - "iopub.status.idle": "2024-07-09T06:11:39.537157Z", - "shell.execute_reply": "2024-07-09T06:11:39.536649Z" + "iopub.execute_input": "2024-07-09T06:26:55.019431Z", + "iopub.status.busy": "2024-07-09T06:26:55.018865Z", + "iopub.status.idle": "2024-07-09T06:26:55.029533Z", + "shell.execute_reply": "2024-07-09T06:26:55.029057Z" } }, "outputs": [ @@ -726,10 +726,10 @@ "id": "b68e0418-86cf-431f-9107-2dd0a310ca42", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.540541Z", - "iopub.status.busy": "2024-07-09T06:11:39.539543Z", - "iopub.status.idle": "2024-07-09T06:11:39.560886Z", - "shell.execute_reply": "2024-07-09T06:11:39.560377Z" + "iopub.execute_input": "2024-07-09T06:26:55.032677Z", + "iopub.status.busy": "2024-07-09T06:26:55.031768Z", + "iopub.status.idle": "2024-07-09T06:26:55.053007Z", + "shell.execute_reply": "2024-07-09T06:26:55.052525Z" } }, "outputs": [ @@ -933,10 +933,10 @@ "id": "0e9bd131-429f-48af-b4fc-ed8b907950b9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.563641Z", - "iopub.status.busy": "2024-07-09T06:11:39.563221Z", - "iopub.status.idle": "2024-07-09T06:11:39.568664Z", - "shell.execute_reply": "2024-07-09T06:11:39.568157Z" + "iopub.execute_input": "2024-07-09T06:26:55.056439Z", + "iopub.status.busy": "2024-07-09T06:26:55.055527Z", + "iopub.status.idle": "2024-07-09T06:26:55.061337Z", + "shell.execute_reply": "2024-07-09T06:26:55.060850Z" } }, "outputs": [ @@ -970,10 +970,10 @@ "id": "e72320ec-7792-4347-b2fb-630f2519127c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.571166Z", - "iopub.status.busy": "2024-07-09T06:11:39.570962Z", - "iopub.status.idle": "2024-07-09T06:11:39.576330Z", - "shell.execute_reply": "2024-07-09T06:11:39.575803Z" + "iopub.execute_input": "2024-07-09T06:26:55.064742Z", + "iopub.status.busy": "2024-07-09T06:26:55.063844Z", + "iopub.status.idle": "2024-07-09T06:26:55.069832Z", + "shell.execute_reply": "2024-07-09T06:26:55.069351Z" } }, "outputs": [ @@ -1007,10 +1007,10 @@ "id": "8520ba4a-3ad6-408a-b377-3f47c32d745a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.579222Z", - "iopub.status.busy": "2024-07-09T06:11:39.578978Z", - "iopub.status.idle": "2024-07-09T06:11:39.589987Z", - "shell.execute_reply": "2024-07-09T06:11:39.589598Z" + "iopub.execute_input": "2024-07-09T06:26:55.073279Z", + "iopub.status.busy": "2024-07-09T06:26:55.072375Z", + "iopub.status.idle": "2024-07-09T06:26:55.083605Z", + "shell.execute_reply": "2024-07-09T06:26:55.083211Z" } }, "outputs": [ @@ -1207,10 +1207,10 @@ "id": "3c002665-c48b-4f04-91f7-ad112a49efc7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.591768Z", - "iopub.status.busy": "2024-07-09T06:11:39.591603Z", - "iopub.status.idle": "2024-07-09T06:11:39.595987Z", - "shell.execute_reply": "2024-07-09T06:11:39.595574Z" + "iopub.execute_input": "2024-07-09T06:26:55.086287Z", + "iopub.status.busy": "2024-07-09T06:26:55.085572Z", + "iopub.status.idle": "2024-07-09T06:26:55.090541Z", + "shell.execute_reply": "2024-07-09T06:26:55.090006Z" } }, "outputs": [], @@ -1236,10 +1236,10 @@ "id": "36319f39-f563-4f63-913f-821373180350", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.597998Z", - "iopub.status.busy": "2024-07-09T06:11:39.597671Z", - "iopub.status.idle": "2024-07-09T06:11:39.701510Z", - "shell.execute_reply": "2024-07-09T06:11:39.700999Z" + "iopub.execute_input": "2024-07-09T06:26:55.092949Z", + "iopub.status.busy": "2024-07-09T06:26:55.092629Z", + "iopub.status.idle": "2024-07-09T06:26:55.197433Z", + "shell.execute_reply": "2024-07-09T06:26:55.196909Z" } }, "outputs": [ @@ -1713,10 +1713,10 @@ "id": "044c0eb1-299a-4851-b1bf-268d5bce56c1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.703592Z", - "iopub.status.busy": "2024-07-09T06:11:39.703317Z", - "iopub.status.idle": "2024-07-09T06:11:39.709189Z", - "shell.execute_reply": "2024-07-09T06:11:39.708705Z" + "iopub.execute_input": "2024-07-09T06:26:55.199599Z", + "iopub.status.busy": "2024-07-09T06:26:55.199328Z", + "iopub.status.idle": "2024-07-09T06:26:55.205311Z", + "shell.execute_reply": "2024-07-09T06:26:55.204815Z" } }, "outputs": [], @@ -1740,10 +1740,10 @@ "id": "c43df278-abfe-40e5-9d48-2df3efea9379", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:39.711392Z", - "iopub.status.busy": "2024-07-09T06:11:39.711064Z", - "iopub.status.idle": "2024-07-09T06:11:41.651348Z", - "shell.execute_reply": "2024-07-09T06:11:41.650672Z" + "iopub.execute_input": "2024-07-09T06:26:55.207624Z", + "iopub.status.busy": "2024-07-09T06:26:55.207315Z", + "iopub.status.idle": "2024-07-09T06:26:57.128251Z", + "shell.execute_reply": "2024-07-09T06:26:57.127642Z" } }, "outputs": [ @@ -1955,10 +1955,10 @@ "id": "77c7f776-54b3-45b5-9207-715d6d2e90c0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.655133Z", - "iopub.status.busy": "2024-07-09T06:11:41.654057Z", - "iopub.status.idle": "2024-07-09T06:11:41.668625Z", - "shell.execute_reply": "2024-07-09T06:11:41.668134Z" + "iopub.execute_input": "2024-07-09T06:26:57.131390Z", + "iopub.status.busy": "2024-07-09T06:26:57.130806Z", + "iopub.status.idle": "2024-07-09T06:26:57.144118Z", + "shell.execute_reply": "2024-07-09T06:26:57.143599Z" } }, "outputs": [ @@ -2075,10 +2075,10 @@ "id": "7e218d04-0729-4f42-b264-51c73601ebe6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.672036Z", - "iopub.status.busy": "2024-07-09T06:11:41.671132Z", - "iopub.status.idle": "2024-07-09T06:11:41.674984Z", - "shell.execute_reply": "2024-07-09T06:11:41.674508Z" + "iopub.execute_input": "2024-07-09T06:26:57.146831Z", + "iopub.status.busy": "2024-07-09T06:26:57.146463Z", + "iopub.status.idle": "2024-07-09T06:26:57.149377Z", + "shell.execute_reply": "2024-07-09T06:26:57.148891Z" } }, "outputs": [], @@ -2092,10 +2092,10 @@ "id": "7e2bdb41-321e-4929-aa01-1f60948b9e8b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.678357Z", - "iopub.status.busy": "2024-07-09T06:11:41.677451Z", - "iopub.status.idle": "2024-07-09T06:11:41.682864Z", - "shell.execute_reply": "2024-07-09T06:11:41.682375Z" + "iopub.execute_input": "2024-07-09T06:26:57.151654Z", + "iopub.status.busy": "2024-07-09T06:26:57.151283Z", + "iopub.status.idle": "2024-07-09T06:26:57.155840Z", + "shell.execute_reply": "2024-07-09T06:26:57.155317Z" } }, "outputs": [], @@ -2119,10 +2119,10 @@ "id": "5ce2d89f-e832-448d-bfac-9941da15c895", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.686265Z", - "iopub.status.busy": "2024-07-09T06:11:41.685365Z", - "iopub.status.idle": "2024-07-09T06:11:41.714433Z", - "shell.execute_reply": "2024-07-09T06:11:41.713889Z" + "iopub.execute_input": "2024-07-09T06:26:57.158157Z", + "iopub.status.busy": "2024-07-09T06:26:57.157788Z", + "iopub.status.idle": "2024-07-09T06:26:57.167772Z", + "shell.execute_reply": "2024-07-09T06:26:57.167300Z" } }, "outputs": [ @@ -2162,10 +2162,10 @@ "id": "9f437756-112e-4531-84fc-6ceadd0c9ef5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:41.716900Z", - "iopub.status.busy": "2024-07-09T06:11:41.716509Z", - "iopub.status.idle": "2024-07-09T06:11:42.186387Z", - "shell.execute_reply": "2024-07-09T06:11:42.185860Z" + "iopub.execute_input": "2024-07-09T06:26:57.170046Z", + "iopub.status.busy": "2024-07-09T06:26:57.169694Z", + "iopub.status.idle": "2024-07-09T06:26:57.642079Z", + "shell.execute_reply": "2024-07-09T06:26:57.641537Z" } }, "outputs": [], @@ -2196,10 +2196,10 @@ "id": "707625f6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.189028Z", - "iopub.status.busy": "2024-07-09T06:11:42.188720Z", - "iopub.status.idle": "2024-07-09T06:11:42.313557Z", - "shell.execute_reply": "2024-07-09T06:11:42.312910Z" + "iopub.execute_input": "2024-07-09T06:26:57.644886Z", + "iopub.status.busy": "2024-07-09T06:26:57.644506Z", + "iopub.status.idle": "2024-07-09T06:26:57.765208Z", + "shell.execute_reply": "2024-07-09T06:26:57.764592Z" } }, "outputs": [ @@ -2410,10 +2410,10 @@ "id": "25afe46c-a521-483c-b168-728c76d970dc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.317275Z", - "iopub.status.busy": "2024-07-09T06:11:42.316163Z", - "iopub.status.idle": "2024-07-09T06:11:42.324825Z", - "shell.execute_reply": "2024-07-09T06:11:42.324349Z" + "iopub.execute_input": "2024-07-09T06:26:57.767934Z", + "iopub.status.busy": "2024-07-09T06:26:57.767539Z", + "iopub.status.idle": "2024-07-09T06:26:57.774227Z", + "shell.execute_reply": "2024-07-09T06:26:57.773733Z" } }, "outputs": [ @@ -2443,10 +2443,10 @@ "id": "6efcf06f-cc40-4964-87df-5204d3b1b9d4", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.328314Z", - "iopub.status.busy": "2024-07-09T06:11:42.327266Z", - "iopub.status.idle": "2024-07-09T06:11:42.335221Z", - "shell.execute_reply": "2024-07-09T06:11:42.334720Z" + "iopub.execute_input": "2024-07-09T06:26:57.777381Z", + "iopub.status.busy": "2024-07-09T06:26:57.776332Z", + "iopub.status.idle": "2024-07-09T06:26:57.784838Z", + "shell.execute_reply": "2024-07-09T06:26:57.784346Z" } }, "outputs": [ @@ -2479,10 +2479,10 @@ "id": "7bc87d72-bbd5-4ed2-bc38-2218862ddfbd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.338646Z", - "iopub.status.busy": "2024-07-09T06:11:42.337607Z", - "iopub.status.idle": "2024-07-09T06:11:42.344830Z", - "shell.execute_reply": "2024-07-09T06:11:42.344359Z" + "iopub.execute_input": "2024-07-09T06:26:57.788740Z", + "iopub.status.busy": "2024-07-09T06:26:57.787559Z", + "iopub.status.idle": "2024-07-09T06:26:57.795543Z", + "shell.execute_reply": "2024-07-09T06:26:57.795055Z" } }, "outputs": [ @@ -2515,10 +2515,10 @@ "id": "9c70be3e-0ba2-4e3e-8c50-359d402ca1fe", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.348222Z", - "iopub.status.busy": "2024-07-09T06:11:42.347202Z", - "iopub.status.idle": "2024-07-09T06:11:42.353201Z", - "shell.execute_reply": "2024-07-09T06:11:42.352734Z" + "iopub.execute_input": "2024-07-09T06:26:57.799183Z", + "iopub.status.busy": "2024-07-09T06:26:57.798006Z", + "iopub.status.idle": "2024-07-09T06:26:57.804472Z", + "shell.execute_reply": "2024-07-09T06:26:57.803989Z" } }, "outputs": [ @@ -2544,10 +2544,10 @@ "id": "08080458-0cd7-447d-80e6-384cb8d31eaf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.356588Z", - "iopub.status.busy": "2024-07-09T06:11:42.355570Z", - "iopub.status.idle": "2024-07-09T06:11:42.360784Z", - "shell.execute_reply": "2024-07-09T06:11:42.360243Z" + "iopub.execute_input": "2024-07-09T06:26:57.808096Z", + "iopub.status.busy": "2024-07-09T06:26:57.807195Z", + "iopub.status.idle": "2024-07-09T06:26:57.812308Z", + "shell.execute_reply": "2024-07-09T06:26:57.811777Z" } }, "outputs": [], @@ -2571,10 +2571,10 @@ "id": "009bb215-4d26-47da-a230-d0ccf4122629", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.362781Z", - "iopub.status.busy": "2024-07-09T06:11:42.362457Z", - "iopub.status.idle": "2024-07-09T06:11:42.432148Z", - "shell.execute_reply": "2024-07-09T06:11:42.431625Z" + "iopub.execute_input": "2024-07-09T06:26:57.814541Z", + "iopub.status.busy": "2024-07-09T06:26:57.814291Z", + "iopub.status.idle": "2024-07-09T06:26:57.894429Z", + "shell.execute_reply": "2024-07-09T06:26:57.893893Z" } }, "outputs": [ @@ -3054,10 +3054,10 @@ "id": "dcaeda51-9b24-4c04-889d-7e63563594fc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.434389Z", - "iopub.status.busy": "2024-07-09T06:11:42.433972Z", - "iopub.status.idle": "2024-07-09T06:11:42.442830Z", - "shell.execute_reply": "2024-07-09T06:11:42.442287Z" + "iopub.execute_input": "2024-07-09T06:26:57.896631Z", + "iopub.status.busy": "2024-07-09T06:26:57.896354Z", + "iopub.status.idle": "2024-07-09T06:26:57.906205Z", + "shell.execute_reply": "2024-07-09T06:26:57.905633Z" } }, "outputs": [ @@ -3113,10 +3113,10 @@ "id": "1d92d78d-e4a8-4322-bf38-f5a5dae3bf17", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.445160Z", - "iopub.status.busy": "2024-07-09T06:11:42.444683Z", - "iopub.status.idle": "2024-07-09T06:11:42.447719Z", - "shell.execute_reply": "2024-07-09T06:11:42.447244Z" + "iopub.execute_input": "2024-07-09T06:26:57.910159Z", + "iopub.status.busy": "2024-07-09T06:26:57.909684Z", + "iopub.status.idle": "2024-07-09T06:26:57.912488Z", + "shell.execute_reply": "2024-07-09T06:26:57.912033Z" } }, "outputs": [], @@ -3152,10 +3152,10 @@ "id": "941ab2a6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.449643Z", - "iopub.status.busy": "2024-07-09T06:11:42.449346Z", - "iopub.status.idle": "2024-07-09T06:11:42.458347Z", - "shell.execute_reply": "2024-07-09T06:11:42.457952Z" + "iopub.execute_input": "2024-07-09T06:26:57.914998Z", + "iopub.status.busy": "2024-07-09T06:26:57.914575Z", + "iopub.status.idle": "2024-07-09T06:26:57.923907Z", + "shell.execute_reply": "2024-07-09T06:26:57.923469Z" } }, "outputs": [], @@ -3261,10 +3261,10 @@ "id": "50666fb9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.460548Z", - "iopub.status.busy": "2024-07-09T06:11:42.460124Z", - "iopub.status.idle": "2024-07-09T06:11:42.466711Z", - "shell.execute_reply": "2024-07-09T06:11:42.466317Z" + "iopub.execute_input": "2024-07-09T06:26:57.925928Z", + "iopub.status.busy": "2024-07-09T06:26:57.925621Z", + "iopub.status.idle": "2024-07-09T06:26:57.932179Z", + "shell.execute_reply": "2024-07-09T06:26:57.931737Z" }, "nbsphinx": "hidden" }, @@ -3346,10 +3346,10 @@ "id": "f5aa2883-d20d-481f-a012-fcc7ff8e3e7e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.468698Z", - "iopub.status.busy": "2024-07-09T06:11:42.468382Z", - "iopub.status.idle": "2024-07-09T06:11:42.471498Z", - "shell.execute_reply": "2024-07-09T06:11:42.471070Z" + "iopub.execute_input": "2024-07-09T06:26:57.934245Z", + "iopub.status.busy": "2024-07-09T06:26:57.933861Z", + "iopub.status.idle": "2024-07-09T06:26:57.937104Z", + "shell.execute_reply": "2024-07-09T06:26:57.936671Z" } }, "outputs": [], @@ -3373,10 +3373,10 @@ "id": "ce1c0ada-88b1-4654-b43f-3c0b59002979", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:42.473490Z", - "iopub.status.busy": "2024-07-09T06:11:42.473168Z", - "iopub.status.idle": "2024-07-09T06:11:46.154478Z", - "shell.execute_reply": "2024-07-09T06:11:46.153968Z" + "iopub.execute_input": "2024-07-09T06:26:57.938975Z", + "iopub.status.busy": "2024-07-09T06:26:57.938647Z", + "iopub.status.idle": "2024-07-09T06:27:01.641872Z", + "shell.execute_reply": "2024-07-09T06:27:01.641360Z" } }, "outputs": [ @@ -3419,10 +3419,10 @@ "id": "3f572acf-31c3-4874-9100-451796e35b06", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.156899Z", - "iopub.status.busy": "2024-07-09T06:11:46.156558Z", - "iopub.status.idle": "2024-07-09T06:11:46.159512Z", - "shell.execute_reply": "2024-07-09T06:11:46.159123Z" + "iopub.execute_input": "2024-07-09T06:27:01.644959Z", + "iopub.status.busy": "2024-07-09T06:27:01.644089Z", + "iopub.status.idle": "2024-07-09T06:27:01.648019Z", + "shell.execute_reply": "2024-07-09T06:27:01.647564Z" } }, "outputs": [ @@ -3460,10 +3460,10 @@ "id": "6a025a88", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:46.161459Z", - "iopub.status.busy": "2024-07-09T06:11:46.161146Z", - "iopub.status.idle": "2024-07-09T06:11:46.164332Z", - "shell.execute_reply": "2024-07-09T06:11:46.163782Z" + "iopub.execute_input": "2024-07-09T06:27:01.649958Z", + "iopub.status.busy": "2024-07-09T06:27:01.649677Z", + "iopub.status.idle": "2024-07-09T06:27:01.652295Z", + "shell.execute_reply": "2024-07-09T06:27:01.651802Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 2996d7ede..e7571dfc6 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:49.091711Z", - "iopub.status.busy": "2024-07-09T06:11:49.091553Z", - "iopub.status.idle": "2024-07-09T06:11:50.232481Z", - "shell.execute_reply": "2024-07-09T06:11:50.231945Z" + "iopub.execute_input": "2024-07-09T06:27:04.830463Z", + "iopub.status.busy": "2024-07-09T06:27:04.830294Z", + "iopub.status.idle": "2024-07-09T06:27:06.025206Z", + "shell.execute_reply": "2024-07-09T06:27:06.024596Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.235078Z", - "iopub.status.busy": "2024-07-09T06:11:50.234645Z", - "iopub.status.idle": "2024-07-09T06:11:50.408424Z", - "shell.execute_reply": "2024-07-09T06:11:50.407907Z" + "iopub.execute_input": "2024-07-09T06:27:06.027800Z", + "iopub.status.busy": "2024-07-09T06:27:06.027471Z", + "iopub.status.idle": "2024-07-09T06:27:06.212766Z", + "shell.execute_reply": "2024-07-09T06:27:06.212206Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.410863Z", - "iopub.status.busy": "2024-07-09T06:11:50.410584Z", - "iopub.status.idle": "2024-07-09T06:11:50.421585Z", - "shell.execute_reply": "2024-07-09T06:11:50.421178Z" + "iopub.execute_input": "2024-07-09T06:27:06.215365Z", + "iopub.status.busy": "2024-07-09T06:27:06.215033Z", + "iopub.status.idle": "2024-07-09T06:27:06.226517Z", + "shell.execute_reply": "2024-07-09T06:27:06.226088Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.423540Z", - "iopub.status.busy": "2024-07-09T06:11:50.423276Z", - "iopub.status.idle": "2024-07-09T06:11:50.658194Z", - "shell.execute_reply": "2024-07-09T06:11:50.657603Z" + "iopub.execute_input": "2024-07-09T06:27:06.228721Z", + "iopub.status.busy": "2024-07-09T06:27:06.228284Z", + "iopub.status.idle": "2024-07-09T06:27:06.463202Z", + "shell.execute_reply": "2024-07-09T06:27:06.462603Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.660770Z", - "iopub.status.busy": "2024-07-09T06:11:50.660310Z", - "iopub.status.idle": "2024-07-09T06:11:50.686483Z", - "shell.execute_reply": "2024-07-09T06:11:50.686061Z" + "iopub.execute_input": "2024-07-09T06:27:06.465737Z", + "iopub.status.busy": "2024-07-09T06:27:06.465380Z", + "iopub.status.idle": "2024-07-09T06:27:06.491353Z", + "shell.execute_reply": "2024-07-09T06:27:06.490841Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:50.688646Z", - "iopub.status.busy": "2024-07-09T06:11:50.688370Z", - "iopub.status.idle": "2024-07-09T06:11:52.702920Z", - "shell.execute_reply": "2024-07-09T06:11:52.702319Z" + "iopub.execute_input": "2024-07-09T06:27:06.493408Z", + "iopub.status.busy": "2024-07-09T06:27:06.493075Z", + "iopub.status.idle": "2024-07-09T06:27:08.559484Z", + "shell.execute_reply": "2024-07-09T06:27:08.558857Z" } }, "outputs": [ @@ -474,10 +474,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.705397Z", - "iopub.status.busy": "2024-07-09T06:11:52.705057Z", - "iopub.status.idle": "2024-07-09T06:11:52.722879Z", - "shell.execute_reply": "2024-07-09T06:11:52.722437Z" + "iopub.execute_input": "2024-07-09T06:27:08.561982Z", + "iopub.status.busy": "2024-07-09T06:27:08.561454Z", + "iopub.status.idle": "2024-07-09T06:27:08.579506Z", + "shell.execute_reply": "2024-07-09T06:27:08.578938Z" }, "scrolled": true }, @@ -607,10 +607,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:52.724954Z", - "iopub.status.busy": "2024-07-09T06:11:52.724772Z", - "iopub.status.idle": "2024-07-09T06:11:54.183986Z", - "shell.execute_reply": "2024-07-09T06:11:54.183375Z" + "iopub.execute_input": "2024-07-09T06:27:08.581768Z", + "iopub.status.busy": "2024-07-09T06:27:08.581433Z", + "iopub.status.idle": "2024-07-09T06:27:10.041147Z", + "shell.execute_reply": "2024-07-09T06:27:10.040535Z" }, "id": "AaHC5MRKjruT" }, @@ -729,10 +729,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.186907Z", - "iopub.status.busy": "2024-07-09T06:11:54.186075Z", - "iopub.status.idle": "2024-07-09T06:11:54.200134Z", - "shell.execute_reply": "2024-07-09T06:11:54.199558Z" + "iopub.execute_input": "2024-07-09T06:27:10.043766Z", + "iopub.status.busy": "2024-07-09T06:27:10.043148Z", + "iopub.status.idle": "2024-07-09T06:27:10.056923Z", + "shell.execute_reply": "2024-07-09T06:27:10.056388Z" }, "id": "Wy27rvyhjruU" }, @@ -781,10 +781,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.202306Z", - "iopub.status.busy": "2024-07-09T06:11:54.202000Z", - "iopub.status.idle": "2024-07-09T06:11:54.277250Z", - "shell.execute_reply": "2024-07-09T06:11:54.276637Z" + "iopub.execute_input": "2024-07-09T06:27:10.059184Z", + "iopub.status.busy": "2024-07-09T06:27:10.058724Z", + "iopub.status.idle": "2024-07-09T06:27:10.131352Z", + "shell.execute_reply": "2024-07-09T06:27:10.130748Z" }, "id": "Db8YHnyVjruU" }, @@ -891,10 +891,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.279643Z", - "iopub.status.busy": "2024-07-09T06:11:54.279420Z", - "iopub.status.idle": "2024-07-09T06:11:54.491334Z", - "shell.execute_reply": "2024-07-09T06:11:54.490753Z" + "iopub.execute_input": "2024-07-09T06:27:10.133987Z", + "iopub.status.busy": "2024-07-09T06:27:10.133447Z", + "iopub.status.idle": "2024-07-09T06:27:10.342019Z", + "shell.execute_reply": "2024-07-09T06:27:10.341476Z" }, "id": "iJqAHuS2jruV" }, @@ -931,10 +931,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.493562Z", - "iopub.status.busy": "2024-07-09T06:11:54.493205Z", - "iopub.status.idle": "2024-07-09T06:11:54.509795Z", - "shell.execute_reply": "2024-07-09T06:11:54.509342Z" + "iopub.execute_input": "2024-07-09T06:27:10.344306Z", + "iopub.status.busy": "2024-07-09T06:27:10.343957Z", + "iopub.status.idle": "2024-07-09T06:27:10.361242Z", + "shell.execute_reply": "2024-07-09T06:27:10.360779Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1400,10 +1400,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.511753Z", - "iopub.status.busy": "2024-07-09T06:11:54.511488Z", - "iopub.status.idle": "2024-07-09T06:11:54.520675Z", - "shell.execute_reply": "2024-07-09T06:11:54.520247Z" + "iopub.execute_input": "2024-07-09T06:27:10.363517Z", + "iopub.status.busy": "2024-07-09T06:27:10.363117Z", + "iopub.status.idle": "2024-07-09T06:27:10.372893Z", + "shell.execute_reply": "2024-07-09T06:27:10.372453Z" }, "id": "0lonvOYvjruV" }, @@ -1550,10 +1550,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.522665Z", - "iopub.status.busy": "2024-07-09T06:11:54.522333Z", - "iopub.status.idle": "2024-07-09T06:11:54.604475Z", - "shell.execute_reply": "2024-07-09T06:11:54.603871Z" + "iopub.execute_input": "2024-07-09T06:27:10.375119Z", + "iopub.status.busy": "2024-07-09T06:27:10.374773Z", + "iopub.status.idle": "2024-07-09T06:27:10.461355Z", + "shell.execute_reply": "2024-07-09T06:27:10.460793Z" }, "id": "MfqTCa3kjruV" }, @@ -1634,10 +1634,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.606814Z", - "iopub.status.busy": "2024-07-09T06:11:54.606624Z", - "iopub.status.idle": "2024-07-09T06:11:54.727974Z", - "shell.execute_reply": "2024-07-09T06:11:54.727317Z" + "iopub.execute_input": "2024-07-09T06:27:10.463772Z", + "iopub.status.busy": "2024-07-09T06:27:10.463410Z", + "iopub.status.idle": "2024-07-09T06:27:10.595934Z", + "shell.execute_reply": "2024-07-09T06:27:10.595287Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1697,10 +1697,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.730454Z", - "iopub.status.busy": "2024-07-09T06:11:54.730077Z", - "iopub.status.idle": "2024-07-09T06:11:54.733732Z", - "shell.execute_reply": "2024-07-09T06:11:54.733202Z" + "iopub.execute_input": "2024-07-09T06:27:10.598470Z", + "iopub.status.busy": "2024-07-09T06:27:10.598089Z", + "iopub.status.idle": "2024-07-09T06:27:10.601819Z", + "shell.execute_reply": "2024-07-09T06:27:10.601299Z" }, "id": "0rXP3ZPWjruW" }, @@ -1738,10 +1738,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.735775Z", - "iopub.status.busy": "2024-07-09T06:11:54.735487Z", - "iopub.status.idle": "2024-07-09T06:11:54.739241Z", - "shell.execute_reply": "2024-07-09T06:11:54.738694Z" + "iopub.execute_input": "2024-07-09T06:27:10.603912Z", + "iopub.status.busy": "2024-07-09T06:27:10.603638Z", + "iopub.status.idle": "2024-07-09T06:27:10.607432Z", + "shell.execute_reply": "2024-07-09T06:27:10.606860Z" }, "id": "-iRPe8KXjruW" }, @@ -1796,10 +1796,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.741323Z", - "iopub.status.busy": "2024-07-09T06:11:54.740932Z", - "iopub.status.idle": "2024-07-09T06:11:54.777496Z", - "shell.execute_reply": "2024-07-09T06:11:54.776969Z" + "iopub.execute_input": "2024-07-09T06:27:10.609489Z", + "iopub.status.busy": "2024-07-09T06:27:10.609167Z", + "iopub.status.idle": "2024-07-09T06:27:10.645674Z", + "shell.execute_reply": "2024-07-09T06:27:10.645104Z" }, "id": "ZpipUliyjruW" }, @@ -1850,10 +1850,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.779687Z", - "iopub.status.busy": "2024-07-09T06:11:54.779360Z", - "iopub.status.idle": "2024-07-09T06:11:54.820499Z", - "shell.execute_reply": "2024-07-09T06:11:54.820015Z" + "iopub.execute_input": "2024-07-09T06:27:10.647737Z", + "iopub.status.busy": "2024-07-09T06:27:10.647426Z", + "iopub.status.idle": "2024-07-09T06:27:10.688357Z", + "shell.execute_reply": "2024-07-09T06:27:10.687867Z" }, "id": "SLq-3q4xjruX" }, @@ -1922,10 +1922,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.822731Z", - "iopub.status.busy": "2024-07-09T06:11:54.822374Z", - "iopub.status.idle": "2024-07-09T06:11:54.940268Z", - "shell.execute_reply": "2024-07-09T06:11:54.939702Z" + "iopub.execute_input": "2024-07-09T06:27:10.690497Z", + "iopub.status.busy": "2024-07-09T06:27:10.690152Z", + "iopub.status.idle": "2024-07-09T06:27:10.784906Z", + "shell.execute_reply": "2024-07-09T06:27:10.784195Z" }, "id": "g5LHhhuqFbXK" }, @@ -1957,10 +1957,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:54.942914Z", - "iopub.status.busy": "2024-07-09T06:11:54.942544Z", - "iopub.status.idle": "2024-07-09T06:11:55.028728Z", - "shell.execute_reply": "2024-07-09T06:11:55.028139Z" + "iopub.execute_input": "2024-07-09T06:27:10.787438Z", + "iopub.status.busy": "2024-07-09T06:27:10.787205Z", + "iopub.status.idle": "2024-07-09T06:27:10.875324Z", + "shell.execute_reply": "2024-07-09T06:27:10.874533Z" }, "id": "p7w8F8ezBcet" }, @@ -2017,10 +2017,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.031345Z", - "iopub.status.busy": "2024-07-09T06:11:55.030861Z", - "iopub.status.idle": "2024-07-09T06:11:55.242842Z", - "shell.execute_reply": "2024-07-09T06:11:55.242258Z" + "iopub.execute_input": "2024-07-09T06:27:10.877938Z", + "iopub.status.busy": "2024-07-09T06:27:10.877489Z", + "iopub.status.idle": "2024-07-09T06:27:11.089399Z", + "shell.execute_reply": "2024-07-09T06:27:11.088722Z" }, "id": "WETRL74tE_sU" }, @@ -2055,10 +2055,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.245126Z", - "iopub.status.busy": "2024-07-09T06:11:55.244793Z", - "iopub.status.idle": "2024-07-09T06:11:55.420459Z", - "shell.execute_reply": "2024-07-09T06:11:55.419832Z" + "iopub.execute_input": "2024-07-09T06:27:11.091873Z", + "iopub.status.busy": "2024-07-09T06:27:11.091658Z", + "iopub.status.idle": "2024-07-09T06:27:11.278736Z", + "shell.execute_reply": "2024-07-09T06:27:11.278122Z" }, "id": "kCfdx2gOLmXS" }, @@ -2220,10 +2220,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.422976Z", - "iopub.status.busy": "2024-07-09T06:11:55.422514Z", - "iopub.status.idle": "2024-07-09T06:11:55.428850Z", - "shell.execute_reply": "2024-07-09T06:11:55.428412Z" + "iopub.execute_input": "2024-07-09T06:27:11.281105Z", + "iopub.status.busy": "2024-07-09T06:27:11.280730Z", + "iopub.status.idle": "2024-07-09T06:27:11.286566Z", + "shell.execute_reply": "2024-07-09T06:27:11.286117Z" }, "id": "-uogYRWFYnuu" }, @@ -2277,10 +2277,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.431061Z", - "iopub.status.busy": "2024-07-09T06:11:55.430598Z", - "iopub.status.idle": "2024-07-09T06:11:55.646899Z", - "shell.execute_reply": "2024-07-09T06:11:55.646337Z" + "iopub.execute_input": "2024-07-09T06:27:11.288560Z", + "iopub.status.busy": "2024-07-09T06:27:11.288235Z", + "iopub.status.idle": "2024-07-09T06:27:11.502240Z", + "shell.execute_reply": "2024-07-09T06:27:11.501640Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2327,10 +2327,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:55.649268Z", - "iopub.status.busy": "2024-07-09T06:11:55.648816Z", - "iopub.status.idle": "2024-07-09T06:11:56.713232Z", - "shell.execute_reply": "2024-07-09T06:11:56.712681Z" + "iopub.execute_input": "2024-07-09T06:27:11.504499Z", + "iopub.status.busy": "2024-07-09T06:27:11.504154Z", + "iopub.status.idle": "2024-07-09T06:27:12.558282Z", + "shell.execute_reply": "2024-07-09T06:27:12.557776Z" }, "id": "wL3ngCnuLEWd" }, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index 4649d4e78..345a175cf 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -88,10 +88,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:11:59.986964Z", - "iopub.status.busy": "2024-07-09T06:11:59.986785Z", - "iopub.status.idle": "2024-07-09T06:12:01.075285Z", - "shell.execute_reply": "2024-07-09T06:12:01.074633Z" + "iopub.execute_input": "2024-07-09T06:27:15.909512Z", + "iopub.status.busy": "2024-07-09T06:27:15.909333Z", + "iopub.status.idle": "2024-07-09T06:27:17.025416Z", + "shell.execute_reply": "2024-07-09T06:27:17.024860Z" }, "nbsphinx": "hidden" }, @@ -101,7 +101,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -135,10 +135,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.077824Z", - "iopub.status.busy": "2024-07-09T06:12:01.077551Z", - "iopub.status.idle": "2024-07-09T06:12:01.080727Z", - "shell.execute_reply": "2024-07-09T06:12:01.080279Z" + "iopub.execute_input": "2024-07-09T06:27:17.028078Z", + "iopub.status.busy": "2024-07-09T06:27:17.027788Z", + "iopub.status.idle": "2024-07-09T06:27:17.031022Z", + "shell.execute_reply": "2024-07-09T06:27:17.030547Z" } }, "outputs": [], @@ -263,10 +263,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.082717Z", - "iopub.status.busy": "2024-07-09T06:12:01.082412Z", - "iopub.status.idle": "2024-07-09T06:12:01.090048Z", - "shell.execute_reply": "2024-07-09T06:12:01.089520Z" + "iopub.execute_input": "2024-07-09T06:27:17.033112Z", + "iopub.status.busy": "2024-07-09T06:27:17.032789Z", + "iopub.status.idle": "2024-07-09T06:27:17.040343Z", + "shell.execute_reply": "2024-07-09T06:27:17.039908Z" }, "nbsphinx": "hidden" }, @@ -350,10 +350,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.091972Z", - "iopub.status.busy": "2024-07-09T06:12:01.091665Z", - "iopub.status.idle": "2024-07-09T06:12:01.138589Z", - "shell.execute_reply": "2024-07-09T06:12:01.138119Z" + "iopub.execute_input": "2024-07-09T06:27:17.042282Z", + "iopub.status.busy": "2024-07-09T06:27:17.041970Z", + "iopub.status.idle": "2024-07-09T06:27:17.094153Z", + "shell.execute_reply": "2024-07-09T06:27:17.093528Z" } }, "outputs": [], @@ -379,10 +379,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.140553Z", - "iopub.status.busy": "2024-07-09T06:12:01.140222Z", - "iopub.status.idle": "2024-07-09T06:12:01.156429Z", - "shell.execute_reply": "2024-07-09T06:12:01.156000Z" + "iopub.execute_input": "2024-07-09T06:27:17.096794Z", + "iopub.status.busy": "2024-07-09T06:27:17.096411Z", + "iopub.status.idle": "2024-07-09T06:27:17.113492Z", + "shell.execute_reply": "2024-07-09T06:27:17.113050Z" } }, "outputs": [ @@ -597,10 +597,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.158339Z", - "iopub.status.busy": "2024-07-09T06:12:01.158075Z", - "iopub.status.idle": "2024-07-09T06:12:01.161727Z", - "shell.execute_reply": "2024-07-09T06:12:01.161308Z" + "iopub.execute_input": "2024-07-09T06:27:17.115656Z", + "iopub.status.busy": "2024-07-09T06:27:17.115325Z", + "iopub.status.idle": "2024-07-09T06:27:17.119055Z", + "shell.execute_reply": "2024-07-09T06:27:17.118574Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.163745Z", - "iopub.status.busy": "2024-07-09T06:12:01.163423Z", - "iopub.status.idle": "2024-07-09T06:12:01.176542Z", - "shell.execute_reply": "2024-07-09T06:12:01.176139Z" + "iopub.execute_input": "2024-07-09T06:27:17.121058Z", + "iopub.status.busy": "2024-07-09T06:27:17.120762Z", + "iopub.status.idle": "2024-07-09T06:27:17.134516Z", + "shell.execute_reply": "2024-07-09T06:27:17.134084Z" } }, "outputs": [], @@ -698,10 +698,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.178481Z", - "iopub.status.busy": "2024-07-09T06:12:01.178099Z", - "iopub.status.idle": "2024-07-09T06:12:01.203843Z", - "shell.execute_reply": "2024-07-09T06:12:01.203299Z" + "iopub.execute_input": "2024-07-09T06:27:17.136707Z", + "iopub.status.busy": "2024-07-09T06:27:17.136279Z", + "iopub.status.idle": "2024-07-09T06:27:17.162081Z", + "shell.execute_reply": "2024-07-09T06:27:17.161647Z" } }, "outputs": [], @@ -738,10 +738,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:01.206126Z", - "iopub.status.busy": "2024-07-09T06:12:01.205741Z", - "iopub.status.idle": "2024-07-09T06:12:03.063366Z", - "shell.execute_reply": "2024-07-09T06:12:03.062689Z" + "iopub.execute_input": "2024-07-09T06:27:17.164409Z", + "iopub.status.busy": "2024-07-09T06:27:17.163994Z", + "iopub.status.idle": "2024-07-09T06:27:19.093254Z", + "shell.execute_reply": "2024-07-09T06:27:19.092676Z" } }, "outputs": [], @@ -771,10 +771,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.065913Z", - "iopub.status.busy": "2024-07-09T06:12:03.065623Z", - "iopub.status.idle": "2024-07-09T06:12:03.072446Z", - "shell.execute_reply": "2024-07-09T06:12:03.071908Z" + "iopub.execute_input": "2024-07-09T06:27:19.095800Z", + "iopub.status.busy": "2024-07-09T06:27:19.095336Z", + "iopub.status.idle": "2024-07-09T06:27:19.102192Z", + "shell.execute_reply": "2024-07-09T06:27:19.101750Z" }, "scrolled": true }, @@ -885,10 +885,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.074438Z", - "iopub.status.busy": "2024-07-09T06:12:03.074140Z", - "iopub.status.idle": "2024-07-09T06:12:03.086651Z", - "shell.execute_reply": "2024-07-09T06:12:03.086112Z" + "iopub.execute_input": "2024-07-09T06:27:19.104190Z", + "iopub.status.busy": "2024-07-09T06:27:19.103866Z", + "iopub.status.idle": "2024-07-09T06:27:19.116533Z", + "shell.execute_reply": "2024-07-09T06:27:19.116058Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.088655Z", - "iopub.status.busy": "2024-07-09T06:12:03.088360Z", - "iopub.status.idle": "2024-07-09T06:12:03.094477Z", - "shell.execute_reply": "2024-07-09T06:12:03.093962Z" + "iopub.execute_input": "2024-07-09T06:27:19.118619Z", + "iopub.status.busy": "2024-07-09T06:27:19.118287Z", + "iopub.status.idle": "2024-07-09T06:27:19.124788Z", + "shell.execute_reply": "2024-07-09T06:27:19.124346Z" }, "scrolled": true }, @@ -1315,10 +1315,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.096562Z", - "iopub.status.busy": "2024-07-09T06:12:03.096263Z", - "iopub.status.idle": "2024-07-09T06:12:03.098957Z", - "shell.execute_reply": "2024-07-09T06:12:03.098421Z" + "iopub.execute_input": "2024-07-09T06:27:19.126835Z", + "iopub.status.busy": "2024-07-09T06:27:19.126514Z", + "iopub.status.idle": "2024-07-09T06:27:19.129039Z", + "shell.execute_reply": "2024-07-09T06:27:19.128622Z" } }, "outputs": [], @@ -1340,10 +1340,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.100872Z", - "iopub.status.busy": "2024-07-09T06:12:03.100570Z", - "iopub.status.idle": "2024-07-09T06:12:03.104053Z", - "shell.execute_reply": "2024-07-09T06:12:03.103519Z" + "iopub.execute_input": "2024-07-09T06:27:19.131096Z", + "iopub.status.busy": "2024-07-09T06:27:19.130774Z", + "iopub.status.idle": "2024-07-09T06:27:19.134005Z", + "shell.execute_reply": "2024-07-09T06:27:19.133516Z" }, "scrolled": true }, @@ -1395,10 +1395,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.106062Z", - "iopub.status.busy": "2024-07-09T06:12:03.105700Z", - "iopub.status.idle": "2024-07-09T06:12:03.108276Z", - "shell.execute_reply": "2024-07-09T06:12:03.107858Z" + "iopub.execute_input": "2024-07-09T06:27:19.136079Z", + "iopub.status.busy": "2024-07-09T06:27:19.135766Z", + "iopub.status.idle": "2024-07-09T06:27:19.138223Z", + "shell.execute_reply": "2024-07-09T06:27:19.137811Z" } }, "outputs": [], @@ -1422,10 +1422,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.110307Z", - "iopub.status.busy": "2024-07-09T06:12:03.109902Z", - "iopub.status.idle": "2024-07-09T06:12:03.113725Z", - "shell.execute_reply": "2024-07-09T06:12:03.113303Z" + "iopub.execute_input": "2024-07-09T06:27:19.140207Z", + "iopub.status.busy": "2024-07-09T06:27:19.139883Z", + "iopub.status.idle": "2024-07-09T06:27:19.144100Z", + "shell.execute_reply": "2024-07-09T06:27:19.143647Z" } }, "outputs": [ @@ -1480,10 +1480,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.115691Z", - "iopub.status.busy": "2024-07-09T06:12:03.115395Z", - "iopub.status.idle": "2024-07-09T06:12:03.144399Z", - "shell.execute_reply": "2024-07-09T06:12:03.143867Z" + "iopub.execute_input": "2024-07-09T06:27:19.146159Z", + "iopub.status.busy": "2024-07-09T06:27:19.145854Z", + "iopub.status.idle": "2024-07-09T06:27:19.174449Z", + "shell.execute_reply": "2024-07-09T06:27:19.173890Z" } }, "outputs": [], @@ -1526,10 +1526,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:03.146446Z", - "iopub.status.busy": "2024-07-09T06:12:03.146148Z", - "iopub.status.idle": "2024-07-09T06:12:03.150634Z", - "shell.execute_reply": "2024-07-09T06:12:03.150114Z" + "iopub.execute_input": "2024-07-09T06:27:19.177021Z", + "iopub.status.busy": "2024-07-09T06:27:19.176539Z", + "iopub.status.idle": "2024-07-09T06:27:19.181309Z", + "shell.execute_reply": "2024-07-09T06:27:19.180812Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 940de2088..9c34ac22c 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:06.009775Z", - "iopub.status.busy": "2024-07-09T06:12:06.009294Z", - "iopub.status.idle": "2024-07-09T06:12:07.146220Z", - "shell.execute_reply": "2024-07-09T06:12:07.145677Z" + "iopub.execute_input": "2024-07-09T06:27:22.153886Z", + "iopub.status.busy": "2024-07-09T06:27:22.153426Z", + "iopub.status.idle": "2024-07-09T06:27:23.311889Z", + "shell.execute_reply": "2024-07-09T06:27:23.311338Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.148904Z", - "iopub.status.busy": "2024-07-09T06:12:07.148494Z", - "iopub.status.idle": "2024-07-09T06:12:07.339029Z", - "shell.execute_reply": "2024-07-09T06:12:07.338432Z" + "iopub.execute_input": "2024-07-09T06:27:23.314428Z", + "iopub.status.busy": "2024-07-09T06:27:23.313980Z", + "iopub.status.idle": "2024-07-09T06:27:23.508688Z", + "shell.execute_reply": "2024-07-09T06:27:23.508123Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.341669Z", - "iopub.status.busy": "2024-07-09T06:12:07.341302Z", - "iopub.status.idle": "2024-07-09T06:12:07.354860Z", - "shell.execute_reply": "2024-07-09T06:12:07.354382Z" + "iopub.execute_input": "2024-07-09T06:27:23.511393Z", + "iopub.status.busy": "2024-07-09T06:27:23.510929Z", + "iopub.status.idle": "2024-07-09T06:27:23.524862Z", + "shell.execute_reply": "2024-07-09T06:27:23.524396Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:07.356939Z", - "iopub.status.busy": "2024-07-09T06:12:07.356615Z", - "iopub.status.idle": "2024-07-09T06:12:10.024538Z", - "shell.execute_reply": "2024-07-09T06:12:10.023896Z" + "iopub.execute_input": "2024-07-09T06:27:23.527208Z", + "iopub.status.busy": "2024-07-09T06:27:23.526603Z", + "iopub.status.idle": "2024-07-09T06:27:26.126394Z", + "shell.execute_reply": "2024-07-09T06:27:26.125810Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:10.026913Z", - "iopub.status.busy": "2024-07-09T06:12:10.026490Z", - "iopub.status.idle": "2024-07-09T06:12:11.384283Z", - "shell.execute_reply": "2024-07-09T06:12:11.383744Z" + "iopub.execute_input": "2024-07-09T06:27:26.128599Z", + "iopub.status.busy": "2024-07-09T06:27:26.128270Z", + "iopub.status.idle": "2024-07-09T06:27:27.468768Z", + "shell.execute_reply": "2024-07-09T06:27:27.468127Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.386832Z", - "iopub.status.busy": "2024-07-09T06:12:11.386489Z", - "iopub.status.idle": "2024-07-09T06:12:11.390443Z", - "shell.execute_reply": "2024-07-09T06:12:11.389901Z" + "iopub.execute_input": "2024-07-09T06:27:27.471344Z", + "iopub.status.busy": "2024-07-09T06:27:27.471010Z", + "iopub.status.idle": "2024-07-09T06:27:27.475004Z", + "shell.execute_reply": "2024-07-09T06:27:27.474434Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:11.392453Z", - "iopub.status.busy": "2024-07-09T06:12:11.392156Z", - "iopub.status.idle": "2024-07-09T06:12:13.350265Z", - "shell.execute_reply": "2024-07-09T06:12:13.349664Z" + "iopub.execute_input": "2024-07-09T06:27:27.477072Z", + "iopub.status.busy": "2024-07-09T06:27:27.476759Z", + "iopub.status.idle": "2024-07-09T06:27:29.490391Z", + "shell.execute_reply": "2024-07-09T06:27:29.489818Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.352635Z", - "iopub.status.busy": "2024-07-09T06:12:13.352287Z", - "iopub.status.idle": "2024-07-09T06:12:13.360007Z", - "shell.execute_reply": "2024-07-09T06:12:13.359539Z" + "iopub.execute_input": "2024-07-09T06:27:29.492995Z", + "iopub.status.busy": "2024-07-09T06:27:29.492468Z", + "iopub.status.idle": "2024-07-09T06:27:29.500292Z", + "shell.execute_reply": "2024-07-09T06:27:29.499734Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:13.362027Z", - "iopub.status.busy": "2024-07-09T06:12:13.361726Z", - "iopub.status.idle": "2024-07-09T06:12:15.951530Z", - "shell.execute_reply": "2024-07-09T06:12:15.950920Z" + "iopub.execute_input": "2024-07-09T06:27:29.502433Z", + "iopub.status.busy": "2024-07-09T06:27:29.502113Z", + "iopub.status.idle": "2024-07-09T06:27:32.049416Z", + "shell.execute_reply": "2024-07-09T06:27:32.048812Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.953826Z", - "iopub.status.busy": "2024-07-09T06:12:15.953477Z", - "iopub.status.idle": "2024-07-09T06:12:15.956917Z", - "shell.execute_reply": "2024-07-09T06:12:15.956384Z" + "iopub.execute_input": "2024-07-09T06:27:32.051592Z", + "iopub.status.busy": "2024-07-09T06:27:32.051401Z", + "iopub.status.idle": "2024-07-09T06:27:32.055077Z", + "shell.execute_reply": "2024-07-09T06:27:32.054480Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.958940Z", - "iopub.status.busy": "2024-07-09T06:12:15.958612Z", - "iopub.status.idle": "2024-07-09T06:12:15.961923Z", - "shell.execute_reply": "2024-07-09T06:12:15.961492Z" + "iopub.execute_input": "2024-07-09T06:27:32.057199Z", + "iopub.status.busy": "2024-07-09T06:27:32.056870Z", + "iopub.status.idle": "2024-07-09T06:27:32.060234Z", + "shell.execute_reply": "2024-07-09T06:27:32.059802Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:15.963899Z", - "iopub.status.busy": "2024-07-09T06:12:15.963576Z", - "iopub.status.idle": "2024-07-09T06:12:15.967078Z", - "shell.execute_reply": "2024-07-09T06:12:15.966654Z" + "iopub.execute_input": "2024-07-09T06:27:32.062198Z", + "iopub.status.busy": "2024-07-09T06:27:32.061876Z", + "iopub.status.idle": "2024-07-09T06:27:32.065020Z", + "shell.execute_reply": "2024-07-09T06:27:32.064573Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index 552c5a63a..949e5b545 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:18.540918Z", - "iopub.status.busy": "2024-07-09T06:12:18.540757Z", - "iopub.status.idle": "2024-07-09T06:12:19.680849Z", - "shell.execute_reply": "2024-07-09T06:12:19.680297Z" + "iopub.execute_input": "2024-07-09T06:27:34.654632Z", + "iopub.status.busy": "2024-07-09T06:27:34.654465Z", + "iopub.status.idle": "2024-07-09T06:27:35.815092Z", + "shell.execute_reply": "2024-07-09T06:27:35.814455Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:19.683207Z", - "iopub.status.busy": "2024-07-09T06:12:19.682952Z", - "iopub.status.idle": "2024-07-09T06:12:20.782328Z", - "shell.execute_reply": "2024-07-09T06:12:20.781710Z" + "iopub.execute_input": "2024-07-09T06:27:35.817596Z", + "iopub.status.busy": "2024-07-09T06:27:35.817178Z", + "iopub.status.idle": "2024-07-09T06:27:37.096670Z", + "shell.execute_reply": "2024-07-09T06:27:37.095921Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.784972Z", - "iopub.status.busy": "2024-07-09T06:12:20.784608Z", - "iopub.status.idle": "2024-07-09T06:12:20.787687Z", - "shell.execute_reply": "2024-07-09T06:12:20.787270Z" + "iopub.execute_input": "2024-07-09T06:27:37.099444Z", + "iopub.status.busy": "2024-07-09T06:27:37.099077Z", + "iopub.status.idle": "2024-07-09T06:27:37.102193Z", + "shell.execute_reply": "2024-07-09T06:27:37.101773Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.789706Z", - "iopub.status.busy": "2024-07-09T06:12:20.789390Z", - "iopub.status.idle": "2024-07-09T06:12:20.795637Z", - "shell.execute_reply": "2024-07-09T06:12:20.795205Z" + "iopub.execute_input": "2024-07-09T06:27:37.104293Z", + "iopub.status.busy": "2024-07-09T06:27:37.103979Z", + "iopub.status.idle": "2024-07-09T06:27:37.110147Z", + "shell.execute_reply": "2024-07-09T06:27:37.109740Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:20.797653Z", - "iopub.status.busy": "2024-07-09T06:12:20.797314Z", - "iopub.status.idle": "2024-07-09T06:12:21.282480Z", - "shell.execute_reply": "2024-07-09T06:12:21.281912Z" + "iopub.execute_input": "2024-07-09T06:27:37.112184Z", + "iopub.status.busy": "2024-07-09T06:27:37.111923Z", + "iopub.status.idle": "2024-07-09T06:27:37.598528Z", + "shell.execute_reply": "2024-07-09T06:27:37.597913Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.285356Z", - "iopub.status.busy": "2024-07-09T06:12:21.285011Z", - "iopub.status.idle": "2024-07-09T06:12:21.290021Z", - "shell.execute_reply": "2024-07-09T06:12:21.289526Z" + "iopub.execute_input": "2024-07-09T06:27:37.601014Z", + "iopub.status.busy": "2024-07-09T06:27:37.600572Z", + "iopub.status.idle": "2024-07-09T06:27:37.605747Z", + "shell.execute_reply": "2024-07-09T06:27:37.605308Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.292135Z", - "iopub.status.busy": "2024-07-09T06:12:21.291713Z", - "iopub.status.idle": "2024-07-09T06:12:21.295440Z", - "shell.execute_reply": "2024-07-09T06:12:21.295008Z" + "iopub.execute_input": "2024-07-09T06:27:37.607641Z", + "iopub.status.busy": "2024-07-09T06:27:37.607468Z", + "iopub.status.idle": "2024-07-09T06:27:37.611290Z", + "shell.execute_reply": "2024-07-09T06:27:37.610844Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:21.297473Z", - "iopub.status.busy": "2024-07-09T06:12:21.297149Z", - "iopub.status.idle": "2024-07-09T06:12:22.149730Z", - "shell.execute_reply": "2024-07-09T06:12:22.149063Z" + "iopub.execute_input": "2024-07-09T06:27:37.613342Z", + "iopub.status.busy": "2024-07-09T06:27:37.613034Z", + "iopub.status.idle": "2024-07-09T06:27:38.555539Z", + "shell.execute_reply": "2024-07-09T06:27:38.555016Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.152147Z", - "iopub.status.busy": "2024-07-09T06:12:22.151777Z", - "iopub.status.idle": "2024-07-09T06:12:22.372019Z", - "shell.execute_reply": "2024-07-09T06:12:22.371560Z" + "iopub.execute_input": "2024-07-09T06:27:38.557847Z", + "iopub.status.busy": "2024-07-09T06:27:38.557649Z", + "iopub.status.idle": "2024-07-09T06:27:38.851691Z", + "shell.execute_reply": "2024-07-09T06:27:38.851100Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.374207Z", - "iopub.status.busy": "2024-07-09T06:12:22.373800Z", - "iopub.status.idle": "2024-07-09T06:12:22.378360Z", - "shell.execute_reply": "2024-07-09T06:12:22.377817Z" + "iopub.execute_input": "2024-07-09T06:27:38.853964Z", + "iopub.status.busy": "2024-07-09T06:27:38.853618Z", + "iopub.status.idle": "2024-07-09T06:27:38.858060Z", + "shell.execute_reply": "2024-07-09T06:27:38.857615Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.380601Z", - "iopub.status.busy": "2024-07-09T06:12:22.380269Z", - "iopub.status.idle": "2024-07-09T06:12:22.827294Z", - "shell.execute_reply": "2024-07-09T06:12:22.826799Z" + "iopub.execute_input": "2024-07-09T06:27:38.860047Z", + "iopub.status.busy": "2024-07-09T06:27:38.859765Z", + "iopub.status.idle": "2024-07-09T06:27:39.310110Z", + "shell.execute_reply": "2024-07-09T06:27:39.309501Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:22.829350Z", - "iopub.status.busy": "2024-07-09T06:12:22.829090Z", - "iopub.status.idle": "2024-07-09T06:12:23.159105Z", - "shell.execute_reply": "2024-07-09T06:12:23.158480Z" + "iopub.execute_input": "2024-07-09T06:27:39.312865Z", + "iopub.status.busy": "2024-07-09T06:27:39.312462Z", + "iopub.status.idle": "2024-07-09T06:27:39.647092Z", + "shell.execute_reply": "2024-07-09T06:27:39.646475Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.161413Z", - "iopub.status.busy": "2024-07-09T06:12:23.161230Z", - "iopub.status.idle": "2024-07-09T06:12:23.525420Z", - "shell.execute_reply": "2024-07-09T06:12:23.524856Z" + "iopub.execute_input": "2024-07-09T06:27:39.649619Z", + "iopub.status.busy": "2024-07-09T06:27:39.649296Z", + "iopub.status.idle": "2024-07-09T06:27:40.011855Z", + "shell.execute_reply": "2024-07-09T06:27:40.011238Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.528578Z", - "iopub.status.busy": "2024-07-09T06:12:23.528384Z", - "iopub.status.idle": "2024-07-09T06:12:23.963657Z", - "shell.execute_reply": "2024-07-09T06:12:23.963056Z" + "iopub.execute_input": "2024-07-09T06:27:40.014685Z", + "iopub.status.busy": "2024-07-09T06:27:40.014328Z", + "iopub.status.idle": "2024-07-09T06:27:40.429827Z", + "shell.execute_reply": "2024-07-09T06:27:40.429292Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:23.967971Z", - "iopub.status.busy": "2024-07-09T06:12:23.967513Z", - "iopub.status.idle": "2024-07-09T06:12:24.415572Z", - "shell.execute_reply": "2024-07-09T06:12:24.414915Z" + "iopub.execute_input": "2024-07-09T06:27:40.434217Z", + "iopub.status.busy": "2024-07-09T06:27:40.433815Z", + "iopub.status.idle": "2024-07-09T06:27:40.880331Z", + "shell.execute_reply": "2024-07-09T06:27:40.879705Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.418819Z", - "iopub.status.busy": "2024-07-09T06:12:24.418433Z", - "iopub.status.idle": "2024-07-09T06:12:24.633283Z", - "shell.execute_reply": "2024-07-09T06:12:24.632674Z" + "iopub.execute_input": "2024-07-09T06:27:40.882426Z", + "iopub.status.busy": "2024-07-09T06:27:40.882229Z", + "iopub.status.idle": "2024-07-09T06:27:41.097056Z", + "shell.execute_reply": "2024-07-09T06:27:41.096510Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.635545Z", - "iopub.status.busy": "2024-07-09T06:12:24.635179Z", - "iopub.status.idle": "2024-07-09T06:12:24.835048Z", - "shell.execute_reply": "2024-07-09T06:12:24.834421Z" + "iopub.execute_input": "2024-07-09T06:27:41.099352Z", + "iopub.status.busy": "2024-07-09T06:27:41.098978Z", + "iopub.status.idle": "2024-07-09T06:27:41.279647Z", + "shell.execute_reply": "2024-07-09T06:27:41.279135Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.837392Z", - "iopub.status.busy": "2024-07-09T06:12:24.837055Z", - "iopub.status.idle": "2024-07-09T06:12:24.839948Z", - "shell.execute_reply": "2024-07-09T06:12:24.839511Z" + "iopub.execute_input": "2024-07-09T06:27:41.282138Z", + "iopub.status.busy": "2024-07-09T06:27:41.281802Z", + "iopub.status.idle": "2024-07-09T06:27:41.284795Z", + "shell.execute_reply": "2024-07-09T06:27:41.284347Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:24.842025Z", - "iopub.status.busy": "2024-07-09T06:12:24.841705Z", - "iopub.status.idle": "2024-07-09T06:12:25.813473Z", - "shell.execute_reply": "2024-07-09T06:12:25.812857Z" + "iopub.execute_input": "2024-07-09T06:27:41.286727Z", + "iopub.status.busy": "2024-07-09T06:27:41.286354Z", + "iopub.status.idle": "2024-07-09T06:27:42.233918Z", + "shell.execute_reply": "2024-07-09T06:27:42.233305Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.816037Z", - "iopub.status.busy": "2024-07-09T06:12:25.815657Z", - "iopub.status.idle": "2024-07-09T06:12:25.972932Z", - "shell.execute_reply": "2024-07-09T06:12:25.972181Z" + "iopub.execute_input": "2024-07-09T06:27:42.236357Z", + "iopub.status.busy": "2024-07-09T06:27:42.236129Z", + "iopub.status.idle": "2024-07-09T06:27:42.414922Z", + "shell.execute_reply": "2024-07-09T06:27:42.414319Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:25.975551Z", - "iopub.status.busy": "2024-07-09T06:12:25.975177Z", - "iopub.status.idle": "2024-07-09T06:12:26.197045Z", - "shell.execute_reply": "2024-07-09T06:12:26.196445Z" + "iopub.execute_input": "2024-07-09T06:27:42.417052Z", + "iopub.status.busy": "2024-07-09T06:27:42.416742Z", + "iopub.status.idle": "2024-07-09T06:27:42.567516Z", + "shell.execute_reply": "2024-07-09T06:27:42.566950Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.199182Z", - "iopub.status.busy": "2024-07-09T06:12:26.198971Z", - "iopub.status.idle": "2024-07-09T06:12:26.909973Z", - "shell.execute_reply": "2024-07-09T06:12:26.909345Z" + "iopub.execute_input": "2024-07-09T06:27:42.569723Z", + "iopub.status.busy": "2024-07-09T06:27:42.569386Z", + "iopub.status.idle": "2024-07-09T06:27:43.238504Z", + "shell.execute_reply": "2024-07-09T06:27:43.237885Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:26.912306Z", - "iopub.status.busy": "2024-07-09T06:12:26.912113Z", - "iopub.status.idle": "2024-07-09T06:12:26.915710Z", - "shell.execute_reply": "2024-07-09T06:12:26.915268Z" + "iopub.execute_input": "2024-07-09T06:27:43.240966Z", + "iopub.status.busy": "2024-07-09T06:27:43.240541Z", + "iopub.status.idle": "2024-07-09T06:27:43.244348Z", + "shell.execute_reply": "2024-07-09T06:27:43.243899Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index af0c138e5..7d4e1d2ac 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -780,7 +780,7 @@

2. Pre-process the Cifar10 dataset
-100%|██████████| 170498071/170498071 [00:03<00:00, 52539309.75it/s]
+100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s]
 

-
+
@@ -1124,7 +1124,7 @@

4. Use cleanlab and here.

diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index ef13a6be5..5a34daff0 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:29.114173Z", - "iopub.status.busy": "2024-07-09T06:12:29.114013Z", - "iopub.status.idle": "2024-07-09T06:12:31.813402Z", - "shell.execute_reply": "2024-07-09T06:12:31.812863Z" + "iopub.execute_input": "2024-07-09T06:27:45.444339Z", + "iopub.status.busy": "2024-07-09T06:27:45.443934Z", + "iopub.status.idle": "2024-07-09T06:27:48.220490Z", + "shell.execute_reply": "2024-07-09T06:27:48.219850Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:31.816019Z", - "iopub.status.busy": "2024-07-09T06:12:31.815566Z", - "iopub.status.idle": "2024-07-09T06:12:32.129315Z", - "shell.execute_reply": "2024-07-09T06:12:32.128775Z" + "iopub.execute_input": "2024-07-09T06:27:48.223134Z", + "iopub.status.busy": "2024-07-09T06:27:48.222782Z", + "iopub.status.idle": "2024-07-09T06:27:48.551328Z", + "shell.execute_reply": "2024-07-09T06:27:48.550787Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.131878Z", - "iopub.status.busy": "2024-07-09T06:12:32.131486Z", - "iopub.status.idle": "2024-07-09T06:12:32.135688Z", - "shell.execute_reply": "2024-07-09T06:12:32.135276Z" + "iopub.execute_input": "2024-07-09T06:27:48.553939Z", + "iopub.status.busy": "2024-07-09T06:27:48.553405Z", + "iopub.status.idle": "2024-07-09T06:27:48.557550Z", + "shell.execute_reply": "2024-07-09T06:27:48.557027Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:32.137627Z", - "iopub.status.busy": "2024-07-09T06:12:32.137303Z", - "iopub.status.idle": "2024-07-09T06:12:38.133619Z", - "shell.execute_reply": "2024-07-09T06:12:38.133066Z" + "iopub.execute_input": "2024-07-09T06:27:48.559562Z", + "iopub.status.busy": "2024-07-09T06:27:48.559266Z", + "iopub.status.idle": "2024-07-09T06:27:53.022684Z", + "shell.execute_reply": "2024-07-09T06:27:53.022093Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 753664/170498071 [00:00<00:22, 7533055.14it/s]" + " 1%| | 884736/170498071 [00:00<00:20, 8089244.09it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3440640/170498071 [00:00<00:08, 18808186.49it/s]" + " 6%|▌ | 10289152/170498071 [00:00<00:02, 56739816.87it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 4%|▎ | 6324224/170498071 [00:00<00:07, 23199285.68it/s]" + " 12%|█▏ | 20709376/170498071 [00:00<00:01, 77845103.95it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9666560/170498071 [00:00<00:05, 27197953.48it/s]" + " 18%|█▊ | 31522816/170498071 [00:00<00:01, 89510002.96it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 8%|▊ | 13664256/170498071 [00:00<00:04, 31743822.23it/s]" + " 25%|██▍ | 42237952/170498071 [00:00<00:01, 95784414.02it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█ | 19103744/170498071 [00:00<00:03, 39286747.61it/s]" + " 31%|███ | 53182464/170498071 [00:00<00:01, 100337282.40it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 14%|█▍ | 24346624/170498071 [00:00<00:03, 43433867.11it/s]" + " 37%|███▋ | 63504384/170498071 [00:00<00:01, 101255669.81it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29786112/170498071 [00:00<00:03, 46673827.94it/s]" + " 43%|████▎ | 74022912/170498071 [00:00<00:00, 102422137.80it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 21%|██ | 35094528/170498071 [00:00<00:02, 48663639.53it/s]" + " 50%|████▉ | 84574208/170498071 [00:00<00:00, 103317034.01it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 24%|██▍ | 41123840/170498071 [00:01<00:02, 52228428.18it/s]" + " 56%|█████▌ | 94928896/170498071 [00:01<00:00, 103108871.70it/s]" ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 27%|██▋ | 46661632/170498071 [00:01<00:02, 53081926.67it/s]" + " 62%|██████▏ | 106004480/170498071 [00:01<00:00, 105346208.26it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52002816/170498071 [00:01<00:02, 52946728.47it/s]" + " 68%|██████▊ | 116654080/170498071 [00:01<00:00, 105629779.29it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 34%|███▎ | 57311232/170498071 [00:01<00:02, 52526789.19it/s]" + " 75%|███████▍ | 127434752/170498071 [00:01<00:00, 106225044.57it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 37%|███▋ | 62619648/170498071 [00:01<00:02, 52620946.91it/s]" + " 81%|████████ | 138084352/170498071 [00:01<00:00, 105442269.14it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 40%|███▉ | 67928064/170498071 [00:01<00:01, 52748561.88it/s]" + " 87%|████████▋ | 148799488/170498071 [00:01<00:00, 105804424.70it/s]" ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 43%|████▎ | 73203712/170498071 [00:01<00:01, 52564510.79it/s]" + " 94%|█████████▎| 159744000/170498071 [00:01<00:00, 106833768.32it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 46%|████▌ | 78479360/170498071 [00:01<00:01, 52150842.99it/s]" + "100%|█████████▉| 170491904/170498071 [00:01<00:00, 107010972.25it/s]" ] }, { @@ -388,119 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 49%|████▉ | 83722240/170498071 [00:01<00:01, 52125723.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 52%|█████▏ | 88997888/170498071 [00:01<00:01, 52299811.98it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 55%|█████▌ | 94273536/170498071 [00:02<00:01, 52413230.64it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 58%|█████▊ | 99516416/170498071 [00:02<00:01, 52173520.09it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 61%|██████▏ | 104759296/170498071 [00:02<00:01, 52218238.32it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 65%|██████▍ | 110034944/170498071 [00:02<00:01, 52258499.72it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 68%|██████▊ | 115343360/170498071 [00:02<00:01, 52472747.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 71%|███████ | 121339904/170498071 [00:02<00:00, 54675432.85it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 75%|███████▌ | 128352256/170498071 [00:02<00:00, 59232462.48it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 135004160/170498071 [00:02<00:00, 61391731.36it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 84%|████████▍ | 142835712/170498071 [00:02<00:00, 66388150.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 89%|████████▊ | 151289856/170498071 [00:02<00:00, 71709682.41it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 93%|█████████▎| 158760960/170498071 [00:03<00:00, 72569444.60it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 97%|█████████▋| 166035456/170498071 [00:03<00:00, 63066107.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:03<00:00, 52539309.75it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 99299872.36it/s] " ] }, { @@ -618,10 +506,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.135847Z", - "iopub.status.busy": "2024-07-09T06:12:38.135509Z", - "iopub.status.idle": "2024-07-09T06:12:38.140271Z", - "shell.execute_reply": "2024-07-09T06:12:38.139735Z" + "iopub.execute_input": "2024-07-09T06:27:53.024946Z", + "iopub.status.busy": "2024-07-09T06:27:53.024611Z", + "iopub.status.idle": "2024-07-09T06:27:53.029364Z", + "shell.execute_reply": "2024-07-09T06:27:53.028817Z" }, "nbsphinx": "hidden" }, @@ -672,10 +560,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.142240Z", - "iopub.status.busy": "2024-07-09T06:12:38.141970Z", - "iopub.status.idle": "2024-07-09T06:12:38.683191Z", - "shell.execute_reply": "2024-07-09T06:12:38.682615Z" + "iopub.execute_input": "2024-07-09T06:27:53.031408Z", + "iopub.status.busy": "2024-07-09T06:27:53.031096Z", + "iopub.status.idle": "2024-07-09T06:27:53.577241Z", + "shell.execute_reply": "2024-07-09T06:27:53.576593Z" } }, "outputs": [ @@ -708,10 +596,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:38.685213Z", - "iopub.status.busy": "2024-07-09T06:12:38.685033Z", - "iopub.status.idle": "2024-07-09T06:12:39.190392Z", - "shell.execute_reply": "2024-07-09T06:12:39.189791Z" + "iopub.execute_input": "2024-07-09T06:27:53.579601Z", + "iopub.status.busy": "2024-07-09T06:27:53.579322Z", + "iopub.status.idle": "2024-07-09T06:27:54.102985Z", + "shell.execute_reply": "2024-07-09T06:27:54.102360Z" } }, "outputs": [ @@ -749,10 +637,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.192564Z", - "iopub.status.busy": "2024-07-09T06:12:39.192364Z", - "iopub.status.idle": "2024-07-09T06:12:39.195681Z", - "shell.execute_reply": "2024-07-09T06:12:39.195250Z" + "iopub.execute_input": "2024-07-09T06:27:54.105484Z", + "iopub.status.busy": "2024-07-09T06:27:54.105073Z", + "iopub.status.idle": "2024-07-09T06:27:54.108602Z", + "shell.execute_reply": "2024-07-09T06:27:54.108156Z" } }, "outputs": [], @@ -775,17 +663,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:39.197505Z", - "iopub.status.busy": "2024-07-09T06:12:39.197332Z", - "iopub.status.idle": "2024-07-09T06:12:51.543036Z", - "shell.execute_reply": "2024-07-09T06:12:51.542330Z" + "iopub.execute_input": "2024-07-09T06:27:54.110579Z", + "iopub.status.busy": "2024-07-09T06:27:54.110395Z", + "iopub.status.idle": "2024-07-09T06:28:06.643708Z", + "shell.execute_reply": "2024-07-09T06:28:06.643176Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ca6046bdc6394abb8a985e631993257b", + "model_id": "17e3dce4b40a4cb8a2b240ec353e0eae", "version_major": 2, "version_minor": 0 }, @@ -844,10 +732,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:51.545576Z", - "iopub.status.busy": "2024-07-09T06:12:51.545155Z", - "iopub.status.idle": "2024-07-09T06:12:53.675656Z", - "shell.execute_reply": "2024-07-09T06:12:53.674998Z" + "iopub.execute_input": "2024-07-09T06:28:06.646239Z", + "iopub.status.busy": "2024-07-09T06:28:06.645832Z", + "iopub.status.idle": "2024-07-09T06:28:08.702608Z", + "shell.execute_reply": "2024-07-09T06:28:08.701924Z" } }, "outputs": [ @@ -891,10 +779,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.678465Z", - "iopub.status.busy": "2024-07-09T06:12:53.678008Z", - "iopub.status.idle": "2024-07-09T06:12:53.932263Z", - "shell.execute_reply": "2024-07-09T06:12:53.931720Z" + "iopub.execute_input": "2024-07-09T06:28:08.705102Z", + "iopub.status.busy": "2024-07-09T06:28:08.704635Z", + "iopub.status.idle": "2024-07-09T06:28:08.961907Z", + "shell.execute_reply": "2024-07-09T06:28:08.960875Z" } }, "outputs": [ @@ -930,10 +818,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:53.935174Z", - "iopub.status.busy": "2024-07-09T06:12:53.934820Z", - "iopub.status.idle": "2024-07-09T06:12:54.601757Z", - "shell.execute_reply": "2024-07-09T06:12:54.601178Z" + "iopub.execute_input": "2024-07-09T06:28:08.965548Z", + "iopub.status.busy": "2024-07-09T06:28:08.964610Z", + "iopub.status.idle": "2024-07-09T06:28:09.623328Z", + "shell.execute_reply": "2024-07-09T06:28:09.622779Z" } }, "outputs": [ @@ -983,10 +871,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.604780Z", - "iopub.status.busy": "2024-07-09T06:12:54.604444Z", - "iopub.status.idle": "2024-07-09T06:12:54.941815Z", - "shell.execute_reply": "2024-07-09T06:12:54.941333Z" + "iopub.execute_input": "2024-07-09T06:28:09.627057Z", + "iopub.status.busy": "2024-07-09T06:28:09.626207Z", + "iopub.status.idle": "2024-07-09T06:28:09.967511Z", + "shell.execute_reply": "2024-07-09T06:28:09.966954Z" } }, "outputs": [ @@ -1034,10 +922,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:54.943967Z", - "iopub.status.busy": "2024-07-09T06:12:54.943776Z", - "iopub.status.idle": "2024-07-09T06:12:55.187139Z", - "shell.execute_reply": "2024-07-09T06:12:55.186558Z" + "iopub.execute_input": "2024-07-09T06:28:09.969885Z", + "iopub.status.busy": "2024-07-09T06:28:09.969463Z", + "iopub.status.idle": "2024-07-09T06:28:10.214869Z", + "shell.execute_reply": "2024-07-09T06:28:10.214223Z" } }, "outputs": [ @@ -1093,10 +981,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.189615Z", - "iopub.status.busy": "2024-07-09T06:12:55.189398Z", - "iopub.status.idle": "2024-07-09T06:12:55.284535Z", - "shell.execute_reply": "2024-07-09T06:12:55.284038Z" + "iopub.execute_input": "2024-07-09T06:28:10.217596Z", + "iopub.status.busy": "2024-07-09T06:28:10.217139Z", + "iopub.status.idle": "2024-07-09T06:28:10.308655Z", + "shell.execute_reply": "2024-07-09T06:28:10.308107Z" } }, "outputs": [], @@ -1117,10 +1005,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:12:55.286976Z", - "iopub.status.busy": "2024-07-09T06:12:55.286581Z", - "iopub.status.idle": "2024-07-09T06:13:05.614875Z", - "shell.execute_reply": "2024-07-09T06:13:05.614249Z" + "iopub.execute_input": "2024-07-09T06:28:10.310977Z", + "iopub.status.busy": "2024-07-09T06:28:10.310791Z", + "iopub.status.idle": "2024-07-09T06:28:20.594421Z", + "shell.execute_reply": "2024-07-09T06:28:20.593788Z" } }, "outputs": [ @@ -1157,10 +1045,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:05.617192Z", - "iopub.status.busy": "2024-07-09T06:13:05.616989Z", - "iopub.status.idle": "2024-07-09T06:13:07.827467Z", - "shell.execute_reply": "2024-07-09T06:13:07.826891Z" + "iopub.execute_input": "2024-07-09T06:28:20.596810Z", + "iopub.status.busy": "2024-07-09T06:28:20.596554Z", + "iopub.status.idle": "2024-07-09T06:28:22.741544Z", + "shell.execute_reply": "2024-07-09T06:28:22.741042Z" } }, "outputs": [ @@ -1191,10 +1079,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:07.830162Z", - "iopub.status.busy": "2024-07-09T06:13:07.829583Z", - "iopub.status.idle": "2024-07-09T06:13:08.038042Z", - "shell.execute_reply": "2024-07-09T06:13:08.037537Z" + "iopub.execute_input": "2024-07-09T06:28:22.744305Z", + "iopub.status.busy": "2024-07-09T06:28:22.743745Z", + "iopub.status.idle": "2024-07-09T06:28:22.953993Z", + "shell.execute_reply": "2024-07-09T06:28:22.953376Z" } }, "outputs": [], @@ -1208,10 +1096,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.040467Z", - "iopub.status.busy": "2024-07-09T06:13:08.040116Z", - "iopub.status.idle": "2024-07-09T06:13:08.043191Z", - "shell.execute_reply": "2024-07-09T06:13:08.042744Z" + "iopub.execute_input": "2024-07-09T06:28:22.956589Z", + "iopub.status.busy": "2024-07-09T06:28:22.956213Z", + "iopub.status.idle": "2024-07-09T06:28:22.959468Z", + "shell.execute_reply": "2024-07-09T06:28:22.958900Z" } }, "outputs": [], @@ -1233,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:08.045228Z", - "iopub.status.busy": "2024-07-09T06:13:08.044834Z", - "iopub.status.idle": "2024-07-09T06:13:08.052977Z", - "shell.execute_reply": "2024-07-09T06:13:08.052453Z" + "iopub.execute_input": "2024-07-09T06:28:22.961611Z", + "iopub.status.busy": "2024-07-09T06:28:22.961200Z", + "iopub.status.idle": "2024-07-09T06:28:22.969422Z", + "shell.execute_reply": "2024-07-09T06:28:22.968855Z" }, "nbsphinx": "hidden" }, @@ -1281,7 +1169,54 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07e9815832504753931806b6d58f0b58": { + "0bf96112dc8a4e0ca41d5e7ae1ebcf56": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83246a4b1973465e91e701740cd527e6", + "placeholder": "​", + "style": "IPY_MODEL_aaff29c1d12b464a90fcdf95eeb1a265", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 287MB/s]" + } + }, + "17e3dce4b40a4cb8a2b240ec353e0eae": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce4ca1db437c42df9608894483bf3780", + "IPY_MODEL_f925fed948884b0e9a39e8a060169585", + "IPY_MODEL_0bf96112dc8a4e0ca41d5e7ae1ebcf56" + ], + "layout": "IPY_MODEL_64e12728195f4391b6280124850b845f", + "tabbable": null, + "tooltip": null + } + }, + "64e12728195f4391b6280124850b845f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1334,41 +1269,7 @@ "width": null } }, - "26725f9df2f94d3ea6293ec28ead7c10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "2c1e61197b9041c2979207dbd79421ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f3f248148ef4e539a3ca4f9afbd62ae": { + "83246a4b1973465e91e701740cd527e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1421,98 +1322,7 @@ "width": null } }, - "aedd690df73d48378ef4e0ccedca1f2f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e6116745dca947648a98ff8dddef3db4", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_26725f9df2f94d3ea6293ec28ead7c10", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "c6fbd30ad1b64135acf648295aae87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "c843c3709f5d465786f56b6c642b06be": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07e9815832504753931806b6d58f0b58", - "placeholder": "​", - "style": "IPY_MODEL_c6fbd30ad1b64135acf648295aae87b4", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 282MB/s]" - } - }, - "ca6046bdc6394abb8a985e631993257b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_eeba128ad2734250a58229daf256d2be", - "IPY_MODEL_aedd690df73d48378ef4e0ccedca1f2f", - "IPY_MODEL_c843c3709f5d465786f56b6c642b06be" - ], - "layout": "IPY_MODEL_f7b6602f97fb4af9a7103ad7383ccc0b", - "tabbable": null, - "tooltip": null - } - }, - "e6116745dca947648a98ff8dddef3db4": { + "847a0080121d45e79b430fce2ac8676d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1565,7 +1375,41 @@ "width": null } }, - "eeba128ad2734250a58229daf256d2be": { + "aaff29c1d12b464a90fcdf95eeb1a265": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "afec228371694b259b4beb453ed5662e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce4ca1db437c42df9608894483bf3780": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1580,15 +1424,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4f3f248148ef4e539a3ca4f9afbd62ae", + "layout": "IPY_MODEL_847a0080121d45e79b430fce2ac8676d", "placeholder": "​", - "style": "IPY_MODEL_2c1e61197b9041c2979207dbd79421ed", + "style": "IPY_MODEL_f68e78a7cc7d408cb71b2a049145349d", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "f7b6602f97fb4af9a7103ad7383ccc0b": { + "f68e78a7cc7d408cb71b2a049145349d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "f839052ce8de441fa54a98bf191b0352": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1640,6 +1502,32 @@ "visibility": null, "width": null } + }, + "f925fed948884b0e9a39e8a060169585": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f839052ce8de441fa54a98bf191b0352", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_afec228371694b259b4beb453ed5662e", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index fc3d493cb..9a21f3bf0 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:12.198906Z", - "iopub.status.busy": "2024-07-09T06:13:12.198717Z", - "iopub.status.idle": "2024-07-09T06:13:13.395705Z", - "shell.execute_reply": "2024-07-09T06:13:13.395147Z" + "iopub.execute_input": "2024-07-09T06:28:27.147640Z", + "iopub.status.busy": "2024-07-09T06:28:27.147460Z", + "iopub.status.idle": "2024-07-09T06:28:28.302447Z", + "shell.execute_reply": "2024-07-09T06:28:28.301888Z" }, "nbsphinx": "hidden" }, @@ -116,7 +116,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -142,10 +142,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.398528Z", - "iopub.status.busy": "2024-07-09T06:13:13.397970Z", - "iopub.status.idle": "2024-07-09T06:13:13.416454Z", - "shell.execute_reply": "2024-07-09T06:13:13.415844Z" + "iopub.execute_input": "2024-07-09T06:28:28.304997Z", + "iopub.status.busy": "2024-07-09T06:28:28.304730Z", + "iopub.status.idle": "2024-07-09T06:28:28.321957Z", + "shell.execute_reply": "2024-07-09T06:28:28.321531Z" } }, "outputs": [], @@ -164,10 +164,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.419243Z", - "iopub.status.busy": "2024-07-09T06:13:13.418769Z", - "iopub.status.idle": "2024-07-09T06:13:13.422066Z", - "shell.execute_reply": "2024-07-09T06:13:13.421519Z" + "iopub.execute_input": "2024-07-09T06:28:28.324137Z", + "iopub.status.busy": "2024-07-09T06:28:28.323717Z", + "iopub.status.idle": "2024-07-09T06:28:28.326748Z", + "shell.execute_reply": "2024-07-09T06:28:28.326302Z" }, "nbsphinx": "hidden" }, @@ -198,10 +198,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.424342Z", - "iopub.status.busy": "2024-07-09T06:13:13.424031Z", - "iopub.status.idle": "2024-07-09T06:13:13.502698Z", - "shell.execute_reply": "2024-07-09T06:13:13.502157Z" + "iopub.execute_input": "2024-07-09T06:28:28.328783Z", + "iopub.status.busy": "2024-07-09T06:28:28.328478Z", + "iopub.status.idle": "2024-07-09T06:28:28.398404Z", + "shell.execute_reply": "2024-07-09T06:28:28.397873Z" } }, "outputs": [ @@ -374,10 +374,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.505024Z", - "iopub.status.busy": "2024-07-09T06:13:13.504684Z", - "iopub.status.idle": "2024-07-09T06:13:13.692827Z", - "shell.execute_reply": "2024-07-09T06:13:13.692311Z" + "iopub.execute_input": "2024-07-09T06:28:28.400685Z", + "iopub.status.busy": "2024-07-09T06:28:28.400280Z", + "iopub.status.idle": "2024-07-09T06:28:28.580610Z", + "shell.execute_reply": "2024-07-09T06:28:28.580004Z" }, "nbsphinx": "hidden" }, @@ -417,10 +417,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.695582Z", - "iopub.status.busy": "2024-07-09T06:13:13.695101Z", - "iopub.status.idle": "2024-07-09T06:13:13.913575Z", - "shell.execute_reply": "2024-07-09T06:13:13.912963Z" + "iopub.execute_input": "2024-07-09T06:28:28.583196Z", + "iopub.status.busy": "2024-07-09T06:28:28.582842Z", + "iopub.status.idle": "2024-07-09T06:28:28.825147Z", + "shell.execute_reply": "2024-07-09T06:28:28.824546Z" } }, "outputs": [ @@ -456,10 +456,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.916022Z", - "iopub.status.busy": "2024-07-09T06:13:13.915716Z", - "iopub.status.idle": "2024-07-09T06:13:13.920472Z", - "shell.execute_reply": "2024-07-09T06:13:13.919999Z" + "iopub.execute_input": "2024-07-09T06:28:28.827512Z", + "iopub.status.busy": "2024-07-09T06:28:28.827171Z", + "iopub.status.idle": "2024-07-09T06:28:28.831561Z", + "shell.execute_reply": "2024-07-09T06:28:28.831115Z" } }, "outputs": [], @@ -477,10 +477,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.922631Z", - "iopub.status.busy": "2024-07-09T06:13:13.922302Z", - "iopub.status.idle": "2024-07-09T06:13:13.928584Z", - "shell.execute_reply": "2024-07-09T06:13:13.928040Z" + "iopub.execute_input": "2024-07-09T06:28:28.833597Z", + "iopub.status.busy": "2024-07-09T06:28:28.833194Z", + "iopub.status.idle": "2024-07-09T06:28:28.839457Z", + "shell.execute_reply": "2024-07-09T06:28:28.838888Z" } }, "outputs": [], @@ -527,10 +527,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.930747Z", - "iopub.status.busy": "2024-07-09T06:13:13.930457Z", - "iopub.status.idle": "2024-07-09T06:13:13.933055Z", - "shell.execute_reply": "2024-07-09T06:13:13.932620Z" + "iopub.execute_input": "2024-07-09T06:28:28.841676Z", + "iopub.status.busy": "2024-07-09T06:28:28.841286Z", + "iopub.status.idle": "2024-07-09T06:28:28.843833Z", + "shell.execute_reply": "2024-07-09T06:28:28.843413Z" } }, "outputs": [], @@ -545,10 +545,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:13.934875Z", - "iopub.status.busy": "2024-07-09T06:13:13.934702Z", - "iopub.status.idle": "2024-07-09T06:13:22.688532Z", - "shell.execute_reply": "2024-07-09T06:13:22.687882Z" + "iopub.execute_input": "2024-07-09T06:28:28.845847Z", + "iopub.status.busy": "2024-07-09T06:28:28.845459Z", + "iopub.status.idle": "2024-07-09T06:28:37.416310Z", + "shell.execute_reply": "2024-07-09T06:28:37.415785Z" } }, "outputs": [], @@ -572,10 +572,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.691605Z", - "iopub.status.busy": "2024-07-09T06:13:22.691183Z", - "iopub.status.idle": "2024-07-09T06:13:22.699311Z", - "shell.execute_reply": "2024-07-09T06:13:22.698788Z" + "iopub.execute_input": "2024-07-09T06:28:37.419117Z", + "iopub.status.busy": "2024-07-09T06:28:37.418506Z", + "iopub.status.idle": "2024-07-09T06:28:37.425880Z", + "shell.execute_reply": "2024-07-09T06:28:37.425420Z" } }, "outputs": [ @@ -678,10 +678,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.701375Z", - "iopub.status.busy": "2024-07-09T06:13:22.701132Z", - "iopub.status.idle": "2024-07-09T06:13:22.705382Z", - "shell.execute_reply": "2024-07-09T06:13:22.704977Z" + "iopub.execute_input": "2024-07-09T06:28:37.427928Z", + "iopub.status.busy": "2024-07-09T06:28:37.427621Z", + "iopub.status.idle": "2024-07-09T06:28:37.431159Z", + "shell.execute_reply": "2024-07-09T06:28:37.430715Z" } }, "outputs": [], @@ -696,10 +696,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.707406Z", - "iopub.status.busy": "2024-07-09T06:13:22.707081Z", - "iopub.status.idle": "2024-07-09T06:13:22.710090Z", - "shell.execute_reply": "2024-07-09T06:13:22.709573Z" + "iopub.execute_input": "2024-07-09T06:28:37.433108Z", + "iopub.status.busy": "2024-07-09T06:28:37.432812Z", + "iopub.status.idle": "2024-07-09T06:28:37.436103Z", + "shell.execute_reply": "2024-07-09T06:28:37.435676Z" } }, "outputs": [ @@ -734,10 +734,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.712167Z", - "iopub.status.busy": "2024-07-09T06:13:22.711850Z", - "iopub.status.idle": "2024-07-09T06:13:22.714709Z", - "shell.execute_reply": "2024-07-09T06:13:22.714294Z" + "iopub.execute_input": "2024-07-09T06:28:37.437855Z", + "iopub.status.busy": "2024-07-09T06:28:37.437689Z", + "iopub.status.idle": "2024-07-09T06:28:37.440738Z", + "shell.execute_reply": "2024-07-09T06:28:37.440200Z" } }, "outputs": [], @@ -756,10 +756,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.716596Z", - "iopub.status.busy": "2024-07-09T06:13:22.716303Z", - "iopub.status.idle": "2024-07-09T06:13:22.724381Z", - "shell.execute_reply": "2024-07-09T06:13:22.723941Z" + "iopub.execute_input": "2024-07-09T06:28:37.442722Z", + "iopub.status.busy": "2024-07-09T06:28:37.442340Z", + "iopub.status.idle": "2024-07-09T06:28:37.450065Z", + "shell.execute_reply": "2024-07-09T06:28:37.449543Z" } }, "outputs": [ @@ -883,10 +883,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.726307Z", - "iopub.status.busy": "2024-07-09T06:13:22.725983Z", - "iopub.status.idle": "2024-07-09T06:13:22.728617Z", - "shell.execute_reply": "2024-07-09T06:13:22.728073Z" + "iopub.execute_input": "2024-07-09T06:28:37.452147Z", + "iopub.status.busy": "2024-07-09T06:28:37.451829Z", + "iopub.status.idle": "2024-07-09T06:28:37.454273Z", + "shell.execute_reply": "2024-07-09T06:28:37.453859Z" }, "nbsphinx": "hidden" }, @@ -921,10 +921,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.730747Z", - "iopub.status.busy": "2024-07-09T06:13:22.730427Z", - "iopub.status.idle": "2024-07-09T06:13:22.850115Z", - "shell.execute_reply": "2024-07-09T06:13:22.849630Z" + "iopub.execute_input": "2024-07-09T06:28:37.456308Z", + "iopub.status.busy": "2024-07-09T06:28:37.455998Z", + "iopub.status.idle": "2024-07-09T06:28:37.574042Z", + "shell.execute_reply": "2024-07-09T06:28:37.573412Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.852276Z", - "iopub.status.busy": "2024-07-09T06:13:22.852104Z", - "iopub.status.idle": "2024-07-09T06:13:22.957693Z", - "shell.execute_reply": "2024-07-09T06:13:22.957175Z" + "iopub.execute_input": "2024-07-09T06:28:37.576401Z", + "iopub.status.busy": "2024-07-09T06:28:37.576035Z", + "iopub.status.idle": "2024-07-09T06:28:37.676628Z", + "shell.execute_reply": "2024-07-09T06:28:37.676092Z" } }, "outputs": [ @@ -1022,10 +1022,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:22.959831Z", - "iopub.status.busy": "2024-07-09T06:13:22.959658Z", - "iopub.status.idle": "2024-07-09T06:13:23.439329Z", - "shell.execute_reply": "2024-07-09T06:13:23.438815Z" + "iopub.execute_input": "2024-07-09T06:28:37.678829Z", + "iopub.status.busy": "2024-07-09T06:28:37.678655Z", + "iopub.status.idle": "2024-07-09T06:28:38.159157Z", + "shell.execute_reply": "2024-07-09T06:28:38.158544Z" } }, "outputs": [], @@ -1041,10 +1041,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.441676Z", - "iopub.status.busy": "2024-07-09T06:13:23.441277Z", - "iopub.status.idle": "2024-07-09T06:13:23.530814Z", - "shell.execute_reply": "2024-07-09T06:13:23.530253Z" + "iopub.execute_input": "2024-07-09T06:28:38.161651Z", + "iopub.status.busy": "2024-07-09T06:28:38.161475Z", + "iopub.status.idle": "2024-07-09T06:28:38.250789Z", + "shell.execute_reply": "2024-07-09T06:28:38.250230Z" } }, "outputs": [ @@ -1079,10 +1079,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.533156Z", - "iopub.status.busy": "2024-07-09T06:13:23.532707Z", - "iopub.status.idle": "2024-07-09T06:13:23.541181Z", - "shell.execute_reply": "2024-07-09T06:13:23.540639Z" + "iopub.execute_input": "2024-07-09T06:28:38.252951Z", + "iopub.status.busy": "2024-07-09T06:28:38.252776Z", + "iopub.status.idle": "2024-07-09T06:28:38.261091Z", + "shell.execute_reply": "2024-07-09T06:28:38.260672Z" } }, "outputs": [ @@ -1189,10 +1189,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.543142Z", - "iopub.status.busy": "2024-07-09T06:13:23.542832Z", - "iopub.status.idle": "2024-07-09T06:13:23.545507Z", - "shell.execute_reply": "2024-07-09T06:13:23.544989Z" + "iopub.execute_input": "2024-07-09T06:28:38.262975Z", + "iopub.status.busy": "2024-07-09T06:28:38.262781Z", + "iopub.status.idle": "2024-07-09T06:28:38.265296Z", + "shell.execute_reply": "2024-07-09T06:28:38.264887Z" }, "nbsphinx": "hidden" }, @@ -1217,10 +1217,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:23.547414Z", - "iopub.status.busy": "2024-07-09T06:13:23.547118Z", - "iopub.status.idle": "2024-07-09T06:13:28.999446Z", - "shell.execute_reply": "2024-07-09T06:13:28.998830Z" + "iopub.execute_input": "2024-07-09T06:28:38.267254Z", + "iopub.status.busy": "2024-07-09T06:28:38.266967Z", + "iopub.status.idle": "2024-07-09T06:28:43.570047Z", + "shell.execute_reply": "2024-07-09T06:28:43.569491Z" } }, "outputs": [ @@ -1264,10 +1264,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.002183Z", - "iopub.status.busy": "2024-07-09T06:13:29.001812Z", - "iopub.status.idle": "2024-07-09T06:13:29.010474Z", - "shell.execute_reply": "2024-07-09T06:13:29.010043Z" + "iopub.execute_input": "2024-07-09T06:28:43.572470Z", + "iopub.status.busy": "2024-07-09T06:28:43.572094Z", + "iopub.status.idle": "2024-07-09T06:28:43.580386Z", + "shell.execute_reply": "2024-07-09T06:28:43.579870Z" } }, "outputs": [ @@ -1376,10 +1376,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:29.012589Z", - "iopub.status.busy": "2024-07-09T06:13:29.012252Z", - "iopub.status.idle": "2024-07-09T06:13:29.076214Z", - "shell.execute_reply": "2024-07-09T06:13:29.075749Z" + "iopub.execute_input": "2024-07-09T06:28:43.582347Z", + "iopub.status.busy": "2024-07-09T06:28:43.582046Z", + "iopub.status.idle": "2024-07-09T06:28:43.650473Z", + "shell.execute_reply": "2024-07-09T06:28:43.649884Z" }, "nbsphinx": "hidden" }, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index c2bc2e9ad..bc0ea3273 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -800,13 +800,13 @@

3. Use cleanlab to find label issues

-
+
-
+

Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

@@ -1196,7 +1196,7 @@

Get label quality scores -{"state": {"31c0461c7cc145fba8fc1a686d641734": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "542ef1339f3c4f27a392d3e6f794359f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cfd0057aa0524fdabff5f5ef309b8944": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31c0461c7cc145fba8fc1a686d641734", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_542ef1339f3c4f27a392d3e6f794359f", "tabbable": null, "tooltip": null, "value": 30.0}}, "3feb2ecf671242cfa780179115940fac": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "54ca08a32df543b592283e0378c9fcfe": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "493c9eefef1b48dab54e40072abd5f34": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3feb2ecf671242cfa780179115940fac", "placeholder": "\u200b", "style": "IPY_MODEL_54ca08a32df543b592283e0378c9fcfe", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "4ccbc45f2aeb4c9c85627198b276be79": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c5ef52d1a9d646df84e1139d4d1089db": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "de3dc131ede549fc9a4eab8ed54190fa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4ccbc45f2aeb4c9c85627198b276be79", "placeholder": "\u200b", "style": "IPY_MODEL_c5ef52d1a9d646df84e1139d4d1089db", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007819.82it/s]"}}, "3e770c86a7ed47528817561e0996c8f8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1fa6ffbf69764ada9bcdda240d9f5c3f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_493c9eefef1b48dab54e40072abd5f34", "IPY_MODEL_cfd0057aa0524fdabff5f5ef309b8944", "IPY_MODEL_de3dc131ede549fc9a4eab8ed54190fa"], "layout": "IPY_MODEL_3e770c86a7ed47528817561e0996c8f8", "tabbable": null, "tooltip": null}}, "8aad8f225cf6422eb201fc5ce1fc9f8e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a211fbc91ad7428f88de83462ce179b1": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "f0e42a3ba88a4b12846e1d20b351a59e": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8aad8f225cf6422eb201fc5ce1fc9f8e", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a211fbc91ad7428f88de83462ce179b1", "tabbable": null, "tooltip": null, "value": 30.0}}, "7fdf393fca40427f8a2bd92d317d3dae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "85a0fa984b144cfa898831e10209e74d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c9d0984d39a4f0e881a09e0550d87b4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7fdf393fca40427f8a2bd92d317d3dae", "placeholder": "\u200b", "style": "IPY_MODEL_85a0fa984b144cfa898831e10209e74d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "b931d7f32e6b41668d503c6a2ff41333": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2616637ba3464f08933830c12d469b83": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d67f58d8b5b14e59b0b843789281945d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b931d7f32e6b41668d503c6a2ff41333", "placeholder": "\u200b", "style": "IPY_MODEL_2616637ba3464f08933830c12d469b83", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.39it/s]"}}, "a28f14e157a54c3bb2ba09f5232ee9c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f569c0971e0640b980797b7457fa4061": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_4c9d0984d39a4f0e881a09e0550d87b4", "IPY_MODEL_f0e42a3ba88a4b12846e1d20b351a59e", "IPY_MODEL_d67f58d8b5b14e59b0b843789281945d"], "layout": "IPY_MODEL_a28f14e157a54c3bb2ba09f5232ee9c6", "tabbable": null, "tooltip": null}}, "d509507d60244ddcba41140131d9be1f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd786bb433b84b77bb5a3892748ee7a8": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "7da8b6c3ea2a4772a5fe093e05addc72": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d509507d60244ddcba41140131d9be1f", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fd786bb433b84b77bb5a3892748ee7a8", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "aacd42748d294de29a7979f5b0d21f14": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8e68f9ece6dd446bbcea41ee789d666e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "573a0e4f1aa3447bbec12012eaef0dc3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_aacd42748d294de29a7979f5b0d21f14", "placeholder": "\u200b", "style": "IPY_MODEL_8e68f9ece6dd446bbcea41ee789d666e", "tabbable": null, "tooltip": null, "value": "100%"}}, "e0fbe3dac5a0495f8995783e2dd80711": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27c16fceefe04f7ea1c6208a3b02d91a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b49ea13e3a12486a97be815b76759ed6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e0fbe3dac5a0495f8995783e2dd80711", "placeholder": "\u200b", "style": "IPY_MODEL_27c16fceefe04f7ea1c6208a3b02d91a", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:32<00:00,\u2007155973.49it/s]"}}, "58a5fd3630694826904227c50dce4a58": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bf5249d5bbbf4d75b55c111b8b11a61a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_573a0e4f1aa3447bbec12012eaef0dc3", "IPY_MODEL_7da8b6c3ea2a4772a5fe093e05addc72", "IPY_MODEL_b49ea13e3a12486a97be815b76759ed6"], "layout": "IPY_MODEL_58a5fd3630694826904227c50dce4a58", "tabbable": null, "tooltip": null}}, "25c74ae19d60408e99632f175a792eaa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6483135474b1449087c991fb32524a5d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a8b97972238e423b884d9df90c31735c": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_25c74ae19d60408e99632f175a792eaa", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6483135474b1449087c991fb32524a5d", "tabbable": null, "tooltip": null, "value": 30.0}}, "beaa3af60b7746888d20c45dbdce9842": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "51e9e889a46e4f308aff8141e478e0b2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d07a9489d84e4b4880dfa0c9d8716d8c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_beaa3af60b7746888d20c45dbdce9842", "placeholder": "\u200b", "style": "IPY_MODEL_51e9e889a46e4f308aff8141e478e0b2", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "4e9c5d98329c476daf5bb5ab626f75ea": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3dd8300efe074538b752b933fe4dccd5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "e6bc426565cb49ba80b9007e05438975": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4e9c5d98329c476daf5bb5ab626f75ea", "placeholder": "\u200b", "style": "IPY_MODEL_3dd8300efe074538b752b933fe4dccd5", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.71it/s]"}}, "606739628a3c43e188dfb8e4ab4161c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c948217428084bd496b3f2a49594566f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d07a9489d84e4b4880dfa0c9d8716d8c", "IPY_MODEL_a8b97972238e423b884d9df90c31735c", "IPY_MODEL_e6bc426565cb49ba80b9007e05438975"], "layout": "IPY_MODEL_606739628a3c43e188dfb8e4ab4161c1", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"97c988acb93f44548e72b7e6785373ba": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "9af440153d4e4cdf94b2cf7fabd36183": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6483735a58b043b6b18bce9fcea7af01": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", "tabbable": null, "tooltip": null, "value": 30.0}}, "c498db02e0b04391a5861cb923082075": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f51ef64ff6b45ebb8b941ba2ee62b5d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "cf3b18d1306748afa8e938ecd97912de": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", "placeholder": "\u200b", "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "0dd5218cedde49baa055e8096ed30926": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6584bb27a7154628a8d459aca88dc035": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "403d955a5e56429185a7d79c76b3f942": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", "placeholder": "\u200b", "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007810.84it/s]"}}, "95f6f8f5058e4a999e52cf9ee97471a8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cc3388bab2643c8b90c9272aea123fd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", "IPY_MODEL_403d955a5e56429185a7d79c76b3f942"], "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", "tabbable": null, "tooltip": null}}, "2abe5ecefb664d2bafb6bfe15ea93d0d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d504401538154719844d7826ee272589": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "176760f869904a7fa39445bdd88719b2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d504401538154719844d7826ee272589", "tabbable": null, "tooltip": null, "value": 30.0}}, "ce1dd22f0d6b4012a51c48ad29dcaa8f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e2897f5daefd4d14a83b5100fa9e108f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b6e063e50c2b4445910ce5e867fbd918": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", "placeholder": "\u200b", "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "0b2d6256d1c542d285214e15fc92fe65": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "57f13be2c99544fb9cc14d43a41b2771": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02d9a746ed0046739aa78a6ce0085ff9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", "placeholder": "\u200b", "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:20<00:00,\u2007\u20071.44it/s]"}}, "0c20fddef0b54b239fafa2cc41c63236": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c10054699f0e464a82009f0a5e0c578c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", "IPY_MODEL_176760f869904a7fa39445bdd88719b2", "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9"], "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", "tabbable": null, "tooltip": null}}, "855c64f84945411a9db3c53deb7492c1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "db6c02d349084e498c97e2e6ed714f28": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ae57c0974e774c6890338ba8b17d0191": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", "max": 4997683.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", "tabbable": null, "tooltip": null, "value": 4997683.0}}, "d1f1c3debd3a4626adf70f52c88e15f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "14896ca89fcc44339c2b6527f1f9f9dc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d8a1c7ffaa334c438eb48081a604d215": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", "placeholder": "\u200b", "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", "tabbable": null, "tooltip": null, "value": "100%"}}, "5330888ec41a4abab567527c6e1ffd41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ce3e640376574f9e8d585bcb85603e1d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7f68c4f29617499499ee2c05c5a6a108": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", "placeholder": "\u200b", "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", "tabbable": null, "tooltip": null, "value": "\u20074997683/4997683\u2007[00:31<00:00,\u2007157127.94it/s]"}}, "c9163ef783e742f3acc05346e5afcb64": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7019068b213142edb33e86d2e73ee210": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108"], "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", "tabbable": null, "tooltip": null}}, "83e9f786fc2e45a789ee9639166df7d8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5b9e311328344481b090157819e78c90": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a35e0222d4f14c66bf3c3a5aa2572142": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", "tabbable": null, "tooltip": null, "value": 30.0}}, "22fe02c2e99045d8821cfc15a94e4936": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32a85d515d9e4eaba06dcc77490cad82": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "fade87555302435dbdddd0ecd183f382": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", "placeholder": "\u200b", "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "44a6a6e2aca946a1a5360a07e3b508d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "228b0d40b0924b7a97e4d0957e103746": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b951463c2014d63996109b04919b6f0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", "placeholder": "\u200b", "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.76it/s]"}}, "279d7517839d43c89b15e2c5c84c7be9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fd89a714f4bd4881ac3bcdde2e818698": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_fade87555302435dbdddd0ecd183f382", "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", "IPY_MODEL_7b951463c2014d63996109b04919b6f0"], "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 35fcbdb46..ae5ebc560 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:32.263903Z", - "iopub.status.busy": "2024-07-09T06:13:32.263444Z", - "iopub.status.idle": "2024-07-09T06:13:33.822952Z", - "shell.execute_reply": "2024-07-09T06:13:33.822301Z" + "iopub.execute_input": "2024-07-09T06:28:46.574289Z", + "iopub.status.busy": "2024-07-09T06:28:46.574108Z", + "iopub.status.idle": "2024-07-09T06:28:48.491596Z", + "shell.execute_reply": "2024-07-09T06:28:48.490918Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:13:33.825573Z", - "iopub.status.busy": "2024-07-09T06:13:33.825207Z", - "iopub.status.idle": "2024-07-09T06:14:27.650668Z", - "shell.execute_reply": "2024-07-09T06:14:27.649954Z" + "iopub.execute_input": "2024-07-09T06:28:48.494276Z", + "iopub.status.busy": "2024-07-09T06:28:48.493843Z", + "iopub.status.idle": "2024-07-09T06:29:39.569009Z", + "shell.execute_reply": "2024-07-09T06:29:39.568435Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:27.653222Z", - "iopub.status.busy": "2024-07-09T06:14:27.653011Z", - "iopub.status.idle": "2024-07-09T06:14:28.771581Z", - "shell.execute_reply": "2024-07-09T06:14:28.771057Z" + "iopub.execute_input": "2024-07-09T06:29:39.571515Z", + "iopub.status.busy": "2024-07-09T06:29:39.571138Z", + "iopub.status.idle": "2024-07-09T06:29:40.663339Z", + "shell.execute_reply": "2024-07-09T06:29:40.662734Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.774053Z", - "iopub.status.busy": "2024-07-09T06:14:28.773695Z", - "iopub.status.idle": "2024-07-09T06:14:28.776783Z", - "shell.execute_reply": "2024-07-09T06:14:28.776354Z" + "iopub.execute_input": "2024-07-09T06:29:40.665937Z", + "iopub.status.busy": "2024-07-09T06:29:40.665611Z", + "iopub.status.idle": "2024-07-09T06:29:40.669025Z", + "shell.execute_reply": "2024-07-09T06:29:40.668588Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.778806Z", - "iopub.status.busy": "2024-07-09T06:14:28.778477Z", - "iopub.status.idle": "2024-07-09T06:14:28.782186Z", - "shell.execute_reply": "2024-07-09T06:14:28.781759Z" + "iopub.execute_input": "2024-07-09T06:29:40.671153Z", + "iopub.status.busy": "2024-07-09T06:29:40.670839Z", + "iopub.status.idle": "2024-07-09T06:29:40.674594Z", + "shell.execute_reply": "2024-07-09T06:29:40.674175Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.784027Z", - "iopub.status.busy": "2024-07-09T06:14:28.783855Z", - "iopub.status.idle": "2024-07-09T06:14:28.787452Z", - "shell.execute_reply": "2024-07-09T06:14:28.786991Z" + "iopub.execute_input": "2024-07-09T06:29:40.676662Z", + "iopub.status.busy": "2024-07-09T06:29:40.676404Z", + "iopub.status.idle": "2024-07-09T06:29:40.679978Z", + "shell.execute_reply": "2024-07-09T06:29:40.679552Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.789360Z", - "iopub.status.busy": "2024-07-09T06:14:28.789019Z", - "iopub.status.idle": "2024-07-09T06:14:28.791733Z", - "shell.execute_reply": "2024-07-09T06:14:28.791313Z" + "iopub.execute_input": "2024-07-09T06:29:40.681969Z", + "iopub.status.busy": "2024-07-09T06:29:40.681683Z", + "iopub.status.idle": "2024-07-09T06:29:40.684443Z", + "shell.execute_reply": "2024-07-09T06:29:40.684006Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:14:28.793686Z", - "iopub.status.busy": "2024-07-09T06:14:28.793292Z", - "iopub.status.idle": "2024-07-09T06:15:02.604368Z", - "shell.execute_reply": "2024-07-09T06:15:02.603753Z" + "iopub.execute_input": "2024-07-09T06:29:40.686418Z", + "iopub.status.busy": "2024-07-09T06:29:40.686015Z", + "iopub.status.idle": "2024-07-09T06:30:13.548442Z", + "shell.execute_reply": "2024-07-09T06:30:13.547829Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "1fa6ffbf69764ada9bcdda240d9f5c3f", + "model_id": "6cc3388bab2643c8b90c9272aea123fd", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f569c0971e0640b980797b7457fa4061", + "model_id": "c10054699f0e464a82009f0a5e0c578c", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:02.606910Z", - "iopub.status.busy": "2024-07-09T06:15:02.606698Z", - "iopub.status.idle": "2024-07-09T06:15:03.279409Z", - "shell.execute_reply": "2024-07-09T06:15:03.278841Z" + "iopub.execute_input": "2024-07-09T06:30:13.551052Z", + "iopub.status.busy": "2024-07-09T06:30:13.550744Z", + "iopub.status.idle": "2024-07-09T06:30:14.218934Z", + "shell.execute_reply": "2024-07-09T06:30:14.218385Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:03.282056Z", - "iopub.status.busy": "2024-07-09T06:15:03.281412Z", - "iopub.status.idle": "2024-07-09T06:15:06.180396Z", - "shell.execute_reply": "2024-07-09T06:15:06.179922Z" + "iopub.execute_input": "2024-07-09T06:30:14.221301Z", + "iopub.status.busy": "2024-07-09T06:30:14.220857Z", + "iopub.status.idle": "2024-07-09T06:30:17.059729Z", + "shell.execute_reply": "2024-07-09T06:30:17.059140Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:06.182583Z", - "iopub.status.busy": "2024-07-09T06:15:06.182401Z", - "iopub.status.idle": "2024-07-09T06:15:38.554360Z", - "shell.execute_reply": "2024-07-09T06:15:38.553782Z" + "iopub.execute_input": "2024-07-09T06:30:17.061913Z", + "iopub.status.busy": "2024-07-09T06:30:17.061694Z", + "iopub.status.idle": "2024-07-09T06:30:49.094226Z", + "shell.execute_reply": "2024-07-09T06:30:49.093651Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf5249d5bbbf4d75b55c111b8b11a61a", + "model_id": "7019068b213142edb33e86d2e73ee210", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:38.556564Z", - "iopub.status.busy": "2024-07-09T06:15:38.556234Z", - "iopub.status.idle": "2024-07-09T06:15:53.166671Z", - "shell.execute_reply": "2024-07-09T06:15:53.166045Z" + "iopub.execute_input": "2024-07-09T06:30:49.096361Z", + "iopub.status.busy": "2024-07-09T06:30:49.096022Z", + "iopub.status.idle": "2024-07-09T06:31:03.308031Z", + "shell.execute_reply": "2024-07-09T06:31:03.307471Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:53.169302Z", - "iopub.status.busy": "2024-07-09T06:15:53.168958Z", - "iopub.status.idle": "2024-07-09T06:15:56.853260Z", - "shell.execute_reply": "2024-07-09T06:15:56.852720Z" + "iopub.execute_input": "2024-07-09T06:31:03.310669Z", + "iopub.status.busy": "2024-07-09T06:31:03.310203Z", + "iopub.status.idle": "2024-07-09T06:31:07.123611Z", + "shell.execute_reply": "2024-07-09T06:31:07.123110Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:56.855531Z", - "iopub.status.busy": "2024-07-09T06:15:56.855184Z", - "iopub.status.idle": "2024-07-09T06:15:58.250274Z", - "shell.execute_reply": "2024-07-09T06:15:58.249712Z" + "iopub.execute_input": "2024-07-09T06:31:07.125567Z", + "iopub.status.busy": "2024-07-09T06:31:07.125390Z", + "iopub.status.idle": "2024-07-09T06:31:08.517470Z", + "shell.execute_reply": "2024-07-09T06:31:08.516908Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c948217428084bd496b3f2a49594566f", + "model_id": "fd89a714f4bd4881ac3bcdde2e818698", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.252845Z", - "iopub.status.busy": "2024-07-09T06:15:58.252506Z", - "iopub.status.idle": "2024-07-09T06:15:58.281395Z", - "shell.execute_reply": "2024-07-09T06:15:58.280832Z" + "iopub.execute_input": "2024-07-09T06:31:08.519948Z", + "iopub.status.busy": "2024-07-09T06:31:08.519605Z", + "iopub.status.idle": "2024-07-09T06:31:08.546961Z", + "shell.execute_reply": "2024-07-09T06:31:08.546404Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:15:58.284015Z", - "iopub.status.busy": "2024-07-09T06:15:58.283595Z", - "iopub.status.idle": "2024-07-09T06:16:04.233068Z", - "shell.execute_reply": "2024-07-09T06:16:04.232567Z" + "iopub.execute_input": "2024-07-09T06:31:08.549370Z", + "iopub.status.busy": "2024-07-09T06:31:08.549025Z", + "iopub.status.idle": "2024-07-09T06:31:14.598098Z", + "shell.execute_reply": "2024-07-09T06:31:14.597530Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:04.235360Z", - "iopub.status.busy": "2024-07-09T06:16:04.234853Z", - "iopub.status.idle": "2024-07-09T06:16:04.290105Z", - "shell.execute_reply": "2024-07-09T06:16:04.289560Z" + "iopub.execute_input": "2024-07-09T06:31:14.600337Z", + "iopub.status.busy": "2024-07-09T06:31:14.600147Z", + "iopub.status.idle": "2024-07-09T06:31:14.656339Z", + "shell.execute_reply": "2024-07-09T06:31:14.655805Z" }, "nbsphinx": "hidden" }, @@ -1038,31 +1038,30 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "1fa6ffbf69764ada9bcdda240d9f5c3f": { + "02d9a746ed0046739aa78a6ce0085ff9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_493c9eefef1b48dab54e40072abd5f34", - "IPY_MODEL_cfd0057aa0524fdabff5f5ef309b8944", - "IPY_MODEL_de3dc131ede549fc9a4eab8ed54190fa" - ], - "layout": "IPY_MODEL_3e770c86a7ed47528817561e0996c8f8", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0b2d6256d1c542d285214e15fc92fe65", + "placeholder": "​", + "style": "IPY_MODEL_57f13be2c99544fb9cc14d43a41b2771", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 30/30 [00:20<00:00,  1.44it/s]" } }, - "25c74ae19d60408e99632f175a792eaa": { + "0b2d6256d1c542d285214e15fc92fe65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1115,43 +1114,7 @@ "width": null } }, - "2616637ba3464f08933830c12d469b83": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "27c16fceefe04f7ea1c6208a3b02d91a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "31c0461c7cc145fba8fc1a686d641734": { + "0c20fddef0b54b239fafa2cc41c63236": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1204,25 +1167,7 @@ "width": null } }, - "3dd8300efe074538b752b933fe4dccd5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3e770c86a7ed47528817561e0996c8f8": { + "0dd5218cedde49baa055e8096ed30926": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1275,7 +1220,69 @@ "width": null } }, - "3feb2ecf671242cfa780179115940fac": { + "14896ca89fcc44339c2b6527f1f9f9dc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "176760f869904a7fa39445bdd88719b2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2abe5ecefb664d2bafb6bfe15ea93d0d", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d504401538154719844d7826ee272589", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "228b0d40b0924b7a97e4d0957e103746": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "22fe02c2e99045d8821cfc15a94e4936": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1328,53 +1335,7 @@ "width": null } }, - "493c9eefef1b48dab54e40072abd5f34": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3feb2ecf671242cfa780179115940fac", - "placeholder": "​", - "style": "IPY_MODEL_54ca08a32df543b592283e0378c9fcfe", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "4c9d0984d39a4f0e881a09e0550d87b4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7fdf393fca40427f8a2bd92d317d3dae", - "placeholder": "​", - "style": "IPY_MODEL_85a0fa984b144cfa898831e10209e74d", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: 100%" - } - }, - "4ccbc45f2aeb4c9c85627198b276be79": { + "279d7517839d43c89b15e2c5c84c7be9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1427,7 +1388,7 @@ "width": null } }, - "4e9c5d98329c476daf5bb5ab626f75ea": { + "2abe5ecefb664d2bafb6bfe15ea93d0d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1480,7 +1441,7 @@ "width": null } }, - "51e9e889a46e4f308aff8141e478e0b2": { + "32a85d515d9e4eaba06dcc77490cad82": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1498,23 +1459,7 @@ "text_color": null } }, - "542ef1339f3c4f27a392d3e6f794359f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "54ca08a32df543b592283e0378c9fcfe": { + "3f51ef64ff6b45ebb8b941ba2ee62b5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1532,7 +1477,7 @@ "text_color": null } }, - "573a0e4f1aa3447bbec12012eaef0dc3": { + "403d955a5e56429185a7d79c76b3f942": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1547,15 +1492,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_aacd42748d294de29a7979f5b0d21f14", + "layout": "IPY_MODEL_0dd5218cedde49baa055e8096ed30926", "placeholder": "​", - "style": "IPY_MODEL_8e68f9ece6dd446bbcea41ee789d666e", + "style": "IPY_MODEL_6584bb27a7154628a8d459aca88dc035", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 30/30 [00:00<00:00, 810.84it/s]" } }, - "58a5fd3630694826904227c50dce4a58": { + "44a6a6e2aca946a1a5360a07e3b508d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1608,7 +1553,7 @@ "width": null } }, - "606739628a3c43e188dfb8e4ab4161c1": { + "5330888ec41a4abab567527c6e1ffd41": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1661,7 +1606,25 @@ "width": null } }, - "6483135474b1449087c991fb32524a5d": { + "57f13be2c99544fb9cc14d43a41b2771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "5b9e311328344481b090157819e78c90": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -1677,7 +1640,7 @@ "description_width": "" } }, - "7da8b6c3ea2a4772a5fe093e05addc72": { + "6483735a58b043b6b18bce9fcea7af01": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -1693,70 +1656,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_d509507d60244ddcba41140131d9be1f", - "max": 4997683.0, + "layout": "IPY_MODEL_97c988acb93f44548e72b7e6785373ba", + "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_fd786bb433b84b77bb5a3892748ee7a8", + "style": "IPY_MODEL_9af440153d4e4cdf94b2cf7fabd36183", "tabbable": null, "tooltip": null, - "value": 4997683.0 - } - }, - "7fdf393fca40427f8a2bd92d317d3dae": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": 30.0 } }, - "85a0fa984b144cfa898831e10209e74d": { + "6584bb27a7154628a8d459aca88dc035": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1774,94 +1684,101 @@ "text_color": null } }, - "8aad8f225cf6422eb201fc5ce1fc9f8e": { - "model_module": "@jupyter-widgets/base", + "6cc3388bab2643c8b90c9272aea123fd": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cf3b18d1306748afa8e938ecd97912de", + "IPY_MODEL_6483735a58b043b6b18bce9fcea7af01", + "IPY_MODEL_403d955a5e56429185a7d79c76b3f942" + ], + "layout": "IPY_MODEL_95f6f8f5058e4a999e52cf9ee97471a8", + "tabbable": null, + "tooltip": null } }, - "8e68f9ece6dd446bbcea41ee789d666e": { + "7019068b213142edb33e86d2e73ee210": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8a1c7ffaa334c438eb48081a604d215", + "IPY_MODEL_ae57c0974e774c6890338ba8b17d0191", + "IPY_MODEL_7f68c4f29617499499ee2c05c5a6a108" + ], + "layout": "IPY_MODEL_c9163ef783e742f3acc05346e5afcb64", + "tabbable": null, + "tooltip": null } }, - "a211fbc91ad7428f88de83462ce179b1": { + "7b951463c2014d63996109b04919b6f0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_44a6a6e2aca946a1a5360a07e3b508d2", + "placeholder": "​", + "style": "IPY_MODEL_228b0d40b0924b7a97e4d0957e103746", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:01<00:00, 21.76it/s]" + } + }, + "7f68c4f29617499499ee2c05c5a6a108": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5330888ec41a4abab567527c6e1ffd41", + "placeholder": "​", + "style": "IPY_MODEL_ce3e640376574f9e8d585bcb85603e1d", + "tabbable": null, + "tooltip": null, + "value": " 4997683/4997683 [00:31<00:00, 157127.94it/s]" } }, - "a28f14e157a54c3bb2ba09f5232ee9c6": { + "83e9f786fc2e45a789ee9639166df7d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1914,33 +1831,7 @@ "width": null } }, - "a8b97972238e423b884d9df90c31735c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_25c74ae19d60408e99632f175a792eaa", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6483135474b1449087c991fb32524a5d", - "tabbable": null, - "tooltip": null, - "value": 30.0 - } - }, - "aacd42748d294de29a7979f5b0d21f14": { + "855c64f84945411a9db3c53deb7492c1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1993,30 +1884,7 @@ "width": null } }, - "b49ea13e3a12486a97be815b76759ed6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e0fbe3dac5a0495f8995783e2dd80711", - "placeholder": "​", - "style": "IPY_MODEL_27c16fceefe04f7ea1c6208a3b02d91a", - "tabbable": null, - "tooltip": null, - "value": " 4997683/4997683 [00:32<00:00, 155973.49it/s]" - } - }, - "b931d7f32e6b41668d503c6a2ff41333": { + "95f6f8f5058e4a999e52cf9ee97471a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2069,7 +1937,7 @@ "width": null } }, - "beaa3af60b7746888d20c45dbdce9842": { + "97c988acb93f44548e72b7e6785373ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2122,73 +1990,49 @@ "width": null } }, - "bf5249d5bbbf4d75b55c111b8b11a61a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_573a0e4f1aa3447bbec12012eaef0dc3", - "IPY_MODEL_7da8b6c3ea2a4772a5fe093e05addc72", - "IPY_MODEL_b49ea13e3a12486a97be815b76759ed6" - ], - "layout": "IPY_MODEL_58a5fd3630694826904227c50dce4a58", - "tabbable": null, - "tooltip": null - } - }, - "c5ef52d1a9d646df84e1139d4d1089db": { + "9af440153d4e4cdf94b2cf7fabd36183": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "c948217428084bd496b3f2a49594566f": { + "a35e0222d4f14c66bf3c3a5aa2572142": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d07a9489d84e4b4880dfa0c9d8716d8c", - "IPY_MODEL_a8b97972238e423b884d9df90c31735c", - "IPY_MODEL_e6bc426565cb49ba80b9007e05438975" - ], - "layout": "IPY_MODEL_606739628a3c43e188dfb8e4ab4161c1", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_83e9f786fc2e45a789ee9639166df7d8", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_5b9e311328344481b090157819e78c90", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 30.0 } }, - "cfd0057aa0524fdabff5f5ef309b8944": { + "ae57c0974e774c6890338ba8b17d0191": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2204,17 +2048,17 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_31c0461c7cc145fba8fc1a686d641734", - "max": 30.0, + "layout": "IPY_MODEL_855c64f84945411a9db3c53deb7492c1", + "max": 4997683.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_542ef1339f3c4f27a392d3e6f794359f", + "style": "IPY_MODEL_db6c02d349084e498c97e2e6ed714f28", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": 4997683.0 } }, - "d07a9489d84e4b4880dfa0c9d8716d8c": { + "b6e063e50c2b4445910ce5e867fbd918": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2229,15 +2073,39 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_beaa3af60b7746888d20c45dbdce9842", + "layout": "IPY_MODEL_ce1dd22f0d6b4012a51c48ad29dcaa8f", "placeholder": "​", - "style": "IPY_MODEL_51e9e889a46e4f308aff8141e478e0b2", + "style": "IPY_MODEL_e2897f5daefd4d14a83b5100fa9e108f", "tabbable": null, "tooltip": null, - "value": "images processed using softmin: 100%" + "value": "number of examples processed for checking labels: 100%" + } + }, + "c10054699f0e464a82009f0a5e0c578c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b6e063e50c2b4445910ce5e867fbd918", + "IPY_MODEL_176760f869904a7fa39445bdd88719b2", + "IPY_MODEL_02d9a746ed0046739aa78a6ce0085ff9" + ], + "layout": "IPY_MODEL_0c20fddef0b54b239fafa2cc41c63236", + "tabbable": null, + "tooltip": null } }, - "d509507d60244ddcba41140131d9be1f": { + "c498db02e0b04391a5861cb923082075": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2290,30 +2158,131 @@ "width": null } }, - "d67f58d8b5b14e59b0b843789281945d": { + "c9163ef783e742f3acc05346e5afcb64": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce1dd22f0d6b4012a51c48ad29dcaa8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ce3e640376574f9e8d585bcb85603e1d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_b931d7f32e6b41668d503c6a2ff41333", - "placeholder": "​", - "style": "IPY_MODEL_2616637ba3464f08933830c12d469b83", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.39it/s]" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "de3dc131ede549fc9a4eab8ed54190fa": { + "cf3b18d1306748afa8e938ecd97912de": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2328,15 +2297,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4ccbc45f2aeb4c9c85627198b276be79", + "layout": "IPY_MODEL_c498db02e0b04391a5861cb923082075", "placeholder": "​", - "style": "IPY_MODEL_c5ef52d1a9d646df84e1139d4d1089db", + "style": "IPY_MODEL_3f51ef64ff6b45ebb8b941ba2ee62b5d", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:00<00:00, 819.82it/s]" + "value": "number of examples processed for estimating thresholds: 100%" } }, - "e0fbe3dac5a0495f8995783e2dd80711": { + "d1f1c3debd3a4626adf70f52c88e15f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2389,7 +2358,23 @@ "width": null } }, - "e6bc426565cb49ba80b9007e05438975": { + "d504401538154719844d7826ee272589": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "d8a1c7ffaa334c438eb48081a604d215": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2404,41 +2389,72 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_4e9c5d98329c476daf5bb5ab626f75ea", + "layout": "IPY_MODEL_d1f1c3debd3a4626adf70f52c88e15f0", "placeholder": "​", - "style": "IPY_MODEL_3dd8300efe074538b752b933fe4dccd5", + "style": "IPY_MODEL_14896ca89fcc44339c2b6527f1f9f9dc", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.71it/s]" + "value": "100%" } }, - "f0e42a3ba88a4b12846e1d20b351a59e": { + "db6c02d349084e498c97e2e6ed714f28": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e2897f5daefd4d14a83b5100fa9e108f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "fade87555302435dbdddd0ecd183f382": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8aad8f225cf6422eb201fc5ce1fc9f8e", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a211fbc91ad7428f88de83462ce179b1", + "layout": "IPY_MODEL_22fe02c2e99045d8821cfc15a94e4936", + "placeholder": "​", + "style": "IPY_MODEL_32a85d515d9e4eaba06dcc77490cad82", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "images processed using softmin: 100%" } }, - "f569c0971e0640b980797b7457fa4061": { + "fd89a714f4bd4881ac3bcdde2e818698": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2453,30 +2469,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4c9d0984d39a4f0e881a09e0550d87b4", - "IPY_MODEL_f0e42a3ba88a4b12846e1d20b351a59e", - "IPY_MODEL_d67f58d8b5b14e59b0b843789281945d" + "IPY_MODEL_fade87555302435dbdddd0ecd183f382", + "IPY_MODEL_a35e0222d4f14c66bf3c3a5aa2572142", + "IPY_MODEL_7b951463c2014d63996109b04919b6f0" ], - "layout": "IPY_MODEL_a28f14e157a54c3bb2ba09f5232ee9c6", + "layout": "IPY_MODEL_279d7517839d43c89b15e2c5c84c7be9", "tabbable": null, "tooltip": null } - }, - "fd786bb433b84b77bb5a3892748ee7a8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index c2522ff69..703cfe1a3 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -710,16 +710,16 @@

1. Install required dependencies and download data

diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index ad51fe8e1..f95fb9e96 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:06.596442Z", - "iopub.status.busy": "2024-07-09T06:16:06.596270Z", - "iopub.status.idle": "2024-07-09T06:16:07.602980Z", - "shell.execute_reply": "2024-07-09T06:16:07.602333Z" + "iopub.execute_input": "2024-07-09T06:31:16.799869Z", + "iopub.status.busy": "2024-07-09T06:31:16.799691Z", + "iopub.status.idle": "2024-07-09T06:31:17.988936Z", + "shell.execute_reply": "2024-07-09T06:31:17.988319Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:06-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-07-09 06:31:16-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,7 +94,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "169.150.236.97, 2400:52e0:1a00::941:1\r\n", + "169.150.236.97, 2400:52e0:1a00::1029:1\r\n", "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... " ] }, @@ -123,9 +123,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.04MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K 5.22MB/s in 0.2s \r\n", "\r\n", - "2024-07-09 06:16:06 (5.04 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-07-09 06:31:17 (5.22 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -145,9 +145,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-07-09 06:16:07-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.217.224.233, 3.5.25.180, 52.216.58.97, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.217.224.233|:443... connected.\r\n", + "--2024-07-09 06:31:17-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 54.231.171.25, 54.231.130.41, 52.216.52.217, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|54.231.171.25|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -170,7 +170,7 @@ "\r", "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.09s \r\n", "\r\n", - "2024-07-09 06:16:07 (174 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-07-09 06:31:17 (179 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -187,10 +187,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:07.605304Z", - "iopub.status.busy": "2024-07-09T06:16:07.605103Z", - "iopub.status.idle": "2024-07-09T06:16:08.819007Z", - "shell.execute_reply": "2024-07-09T06:16:08.818469Z" + "iopub.execute_input": "2024-07-09T06:31:17.991436Z", + "iopub.status.busy": "2024-07-09T06:31:17.991070Z", + "iopub.status.idle": "2024-07-09T06:31:19.289852Z", + "shell.execute_reply": "2024-07-09T06:31:19.289351Z" }, "nbsphinx": "hidden" }, @@ -201,7 +201,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -227,10 +227,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.821606Z", - "iopub.status.busy": "2024-07-09T06:16:08.821202Z", - "iopub.status.idle": "2024-07-09T06:16:08.824585Z", - "shell.execute_reply": "2024-07-09T06:16:08.824057Z" + "iopub.execute_input": "2024-07-09T06:31:19.292366Z", + "iopub.status.busy": "2024-07-09T06:31:19.291931Z", + "iopub.status.idle": "2024-07-09T06:31:19.295209Z", + "shell.execute_reply": "2024-07-09T06:31:19.294745Z" } }, "outputs": [], @@ -280,10 +280,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.826607Z", - "iopub.status.busy": "2024-07-09T06:16:08.826214Z", - "iopub.status.idle": "2024-07-09T06:16:08.829147Z", - "shell.execute_reply": "2024-07-09T06:16:08.828713Z" + "iopub.execute_input": "2024-07-09T06:31:19.297359Z", + "iopub.status.busy": "2024-07-09T06:31:19.297049Z", + "iopub.status.idle": "2024-07-09T06:31:19.300013Z", + "shell.execute_reply": "2024-07-09T06:31:19.299557Z" }, "nbsphinx": "hidden" }, @@ -301,10 +301,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:08.831190Z", - "iopub.status.busy": "2024-07-09T06:16:08.830751Z", - "iopub.status.idle": "2024-07-09T06:16:17.805664Z", - "shell.execute_reply": "2024-07-09T06:16:17.805113Z" + "iopub.execute_input": "2024-07-09T06:31:19.302022Z", + "iopub.status.busy": "2024-07-09T06:31:19.301697Z", + "iopub.status.idle": "2024-07-09T06:31:28.335757Z", + "shell.execute_reply": "2024-07-09T06:31:28.335203Z" } }, "outputs": [], @@ -378,10 +378,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.808345Z", - "iopub.status.busy": "2024-07-09T06:16:17.807911Z", - "iopub.status.idle": "2024-07-09T06:16:17.813277Z", - "shell.execute_reply": "2024-07-09T06:16:17.812858Z" + "iopub.execute_input": "2024-07-09T06:31:28.338200Z", + "iopub.status.busy": "2024-07-09T06:31:28.337845Z", + "iopub.status.idle": "2024-07-09T06:31:28.343280Z", + "shell.execute_reply": "2024-07-09T06:31:28.342837Z" }, "nbsphinx": "hidden" }, @@ -421,10 +421,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:17.815382Z", - "iopub.status.busy": "2024-07-09T06:16:17.814963Z", - "iopub.status.idle": "2024-07-09T06:16:18.150000Z", - "shell.execute_reply": "2024-07-09T06:16:18.149429Z" + "iopub.execute_input": "2024-07-09T06:31:28.345254Z", + "iopub.status.busy": "2024-07-09T06:31:28.344923Z", + "iopub.status.idle": "2024-07-09T06:31:28.685882Z", + "shell.execute_reply": "2024-07-09T06:31:28.685329Z" } }, "outputs": [], @@ -461,10 +461,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.152493Z", - "iopub.status.busy": "2024-07-09T06:16:18.152061Z", - "iopub.status.idle": "2024-07-09T06:16:18.156514Z", - "shell.execute_reply": "2024-07-09T06:16:18.155980Z" + "iopub.execute_input": "2024-07-09T06:31:28.688450Z", + "iopub.status.busy": "2024-07-09T06:31:28.688108Z", + "iopub.status.idle": "2024-07-09T06:31:28.692422Z", + "shell.execute_reply": "2024-07-09T06:31:28.691913Z" } }, "outputs": [ @@ -536,10 +536,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:18.158568Z", - "iopub.status.busy": "2024-07-09T06:16:18.158265Z", - "iopub.status.idle": "2024-07-09T06:16:20.671476Z", - "shell.execute_reply": "2024-07-09T06:16:20.670677Z" + "iopub.execute_input": "2024-07-09T06:31:28.694566Z", + "iopub.status.busy": "2024-07-09T06:31:28.694154Z", + "iopub.status.idle": "2024-07-09T06:31:31.218610Z", + "shell.execute_reply": "2024-07-09T06:31:31.217915Z" } }, "outputs": [], @@ -561,10 +561,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.674624Z", - "iopub.status.busy": "2024-07-09T06:16:20.674042Z", - "iopub.status.idle": "2024-07-09T06:16:20.678383Z", - "shell.execute_reply": "2024-07-09T06:16:20.677819Z" + "iopub.execute_input": "2024-07-09T06:31:31.221635Z", + "iopub.status.busy": "2024-07-09T06:31:31.220890Z", + "iopub.status.idle": "2024-07-09T06:31:31.224904Z", + "shell.execute_reply": "2024-07-09T06:31:31.224377Z" } }, "outputs": [ @@ -600,10 +600,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.680295Z", - "iopub.status.busy": "2024-07-09T06:16:20.680123Z", - "iopub.status.idle": "2024-07-09T06:16:20.685724Z", - "shell.execute_reply": "2024-07-09T06:16:20.685271Z" + "iopub.execute_input": "2024-07-09T06:31:31.226850Z", + "iopub.status.busy": "2024-07-09T06:31:31.226675Z", + "iopub.status.idle": "2024-07-09T06:31:31.232224Z", + "shell.execute_reply": "2024-07-09T06:31:31.231711Z" } }, "outputs": [ @@ -781,10 +781,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.687532Z", - "iopub.status.busy": "2024-07-09T06:16:20.687366Z", - "iopub.status.idle": "2024-07-09T06:16:20.713548Z", - "shell.execute_reply": "2024-07-09T06:16:20.713113Z" + "iopub.execute_input": "2024-07-09T06:31:31.234195Z", + "iopub.status.busy": "2024-07-09T06:31:31.233868Z", + "iopub.status.idle": "2024-07-09T06:31:31.260501Z", + "shell.execute_reply": "2024-07-09T06:31:31.260037Z" } }, "outputs": [ @@ -886,10 +886,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.715379Z", - "iopub.status.busy": "2024-07-09T06:16:20.715213Z", - "iopub.status.idle": "2024-07-09T06:16:20.719260Z", - "shell.execute_reply": "2024-07-09T06:16:20.718723Z" + "iopub.execute_input": "2024-07-09T06:31:31.262698Z", + "iopub.status.busy": "2024-07-09T06:31:31.262368Z", + "iopub.status.idle": "2024-07-09T06:31:31.266471Z", + "shell.execute_reply": "2024-07-09T06:31:31.265953Z" } }, "outputs": [ @@ -963,10 +963,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:20.721189Z", - "iopub.status.busy": "2024-07-09T06:16:20.721015Z", - "iopub.status.idle": "2024-07-09T06:16:22.122879Z", - "shell.execute_reply": "2024-07-09T06:16:22.122387Z" + "iopub.execute_input": "2024-07-09T06:31:31.268473Z", + "iopub.status.busy": "2024-07-09T06:31:31.268157Z", + "iopub.status.idle": "2024-07-09T06:31:32.664554Z", + "shell.execute_reply": "2024-07-09T06:31:32.664039Z" } }, "outputs": [ @@ -1138,10 +1138,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-07-09T06:16:22.124941Z", - "iopub.status.busy": "2024-07-09T06:16:22.124756Z", - "iopub.status.idle": "2024-07-09T06:16:22.128748Z", - "shell.execute_reply": "2024-07-09T06:16:22.128306Z" + "iopub.execute_input": "2024-07-09T06:31:32.666738Z", + "iopub.status.busy": "2024-07-09T06:31:32.666392Z", + "iopub.status.idle": "2024-07-09T06:31:32.670504Z", + "shell.execute_reply": "2024-07-09T06:31:32.670046Z" }, "nbsphinx": "hidden" }, diff --git a/versioning.js b/versioning.js index 847e993c9..3e028ec24 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.6", - commit_hash: "00ae7c83b2015828ec65e1cc06eef34d3099ec0c", + commit_hash: "e4be990d65e77f5fed23f796725f09cd114a37d7", }; \ No newline at end of file

     # size num_classes, with True if the example confidently belongs to that class and False if not.
     pred_probs_bool = pred_probs >= thresholds - 1e-6
     num_confident_bins = pred_probs_bool.sum(axis=1)
+    # The indices where this is false, are often outliers (not confident of any label)
     at_least_one_confident = num_confident_bins > 0
     more_than_one_confident = num_confident_bins > 1
     pred_probs_argmax = pred_probs.argmax(axis=1)
diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb
index 8792ed47e..15c5dbe31 100644
--- a/master/_sources/tutorials/clean_learning/tabular.ipynb
+++ b/master/_sources/tutorials/clean_learning/tabular.ipynb
@@ -120,7 +120,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb
index b8d823a49..6537a391b 100644
--- a/master/_sources/tutorials/clean_learning/text.ipynb
+++ b/master/_sources/tutorials/clean_learning/text.ipynb
@@ -129,7 +129,7 @@
     "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"  # disable parallelism to avoid deadlocks with huggingface\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb
index 3f45e8bca..9d8c490e7 100644
--- a/master/_sources/tutorials/datalab/audio.ipynb
+++ b/master/_sources/tutorials/datalab/audio.ipynb
@@ -91,7 +91,7 @@
     "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
index b83bf9406..353b90c7f 100644
--- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb
@@ -87,7 +87,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
index c9f8ccf3b..b6aa5b6be 100644
--- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
+++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb
@@ -85,7 +85,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]  # TODO: make sure this list is updated\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb
index 90bd88e48..6c92a4647 100644
--- a/master/_sources/tutorials/datalab/tabular.ipynb
+++ b/master/_sources/tutorials/datalab/tabular.ipynb
@@ -80,7 +80,7 @@
     "dependencies = [\"cleanlab\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb
index bc0c99125..a8ff70845 100644
--- a/master/_sources/tutorials/datalab/text.ipynb
+++ b/master/_sources/tutorials/datalab/text.ipynb
@@ -90,7 +90,7 @@
     "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"  # disable parallelism to avoid deadlocks with huggingface\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb
index 056f3e1f7..cb9b315db 100644
--- a/master/_sources/tutorials/dataset_health.ipynb
+++ b/master/_sources/tutorials/dataset_health.ipynb
@@ -79,7 +79,7 @@
     "dependencies = [\"cleanlab\", \"requests\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/improving_ml_performance.ipynb b/master/_sources/tutorials/improving_ml_performance.ipynb
index 60996f9ec..dcadf17c5 100644
--- a/master/_sources/tutorials/improving_ml_performance.ipynb
+++ b/master/_sources/tutorials/improving_ml_performance.ipynb
@@ -69,7 +69,7 @@
     "dependencies = [\"cleanlab\", \"xgboost\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb
index a0ed5b4bd..519a9fac7 100644
--- a/master/_sources/tutorials/indepth_overview.ipynb
+++ b/master/_sources/tutorials/indepth_overview.ipynb
@@ -62,7 +62,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb
index 0f17cef80..7f887265c 100644
--- a/master/_sources/tutorials/multiannotator.ipynb
+++ b/master/_sources/tutorials/multiannotator.ipynb
@@ -95,7 +95,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb
index de30986bf..411006923 100644
--- a/master/_sources/tutorials/multilabel_classification.ipynb
+++ b/master/_sources/tutorials/multilabel_classification.ipynb
@@ -73,7 +73,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb
index 842047cfe..f29a7bca5 100644
--- a/master/_sources/tutorials/object_detection.ipynb
+++ b/master/_sources/tutorials/object_detection.ipynb
@@ -77,7 +77,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb
index a296b3a66..8bc9378d4 100644
--- a/master/_sources/tutorials/outliers.ipynb
+++ b/master/_sources/tutorials/outliers.ipynb
@@ -119,7 +119,7 @@
     "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb
index a52fa9f00..0b1327d70 100644
--- a/master/_sources/tutorials/regression.ipynb
+++ b/master/_sources/tutorials/regression.ipynb
@@ -110,7 +110,7 @@
     "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb
index cccc312c7..ec451ac65 100644
--- a/master/_sources/tutorials/segmentation.ipynb
+++ b/master/_sources/tutorials/segmentation.ipynb
@@ -91,7 +91,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb
index cb1b14626..ac75f390c 100644
--- a/master/_sources/tutorials/token_classification.ipynb
+++ b/master/_sources/tutorials/token_classification.ipynb
@@ -95,7 +95,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
diff --git a/master/searchindex.js b/master/searchindex.js
index 8aaf8d063..a51677165 100644
--- a/master/searchindex.js
+++ b/master/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 95, 96, 98, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 95, 96, 103, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 95, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 95, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 95, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 95, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 95, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 95, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 95, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 95, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91, 95], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 98], "show_all_issu": [5, 34, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103, 108], "680894": 10, "41": [10, 95, 96, 98, 103, 106], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 95, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 107], "bright": [10, 95, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 95, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 95, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": [37, 95], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91, 95], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42, 95], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 95, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 95, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": [61, 95], "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 95, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 95, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 95, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 104, 108], "04": [81, 93, 95, 103, 108], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 95, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": [86, 108], "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "change_pin": [87, 94], "supported_cards_and_curr": [87, 94], "card_about_to_expir": [87, 94], "getting_spare_card": [87, 94], "apple_pay_or_google_pai": [87, 94], "visa_or_mastercard": [87, 94], "lost_or_stolen_phon": [87, 94], "card_payment_fee_charg": [87, 94], "beneficiary_not_allow": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 95, 104], "gz": [88, 95, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 95, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 95, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 95, 104], "set_titl": [89, 90, 91, 95, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 103, 108], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": [91, 95], "60000": 91, "transformed_dataset": [91, 95], "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": [91, 95], "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "828": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 98], "643": 91, "493": 91, "060": 91, "772": 91, "330": [91, 98, 103], "505": 91, "618": 91, "476": [91, 98], "340": [91, 98], "851": 91, "328": [91, 103], "310": 91, "922": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 95, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": 91, "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": [93, 108], "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356958": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "alter": [95, 97, 98], "darken": 95, "blurry_scor": 95, "odd_aspect_ratio_scor": 95, "setup": 95, "cifar10": 95, "markdown": 95, "root": [95, 104], "selected_class": 95, "convert_to_png_imag": 95, "bytesio": [95, 96], "seek": 95, "max_num_imag": 95, "list_imag": 95, "list_label": 95, "num_imag": 95, "img": [95, 104, 106], "toronto": [95, 104], "edu": [95, 104], "kriz": [95, 104], "170498071": [95, 104], "77333951": 95, "88it": 95, "dataset_dict": 95, "from_dict": [95, 97], "apply_dark": 95, "transformed_list_imag": 95, "transformed_dataset_dict": 95, "plot_imag": [95, 104], "num_images_to_plot": 95, "num_col": 95, "hide": 95, "get_property_scor": 95, "_spurious_correl": 95, "get_specific_property_scor": 95, "property_scores_df": 95, "property_nam": 95, "standard_property_scor": 95, "transformed_property_scor": 95, "295": [95, 98, 103], "light_scor": 95, "415": 95, "325": 95, "odd_size_scor": 95, "grayscale_scor": 95, "015": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 104], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106, 108], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "196": [98, 99, 103], "224": [98, 103, 108], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "153": [98, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "199": [98, 103], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": [99, 108], "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": 102, "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": 103, "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "52539309": 104, "75it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "04mb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "kb": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 95, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 95, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 95, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": [91, 95], "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "pass": 95, "relat": 95, "transform": 95, "imageenh": 95, "induc": 95, "properti": 95, "origin": [95, 98], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[95, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[95, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[95, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[95, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[95, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[95, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
+Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/guide/table", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/neighbor/index", "cleanlab/internal/neighbor/knn_graph", "cleanlab/internal/neighbor/metric", "cleanlab/internal/neighbor/search", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/datalab/workflows", "tutorials/dataset_health", "tutorials/faq", "tutorials/improving_ml_performance", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/guide/table.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/neighbor/index.rst", "cleanlab/internal/neighbor/knn_graph.rst", "cleanlab/internal/neighbor/metric.rst", "cleanlab/internal/neighbor/search.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/datalab/workflows.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/improving_ml_performance.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "<no title>", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "neighbor", "knn_graph", "metric", "search", "outlier", "token_classification_utils", "util", "validation", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Structured/Tabular Data and Noisy Labels", "Text Classification with Noisy Labels", "Detecting Issues in an Audio Dataset with Datalab", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Detecting Issues in an Image Dataset with Datalab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Miscellaneous workflows with Datalab", "Understanding Dataset-level Labeling Issues", "FAQ", "Improving ML Performance via Data Curation with Train vs Test Splits", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 84, 89, 90, 99, 101, 102], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 89, 90, 99, 101, 102], "generate_noise_matrix_from_trac": [0, 1, 89, 90, 99, 101, 102], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 17, 41, 46, 48, 49, 50, 51, 55, 56, 57, 68, 91, 95, 96, 108], "method": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "ar": [1, 2, 3, 4, 5, 7, 10, 13, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 27, 30, 31, 33, 35, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "us": [1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 83, 84, 89, 96, 105], "benchmark": [1, 38, 83, 84, 89, 90, 99, 101, 102], "cleanlab": [1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 98, 100, 105], "": [1, 2, 3, 4, 10, 19, 33, 37, 38, 42, 46, 49, 52, 54, 55, 57, 61, 62, 66, 68, 69, 70, 71, 73, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "core": [1, 41, 44, 75, 77], "algorithm": [1, 2, 8, 10, 32, 39, 43, 54, 55, 57, 61, 70, 79, 81, 83, 95, 97, 99, 101, 108], "These": [1, 2, 3, 4, 5, 8, 10, 22, 38, 40, 42, 43, 44, 45, 52, 59, 61, 62, 65, 69, 70, 74, 78, 79, 81, 82, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "introduc": [1, 88, 95, 97, 98, 99], "synthet": [1, 101, 102, 107], "nois": [1, 2, 3, 37, 44, 47, 57, 62, 89, 90, 95, 96, 101, 106], "label": [1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 21, 22, 23, 25, 30, 32, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 89, 95, 98, 100, 104, 105], "classif": [1, 3, 4, 5, 7, 10, 11, 13, 15, 17, 33, 35, 37, 41, 43, 44, 47, 49, 50, 57, 61, 62, 63, 64, 65, 70, 71, 79, 80, 81, 82, 83, 84, 85, 88, 89, 90, 95, 98, 100, 101, 104, 105, 106, 107], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 26, 27, 28, 29, 31, 32, 40, 41, 42, 43, 44, 47, 49, 53, 57, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 86, 89, 93, 98, 100, 101, 105], "specif": [1, 3, 5, 9, 15, 16, 17, 28, 34, 35, 40, 52, 53, 54, 59, 63, 66, 69, 78, 82, 91, 93, 94, 98, 99, 103, 108], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "modul": [1, 3, 14, 15, 16, 17, 22, 25, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 49, 51, 52, 54, 55, 57, 59, 61, 66, 69, 70, 71, 83, 91, 97, 102], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 15, 17, 19, 24, 31, 35, 37, 38, 39, 41, 42, 44, 47, 51, 52, 54, 55, 57, 60, 61, 62, 63, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 104, 105, 106, 107, 108], "gener": [1, 2, 3, 7, 10, 19, 24, 26, 34, 37, 49, 52, 54, 57, 58, 70, 71, 73, 78, 87, 88, 89, 90, 91, 94, 96, 97, 98, 99, 101, 102, 104, 105, 107, 108], "valid": [1, 2, 3, 5, 10, 13, 33, 35, 37, 44, 45, 47, 48, 49, 52, 54, 55, 57, 61, 63, 66, 69, 71, 73, 74, 82, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "matric": [1, 3, 47, 97], "which": [1, 2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 23, 27, 33, 34, 35, 37, 38, 42, 43, 44, 47, 49, 53, 54, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "learn": [1, 2, 3, 4, 5, 9, 10, 15, 17, 23, 31, 34, 39, 40, 41, 42, 44, 46, 48, 53, 54, 57, 59, 61, 63, 70, 72, 74, 77, 81, 83, 86, 87, 88, 89, 91, 93, 94, 95, 96, 98, 101, 102, 106], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106, 107, 108], "possibl": [1, 2, 3, 7, 10, 37, 38, 42, 44, 46, 47, 49, 63, 64, 65, 66, 68, 69, 70, 71, 73, 79, 81, 82, 90, 95, 97, 98, 99, 101, 102, 103, 106, 107, 108], "noisi": [1, 2, 3, 10, 37, 39, 42, 44, 47, 57, 62, 63, 65, 71, 73, 74, 75, 77, 78, 84, 89, 90, 93, 94, 95, 97, 100, 101], "given": [1, 2, 3, 5, 10, 15, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 56, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "matrix": [1, 2, 3, 5, 10, 17, 19, 32, 37, 44, 46, 47, 50, 52, 57, 58, 63, 66, 68, 69, 70, 71, 93, 95, 103, 104], "trace": [1, 89, 90, 99, 101, 102], "valu": [1, 2, 3, 4, 5, 10, 13, 14, 17, 19, 23, 27, 28, 33, 35, 37, 38, 39, 41, 42, 44, 46, 47, 49, 52, 53, 54, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 87, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "more": [1, 2, 3, 4, 5, 7, 9, 10, 14, 15, 17, 19, 27, 37, 38, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 83, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 107, 108], "function": [1, 2, 3, 4, 5, 7, 10, 14, 15, 17, 24, 27, 31, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 95, 96, 97, 98, 99, 101, 102, 103, 107, 108], "noise_matrix": [1, 2, 3, 10, 47, 57, 89, 90, 99, 101, 102], "py": [1, 3, 34, 38, 39, 44, 47, 49, 83, 89, 90, 99, 101, 102], "verbos": [1, 2, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 41, 44, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 89, 99, 101], "fals": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 48, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82], "prior": [1, 2, 3, 37, 44, 47, 49], "repres": [1, 2, 3, 7, 10, 13, 17, 19, 27, 33, 35, 37, 41, 44, 47, 50, 52, 53, 55, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 108], "p": [1, 2, 3, 5, 10, 37, 44, 46, 47, 55, 57, 61, 69, 70, 71, 75, 93, 94, 95, 98, 99, 101, 108], "true_label": [1, 2, 3, 37, 47, 57, 99, 101], "k": [1, 2, 3, 4, 5, 8, 10, 13, 17, 19, 20, 24, 27, 29, 32, 37, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 64, 65, 66, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 86, 88, 89, 90, 95, 97, 98, 99, 101, 102, 103, 104, 107, 108], "check": [1, 2, 5, 6, 9, 10, 13, 17, 28, 35, 38, 41, 42, 48, 58, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 97, 99, 101, 102, 106], "learnabl": 1, "mean": [1, 2, 7, 8, 10, 13, 14, 23, 27, 39, 42, 47, 49, 55, 68, 73, 87, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106], "achiev": [1, 2, 38, 39, 42, 73, 97, 98, 101, 108], "better": [1, 5, 10, 44, 53, 61, 63, 71, 73, 74, 83, 87, 88, 90, 93, 94, 95, 97, 99, 102, 103, 104, 108], "than": [1, 2, 3, 4, 7, 9, 10, 27, 29, 32, 37, 44, 53, 57, 60, 61, 66, 68, 70, 71, 73, 77, 81, 86, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "random": [1, 2, 3, 7, 10, 19, 32, 41, 49, 52, 61, 71, 73, 86, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 104], "perform": [1, 2, 4, 7, 10, 27, 29, 32, 38, 42, 49, 51, 52, 53, 69, 73, 83, 86, 87, 89, 97, 99, 100, 101, 102, 105, 106], "averag": [1, 3, 5, 10, 23, 29, 37, 38, 42, 49, 55, 61, 62, 69, 70, 71, 97, 101, 104], "amount": [1, 3, 91], "paramet": [1, 2, 3, 4, 5, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 90, 91, 94, 95, 98], "np": [1, 2, 3, 4, 5, 7, 17, 19, 32, 37, 39, 41, 43, 44, 46, 47, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "ndarrai": [1, 2, 3, 4, 5, 17, 24, 26, 27, 31, 32, 33, 37, 39, 41, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 95, 108], "an": [1, 2, 3, 4, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 52, 54, 55, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 83, 86, 87, 89, 90, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "arrai": [1, 2, 3, 4, 5, 7, 10, 13, 17, 19, 27, 33, 37, 39, 41, 42, 43, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "shape": [1, 2, 3, 4, 5, 17, 19, 37, 39, 41, 43, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 88, 95, 96, 97, 99, 102, 103, 104, 107, 108], "condit": [1, 2, 3, 47, 53, 56, 57, 71, 91, 99, 108], "probabl": [1, 2, 3, 5, 8, 10, 17, 24, 26, 29, 33, 37, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 96, 97, 99, 100, 102, 103, 104, 107, 108], "k_": [1, 2, 3, 47, 57], "k_y": [1, 2, 3, 47, 57], "contain": [1, 2, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 44, 46, 47, 51, 52, 56, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107], "fraction": [1, 2, 3, 10, 21, 39, 47, 57, 61, 73, 93, 97, 98], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 98, 101, 102, 103, 105, 106, 107, 108], "everi": [1, 2, 3, 4, 5, 10, 17, 38, 42, 44, 47, 56, 57, 63, 71, 73, 74, 86, 88, 89, 90, 91, 93, 94, 97, 101, 103, 105, 107, 108], "class": [1, 2, 3, 4, 5, 7, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 54, 56, 57, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103, 104, 105, 106, 108], "other": [1, 2, 3, 5, 10, 17, 23, 28, 37, 38, 40, 41, 42, 44, 47, 50, 52, 57, 58, 59, 61, 62, 65, 69, 70, 71, 73, 78, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 104, 107, 108], "assum": [1, 2, 3, 13, 44, 47, 52, 56, 57, 71, 75, 78, 97, 98, 102, 104, 106, 107, 108], "column": [1, 2, 3, 5, 10, 11, 13, 14, 31, 37, 41, 44, 47, 49, 50, 53, 56, 57, 61, 62, 63, 65, 66, 69, 70, 71, 73, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "sum": [1, 2, 3, 27, 32, 33, 37, 47, 49, 57, 62, 63, 65, 68, 73, 89, 90, 91, 97, 99, 101, 102, 107, 108], "1": [1, 2, 3, 4, 5, 7, 10, 11, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 96, 97, 105], "each": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 15, 17, 21, 23, 24, 26, 27, 32, 33, 34, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 52, 54, 55, 57, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "true": [1, 2, 3, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 49, 52, 56, 57, 58, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "return": [1, 2, 3, 4, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "type": [1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97, 98, 102, 103, 106, 107, 108], "bool": [1, 2, 3, 5, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 49, 52, 56, 57, 61, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 82], "is_valid": 1, "whether": [1, 3, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 38, 41, 42, 44, 52, 57, 61, 62, 63, 65, 66, 82, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 106, 108], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 23, 24, 28, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 47, 49, 50, 52, 53, 55, 56, 57, 61, 63, 65, 68, 69, 70, 71, 73, 74, 79, 81, 82, 83, 88, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 107, 108], "perfect": [1, 2, 37, 73, 99, 103], "exactli": [1, 3, 10, 37, 38, 42, 44, 64, 70, 89, 90, 91, 93, 94, 98, 99], "yield": [1, 38, 42, 98], "between": [1, 5, 10, 16, 17, 22, 23, 25, 27, 30, 33, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 52, 53, 54, 55, 59, 61, 62, 65, 68, 70, 71, 73, 74, 77, 81, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "below": [1, 3, 4, 5, 10, 37, 38, 41, 42, 44, 46, 49, 55, 61, 62, 63, 68, 69, 77, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "we": [1, 2, 3, 5, 7, 10, 14, 23, 38, 41, 42, 44, 49, 57, 58, 60, 61, 68, 69, 71, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "loop": [1, 3, 47, 57, 91, 103], "implement": [1, 2, 3, 4, 9, 15, 23, 38, 39, 41, 42, 47, 51, 53, 54, 57, 70, 73, 83, 86, 88, 89, 93, 98, 104, 105], "what": [1, 5, 9, 10, 17, 34, 37, 39, 41, 44, 61, 62, 66, 68, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "doe": [1, 2, 3, 7, 10, 41, 42, 44, 49, 52, 55, 58, 68, 69, 73, 75, 77, 81, 87, 88, 89, 90, 91, 93, 94, 96, 98, 102, 106, 107], "do": [1, 2, 5, 9, 10, 37, 41, 42, 57, 58, 70, 71, 75, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 104, 106, 107, 108], "fast": 1, "explain": [1, 10, 95], "python": [1, 2, 42, 60, 73, 89, 90, 95, 96, 98, 104], "pseudocod": [1, 105], "happen": [1, 10, 44, 63, 94, 101, 107], "n": [1, 2, 3, 5, 7, 37, 38, 41, 42, 44, 46, 47, 48, 49, 52, 53, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 86, 87, 88, 91, 94, 95, 96, 97, 101, 102, 103, 106, 107, 108], "without": [1, 2, 5, 9, 10, 13, 15, 21, 38, 42, 54, 65, 73, 83, 87, 88, 94, 95, 97, 98, 99, 103, 104], "ani": [1, 2, 3, 5, 7, 9, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 46, 48, 55, 56, 57, 60, 61, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107], "distinct": [1, 19, 57, 108], "natur": [1, 10, 101, 104], "number": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 81, 82, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 107, 108], "0": [1, 2, 3, 4, 5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 55, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "count_joint": 1, "len": [1, 2, 3, 7, 37, 41, 47, 56, 57, 58, 70, 71, 73, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "y": [1, 2, 3, 5, 8, 19, 31, 32, 42, 47, 49, 57, 58, 60, 69, 73, 74, 87, 88, 89, 90, 93, 95, 97, 99, 101, 102, 104, 106], "round": [1, 41, 44, 57, 73, 95, 97, 98, 106], "astyp": [1, 98, 101], "int": [1, 2, 3, 4, 5, 7, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 39, 41, 42, 44, 49, 50, 52, 53, 54, 55, 56, 57, 58, 62, 63, 65, 69, 70, 71, 73, 75, 77, 78, 79, 82, 88, 89, 91, 95, 98, 103, 104], "rang": [1, 3, 5, 7, 13, 47, 49, 55, 57, 69, 73, 74, 91, 95, 96, 97, 99, 101, 102, 103, 104, 106, 107, 108], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 13, 14, 17, 23, 37, 41, 44, 47, 48, 49, 50, 52, 53, 55, 56, 57, 58, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "pragma": 1, "cover": [1, 3, 84, 95, 96, 97], "choic": [1, 8, 44, 53, 55, 91, 97, 102, 104], "replac": [1, 56, 60, 71, 86, 87, 89, 90, 91, 94, 95, 96, 97, 101, 104], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 52, 71, 88, 89, 90], "05": [1, 10, 27, 31, 56, 69, 73, 79, 81, 93, 96, 97, 98, 99, 103], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 89, 90, 99, 101, 102], "none": [1, 2, 3, 4, 5, 7, 10, 11, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 89, 90, 91, 95, 97, 98, 99, 101, 102, 107], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 27, 40, 42, 49, 73, 86, 88, 89, 90, 93, 95, 96, 98, 99, 101, 102], "max_it": [1, 87, 88, 94, 104], "10000": [1, 41, 96, 97], "x": [1, 2, 3, 5, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 38, 39, 42, 44, 46, 47, 49, 52, 54, 56, 57, 58, 60, 61, 63, 69, 70, 71, 73, 75, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 104, 106], "diagon": [1, 3, 5, 44, 47, 57], "equal": [1, 3, 10, 13, 52, 63, 68, 78, 105], "creat": [1, 2, 9, 17, 19, 38, 41, 42, 44, 57, 73, 83, 87, 88, 91, 93, 94, 97, 98, 107, 108], "impli": [1, 10, 37, 62, 69], "float": [1, 2, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 40, 41, 42, 44, 46, 48, 49, 55, 56, 57, 61, 62, 63, 65, 68, 69, 73, 77, 81, 88, 89, 90, 98, 99, 101, 102], "entri": [1, 3, 5, 10, 37, 38, 42, 44, 46, 50, 52, 55, 57, 61, 62, 63, 66, 86, 87, 93, 94, 99, 102, 103, 106], "maximum": [1, 10, 70, 78, 82, 107], "minimum": [1, 8, 10, 21, 44, 46, 63, 68, 81], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 17, 27, 38, 42, 44, 52, 68, 73, 89, 97, 98, 99, 101, 103, 104], "default": [1, 2, 3, 4, 5, 7, 10, 11, 15, 17, 29, 31, 34, 37, 38, 39, 41, 42, 44, 46, 47, 49, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 89, 91, 95, 97, 106, 107], "If": [1, 2, 3, 4, 5, 10, 13, 14, 17, 27, 29, 35, 37, 38, 41, 42, 44, 46, 47, 49, 52, 53, 56, 57, 60, 61, 62, 63, 66, 68, 69, 70, 73, 74, 75, 77, 78, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "have": [1, 2, 3, 4, 5, 7, 9, 10, 17, 22, 25, 27, 30, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 74, 78, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "all": [1, 2, 3, 5, 7, 8, 9, 10, 14, 15, 17, 23, 34, 37, 38, 41, 42, 43, 44, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 73, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "necessari": [1, 2, 3, 4, 7, 10, 13, 56, 89, 95], "In": [1, 2, 3, 5, 10, 37, 38, 41, 42, 52, 60, 61, 62, 64, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 104, 105, 106, 107, 108], "particular": [1, 5, 6, 10, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 38, 42, 57, 61, 65, 69, 73, 78, 82, 83, 86, 87, 88, 90, 94, 97, 101, 102, 104, 106], "satisfi": [1, 3, 37], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 31, 36, 38, 39, 40, 41, 42, 44, 47, 52, 54, 57, 59, 60, 63, 70, 71, 73, 75, 83, 84, 88, 95, 96, 97, 98, 99, 105], "argument": [1, 2, 3, 5, 10, 11, 17, 24, 28, 31, 32, 33, 38, 41, 42, 43, 44, 49, 52, 54, 58, 60, 61, 62, 63, 65, 68, 69, 70, 71, 73, 77, 78, 79, 81, 87, 90, 91, 94, 95, 96, 97, 102, 103, 106, 108], "when": [1, 2, 3, 4, 5, 10, 13, 15, 24, 27, 38, 42, 44, 47, 49, 52, 54, 55, 57, 60, 63, 65, 66, 68, 70, 71, 73, 74, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 101, 105, 106, 107, 108], "The": [1, 2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 60, 61, 62, 63, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108], "rate": [1, 2, 3, 10, 39, 57, 88, 108], "set": [1, 2, 3, 5, 9, 10, 13, 14, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 38, 41, 42, 44, 48, 49, 51, 52, 53, 55, 57, 60, 61, 63, 66, 68, 69, 70, 71, 73, 75, 77, 78, 86, 87, 89, 90, 93, 94, 95, 97, 98, 101, 102, 104, 105, 106, 107, 108], "note": [1, 2, 3, 7, 8, 10, 11, 13, 28, 32, 35, 38, 41, 42, 43, 44, 49, 52, 57, 60, 61, 66, 68, 69, 70, 71, 73, 74, 78, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "you": [1, 2, 3, 5, 7, 9, 10, 15, 17, 37, 38, 40, 41, 42, 44, 49, 54, 59, 60, 61, 63, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 101, 102, 103, 104, 105, 106, 107, 108], "high": [1, 2, 17, 41, 44, 52, 53, 57, 68, 71, 73, 86, 87, 89, 90, 91, 95, 96, 98, 99, 103, 106, 107, 108], "mai": [1, 2, 3, 4, 5, 10, 14, 22, 23, 25, 30, 33, 37, 38, 40, 41, 42, 44, 47, 49, 52, 57, 61, 62, 66, 68, 69, 70, 71, 73, 75, 78, 82, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "imposs": [1, 10, 99], "also": [1, 2, 3, 5, 7, 9, 10, 23, 35, 37, 38, 41, 42, 44, 49, 56, 60, 61, 70, 73, 78, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "low": [1, 10, 57, 61, 83, 89, 90, 94, 95, 99, 103, 107], "zero": [1, 3, 5, 38, 42, 46, 52, 57, 58, 89, 91, 102, 103, 104], "forc": [1, 2, 3, 5, 42, 89, 108], "instead": [1, 2, 3, 10, 14, 17, 34, 37, 38, 41, 42, 44, 47, 57, 60, 61, 63, 65, 69, 70, 71, 73, 74, 77, 79, 81, 84, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 106, 107, 108], "onli": [1, 2, 3, 4, 5, 7, 10, 11, 17, 24, 27, 31, 37, 38, 41, 42, 43, 44, 46, 47, 52, 53, 55, 56, 57, 58, 60, 61, 70, 71, 73, 75, 77, 81, 82, 83, 87, 88, 89, 90, 91, 94, 95, 98, 101, 102, 103, 104, 105, 106, 107, 108], "guarante": [1, 3, 5, 16, 22, 25, 30, 38, 40, 42, 45, 47, 59, 84], "produc": [1, 2, 5, 9, 10, 17, 49, 61, 71, 73, 75, 77, 83, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "higher": [1, 5, 10, 37, 44, 46, 47, 49, 55, 60, 61, 62, 73, 90, 94, 95, 97, 103], "opposit": [1, 108], "occur": [1, 3, 10, 37, 56, 68, 89, 90, 91, 97, 98, 104], "small": [1, 3, 10, 37, 41, 49, 52, 55, 57, 62, 69, 87, 91, 94, 96, 98, 102, 104], "numpi": [1, 3, 4, 5, 7, 10, 13, 19, 32, 33, 41, 42, 43, 49, 52, 55, 56, 58, 60, 65, 68, 73, 74, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "max": [1, 44, 70, 71, 90, 91, 95, 98, 104], "tri": [1, 38, 42, 105], "befor": [1, 2, 3, 38, 42, 55, 57, 70, 73, 78, 86, 87, 94, 95, 97, 98, 99, 101, 104, 106], "option": [1, 2, 3, 4, 5, 7, 8, 9, 13, 14, 17, 24, 29, 31, 37, 38, 41, 42, 44, 47, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 78, 81, 82, 83, 86, 88, 89, 90, 91, 93, 97, 99, 102, 106, 107], "left": [1, 2, 44, 46, 55, 57, 63, 66, 69, 89, 90, 102, 103, 104, 107], "stochast": 1, "exceed": 1, "m": [1, 5, 38, 42, 48, 49, 52, 53, 61, 66, 68, 69, 70, 89, 90, 96, 101, 102, 103, 108], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 38, 42, 60, 97, 99, 107], "length": [1, 5, 13, 27, 28, 37, 39, 44, 57, 63, 66, 70, 71, 73, 75, 78, 82, 86, 88, 98, 102, 104, 107, 108], "must": [1, 2, 3, 4, 5, 7, 17, 37, 38, 39, 40, 42, 44, 47, 49, 50, 55, 57, 59, 60, 61, 62, 63, 70, 71, 73, 75, 77, 78, 79, 81, 82, 88, 95, 98, 101, 105, 107, 108], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 13, 37, 41, 44, 50, 57, 58, 61, 63, 69, 75, 77, 78, 79, 81, 82, 86, 87, 88, 97, 98, 101, 102, 103, 107, 108], "ball": [1, 96], "bin": [1, 3, 63, 89, 90, 104], "ensur": [1, 2, 10, 38, 42, 52, 54, 55, 57, 58, 60, 68, 71, 73, 86, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 104, 105, 106], "most": [1, 3, 5, 7, 10, 17, 37, 41, 44, 49, 60, 61, 62, 63, 66, 68, 69, 70, 71, 74, 77, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107], "least": [1, 4, 10, 19, 32, 37, 41, 61, 62, 68, 71, 81, 91, 97, 98, 101, 104, 107], "int_arrai": [1, 57], "can": [2, 3, 4, 5, 7, 8, 9, 14, 15, 17, 34, 35, 37, 38, 39, 40, 41, 42, 44, 48, 49, 50, 52, 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 78, 79, 82, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 98, 102, 103, 104, 105, 106, 107, 108], "model": [2, 3, 4, 5, 9, 10, 11, 17, 19, 31, 33, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 54, 56, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 84, 89, 90, 95, 96, 100, 105, 107, 108], "For": [2, 3, 5, 7, 9, 10, 12, 17, 23, 36, 37, 38, 41, 42, 44, 47, 49, 52, 55, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 77, 79, 81, 82, 83, 86, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108], "regular": [2, 3, 41, 60], "multi": [2, 3, 4, 10, 33, 37, 38, 41, 42, 44, 48, 49, 50, 57, 58, 62, 63, 64, 65, 70, 71, 83, 95, 97, 98, 99, 100], "task": [2, 5, 7, 10, 11, 12, 13, 15, 16, 17, 26, 31, 34, 37, 41, 47, 49, 50, 55, 57, 61, 63, 71, 73, 83, 87, 88, 94, 95, 96, 97, 98, 99, 102, 104, 106, 107, 108], "cleanlearn": [2, 3, 10, 24, 31, 38, 57, 60, 72, 73, 74, 83, 84, 86, 87, 98, 106], "wrap": [2, 38, 42, 51, 60, 70, 73, 83, 86, 87, 89, 90, 93, 94, 99, 106], "instanc": [2, 3, 5, 6, 7, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 60, 69, 70, 73, 78, 86, 88, 89, 90, 91, 93, 94, 97, 98, 99, 103], "sklearn": [2, 3, 4, 5, 8, 10, 19, 32, 37, 42, 49, 53, 54, 57, 60, 70, 73, 74, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106], "classifi": [2, 3, 42, 49, 57, 61, 64, 70, 71, 83, 84, 86, 87, 88, 93, 94, 97, 101, 102, 104, 105, 107, 108], "adher": [2, 42, 73], "estim": [2, 3, 4, 5, 9, 14, 23, 37, 41, 42, 44, 47, 57, 61, 62, 63, 68, 70, 73, 75, 77, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 103, 104, 105, 106, 107, 108], "api": [2, 3, 15, 60, 66, 69, 70, 73, 84, 95, 97, 106], "defin": [2, 3, 5, 7, 10, 15, 23, 37, 38, 39, 41, 42, 44, 71, 73, 75, 89, 90, 93, 96, 97, 98, 101, 104, 108], "four": [2, 10, 96, 99, 108], "clf": [2, 3, 5, 49, 73, 83, 86, 93, 95, 97, 98, 99, 102], "fit": [2, 3, 5, 8, 10, 19, 40, 42, 52, 54, 59, 60, 70, 72, 73, 83, 86, 87, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 105, 106, 108], "sample_weight": [2, 42, 73, 99], "predict_proba": [2, 5, 37, 40, 42, 49, 59, 60, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 104], "predict": [2, 3, 4, 5, 8, 9, 10, 11, 17, 23, 24, 26, 29, 31, 33, 35, 37, 40, 41, 42, 43, 44, 46, 47, 49, 50, 56, 57, 59, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 84, 87, 96, 97, 99, 100, 104, 106, 107, 108], "score": [2, 3, 4, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 43, 44, 46, 49, 55, 61, 62, 63, 65, 66, 68, 69, 70, 71, 72, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 104, 106], "data": [2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 39, 40, 41, 42, 43, 44, 49, 50, 52, 53, 54, 57, 59, 60, 61, 62, 63, 64, 68, 70, 71, 72, 73, 78, 79, 80, 81, 82, 84, 87, 91, 92, 100, 105], "e": [2, 3, 5, 10, 13, 23, 33, 37, 38, 41, 42, 44, 47, 49, 50, 52, 57, 58, 61, 62, 63, 64, 66, 69, 70, 71, 73, 75, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "featur": [2, 3, 4, 5, 8, 10, 11, 17, 19, 20, 24, 27, 28, 29, 31, 32, 49, 52, 53, 54, 57, 70, 73, 83, 86, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 106], "element": [2, 3, 5, 37, 43, 44, 46, 57, 61, 63, 71, 78, 79, 81, 87, 88, 94, 95, 97, 108], "first": [2, 5, 10, 18, 27, 28, 37, 41, 49, 52, 57, 61, 62, 66, 69, 71, 73, 86, 87, 88, 89, 91, 93, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "index": [2, 10, 27, 37, 44, 51, 52, 54, 56, 57, 58, 62, 71, 73, 78, 81, 82, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "should": [2, 3, 5, 7, 10, 15, 23, 27, 32, 33, 37, 38, 41, 42, 44, 46, 47, 49, 52, 54, 55, 56, 57, 60, 61, 62, 65, 66, 68, 69, 70, 71, 73, 74, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "correspond": [2, 3, 5, 10, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 37, 38, 41, 42, 43, 44, 46, 47, 49, 52, 56, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 75, 78, 79, 81, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "differ": [2, 5, 7, 10, 14, 16, 22, 25, 27, 28, 30, 37, 38, 40, 41, 42, 44, 45, 49, 52, 55, 57, 58, 59, 61, 66, 68, 70, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 104, 105, 106], "sampl": [2, 3, 5, 8, 10, 17, 21, 44, 46, 49, 52, 53, 54, 63, 66, 69, 71, 73, 74, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 106, 107, 108], "size": [2, 10, 32, 38, 41, 42, 44, 49, 52, 53, 63, 68, 69, 73, 75, 77, 87, 91, 93, 97, 99, 101, 102, 103, 105, 107], "here": [2, 5, 7, 10, 15, 41, 44, 47, 60, 61, 62, 63, 65, 66, 69, 70, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "re": [2, 5, 38, 42, 54, 56, 61, 73, 83, 86, 87, 88, 89, 93, 94, 97, 98, 106, 107, 108], "weight": [2, 10, 38, 39, 42, 49, 52, 61, 68, 71, 73, 87, 88, 89, 90, 94], "loss": [2, 39, 60, 71, 73, 91, 98], "while": [2, 3, 10, 38, 41, 42, 48, 49, 57, 73, 83, 91, 95, 97, 98, 99, 101, 102, 106], "train": [2, 3, 4, 5, 9, 10, 17, 19, 33, 38, 39, 40, 42, 49, 57, 60, 61, 66, 69, 70, 73, 74, 84, 89, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103, 105, 107, 108], "support": [2, 3, 4, 5, 13, 15, 34, 35, 41, 43, 49, 57, 58, 60, 70, 71, 81, 83, 84, 88, 89, 90, 91, 95, 97], "your": [2, 3, 5, 9, 10, 17, 37, 38, 40, 41, 42, 44, 49, 54, 57, 59, 60, 61, 62, 63, 65, 70, 71, 73, 74, 75, 77, 78, 84, 86, 87, 88, 91, 93, 96, 98, 101, 102, 103, 104, 105, 106, 107, 108], "recommend": [2, 5, 7, 10, 14, 17, 41, 44, 61, 89, 90, 91, 95, 97, 98, 105, 106], "furthermor": 2, "correctli": [2, 3, 10, 37, 38, 42, 44, 47, 52, 58, 62, 63, 68, 69, 73, 75, 87, 94, 95, 97, 102, 103, 106, 107], "clonabl": [2, 73], "via": [2, 5, 7, 10, 11, 14, 17, 19, 23, 37, 39, 41, 42, 49, 53, 57, 61, 66, 69, 70, 71, 73, 74, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 100, 102, 103, 104, 105, 106, 107, 108], "base": [2, 3, 4, 5, 7, 10, 13, 14, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 43, 44, 47, 48, 49, 52, 53, 55, 56, 57, 58, 60, 61, 62, 63, 65, 68, 70, 71, 73, 74, 77, 79, 81, 86, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "clone": [2, 73, 102], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 41, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 58, 65, 69, 73, 79, 84, 89, 95, 97, 99, 101, 102, 103, 104, 106, 108], "multipl": [2, 3, 5, 10, 13, 14, 35, 37, 44, 55, 56, 61, 62, 63, 65, 68, 69, 73, 83, 89, 90, 91, 93, 97, 100, 102, 103, 106], "g": [2, 3, 5, 10, 13, 23, 33, 37, 38, 42, 44, 50, 52, 57, 63, 64, 66, 69, 70, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106], "manual": [2, 73, 86, 87, 88, 95, 97, 104, 105, 106, 108], "pytorch": [2, 38, 39, 42, 73, 83, 88, 91, 97, 100, 102, 107], "call": [2, 3, 5, 6, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 49, 57, 60, 70, 73, 87, 88, 89, 90, 94, 97, 99, 102, 104, 105, 106, 107, 108], "__init__": [2, 39, 73, 91], "independ": [2, 3, 10, 62, 73, 94, 95, 98, 105, 106, 108], "compat": [2, 38, 41, 42, 54, 60, 73, 74, 77, 81, 83, 86, 87, 95, 97, 105, 106], "neural": [2, 39, 60, 70, 73, 88, 91, 97, 102, 104, 106], "network": [2, 38, 39, 42, 60, 70, 73, 87, 88, 91, 94, 97, 102, 104, 106], "typic": [2, 10, 38, 42, 54, 70, 73, 86, 87, 88, 90, 91, 93, 94, 98, 104, 105], "initi": [2, 3, 14, 19, 38, 42, 52, 61, 73, 86, 94, 97, 98], "insid": [2, 42, 73, 97, 99], "There": [2, 3, 7, 52, 83, 99, 101], "two": [2, 3, 10, 19, 27, 37, 38, 41, 42, 50, 52, 53, 54, 57, 66, 68, 69, 84, 87, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106, 107, 108], "new": [2, 7, 9, 10, 15, 23, 38, 41, 42, 48, 52, 56, 57, 61, 73, 87, 88, 89, 94, 96, 97, 98, 104, 105, 108], "notion": 2, "confid": [2, 3, 10, 23, 37, 41, 44, 47, 49, 57, 61, 62, 63, 66, 68, 69, 70, 71, 73, 77, 81, 83, 86, 91, 93, 94, 98, 99, 101, 102, 103, 105, 107, 108], "packag": [2, 5, 7, 9, 10, 12, 16, 36, 40, 44, 45, 57, 59, 60, 66, 69, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "prune": [2, 3, 44, 63, 73, 84, 98, 103], "everyth": [2, 69, 99], "els": [2, 69, 89, 91, 95, 96, 97, 98, 101, 102, 103], "mathemat": [2, 3, 10, 47, 102], "keep": [2, 14, 15, 57, 83, 89, 95, 96, 97, 98, 107], "belong": [2, 3, 10, 37, 44, 46, 47, 52, 62, 63, 64, 65, 70, 71, 75, 79, 81, 82, 90, 91, 98, 99, 102, 104, 107, 108], "2": [2, 3, 4, 5, 7, 10, 11, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 50, 52, 54, 55, 56, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 74, 78, 79, 81, 82, 96, 97, 105], "error": [2, 3, 5, 10, 38, 42, 43, 44, 46, 47, 57, 62, 63, 65, 66, 68, 69, 71, 73, 75, 77, 78, 81, 84, 86, 88, 89, 90, 93, 94, 95, 96, 98, 100], "erron": [2, 3, 37, 44, 47, 57, 62, 63, 71, 73, 74, 75, 104, 106], "import": [2, 3, 4, 5, 7, 8, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 41, 43, 49, 52, 55, 56, 61, 65, 68, 73, 74, 79, 81, 82, 83, 86, 87, 93, 94, 95, 97, 98, 102, 103, 104, 106, 107, 108], "linear_model": [2, 5, 37, 57, 73, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logisticregress": [2, 3, 5, 37, 57, 83, 87, 88, 89, 90, 94, 95, 97, 99, 101, 104], "logreg": 2, "cl": [2, 15, 31, 73, 83, 86, 87, 97, 99, 106], "pass": [2, 3, 5, 8, 10, 11, 13, 14, 15, 17, 24, 31, 34, 38, 41, 42, 44, 48, 49, 52, 54, 57, 60, 61, 63, 69, 70, 71, 73, 78, 79, 83, 87, 88, 89, 90, 94, 96, 97, 99, 101, 103, 104, 106], "x_train": [2, 86, 89, 90, 99, 101, 102, 106], "labels_maybe_with_error": 2, "had": [2, 3, 73, 103], "issu": [2, 3, 4, 5, 6, 8, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 37, 38, 40, 41, 42, 43, 44, 52, 59, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 87, 92, 100, 101, 105, 106], "pred": [2, 44, 57, 86, 87, 98, 105, 106], "x_test": [2, 86, 89, 90, 99, 102, 106], "might": [2, 5, 10, 52, 61, 73, 78, 86, 87, 89, 90, 91, 95, 97, 103], "case": [2, 3, 10, 14, 37, 49, 52, 61, 73, 86, 87, 88, 89, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106, 108], "standard": [2, 3, 5, 31, 37, 44, 60, 62, 63, 65, 71, 73, 83, 86, 89, 90, 93, 96, 98, 99, 103], "adapt": [2, 38, 40, 57, 59, 73, 104], "skorch": [2, 73, 83, 97], "kera": [2, 59, 66, 69, 73, 83, 97, 103], "scikera": [2, 60, 73, 97], "open": [2, 41, 95, 96, 103, 108], "doesn": [2, 10, 73, 83], "t": [2, 3, 4, 7, 10, 18, 28, 29, 38, 39, 41, 42, 43, 44, 49, 55, 56, 65, 70, 71, 73, 79, 81, 82, 83, 89, 90, 91, 93, 94, 95, 96, 98, 99, 102, 103, 106, 108], "alreadi": [2, 5, 10, 17, 38, 41, 42, 47, 52, 60, 61, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103, 104, 106], "exist": [2, 5, 10, 13, 19, 38, 41, 42, 54, 56, 60, 66, 68, 70, 73, 83, 84, 86, 87, 89, 90, 94, 101, 108], "made": [2, 5, 17, 38, 42, 53, 73, 86, 87, 91, 94, 95, 97, 98, 101, 103, 105, 106], "easi": [2, 12, 47, 73, 89, 90, 96, 97, 99, 102], "inherit": [2, 7, 39, 73], "baseestim": [2, 42, 73], "yourmodel": [2, 73], "def": [2, 7, 15, 38, 42, 60, 73, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "self": [2, 3, 5, 7, 10, 13, 14, 15, 17, 32, 38, 39, 41, 42, 44, 49, 70, 71, 73, 86, 89, 91, 95, 96, 98, 102, 107, 108], "refer": [2, 10, 17, 38, 42, 43, 62, 63, 65, 66, 68, 69, 70, 73, 77, 78, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 105, 106], "origin": [2, 5, 10, 42, 43, 44, 56, 57, 60, 62, 63, 66, 69, 70, 73, 74, 77, 79, 81, 86, 87, 89, 91, 93, 94, 97, 99, 103, 104, 106, 108], "total": [2, 3, 4, 37, 41, 57, 62, 82, 91, 97, 107], "state": [2, 3, 5, 38, 39, 42, 48, 73, 99, 102, 103, 108], "art": [2, 39, 99, 102], "northcutt": [2, 3, 37, 70, 71], "et": [2, 3, 37, 39, 70, 71], "al": [2, 3, 37, 39, 70, 71], "2021": [2, 3, 37, 70, 71], "weak": [2, 69], "supervis": [2, 10, 89, 90, 97, 101], "find": [2, 5, 9, 10, 14, 15, 17, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48, 54, 56, 57, 59, 66, 69, 70, 71, 73, 75, 79, 81, 84, 89, 98, 100, 105], "uncertainti": [2, 10, 46, 70, 73, 97, 104, 106], "It": [2, 3, 5, 7, 10, 13, 14, 17, 23, 28, 31, 33, 34, 35, 38, 42, 44, 47, 49, 52, 53, 55, 61, 68, 69, 73, 83, 89, 90, 91, 97, 99, 102, 105], "work": [2, 3, 7, 10, 13, 31, 37, 38, 41, 42, 44, 47, 56, 57, 58, 60, 61, 71, 73, 83, 84, 87, 89, 90, 95, 96, 98, 104, 106], "includ": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 38, 40, 41, 42, 52, 56, 57, 59, 61, 62, 65, 66, 70, 71, 73, 77, 78, 79, 81, 83, 84, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 104, 108], "deep": [2, 40, 42, 59, 60, 73, 94], "see": [2, 3, 5, 7, 10, 14, 15, 34, 37, 38, 41, 42, 43, 44, 49, 54, 57, 60, 62, 63, 65, 66, 69, 70, 71, 73, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 104, 106, 107, 108], "subfield": 2, "theori": [2, 99], "machin": [2, 4, 5, 9, 10, 15, 17, 34, 40, 55, 59, 73, 86, 87, 89, 90, 95, 96, 98, 101], "across": [2, 3, 5, 7, 10, 14, 23, 37, 41, 49, 62, 69, 70, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 105, 106], "varieti": [2, 86, 87, 97], "like": [2, 3, 5, 6, 7, 10, 15, 33, 37, 38, 41, 42, 44, 47, 57, 60, 61, 62, 65, 66, 68, 71, 73, 74, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "pu": [2, 57], "input": [2, 3, 5, 9, 17, 27, 37, 38, 41, 42, 47, 49, 52, 53, 56, 57, 58, 60, 69, 73, 83, 84, 87, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103, 106, 107, 108], "discret": [2, 35, 44, 47, 57, 70, 71, 75, 77, 78], "vector": [2, 3, 4, 5, 10, 17, 44, 47, 49, 50, 52, 57, 70, 71, 83, 87, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103, 104, 107, 108], "would": [2, 3, 5, 10, 38, 41, 42, 44, 53, 57, 63, 73, 83, 87, 89, 91, 97, 98, 99, 104, 106, 108], "obtain": [2, 5, 8, 10, 17, 44, 61, 63, 66, 69, 71, 74, 88, 90, 94, 97, 101, 103, 105, 107, 108], "been": [2, 4, 37, 44, 47, 52, 56, 57, 61, 62, 66, 68, 70, 71, 73, 88, 89, 93, 97, 98, 99, 101, 102, 103, 104, 107, 108], "dure": [2, 10, 17, 52, 54, 70, 73, 86, 87, 88, 93, 94, 95, 97, 99, 102, 105, 106, 108], "denot": [2, 3, 47, 49, 57, 63, 70, 71, 81], "tild": 2, "paper": [2, 4, 10, 61, 70, 79, 81, 96, 99, 101, 104, 106, 108], "cv_n_fold": [2, 3, 73, 87], "5": [2, 3, 4, 5, 8, 10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 42, 44, 46, 48, 49, 57, 61, 62, 65, 66, 69, 73, 74, 81, 87, 89, 94, 96, 97, 102, 103, 104, 105, 107, 108], "converge_latent_estim": [2, 3], "pulearn": [2, 57], "find_label_issues_kwarg": [2, 10, 73, 84, 97, 99], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 63, 79, 97], "clean": [2, 68, 71, 73, 74, 83, 86, 87, 89, 90, 96, 106], "even": [2, 3, 7, 9, 10, 37, 41, 46, 47, 57, 73, 88, 95, 97, 98, 99, 101, 102, 103], "messi": [2, 73, 99], "ridden": [2, 73], "autom": [2, 9, 10, 73, 83, 90, 96, 97, 98], "robust": [2, 47, 52, 73, 90, 95, 97, 98], "prone": [2, 73], "out": [2, 3, 5, 10, 17, 29, 38, 42, 44, 49, 52, 60, 63, 64, 66, 69, 70, 71, 73, 74, 82, 83, 84, 87, 95, 96, 97, 99, 100, 102, 103, 104, 106, 107, 108], "current": [2, 3, 5, 7, 10, 11, 14, 15, 23, 38, 42, 43, 44, 49, 61, 68, 73, 89, 90, 97, 98, 101, 103], "intend": [2, 14, 15, 16, 17, 33, 34, 35, 45, 52, 61, 77, 81, 88, 89, 90, 94, 99], "A": [2, 3, 4, 5, 7, 10, 13, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 42, 44, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 60, 61, 62, 65, 68, 69, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 105, 108], "follow": [2, 3, 10, 15, 31, 35, 37, 38, 41, 42, 49, 51, 55, 61, 62, 66, 68, 69, 70, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "tutori": [2, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "repo": 2, "wrapper": [2, 60, 86, 87, 88, 106], "around": [2, 68, 89, 90, 98, 103, 104, 108], "fasttext": 2, "store": [2, 4, 5, 10, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 70, 73, 86, 87, 93, 94, 95, 96, 97, 107, 108], "along": [2, 49, 63, 81, 89, 90, 91, 95, 97, 104], "dimens": [2, 57, 75, 78, 91, 97, 104, 107], "select": [2, 9, 10, 27, 51, 61, 71, 91, 95, 98, 101, 104], "split": [2, 3, 5, 10, 13, 41, 49, 56, 57, 73, 86, 88, 89, 90, 91, 93, 94, 95, 96, 99, 100, 102, 105, 108], "cross": [2, 3, 10, 37, 44, 47, 48, 49, 63, 66, 69, 71, 73, 74, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 100, 102, 103, 106, 107, 108], "fold": [2, 3, 37, 44, 47, 73, 86, 88, 93, 96, 97, 103, 107], "By": [2, 37, 62, 63, 73, 89, 95, 107], "need": [2, 3, 10, 11, 37, 38, 41, 42, 44, 52, 54, 62, 63, 65, 70, 73, 83, 87, 88, 89, 90, 94, 95, 97, 98, 99, 101, 102, 103, 107], "holdout": [2, 3, 73], "comput": [2, 3, 4, 5, 7, 8, 10, 20, 21, 23, 24, 27, 28, 29, 32, 37, 38, 39, 41, 42, 44, 46, 47, 48, 49, 52, 53, 54, 57, 61, 62, 63, 65, 68, 69, 70, 71, 73, 74, 75, 77, 83, 84, 87, 89, 90, 96, 99, 100, 103, 104, 106, 107], "them": [2, 3, 5, 7, 9, 10, 12, 13, 28, 33, 36, 38, 40, 41, 42, 44, 54, 59, 61, 70, 73, 84, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 102, 104, 106, 107, 108], "numer": [2, 3, 4, 5, 10, 14, 23, 31, 35, 49, 52, 53, 68, 70, 73, 78, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 94, 95, 98, 99, 101, 102, 104, 106], "consist": [2, 3, 38, 42, 51, 57, 61, 95, 107, 108], "latent": [2, 3, 47], "thei": [2, 3, 5, 16, 22, 25, 27, 30, 38, 39, 40, 42, 44, 45, 52, 55, 57, 60, 63, 68, 71, 73, 74, 77, 81, 83, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106, 108], "relat": [2, 3, 10, 14, 20, 21, 27, 28, 29, 32, 47, 57, 62, 73, 90, 94], "close": [2, 3, 10, 41, 47, 70, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103], "form": [2, 3, 10, 38, 39, 42, 47, 56, 57, 71, 73, 97], "equival": [2, 3, 38, 42, 47, 70, 104, 106], "iter": [2, 3, 37, 38, 42, 44, 57, 62, 63, 73, 97, 101, 107], "enforc": [2, 38, 42, 57], "perfectli": [2, 37, 62, 99], "certain": [2, 3, 5, 38, 42, 60, 69, 73, 89, 90, 95, 96, 103, 104], "dict": [2, 3, 5, 10, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 41, 42, 44, 48, 49, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 81, 89, 90, 91, 97, 98, 108], "keyword": [2, 3, 5, 10, 11, 17, 24, 28, 31, 38, 41, 42, 44, 46, 49, 52, 54, 56, 60, 61, 63, 69, 70, 71, 73, 78, 79, 81, 89], "filter": [2, 3, 10, 41, 43, 56, 62, 64, 65, 67, 69, 76, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 91, 94, 95, 96, 97, 98, 102, 103, 106, 107, 108], "find_label_issu": [2, 3, 10, 31, 40, 41, 43, 44, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 86, 87, 97, 102, 103, 106, 107, 108], "particularli": [2, 83, 98, 101, 104], "filter_bi": [2, 3, 41, 44, 63, 84, 97], "frac_nois": [2, 44, 63, 79, 97], "min_examples_per_class": [2, 44, 63, 97, 99], "impact": [2, 4, 10, 89, 90, 91, 95], "ml": [2, 4, 5, 9, 10, 16, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 101, 102, 106], "accuraci": [2, 39, 71, 86, 87, 88, 91, 97, 98, 99, 101, 104, 106, 107], "n_job": [2, 41, 44, 63, 75, 77, 79, 97, 98, 104, 107], "disabl": [2, 38, 42, 44, 104], "process": [2, 3, 7, 14, 17, 33, 38, 41, 42, 44, 52, 56, 61, 63, 69, 75, 77, 79, 87, 88, 89, 95, 97, 98, 101, 105], "caus": [2, 44, 49, 89, 90, 95, 97], "rank": [2, 3, 10, 37, 41, 43, 44, 49, 62, 63, 64, 66, 67, 69, 70, 72, 76, 78, 79, 80, 82, 83, 84, 86, 87, 89, 90, 96, 97, 102, 103, 104, 107, 108], "get_label_quality_scor": [2, 40, 41, 43, 44, 45, 49, 61, 63, 64, 65, 66, 67, 68, 71, 72, 74, 76, 77, 79, 80, 81, 84, 97, 99, 102, 103, 107, 108], "adjust_pred_prob": [2, 10, 65, 70, 71, 99], "control": [2, 5, 9, 10, 17, 41, 44, 61, 69, 70, 73, 79, 81, 89, 90, 95, 96, 97], "how": [2, 3, 5, 10, 13, 14, 15, 17, 23, 37, 38, 39, 41, 42, 47, 57, 61, 62, 65, 66, 68, 70, 71, 73, 77, 81, 83, 86, 87, 89, 90, 91, 93, 94, 95, 96, 98, 103, 104, 105, 106, 107], "much": [2, 10, 37, 41, 44, 73, 95, 96, 97, 99, 101, 104], "output": [2, 3, 5, 10, 17, 33, 38, 39, 42, 47, 57, 60, 61, 62, 66, 68, 69, 70, 73, 77, 78, 81, 82, 83, 84, 87, 88, 89, 91, 94, 96, 97, 98, 103, 104, 105, 106], "print": [2, 5, 7, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 57, 61, 62, 63, 68, 70, 71, 73, 75, 77, 78, 82, 84, 86, 87, 88, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "suppress": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78, 107, 108], "statement": [2, 41, 61, 68, 70, 71, 73, 75, 77, 78], "big": [2, 41, 63, 69, 73, 99], "limit": [2, 5, 17, 41, 52, 63, 95, 103, 107, 108], "memori": [2, 38, 41, 42, 63, 69, 75, 77, 89, 107], "experiment": [2, 38, 39, 41, 42, 43, 63, 84, 97], "label_issues_batch": [2, 40, 63, 97], "find_label_issues_batch": [2, 40, 41, 63, 97], "pred_prob": [2, 3, 5, 8, 10, 11, 17, 24, 26, 27, 29, 32, 33, 37, 41, 43, 44, 46, 47, 48, 49, 50, 57, 58, 61, 62, 63, 65, 66, 69, 70, 71, 75, 77, 78, 79, 81, 82, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106], "threshold": [2, 3, 4, 7, 10, 19, 20, 21, 23, 29, 31, 32, 41, 55, 68, 69, 70, 71, 77, 81, 89, 95, 103, 104, 107, 108], "inverse_noise_matrix": [2, 3, 10, 47, 57, 84, 99], "label_issu": [2, 41, 44, 63, 66, 73, 75, 84, 86, 87, 88, 91, 94, 97, 98, 99, 102, 106], "clf_kwarg": [2, 3, 10, 73], "clf_final_kwarg": [2, 73], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 37, 41, 44, 46, 52, 61, 62, 63, 65, 66, 68, 69, 71, 73, 74, 77, 81, 83, 88, 91, 93, 94, 99, 101, 103, 105, 106], "result": [2, 3, 9, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 41, 42, 44, 46, 55, 57, 63, 65, 66, 69, 71, 73, 74, 75, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 106, 107, 108], "identifi": [2, 3, 5, 7, 9, 10, 13, 17, 28, 34, 37, 41, 43, 44, 52, 63, 66, 69, 71, 73, 74, 75, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 99, 102, 104, 106, 107, 108], "final": [2, 10, 73, 86, 93, 95, 98, 103, 105, 106], "remain": [2, 73, 84, 86, 87, 91, 95, 98, 102, 106, 108], "datasetlik": [2, 57, 73], "beyond": [2, 5, 7, 9, 10, 12, 36, 83, 86, 87, 106, 107], "pd": [2, 3, 5, 7, 14, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 48, 60, 61, 62, 73, 81, 86, 87, 88, 89, 90, 93, 94, 95, 97, 98, 99, 101, 106, 108], "datafram": [2, 3, 5, 7, 13, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 41, 48, 57, 58, 60, 61, 62, 73, 78, 82, 84, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 106, 107, 108], "scipi": [2, 4, 5, 14, 53, 57, 70, 95], "spars": [2, 4, 5, 10, 14, 17, 19, 32, 52, 57, 58, 93, 95], "csr_matrix": [2, 4, 5, 14, 17, 19, 32, 52, 95], "torch": [2, 38, 39, 42, 87, 88, 91, 94, 96, 104], "util": [2, 5, 10, 17, 34, 38, 39, 42, 45, 52, 60, 61, 66, 69, 73, 83, 84, 88, 89, 90, 91, 97, 99, 104], "tensorflow": [2, 57, 60, 83, 88, 97], "object": [2, 5, 10, 13, 14, 17, 33, 34, 38, 39, 41, 42, 49, 52, 54, 57, 58, 60, 63, 66, 67, 68, 69, 70, 73, 81, 83, 87, 88, 90, 91, 93, 97, 98, 99, 100, 102, 106], "list": [2, 3, 5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 39, 41, 42, 43, 44, 50, 52, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 77, 78, 79, 81, 82, 84, 87, 88, 89, 90, 91, 95, 96, 97, 98, 99, 102, 103, 106, 108], "index_list": 2, "subset": [2, 3, 5, 17, 37, 41, 44, 57, 71, 78, 82, 86, 87, 88, 91, 93, 94, 95, 97, 102, 103, 104, 105, 106, 108], "wa": [2, 3, 13, 15, 41, 55, 57, 61, 62, 68, 70, 82, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 105, 107, 108], "abl": [2, 3, 10, 73, 88, 97, 98, 99, 101, 102], "format": [2, 3, 5, 10, 13, 33, 38, 41, 42, 44, 47, 48, 49, 50, 52, 57, 58, 60, 61, 62, 63, 66, 69, 70, 71, 73, 75, 77, 78, 81, 82, 86, 89, 90, 91, 93, 95, 96, 98, 101, 106, 107, 108], "make": [2, 3, 5, 19, 38, 41, 42, 49, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 104, 106], "sure": [2, 5, 41, 44, 49, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 101, 102, 103, 104, 106], "shuffl": [2, 10, 57, 88, 91, 94, 95, 102, 104], "ha": [2, 3, 5, 6, 10, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 43, 47, 49, 52, 56, 57, 61, 66, 68, 73, 79, 81, 82, 83, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 102, 103, 104, 105, 106, 108], "batch": [2, 41, 57, 60, 61, 75, 77, 91, 97, 104], "order": [2, 5, 10, 35, 37, 38, 42, 43, 44, 47, 48, 49, 55, 57, 61, 62, 63, 66, 69, 70, 71, 75, 78, 79, 81, 82, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 106, 107, 108], "destroi": [2, 57], "oper": [2, 38, 41, 42, 52, 57, 60, 71, 83, 86, 87, 94, 97, 104], "eg": [2, 5, 10, 57, 66, 69, 89, 90, 97, 98], "repeat": [2, 57, 61, 101, 104], "appli": [2, 35, 38, 40, 42, 44, 49, 50, 52, 56, 57, 65, 70, 79, 86, 87, 88, 89, 90, 91, 93, 95, 97, 98, 101, 102, 104, 105, 106, 107], "array_lik": [2, 3, 37, 44, 57, 63, 70, 74], "some": [2, 3, 5, 10, 15, 23, 37, 38, 40, 42, 44, 47, 52, 56, 57, 59, 61, 62, 63, 65, 66, 69, 70, 71, 73, 75, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "seri": [2, 3, 41, 57, 58, 73, 81, 97, 98], "row": [2, 3, 5, 10, 14, 28, 33, 37, 41, 44, 46, 47, 52, 53, 57, 61, 62, 63, 65, 70, 71, 73, 78, 79, 81, 82, 86, 88, 91, 93, 94, 95, 96, 97, 98, 101, 102, 104, 108], "rather": [2, 3, 5, 10, 27, 37, 57, 60, 61, 68, 77, 81, 87, 96, 98, 101, 105, 106, 107, 108], "leav": [2, 44], "per": [2, 3, 5, 7, 10, 14, 37, 41, 44, 49, 56, 61, 62, 63, 65, 68, 69, 71, 74, 75, 77, 81, 90, 97, 103, 108], "determin": [2, 3, 10, 13, 17, 23, 27, 31, 37, 41, 44, 49, 52, 57, 61, 63, 66, 68, 71, 77, 81, 89, 95, 97, 98, 101, 103, 104, 106], "cutoff": [2, 3, 53, 104], "consid": [2, 3, 4, 5, 10, 14, 17, 24, 27, 29, 32, 37, 38, 42, 44, 52, 54, 57, 61, 68, 70, 71, 74, 77, 81, 86, 87, 88, 91, 93, 94, 95, 97, 98, 99, 103, 104, 105, 106, 107], "section": [2, 3, 7, 10, 84, 91, 93, 95, 97, 98, 103], "3": [2, 3, 4, 5, 7, 10, 11, 35, 37, 38, 42, 44, 47, 48, 49, 50, 53, 55, 56, 57, 60, 63, 70, 71, 73, 74, 79, 81, 96, 97, 105], "equat": [2, 3, 47], "advanc": [2, 3, 5, 9, 10, 17, 68, 70, 81, 84, 90, 92, 95, 97, 98, 99], "user": [2, 3, 5, 9, 10, 15, 17, 28, 33, 34, 35, 38, 42, 44, 52, 60, 68, 70, 71, 73, 77, 81, 98, 99], "specifi": [2, 3, 4, 5, 8, 10, 14, 15, 17, 19, 32, 34, 38, 41, 42, 44, 49, 52, 54, 56, 60, 61, 62, 63, 66, 68, 70, 71, 73, 74, 82, 84, 87, 88, 90, 91, 94, 98, 101, 103, 106], "automat": [2, 3, 5, 27, 37, 83, 86, 87, 91, 93, 94, 95, 96, 97, 98, 101, 102, 103, 106, 107, 108], "greater": [2, 3, 4, 5, 7, 9, 10, 29, 41, 53, 57, 68, 90, 96, 97, 108], "count": [2, 23, 27, 37, 41, 44, 47, 57, 62, 63, 69, 84, 91, 95, 97, 103], "observ": [2, 3, 47, 54, 88, 89, 90, 95, 101, 104, 106], "mislabel": [2, 10, 37, 41, 43, 44, 47, 61, 62, 63, 66, 68, 71, 77, 79, 81, 82, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 103, 106], "one": [2, 3, 5, 7, 10, 27, 37, 38, 41, 42, 43, 44, 49, 55, 57, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 101, 104, 105, 106, 108], "get_label_issu": [2, 40, 41, 72, 73, 86, 87, 99, 106], "either": [2, 3, 4, 7, 10, 38, 41, 42, 44, 53, 61, 63, 68, 70, 71, 75, 77, 90, 95, 97, 102, 103], "boolean": [2, 7, 10, 23, 41, 44, 54, 56, 61, 63, 66, 71, 73, 75, 77, 78, 83, 87, 88, 90, 91, 94, 97, 103, 106, 107], "label_issues_mask": [2, 44, 71, 73, 84], "indic": [2, 3, 4, 5, 7, 10, 14, 23, 37, 41, 42, 43, 44, 46, 49, 52, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "its": [2, 5, 7, 9, 10, 17, 38, 41, 42, 44, 52, 54, 55, 56, 63, 66, 69, 70, 71, 73, 75, 79, 81, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 105, 106, 107, 108], "return_indices_ranked_bi": [2, 41, 44, 63, 79, 84, 86, 87, 97, 99], "significantli": [2, 10, 91, 95, 99, 101, 105], "reduc": [2, 41, 44, 57, 88, 95, 97], "time": [2, 10, 38, 41, 42, 57, 61, 82, 84, 86, 87, 89, 91, 93, 96, 97, 98, 99, 103, 104, 106, 107, 108], "take": [2, 5, 10, 37, 38, 42, 48, 49, 52, 54, 57, 60, 71, 86, 91, 93, 101, 102, 103, 108], "run": [2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 27, 28, 33, 36, 38, 41, 42, 54, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 108], "skip": [2, 10, 38, 42, 73, 88, 95, 97, 98, 102, 108], "slow": [2, 3], "step": [2, 7, 27, 49, 69, 91, 95, 98, 99, 101, 105], "caution": [2, 5, 97, 98], "previous": [2, 5, 14, 57, 70, 73, 84, 86, 88, 89, 93, 94, 98, 101, 105], "assign": [2, 7, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 38, 42, 48, 49, 57, 73, 86, 89, 91, 93, 95, 97, 106, 107, 108], "individu": [2, 4, 7, 10, 14, 27, 38, 42, 43, 61, 65, 68, 71, 73, 79, 81, 84, 86, 90, 93, 95, 96, 97, 101, 102, 103, 108], "still": [2, 41, 42, 57, 70, 86, 91, 97, 104], "extra": [2, 38, 42, 57, 60, 61, 62, 73, 91, 94, 97, 98, 101, 104], "receiv": [2, 10, 38, 42, 43, 62, 65, 66, 73, 75, 79, 90, 103], "overwritten": [2, 73], "callabl": [2, 3, 4, 10, 27, 38, 42, 49, 52, 53, 54, 56, 60, 65, 97], "x_val": 2, "y_val": 2, "map": [2, 3, 13, 41, 42, 45, 48, 56, 57, 69, 71, 73, 78, 88, 89, 90, 91, 95, 97, 99, 102, 108], "appropri": [2, 10, 17, 35, 53, 63, 71, 89, 93, 98, 102, 103], "earli": [2, 91], "stop": [2, 91], "x_valid": 2, "y_valid": 2, "could": [2, 7, 10, 23, 37, 57, 70, 86, 89, 91, 93, 95, 98, 102, 106, 108], "f": [2, 7, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106], "ignor": [2, 38, 42, 56, 60, 73, 78, 82, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "allow": [2, 37, 38, 41, 42, 46, 54, 57, 61, 69, 70, 73, 75, 77, 87, 88, 91, 95, 97, 105, 107], "access": [2, 10, 14, 38, 42, 73, 90, 91, 96, 102], "hyperparamet": [2, 65, 70, 91], "purpos": [2, 52, 89, 90, 95, 97, 102, 106], "want": [2, 5, 10, 37, 41, 52, 58, 61, 63, 73, 87, 89, 91, 94, 96, 98, 101, 103, 104, 105, 107, 108], "explicitli": [2, 8, 10, 42, 52, 73], "yourself": [2, 5, 41, 90, 95], "altern": [2, 7, 10, 49, 54, 57, 60, 61, 71, 84, 87, 88, 91, 93, 94, 96, 97, 98, 99, 101, 102, 104, 106], "same": [2, 3, 5, 7, 9, 10, 13, 15, 17, 27, 31, 38, 41, 42, 44, 52, 57, 60, 61, 63, 70, 71, 73, 77, 78, 81, 82, 83, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107], "effect": [2, 10, 28, 38, 42, 61, 70, 73, 91, 93, 94, 95, 97, 98, 104], "offer": [2, 5, 9, 10, 87, 88, 89, 90, 94, 97, 98, 99, 102], "after": [2, 3, 5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 61, 73, 87, 89, 91, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106, 107], "attribut": [2, 5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 38, 41, 42, 49, 54, 70, 73, 86, 89, 95], "label_issues_df": [2, 73, 91], "similar": [2, 10, 37, 38, 42, 54, 57, 61, 65, 66, 68, 70, 73, 77, 81, 89, 90, 91, 93, 94, 95, 97, 98, 99, 103, 104, 107], "document": [2, 3, 5, 15, 17, 37, 38, 41, 42, 43, 44, 49, 56, 60, 62, 63, 65, 68, 69, 70, 73, 77, 78, 79, 81, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "descript": [2, 5, 7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 37, 43, 57, 66, 73, 89, 90], "were": [2, 3, 5, 10, 37, 42, 52, 62, 68, 81, 86, 88, 93, 97, 99, 101, 103, 105, 107], "present": [2, 3, 5, 10, 13, 14, 21, 37, 57, 70, 78, 83, 91, 95, 97, 98, 104], "actual": [2, 3, 5, 10, 37, 52, 61, 62, 71, 90, 97, 99, 108], "num_class": [2, 37, 41, 57, 60, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 104], "uniqu": [2, 32, 57, 78, 89, 95, 97, 98, 102, 104], "given_label": [2, 5, 11, 26, 31, 37, 47, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107, 108], "normal": [2, 3, 19, 27, 32, 44, 46, 49, 55, 56, 57, 71, 95, 97, 99, 104], "trick": [2, 97], "distribut": [2, 3, 5, 10, 27, 29, 37, 42, 44, 48, 55, 61, 69, 70, 71, 83, 89, 90, 91, 93, 94, 95, 98, 103, 104], "account": [2, 37, 61, 65, 70, 71, 87, 94, 97, 99, 101, 102, 104, 106], "word": [2, 3, 56, 81, 82, 97], "remov": [2, 10, 32, 37, 38, 42, 44, 73, 83, 86, 87, 91, 94, 95, 96, 97, 98, 102, 104, 106], "so": [2, 3, 5, 6, 7, 10, 15, 27, 35, 37, 38, 41, 42, 44, 52, 57, 61, 62, 68, 71, 73, 77, 81, 88, 89, 90, 91, 94, 95, 98, 99, 102, 104, 107], "proportion": [2, 10, 44], "just": [2, 3, 5, 10, 14, 33, 37, 39, 41, 57, 60, 71, 73, 75, 83, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 102, 103, 104, 105, 106, 107], "procedur": 2, "get": [2, 3, 5, 8, 10, 11, 14, 32, 38, 39, 42, 44, 49, 55, 56, 57, 61, 63, 65, 70, 71, 73, 74, 75, 83, 86, 87, 88, 91, 94, 95, 96, 97, 98, 99, 104, 105, 106], "detect": [2, 5, 7, 9, 14, 15, 17, 19, 23, 29, 43, 52, 55, 64, 66, 67, 68, 69, 70, 71, 72, 73, 76, 80, 83, 86, 87, 89, 92, 96, 98, 100, 102, 106, 107, 108], "arg": [2, 13, 23, 28, 32, 38, 39, 42, 49, 57, 71, 73, 98], "kwarg": [2, 7, 10, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 43, 49, 52, 60, 69, 73, 75, 77, 78, 79, 97], "test": [2, 5, 10, 27, 42, 49, 52, 60, 73, 83, 86, 87, 89, 90, 91, 93, 94, 95, 100, 105, 106, 108], "expect": [2, 3, 10, 38, 42, 44, 49, 52, 61, 70, 71, 73, 86, 87, 95, 97, 98, 99, 101, 102, 103, 106, 108], "class_predict": 2, "evalu": [2, 10, 38, 39, 40, 41, 42, 69, 73, 86, 87, 88, 89, 90, 91, 97, 99, 101, 105, 106, 107], "simpli": [2, 10, 37, 71, 87, 89, 90, 93, 94, 97, 99, 102, 106, 107, 108], "quantifi": [2, 4, 5, 7, 10, 14, 44, 65, 70, 73, 83, 90, 91, 93, 94, 95, 98, 99, 103], "save_spac": [2, 10, 72, 73], "potenti": [2, 10, 37, 44, 56, 63, 66, 69, 71, 73, 75, 77, 82, 84, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "cach": [2, 87, 94], "panda": [2, 5, 7, 13, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 57, 58, 60, 61, 62, 84, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 106, 107], "unlik": [2, 10, 44, 46, 49, 60, 62, 63, 65, 81, 89, 98, 101, 102, 104, 106], "both": [2, 5, 10, 17, 27, 37, 38, 42, 44, 52, 57, 61, 63, 71, 75, 77, 82, 83, 89, 91, 97, 98, 99, 101, 108], "mask": [2, 41, 44, 56, 57, 63, 66, 71, 73, 75, 77, 78, 83, 96, 97, 101, 103, 107, 108], "prefer": [2, 71, 79, 102], "plan": 2, "subsequ": [2, 3, 38, 42, 54, 87, 94, 97, 99, 103], "invok": [2, 38, 42, 99, 105], "scratch": [2, 52, 73], "To": [2, 5, 7, 9, 10, 12, 14, 17, 27, 36, 38, 41, 42, 43, 44, 60, 61, 63, 65, 69, 70, 71, 73, 74, 75, 77, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 105, 106, 107, 108], "share": [2, 10, 71, 73], "mostli": [2, 57, 68, 73, 98, 102, 106], "longer": [2, 35, 48, 49, 56, 73, 84, 87, 94, 97, 98, 103], "info": [2, 5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 73, 81, 90, 95, 96, 108], "about": [2, 3, 5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 39, 41, 46, 61, 62, 65, 69, 73, 78, 81, 88, 89, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104], "docstr": [2, 37, 38, 42, 57, 73, 96, 99], "unless": [2, 38, 42, 52, 73, 97], "our": [2, 3, 10, 60, 61, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "is_label_issu": [2, 11, 31, 73, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "entir": [2, 10, 27, 41, 44, 47, 62, 63, 68, 71, 73, 75, 77, 78, 83, 89, 90, 95, 97, 98, 103, 104, 105, 107, 108], "accur": [2, 3, 5, 9, 10, 17, 37, 41, 44, 53, 61, 62, 63, 66, 69, 71, 73, 74, 75, 77, 78, 84, 90, 91, 93, 94, 95, 97, 98, 101, 106], "label_qu": [2, 61, 73, 87, 99, 101, 106], "measur": [2, 5, 37, 61, 62, 73, 83, 86, 95, 96, 97, 98, 99, 101, 102, 106, 107, 108], "qualiti": [2, 3, 5, 7, 9, 10, 14, 31, 32, 37, 41, 43, 44, 46, 49, 61, 62, 63, 65, 66, 68, 71, 73, 74, 77, 79, 81, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 106], "lower": [2, 4, 5, 7, 10, 14, 29, 41, 49, 55, 61, 62, 65, 68, 69, 71, 73, 74, 77, 81, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "eas": 2, "comparison": [2, 38, 42, 69, 98, 99, 101], "against": [2, 38, 42, 89, 93, 95, 97, 98, 101, 102], "predicted_label": [2, 5, 11, 26, 31, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 106, 107], "ad": [2, 38, 42, 90, 101, 106], "precis": [2, 53, 55, 63, 66, 69, 95, 96, 97, 99, 107, 108], "definit": [2, 7, 35, 49, 73, 86, 93], "accessor": [2, 73], "describ": [2, 10, 19, 61, 70, 71, 73, 79, 81, 99, 101, 102, 103, 105, 108], "precomput": [2, 4, 5, 47, 52, 73, 96], "clear": [2, 38, 42, 54, 73, 87, 94, 106], "save": [2, 5, 17, 38, 41, 42, 69, 73, 95, 97, 103, 107, 108], "space": [2, 5, 10, 70, 73, 91, 93, 95, 96], "place": [2, 38, 42, 52, 57, 73, 86, 101], "larg": [2, 9, 10, 41, 52, 73, 91, 93, 94, 97, 103, 104, 107, 108], "deploi": [2, 9, 10, 73, 91, 93, 94, 97, 98], "care": [2, 10, 38, 42, 52, 73, 94, 95, 97, 99], "avail": [2, 4, 5, 7, 10, 13, 15, 34, 42, 54, 73, 97, 98, 99, 101, 103, 106], "cannot": [2, 5, 13, 15, 57, 98, 105, 108], "anymor": 2, "classmethod": [2, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 35, 42, 49, 73], "__init_subclass__": [2, 40, 42, 72, 73], "set_": [2, 42, 73], "_request": [2, 42, 73], "pep": [2, 42, 73], "487": [2, 42, 73], "look": [2, 5, 7, 10, 17, 38, 42, 57, 73, 78, 86, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 104, 107, 108], "inform": [2, 5, 7, 10, 14, 17, 34, 38, 42, 54, 57, 61, 62, 66, 69, 73, 78, 81, 82, 83, 88, 89, 93, 94, 95, 96, 98, 99, 101, 104, 107, 108], "__metadata_request__": [2, 42, 73], "infer": [2, 42, 57, 73, 78, 82, 86, 87, 91, 101, 102], "signatur": [2, 38, 42, 73], "accept": [2, 38, 42, 54, 55, 71, 73, 89, 90, 97], "metadata": [2, 10, 42, 73, 91, 93, 94, 108], "through": [2, 5, 7, 42, 73, 87, 88, 90, 94, 95, 96, 97, 98, 101, 103, 104], "develop": [2, 9, 42, 54, 73, 97, 99, 108], "request": [2, 42, 73, 86, 87, 90, 94, 95, 96, 102, 108], "those": [2, 3, 4, 10, 41, 42, 44, 51, 60, 61, 63, 69, 73, 77, 81, 82, 83, 88, 91, 95, 97, 98, 103, 107], "http": [2, 4, 5, 7, 9, 10, 12, 19, 36, 38, 39, 41, 42, 46, 54, 57, 66, 69, 70, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "www": [2, 42, 73, 95, 104], "org": [2, 4, 19, 38, 39, 42, 54, 57, 70, 73, 97, 98, 99, 108], "dev": [2, 42, 73], "0487": [2, 42, 73], "get_metadata_rout": [2, 40, 42, 72, 73], "rout": [2, 42, 73], "pleas": [2, 38, 42, 60, 73, 83, 87, 88, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 104, 106, 108], "guid": [2, 7, 10, 42, 73, 84, 88, 89, 90, 91, 92, 93, 94, 95, 98, 99], "mechan": [2, 38, 42, 73], "metadatarequest": [2, 42, 73], "encapsul": [2, 17, 42, 68, 73], "get_param": [2, 40, 42, 59, 60, 72, 73], "subobject": [2, 42, 73], "param": [2, 10, 38, 42, 60, 70, 73, 97], "name": [2, 5, 6, 7, 10, 11, 13, 14, 33, 35, 37, 38, 42, 48, 49, 53, 57, 60, 61, 62, 69, 73, 78, 82, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 102, 106, 107, 108], "set_fit_request": [2, 40, 42, 72, 73], "str": [2, 3, 4, 5, 13, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 41, 42, 44, 47, 49, 52, 53, 54, 55, 56, 57, 60, 61, 62, 66, 68, 69, 71, 73, 78, 82, 88, 89, 97, 101, 102, 103, 108], "unchang": [2, 38, 42, 73, 108], "relev": [2, 17, 27, 42, 73, 91, 93, 95], "enable_metadata_rout": [2, 42, 73], "set_config": [2, 42, 73], "meta": [2, 42, 73], "rais": [2, 4, 5, 13, 14, 35, 38, 42, 46, 49, 52, 55, 73, 97], "alia": [2, 38, 42, 73], "metadata_rout": [2, 42, 73], "retain": [2, 42, 57, 73], "chang": [2, 33, 35, 38, 41, 42, 46, 73, 81, 86, 87, 88, 89, 94, 97, 98, 103, 104, 108], "version": [2, 4, 5, 7, 9, 10, 12, 16, 22, 25, 30, 36, 38, 40, 42, 45, 46, 57, 59, 60, 71, 73, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106, 108], "sub": [2, 42, 68, 73], "pipelin": [2, 42, 73, 106], "otherwis": [2, 4, 7, 10, 35, 37, 38, 41, 42, 44, 50, 53, 55, 56, 57, 63, 73, 75, 77, 78, 82, 87, 94, 97, 98], "updat": [2, 14, 38, 41, 42, 52, 60, 73, 84, 89, 91, 98], "set_param": [2, 40, 42, 59, 60, 72, 73], "simpl": [2, 38, 42, 44, 61, 71, 73, 86, 87, 89, 90, 91, 93, 94, 98, 101, 104, 106], "well": [2, 3, 9, 10, 38, 42, 46, 47, 61, 63, 69, 71, 73, 78, 81, 82, 84, 89, 90, 91, 93, 94, 97, 98, 99, 101, 103, 104], "nest": [2, 38, 42, 43, 58, 73, 79, 81, 82, 108], "latter": [2, 38, 42, 73, 104], "compon": [2, 42, 73], "__": [2, 42, 73], "set_score_request": [2, 72, 73], "structur": [3, 70, 93, 95, 97, 98], "unobserv": 3, "less": [3, 4, 5, 10, 32, 41, 49, 61, 70, 71, 75, 77, 81, 91, 93, 95, 96, 97, 98, 99, 103, 108], "channel": [3, 88, 99], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 37, 47, 57, 62, 87, 90, 96], "inv": 3, "confident_joint": [3, 23, 37, 44, 57, 62, 63, 84, 97, 99], "un": 3, "under": [3, 10, 38, 42, 62, 69, 70, 90, 95, 98, 104], "joint": [3, 37, 44, 47, 57, 62, 63, 96], "num_label_issu": [3, 41, 44, 63, 78, 82, 84], "estimation_method": [3, 41], "off_diagon": 3, "multi_label": [3, 37, 44, 57, 58, 63, 102], "don": [3, 83, 90, 91, 93, 94, 99, 103, 106], "statis": 3, "compute_confident_joint": [3, 37, 44, 57, 63, 99], "off": [3, 44, 57, 68, 91, 95, 99, 103, 104], "j": [3, 5, 37, 38, 42, 43, 44, 63, 66, 69, 70, 79, 81, 82, 89, 90, 99, 107, 108], "confident_learn": [3, 44, 63, 99], "off_diagonal_calibr": 3, "calibr": [3, 4, 44, 57, 61, 101], "cj": [3, 47, 57], "axi": [3, 32, 47, 49, 55, 75, 78, 88, 89, 90, 91, 95, 97, 98, 99, 101, 102, 104, 106, 107], "bincount": [3, 89, 90, 99, 101, 102], "alwai": [3, 10, 38, 42, 57, 86, 87, 88, 99, 106], "estimate_issu": 3, "over": [3, 5, 10, 38, 41, 42, 68, 69, 75, 77, 86, 90, 91, 93, 95, 96, 97, 98, 99, 104, 106], "As": [3, 7, 83, 89, 90, 94, 98, 99, 106, 108], "add": [3, 5, 7, 13, 14, 38, 42, 60, 69, 87, 88, 89, 90, 91, 94, 95, 97, 98, 99, 102], "approach": [3, 37, 41, 44, 60, 86, 93, 95, 98, 99, 102, 104, 106], "custom": [3, 7, 10, 12, 31, 38, 41, 42, 49, 56, 71, 87, 90, 94, 95, 99, 106], "know": [3, 10, 89, 90, 91, 93, 94, 97, 99, 101, 106], "cut": [3, 68, 83, 99], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 33, 103, 104, 108], "underestim": 3, "few": [3, 9, 10, 69, 83, 95, 97, 101, 102, 103, 104, 108], "4": [3, 4, 5, 10, 11, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 48, 49, 56, 65, 66, 68, 69, 71, 74, 81, 96, 97, 102, 107, 108], "detail": [3, 4, 5, 10, 15, 17, 34, 37, 38, 42, 43, 49, 54, 57, 60, 61, 62, 63, 65, 66, 68, 69, 70, 77, 78, 79, 83, 84, 88, 97, 98, 102, 104, 108], "num_issu": [3, 7, 41, 88, 89, 90, 91, 93, 94, 95, 98, 99], "calibrate_confident_joint": 3, "up": [3, 7, 10, 18, 27, 28, 31, 44, 49, 51, 60, 61, 87, 96, 97, 103, 106, 108], "p_": [3, 37, 44], "pair": [3, 5, 10, 37, 44, 99], "v": [3, 10, 41, 62, 63, 65, 71, 89, 90, 100, 102, 103, 104, 105], "rest": [3, 5, 7, 9, 10, 12, 36, 62, 63, 65, 73, 86, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 106], "fashion": [3, 5, 75, 86], "2x2": 3, "incorrectli": [3, 37, 62, 63, 66, 93, 98, 108], "calibrated_cj": 3, "c": [3, 10, 55, 56, 63, 71, 83, 86, 88, 89, 90, 93, 94, 95, 97, 98, 99, 102, 103, 104, 105, 106], "whose": [3, 4, 5, 10, 29, 38, 42, 47, 52, 56, 61, 65, 68, 74, 77, 81, 82, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 103, 104, 107, 108], "truli": [3, 104, 107], "estimate_joint": [3, 37, 99], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 63, 69, 99, 103, 105, 107, 108], "return_indices_of_off_diagon": 3, "frequenc": [3, 27, 61, 62, 69, 78, 103, 104], "done": [3, 10, 60, 73, 89, 97, 99, 102, 104, 105], "overfit": [3, 10, 66, 69, 86, 88, 89, 90, 91, 93, 94, 105], "classifict": 3, "singl": [3, 5, 9, 10, 13, 27, 37, 38, 42, 43, 49, 50, 57, 61, 62, 68, 69, 70, 71, 81, 86, 88, 89, 95, 97, 99, 102, 103], "baselin": [3, 38, 44, 87, 104, 106], "proxi": 3, "union": [3, 5, 13, 27, 49, 52, 53, 54, 57, 58, 63, 69, 73, 81, 97], "tupl": [3, 32, 38, 42, 43, 47, 48, 50, 52, 56, 57, 61, 63, 69, 77, 79, 81, 82, 88, 108], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 4, 5, 10, 41, 47, 52, 53, 61, 70, 75, 77, 83, 87, 91, 95, 97, 98, 107], "practic": [3, 86, 87, 90, 91, 98, 99, 104, 106], "complet": [3, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "gist": 3, "cj_ish": 3, "guess": [3, 47, 99, 101], "8": [3, 5, 7, 8, 48, 49, 50, 56, 65, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 101, 102, 103, 104, 106, 107, 108], "parallel": [3, 44, 69, 79, 96], "again": [3, 60, 86, 97, 104], "simplifi": [3, 15, 97], "understand": [3, 9, 10, 37, 62, 69, 90, 95, 99, 100, 106, 107, 108], "100": [3, 4, 38, 42, 52, 53, 55, 70, 71, 86, 87, 89, 90, 91, 93, 95, 96, 97, 98, 99, 102, 103, 104, 108], "optim": [3, 38, 39, 42, 60, 91, 95, 101], "speed": [3, 44, 87, 96, 97, 106], "dtype": [3, 24, 26, 27, 32, 38, 42, 56, 57, 65, 81, 88, 95, 98, 103], "enumer": [3, 38, 42, 88, 89, 90, 91, 95, 108], "s_label": 3, "confident_bin": 3, "6": [3, 5, 10, 42, 49, 57, 81, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "num_confident_bin": 3, "argmax": [3, 44, 71, 75, 78, 88, 95, 97, 99, 103, 104, 107], "elif": 3, "estimate_lat": 3, "py_method": [3, 47], "cnt": [3, 47], "1d": [3, 5, 13, 17, 33, 41, 44, 49, 50, 52, 57, 58, 65, 74, 86, 88, 95], "eqn": [3, 47], "margin": [3, 44, 47, 49, 71], "marginal_p": [3, 47], "shorthand": [3, 14], "proport": [3, 10, 37, 62, 99, 105], "poorli": [3, 47, 86, 95], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 99], "variabl": [3, 7, 15, 28, 57, 73, 74, 88, 89, 93, 99, 102, 106], "exact": [3, 10, 47, 52, 86, 89, 90, 91, 93, 95, 98], "within": [3, 4, 5, 10, 16, 33, 38, 39, 42, 43, 45, 63, 68, 77, 79, 81, 89, 90, 91, 97, 103, 107], "percent": 3, "often": [3, 37, 47, 62, 97, 99, 105, 107], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 57, 58, 69, 86, 87, 88, 89, 91, 93, 94, 97, 98, 102, 103, 104, 106], "wai": [3, 5, 10, 52, 60, 83, 84, 86, 87, 88, 89, 90, 93, 94, 97, 98, 99, 101, 102, 103, 105], "pro": 3, "con": 3, "pred_proba": [3, 105], "combin": [3, 37, 89, 91, 95, 96, 97, 98, 99, 105, 106], "becaus": [3, 47, 53, 57, 68, 94, 95, 97, 98, 99, 101, 103], "littl": [3, 41, 95, 96, 103, 108], "uniform": [3, 71, 96, 97, 99], "20": [3, 7, 43, 82, 88, 91, 94, 95, 96, 97, 98, 99, 103, 106, 107, 108], "Such": [3, 91, 104], "bound": [3, 24, 26, 38, 42, 56, 65, 66, 68, 69, 103], "reason": [3, 23, 38, 42, 53, 70], "comment": [3, 56, 95, 108], "end": [3, 5, 38, 42, 54, 69], "file": [3, 5, 13, 40, 41, 59, 69, 86, 88, 89, 93, 94, 96, 97, 103, 104, 107, 108], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 99], "handl": [3, 5, 7, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 41, 42, 52, 53, 54, 84, 86, 87, 89, 90, 91, 93, 94, 95, 98, 99, 107, 108], "five": [3, 66, 69, 99, 103], "estimate_cv_predicted_prob": [3, 99], "estimate_noise_matric": 3, "get_confident_threshold": [3, 40, 41], "amongst": [3, 10, 98, 103], "confident_threshold": [3, 10, 23, 24, 41, 70], "point": [4, 5, 7, 9, 10, 19, 27, 38, 42, 52, 54, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101], "valuat": [4, 9, 19], "help": [4, 37, 38, 42, 69, 83, 84, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97, 98, 101, 102, 106, 107, 108], "u": [4, 86, 87, 88, 89, 91, 93, 95, 97, 99, 101, 102, 105, 106, 107, 108], "assess": [4, 10, 95, 98, 103], "contribut": [4, 10, 19, 95, 103], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 11, 17, 19, 20, 27, 29, 32, 45, 51, 93, 95], "metric": [4, 5, 10, 19, 20, 22, 27, 29, 32, 45, 51, 52, 54, 55, 57, 60, 69, 70, 86, 87, 88, 91, 93, 94, 95, 98, 99, 106], "10": [4, 10, 19, 20, 24, 27, 29, 32, 38, 39, 52, 69, 70, 71, 82, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108], "shaplei": [4, 10, 19], "nearest": [4, 5, 10, 17, 24, 27, 29, 51, 52, 53, 54, 55, 70, 90, 94, 95, 104], "neighbor": [4, 5, 10, 17, 19, 24, 27, 29, 45, 52, 53, 54, 55, 70, 89, 90, 91, 93, 94, 95, 97, 104], "knn": [4, 10, 14, 19, 27, 29, 32, 51, 52, 53, 54, 55, 70, 93, 104], "graph": [4, 5, 10, 14, 17, 19, 27, 32, 51, 52], "calcul": [4, 10, 19, 27, 41, 49, 51, 52, 55, 61, 65, 66, 68, 69, 70, 73, 77, 91, 95, 96, 98], "directli": [4, 5, 10, 15, 17, 34, 35, 41, 54, 60, 61, 87, 90, 94, 95, 97, 98, 102, 103, 106], "lowest": [4, 10, 61, 69, 90, 91, 93, 95, 97, 98, 101, 102, 103, 107], "fall": [4, 10, 68, 77, 81, 99, 104], "flag": [4, 10, 23, 27, 44, 49, 62, 63, 66, 73, 83, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 104, 106, 107], "approxim": [4, 10, 19, 41, 54, 70, 95, 101], "top": [4, 5, 10, 37, 41, 43, 44, 57, 63, 66, 69, 71, 78, 82, 83, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 106, 108], "found": [4, 5, 7, 10, 14, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 102, 104, 106, 108], "arxiv": [4, 19, 99], "ab": [4, 19, 99, 103], "1908": 4, "08619": 4, "1911": [4, 19], "07128": [4, 19], "embed": [4, 5, 10, 17, 70, 83, 87, 88, 89, 90, 93, 94, 95, 98, 99, 102, 106], "represent": [4, 5, 10, 17, 35, 38, 42, 50, 52, 63, 83, 87, 88, 89, 90, 91, 94, 97, 98, 99, 104], "suppli": [4, 102, 103, 106], "2d": [4, 5, 17, 33, 41, 49, 50, 52, 56, 57, 61, 86, 88, 95, 102], "num_exampl": [4, 5, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34, 37, 62, 88, 89, 90, 91, 93, 94, 98, 99], "num_featur": [4, 5, 17, 38, 42, 60], "distanc": [4, 5, 10, 17, 19, 27, 29, 32, 51, 52, 53, 54, 55, 68, 70, 93, 95, 104], "construct": [4, 5, 7, 10, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 38, 42, 49, 51, 52, 54, 60, 95, 98], "nearestneighbor": [4, 5, 10, 19, 52, 54, 70, 93, 104], "cosin": [4, 10, 52, 53, 55, 70, 95, 104], "dim": [4, 70, 91, 107], "euclidean": [4, 5, 10, 52, 53, 55, 68, 70, 93], "dimension": [4, 27, 53, 57, 88, 99, 104], "scikit": [4, 42, 53, 54, 57, 70, 83, 86, 87, 88, 89, 90, 93, 94, 95, 97, 106], "fewer": [4, 10, 44, 57, 70, 95, 103], "stabl": [4, 16, 22, 25, 30, 40, 45, 54, 57, 59, 70, 84, 88, 89, 90, 91, 93, 94, 98, 99], "exce": [4, 52, 91, 95], "transform": [4, 10, 33, 49, 52, 55, 57, 70, 71, 86, 87, 90, 91, 94, 98, 104, 108], "rel": [4, 10, 37, 52, 61, 62, 70, 89, 90, 91, 93, 94, 98, 99, 104], "adjust": [4, 39, 44, 52, 65, 70, 71, 83, 95, 98, 99], "closer": [4, 10, 68, 103], "highli": [4, 90, 91], "influenti": 4, "posit": [4, 5, 10, 38, 42, 55, 57, 69, 95, 96, 104], "convers": 4, "neg": [4, 10, 68, 69, 89, 90, 95, 96], "valueerror": [4, 5, 13, 14, 35, 46, 49, 52, 55, 97], "neither": [4, 5, 10, 15, 53, 103], "nor": [4, 5, 10, 15], "larger": [4, 19, 53, 73, 75, 77, 91, 94, 96, 97], "55": [4, 56, 95, 96, 103, 106], "525": 4, "unifi": 5, "audit": [5, 9, 13, 14, 17, 88, 91, 92, 93, 94, 95, 97, 98, 99, 102, 103, 106], "kind": [5, 6, 7, 10, 95, 96], "addit": [5, 7, 9, 12, 14, 34, 36, 38, 42, 49, 52, 54, 58, 61, 69, 78, 79, 86, 87, 88, 89, 93, 94, 95, 98, 99, 101, 104, 105], "depend": [5, 7, 9, 12, 13, 14, 36, 40, 44, 46, 57, 59, 63, 70, 73, 74, 83, 95], "instal": [5, 7, 9, 12, 36, 38, 40, 41, 42, 44, 59, 60, 75, 77], "pip": [5, 7, 9, 12, 36, 60, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "development": [5, 7, 9, 12, 36], "git": [5, 7, 9, 12, 36, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "github": [5, 7, 9, 12, 36, 38, 39, 57, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104, 106], "com": [5, 7, 9, 12, 36, 38, 39, 41, 46, 57, 70, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "egg": [5, 7, 9, 12, 36, 83, 96], "label_nam": [5, 7, 8, 10, 11, 13, 19, 32, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 103, 106], "image_kei": [5, 10, 91, 95], "interfac": [5, 9, 10, 54, 83, 97, 98, 99], "librari": [5, 10, 42, 54, 66, 69, 70, 83, 87, 89, 94, 95, 96, 97], "goal": [5, 106], "track": [5, 7, 14, 15, 83, 89, 96, 97, 99], "intermedi": [5, 9, 90], "statist": [5, 10, 14, 23, 27, 37, 61, 62, 69, 90, 93, 94, 95, 98, 99], "convert": [5, 10, 13, 35, 38, 42, 50, 55, 58, 61, 68, 77, 81, 84, 87, 88, 91, 94, 95, 96, 97, 98, 101, 102, 103], "hug": [5, 10, 13, 91], "face": [5, 10, 13, 17, 91, 96, 102], "kei": [5, 7, 10, 13, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 49, 61, 62, 68, 70, 89, 90, 91, 94, 97, 99, 101, 103], "string": [5, 10, 13, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 42, 53, 57, 61, 62, 74, 78, 81, 82, 87, 93, 94, 95, 97, 101, 102, 108], "dictionari": [5, 7, 10, 13, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 38, 42, 48, 57, 61, 62, 65, 66, 68, 69, 89, 90, 93, 94, 95, 99, 101, 102, 103], "path": [5, 13, 38, 41, 42, 69, 88, 89, 97, 103], "local": [5, 7, 10, 13, 38, 39, 42, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "text": [5, 7, 10, 13, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 43, 49, 70, 79, 81, 82, 83, 85, 89, 90, 92, 96, 97, 98, 99, 100, 101, 104], "txt": [5, 13, 108], "csv": [5, 13, 86, 87, 93, 94, 98, 106], "json": [5, 13], "hub": [5, 13], "multiclass": [5, 13, 16, 49, 57, 61, 102], "regress": [5, 7, 10, 11, 13, 15, 17, 22, 31, 33, 35, 87, 89, 90, 94, 100, 101, 104], "multilabel": [5, 10, 11, 13, 15, 16, 22, 26, 33, 35, 50, 102], "imag": [5, 9, 37, 42, 66, 68, 69, 70, 75, 77, 78, 83, 89, 90, 92, 96, 97, 98, 100, 101, 102, 103, 105, 107], "field": [5, 10, 38, 42], "themselv": [5, 86, 87, 95, 106], "pil": [5, 91, 95], "cleanvis": [5, 10, 95], "level": [5, 10, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34, 37, 52, 56, 79, 81, 90, 91, 97, 100, 102, 107], "load_dataset": [5, 13, 91], "glue": 5, "sst2": 5, "properti": [5, 13, 14, 35, 38, 42], "has_label": [5, 13], "class_nam": [5, 13, 21, 37, 43, 62, 69, 78, 82, 83, 96, 99, 103, 107, 108], "empti": [5, 13, 47, 61, 90, 95, 97, 102], "find_issu": [5, 6, 7, 8, 10, 11, 15, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 83, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_typ": [5, 6, 7, 8, 10, 11, 14, 15, 17, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "sort": [5, 17, 41, 44, 49, 61, 63, 66, 68, 69, 71, 77, 79, 81, 86, 87, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103, 106, 107, 108], "common": [5, 10, 14, 17, 90, 92, 95, 96, 97, 98, 99, 102, 103, 107], "real": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "world": [5, 17, 83, 89, 90, 97, 98, 99, 101, 106, 107], "interact": [5, 17, 94, 97], "thereof": [5, 17], "insight": [5, 17, 69, 101], "best": [5, 9, 10, 17, 48, 61, 71, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 101, 102, 104, 106, 108], "properli": [5, 10, 41, 48, 52, 57, 58, 75, 88, 89, 90, 91, 93, 94, 97, 98, 99, 102, 104, 106, 107], "respect": [5, 38, 42, 66, 69, 88, 89, 90, 91, 93, 94, 98, 99, 102, 103], "lexicograph": [5, 48, 57, 88, 89, 90, 91, 93, 94, 98, 99, 102], "squar": [5, 57, 73, 96, 106], "csr": [5, 52, 95], "evenli": 5, "omit": [5, 68, 69, 91, 95, 103], "itself": [5, 33, 38, 42, 52, 95, 103], "three": [5, 10, 37, 61, 62, 73, 78, 86, 88, 89, 90, 93, 96, 99, 101, 105, 106, 107, 108], "indptr": [5, 95], "wise": 5, "start": [5, 7, 10, 35, 38, 39, 42, 49, 83, 102, 108], "th": [5, 10, 43, 48, 56, 57, 61, 63, 66, 68, 69, 70, 79, 81, 82, 94, 102, 103, 108], "ascend": [5, 37, 62, 91, 99], "segment": [5, 75, 77, 78, 100], "reflect": [5, 10, 52, 86, 87, 93, 94, 98, 101, 103, 104, 106], "maintain": [5, 60], "kneighbors_graph": [5, 19, 54, 93], "illustr": [5, 95], "todens": 5, "second": [5, 49, 57, 69, 71, 89, 93, 97, 99, 108], "duplic": [5, 9, 22, 23, 38, 42, 52, 83, 89, 95, 98, 99, 106], "explicit": 5, "precend": 5, "collect": [5, 10, 14, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 61, 95, 97, 101, 108], "unspecifi": [5, 17, 44, 63], "interest": [5, 17, 23, 78, 82, 86, 87, 94, 95, 98, 99, 106, 107, 108], "constructor": [5, 10, 11, 17, 24, 31, 52, 54], "issuemanag": [5, 9, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 34], "respons": [5, 17, 23, 54, 73, 74, 96, 106, 108], "random_st": [5, 86, 88, 89, 90, 91, 95, 98, 99, 102, 104], "lab": [5, 6, 8, 10, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 41, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 106], "comprehens": [5, 83, 91, 98, 102, 106], "nbr": 5, "n_neighbor": [5, 10, 19, 52, 54, 70, 95], "mode": [5, 12, 19, 38, 41, 42, 104], "4x4": 5, "float64": [5, 27, 38, 42, 81], "compress": [5, 10, 52, 57, 75, 77, 95], "toarrai": [5, 52, 95], "NOT": [5, 41, 94], "23606798": 5, "41421356": [5, 52], "configur": [5, 17, 49, 90], "suppos": [5, 10, 66, 86, 87, 104, 106], "who": [5, 68, 86, 93, 95, 99, 108], "manag": [5, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 60, 89, 97], "clean_learning_kwarg": [5, 10, 11, 24, 31, 97, 106], "labelissuemanag": [5, 10, 15, 22, 24], "prune_method": [5, 84], "prune_by_noise_r": [5, 44, 63, 99], "report": [5, 7, 12, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 62, 82, 83, 88, 89, 90, 93, 94, 97, 98, 99, 102, 106, 108], "include_descript": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 34], "show_summary_scor": [5, 34, 98], "show_all_issu": [5, 34, 98], "summari": [5, 7, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 37, 43, 59, 60, 62, 67, 76, 77, 79, 80, 81, 84, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 103, 106, 107, 108], "show": [5, 7, 27, 38, 42, 48, 57, 69, 78, 82, 86, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 104, 106, 107, 108], "suffer": [5, 10, 14, 23, 63, 71, 82, 95, 108], "onc": [5, 23, 37, 38, 42, 86, 89, 97, 98, 99, 102, 103], "familiar": [5, 95], "overal": [5, 7, 10, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 43, 49, 61, 62, 65, 68, 69, 73, 77, 78, 79, 81, 83, 84, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 101, 103, 108], "sever": [5, 7, 10, 13, 14, 23, 38, 41, 42, 44, 65, 68, 70, 71, 77, 81, 83, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 103, 104, 108], "compar": [5, 61, 70, 81, 89, 90, 93, 95, 98, 99, 103], "issue_summari": [5, 7, 10, 14, 95], "With": [5, 9, 10, 41, 87, 94, 97, 99, 101, 106, 107, 108], "usag": [5, 41, 60], "usual": [5, 13, 33, 34, 91, 101, 106], "ti": [5, 61], "exhibit": [5, 7, 10, 14, 78, 88, 89, 90, 91, 93, 94, 98, 99, 103], "ie": [5, 73], "likelihood": [5, 10, 41, 43, 44, 63, 68, 70, 71, 75, 79, 95], "wherea": [5, 10, 57, 63, 86, 87, 105], "outlier": [5, 9, 11, 15, 22, 23, 32, 45, 52, 71, 83, 89, 90, 95, 98, 99, 100, 106], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 99, 106], "global": [5, 7, 10, 23, 38, 42, 96], "non_iid": [5, 10, 11, 15, 27, 90, 91, 93, 94, 95, 98, 99], "hypothesi": [5, 95], "iid": [5, 7, 9, 27, 93, 98, 99], "never": [5, 88, 98, 99, 102, 104, 105], "someth": [5, 7, 10, 38, 42, 71, 103], "123": [5, 89, 90], "456": [5, 86, 87, 88], "nearest_neighbor": 5, "7": [5, 10, 49, 50, 60, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 97, 101, 102, 103, 104, 106, 107, 108], "9": [5, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 43, 49, 50, 65, 79, 81, 86, 87, 88, 89, 90, 93, 94, 95, 96, 99, 101, 102, 103, 104, 106, 107, 108], "distance_to_nearest_neighbor": [5, 11, 89, 90, 91, 93, 94, 98, 99], "789": 5, "get_issu": [5, 10, 14, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 102, 106], "issue_nam": [5, 6, 7, 10, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 88, 89, 90, 91, 93, 94, 98, 99], "focu": [5, 10, 14, 94, 95, 98, 107, 108], "full": [5, 10, 14, 41, 60, 69, 91, 98, 108], "summar": [5, 14, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 37, 62, 78, 82, 83, 107], "specific_issu": [5, 14], "lie": [5, 10, 70, 71, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99], "get_issue_summari": [5, 10, 14, 90, 95], "get_info": [5, 14, 90, 94, 95, 96], "yet": [5, 18, 28, 60, 96, 98, 101], "list_possible_issue_typ": [5, 15, 16], "regist": [5, 7, 15, 16, 18, 28, 38, 42, 89], "rtype": [5, 15, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42], "registri": [5, 15, 16], "list_default_issue_typ": [5, 15, 16], "folder": [5, 88, 89, 91], "load": [5, 13, 41, 69, 91, 96, 97, 98, 99, 103, 104, 107, 108], "futur": [5, 10, 23, 38, 42, 61, 83, 89, 94], "overwrit": [5, 89], "separ": [5, 37, 49, 65, 89, 90, 91, 95, 97, 98, 103, 105], "static": 5, "rememb": [5, 94, 97, 98, 99], "part": [5, 10, 38, 42, 44, 66, 68, 69, 88, 89, 95, 96, 98, 107, 108], "ident": [5, 10, 23, 57, 94, 95], "datalab": [6, 8, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 83, 86, 87, 96, 98, 101, 106], "walk": [7, 98], "alongsid": [7, 38, 42, 89, 97], "pre": [7, 8, 10, 38, 42, 89, 90, 106], "runtim": [7, 38, 41, 42, 73, 75, 77, 88, 91, 97, 98], "issue_manager_factori": [7, 15, 89], "myissuemanag": [7, 15], "myissuemanagerforregress": 7, "decor": [7, 15], "ll": [7, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 106, 108], "thing": [7, 42, 87, 95, 99, 106], "next": [7, 61, 83, 86, 87, 88, 93, 94, 95, 97, 101, 103, 106, 108], "dummi": 7, "randint": [7, 32, 49, 89, 90, 95], "mark": [7, 10, 84, 103, 104, 106], "regard": [7, 90, 98, 99], "rand": [7, 49, 52, 89, 90, 95], "is_": [7, 10, 89], "_issu": [7, 10, 89], "issue_score_kei": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "whole": [7, 10, 27, 38, 42, 90, 95], "make_summari": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 89], "popul": [7, 94, 98], "verbosity_level": [7, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "std": [7, 103], "raw_scor": 7, "bit": 7, "involv": [7, 41, 78, 82, 95, 97, 102], "intermediate_arg": 7, "min": [7, 49, 68, 81, 89, 97, 104], "sin_filt": 7, "sin": 7, "arang": [7, 95], "kernel": [7, 95], "affect": [7, 10, 38, 42, 53, 75, 81, 94, 95, 97], "easili": [7, 47, 84, 86, 87, 88, 90, 93, 94, 98, 99, 101, 102, 104, 105, 106, 107], "hard": [7, 42, 96, 104], "sai": [7, 10, 38, 42, 95, 102, 107], "anoth": [7, 10, 23, 37, 41, 53, 56, 68, 71, 87, 93, 94, 95, 97, 99, 101, 104], "try": [7, 9, 10, 41, 44, 60, 61, 75, 77, 83, 90, 91, 93, 94, 97, 98, 99, 107], "won": [7, 38, 42, 89, 90, 97, 102], "issue_manag": [7, 10, 12, 14, 16, 19, 20, 21, 24, 26, 27, 28, 29, 31, 32, 89], "instanti": [7, 17, 41, 60, 70, 87, 88, 90, 93], "477762": 7, "286455": 7, "term": [7, 10, 47, 57, 69, 88, 89, 90, 91, 93, 94, 98, 99], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 20, 29, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 103, 104, 106, 107, 108], "003042": 7, "058117": 7, "11": [7, 10, 60, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "121908": 7, "15": [7, 55, 60, 73, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "169312": 7, "17": [7, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 89, 90, 95, 96, 98, 99], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 32, 98], "group": [8, 9, 27, 32, 96, 98, 103, 108], "dbscan": [8, 10, 32], "hdbscan": 8, "etc": [8, 10, 23, 33, 38, 42, 47, 60, 61, 79, 83, 89, 90, 93, 94, 97, 98, 99, 102, 106], "sensit": [8, 10, 55, 95, 98], "ep": [8, 32, 69], "radiu": 8, "min_sampl": [8, 32], "kmean": [8, 95], "your_data": 8, "get_pred_prob": 8, "n_cluster": [8, 32, 95], "cluster_id": [8, 10, 11, 32, 95], "labels_": 8, "underperforming_group": [8, 10, 11, 15, 22, 90, 91, 93, 94, 95, 98, 99], "search": [9, 10, 21, 27, 28, 45, 51, 52, 53, 56, 73, 95, 97, 98, 105], "nondefault": 9, "Near": [9, 97], "imbal": [9, 22, 65, 70, 71, 90], "null": [9, 11, 15, 22, 90, 91, 94, 98, 99], "togeth": [9, 10, 47, 87, 89, 90, 91, 93, 94, 98, 99, 106, 108], "built": [9, 49], "own": [9, 38, 40, 42, 54, 59, 65, 66, 69, 75, 79, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 106, 107, 108], "prerequisit": 9, "basic": [9, 42, 60, 93, 94, 95, 98, 104], "fulli": [9, 10, 38, 42, 60, 97], "platform": [9, 10, 83, 91, 93, 94, 97], "write": [9, 10], "code": [9, 10, 38, 42, 47, 57, 60, 83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 101, 102, 103, 104, 106, 107, 108], "being": [9, 10, 14, 37, 38, 42, 44, 49, 56, 57, 71, 86, 93, 97, 98, 99, 106, 107], "100x": [9, 10], "faster": [9, 10, 41, 70, 73, 75, 77, 97, 99], "intellig": [9, 10], "quickli": [9, 10, 39, 86, 88, 91, 93, 94, 97, 98, 102, 104, 107, 108], "fix": [9, 10, 61, 87, 94, 95, 98, 99, 106], "scientist": [9, 10], "million": [9, 10, 108], "thank": [9, 10], "ai": [9, 10, 83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 104, 106, 108], "suggest": [9, 10, 37, 61, 62, 68, 87, 91, 94, 95, 97, 106], "power": [9, 10, 91, 93, 94, 96, 99, 108], "automl": [9, 10, 83, 97], "system": [9, 10, 88, 91, 93, 94, 107], "foundat": [9, 10, 83, 95], "improv": [9, 10, 61, 86, 87, 90, 91, 96, 97, 99, 100, 106, 107], "click": [9, 10, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "tune": [9, 10, 87, 88, 94, 96, 98, 104], "serv": [9, 10, 14, 17, 101], "auto": [9, 10, 86, 87, 90, 96, 97, 98, 106], "free": [9, 10, 83, 88, 90, 91, 93, 94, 97, 98, 99], "page": [10, 90, 97, 98, 99], "variou": [10, 14, 31, 40, 58, 59, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103], "why": [10, 94], "matter": [10, 37, 62], "didn": [10, 95, 98], "plu": [10, 106], "ye": [10, 11], "near_dupl": [10, 11, 15, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "class_imbal": [10, 11, 15, 21, 90, 91, 93, 94, 95, 98, 99], "data_valu": [10, 11, 15, 22, 95], "No": [10, 11, 86, 87, 94, 95, 97], "reinterpret": [10, 11], "your_regression_model": [10, 11], "_score": 10, "badli": [10, 68, 86, 87, 108], "issue_scor": 10, "atyp": [10, 70, 89, 90, 91, 93, 94, 98, 99, 104], "datapoint": [10, 32, 44, 49, 57, 71, 74, 83, 86, 87, 88, 89, 90, 93, 94, 97, 98, 105, 106], "is_issu": [10, 23], "primarili": 10, "former": [10, 38, 42], "investig": [10, 88], "expertis": 10, "interpret": [10, 96, 97, 99, 102, 106], "annot": [10, 37, 48, 61, 62, 63, 65, 66, 68, 69, 78, 81, 82, 83, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 103, 107], "dissimilar": [10, 93, 94], "preced": 10, "incorrect": [10, 68, 71, 74, 86, 88, 89, 90, 91, 93, 94, 95, 98, 99, 103, 106], "due": [10, 41, 44, 71, 75, 77, 88, 89, 90, 91, 93, 94, 98, 99, 106], "appear": [10, 37, 48, 62, 63, 66, 74, 90, 91, 93, 94, 95, 98, 106, 107], "now": [10, 41, 84, 86, 87, 88, 90, 95, 97, 98, 101, 103, 104, 106, 108], "token": [10, 43, 56, 77, 78, 79, 80, 81, 82, 97, 99, 100], "hamper": [10, 91, 96], "analyt": [10, 83, 95, 97, 101], "lead": [10, 68, 71, 91, 95, 98, 103], "draw": [10, 89, 90], "conclus": [10, 94], "let": [10, 38, 42, 70, 71, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 101, 102, 103, 104, 106, 107, 108], "sort_valu": [10, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 106], "head": [10, 86, 87, 88, 90, 91, 93, 94, 95, 96, 98, 99, 101, 106], "97": [10, 86, 96, 97, 98, 99, 103, 106, 108], "064045": 10, "58": [10, 86, 90, 95, 96, 99, 103], "680894": 10, "41": [10, 95, 96, 98, 103, 106, 108], "746043": 10, "794894": 10, "98": [10, 96, 97, 98, 106], "802911": 10, "give": [10, 49, 71, 99, 101, 107], "li": [10, 70], "especi": [10, 86, 87, 91, 95, 97, 106], "veri": [10, 37, 62, 66, 68, 87, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 106], "rare": [10, 44, 69, 89, 90, 91, 93, 94, 97, 98, 99], "anomal": [10, 71, 89, 90, 91, 93, 94, 98, 99], "articl": [10, 41, 97], "blog": 10, "unexpect": [10, 38, 42, 94], "consequ": 10, "inspect": [10, 87, 88, 90, 91, 98, 99, 103, 106], "011562": 10, "62": [10, 95, 98, 99, 103, 106], "019657": 10, "22": [10, 88, 89, 91, 95, 96, 98, 99, 102, 103, 108], "035243": 10, "040907": 10, "42": [10, 49, 94, 95, 96, 103, 108], "056865": 10, "smaller": [10, 70, 95, 102, 103], "extrem": [10, 89, 90, 91, 93, 94, 95, 97, 98, 99], "record": [10, 38, 42, 88, 93, 106], "abbrevi": 10, "misspel": 10, "typo": [10, 82], "resolut": 10, "video": [10, 96], "audio": [10, 89, 90, 92, 97], "minor": [10, 56], "variat": 10, "translat": [10, 98], "d": [10, 55, 86, 93, 94, 95, 97, 98, 99, 102, 106, 108], "constant": [10, 32, 73], "median": [10, 31, 55], "question": [10, 23, 83, 99], "nearli": [10, 23, 90, 91, 93, 94], "awar": [10, 84, 99], "presenc": [10, 52, 54, 99], "36": [10, 95, 96, 98, 108], "066009": 10, "80": [10, 39, 86, 93, 98, 102, 106], "003906": 10, "093245": 10, "005599": 10, "27": [10, 93, 95, 96, 98, 99, 103, 108], "156720": 10, "009751": 10, "72": [10, 95, 96, 98, 99, 102, 106], "signific": [10, 93, 94, 98, 99], "violat": [10, 93, 94, 95, 98, 99], "assumpt": [10, 93, 94, 95, 98, 99], "changepoint": [10, 93, 94, 98, 99], "shift": [10, 52, 54, 93, 94, 98, 99], "drift": [10, 90, 93, 95, 98, 99], "autocorrel": [10, 93, 94, 98, 99], "almost": [10, 93, 94, 98, 99], "adjac": [10, 52, 93, 94, 98, 99], "tend": [10, 37, 47, 93, 94, 98, 99, 107, 108], "sequenti": [10, 38, 42, 60, 91], "pai": [10, 94], "attent": [10, 95], "realli": [10, 87, 94, 98, 101, 107], "mere": 10, "highlight": [10, 78, 82, 89, 90, 93, 95, 107], "necessarili": [10, 61, 69, 94, 98, 99], "wrong": [10, 61, 66, 68, 84, 87, 89, 90, 94, 97, 98, 99, 103], "gap": 10, "b": [10, 19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 37, 56, 57, 81, 86, 93, 94, 95, 96, 97, 98, 99, 105, 108], "x1": [10, 66, 69, 103], "x2": [10, 66, 69, 103], "10th": 10, "100th": 10, "90": [10, 81, 86, 93, 98, 99, 105, 106], "similarli": [10, 38, 42, 89, 91, 93, 97, 98, 103], "associ": [10, 13, 17, 33, 35, 38, 42, 69, 101], "blogpost": 10, "proper": [10, 57, 61, 66, 69, 86, 91, 94, 97, 101, 103], "scenario": [10, 52, 54, 71, 89, 90], "underli": [10, 43, 54, 70, 79, 81, 108], "stem": [10, 70, 104], "evolv": 10, "influenc": 10, "act": [10, 68, 89], "accordingli": [10, 33, 52], "emploi": [10, 102, 104], "partit": [10, 105], "ahead": 10, "good": [10, 38, 42, 55, 60, 62, 68, 71, 75, 77, 78, 83, 91, 93, 94, 98], "problem": [10, 33, 41, 49, 78, 83, 89, 90, 91, 94, 97], "deploy": [10, 86, 87, 99, 106], "overlook": [10, 68, 103], "fact": 10, "thu": [10, 37, 42, 62, 86, 88, 93, 94, 98, 99, 105, 108], "diagnos": [10, 90, 97], "24": [10, 88, 95, 96, 98, 99, 101, 103, 106], "681458": 10, "37": [10, 89, 95, 96, 98], "804582": 10, "64": [10, 42, 86, 91, 93, 95, 99, 103], "810646": 10, "815691": 10, "78": [10, 86, 93, 96, 98, 99, 103, 106], "834293": 10, "Be": [10, 42], "cautiou": 10, "behavior": [10, 17, 37, 38, 42, 69, 97], "rarest": [10, 90, 98], "q": [10, 103], "subpar": 10, "special": [10, 52, 56], "techniqu": [10, 103], "smote": 10, "asymmetr": [10, 37], "28": [10, 91, 94, 95, 96, 98, 99, 101, 108], "75": [10, 49, 89, 90, 95, 96, 98, 101, 102, 103, 106, 108], "33": [10, 38, 42, 95, 96, 98, 103], "68": [10, 86, 96, 98, 99, 103], "excess": [10, 91], "dark": [10, 107], "bright": [10, 95, 108], "blurri": [10, 91, 95], "lack": [10, 60, 95, 98], "unusu": [10, 103, 104], "cluster": [10, 19, 32, 98], "slice": [10, 98], "poor": [10, 95, 98], "subpopul": [10, 98], "faq": [10, 83, 90, 91, 93, 94, 100], "get_self_confidence_for_each_label": [10, 49, 71], "r": [10, 41, 73, 89, 90, 95, 106, 107], "tabular": [10, 83, 85, 89, 90, 92, 95, 97, 98, 101], "categor": [10, 70, 85, 86, 89, 90, 92, 97, 98, 106], "encod": [10, 50, 69, 75, 78, 86, 87, 93, 94, 97, 98, 106, 107], "71": [10, 95, 96, 98, 99, 103, 106], "70": [10, 81, 93, 95, 98], "69": [10, 98, 99, 106], "subgroup": [10, 95], "wors": [10, 95, 101], "ratio": [10, 95], "miss": [10, 28, 38, 42, 57, 66, 68, 97, 98, 103, 106], "pattern": [10, 95], "isn": [10, 18, 28], "scalabl": 10, "sacrific": 10, "One": [10, 57, 70, 97], "quantif": 10, "39": [10, 87, 88, 89, 91, 94, 95, 96, 97, 98, 103, 106, 107, 108], "32": [10, 88, 89, 95, 96, 98, 101, 103], "valuabl": [10, 19, 95], "exert": [10, 90], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 22, 24, 31], "health_summari": [10, 24, 37, 83, 96], "health_summary_kwarg": 10, "tandem": [10, 96], "view": [10, 38, 42, 43, 44, 77, 79, 81, 83, 86, 87, 88, 89, 90, 93, 94, 96, 98, 99, 101, 102, 103, 104, 105, 106, 108], "ood_kwarg": 10, "outofdistribut": [10, 29, 70, 104], "outsid": [10, 97, 102], "outlierissuemanag": [10, 15, 22, 29], "nearduplicateissuemanag": [10, 15, 20, 22], "noniidissuemanag": [10, 15, 22, 27], "num_permut": [10, 27], "permut": [10, 27], "significance_threshold": [10, 27], "signic": 10, "noniid": [10, 22], "classimbalanceissuemanag": [10, 15, 21, 22], "underperforminggroupissuemanag": [10, 15, 22, 32], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 32], "filter_cluster_id": [10, 22, 32], "clustering_kwarg": [10, 32], "nullissuemanag": [10, 15, 22, 28], "datavaluationissuemanag": [10, 15, 19, 22], "codeblock": 10, "demonstr": [10, 41, 52, 89, 90, 91, 94, 95, 96, 97, 98, 99, 101, 102, 103, 106, 107], "howev": [10, 38, 42, 52, 57, 86, 87, 88, 91, 93, 94, 95, 98, 101, 105, 107], "mandatori": 10, "image_issue_types_kwarg": 10, "vice": [10, 62], "versa": [10, 62], "light": [10, 91, 95, 96, 103, 107], "29": [10, 91, 95, 96, 98, 101, 102, 103, 107, 108], "low_inform": [10, 91, 95], "odd_aspect_ratio": [10, 91, 95], "35": [10, 89, 95, 96, 98, 101, 102, 103], "odd_siz": [10, 91, 95], "doc": [10, 38, 42, 70, 83, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 104, 106, 108], "label_scor": [11, 24, 26, 31, 88, 89, 90, 91, 93, 94, 95, 98, 99, 102, 106], "is_outlier_issu": [11, 89, 90, 91, 93, 94, 95, 98, 99], "outlier_scor": [11, 29, 89, 90, 91, 93, 94, 95, 98, 99, 104], "is_near_duplicate_issu": [11, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_scor": [11, 20, 89, 90, 91, 93, 94, 95, 97, 98, 99], "near_duplicate_set": [11, 20, 22, 89, 90, 91, 93, 94, 97, 98, 99], "is_non_iid_issu": [11, 90, 93, 94, 95, 98, 99], "non_iid_scor": [11, 27, 90, 93, 94, 95, 98, 99], "is_class_imbalance_issu": [11, 90, 95, 98], "class_imbalance_scor": [11, 21, 90, 95, 98], "is_underperforming_group_issu": [11, 90, 95, 98], "underperforming_group_scor": [11, 32, 90, 95, 98], "is_null_issu": [11, 90, 95, 98], "null_scor": [11, 28, 90, 95, 98], "is_data_valuation_issu": [11, 95], "data_valuation_scor": [11, 19, 95], "studio": [12, 83, 90, 91, 93, 94, 97, 98], "data_issu": [12, 16, 17, 34], "issue_find": [12, 16], "factori": [12, 16, 17], "model_output": [12, 16], "except": [13, 38, 42, 60, 71, 89, 90, 91, 98, 101], "dataformaterror": [13, 16], "add_not": 13, "with_traceback": 13, "tb": 13, "__traceback__": 13, "datasetdicterror": [13, 16], "datasetdict": 13, "datasetloaderror": [13, 16], "dataset_typ": 13, "fail": 13, "hold": 13, "sublist": 13, "map_to_int": 13, "abc": [13, 23, 33], "is_avail": [13, 91], "dataissu": [14, 16, 17, 34], "central": [14, 108], "repositori": 14, "strategi": [14, 49, 95, 97], "_infostrategi": 14, "basi": 14, "collect_statist": 14, "reus": [14, 23], "avoid": [14, 38, 41, 42, 44, 52, 57, 63, 66, 69, 73, 75, 77, 89, 90, 97, 98], "recomput": [14, 87], "weighted_knn_graph": 14, "issue_manager_that_computes_knn_graph": 14, "collect_issues_from_issue_manag": 14, "collect_issues_from_imagelab": 14, "imagelab": 14, "set_health_scor": 14, "health": [14, 24, 37, 62, 83], "get_data_statist": [14, 16], "concret": 15, "subclass": [15, 38, 42, 70, 89], "regressionlabelissuemanag": [15, 22, 30, 31], "multilabelissuemanag": [15, 22, 25, 26], "from_str": [15, 35, 45, 49], "my_issu": 15, "logic": [15, 35, 41, 44, 75, 77, 98], "issuefind": [16, 17, 34], "modeloutput": [16, 33], "multiclasspredprob": [16, 33], "regressionpredict": [16, 33], "multilabelpredprob": [16, 33], "instati": 17, "public": [17, 95, 98, 99, 103, 107, 108], "creation": [17, 42, 95], "execut": [17, 38, 42, 89, 97, 103], "coordin": [17, 66, 68, 69, 103, 108], "At": [17, 69, 97], "get_available_issue_typ": 17, "direct": [18, 28, 38, 42, 54, 60], "vstack": [19, 57, 91, 96, 97, 99, 101, 102], "25": [19, 27, 38, 49, 55, 90, 91, 95, 96, 98, 99, 101, 102, 103, 108], "classvar": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "short": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 56, 57], "item": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 38, 42, 57, 89, 90, 91, 97, 99, 101, 102], "some_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "additional_info_kei": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32], "default_threshold": [19, 22, 29], "collect_info": [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32], "info_to_omit": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "compos": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32, 38, 42, 87, 94, 104], "is_x_issu": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "x_score": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_a": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b1": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "val_b2": [19, 20, 21, 23, 24, 26, 27, 29, 31, 32], "report_str": [19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 34], "_": [20, 21, 23, 24, 26, 27, 28, 31, 32, 49, 56, 57, 83, 86, 88, 89, 91, 95, 96, 99, 102], "occurr": [20, 21, 23, 27, 28, 29, 32, 56], "median_nn_dist": 20, "bleed": [22, 25, 30, 40], "edg": [22, 25, 30, 40, 68, 83, 99, 108], "sharp": [22, 25, 30, 40], "get_health_summari": [22, 24], "ood": [22, 29, 70, 71, 104], "simplified_kolmogorov_smirnov_test": [22, 27], "outlier_cluster_label": [22, 32], "no_underperforming_cluster_id": [22, 32], "perform_clust": [22, 32], "get_worst_clust": [22, 32], "find_issues_with_predict": [22, 30, 31], "find_issues_with_featur": [22, 30, 31], "believ": [23, 107], "priori": [23, 99], "abstract": [23, 33], "applic": [24, 61, 97, 99, 101, 108], "typevar": [24, 26, 38, 42, 56, 65, 68, 69], "scalartyp": [24, 26], "covari": [24, 26, 73, 106], "summary_dict": 24, "neighbor_histogram": 27, "non_neighbor_histogram": 27, "kolmogorov": 27, "smirnov": 27, "largest": [27, 41, 49, 52, 71, 75, 77, 103, 107], "empir": [27, 48, 61], "cumul": 27, "ecdf": 27, "histogram": [27, 93, 95, 106], "absolut": [27, 31], "trial": 27, "null_track": 28, "extend": [28, 50, 60, 91, 95, 98, 103, 104, 108], "superclass": 28, "arbitrari": [28, 37, 77, 81, 89, 104, 106], "prompt": 28, "address": [28, 87, 89, 90, 94, 97], "enabl": [28, 42, 54, 98], "scaling_factor": [29, 55], "37037": 29, "q3_avg_dist": 29, "iqr_avg_dist": 29, "median_outlier_scor": 29, "issue_threshold": 29, "multipli": [31, 55], "deleg": 31, "confus": [32, 33, 37, 38, 42, 44, 57, 69, 87, 108], "50": [32, 42, 95, 97, 98, 99, 101, 103, 104, 106], "keepdim": [32, 97], "signifi": 32, "absenc": 32, "int64": [32, 88, 98, 101], "npt": 32, "int_": 32, "id": [32, 61, 89, 91, 95, 97, 101], "unique_cluster_id": 32, "_description_": 32, "performed_clust": 32, "worst_cluster_id": 32, "convent": [33, 35], "subject": [33, 35, 98], "meant": [33, 35], "Not": [33, 54], "mainli": [33, 104, 108], "content": [33, 70, 88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "fetch": [33, 41, 88, 90, 97], "datset": 34, "exclud": [34, 43, 78, 82, 89, 108], "get_report": 34, "enum": [35, 49], "qualnam": [35, 49], "boundari": [35, 49, 89, 90], "continu": [35, 60, 86, 87, 91, 94, 95, 97, 101, 103, 106, 108], "binari": [35, 49, 57, 63, 65, 99, 108], "simultan": [35, 106], "task_str": 35, "is_classif": 35, "__contains__": [35, 45, 49], "member": [35, 38, 42, 49, 89], "typeerror": [35, 49], "12": [35, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 106, 107, 108], "__getitem__": [35, 45, 49], "match": [35, 37, 38, 42, 44, 49, 61, 62, 71, 89, 90, 91, 96, 103, 105, 107], "__iter__": [35, 45, 49], "__len__": [35, 45, 49], "alias": [35, 49], "is_regress": 35, "is_multilabel": 35, "overview": [37, 52, 86, 87, 88, 90, 91, 93, 94, 101, 103, 104, 106, 108], "modifi": [37, 38, 41, 42, 52, 54, 57, 95, 97, 98, 99], "rank_classes_by_label_qu": [37, 90], "merg": [37, 52, 56, 83, 96, 97, 98, 108], "find_overlapping_class": [37, 97, 99], "problemat": [37, 62, 78, 82, 88, 103, 108], "unnorm": [37, 62, 99], "abov": [37, 38, 41, 42, 54, 57, 61, 68, 69, 71, 77, 81, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 108], "model_select": [37, 49, 86, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 104, 106], "cross_val_predict": [37, 42, 86, 87, 88, 89, 90, 93, 94, 95, 98, 99, 101, 105, 106], "get_data_labels_from_dataset": 37, "yourfavoritemodel": [37, 99], "cv": [37, 49, 86, 88, 89, 90, 93, 95, 98, 99, 101], "df": [37, 57, 82, 88, 95, 97], "overall_label_qu": [37, 62], "col": 37, "prob": [37, 56, 99, 105], "divid": [37, 62, 71], "label_nois": [37, 62], "human": [37, 96, 107, 108], "clearli": [37, 71, 91, 103, 107], "num": [37, 62, 96, 99], "overlap": [37, 83, 96, 97, 99], "ontolog": 37, "publish": [37, 108], "therefor": [37, 71, 95, 98], "vehicl": [37, 96], "truck": [37, 96, 104, 107], "intuit": [37, 62], "car": [37, 96, 103, 107], "frequent": [37, 61, 95, 97, 98, 106], "characterist": [37, 95], "l": [37, 38, 42, 66, 68, 69], "class1": 37, "class2": 37, "relationship": 37, "dog": [37, 57, 62, 64, 78, 96, 97, 104, 105, 108], "cat": [37, 57, 62, 64, 96, 97, 104, 105], "captur": [37, 88, 103, 104, 107], "co": [37, 38, 39], "noisy_label": [37, 89, 90, 102], "overlapping_class": 37, "descend": [37, 38, 42, 49, 62, 69], "overall_label_health_scor": [37, 62, 99], "half": [37, 38, 40, 42, 62, 96, 108], "health_scor": [37, 62], "classes_by_label_qu": [37, 90], "cnn": [38, 40, 42, 91], "cifar": [38, 39, 95, 96, 104], "teach": [38, 39], "bhanml": 38, "blob": [38, 95], "master": [38, 86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 106], "call_bn": [38, 40], "bn": 38, "input_channel": 38, "n_output": 38, "dropout_r": 38, "top_bn": 38, "architectur": [38, 42], "shown": [38, 69, 88, 89, 90, 91, 93, 94, 97, 98, 99, 101, 104, 105, 107, 108], "forward": [38, 39, 40, 42, 91, 101], "overridden": [38, 42], "although": [38, 42, 70, 86, 93, 98], "recip": [38, 42], "afterward": [38, 42], "sinc": [38, 42, 46, 58, 62, 69, 77, 81, 97, 98, 101, 102, 103, 105, 108], "hook": [38, 42, 96], "silent": [38, 41, 42], "t_destin": [38, 40, 42], "__call__": [38, 40, 42, 45, 49], "add_modul": [38, 40, 42], "child": [38, 42], "fn": [38, 42, 69], "recurs": [38, 42, 49], "submodul": [38, 42, 51], "children": [38, 40, 42, 108], "nn": [38, 39, 42, 52, 91], "init": [38, 42, 99], "no_grad": [38, 42, 91, 104], "init_weight": [38, 42], "linear": [38, 42, 87, 91, 94], "fill_": [38, 42], "net": [38, 42, 88, 91, 96], "in_featur": [38, 42], "out_featur": [38, 42], "bia": [38, 42, 91, 95], "tensor": [38, 39, 42, 88, 91, 104], "requires_grad": [38, 42], "bfloat16": [38, 40, 42], "cast": [38, 42, 88], "buffer": [38, 40, 42, 95], "datatyp": [38, 42], "xdoctest": [38, 42], "undefin": [38, 42], "var": [38, 42], "buf": [38, 42], "20l": [38, 42], "1l": [38, 42], "5l": [38, 42], "call_super_init": [38, 40, 42], "immedi": [38, 42, 104], "compil": [38, 40, 42, 60], "cpu": [38, 40, 42, 44, 88, 91], "move": [38, 42, 49, 84, 96], "cuda": [38, 40, 42, 88, 91], "devic": [38, 42, 88, 91, 98], "gpu": [38, 42, 87, 88, 94], "live": [38, 42], "copi": [38, 42, 73, 86, 88, 89, 90, 93, 95, 97, 98, 102, 105, 106], "doubl": [38, 40, 42], "dump_patch": [38, 40, 42], "eval": [38, 40, 42, 91, 102, 104], "dropout": [38, 42], "batchnorm": [38, 42], "grad": [38, 42], "extra_repr": [38, 40, 42], "line": [38, 42, 83, 89, 95, 96, 101, 104, 108], "get_buff": [38, 40, 42], "target": [38, 39, 42, 73, 74, 95, 104, 106], "throw": [38, 42], "get_submodul": [38, 40, 42], "explan": [38, 42], "qualifi": [38, 42], "referenc": [38, 42], "attributeerror": [38, 42], "invalid": [38, 42, 94], "resolv": [38, 42, 108], "get_extra_st": [38, 40, 42], "state_dict": [38, 40, 42], "set_extra_st": [38, 40, 42], "build": [38, 42, 52, 91, 95, 107], "picklabl": [38, 42], "serial": [38, 42], "backward": [38, 42, 91], "break": [38, 42, 91, 95, 103], "pickl": [38, 42, 103], "get_paramet": [38, 40, 42], "net_b": [38, 42], "net_c": [38, 42], "conv": [38, 42], "conv2d": [38, 42, 91], "16": [38, 42, 49, 52, 60, 77, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 103, 104, 107, 108], "kernel_s": [38, 42], "stride": [38, 42], "200": [38, 42, 71, 96, 103, 108], "diagram": [38, 42, 105], "degre": [38, 42], "queri": [38, 42, 52, 54, 90, 91, 95, 97, 98, 102], "named_modul": [38, 40, 42], "o": [38, 42, 55, 56, 88, 89, 90, 96, 97, 98, 99, 102, 103, 108], "transit": [38, 42], "ipu": [38, 40, 42], "load_state_dict": [38, 40, 42], "strict": [38, 42, 49], "persist": [38, 42], "strictli": [38, 42], "inplac": [38, 42, 95, 101], "preserv": [38, 42, 57], "namedtupl": [38, 42], "missing_kei": [38, 42], "unexpected_kei": [38, 42], "runtimeerror": [38, 42], "idx": [38, 42, 57, 58, 69, 89, 91, 95, 97, 98, 99, 101, 103, 104], "named_buff": [38, 40, 42], "prefix": [38, 42, 88, 108], "remove_dupl": [38, 42], "prepend": [38, 42], "running_var": [38, 42], "named_children": [38, 40, 42], "conv4": [38, 42], "conv5": [38, 42], "memo": [38, 42], "named_paramet": [38, 40, 42], "register_backward_hook": [38, 40, 42], "deprec": [38, 42, 46], "favor": [38, 42], "register_full_backward_hook": [38, 40, 42], "removablehandl": [38, 42], "register_buff": [38, 40, 42], "running_mean": [38, 42], "register_forward_hook": [38, 40, 42], "with_kwarg": [38, 42], "always_cal": [38, 42], "possibli": [38, 42, 86, 93], "fire": [38, 42, 96], "register_module_forward_hook": [38, 42], "regardless": [38, 42, 89, 90], "register_forward_pre_hook": [38, 40, 42], "And": [38, 42], "forward_pr": [38, 42], "register_module_forward_pre_hook": [38, 42], "gradient": [38, 42, 91, 93, 106], "grad_input": [38, 42], "grad_output": [38, 42], "technic": [38, 42], "caller": [38, 42], "register_module_full_backward_hook": [38, 42], "register_full_backward_pre_hook": [38, 40, 42], "backward_pr": [38, 42], "register_module_full_backward_pre_hook": [38, 42], "register_load_state_dict_post_hook": [38, 40, 42], "post": [38, 42, 52], "incompatible_kei": [38, 42], "modif": [38, 42, 52], "thrown": [38, 42], "register_modul": [38, 40, 42], "register_paramet": [38, 40, 42], "register_state_dict_pre_hook": [38, 40, 42], "keep_var": [38, 42], "requires_grad_": [38, 40, 42], "autograd": [38, 42], "freez": [38, 42, 87, 88, 94], "finetun": [38, 42], "gan": [38, 42], "share_memori": [38, 40, 42], "share_memory_": [38, 42], "destin": [38, 42], "shallow": [38, 42], "releas": [38, 42, 60, 84, 97], "design": [38, 42, 52], "ordereddict": [38, 42], "detach": [38, 42, 91], "non_block": [38, 42], "memory_format": [38, 42], "channels_last": [38, 42], "Its": [38, 42, 49, 62, 68], "complex": [38, 42, 98], "integr": [38, 42, 54, 83, 97], "asynchron": [38, 42], "host": [38, 42], "pin": [38, 42, 87, 94, 96], "desir": [38, 42, 52, 56, 69], "4d": [38, 42], "ignore_w": [38, 42], "determinist": [38, 42, 88], "1913": [38, 42], "3420": [38, 42], "5113": [38, 42], "2325": [38, 42], "env": [38, 42], "torch_doctest_cuda1": [38, 42], "gpu1": [38, 42], "1914": [38, 42], "5112": [38, 42], "2324": [38, 42], "float16": [38, 42], "cdoubl": [38, 42], "3741": [38, 42], "2382": [38, 42], "5593": [38, 42], "4443": [38, 42], "complex128": [38, 42], "6122": [38, 42], "1150": [38, 42], "to_empti": [38, 40, 42], "storag": [38, 42], "dst_type": [38, 42], "xpu": [38, 40, 42], "zero_grad": [38, 40, 42, 91], "set_to_non": [38, 42], "reset": [38, 42], "context": [38, 42, 103], "noisili": [39, 99], "han": 39, "2018": 39, "cifar_cnn": [39, 40], "loss_coteach": [39, 40], "y_1": 39, "y_2": 39, "forget_r": 39, "class_weight": 39, "logit": [39, 60, 91], "decim": [39, 57], "forget": [39, 49, 108], "rate_schedul": 39, "epoch": [39, 40, 42, 91, 97], "initialize_lr_schedul": [39, 40], "lr": [39, 40, 42], "001": [39, 71, 95, 97], "250": [39, 89, 90, 99, 103], "epoch_decay_start": 39, "schedul": 39, "beta": 39, "adam": 39, "adjust_learning_r": [39, 40], "alpha_plan": 39, "beta1_plan": 39, "forget_rate_schedul": [39, 40], "num_gradu": 39, "expon": 39, "tell": [39, 87, 91, 94, 99], "train_load": [39, 42], "model1": [39, 99], "optimizer1": 39, "model2": [39, 99], "optimizer2": 39, "dataload": [39, 91, 104], "parser": 39, "parse_arg": 39, "num_iter_per_epoch": 39, "print_freq": 39, "topk": 39, "top1": 39, "top5": 39, "test_load": 39, "offici": [40, 59, 95, 108], "wish": [40, 59, 98, 104, 107, 108], "adj_confident_thresholds_shar": [40, 41], "labels_shar": [40, 41], "pred_probs_shar": [40, 41], "labelinspector": [40, 41, 97], "get_num_issu": [40, 41], "get_quality_scor": [40, 41], "update_confident_threshold": [40, 41], "score_label_qu": [40, 41], "split_arr": [40, 41], "span_classif": 40, "display_issu": [40, 43, 76, 77, 78, 79, 80, 81, 82, 107, 108], "mnist_pytorch": 40, "get_mnist_dataset": [40, 42], "get_sklearn_digits_dataset": [40, 42], "simplenet": [40, 42], "batch_siz": [40, 41, 42, 75, 77, 91, 97, 104, 107], "log_interv": [40, 42], "momentum": [40, 42], "no_cuda": [40, 42], "test_batch_s": [40, 42, 91], "loader": [40, 42, 91], "set_predict_proba_request": [40, 42], "set_predict_request": [40, 42], "coteach": [40, 84], "mini": [41, 75, 77, 97], "low_self_confid": [41, 44, 63], "self_confid": [41, 44, 45, 49, 63, 65, 71, 79, 81, 86, 87, 97, 99], "conveni": [41, 54, 86, 87, 88, 94, 98], "script": 41, "labels_fil": [41, 97], "pred_probs_fil": [41, 97], "quality_score_kwarg": 41, "num_issue_kwarg": 41, "return_mask": 41, "variant": [41, 61, 107], "read": [41, 46, 90, 97, 99, 104, 108], "zarr": [41, 97], "memmap": [41, 107], "pythonspe": 41, "mmap": [41, 97], "hdf5": 41, "further": [41, 43, 62, 63, 65, 68, 69, 77, 78, 88, 97, 98], "yourfil": 41, "npy": [41, 96, 97, 107], "mmap_mod": [41, 107], "tip": [41, 44, 60, 97], "save_arrai": 41, "your_arrai": 41, "disk": [41, 96, 97], "npz": [41, 108], "maxim": [41, 61, 75, 77, 98, 107], "multiprocess": [41, 44, 63, 75, 77, 91, 97], "linux": [41, 75, 77], "physic": [41, 44, 75, 77, 103], "psutil": [41, 44, 75, 77], "labels_arrai": [41, 58], "predprob": 41, "pred_probs_arrai": 41, "back": [41, 52, 69, 89, 97, 98, 103, 104], "store_result": 41, "becom": [41, 95, 104], "verifi": [41, 54, 97, 98, 101, 104], "long": [41, 61, 70, 98, 101], "enough": [41, 57, 95, 97], "chunk": [41, 105], "ram": [41, 96], "end_index": 41, "labels_batch": 41, "pred_probs_batch": 41, "batch_result": 41, "indices_of_examples_with_issu": [41, 97], "shortcut": 41, "encount": [41, 44, 75], "1000": [41, 88, 94, 97, 104], "aggreg": [41, 45, 49, 61, 65, 68, 71, 81, 97, 99, 101], "seen": [41, 97, 98, 104, 108], "far": [41, 61, 98], "label_quality_scor": [41, 65, 68, 71, 74, 99, 103], "method1": 41, "method2": 41, "normalized_margin": [41, 44, 45, 49, 63, 65, 71, 79, 81], "low_normalized_margin": [41, 44, 63], "issue_indic": [41, 68, 91], "update_num_issu": 41, "arr": [41, 97], "chunksiz": 41, "convnet": 42, "bespok": [42, 60], "download": [42, 88, 95, 97, 104], "mnist": [42, 83, 88, 96], "handwritten": 42, "digit": [42, 88, 96], "last": [42, 49, 66, 69, 89, 90, 97, 98, 101, 103, 108], "sklearn_digits_test_s": 42, "01": [42, 71, 73, 88, 95, 99, 102, 103, 104], "templat": 42, "flexibli": 42, "among": [42, 61, 99], "test_set": 42, "overrid": 42, "train_idx": [42, 57, 104], "train_label": [42, 87, 98, 104], "span": [43, 98], "sentenc": [43, 56, 79, 81, 82, 87, 94], "token_classif": [43, 56, 79, 81, 82, 97], "encourag": [44, 63, 71, 74], "multilabel_classif": [44, 62, 63, 65, 71, 97, 102], "pred_probs_by_class": 44, "prune_count_matrix_col": 44, "rank_by_kwarg": [44, 63, 71, 99], "num_to_remove_per_class": [44, 63], "bad": [44, 52, 63, 68, 71, 94, 97], "seem": [44, 99, 102], "aren": 44, "confidence_weighted_entropi": [44, 45, 49, 63, 65, 71, 79, 81], "label_issues_idx": [44, 71, 98], "entropi": [44, 46, 48, 49, 70, 71], "prune_by_class": [44, 63, 99], "predicted_neq_given": [44, 63, 99], "prune_counts_matrix": 44, "smallest": [44, 71], "unus": 44, "number_of_mislabeled_examples_in_class_k": 44, "delet": [44, 83, 87, 97], "too": [44, 49, 52, 70, 91, 97, 98, 103], "thread": [44, 63], "window": [44, 96], "shorter": [44, 66], "find_predicted_neq_given": 44, "find_label_issues_using_argmax_confusion_matrix": 44, "remove_noise_from_class": [45, 57], "clip_noise_r": [45, 57], "clip_valu": [45, 57], "value_count": [45, 57, 97], "value_counts_fill_missing_class": [45, 57], "get_missing_class": [45, 57], "round_preserving_sum": [45, 57], "round_preserving_row_tot": [45, 57], "estimate_pu_f1": [45, 57], "confusion_matrix": [45, 57], "print_square_matrix": [45, 57], "print_noise_matrix": [45, 57, 99], "print_inverse_noise_matrix": [45, 57], "print_joint_matrix": [45, 57, 99], "compress_int_arrai": [45, 57], "train_val_split": [45, 57], "subset_x_i": [45, 57], "subset_label": [45, 57], "subset_data": [45, 57], "extract_indices_tf": [45, 57], "unshuffle_tensorflow_dataset": [45, 57], "is_torch_dataset": [45, 57], "is_tensorflow_dataset": [45, 57], "csr_vstack": [45, 57], "append_extra_datapoint": [45, 57], "get_num_class": [45, 57], "num_unique_class": [45, 57], "get_unique_class": [45, 57], "format_label": [45, 57], "smart_display_datafram": [45, 57], "force_two_dimens": [45, 57], "latent_algebra": [45, 84], "compute_ps_py_inv_noise_matrix": [45, 47], "compute_py_inv_noise_matrix": [45, 47], "compute_inv_noise_matrix": [45, 47], "compute_noise_matrix_from_invers": [45, 47], "compute_pi": [45, 47], "compute_pyx": [45, 47], "label_quality_util": 45, "get_normalized_entropi": [45, 46], "multilabel_util": [45, 102], "stack_compl": [45, 50], "get_onehot_num_class": [45, 50], "int2onehot": [45, 50, 102], "onehot2int": [45, 50, 102], "multilabel_scor": [45, 65], "classlabelscor": [45, 49], "exponential_moving_averag": [45, 49, 65], "softmin": [45, 49, 65, 68, 77, 81], "possible_method": [45, 49], "multilabelscor": [45, 49], "get_class_label_quality_scor": [45, 49], "multilabel_pi": [45, 49], "get_cross_validated_multilabel_pred_prob": [45, 49], "default_k": [45, 51, 52], "features_to_knn": [45, 51, 52], "construct_knn_graph_from_index": [45, 51, 52, 54], "create_knn_graph_and_index": [45, 51, 52], "correct_knn_graph": [45, 51, 52, 95], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplac": [45, 51, 52], "correct_knn_distances_and_indic": [45, 51, 52], "high_dimension_cutoff": [45, 51, 53], "row_count_cutoff": [45, 51, 53], "decide_euclidean_metr": [45, 51, 53], "decide_default_metr": [45, 51, 53], "construct_knn": [45, 51, 54], "transform_distances_to_scor": [45, 55], "correct_precision_error": [45, 55], "token_classification_util": [45, 108], "get_sent": [45, 56, 108], "filter_sent": [45, 56, 108], "process_token": [45, 56], "merge_prob": [45, 56], "color_sent": [45, 56], "assert_valid_input": [45, 58], "assert_valid_class_label": [45, 58], "assert_nonempty_input": [45, 58], "assert_indexing_work": [45, 58], "labels_to_arrai": [45, 58], "labels_to_list_multilabel": [45, 58], "min_allowed_prob": 46, "wikipedia": 46, "activ": [46, 48, 60, 61, 83, 101], "towardsdatasci": 46, "cheatsheet": 46, "ec57bc067c0b": 46, "clip": [46, 57, 88, 95], "behav": 46, "unnecessari": [46, 97], "slightli": [46, 86, 87], "interv": [46, 49, 104], "herein": 47, "inexact": 47, "cours": [47, 98], "propag": 47, "throughout": [47, 57, 73, 82, 88, 101, 107, 108], "increas": [47, 55, 68, 70, 71, 88, 89, 95, 97, 101, 102, 108], "dot": [47, 81, 97], "true_labels_class_count": 47, "pyx": 47, "multiannot": 48, "assert_valid_inputs_multiannot": 48, "labels_multiannot": [48, 61], "ensembl": [48, 49, 61, 71, 86, 93, 97, 102, 104, 106], "allow_single_label": 48, "annotator_id": 48, "assert_valid_pred_prob": 48, "pred_probs_unlabel": [48, 61], "format_multiannotator_label": [48, 61, 101], "formatted_label": [48, 57], "old": [48, 57, 84, 96], "check_consensus_label_class": 48, "consensus_label": [48, 61, 101], "consensus_method": [48, 61], "consensu": [48, 61, 83, 100, 108], "establish": [48, 60, 87, 106], "compute_soft_cross_entropi": 48, "soft": [48, 96], "find_best_temp_scal": 48, "coarse_search_rang": [48, 73, 97], "fine_search_s": [48, 73, 97], "temperatur": [48, 49, 68, 77, 81], "scale": [48, 55, 86, 95, 96, 97, 104, 107], "factor": [48, 49, 55, 75, 77], "minim": [48, 68, 104], "temp_scale_pred_prob": 48, "temp": 48, "sharpen": [48, 96], "smoothen": 48, "get_normalized_margin_for_each_label": [49, 71], "get_confidence_weighted_entropy_for_each_label": [49, 71], "scorer": 49, "alpha": [49, 65, 68, 89, 90, 95, 99, 102, 106], "exponenti": 49, "ema": 49, "s_1": 49, "s_k": 49, "ema_k": 49, "accord": [49, 63, 93, 94, 99, 108], "formula": [49, 55], "_t": 49, "cdot": 49, "s_t": 49, "qquad": 49, "leq": 49, "_1": 49, "recent": [49, 108], "success": 49, "previou": [49, 52, 91, 93, 97, 103], "discount": 49, "s_ema": 49, "175": [49, 91, 98, 99, 103], "underflow": 49, "nan": [49, 61, 86, 93, 95, 98, 101, 106], "aggregated_scor": 49, "base_scor": [49, 98], "base_scorer_kwarg": 49, "aggregator_kwarg": [49, 65], "n_sampl": [49, 95], "n_label": 49, "worst": [49, 101], "class_label_quality_scor": 49, "452": 49, "new_scor": 49, "575": [49, 98], "get_label_quality_scores_per_class": [49, 64, 65], "ml_scorer": 49, "binar": [49, 50], "reformat": [49, 88], "wider": 49, "splitter": 49, "kfold": [49, 91], "onevsrestclassifi": [49, 102], "randomforestclassifi": [49, 99, 102], "n_split": [49, 91, 102], "pred_prob_slic": 50, "onehot": 50, "hot": [50, 63, 69, 75, 78, 86, 93, 96, 97, 106, 107], "onehot_matrix": 50, "pairwis": [51, 53, 70], "reli": [52, 70, 87, 88, 89, 90, 94, 103, 104, 106], "sklearn_knn_kwarg": 52, "correction_featur": 52, "discourag": 52, "flexibl": [52, 97], "manner": [52, 65, 86, 87, 95, 101, 106], "701": 52, "900": [52, 86, 93, 106], "436": [52, 98], "000": [52, 87, 91, 94, 95, 96, 108], "idea": [52, 71, 98, 103], "dens": [52, 60, 95], "33140006": 52, "76210367": 52, "correct_exact_dupl": 52, "mutual": [52, 62, 102], "vari": [52, 68, 90], "exact_duplicate_set": 52, "main": [52, 61], "front": [52, 96], "consider": 52, "capabl": [52, 83, 98], "come": [52, 57, 89, 90, 97, 107], "misidentif": 52, "corrected_dist": 52, "corrected_indic": 52, "sqrt": 52, "distant": 52, "suitabl": [53, 61, 86, 93, 95, 98], "slower": 53, "decid": [53, 61, 87, 94, 96, 101, 106, 108], "predefin": 53, "met": [53, 108], "euclidean_dist": [53, 70], "spatial": [53, 70], "decis": [53, 86, 89, 90, 98], "That": [53, 99, 102], "cosine_dist": 53, "knn_kwarg": 54, "html": [54, 57, 66, 69, 70, 88, 89, 90, 91, 93, 94, 97, 98, 99], "kneighbor": 54, "metric_param": 54, "n_features_in_": 54, "effective_metric_params_": 54, "effective_metric_": 54, "n_samples_fit_": 54, "__sklearn_is_fitted__": 54, "conduct": 54, "is_fit": 54, "trail": 54, "underscor": 54, "avg_dist": 55, "exp": [55, 70, 71, 89], "dt": 55, "right": [55, 66, 69, 87, 94, 102, 103, 104], "strength": [55, 69, 95], "pronounc": 55, "differenti": 55, "ly": 55, "rule": [55, 56, 96], "thumb": 55, "ood_features_scor": [55, 70, 104], "88988177": 55, "80519832": 55, "toler": 55, "minkowski": 55, "noth": 55, "epsilon": 55, "sensibl": 55, "fixed_scor": 55, "readabl": 56, "lambda": [56, 88, 89, 97, 98, 101], "long_sent": 56, "headlin": 56, "charact": [56, 57], "s1": 56, "s2": 56, "processed_token": 56, "alecnlcb": 56, "entiti": [56, 83, 97, 108], "mapped_ent": 56, "unique_ident": 56, "loc": [56, 89, 90, 91, 93, 95, 108], "nbitbas": [56, 65], "probs_merg": 56, "0125": [56, 81], "0375": 56, "075": 56, "025": 56, "color": [56, 78, 89, 90, 93, 95, 99, 102, 104, 106, 107], "red": [56, 69, 89, 90, 95, 96, 99, 102, 103, 104, 107], "colored_sent": 56, "termcolor": 56, "31msentenc": 56, "0m": 56, "ancillari": 57, "class_without_nois": 57, "any_other_class": 57, "choos": [57, 71, 86, 93, 97, 99, 106], "tradition": 57, "new_sum": 57, "fill": 57, "major": [57, 61, 84, 91, 104], "versu": [57, 99], "obviou": 57, "cgdeboer": 57, "iteround": 57, "reach": 57, "prob_s_eq_1": 57, "claesen": 57, "f1": [57, 69, 94, 99], "BE": 57, "left_nam": 57, "top_nam": 57, "titl": [57, 89, 90, 95, 99, 102, 104], "short_titl": 57, "round_plac": 57, "pretti": [57, 99], "joint_matrix": 57, "num_possible_valu": 57, "holdout_idx": 57, "extract": [57, 70, 87, 88, 93, 94, 95, 98, 101, 104, 107], "allow_shuffl": 57, "turn": [57, 83, 103], "shuffledataset": 57, "histori": 57, "pre_x": 57, "buffer_s": 57, "csr_matric": 57, "append": [57, 88, 91, 95, 96, 97, 98, 99, 101, 102, 103, 104, 108], "bottom": [57, 66, 69, 95, 103], "to_data": 57, "from_data": 57, "taken": 57, "label_matrix": 57, "canon": 57, "displai": [57, 69, 78, 82, 87, 88, 93, 94, 95, 99, 108], "jupyt": [57, 88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "notebook": [57, 61, 88, 90, 96, 97, 98, 99, 101, 102, 103, 107, 108], "consol": 57, "allow_missing_class": 58, "allow_one_class": 58, "length_x": 58, "labellik": 58, "labels_list": [58, 63], "keraswrappermodel": [59, 60, 83], "keraswrappersequenti": [59, 60], "tf": [60, 88], "legaci": 60, "newer": 60, "interim": 60, "advis": [60, 102], "stabil": [60, 70], "until": 60, "accommod": 60, "keraswrapp": 60, "huggingface_keras_imdb": 60, "unit": [60, 108], "model_kwarg": [60, 73], "compile_kwarg": 60, "sparsecategoricalcrossentropi": 60, "layer": [60, 87, 88, 94, 104], "my_keras_model": 60, "from_logit": 60, "declar": 60, "apply_softmax": 60, "analysi": [61, 95], "analyz": [61, 83, 95, 99, 101, 102], "get_label_quality_multiannot": [61, 101], "vote": 61, "crowdsourc": [61, 83, 101], "dawid": [61, 101], "skene": [61, 101], "analog": [61, 96, 101], "chosen": [61, 71, 95, 97, 101], "crowdlab": [61, 101], "unlabel": [61, 91, 93, 94, 101, 104, 107], "get_active_learning_scor": [61, 101], "activelab": [61, 101], "priorit": [61, 68, 103, 107, 108], "showcas": 61, "best_qual": 61, "quality_method": 61, "calibrate_prob": 61, "return_detailed_qu": 61, "return_annotator_stat": 61, "return_weight": 61, "label_quality_score_kwarg": 61, "did": [61, 62, 86, 87, 88, 93, 99, 101, 106], "majority_vot": 61, "broken": [61, 69, 96, 106], "highest": [61, 69, 89, 91, 98, 105], "0th": 61, "consensus_quality_scor": [61, 101], "annotator_agr": [61, 101], "reman": 61, "1st": 61, "2nd": [61, 75], "3rd": 61, "consensus_label_suffix": 61, "consensus_quality_score_suffix": 61, "suffix": 61, "emsembl": 61, "weigh": [61, 96], "agreement": [61, 101], "agre": 61, "prevent": [61, 97], "overconfid": [61, 105], "detailed_label_qu": [61, 101], "annotator_stat": [61, 101], "model_weight": 61, "annotator_weight": 61, "warn": 61, "labels_info": 61, "num_annot": [61, 101], "deriv": [61, 101], "quality_annotator_1": 61, "quality_annotator_2": 61, "quality_annotator_m": 61, "annotator_qu": [61, 101], "num_examples_label": [61, 101], "agreement_with_consensu": [61, 101], "worst_class": [61, 101], "trustworthi": [61, 101, 106], "get_label_quality_multiannotator_ensembl": 61, "weigtht": 61, "budget": 61, "retrain": [61, 87, 106], "active_learning_scor": 61, "active_learning_scores_unlabel": 61, "get_active_learning_scores_ensembl": 61, "henc": [61, 88, 89, 98, 101], "get_majority_vote_label": [61, 101], "event": 61, "lastli": [61, 93], "convert_long_to_wide_dataset": 61, "labels_multiannotator_long": 61, "wide": [61, 86, 87, 88], "labels_multiannotator_wid": 61, "common_multilabel_issu": [62, 64], "exclus": [62, 102], "rank_classes_by_multilabel_qu": [62, 64], "overall_multilabel_health_scor": [62, 64], "multilabel_health_summari": [62, 64], "classes_by_multilabel_qu": 62, "inner": [63, 77, 95], "find_multilabel_issues_per_class": [63, 64], "per_class_label_issu": 63, "label_issues_list": 63, "pred_probs_list": [63, 71, 91, 99], "anim": [64, 104], "rat": 64, "predat": 64, "pet": 64, "reptil": 64, "box": [66, 68, 69, 96, 103], "object_detect": [66, 68, 69, 103], "return_indices_ranked_by_scor": [66, 103], "overlapping_label_check": [66, 68], "suboptim": [66, 68], "locat": [66, 68, 95, 103, 107, 108], "bbox": [66, 69, 103], "image_nam": [66, 69], "y1": [66, 69, 103], "y2": [66, 69, 103], "later": [66, 69, 70, 87, 98, 108], "corner": [66, 69, 103], "xyxi": [66, 69, 103], "io": [66, 69, 88, 95, 96], "keras_cv": [66, 69], "bounding_box": [66, 69, 103], "detectron": [66, 69, 103], "detectron2": [66, 69, 103], "readthedoc": [66, 69], "en": [66, 69], "latest": [66, 69], "visual": [66, 67, 69, 86, 89, 90, 91, 106, 108], "draw_box": [66, 69], "mmdetect": [66, 69, 103], "swap": [66, 68, 78, 82], "penal": [66, 68], "concern": [66, 68, 83, 90], "issues_from_scor": [67, 68, 76, 77, 78, 80, 81, 82, 103, 107, 108], "compute_overlooked_box_scor": [67, 68], "compute_badloc_box_scor": [67, 68], "compute_swap_box_scor": [67, 68], "pool_box_scores_per_imag": [67, 68], "object_counts_per_imag": [67, 69, 103], "bounding_box_size_distribut": [67, 69, 103], "class_label_distribut": [67, 69, 103], "get_sorted_bbox_count_idx": [67, 69], "plot_class_size_distribut": [67, 69], "plot_class_distribut": [67, 69], "get_average_per_class_confusion_matrix": [67, 69], "calculate_per_class_metr": [67, 69], "aggregation_weight": 68, "imperfect": [68, 97, 98], "chose": [68, 101, 103], "imperfectli": [68, 103], "dirti": [68, 71, 74, 106], "subtyp": 68, "badloc": 68, "nonneg": 68, "high_probability_threshold": 68, "auxiliary_input": [68, 69], "iou": [68, 69], "heavili": 68, "auxiliarytypesdict": 68, "pred_label": [68, 87], "pred_label_prob": 68, "pred_bbox": 68, "lab_label": 68, "lab_bbox": 68, "similarity_matrix": 68, "min_possible_similar": 68, "scores_overlook": 68, "low_probability_threshold": 68, "scores_badloc": 68, "accident": [68, 87, 93, 94, 97], "scores_swap": 68, "box_scor": 68, "image_scor": [68, 77, 107], "discov": [69, 90, 95, 108], "abnorm": [69, 91, 103], "auxiliari": [69, 104, 107], "_get_valid_inputs_for_compute_scor": 69, "object_count": 69, "down": 69, "bbox_siz": 69, "class_distribut": 69, "plot": [69, 89, 90, 95, 99, 102, 104, 106, 107], "sorted_idx": [69, 104], "class_to_show": 69, "hidden": [69, 104], "max_class_to_show": 69, "plt": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "matplotlib": [69, 78, 89, 90, 91, 95, 99, 102, 103, 104, 106], "pyplot": [69, 78, 89, 90, 91, 95, 99, 102, 104, 106], "prediction_threshold": 69, "overlai": [69, 103], "figsiz": [69, 89, 90, 91, 95, 99, 102, 104], "save_path": [69, 103], "blue": [69, 96, 99, 103], "overlaid": 69, "side": [69, 96, 103], "figur": [69, 95, 99, 102, 104, 106], "extens": [69, 99, 101], "png": [69, 95, 103], "pdf": [69, 70], "svg": 69, "num_proc": [69, 91], "intersect": [69, 97], "tp": 69, "fp": 69, "ground": [69, 96, 99, 101, 106], "truth": [69, 99, 101, 106], "bias": [69, 95], "avg_metr": 69, "distionari": 69, "95": [69, 79, 81, 93, 96, 98, 99, 106], "per_class_metr": 69, "Of": 70, "find_top_issu": [70, 71, 104], "behind": [70, 99], "dist_metr": 70, "subtract": [70, 71], "renorm": [70, 71, 97], "least_confid": 70, "sum_": 70, "log": [70, 71, 84], "softmax": [70, 77, 81, 91], "literatur": 70, "gen": 70, "liu": 70, "lochman": 70, "zach": 70, "openaccess": 70, "thecvf": 70, "cvpr2023": 70, "liu_gen_pushing_the_limits_of_softmax": 70, "based_out": 70, "distribution_detection_cvpr_2023_pap": 70, "fit_scor": [70, 104], "ood_predictions_scor": 70, "pretrain": [70, 87, 88, 94, 98, 104], "adjust_confident_threshold": 70, "probabilist": [70, 86, 88, 89, 90, 93, 94, 104, 105], "order_label_issu": [71, 84], "whichev": [71, 105], "argsort": [71, 87, 91, 94, 99, 103, 104, 106], "max_": 71, "get_label_quality_ensemble_scor": [71, 97, 99], "weight_ensemble_members_bi": 71, "custom_weight": 71, "log_loss_search_t_valu": 71, "0001": [71, 96], "scheme": 71, "log_loss_search": 71, "log_loss": [71, 94], "1e0": 71, "1e1": 71, "1e2": 71, "2e2": 71, "quality_scor": [71, 104], "forth": 71, "top_issue_indic": 71, "rank_bi": [71, 84], "weird": [71, 82], "minu": 71, "prob_label": 71, "max_prob_not_label": 71, "AND": [71, 94], "get_epistemic_uncertainti": [72, 73], "get_aleatoric_uncertainti": [72, 73], "corrupt": [73, 106], "linearregress": [73, 97, 106], "y_with_nois": 73, "n_boot": [73, 97], "include_aleatoric_uncertainti": [73, 97], "sole": [73, 86, 89, 98, 101, 104], "bootstrap": [73, 97, 106], "resampl": [73, 88, 97], "epistem": [73, 97, 104, 106], "aleator": [73, 97, 106], "model_final_kwarg": 73, "coars": 73, "thorough": [73, 97], "fine": [73, 87, 88, 94, 104], "grain": 73, "grid": [73, 95, 98], "varianc": [73, 99], "epistemic_uncertainti": 73, "residu": [73, 74, 97], "deviat": [73, 103, 106], "aleatoric_uncertainti": 73, "outr": 74, "contin": 74, "raw": [74, 83, 84, 90, 91, 96, 97, 98, 101, 103, 104, 106], "aka": [74, 88, 99, 103, 106, 108], "00323821": 74, "33692597": 74, "00191686": 74, "semant": [75, 77, 78, 100], "pixel": [75, 77, 78, 91, 104, 107], "h": [75, 77, 78, 107], "height": [75, 77, 78, 107], "w": [75, 77, 78, 107], "width": [75, 77, 78, 107], "labels_one_hot": [75, 78, 107], "stream": [75, 104, 108], "downsampl": [75, 77, 107], "shrink": [75, 77], "divis": [75, 77, 89], "common_label_issu": [76, 78, 80, 82, 107, 108], "filter_by_class": [76, 78, 107], "segmant": [77, 78], "num_pixel_issu": [77, 107], "product": [77, 91, 95, 97, 98], "pixel_scor": [77, 107], "enter": 78, "legend": [78, 89, 90, 95, 102, 103, 106, 107], "colormap": 78, "background": [78, 95], "person": [78, 97, 103, 107, 108], "ambigu": [78, 82, 87, 88, 94, 96, 99, 108], "systemat": [78, 82, 101], "misunderstood": [78, 82], "issues_df": [78, 91], "class_index": 78, "issues_subset": [78, 82], "filter_by_token": [80, 82, 108], "token_score_method": 81, "sentence_score_method": 81, "sentence_score_kwarg": 81, "compris": [81, 82], "token_scor": [81, 108], "converg": 81, "toward": [81, 95], "_softmin_sentence_scor": 81, "sentence_scor": [81, 108], "token_info": 81, "02": [81, 89, 90, 95, 99, 103], "03": [81, 93, 95, 96, 98, 99, 103, 108], "04": [81, 93, 95, 103], "08": [81, 95, 99, 103, 106, 108], "commonli": [82, 84, 89, 90, 102, 108], "But": [82, 94, 98, 99, 106, 108], "restrict": [82, 97], "reliabl": [83, 86, 88, 95, 97, 98, 101, 107], "thousand": 83, "imagenet": [83, 96], "popular": [83, 101, 103], "centric": [83, 91, 93, 94, 100], "minut": [83, 86, 87, 88, 93, 94, 96, 101, 102, 103, 106, 107, 108], "conda": 83, "feature_embed": [83, 104], "Then": [83, 86, 87, 91, 97], "your_dataset": [83, 88, 89, 90, 91, 93, 94, 97], "column_name_of_label": [83, 88, 89, 90, 91, 93, 94], "plagu": [83, 90], "untrain": 83, "\u30c4": 83, "label_issues_info": [83, 90], "sklearn_compatible_model": 83, "framework": [83, 102, 103], "complianc": 83, "tag": [83, 102, 108], "sequenc": 83, "recognit": [83, 88, 97, 108], "train_data": [83, 86, 87, 104, 106], "gotten": 83, "test_data": [83, 86, 87, 99, 102, 104, 106], "deal": [83, 90, 95, 98], "feel": [83, 88, 90, 97], "ask": [83, 97], "slack": [83, 97], "project": [83, 98, 106], "welcom": 83, "commun": [83, 97], "guidelin": [83, 103], "piec": 83, "smart": [83, 91, 93, 94, 97], "edit": [83, 97, 98], "easier": [83, 95, 99], "unreli": [83, 86, 88, 93, 94, 95, 98], "link": [83, 88, 96, 103], "older": 84, "outlin": 84, "substitut": [84, 98], "v2": [84, 86, 93], "get_noise_indic": 84, "psx": 84, "sorted_index_method": 84, "order_label_error": 84, "label_errors_bool": 84, "latent_estim": 84, "num_label_error": 84, "learningwithnoisylabel": 84, "neatli": 84, "organ": [84, 86, 93, 96, 108], "reorgan": 84, "baseline_method": 84, "incorpor": [84, 99], "research": [84, 99], "polyplex": 84, "terminologi": 84, "label_error": 84, "quickstart": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 101, 102, 103, 104, 106, 107, 108], "sql": [86, 93], "databas": [86, 93], "excel": [86, 93], "parquet": [86, 93], "student": [86, 93, 98, 106, 108], "grade": [86, 93, 98, 106], "exam": [86, 93, 98, 106], "letter": [86, 93, 108], "hundr": [86, 93], "mistak": [86, 87, 91, 93, 94, 98], "extratreesclassifi": 86, "extratre": 86, "ranked_label_issu": [86, 87], "branch": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106], "preprocess": [86, 87, 90, 93, 95, 104, 106], "standardscal": [86, 93, 98, 104], "labelencod": [86, 87, 98], "train_test_split": [86, 87, 89, 90, 104], "accuracy_scor": [86, 87, 88, 94, 98, 99], "grades_data": [86, 93], "read_csv": [86, 87, 93, 94, 95, 98, 106], "demo": [86, 90, 93, 102], "stud_id": [86, 93, 98], "exam_1": [86, 93, 98, 106], "exam_2": [86, 93, 98, 106], "exam_3": [86, 93, 98, 106], "letter_grad": [86, 93], "f48f73": [86, 93], "53": [86, 89, 90, 93, 95, 96, 98, 102, 103], "00": [86, 89, 90, 93, 95, 96, 98, 104], "77": [86, 89, 90, 93, 98, 103], "0bd4e7": [86, 93], "81": [86, 93, 94, 98, 103, 106, 108], "great": [86, 93, 96, 98], "particip": [86, 93, 98], "cb9d7a": [86, 93], "61": [86, 93, 95, 99, 103, 106], "94": [86, 93, 96, 98, 99, 103, 106], "9acca4": [86, 93], "48": [86, 93, 95, 96, 99, 103], "x_raw": [86, 93], "labels_raw": 86, "interg": [86, 87], "categorical_featur": [86, 106], "x_encod": [86, 93], "get_dummi": [86, 93, 106], "drop_first": [86, 93], "numeric_featur": [86, 93], "scaler": [86, 93, 104], "x_process": [86, 93], "fit_transform": [86, 93, 95, 98], "bring": [86, 87, 91, 93, 94, 101, 106], "byod": [86, 87, 91, 93, 94, 101, 106], "tress": 86, "held": [86, 88, 93, 94, 96, 103, 104, 105], "straightforward": [86, 88, 93], "benefit": [86, 88, 105, 107], "num_crossval_fold": [86, 88, 93, 98, 101], "tabl": [86, 93, 96, 101], "212": [86, 98, 99], "review": [86, 87, 90, 93, 94, 96, 97, 98, 99, 103, 106, 107, 108], "iloc": [86, 87, 88, 93, 94, 95, 98, 106], "92": [86, 89, 98, 99, 103], "93": [86, 96, 98, 103, 106], "827": 86, "99": [86, 95, 96, 98, 99], "86": [86, 90, 91, 93, 98, 99, 103, 106], "74": [86, 95, 98, 103, 106], "637": [86, 93], "79": [86, 96, 98, 103], "65": [86, 89, 95, 98, 103], "cheat": [86, 98], "0pt": [86, 98], "120": [86, 89, 90, 98], "233": 86, "83": [86, 98, 99, 103, 106, 108], "76": [86, 98, 99, 102, 103, 106], "suspici": [86, 93], "carefulli": [86, 91, 93, 94, 98], "examin": [86, 89, 90, 93, 95, 98, 103], "labels_train": 86, "labels_test": 86, "test_siz": [86, 87, 89, 90], "acc_og": [86, 87], "783068783068783": 86, "robustli": [86, 87, 106], "14": [86, 87, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "acc_cl": [86, 87], "8095238095238095": 86, "blindli": [86, 87, 88, 97, 98, 106], "trust": [86, 87, 88, 97, 98, 99, 101, 105, 106], "effort": [86, 87, 98, 106], "intent": [87, 94], "servic": [87, 94, 97], "onlin": [87, 94], "bank": [87, 94, 96], "banking77": [87, 94], "oo": [87, 94], "categori": [87, 91, 94, 95, 98], "shortlist": [87, 94, 106], "scope": [87, 94], "logist": [87, 89, 90, 94, 101, 104], "probabilit": [87, 88], "drop": [87, 93, 95, 97, 98, 101, 106], "earlier": [87, 108], "sentence_transform": [87, 94], "sentencetransform": [87, 94], "payment": [87, 94], "cancel_transf": [87, 94], "transfer": [87, 94], "fund": [87, 94], "cancel": [87, 94], "transact": [87, 94], "my": [87, 94], "revert": [87, 94], "morn": [87, 94], "realis": [87, 94], "yesterdai": [87, 94], "rent": [87, 94], "tomorrow": [87, 94], "raw_text": [87, 94], "raw_label": 87, "raw_train_text": 87, "raw_test_text": 87, "raw_train_label": 87, "raw_test_label": 87, "supported_cards_and_curr": [87, 94], "getting_spare_card": [87, 94], "lost_or_stolen_phon": [87, 94], "visa_or_mastercard": [87, 94], "change_pin": [87, 94], "card_about_to_expir": [87, 94], "beneficiary_not_allow": [87, 94], "apple_pay_or_google_pai": [87, 94], "card_payment_fee_charg": [87, 94], "card": [87, 94, 96], "utter": [87, 94], "encond": 87, "test_label": [87, 98, 99, 102, 104], "suit": [87, 94, 95, 96, 97], "electra": [87, 94], "discrimin": [87, 94], "googl": [87, 94], "train_text": 87, "test_text": 87, "home": [87, 94, 96], "runner": [87, 94], "google_electra": [87, 94], "pool": [87, 94, 97, 104], "leverag": [87, 88, 94, 97, 99, 101], "computation": [87, 88, 94], "intens": [87, 88, 94], "400": [87, 94, 98], "858371": 87, "547274": 87, "826228": 87, "966008": 87, "792449": 87, "identified_issu": [87, 106], "lowest_quality_label": [87, 88, 94, 99, 106], "to_numpi": [87, 94, 95, 98, 106], "44": [87, 95, 96, 102, 103], "646": 87, "390": 87, "628": 87, "121": [87, 99], "702": 87, "863": 87, "135": 87, "337": [87, 98, 103], "735": 87, "print_as_df": 87, "inverse_transform": 87, "charg": [87, 94], "cash": [87, 94], "holidai": [87, 94], "sent": [87, 94, 108], "mine": [87, 94], "expir": [87, 94], "fight": 87, "hors": [87, 96, 104], "duck": [87, 96], "me": [87, 94, 95], "whoever": [87, 94], "consum": [87, 106], "18": [87, 88, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "baseline_model": [87, 106], "87": [87, 90, 91, 98, 103, 106], "acceler": [87, 106], "19": [87, 88, 91, 94, 95, 96, 97, 98, 99, 103, 104, 106, 107], "89": [87, 89, 93, 98, 103, 106], "spoken": 88, "500": [88, 95, 98, 104, 108], "english": [88, 96], "pronunci": 88, "wav": 88, "huggingfac": [88, 89, 90, 91, 97], "voxceleb": 88, "speech": [88, 108], "your_pred_prob": [88, 89, 90, 93, 94], "tensorflow_io": 88, "huggingface_hub": 88, "reproduc": [88, 93, 95, 98, 99, 101], "command": 88, "wget": [88, 103, 107, 108], "navig": 88, "browser": 88, "jakobovski": 88, "archiv": [88, 108], "v1": 88, "tar": [88, 95, 104], "gz": [88, 95, 104], "mkdir": [88, 108], "spoken_digit": 88, "xf": 88, "6_nicolas_32": 88, "data_path": 88, "listdir": 88, "nondeterminist": 88, "file_nam": 88, "endswith": 88, "file_path": 88, "join": [88, 91, 95, 97, 98], "7_george_26": 88, "0_nicolas_24": 88, "0_nicolas_6": 88, "listen": 88, "display_exampl": 88, "expand": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "pulldown": [88, 89, 90, 91, 96, 98, 99, 101, 102, 104, 106, 108], "colab": [88, 89, 90, 91, 96, 97, 98, 99, 101, 102, 104, 106, 108], "tfio": 88, "pathlib": 88, "ipython": [88, 95], "load_wav_16k_mono": 88, "filenam": 88, "khz": 88, "file_cont": 88, "read_fil": 88, "sample_r": 88, "decode_wav": 88, "desired_channel": 88, "squeez": 88, "rate_in": 88, "rate_out": 88, "16000": 88, "wav_file_nam": 88, "audio_r": 88, "wav_file_exampl": 88, "plai": [88, 96, 97], "button": 88, "wav_file_name_exampl": 88, "7_jackson_43": 88, "hear": 88, "extractor": 88, "encoderclassifi": 88, "spkrec": 88, "xvect": 88, "feature_extractor": 88, "from_hparam": 88, "run_opt": 88, "uncom": [88, 95], "ffmpeg": 88, "backend": 88, "wav_audio_file_path": 88, "torchaudio": 88, "extract_audio_embed": 88, "emb": [88, 91], "signal": 88, "encode_batch": 88, "embeddings_list": [88, 91], "embeddings_arrai": 88, "512": [88, 91], "196311": 88, "319459": 88, "478975": 88, "2890875": 88, "8170238": 88, "89265": 88, "898056": 88, "256195": 88, "559641": 88, "559721": 88, "62067": 88, "285245": 88, "21": [88, 89, 95, 96, 98, 99, 103, 106, 108], "709627": 88, "5033693": 88, "913803": 88, "819831": 88, "1831515": 88, "208763": 88, "084257": 88, "3210397": 88, "005453": 88, "216152": 88, "478235": 88, "6821785": 88, "053807": 88, "242471": 88, "091424": 88, "78334856": 88, "03954": 88, "23": [88, 91, 95, 96, 98, 99, 103, 106], "569176": 88, "761097": 88, "1258295": 88, "753237": 88, "3508866": 88, "598274": 88, "23712": 88, "2500": 88, "tol": 88, "decreas": [88, 95, 97], "cv_accuraci": 88, "9708": 88, "issue_type_descript": [88, 89, 90, 91, 93, 94, 98, 99], "lt": [88, 89, 90, 91, 93, 94, 95, 96, 98, 99, 101, 104], "gt": [88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 108], "9976": 88, "986": 88, "002161": 88, "176": [88, 96, 99, 102], "002483": 88, "2318": 88, "004411": 88, "1005": 88, "004857": 88, "1871": 88, "007494": 88, "040587": 88, "999207": 88, "999377": 88, "975220": 88, "999367": 88, "identified_label_issu": [88, 94], "516": [88, 91, 98], "1946": 88, "469": 88, "2132": 88, "worth": [88, 99], "6_yweweler_25": 88, "7_nicolas_43": 88, "6_theo_27": 88, "6_yweweler_36": 88, "6_yweweler_14": 88, "6_yweweler_35": 88, "6_nicolas_8": 88, "sound": 88, "quit": [88, 104], "underneath": 89, "hood": [89, 95, 97], "alert": 89, "introduct": 89, "mayb": [89, 90, 94], "your_feature_matrix": [89, 90], "toi": [89, 90, 91, 95, 96, 99, 101], "inf": [89, 90], "mid": [89, 90], "bins_map": [89, 90], "create_data": [89, 90], "y_bin": [89, 90], "y_i": [89, 90], "y_bin_idx": [89, 90], "y_train": [89, 90, 99, 106], "y_test": [89, 90, 99, 106], "y_train_idx": [89, 90], "y_test_idx": [89, 90], "slide": [89, 90, 96], "frame": [89, 90], "x_out": [89, 90], "tini": [89, 90], "concaten": [89, 90, 105], "y_out": [89, 90], "y_out_bin": [89, 90], "y_out_bin_idx": [89, 90], "exact_duplicate_idx": [89, 90], "x_duplic": [89, 90], "y_duplic": [89, 90], "y_duplicate_idx": [89, 90], "noisy_labels_idx": [89, 90, 102], "scatter": [89, 90, 95, 99, 102, 106], "black": [89, 90, 96, 106], "cyan": [89, 90], "plot_data": [89, 90, 95, 99, 102, 106], "fig": [89, 90, 91, 95, 96, 104, 106], "ax": [89, 90, 91, 95, 104, 106], "subplot": [89, 90, 91, 95, 104], "set_titl": [89, 90, 91, 95, 104], "set_xlabel": [89, 90], "x_1": [89, 90], "fontsiz": [89, 90, 91, 95, 99, 102], "set_ylabel": [89, 90], "x_2": [89, 90], "set_xlim": [89, 90], "set_ylim": [89, 90], "linestyl": [89, 90, 95], "circl": [89, 90, 99, 102], "misclassifi": [89, 90], "zip": [89, 90, 91, 95, 103, 108], "label_err": [89, 90], "180": [89, 90, 103], "marker": [89, 90], "facecolor": [89, 90, 95], "edgecolor": [89, 90, 95], "linewidth": [89, 90, 95, 104], "dup": [89, 90], "first_legend": [89, 90], "align": [89, 90], "title_fontproperti": [89, 90], "semibold": [89, 90], "second_legend": [89, 90], "45": [89, 90, 95, 96, 98, 99, 103], "gca": [89, 90], "add_artist": [89, 90], "tight_layout": [89, 90, 95], "ideal": [89, 90], "remaind": 89, "modal": [89, 90, 97, 98, 101], "132": [89, 90, 98, 99, 103], "9318": 89, "006940": 89, "007830": 89, "40": [89, 90, 94, 95, 96, 98], "014828": 89, "107": [89, 90, 99, 102], "021241": 89, "026407": 89, "notic": [89, 99, 101, 103], "3558": [89, 90], "126": [89, 90, 99, 103], "006636": [89, 90], "130": [89, 90, 108], "012571": [89, 90], "129": [89, 90], "127": [89, 90, 98], "014909": [89, 90], "128": [89, 90, 91], "017443": [89, 90], "6160": [89, 90], "131": [89, 90, 98, 107], "000000e": [89, 90, 98], "000002": [89, 90], "463180e": [89, 90], "07": [89, 90, 91, 93, 95, 99, 103, 106, 108], "51": [89, 90, 93, 95, 96, 99, 103], "161148": [89, 90], "859087e": [89, 90], "30": [89, 90, 91, 95, 96, 97, 98, 102, 107, 108], "3453": 89, "029542": 89, "031182": 89, "057961": 89, "058244": 89, "54": [89, 95, 96, 99, 103, 108], "039122": 89, "044598": 89, "105": [89, 103], "105196": 89, "133654": 89, "43": [89, 95, 96, 98, 99, 103], "168033": 89, "125": 89, "101107": 89, "183382": 89, "109": [89, 96, 98, 103], "209259": 89, "211042": 89, "221316": 89, "average_ood_scor": 89, "34530442089193386": 89, "52": [89, 95, 96, 98, 103, 108], "169820": 89, "087324e": 89, "259024": 89, "583757e": 89, "91": [89, 98, 103], "346458": 89, "341292e": 89, "specfi": 89, "new_lab": 89, "scoring_funct": 89, "div": 89, "rem": 89, "inv_scal": 89, "49": [89, 95, 96, 99, 103], "superstitionissuemanag": 89, "unlucki": 89, "superstit": 89, "to_seri": 89, "issues_mask": 89, "summary_scor": 89, "9242": 89, "is_superstition_issu": 89, "superstition_scor": 89, "26": [89, 91, 95, 96, 98, 99, 101, 103], "047581": 89, "090635": 89, "129591": 89, "164840": 89, "lurk": [90, 91, 98, 99], "thoroughli": 90, "8561": 90, "001908": 90, "003564": 90, "007331": 90, "008963": 90, "009664": 90, "0227": 90, "022727": 90, "conceptu": 90, "856061": 90, "355772": 90, "616034": 90, "821750": 90, "901562": 90, "betweeen": 90, "859131": 90, "417707": 90, "664083": 90, "970324": 90, "816953": 90, "375317": 90, "641516": 90, "890575": 90, "531021": 90, "460593": 90, "601188": 90, "826147": 90, "752808": 90, "321635": 90, "562539": 90, "948362": 90, "090243": 90, "472909": 90, "746763": 90, "878267": 90, "examples_w_issu": [90, 97], "013445": 90, "025184": 90, "026376": 90, "inde": [90, 94], "miscellan": [90, 92, 108], "428571": 90, "111111": 90, "571429": 90, "407407": 90, "592593": 90, "337838": 90, "092593": 90, "662162": 90, "333333": [90, 96], "952381": 90, "666667": [90, 95], "portion": 90, "huge": [90, 99], "worri": [90, 94, 98], "critic": 90, "60": [91, 95, 99, 106], "torchvis": [91, 95, 104], "tensordataset": 91, "stratifiedkfold": [91, 102], "tqdm": 91, "autonotebook": 91, "math": [91, 98], "fashion_mnist": 91, "num_row": [91, 95], "60000": 91, "transformed_dataset": [91, 95], "with_format": 91, "255": [91, 96], "cpu_count": 91, "torch_dataset": 91, "quick": [91, 102, 104], "super": [91, 93, 94], "relu": 91, "batchnorm2d": 91, "maxpool2d": 91, "lazylinear": 91, "flatten": [91, 95], "get_test_accuraci": 91, "testload": [91, 104], "energi": 91, "trainload": [91, 104], "n_epoch": 91, "patienc": 91, "criterion": 91, "crossentropyloss": 91, "adamw": 91, "best_test_accuraci": 91, "start_epoch": 91, "running_loss": 91, "best_epoch": 91, "end_epoch": 91, "3f": [91, 106], "acc": [91, 99], "time_taken": 91, "compute_embed": 91, "compute_pred_prob": 91, "train_batch_s": 91, "num_work": 91, "worker": [91, 108], "train_id_list": 91, "test_id_list": 91, "train_id": 91, "test_id": 91, "embeddings_model": 91, "ntrain": 91, "trainset": 91, "testset": 91, "pin_memori": 91, "fold_embed": 91, "fold_pred_prob": 91, "finish": 91, "482": 91, "720": 91, "752": 91, "329": [91, 93, 98, 103], "88": [91, 96, 98, 99, 102, 103, 106], "195": [91, 98], "660": 91, "493": 91, "060": 91, "676": 91, "330": [91, 98, 103], "505": 91, "476": [91, 98], "340": [91, 98], "705": 91, "328": [91, 103], "310": 91, "374": 91, "reorder": 91, "hstack": [91, 97, 99, 101], "vision": 91, "grayscal": [91, 95], "max_preval": [91, 95], "7714": 91, "3772": 91, "3585": 91, "166": 91, "3651": 91, "27080": 91, "873833e": 91, "40378": 91, "915575e": 91, "25316": 91, "390277e": 91, "06": [91, 98, 99, 103, 108], "2090": 91, "751164e": 91, "14999": 91, "881301e": 91, "9569": 91, "11262": 91, "000003": 91, "coat": [91, 96], "shirt": [91, 96], "19228": 91, "000010": 91, "dress": 91, "32657": 91, "000013": 91, "bag": [91, 96, 104, 105], "21282": 91, "000016": [91, 98], "53564": 91, "000018": [91, 98], "pullov": 91, "6321": 91, "30968": 91, "001267": 91, "30659": 91, "000022": [91, 108], "47824": 91, "001454": 91, "3370": 91, "000026": 91, "54565": 91, "001854": 91, "9762": 91, "258": 91, "47139": 91, "000033": 91, "166980": 91, "986195": 91, "997205": 91, "sandal": [91, 96], "948781": 91, "999358": 91, "54078": 91, "17371": 91, "000025": 91, "plot_label_issue_exampl": 91, "ncol": [91, 104], "nrow": [91, 104], "ceil": [91, 98], "axes_list": 91, "label_issue_indic": 91, "gl": 91, "sl": 91, "fontdict": 91, "imshow": [91, 95, 104], "cmap": [91, 95, 106], "grai": 91, "subplots_adjust": 91, "hspace": 91, "outsiz": 91, "outlier_issu": [91, 94], "outlier_issues_df": 91, "depict": [91, 102, 103, 104, 105, 107], "plot_outlier_issues_exampl": 91, "n_comparison_imag": 91, "sample_from_class": 91, "number_of_sampl": 91, "non_outlier_indic": 91, "isnul": [91, 95], "non_outlier_indices_excluding_curr": 91, "sampled_indic": 91, "label_scores_of_sampl": 91, "top_score_indic": 91, "top_label_indic": 91, "sampled_imag": 91, "get_image_given_label_and_sampl": 91, "image_from_dataset": 91, "corresponding_label": 91, "comparison_imag": 91, "images_to_plot": 91, "idlist": 91, "iterrow": 91, "near_duplicate_issu": [91, 97], "closest": 91, "counterpart": 91, "near_duplicate_issues_df": 91, "plot_near_duplicate_issue_exampl": 91, "seen_id_pair": 91, "get_image_and_given_label_and_predicted_label": 91, "duplicate_imag": 91, "nd_set": 91, "challeng": 91, "dark_issu": 91, "reveal": [91, 103, 107], "dark_scor": [91, 95], "dark_issues_df": 91, "is_dark_issu": 91, "34848": 91, "203922": 91, "50270": 91, "204588": 91, "3936": 91, "213098": 91, "733": 91, "217686": 91, "8094": 91, "230118": 91, "plot_image_issue_exampl": 91, "difficult": 91, "disproportion": [91, 95], "lowinfo_issu": 91, "low_information_scor": [91, 95], "lowinfo_issues_df": 91, "is_low_information_issu": 91, "53050": 91, "067975": 91, "40875": 91, "089929": 91, "9594": 91, "092601": 91, "34825": 91, "107744": 91, "37530": 91, "108516": 91, "lot": 91, "workflow": [92, 97, 98, 100, 106], "histgradientboostingclassifi": 93, "cat_featur": 93, "boost": [93, 97, 101, 106], "xgboost": [93, 97, 98, 106], "think": [93, 94, 97, 102, 107, 108], "nonzero": 93, "358": 93, "941": 93, "294": [93, 103], "46": [93, 95, 96, 98, 99, 103], "7109": 93, "000005": [93, 94], "886": 93, "000059": 93, "709": [93, 98], "000104": 93, "723": [93, 98], "000169": 93, "689": 93, "000181": 93, "3590": 93, "051882e": 93, "683133e": 93, "536582e": 93, "406589e": 93, "324246e": 93, "6165": 93, "582": [93, 98], "185": [93, 95, 96, 103], "187": [93, 96, 98], "898": 93, "0000": [93, 94, 96, 98, 99], "865": 93, "515002": 93, "837": 93, "556480": 93, "622": 93, "593068": 93, "593207": 93, "920": 93, "618041": 93, "4386345844794593e": 93, "issue_result": 93, "000842": 93, "555944": 93, "004374": 93, "sorted_issu": 93, "73": [93, 95, 96, 98, 102, 103, 106], "deserv": 93, "outlier_result": 93, "sorted_outli": 93, "56": [93, 95, 96, 106], "96": [93, 95, 96, 98, 99, 102, 103, 106], "style": [93, 95, 107], "font": 93, "18px": 93, "ff00ff": 93, "bac": 93, "unintend": [93, 94, 95], "duplicate_result": 93, "lowest_scoring_dupl": 93, "idxmin": [93, 97], "indices_to_displai": 93, "tolist": [93, 97, 98, 102], "perhap": [93, 99, 101], "second_lowest_scoring_dupl": 93, "next_indices_to_displai": 93, "wari": [93, 94, 97], "dive": [94, 95, 98], "your_featur": 94, "text_embed": 94, "data_dict": [94, 99, 101], "85": [94, 98, 103], "38": [94, 95, 96, 103], "9710": 94, "981": 94, "974": 94, "000146": 94, "982": [94, 96], "000224": 94, "971": 94, "000507": 94, "980": [94, 96], "000960": 94, "3584": 94, "994": 94, "009642": 94, "999": 94, "013067": 94, "013841": 94, "433": 94, "014722": 94, "989": 94, "018224": 94, "6070": 94, "160": [94, 106], "095724": 94, "148": 94, "006237": 94, "546": [94, 98], "099341": 94, "514": 94, "006485": 94, "481": 94, "123418": 94, "008165": 94, "313": [94, 98, 103], "564102": 94, "572258": 94, "574915": 94, "31": [94, 95, 96, 98, 99, 101, 103, 108], "575507": 94, "575874": 94, "792090": 94, "257611": 94, "698710": 94, "182121": 94, "771619": 94, "data_with_suggested_label": 94, "suggested_label": 94, "withdraw": 94, "monei": 94, "lowest_quality_outli": 94, "OR": 94, "636c65616e6c616220697320617765736f6d6521": 94, "phone": [94, 96], "gone": 94, "samp": 94, "br": 94, "press": [94, 108], "nonsens": 94, "sens": 94, "detriment": 94, "duplicate_issu": 94, "fee": 94, "go": [94, 95, 96, 99], "strongli": [94, 95], "p_valu": 94, "benign": 94, "curat": [94, 100], "bigger": 95, "make_classif": 95, "5000": [95, 104], "n_featur": 95, "n_inform": 95, "n_redund": 95, "n_repeat": 95, "n_class": 95, "n_clusters_per_class": 95, "flip_i": 95, "class_sep": 95, "faiss": 95, "x_faiss": 95, "float32": [95, 103], "normalize_l2": 95, "index_factori": 95, "hnsw32": 95, "flat": [95, 96], "metric_inner_product": 95, "a_min": 95, "a_max": 95, "create_knn_graph": 95, "assert": 95, "indices_1d": 95, "ravel": 95, "distances_1d": 95, "sort_graph_by_row_valu": 95, "warn_when_not_sort": 95, "50000": 95, "523": [95, 98], "991400": 95, "356959": 95, "362": 95, "619565": 95, "108": [95, 103], "500000": 95, "651929": 95, "999827": 95, "031217": 95, "933716": 95, "627345": 95, "998540": 95, "530909": 95, "296974": 95, "646765": 95, "942721": 95, "332824": 95, "803246": 95, "625202": 95, "999816": 95, "474031": 95, "706253": 95, "655108": 95, "997703": 95, "131466": 95, "912389": 95, "639200": 95, "4995": 95, "998646": 95, "504755": 95, "746777": 95, "680033": 95, "4996": 95, "894230": 95, "340986": 95, "816472": 95, "640711": 95, "4997": 95, "999100": 95, "428545": 95, "592421": 95, "658949": 95, "4998": 95, "986792": 95, "273710": 95, "618033": 95, "4999": 95, "986776": 95, "273524": 95, "618084": 95, "instabl": 95, "proxim": 95, "analys": 95, "comfort": 95, "explor": [95, 103, 104], "third": 95, "parti": [95, 108], "newsgroup": 95, "alt": [95, 96], "atheism": [95, 96], "sci": [95, 96], "fetch_20newsgroup": 95, "newsgroups_train": 95, "header": 95, "footer": 95, "quot": 95, "df_text": 95, "target_nam": 95, "enlighten": 95, "omnipot": 95, "19apr199320262420": 95, "kelvin": 95, "jpl": 95, "nasa": 95, "gov": 95, "baa": 95, "nhenri": 95, "he": 95, "nno": 95, "ge": 95, "nlucki": 95, "babi": [95, 96], "tfidfvector": 95, "feature_extract": 95, "x_vector": 95, "data_valuation_issu": 95, "147": [95, 99, 103], "500047": 95, "500093": 95, "499953": 95, "1068": 95, "1069": 95, "1070": 95, "1071": 95, "1072": 95, "1073": 95, "concentr": 95, "seaborn": 95, "sn": 95, "distinguish": [95, 98], "strip": 95, "stripplot": 95, "hue": [95, 106], "dodg": 95, "jitter": 95, "axvlin": [95, 104], "xlabel": 95, "ourselv": 95, "make_blob": 95, "center": [95, 96], "cluster_std": 95, "n_noisy_label": 95, "meaning": [95, 97, 98, 104], "silhouette_scor": 95, "gridsearchcv": 95, "silhouett": 95, "cluster_label": 95, "fit_predict": 95, "param_grid": [95, 98], "grid_search": 95, "best_kmean": 95, "best_estimator_": 95, "underperforming_group_issu": 95, "328308": 95, "tab10": 95, "domain": 95, "knowledg": [95, 99], "dataset_tsv": 95, "ag": [95, 106], "gender": 95, "educ": 95, "experi": 95, "highsalari": 95, "indiana": 95, "phd": 95, "male": 95, "bachelor": 95, "femal": 95, "kansa": 95, "school": [95, 96], "ohio": 95, "57": [95, 96, 98, 99], "california": 95, "59": [95, 96, 103], "34": [95, 96, 99, 101, 103, 108], "63": [95, 98, 99, 103, 106], "47": [95, 96, 103], "stringio": 95, "sep": [95, 108], "simplic": [95, 102], "ordinalencod": 95, "columns_to_encod": 95, "encoded_df": 95, "salari": 95, "573681": 95, "underpin": 95, "caught": 95, "whenev": 95, "generate_data_depend": 95, "num_sampl": 95, "a1": 95, "a2": 95, "a3": 95, "375": 95, "975": 95, "non_iid_issu": 95, "796474": 95, "842432": 95, "922562": 95, "820759": 95, "873136": 95, "887373": 95, "825101": 95, "855875": 95, "751795": 95, "835796": 95, "ylabel": [95, 104], "coolwarm": 95, "colorbar": [95, 106], "strong": 95, "evid": [95, 98], "inter": 95, "mitig": 95, "risk": [95, 98], "deeper": 95, "tsv": 95, "tab": 95, "pars": 95, "annual_spend": 95, "number_of_transact": 95, "last_purchase_d": 95, "rural": 95, "4099": 95, "2024": [95, 108], "6421": 95, "nat": 95, "suburban": 95, "5436": 95, "4046": 95, "66": [95, 96, 98], "3467": 95, "67": [95, 96, 98, 103, 106], "4757": 95, "4199": 95, "4991": 95, "4655": 95, "82": [95, 96, 98, 99, 103, 106], "5584": 95, "urban": 95, "3102": 95, "6637": 95, "9167": 95, "6790": 95, "5327": 95, "parse_d": 95, "lose": 95, "intact": 95, "encode_categorical_column": 95, "placehold": 95, "dropna": [95, 101], "category_to_numb": 95, "_encod": 95, "gender_encod": 95, "location_encod": 95, "focus": [95, 98, 99, 101, 102, 106], "null_issu": 95, "833333": 95, "sorted_indic": [95, 103], "sorted_df": 95, "nice": 95, "styler": 95, "combined_df": 95, "concat": [95, 98, 106], "highlight_null_valu": 95, "val": [95, 99], "yellow": [95, 96], "highlight_datalab_column": 95, "lightblu": 95, "highlight_is_null_issu": 95, "orang": [95, 96], "styled_df": 95, "nbsp": [95, 97, 98, 99], "160000": 95, "820000": 95, "460000": 95, "470000": 95, "960000": 95, "620000": 95, "550000": 95, "660000": 95, "670000": [95, 96], "370000": 95, "530000": 95, "710000": 95, "020000": 95, "320000": 95, "990000": 95, "rarer": 95, "fairer": 95, "randomli": [95, 98, 99], "class_imbalance_issu": 95, "countplot": 95, "xtick": 95, "rotat": 95, "ytick": 95, "filtered_df": 95, "xy": 95, "va": 95, "textual": 95, "get_ytick": 95, "nbar": 95, "nimbal": 95, "get_legend_handles_label": 95, "title_fonts": 95, "aspect": 95, "anomali": [95, 103], "enhanc": [95, 99, 101, 103], "artifici": 95, "alter": [95, 97, 98], "darken": 95, "blurry_scor": 95, "odd_aspect_ratio_scor": 95, "setup": 95, "cifar10": 95, "markdown": 95, "root": [95, 104], "selected_class": 95, "convert_to_png_imag": 95, "bytesio": [95, 96], "seek": 95, "max_num_imag": 95, "list_imag": 95, "list_label": 95, "num_imag": 95, "img": [95, 104, 106], "toronto": [95, 104], "edu": [95, 104], "kriz": [95, 104], "170498071": [95, 104], "95733745": 95, "71it": 95, "dataset_dict": 95, "from_dict": [95, 97], "apply_dark": 95, "transformed_list_imag": 95, "transformed_dataset_dict": 95, "plot_imag": [95, 104], "num_images_to_plot": 95, "num_col": 95, "hide": 95, "get_property_scor": 95, "_spurious_correl": 95, "get_specific_property_scor": 95, "property_scores_df": 95, "property_nam": 95, "standard_property_scor": 95, "transformed_property_scor": 95, "295": [95, 98, 103], "light_scor": 95, "415": 95, "325": 95, "odd_size_scor": 95, "grayscale_scor": 95, "015": 95, "refin": 96, "instruct": [96, 97, 98], "studi": [96, 103], "mnist_test_set": 96, "imagenet_val_set": 96, "tench": 96, "goldfish": 96, "white": [96, 108], "shark": 96, "tiger": 96, "hammerhead": 96, "electr": 96, "rai": 96, "stingrai": 96, "cock": 96, "hen": 96, "ostrich": 96, "brambl": 96, "goldfinch": 96, "hous": 96, "finch": 96, "junco": 96, "indigo": 96, "bunt": 96, "american": [96, 108], "robin": 96, "bulbul": 96, "jai": 96, "magpi": 96, "chickade": 96, "dipper": 96, "kite": 96, "bald": 96, "eagl": 96, "vultur": 96, "grei": 96, "owl": 96, "salamand": 96, "smooth": 96, "newt": 96, "spot": [96, 97, 103], "axolotl": 96, "bullfrog": 96, "tree": 96, "frog": [96, 104], "tail": 96, "loggerhead": 96, "sea": 96, "turtl": 96, "leatherback": 96, "mud": 96, "terrapin": 96, "band": 96, "gecko": 96, "green": [96, 108], "iguana": 96, "carolina": 96, "anol": 96, "desert": 96, "grassland": 96, "whiptail": 96, "lizard": 96, "agama": 96, "frill": 96, "neck": 96, "allig": 96, "gila": 96, "monster": 96, "european": 96, "chameleon": 96, "komodo": 96, "dragon": 96, "nile": 96, "crocodil": 96, "triceratop": 96, "worm": 96, "snake": 96, "ring": 96, "eastern": 96, "hog": 96, "nose": 96, "kingsnak": 96, "garter": 96, "water": 96, "vine": 96, "night": 96, "boa": 96, "constrictor": 96, "african": 96, "rock": 96, "indian": 96, "cobra": 96, "mamba": 96, "saharan": 96, "horn": 96, "viper": 96, "diamondback": 96, "rattlesnak": 96, "sidewind": 96, "trilobit": 96, "harvestman": 96, "scorpion": 96, "garden": 96, "spider": 96, "barn": 96, "southern": 96, "widow": 96, "tarantula": 96, "wolf": 96, "tick": 96, "centiped": 96, "grous": 96, "ptarmigan": 96, "ruf": 96, "prairi": 96, "peacock": 96, "quail": 96, "partridg": 96, "parrot": 96, "macaw": 96, "sulphur": 96, "crest": 96, "cockatoo": 96, "lorikeet": 96, "coucal": 96, "bee": 96, "eater": 96, "hornbil": 96, "hummingbird": 96, "jacamar": 96, "toucan": 96, "breast": 96, "mergans": 96, "goos": 96, "swan": 96, "tusker": 96, "echidna": 96, "platypu": 96, "wallabi": 96, "koala": 96, "wombat": 96, "jellyfish": 96, "anemon": 96, "brain": 96, "coral": 96, "flatworm": 96, "nematod": 96, "conch": 96, "snail": 96, "slug": 96, "chiton": 96, "chamber": 96, "nautilu": 96, "dung": 96, "crab": 96, "fiddler": 96, "king": 96, "lobster": 96, "spini": 96, "crayfish": 96, "hermit": 96, "isopod": 96, "stork": 96, "spoonbil": 96, "flamingo": 96, "heron": 96, "egret": 96, "bittern": 96, "crane": 96, "bird": [96, 104], "limpkin": 96, "gallinul": 96, "coot": 96, "bustard": 96, "ruddi": 96, "turnston": 96, "dunlin": 96, "redshank": 96, "dowitch": 96, "oystercatch": 96, "pelican": 96, "penguin": 96, "albatross": 96, "whale": 96, "killer": 96, "dugong": 96, "lion": 96, "chihuahua": 96, "japanes": 96, "chin": 96, "maltes": 96, "pekinges": 96, "shih": 96, "tzu": 96, "charl": 96, "spaniel": 96, "papillon": 96, "terrier": 96, "rhodesian": 96, "ridgeback": 96, "afghan": [96, 108], "hound": 96, "basset": 96, "beagl": 96, "bloodhound": 96, "bluetick": 96, "coonhound": 96, "tan": 96, "walker": 96, "foxhound": 96, "redbon": 96, "borzoi": 96, "irish": 96, "wolfhound": 96, "italian": 96, "greyhound": 96, "whippet": 96, "ibizan": 96, "norwegian": 96, "elkhound": 96, "otterhound": 96, "saluki": 96, "scottish": 96, "deerhound": 96, "weimaran": 96, "staffordshir": 96, "bull": 96, "bedlington": 96, "border": 96, "kerri": 96, "norfolk": 96, "norwich": 96, "yorkshir": 96, "wire": 96, "fox": 96, "lakeland": 96, "sealyham": 96, "airedal": 96, "cairn": 96, "australian": 96, "dandi": 96, "dinmont": 96, "boston": 96, "miniatur": 96, "schnauzer": 96, "giant": 96, "tibetan": 96, "silki": 96, "wheaten": 96, "west": 96, "highland": 96, "lhasa": 96, "apso": 96, "retriev": 96, "curli": 96, "golden": 96, "labrador": 96, "chesapeak": 96, "bai": 96, "german": [96, 108], "shorthair": 96, "pointer": 96, "vizsla": 96, "setter": 96, "gordon": 96, "brittani": 96, "clumber": 96, "springer": 96, "welsh": 96, "cocker": 96, "sussex": 96, "kuvasz": 96, "schipperk": 96, "groenendael": 96, "malinoi": 96, "briard": 96, "kelpi": 96, "komondor": 96, "sheepdog": 96, "shetland": 96, "colli": 96, "bouvier": 96, "de": 96, "flandr": 96, "rottweil": 96, "shepherd": 96, "dobermann": 96, "pinscher": 96, "swiss": [96, 108], "mountain": 96, "bernes": 96, "appenzel": 96, "sennenhund": 96, "entlebuch": 96, "boxer": 96, "bullmastiff": 96, "mastiff": 96, "french": 96, "bulldog": 96, "dane": 96, "st": 96, "bernard": 96, "huski": 96, "alaskan": 96, "malamut": 96, "siberian": 96, "dalmatian": 96, "affenpinsch": 96, "basenji": 96, "pug": 96, "leonberg": 96, "newfoundland": 96, "pyrenean": 96, "samoi": 96, "pomeranian": 96, "chow": 96, "keeshond": 96, "griffon": 96, "bruxelloi": 96, "pembrok": 96, "corgi": 96, "cardigan": 96, "poodl": 96, "mexican": 96, "hairless": 96, "tundra": 96, "coyot": 96, "dingo": 96, "dhole": 96, "wild": 96, "hyena": 96, "kit": 96, "arctic": 96, "tabbi": 96, "persian": 96, "siames": 96, "egyptian": 96, "mau": 96, "cougar": 96, "lynx": 96, "leopard": 96, "snow": 96, "jaguar": 96, "cheetah": 96, "brown": [96, 107], "bear": 96, "polar": 96, "sloth": 96, "mongoos": 96, "meerkat": 96, "beetl": 96, "ladybug": 96, "longhorn": 96, "leaf": 96, "rhinocero": 96, "weevil": 96, "fly": 96, "ant": 96, "grasshopp": 96, "cricket": 96, "stick": 96, "insect": 96, "cockroach": 96, "manti": 96, "cicada": 96, "leafhopp": 96, "lacew": 96, "dragonfli": 96, "damselfli": 96, "admir": 96, "ringlet": 96, "monarch": 96, "butterfli": 96, "gossam": 96, "wing": 96, "starfish": 96, "urchin": 96, "cucumb": 96, "cottontail": 96, "rabbit": 96, "hare": 96, "angora": 96, "hamster": 96, "porcupin": 96, "squirrel": 96, "marmot": 96, "beaver": 96, "guinea": 96, "pig": 96, "sorrel": 96, "zebra": 96, "boar": 96, "warthog": 96, "hippopotamu": 96, "ox": 96, "buffalo": 96, "bison": 96, "bighorn": 96, "sheep": 96, "alpin": 96, "ibex": 96, "hartebeest": 96, "impala": 96, "gazel": 96, "dromedari": 96, "llama": 96, "weasel": 96, "mink": 96, "polecat": 96, "foot": 96, "ferret": 96, "otter": 96, "skunk": 96, "badger": 96, "armadillo": 96, "toed": 96, "orangutan": 96, "gorilla": 96, "chimpanze": 96, "gibbon": 96, "siamang": 96, "guenon": 96, "pata": 96, "monkei": 96, "baboon": 96, "macaqu": 96, "langur": 96, "colobu": 96, "probosci": 96, "marmoset": 96, "capuchin": 96, "howler": 96, "titi": 96, "geoffroi": 96, "lemur": 96, "indri": 96, "asian": 96, "eleph": 96, "bush": 96, "snoek": 96, "eel": 96, "coho": 96, "salmon": 96, "beauti": 96, "clownfish": 96, "sturgeon": 96, "garfish": 96, "lionfish": 96, "pufferfish": 96, "abacu": 96, "abaya": 96, "academ": 96, "gown": 96, "accordion": 96, "acoust": 96, "guitar": 96, "aircraft": 96, "carrier": 96, "airlin": 96, "airship": 96, "altar": 96, "ambul": 96, "amphibi": 96, "clock": [96, 108], "apiari": 96, "apron": 96, "wast": 96, "assault": 96, "rifl": 96, "backpack": 96, "bakeri": 96, "balanc": 96, "beam": 96, "balloon": 96, "ballpoint": 96, "pen": 96, "aid": 96, "banjo": 96, "balust": 96, "barbel": 96, "barber": 96, "chair": [96, 103], "barbershop": 96, "baromet": 96, "barrel": 96, "wheelbarrow": 96, "basebal": 96, "basketbal": 96, "bassinet": 96, "bassoon": 96, "swim": 96, "cap": 96, "bath": 96, "towel": 96, "bathtub": 96, "station": 96, "wagon": 96, "lighthous": 96, "beaker": 96, "militari": 96, "beer": 96, "bottl": 96, "glass": 96, "bell": 96, "cot": 96, "bib": 96, "bicycl": [96, 107], "bikini": 96, "binder": 96, "binocular": 96, "birdhous": 96, "boathous": 96, "bobsleigh": 96, "bolo": 96, "tie": 96, "poke": 96, "bonnet": 96, "bookcas": 96, "bookstor": 96, "bow": 96, "brass": 96, "bra": 96, "breakwat": 96, "breastplat": 96, "broom": 96, "bucket": 96, "buckl": 96, "bulletproof": 96, "vest": 96, "butcher": 96, "shop": 96, "taxicab": 96, "cauldron": 96, "candl": 96, "cannon": 96, "cano": 96, "mirror": [96, 103], "carousel": 96, "tool": [96, 99, 101], "carton": 96, "wheel": 96, "teller": 96, "cassett": 96, "player": 96, "castl": 96, "catamaran": 96, "cd": 96, "cello": 96, "mobil": [96, 108], "chain": 96, "fenc": [96, 107], "mail": 96, "chainsaw": 96, "chest": 96, "chiffoni": 96, "chime": 96, "china": 96, "cabinet": 96, "christma": 96, "stock": 96, "church": 96, "movi": 96, "theater": 96, "cleaver": 96, "cliff": 96, "dwell": 96, "cloak": 96, "clog": 96, "cocktail": 96, "shaker": 96, "coffe": 96, "mug": 96, "coffeemak": 96, "coil": 96, "lock": 96, "keyboard": 96, "confectioneri": 96, "ship": [96, 104], "corkscrew": 96, "cornet": 96, "cowboi": 96, "boot": 96, "hat": 96, "cradl": 96, "crash": 96, "helmet": 96, "crate": 96, "infant": 96, "bed": 96, "crock": 96, "pot": 96, "croquet": 96, "crutch": 96, "cuirass": 96, "dam": 96, "desk": 96, "desktop": 96, "rotari": 96, "dial": 96, "telephon": 96, "diaper": 96, "watch": 96, "dine": 96, "dishcloth": 96, "dishwash": 96, "disc": 96, "brake": 96, "dock": 96, "sled": 96, "dome": 96, "doormat": 96, "drill": 96, "rig": 96, "drum": 96, "drumstick": 96, "dumbbel": 96, "dutch": 96, "oven": 96, "fan": 96, "locomot": 96, "entertain": 96, "envelop": 96, "espresso": 96, "powder": 96, "feather": 96, "fireboat": 96, "engin": [96, 107], "screen": 96, "sheet": 96, "flagpol": 96, "flute": 96, "footbal": 96, "forklift": 96, "fountain": 96, "poster": 96, "freight": 96, "fry": 96, "pan": 96, "fur": 96, "garbag": 96, "ga": 96, "pump": 96, "goblet": 96, "kart": 96, "golf": 96, "cart": 96, "gondola": 96, "gong": 96, "grand": 96, "piano": 96, "greenhous": 96, "grill": 96, "groceri": 96, "guillotin": 96, "barrett": 96, "hair": 96, "sprai": 96, "hammer": 96, "dryer": 96, "hand": [96, 99], "handkerchief": 96, "drive": 96, "harmonica": 96, "harp": 96, "harvest": 96, "hatchet": 96, "holster": 96, "honeycomb": 96, "hoop": 96, "skirt": 96, "horizont": 96, "bar": 96, "drawn": 96, "hourglass": 96, "ipod": 96, "cloth": 96, "iron": 96, "jack": 96, "lantern": 96, "jean": 96, "jeep": 96, "jigsaw": 96, "puzzl": 96, "pull": 96, "rickshaw": 96, "joystick": 96, "kimono": 96, "knee": 96, "pad": 96, "knot": 96, "ladl": 96, "lampshad": 96, "laptop": 96, "lawn": 96, "mower": 96, "knife": 96, "lifeboat": 96, "lighter": 96, "limousin": 96, "ocean": 96, "liner": 96, "lipstick": 96, "slip": 96, "shoe": 96, "lotion": 96, "speaker": 96, "loup": 96, "sawmil": 96, "magnet": 96, "compass": 96, "mailbox": 96, "tight": 96, "tank": 96, "manhol": 96, "maraca": 96, "marimba": 96, "maypol": 96, "maze": 96, "cup": [96, 103], "medicin": 96, "megalith": 96, "microphon": 96, "microwav": 96, "milk": 96, "minibu": 96, "miniskirt": 96, "minivan": 96, "missil": 96, "mitten": [96, 97], "mix": 96, "bowl": 96, "modem": 96, "monasteri": 96, "monitor": 96, "mope": 96, "mortar": 96, "mosqu": 96, "mosquito": 96, "scooter": 96, "bike": 96, "tent": 96, "mous": [96, 97], "mousetrap": 96, "van": 96, "muzzl": 96, "nail": 96, "brace": 96, "necklac": 96, "nippl": 96, "obelisk": 96, "obo": 96, "ocarina": 96, "odomet": 96, "oil": 96, "oscilloscop": 96, "overskirt": 96, "bullock": 96, "oxygen": 96, "packet": 96, "paddl": 96, "padlock": 96, "paintbrush": 96, "pajama": 96, "palac": [96, 108], "parachut": 96, "park": 96, "bench": 96, "meter": 96, "passeng": 96, "patio": 96, "payphon": 96, "pedest": 96, "pencil": 96, "perfum": 96, "petri": 96, "dish": 96, "photocopi": 96, "plectrum": 96, "pickelhaub": 96, "picket": 96, "pickup": 96, "pier": 96, "piggi": 96, "pill": 96, "pillow": 96, "ping": 96, "pong": 96, "pinwheel": 96, "pirat": 96, "pitcher": 96, "plane": 96, "planetarium": 96, "plastic": 96, "plate": 96, "rack": 96, "plow": 96, "plunger": 96, "polaroid": 96, "camera": 96, "pole": [96, 107], "polic": 96, "poncho": 96, "billiard": 96, "soda": 96, "potter": 96, "prayer": 96, "rug": 96, "printer": 96, "prison": 96, "projectil": 96, "projector": 96, "hockei": 96, "puck": 96, "punch": 96, "purs": 96, "quill": 96, "quilt": 96, "race": 96, "racket": 96, "radiat": 96, "radio": 96, "telescop": 96, "rain": 96, "recreat": 96, "reel": 96, "reflex": 96, "refriger": 96, "remot": 96, "restaur": 96, "revolv": 96, "rotisseri": 96, "eras": 96, "rugbi": 96, "ruler": 96, "safe": 96, "safeti": 96, "salt": 96, "sarong": 96, "saxophon": 96, "scabbard": 96, "bu": [96, 107], "schooner": 96, "scoreboard": 96, "crt": 96, "screw": 96, "screwdriv": 96, "seat": 96, "belt": 96, "sew": 96, "shield": 96, "shoji": 96, "basket": 96, "shovel": 96, "shower": 96, "curtain": 96, "ski": 96, "sleep": 96, "door": 96, "slot": 96, "snorkel": 96, "snowmobil": 96, "snowplow": 96, "soap": 96, "dispens": 96, "soccer": [96, 108], "sock": [96, 97], "solar": 96, "thermal": 96, "collector": 96, "sombrero": 96, "soup": 96, "heater": 96, "shuttl": 96, "spatula": 96, "motorboat": 96, "web": 96, "spindl": 96, "sport": [96, 108], "spotlight": 96, "stage": 96, "steam": 96, "arch": 96, "bridg": 96, "steel": 96, "stethoscop": 96, "scarf": 96, "stone": 96, "wall": [96, 107], "stopwatch": 96, "stove": 96, "strainer": 96, "tram": 96, "stretcher": 96, "couch": 96, "stupa": 96, "submarin": 96, "sundial": 96, "sunglass": 96, "sunscreen": 96, "suspens": 96, "mop": 96, "sweatshirt": 96, "swimsuit": 96, "swing": 96, "switch": 96, "syring": 96, "lamp": 96, "tape": 96, "teapot": 96, "teddi": 96, "televis": [96, 108], "tenni": 96, "thatch": 96, "roof": 96, "thimbl": 96, "thresh": 96, "throne": 96, "tile": 96, "toaster": 96, "tobacco": 96, "toilet": 96, "totem": 96, "tow": 96, "tractor": 96, "semi": 96, "trailer": 96, "trai": 96, "trench": 96, "tricycl": 96, "trimaran": 96, "tripod": 96, "triumphal": 96, "trolleybu": 96, "trombon": 96, "tub": 96, "turnstil": 96, "typewrit": 96, "umbrella": 96, "unicycl": 96, "upright": 96, "vacuum": 96, "cleaner": [96, 98], "vase": 96, "vault": 96, "velvet": 96, "vend": 96, "vestment": 96, "viaduct": 96, "violin": 96, "volleybal": 96, "waffl": 96, "wallet": 96, "wardrob": 96, "sink": 96, "wash": 96, "jug": 96, "tower": 96, "whiskei": 96, "whistl": 96, "wig": 96, "shade": [96, 107], "windsor": 96, "wine": 96, "wok": 96, "wooden": 96, "spoon": 96, "wool": 96, "rail": 96, "shipwreck": 96, "yawl": 96, "yurt": 96, "websit": 96, "comic": 96, "book": 96, "crossword": 96, "traffic": [96, 103, 107], "sign": [96, 107, 108], "dust": 96, "jacket": [96, 103], "menu": 96, "guacamol": 96, "consomm": 96, "trifl": 96, "ic": 96, "cream": 96, "pop": 96, "baguett": 96, "bagel": 96, "pretzel": 96, "cheeseburg": 96, "mash": 96, "potato": 96, "cabbag": 96, "broccoli": 96, "cauliflow": 96, "zucchini": 96, "spaghetti": 96, "squash": 96, "acorn": 96, "butternut": 96, "artichok": 96, "pepper": [96, 97], "cardoon": 96, "mushroom": 96, "granni": 96, "smith": 96, "strawberri": 96, "lemon": 96, "pineappl": 96, "banana": 96, "jackfruit": 96, "custard": 96, "appl": 96, "pomegran": 96, "hai": 96, "carbonara": 96, "chocol": 96, "syrup": 96, "dough": 96, "meatloaf": 96, "pizza": 96, "pie": 96, "burrito": 96, "eggnog": 96, "alp": 96, "bubbl": 96, "reef": 96, "geyser": 96, "lakeshor": 96, "promontori": 96, "shoal": 96, "seashor": 96, "vallei": 96, "volcano": 96, "bridegroom": 96, "scuba": 96, "diver": 96, "rapese": 96, "daisi": 96, "ladi": 96, "slipper": 96, "corn": 96, "rose": 96, "hip": 96, "chestnut": 96, "fungu": 96, "agar": 96, "gyromitra": 96, "stinkhorn": 96, "earth": 96, "star": 96, "wood": 96, "bolet": 96, "ear": 96, "cifar10_test_set": 96, "airplan": [96, 104], "automobil": [96, 104], "deer": [96, 104], "cifar100_test_set": 96, "aquarium_fish": 96, "boi": 96, "camel": 96, "caterpillar": 96, "cattl": [96, 108], "cloud": 96, "dinosaur": 96, "dolphin": 96, "flatfish": 96, "forest": 96, "girl": 96, "kangaroo": 96, "lawn_mow": 96, "man": 96, "maple_tre": 96, "motorcycl": [96, 107], "oak_tre": 96, "orchid": 96, "palm_tre": 96, "pear": 96, "pickup_truck": 96, "pine_tre": 96, "plain": 96, "poppi": 96, "possum": 96, "raccoon": 96, "road": [96, 107], "rocket": 96, "seal": 96, "shrew": 96, "skyscrap": 96, "streetcar": 96, "sunflow": 96, "sweet_pepp": 96, "trout": 96, "tulip": 96, "willow_tre": 96, "woman": [96, 103], "caltech256": 96, "ak47": 96, "bat": 96, "glove": 96, "birdbath": 96, "blimp": 96, "bonsai": 96, "boom": 96, "breadmak": 96, "buddha": 96, "bulldoz": 96, "cactu": 96, "cake": 96, "tire": 96, "cartman": 96, "cereal": 96, "chandeli": 96, "chess": 96, "board": 96, "chimp": 96, "chopstick": 96, "coffin": 96, "coin": 96, "comet": 96, "cormor": 96, "globe": 96, "diamond": 96, "dice": 96, "doorknob": 96, "drink": 96, "straw": 96, "dumb": 96, "eiffel": 96, "elk": 96, "ewer": 96, "eyeglass": 96, "fern": 96, "fighter": 96, "jet": [96, 106], "extinguish": 96, "hydrant": 96, "firework": 96, "flashlight": 96, "floppi": 96, "fri": 96, "frisbe": 96, "galaxi": 96, "giraff": 96, "goat": 96, "gate": 96, "grape": 96, "pick": [96, 97], "hamburg": 96, "hammock": 96, "harpsichord": 96, "hawksbil": 96, "helicopt": 96, "hibiscu": 96, "homer": 96, "simpson": 96, "horsesho": 96, "air": 96, "skeleton": 96, "ibi": 96, "cone": 96, "iri": 96, "jesu": 96, "christ": 96, "joi": 96, "kayak": 96, "ketch": 96, "ladder": 96, "lath": 96, "licens": 96, "lightbulb": 96, "lightn": 96, "mandolin": 96, "mar": 96, "mattress": 96, "megaphon": 96, "menorah": 96, "microscop": 96, "minaret": 96, "minotaur": 96, "motorbik": 96, "mussel": 96, "neckti": 96, "octopu": 96, "palm": 96, "pilot": 96, "paperclip": 96, "shredder": 96, "pci": 96, "peopl": [96, 103], "pez": 96, "picnic": 96, "pram": 96, "prai": 96, "pyramid": 96, "rainbow": 96, "roulett": 96, "saddl": 96, "saturn": 96, "segwai": 96, "propel": 96, "sextant": 96, "music": 96, "skateboard": 96, "smokestack": 96, "sneaker": 96, "boat": 96, "stain": 96, "steer": 96, "stirrup": 96, "superman": 96, "sushi": 96, "armi": [96, 108], "sword": 96, "tambourin": 96, "teepe": 96, "court": 96, "theodolit": 96, "tomato": 96, "tombston": 96, "tour": 96, "pisa": 96, "treadmil": 96, "fork": 96, "tweezer": 96, "unicorn": 96, "vcr": 96, "waterfal": 96, "watermelon": 96, "weld": 96, "windmil": 96, "xylophon": 96, "yarmulk": 96, "yo": 96, "toad": 96, "twenty_news_test_set": 96, "comp": 96, "graphic": [96, 107], "misc": [96, 108], "sy": 96, "ibm": 96, "pc": 96, "hardwar": 96, "mac": 96, "forsal": 96, "rec": 96, "crypt": 96, "electron": 96, "med": 96, "soc": 96, "religion": 96, "christian": [96, 108], "talk": [96, 108], "polit": 96, "gun": 96, "mideast": 96, "amazon": 96, "neutral": 96, "imdb_test_set": 96, "all_class": 96, "20news_test_set": 96, "_load_classes_predprobs_label": 96, "dataset_nam": 96, "labelerror": 96, "url_bas": 96, "5392f6c71473055060be3044becdde1cbc18284d": 96, "url_label": 96, "original_test_label": 96, "_original_label": 96, "url_prob": 96, "cross_validated_predicted_prob": 96, "_pyx": 96, "num_part": 96, "datatset": 96, "allow_pickl": 96, "pred_probs_part": 96, "url": 96, "_of_": 96, "nload": 96, "imdb": 96, "ve": [96, 97, 98, 99, 101, 103], "capit": 96, "29780": 96, "256": [96, 97, 98, 103], "780": 96, "medic": [96, 108], "doctor": 96, "254": [96, 103], "359223": 96, "640777": 96, "184": [96, 99], "258427": 96, "341176": 96, "263158": 96, "658824": 96, "337349": 96, "246575": 96, "662651": 96, "248": 96, "330000": 96, "355769": 96, "251": [96, 103], "167": [96, 99, 103], "252": [96, 98], "112": [96, 98], "253": [96, 103], "022989": 96, "049505": 96, "190": [96, 99, 103], "002216": 96, "000974": 96, "000873": 96, "000739": 96, "32635": 96, "32636": 96, "32637": 96, "32638": 96, "32639": 96, "32640": 96, "051": 96, "002242": 96, "997758": 96, "002088": 96, "001045": 96, "997912": 96, "002053": 96, "997947": 96, "001980": 96, "000991": 96, "998020": 96, "001946": 96, "002915": 96, "998054": 96, "001938": 96, "002904": 96, "998062": 96, "001020": 96, "998980": 96, "001018": 96, "002035": 96, "998982": 96, "999009": 96, "0003": 96, "0002": 96, "071": 96, "067269": 96, "929": 96, "046": 96, "058243": 96, "954": 96, "035": 96, "032096": 96, "965": 96, "031": 96, "012232": 96, "969": 96, "022": 96, "025896": 96, "978": 96, "020": [96, 99], "013092": 96, "018": 96, "013065": 96, "016": 96, "030542": 96, "984": 96, "013": 96, "020833": 96, "987": 96, "012": 96, "010020": 96, "988": 96, "0073": 96, "0020": 96, "0016": 96, "0015": 96, "0014": 96, "0013": 96, "0012": 96, "0010": 96, "0008": 96, "0007": 96, "0006": 96, "0005": 96, "0004": 96, "244": [96, 103], "452381": 96, "459770": 96, "523364": 96, "460784": 96, "446602": 96, "103774": 96, "030612": 96, "110092": 96, "049020": 96, "0034": 96, "0032": 96, "0026": 96, "0025": 96, "4945": 96, "4946": 96, "4947": 96, "4948": 96, "4949": 96, "4950": 96, "846": 96, "7532": 96, "532": 96, "034483": 96, "009646": 96, "965517": 96, "030457": 96, "020513": 96, "969543": 96, "028061": 96, "035443": 96, "971939": 96, "025316": 96, "005168": 96, "974684": 96, "049751": 96, "979487": 96, "019920": 96, "042802": 96, "980080": 96, "017677": 96, "005115": 96, "982323": 96, "012987": 96, "005236": 96, "987013": 96, "012723": 96, "025126": 96, "987277": 96, "010989": 96, "008264": 96, "989011": 96, "010283": 96, "027778": 96, "989717": 96, "009677": 96, "990323": 96, "007614": 96, "010127": 96, "992386": 96, "005051": 96, "994949": 96, "005025": 96, "994975": 96, "005013": 96, "994987": 96, "001859": 96, "001328": 96, "000929": 96, "000664": 96, "186": [96, 99], "188": [96, 99, 102], "189": [96, 99], "snippet": 97, "nlp": [97, 108], "mind": [97, 99], "alphanumer": 97, "facilit": 97, "seamless": 97, "classlabel": 97, "guidanc": 97, "labels_str": 97, "datalab_str": 97, "labels_int": 97, "remap": 97, "datalab_int": 97, "my_dict": 97, "pet_nam": 97, "rover": 97, "rocki": 97, "speci": 97, "datalab_dataset": 97, "number_of_class": 97, "total_number_of_data_point": 97, "feed": 97, "alphabet": 97, "labels_proper_format": 97, "your_classifi": 97, "issues_datafram": 97, "class_predicted_for_flagged_exampl": 97, "class_predicted_for_all_exampl": 97, "grant": 97, "On": [97, 98, 99, 103], "merged_dataset": 97, "label_column_nam": 97, "datataset": 97, "fair": [97, 99], "game": 97, "speedup": [97, 104], "tempfil": 97, "mkdtemp": 97, "sped": 97, "anywai": 97, "pred_probs_merg": 97, "merge_rare_class": 97, "count_threshold": 97, "class_mapping_orig2new": 97, "heath_summari": 97, "num_examples_per_class": 97, "rare_class": 97, "num_classes_merg": 97, "other_class": 97, "labels_merg": 97, "new_c": 97, "merged_prob": 97, "new_class": 97, "original_class": 97, "num_check": 97, "ones_array_ref": 97, "isclos": 97, "though": [97, 99, 108], "successfulli": 97, "virtuou": [97, 101], "cycl": [97, 101], "jointli": 97, "junk": 97, "clutter": 97, "unknown": 97, "caltech": 97, "combined_boolean_mask": 97, "mask1": 97, "mask2": 97, "gradientboostingclassifi": [97, 99], "true_error": [97, 99, 102], "101": [97, 98, 103], "102": [97, 102, 103], "104": [97, 99, 103], "model_to_find_error": 97, "model_to_return": 97, "cl0": 97, "randomizedsearchcv": 97, "expens": 97, "param_distribut": 97, "learning_r": [97, 98, 99], "max_depth": [97, 98, 99], "magnitud": 97, "coeffici": [97, 106], "optin": 97, "environ": [97, 98, 99], "rerun": [97, 98, 99], "cell": [97, 98, 99], "unabl": [97, 98, 99], "render": [97, 98, 99], "nbviewer": [97, 98, 99], "cleanlearninginot": [97, 99], "fittedcleanlearn": [97, 99], "linearregressionlinearregress": 97, "unexpectedli": 97, "emphas": 97, "crucial": 97, "merge_duplicate_set": 97, "merge_kei": 97, "construct_group_kei": 97, "merged_set": 97, "consolidate_set": 97, "issubset": 97, "frozenset": [97, 98], "sets_list": 97, "mutabl": 97, "new_set": 97, "current_set": 97, "intersecting_set": 97, "lowest_score_strategi": 97, "sub_df": 97, "filter_near_dupl": 97, "strategy_fn": 97, "strategy_kwarg": 97, "duplicate_row": 97, "group_kei": 97, "to_keep_indic": 97, "groupbi": 97, "explod": 97, "to_remov": 97, "isin": [97, 104], "kept": 97, "ids_to_remove_seri": 97, "assist": 97, "streamlin": [97, 98], "ux": 97, "agpl": 97, "compani": 97, "commerci": 97, "email": 97, "team": 97, "discuss": 97, "anywher": 97, "profession": 97, "expert": 97, "recogn": 98, "vital": 98, "leakag": 98, "comparion": 98, "leak": 98, "blueprint": 98, "divers": 98, "parameter": 98, "tldr": 98, "answer": [98, 99], "subtl": 98, "faith": 98, "danger": 98, "inevit": [98, 104], "xgbclassifi": 98, "123456": 98, "df_train": 98, "s3": [98, 103, 107, 108], "amazonaw": [98, 103, 107, 108], "clos_train_data": 98, "df_test": 98, "clos_test_data": 98, "noisy_letter_grad": 98, "018bff": 98, "076d92": 98, "c80059": 98, "e38f8a": 98, "d57e1a": 98, "grade_l": 98, "notes_l": 98, "train_featur": 98, "train_features_v2": 98, "train_labels_v2": 98, "test_featur": 98, "preprocessed_train_data": 98, "preprocessed_test_data": 98, "haven": 98, "features_df": 98, "heterogenou": 98, "full_df": 98, "reset_index": [98, 101], "749": 98, "583745": 98, "291382": 98, "5837": 98, "748": 98, "604": 98, "510": 98, "227": [98, 102, 103], "719": 98, "690": 98, "444": 98, "547": 98, "647": 98, "2914": 98, "611": 98, "687869": 98, "610": 98, "687883": 98, "612": 98, "688146": 98, "609": 98, "688189": 98, "613": 98, "688713": 98, "2913818469137725": 98, "came": [98, 108], "full_duplicate_result": 98, "train_idx_cutoff": 98, "nd_set_has_index_over_training_cutoff": 98, "exact_dupl": 98, "627": 98, "678": 98, "615": 98, "292": 98, "620": 98, "420": 98, "704": 98, "431": 98, "688": [98, 106], "459": 98, "672": 98, "564": 98, "696": 98, "605": 98, "exact_duplicates_indic": 98, "indices_of_duplicates_to_drop": 98, "4a3f75": 98, "d030b5": 98, "ddd0ba": 98, "8e6d24": 98, "464aab": 98, "ee3387": 98, "61e807": 98, "71d7b9": 98, "83e31f": 98, "edeb53": 98, "cd52b5": 98, "84": [98, 103, 106], "454e51": 98, "042686": 98, "12a73f": 98, "tree_method": 98, "hist": [98, 104], "enable_categor": 98, "booster": 98, "callback": 98, "colsample_bylevel": 98, "colsample_bynod": 98, "colsample_bytre": 98, "early_stopping_round": 98, "eval_metr": 98, "feature_typ": 98, "gamma": 98, "grow_polici": 98, "importance_typ": 98, "interaction_constraint": 98, "max_bin": 98, "max_cat_threshold": 98, "max_cat_to_onehot": 98, "max_delta_step": 98, "max_leav": 98, "min_child_weight": 98, "monotone_constraint": 98, "multi_strategi": 98, "n_estim": [98, 99], "num_parallel_tre": 98, "x27": [98, 99], "softprob": 98, "xgbclassifierifittedxgbclassifi": 98, "test_pred_prob": [98, 104], "test_lab": 98, "test_features_arrai": 98, "134": 98, "798507": 98, "370259": 98, "625352": 98, "524042": 98, "097015": 98, "7985": 98, "000537": 98, "000903": 98, "001743": 98, "106": 98, "001853": 98, "002121": 98, "3703": 98, "752463e": 98, "784418e": 98, "09": [98, 102, 103, 106, 108], "477741e": 98, "134230e": 98, "153555e": 98, "6254": 98, "143272": 98, "146501": 98, "161431": 98, "5240": 98, "765240": 98, "771221": 98, "801589": 98, "801652": 98, "810735": 98, "5240417899434826": 98, "0970": 98, "na": [98, 101], "test_label_issue_result": 98, "test_label_issues_ord": 98, "2bd759": 98, "34ccdd": 98, "bb3bab": 98, "103": [98, 99, 103], "bf1b14": 98, "4787de": 98, "865cbd": 98, "32d53f": 98, "5b2f76": 98, "28f8b4": 98, "df814d": 98, "f17261": 98, "1db3ff": 98, "ded944": 98, "124": [98, 103], "343dd3": 98, "homework": [98, 106], "8d904d": 98, "e4f0d5": 98, "d6d208": 98, "76c083": 98, "695f96": 98, "745c23": 98, "13b36e": 98, "5ba892": 98, "9f0216": 98, "003628": 98, "004006": 98, "004031": 98, "007930": 98, "013226": 98, "015255": 98, "017692": 98, "019767": 98, "036197": 98, "054746": 98, "055110": 98, "062675": 98, "112695": 98, "121059": 98, "171280": 98, "181689": 98, "208001": 98, "275028": 98, "346032": 98, "396350": 98, "401493": 98, "474349": 98, "mislead": 98, "breviti": 98, "indices_to_drop_from_test_data": 98, "df_test_clean": 98, "acc_origin": 98, "tediou": 98, "train_features_arrai": 98, "train_lab": 98, "318": [98, 106], "601": 98, "740433": 98, "344154": 98, "588290": 98, "437267": 98, "146423": 98, "978605": 98, "7404": 98, "162": 98, "000072": 98, "348": 98, "000161": 98, "232": [98, 103], "000256": 98, "205": [98, 103], "000458": 98, "000738": 98, "3442": 98, "588": 98, "358961e": 98, "336": [98, 103], "490911e": 98, "269": 98, "122475e": 98, "321": [98, 103], "374139e": 98, "311": 98, "358617e": 98, "5883": 98, "600": 98, "592": 98, "593": 98, "594": 98, "595": 98, "596": 98, "597": 98, "598": 98, "599": 98, "221": 98, "222": [98, 99], "315": 98, "332": [98, 103], "791060e": 98, "243": [98, 103], "540": 98, "379106e": 98, "396": 98, "397": 98, "398": 98, "399": 98, "4373": 98, "165": [98, 102], "550374": 98, "627357": 98, "627496": 98, "627502": 98, "627919": 98, "43726734378061227": 98, "1464": 98, "506": 98, "393": 98, "508": 98, "9786": 98, "aggress": 98, "faithfulli": 98, "label_issue_result": 98, "566": 98, "568": 98, "571": 98, "572": 98, "574": 98, "576": 98, "578": 98, "585": 98, "587": 98, "590": 98, "near_duplicates_idx": 98, "117": [98, 99, 106], "122": [98, 99, 103], "146": 98, "155": [98, 99, 103], "156": [98, 99], "173": [98, 103], "196": [98, 99, 103], "224": [98, 103], "272": 98, "277": [98, 103], "279": [98, 103], "288": 98, "300": [98, 101, 108], "342": 98, "352": 98, "363": 98, "365": 98, "366": 98, "384": 98, "388": 98, "394": 98, "404": 98, "474": 98, "480": 98, "494": 98, "515": 98, "536": 98, "537": 98, "539": 98, "542": 98, "559": 98, "outliers_idx": 98, "143": [98, 102, 103], "153": [98, 103], "159": [98, 102, 103], "163": [98, 99], "193": [98, 99], "194": [98, 99], "199": [98, 103], "208": 98, "240": [98, 103], "241": 98, "242": [98, 103], "247": [98, 103], "287": [98, 103], "299": [98, 103], "307": [98, 103], "350": 98, "361": 98, "378": 98, "379": 98, "392": 98, "419": 98, "432": 98, "479": 98, "484": 98, "485": 98, "489": 98, "492": 98, "504": 98, "511": 98, "522": 98, "535": 98, "543": 98, "567": 98, "579": 98, "591": 98, "idx_to_drop": 98, "276": [98, 103], "df_train_cur": 98, "clean_clf": 98, "clean_pr": 98, "acc_clean": 98, "inaccur": 98, "hybrid": 98, "quantit": 98, "hyper": 98, "default_edit_param": 98, "drop_label_issu": 98, "drop_outli": 98, "drop_near_dupl": 98, "candid": [98, 103], "edit_data": 98, "percentag": [98, 99], "num_label_issues_to_drop": 98, "num_outliers_to_drop": 98, "dedupl": 98, "unique_clust": 98, "unique_clusters_list": 98, "near_duplicates_idx_to_drop": 98, "n_drop": 98, "label_issues_idx_to_drop": 98, "outliers_idx_to_drop": 98, "train_features_clean": 98, "train_labels_clean": 98, "itertool": 98, "finer": 98, "param_combin": 98, "best_scor": 98, "best_param": 98, "train_features_preprocess": 98, "train_labels_preprocess": 98, "catch": 98, "depth": 99, "survei": [99, 108], "scienc": 99, "multivariate_norm": [99, 101, 102], "make_data": [99, 101], "cov": [99, 101, 102], "avg_trac": [99, 102], "py_tru": 99, "noise_matrix_tru": 99, "noise_marix": 99, "s_test": 99, "noisy_test_label": 99, "purpl": 99, "namespac": 99, "exec": 99, "markerfacecolor": [99, 102], "markeredgecolor": [99, 102, 106], "markers": [99, 102, 106], "markeredgewidth": [99, 102, 106], "realist": 99, "7560": 99, "637318e": 99, "896262e": 99, "548391e": 99, "923417e": 99, "375075e": 99, "3454": 99, "014051": 99, "020451": 99, "249": [99, 103], "042594": 99, "043859": 99, "045954": 99, "6120": 99, "023714": 99, "007136": 99, "119": [99, 103], "107266": 99, "033738": 99, "238": [99, 103], "119505": 99, "236": [99, 103, 108], "037843": 99, "614915": 99, "624422": 99, "625965": 99, "626079": 99, "118": 99, "627675": 99, "695223": 99, "323529": 99, "523015": 99, "013720": 99, "675727": 99, "646521": 99, "anyth": 99, "magic": 99, "liter": 99, "identif": 99, "logisticregressionlogisticregress": 99, "ever": 99, "092": 99, "040": 99, "024": 99, "004": 99, "surpris": 99, "1705": 99, "01936": 99, "ton": 99, "yourfavoritemodel1": 99, "merged_label": 99, "merged_test_label": 99, "newli": [99, 101], "yourfavoritemodel2": 99, "yourfavoritemodel3": 99, "cl3": 99, "takeawai": 99, "my_test_pred_prob": 99, "my_test_pr": 99, "issues_test": 99, "corrected_test_label": 99, "pretend": 99, "cl_test_pr": 99, "fairli": 99, "label_acc": 99, "offset": 99, "nquestion": 99, "overestim": 99, "experienc": 99, "prioiri": 99, "known": 99, "versatil": 99, "label_issues_indic": 99, "213": [99, 103], "218": [99, 103], "152": 99, "197": [99, 103], "170": 99, "214": 99, "164": [99, 102], "198": [99, 103], "191": [99, 103], "206": [99, 103], "115": [99, 103], "201": [99, 103], "174": 99, "150": [99, 101, 103, 108], "169": [99, 108], "151": [99, 103], "168": 99, "precision_scor": 99, "recall_scor": 99, "f1_score": 99, "true_label_issu": 99, "filter_by_list": 99, "718750": [99, 101], "807018": 99, "912": 99, "733333": 99, "800000": 99, "721311": 99, "792793": 99, "908": 99, "676923": 99, "765217": 99, "892": 99, "567901": 99, "702290": 99, "844": 99, "gaug": 99, "label_issues_count": 99, "172": [99, 102], "157": 99, "easiest": 99, "modular": 99, "penalti": 99, "l2": 99, "model3": 99, "cv_pred_probs_1": 99, "cv_pred_probs_2": 99, "cv_pred_probs_3": 99, "label_quality_scores_best": 99, "cv_pred_probs_ensembl": 99, "label_quality_scores_bett": 99, "superior": [99, 105], "timm": 100, "glad": 101, "multiannotator_label": 101, "noisier": 101, "111": [101, 106], "local_data": [101, 102], "true_labels_train": [101, 102], "noise_matrix_bett": 101, "noise_matrix_wors": 101, "transpos": [101, 104], "zfill": 101, "row_na_check": 101, "notna": 101, "a0001": 101, "a0002": 101, "a0003": 101, "a0004": 101, "a0005": 101, "a0006": 101, "a0007": 101, "a0008": 101, "a0009": 101, "a0010": 101, "a0041": 101, "a0042": 101, "a0043": 101, "a0044": 101, "a0045": 101, "a0046": 101, "a0047": 101, "a0048": 101, "a0049": 101, "a0050": 101, "60856743": 101, "41693214": 101, "40908785": 101, "87147629": 101, "64941785": 101, "10774851": 101, "0524466": 101, "71853246": 101, "37169848": 101, "66031048": 101, "multiannotator_util": 101, "crude": 101, "straight": 101, "majority_vote_label": 101, "736118": 101, "757751": 101, "782232": 101, "715565": 101, "824256": 101, "quality_annotator_a0001": 101, "quality_annotator_a0002": 101, "quality_annotator_a0003": 101, "quality_annotator_a0004": 101, "quality_annotator_a0005": 101, "quality_annotator_a0006": 101, "quality_annotator_a0007": 101, "quality_annotator_a0008": 101, "quality_annotator_a0009": 101, "quality_annotator_a0010": 101, "quality_annotator_a0041": 101, "quality_annotator_a0042": 101, "quality_annotator_a0043": 101, "quality_annotator_a0044": 101, "quality_annotator_a0045": 101, "quality_annotator_a0046": 101, "quality_annotator_a0047": 101, "quality_annotator_a0048": 101, "quality_annotator_a0049": 101, "quality_annotator_a0050": 101, "070564": 101, "216078": 101, "119188": 101, "alongisd": 101, "244981": 101, "208333": 101, "295979": 101, "294118": 101, "324197": 101, "310345": 101, "355316": 101, "346154": 101, "439732": 101, "480000": 101, "a0031": 101, "523205": 101, "580645": 101, "a0034": 101, "535313": 101, "607143": 101, "a0021": 101, "606999": 101, "a0015": 101, "609526": 101, "678571": 101, "a0011": 101, "621103": 101, "692308": 101, "improved_consensus_label": 101, "majority_vote_accuraci": 101, "cleanlab_label_accuraci": 101, "8581081081081081": 101, "9797297297297297": 101, "besid": 101, "sorted_consensus_quality_scor": 101, "worst_qual": 101, "better_qu": 101, "worst_quality_accuraci": 101, "better_quality_accuraci": 101, "9893238434163701": 101, "improved_pred_prob": 101, "treat": [101, 102, 106, 108], "analzi": 101, "copyright": 102, "advertis": 102, "violenc": 102, "nsfw": 102, "celeba": 102, "make_multilabel_data": 102, "boxes_coordin": 102, "box_multilabel": 102, "make_multi": 102, "bx1": 102, "by1": 102, "bx2": 102, "by2": 102, "label_list": 102, "ur": 102, "upper": 102, "inidx": 102, "logical_and": 102, "inv_d": 102, "labels_idx": 102, "true_labels_test": 102, "dict_unique_label": 102, "get_color_arrai": 102, "dcolor": 102, "aa4400": 102, "55227f": 102, "55a100": 102, "00ff00": 102, "007f7f": 102, "386b55": 102, "0000ff": 102, "y_onehot": 102, "single_class_label": 102, "stratifi": [102, 105], "kf": 102, "train_index": 102, "test_index": 102, "clf_cv": 102, "x_train_cv": 102, "x_test_cv": 102, "y_train_cv": 102, "y_test_cv": 102, "y_pred_cv": 102, "saw": 102, "num_to_displai": 102, "275": 102, "267": 102, "225": 102, "171": [102, 108], "234": 102, "262": [102, 103], "263": [102, 103], "266": [102, 103], "139": 102, "216": [102, 103, 108], "265": 102, "despit": [102, 108], "suspect": 102, "888": 102, "8224": 102, "9632": 102, "968": 102, "6512": 102, "0444": 102, "774": 102, "labels_binary_format": 102, "labels_list_format": 102, "surround": 103, "scene": 103, "coco": 103, "everydai": 103, "has_label_issu": 103, "nc": [103, 107, 108], "objectdetectionbenchmark": 103, "tutorial_obj": 103, "pkl": 103, "example_imag": 103, "unzip": [103, 108], "_separate_label": 103, "_separate_predict": 103, "begin": 103, "image_path": 103, "rb": 103, "image_to_visu": 103, "seg_map": 103, "334": 103, "bboxes_ignor": 103, "290": 103, "286": 103, "285": 103, "231": [103, 108], "293": 103, "235": 103, "289": 103, "282": 103, "281": 103, "271": 103, "280": 103, "326": 103, "333": 103, "261": 103, "319": 103, "257": 103, "283": 103, "303": 103, "316": 103, "323": 103, "327": 103, "226": 103, "228": 103, "219": 103, "239": 103, "209": 103, "202": 103, "230": 103, "215": 103, "220": 103, "229": 103, "217": [103, 108], "237": 103, "207": 103, "204": 103, "223": 103, "149": 103, "140": 103, "246": 103, "268": 103, "273": 103, "284": 103, "110": 103, "136": 103, "145": 103, "297": 103, "317": 103, "192": 103, "324": 103, "203": 103, "320": 103, "314": 103, "291": 103, "000000481413": 103, "jpg": 103, "42398": 103, "44503": 103, "29968": 103, "21005": 103, "9978472": 103, "forgot": 103, "drew": 103, "label_issue_idx": 103, "num_examples_to_show": 103, "138": 103, "97489622": 103, "70610878": 103, "98764951": 103, "88899237": 103, "99085805": 103, "issue_idx": 103, "95569726e": 103, "03354841e": 103, "57510169e": 103, "58447666e": 103, "39755858e": 103, "issue_to_visu": 103, "000000009483": 103, "95569726168054e": 103, "addition": [103, 107], "visibl": 103, "missmatch": 103, "likelei": 103, "agnost": 103, "vaidat": 103, "inconsist": 103, "000000395701": 103, "033548411774308e": 103, "armchair": 103, "tv": 103, "000000154004": 103, "38300759625496356": 103, "foreground": 103, "000000448410": 103, "0008575101690203273": 103, "crowd": 103, "alon": 103, "resembl": [103, 104], "000000499768": 103, "9748962231208227": 103, "000000521141": 103, "8889923658893665": 103, "000000143931": 103, "9876495074395956": 103, "bonu": 103, "uncov": 103, "irregular": 103, "object_detection_util": 103, "calculate_bounding_box_area": 103, "num_imgs_to_show": 103, "lab_object_count": 103, "pred_object_count": 103, "000000430073": 103, "000000183709": 103, "000000189475": 103, "label_norm": 103, "pred_norm": 103, "area": [103, 107], "lab_area": 103, "pred_area": 103, "lab_area_mean": 103, "lab_area_std": 103, "max_deviation_valu": 103, "max_deviation_class": 103, "deviation_valu": 103, "deviation_class": 103, "mean_area": 103, "std_area": 103, "class_area": 103, "deviations_awai": 103, "max_deviation_index": 103, "num_imgs_to_show_per_class": 103, "class_num": 103, "000000422886": 103, "000000341828": 103, "000000461009": 103, "train_feature_embed": 104, "ood_train_feature_scor": 104, "test_feature_embed": 104, "ood_test_feature_scor": 104, "ood_train_predictions_scor": 104, "train_pred_prob": 104, "ood_test_predictions_scor": 104, "pylab": 104, "rcparam": 104, "baggingclassifi": 104, "therebi": 104, "rescal": 104, "transform_norm": 104, "totensor": 104, "animal_class": 104, "non_animal_class": 104, "animal_idx": 104, "test_idx": 104, "99299872": 104, "36it": 104, "visualize_outli": 104, "txt_class": 104, "npimg": 104, "show_label": 104, "data_subset": 104, "resnet50": 104, "corpu": 104, "2048": 104, "embed_imag": 104, "create_model": 104, "strang": 104, "odd": 104, "train_ood_features_scor": 104, "top_train_ood_features_idx": 104, "fun": 104, "negat": 104, "homogen": 104, "bottom_train_ood_features_idx": 104, "test_ood_features_scor": 104, "top_ood_features_idx": 104, "trade": 104, "5th": 104, "percentil": 104, "fifth_percentil": 104, "plt_rang": 104, "train_outlier_scor": 104, "test_outlier_scor": 104, "ood_features_indic": 104, "revisit": 104, "return_invers": 104, "train_feature_embeddings_sc": 104, "test_feature_embeddings_sc": 104, "train_pred_label": 104, "9702": 104, "train_ood_predictions_scor": 104, "test_ood_predictions_scor": 104, "lost": 104, "unsuit": 105, "ok": [105, 108], "convention": 105, "aforement": 105, "hypothet": 105, "contrast": 105, "tradit": 105, "disjoint": 105, "out_of_sample_pred_probs_for_a": 105, "out_of_sample_pred_probs_for_b": 105, "out_of_sample_pred_probs_for_c": 105, "out_of_sample_pred_prob": 105, "price": 106, "incom": 106, "sensor": 106, "histgradientboostingregressor": 106, "r2_score": 106, "student_grades_r": 106, "final_scor": 106, "true_final_scor": 106, "3d": 106, "mpl_toolkit": 106, "mplot3d": 106, "axes3d": 106, "errors_idx": 106, "add_subplot": 106, "z": 106, "errors_mask": 106, "feature_column": 106, "predicted_column": 106, "x_train_raw": 106, "x_test_raw": 106, "randomforestregressor": 106, "385101": 106, "499503": 106, "698255": 106, "776647": 106, "109373": 106, "170547": 106, "481096": 106, "984759": 106, "645270": 106, "795928": 106, "141": 106, "659": 106, "367": 106, "305": 106, "560": 106, "657": 106, "view_datapoint": 106, "preds_og": 106, "r2_og": 106, "838": 106, "found_label_issu": 106, "preds_cl": 106, "r2_cl": 106, "926": 106, "favorit": 106, "968627e": 106, "228799": 106, "646674e": 106, "402962": 106, "323818e": 106, "952758": 106, "422144e": 106, "456908": 106, "465815e": 106, "753968": 106, "791186e": 106, "110719": 106, "485156e": 106, "670640": 106, "225300e": 106, "749976": 106, "499679e": 106, "947007": 106, "067882e": 106, "648396": 106, "synthia": 107, "imagesegment": 107, "given_mask": 107, "predicted_mask": 107, "set_printopt": [107, 108], "sky": 107, "sidewalk": 107, "veget": 107, "terrain": 107, "rider": 107, "pred_probs_filepath": 107, "1088": 107, "1920": 107, "label_filepath": 107, "synthia_class": 107, "maunal": 107, "100000": 107, "244800": 107, "leftmost": 107, "middl": [107, 108], "infact": 107, "rightmost": 107, "discrep": 107, "3263230": 107, "783381": 107, "275110": 107, "255917": 107, "78225": 107, "55990": 107, "54315": 107, "33591": 107, "24645": 107, "21054": 107, "15045": 107, "14171": 107, "13832": 107, "13498": 107, "11490": 107, "9164": 107, "8769": 107, "6999": 107, "6031": 107, "5011": 107, "mistakenli": 107, "class_issu": 107, "aim": [107, 108], "domin": 107, "bunch": 108, "conll": 108, "2003": 108, "love": 108, "n_i": 108, "optional_list_of_ordered_class_nam": 108, "deepai": 108, "conll2003": 108, "rm": 108, "tokenclassif": 108, "2400": 108, "52e0": 108, "1a00": 108, "1029": 108, "connect": 108, "443": 108, "await": 108, "982975": 108, "960k": 108, "959": 108, "94k": 108, "22mb": 108, "mb": 108, "directori": 108, "inflat": 108, "17045998": 108, "16m": 108, "octet": 108, "26m": 108, "kb": 108, "179": 108, "bert": 108, "read_npz": 108, "filepath": 108, "corrsespond": 108, "iob2": 108, "given_ent": 108, "entity_map": 108, "readfil": 108, "startswith": 108, "docstart": 108, "isalpha": 108, "isupp": 108, "indices_to_preview": 108, "nsentenc": 108, "eu": 108, "reject": 108, "boycott": 108, "british": 108, "lamb": 108, "00030412": 108, "00023826": 108, "99936208": 108, "00007009": 108, "00002545": 108, "99998795": 108, "00000401": 108, "00000218": 108, "00000455": 108, "00000131": 108, "00000749": 108, "99996115": 108, "00001371": 108, "0000087": 108, "00000895": 108, "99998936": 108, "00000382": 108, "00000178": 108, "00000366": 108, "00000137": 108, "99999101": 108, "00000266": 108, "00000174": 108, "0000035": 108, "00000109": 108, "99998768": 108, "00000482": 108, "00000202": 108, "00000438": 108, "0000011": 108, "00000465": 108, "99996392": 108, "00001105": 108, "0000116": 108, "00000878": 108, "99998671": 108, "00000364": 108, "00000213": 108, "00000472": 108, "00000281": 108, "99999073": 108, "00000211": 108, "00000159": 108, "00000442": 108, "00000115": 108, "peter": 108, "blackburn": 108, "00000358": 108, "00000529": 108, "99995623": 108, "0000129": 108, "0000024": 108, "00001812": 108, "99994141": 108, "00001645": 108, "00002162": 108, "brussel": 108, "1996": 108, "00001172": 108, "00000821": 108, "00004661": 108, "0000618": 108, "99987167": 108, "99999061": 108, "00000201": 108, "00000195": 108, "00000408": 108, "00000135": 108, "2254": 108, "2907": 108, "19392": 108, "9962": 108, "8904": 108, "19303": 108, "12918": 108, "9256": 108, "11855": 108, "18392": 108, "20426": 108, "19402": 108, "14744": 108, "19371": 108, "4645": 108, "10331": 108, "9430": 108, "6143": 108, "18367": 108, "12914": 108, "todai": 108, "weather": 108, "march": 108, "scalfaro": 108, "northern": 108, "himself": 108, "said": 108, "germani": 108, "nastja": 108, "rysich": 108, "north": 108, "spla": 108, "fought": 108, "khartoum": 108, "govern": 108, "south": 108, "1983": 108, "autonomi": 108, "animist": 108, "region": 108, "moslem": 108, "arabis": 108, "mayor": 108, "antonio": 108, "gonzalez": 108, "garcia": 108, "revolutionari": 108, "wednesdai": 108, "troop": 108, "raid": 108, "farm": 108, "stole": 108, "rape": 108, "women": 108, "spring": 108, "chg": 108, "hrw": 108, "12pct": 108, "princ": 108, "photo": 108, "moment": 108, "spokeswoman": 108, "rainier": 108, "told": 108, "reuter": 108, "danila": 108, "carib": 108, "w224": 108, "equip": 108, "radiomet": 108, "earn": 108, "19996": 108, "london": 108, "denom": 108, "sale": 108, "uk": 108, "jp": 108, "fr": 108, "maccabi": 108, "hapoel": 108, "haifa": 108, "tel": 108, "aviv": 108, "hospit": 108, "rever": 108, "roman": 108, "cathol": 108, "nun": 108, "admit": 108, "calcutta": 108, "week": 108, "ago": 108, "fever": 108, "vomit": 108, "allianc": 108, "embattl": 108, "kabul": 108, "salang": 108, "highwai": 108, "mondai": 108, "tuesdai": 108, "suprem": 108, "council": 108, "led": 108, "jumbish": 108, "milli": 108, "movement": 108, "warlord": 108, "abdul": 108, "rashid": 108, "dostum": 108, "dollar": 108, "exchang": 108, "3570": 108, "12049": 108, "born": 108, "1937": 108, "provinc": 108, "anhui": 108, "dai": 108, "shanghai": 108, "citi": 108, "prolif": 108, "author": 108, "teacher": 108, "chines": 108, "16764": 108, "1990": 108, "historian": 108, "alan": 108, "john": 108, "percival": 108, "taylor": 108, "di": 108, "20446": 108, "pace": 108, "bowler": 108, "ian": 108, "harvei": 108, "claim": 108, "victoria": 108, "15514": 108, "cotti": 108, "osc": 108, "foreign": 108, "minist": 108, "7525": 108, "sultan": 108, "specter": 108, "crown": 108, "abdullah": 108, "defenc": 108, "aviat": 108, "jeddah": 108, "saudi": 108, "agenc": 108, "2288": 108, "hi": 108, "customari": 108, "outfit": 108, "champion": 108, "damp": 108, "scalp": 108, "canada": 108, "reign": 108, "olymp": 108, "donovan": 108, "bailei": 108, "1992": 108, "linford": 108, "christi": 108, "britain": 108, "1984": 108, "1988": 108, "carl": 108, "lewi": 108, "ambigi": 108, "punctuat": 108, "chicago": 108, "digest": 108, "philadelphia": 108, "usda": 108, "york": 108, "token_issu": 108, "471": 108, "kean": 108, "year": 108, "contract": 108, "manchest": 108, "19072": 108, "societi": 108, "bite": 108, "deliv": 108, "19910": 108, "father": 108, "clarenc": 108, "woolmer": 108, "renam": 108, "uttar": 108, "pradesh": 108, "india": 108, "ranji": 108, "trophi": 108, "nation": 108, "championship": 108, "captain": 108, "1949": 108, "15658": 108, "19879": 108, "iii": 108, "brian": 108, "shimer": 108, "randi": 108, "jone": 108, "19104": 108}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [12, 0, 0, "-", "datalab"], [37, 0, 0, "-", "dataset"], [40, 0, 0, "-", "experimental"], [44, 0, 0, "-", "filter"], [45, 0, 0, "-", "internal"], [59, 0, 0, "-", "models"], [61, 0, 0, "-", "multiannotator"], [64, 0, 0, "-", "multilabel_classification"], [67, 0, 0, "-", "object_detection"], [70, 0, 0, "-", "outlier"], [71, 0, 0, "-", "rank"], [72, 0, 0, "-", "regression"], [76, 0, 0, "-", "segmentation"], [80, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [16, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[13, 0, 0, "-", "data"], [14, 0, 0, "-", "data_issues"], [17, 0, 0, "-", "issue_finder"], [15, 0, 0, "-", "issue_manager_factory"], [33, 0, 0, "-", "model_outputs"], [34, 0, 0, "-", "report"], [35, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[13, 2, 1, "", "Data"], [13, 5, 1, "", "DataFormatError"], [13, 5, 1, "", "DatasetDictError"], [13, 5, 1, "", "DatasetLoadError"], [13, 2, 1, "", "Label"], [13, 2, 1, "", "MultiClass"], [13, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[13, 3, 1, "", "add_note"], [13, 6, 1, "", "args"], [13, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[13, 4, 1, "", "class_names"], [13, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[14, 2, 1, "", "DataIssues"], [14, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[14, 3, 1, "", "collect_issues_from_imagelab"], [14, 3, 1, "", "collect_issues_from_issue_manager"], [14, 3, 1, "", "collect_statistics"], [14, 3, 1, "", "get_info"], [14, 3, 1, "", "get_issue_summary"], [14, 3, 1, "", "get_issues"], [14, 6, 1, "", "info"], [14, 6, 1, "", "issue_summary"], [14, 6, 1, "", "issues"], [14, 3, 1, "", "set_health_score"], [14, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[17, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[17, 3, 1, "", "find_issues"], [17, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[19, 0, 0, "-", "data_valuation"], [20, 0, 0, "-", "duplicate"], [21, 0, 0, "-", "imbalance"], [23, 0, 0, "-", "issue_manager"], [24, 0, 0, "-", "label"], [27, 0, 0, "-", "noniid"], [28, 0, 0, "-", "null"], [29, 0, 0, "-", "outlier"], [32, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[19, 6, 1, "", "DEFAULT_THRESHOLD"], [19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 6, 1, "", "near_duplicate_sets"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[21, 3, 1, "", "collect_info"], [21, 6, 1, "", "description"], [21, 3, 1, "", "find_issues"], [21, 6, 1, "", "info"], [21, 6, 1, "", "issue_name"], [21, 6, 1, "", "issue_score_key"], [21, 6, 1, "", "issues"], [21, 3, 1, "", "make_summary"], [21, 3, 1, "", "report"], [21, 6, 1, "", "summary"], [21, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[24, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[24, 3, 1, "", "collect_info"], [24, 6, 1, "", "description"], [24, 3, 1, "", "find_issues"], [24, 3, 1, "", "get_health_summary"], [24, 6, 1, "", "health_summary_parameters"], [24, 6, 1, "", "info"], [24, 6, 1, "", "issue_name"], [24, 6, 1, "", "issue_score_key"], [24, 6, 1, "", "issues"], [24, 3, 1, "", "make_summary"], [24, 3, 1, "", "report"], [24, 6, 1, "", "summary"], [24, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[26, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, 2, 1, "", "NonIIDIssueManager"], [27, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[28, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[29, 6, 1, "", "DEFAULT_THRESHOLDS"], [29, 3, 1, "", "collect_info"], [29, 6, 1, "", "description"], [29, 3, 1, "", "find_issues"], [29, 6, 1, "", "info"], [29, 6, 1, "", "issue_name"], [29, 6, 1, "", "issue_score_key"], [29, 6, 1, "", "issues"], [29, 3, 1, "", "make_summary"], [29, 6, 1, "", "metric"], [29, 6, 1, "", "ood"], [29, 3, 1, "", "report"], [29, 6, 1, "", "summary"], [29, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[31, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, 2, 1, "", "RegressionLabelIssueManager"], [31, 1, 1, "", "find_issues_with_features"], [31, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "find_issues"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "report"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[32, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [32, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [32, 3, 1, "", "collect_info"], [32, 6, 1, "", "description"], [32, 3, 1, "", "filter_cluster_ids"], [32, 3, 1, "", "find_issues"], [32, 3, 1, "", "get_worst_cluster"], [32, 6, 1, "", "info"], [32, 6, 1, "", "issue_name"], [32, 6, 1, "", "issue_score_key"], [32, 6, 1, "", "issues"], [32, 3, 1, "", "make_summary"], [32, 3, 1, "", "perform_clustering"], [32, 3, 1, "", "report"], [32, 6, 1, "", "summary"], [32, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, 7, 1, "", "REGISTRY"], [15, 1, 1, "", "list_default_issue_types"], [15, 1, 1, "", "list_possible_issue_types"], [15, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[33, 2, 1, "", "ModelOutput"], [33, 2, 1, "", "MultiClassPredProbs"], [33, 2, 1, "", "MultiLabelPredProbs"], [33, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[33, 6, 1, "", "argument"], [33, 3, 1, "", "collect"], [33, 6, 1, "", "data"], [33, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[34, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[34, 3, 1, "", "get_report"], [34, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[35, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[35, 6, 1, "", "CLASSIFICATION"], [35, 6, 1, "", "MULTILABEL"], [35, 6, 1, "", "REGRESSION"], [35, 3, 1, "", "__contains__"], [35, 3, 1, "", "__getitem__"], [35, 3, 1, "", "__iter__"], [35, 3, 1, "", "__len__"], [35, 3, 1, "", "from_str"], [35, 4, 1, "", "is_classification"], [35, 4, 1, "", "is_multilabel"], [35, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[37, 1, 1, "", "find_overlapping_classes"], [37, 1, 1, "", "health_summary"], [37, 1, 1, "", "overall_label_health_score"], [37, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[38, 0, 0, "-", "cifar_cnn"], [39, 0, 0, "-", "coteaching"], [41, 0, 0, "-", "label_issues_batched"], [42, 0, 0, "-", "mnist_pytorch"], [43, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[38, 2, 1, "", "CNN"], [38, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[38, 6, 1, "", "T_destination"], [38, 3, 1, "", "__call__"], [38, 3, 1, "", "add_module"], [38, 3, 1, "", "apply"], [38, 3, 1, "", "bfloat16"], [38, 3, 1, "", "buffers"], [38, 6, 1, "", "call_super_init"], [38, 3, 1, "", "children"], [38, 3, 1, "", "compile"], [38, 3, 1, "", "cpu"], [38, 3, 1, "", "cuda"], [38, 3, 1, "", "double"], [38, 6, 1, "", "dump_patches"], [38, 3, 1, "", "eval"], [38, 3, 1, "", "extra_repr"], [38, 3, 1, "", "float"], [38, 3, 1, "id0", "forward"], [38, 3, 1, "", "get_buffer"], [38, 3, 1, "", "get_extra_state"], [38, 3, 1, "", "get_parameter"], [38, 3, 1, "", "get_submodule"], [38, 3, 1, "", "half"], [38, 3, 1, "", "ipu"], [38, 3, 1, "", "load_state_dict"], [38, 3, 1, "", "modules"], [38, 3, 1, "", "named_buffers"], [38, 3, 1, "", "named_children"], [38, 3, 1, "", "named_modules"], [38, 3, 1, "", "named_parameters"], [38, 3, 1, "", "parameters"], [38, 3, 1, "", "register_backward_hook"], [38, 3, 1, "", "register_buffer"], [38, 3, 1, "", "register_forward_hook"], [38, 3, 1, "", "register_forward_pre_hook"], [38, 3, 1, "", "register_full_backward_hook"], [38, 3, 1, "", "register_full_backward_pre_hook"], [38, 3, 1, "", "register_load_state_dict_post_hook"], [38, 3, 1, "", "register_module"], [38, 3, 1, "", "register_parameter"], [38, 3, 1, "", "register_state_dict_pre_hook"], [38, 3, 1, "", "requires_grad_"], [38, 3, 1, "", "set_extra_state"], [38, 3, 1, "", "share_memory"], [38, 3, 1, "", "state_dict"], [38, 3, 1, "", "to"], [38, 3, 1, "", "to_empty"], [38, 3, 1, "", "train"], [38, 6, 1, "", "training"], [38, 3, 1, "", "type"], [38, 3, 1, "", "xpu"], [38, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[39, 1, 1, "", "adjust_learning_rate"], [39, 1, 1, "", "evaluate"], [39, 1, 1, "", "forget_rate_scheduler"], [39, 1, 1, "", "initialize_lr_scheduler"], [39, 1, 1, "", "loss_coteaching"], [39, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[41, 2, 1, "", "LabelInspector"], [41, 7, 1, "", "adj_confident_thresholds_shared"], [41, 1, 1, "", "find_label_issues_batched"], [41, 7, 1, "", "labels_shared"], [41, 7, 1, "", "pred_probs_shared"], [41, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[41, 3, 1, "", "get_confident_thresholds"], [41, 3, 1, "", "get_label_issues"], [41, 3, 1, "", "get_num_issues"], [41, 3, 1, "", "get_quality_scores"], [41, 3, 1, "", "score_label_quality"], [41, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[42, 2, 1, "", "CNN"], [42, 2, 1, "", "SimpleNet"], [42, 1, 1, "", "get_mnist_dataset"], [42, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[42, 3, 1, "", "__init_subclass__"], [42, 6, 1, "", "batch_size"], [42, 6, 1, "", "dataset"], [42, 6, 1, "", "epochs"], [42, 3, 1, "id0", "fit"], [42, 3, 1, "", "get_metadata_routing"], [42, 3, 1, "", "get_params"], [42, 6, 1, "", "loader"], [42, 6, 1, "", "log_interval"], [42, 6, 1, "", "lr"], [42, 6, 1, "", "momentum"], [42, 6, 1, "", "no_cuda"], [42, 3, 1, "id1", "predict"], [42, 3, 1, "id4", "predict_proba"], [42, 6, 1, "", "seed"], [42, 3, 1, "", "set_fit_request"], [42, 3, 1, "", "set_params"], [42, 3, 1, "", "set_predict_proba_request"], [42, 3, 1, "", "set_predict_request"], [42, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[42, 6, 1, "", "T_destination"], [42, 3, 1, "", "__call__"], [42, 3, 1, "", "add_module"], [42, 3, 1, "", "apply"], [42, 3, 1, "", "bfloat16"], [42, 3, 1, "", "buffers"], [42, 6, 1, "", "call_super_init"], [42, 3, 1, "", "children"], [42, 3, 1, "", "compile"], [42, 3, 1, "", "cpu"], [42, 3, 1, "", "cuda"], [42, 3, 1, "", "double"], [42, 6, 1, "", "dump_patches"], [42, 3, 1, "", "eval"], [42, 3, 1, "", "extra_repr"], [42, 3, 1, "", "float"], [42, 3, 1, "", "forward"], [42, 3, 1, "", "get_buffer"], [42, 3, 1, "", "get_extra_state"], [42, 3, 1, "", "get_parameter"], [42, 3, 1, "", "get_submodule"], [42, 3, 1, "", "half"], [42, 3, 1, "", "ipu"], [42, 3, 1, "", "load_state_dict"], [42, 3, 1, "", "modules"], [42, 3, 1, "", "named_buffers"], [42, 3, 1, "", "named_children"], [42, 3, 1, "", "named_modules"], [42, 3, 1, "", "named_parameters"], [42, 3, 1, "", "parameters"], [42, 3, 1, "", "register_backward_hook"], [42, 3, 1, "", "register_buffer"], [42, 3, 1, "", "register_forward_hook"], [42, 3, 1, "", "register_forward_pre_hook"], [42, 3, 1, "", "register_full_backward_hook"], [42, 3, 1, "", "register_full_backward_pre_hook"], [42, 3, 1, "", "register_load_state_dict_post_hook"], [42, 3, 1, "", "register_module"], [42, 3, 1, "", "register_parameter"], [42, 3, 1, "", "register_state_dict_pre_hook"], [42, 3, 1, "", "requires_grad_"], [42, 3, 1, "", "set_extra_state"], [42, 3, 1, "", "share_memory"], [42, 3, 1, "", "state_dict"], [42, 3, 1, "", "to"], [42, 3, 1, "", "to_empty"], [42, 3, 1, "", "train"], [42, 6, 1, "", "training"], [42, 3, 1, "", "type"], [42, 3, 1, "", "xpu"], [42, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[43, 1, 1, "", "display_issues"], [43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[44, 1, 1, "", "find_label_issues"], [44, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [44, 1, 1, "", "find_predicted_neq_given"], [44, 7, 1, "", "pred_probs_by_class"], [44, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[46, 0, 0, "-", "label_quality_utils"], [47, 0, 0, "-", "latent_algebra"], [48, 0, 0, "-", "multiannotator_utils"], [49, 0, 0, "-", "multilabel_scorer"], [50, 0, 0, "-", "multilabel_utils"], [51, 0, 0, "-", "neighbor"], [55, 0, 0, "-", "outlier"], [56, 0, 0, "-", "token_classification_utils"], [57, 0, 0, "-", "util"], [58, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[46, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, 1, 1, "", "compute_inv_noise_matrix"], [47, 1, 1, "", "compute_noise_matrix_from_inverse"], [47, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [47, 1, 1, "", "compute_py"], [47, 1, 1, "", "compute_py_inv_noise_matrix"], [47, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[48, 1, 1, "", "assert_valid_inputs_multiannotator"], [48, 1, 1, "", "assert_valid_pred_probs"], [48, 1, 1, "", "check_consensus_label_classes"], [48, 1, 1, "", "compute_soft_cross_entropy"], [48, 1, 1, "", "find_best_temp_scaler"], [48, 1, 1, "", "format_multiannotator_labels"], [48, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[49, 2, 1, "", "Aggregator"], [49, 2, 1, "", "ClassLabelScorer"], [49, 2, 1, "", "MultilabelScorer"], [49, 1, 1, "", "exponential_moving_average"], [49, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [49, 1, 1, "", "get_label_quality_scores"], [49, 1, 1, "", "multilabel_py"], [49, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[49, 3, 1, "", "__call__"], [49, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[49, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [49, 6, 1, "", "NORMALIZED_MARGIN"], [49, 6, 1, "", "SELF_CONFIDENCE"], [49, 3, 1, "", "__call__"], [49, 3, 1, "", "__contains__"], [49, 3, 1, "", "__getitem__"], [49, 3, 1, "", "__iter__"], [49, 3, 1, "", "__len__"], [49, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[49, 3, 1, "", "__call__"], [49, 3, 1, "", "aggregate"], [49, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[50, 1, 1, "", "get_onehot_num_classes"], [50, 1, 1, "", "int2onehot"], [50, 1, 1, "", "onehot2int"], [50, 1, 1, "", "stack_complement"]], "cleanlab.internal.neighbor": [[52, 0, 0, "-", "knn_graph"], [53, 0, 0, "-", "metric"], [54, 0, 0, "-", "search"]], "cleanlab.internal.neighbor.knn_graph": [[52, 7, 1, "", "DEFAULT_K"], [52, 1, 1, "", "construct_knn_graph_from_index"], [52, 1, 1, "", "correct_knn_distances_and_indices"], [52, 1, 1, "", "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"], [52, 1, 1, "", "correct_knn_graph"], [52, 1, 1, "", "create_knn_graph_and_index"], [52, 1, 1, "", "features_to_knn"]], "cleanlab.internal.neighbor.metric": [[53, 7, 1, "", "HIGH_DIMENSION_CUTOFF"], [53, 7, 1, "", "ROW_COUNT_CUTOFF"], [53, 1, 1, "", "decide_default_metric"], [53, 1, 1, "", "decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, 1, 1, "", "construct_knn"]], "cleanlab.internal.outlier": [[55, 1, 1, "", "correct_precision_errors"], [55, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, 1, 1, "", "color_sentence"], [56, 1, 1, "", "filter_sentence"], [56, 1, 1, "", "get_sentence"], [56, 1, 1, "", "mapping"], [56, 1, 1, "", "merge_probs"], [56, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[57, 1, 1, "", "append_extra_datapoint"], [57, 1, 1, "", "clip_noise_rates"], [57, 1, 1, "", "clip_values"], [57, 1, 1, "", "compress_int_array"], [57, 1, 1, "", "confusion_matrix"], [57, 1, 1, "", "csr_vstack"], [57, 1, 1, "", "estimate_pu_f1"], [57, 1, 1, "", "extract_indices_tf"], [57, 1, 1, "", "force_two_dimensions"], [57, 1, 1, "", "format_labels"], [57, 1, 1, "", "get_missing_classes"], [57, 1, 1, "", "get_num_classes"], [57, 1, 1, "", "get_unique_classes"], [57, 1, 1, "", "is_tensorflow_dataset"], [57, 1, 1, "", "is_torch_dataset"], [57, 1, 1, "", "num_unique_classes"], [57, 1, 1, "", "print_inverse_noise_matrix"], [57, 1, 1, "", "print_joint_matrix"], [57, 1, 1, "", "print_noise_matrix"], [57, 1, 1, "", "print_square_matrix"], [57, 1, 1, "", "remove_noise_from_class"], [57, 1, 1, "", "round_preserving_row_totals"], [57, 1, 1, "", "round_preserving_sum"], [57, 1, 1, "", "smart_display_dataframe"], [57, 1, 1, "", "subset_X_y"], [57, 1, 1, "", "subset_data"], [57, 1, 1, "", "subset_labels"], [57, 1, 1, "", "train_val_split"], [57, 1, 1, "", "unshuffle_tensorflow_dataset"], [57, 1, 1, "", "value_counts"], [57, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[58, 1, 1, "", "assert_indexing_works"], [58, 1, 1, "", "assert_nonempty_input"], [58, 1, 1, "", "assert_valid_class_labels"], [58, 1, 1, "", "assert_valid_inputs"], [58, 1, 1, "", "labels_to_array"], [58, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[60, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[60, 2, 1, "", "KerasWrapperModel"], [60, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[60, 3, 1, "", "fit"], [60, 3, 1, "", "get_params"], [60, 3, 1, "", "predict"], [60, 3, 1, "", "predict_proba"], [60, 3, 1, "", "set_params"], [60, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[61, 1, 1, "", "convert_long_to_wide_dataset"], [61, 1, 1, "", "get_active_learning_scores"], [61, 1, 1, "", "get_active_learning_scores_ensemble"], [61, 1, 1, "", "get_label_quality_multiannotator"], [61, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [61, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[62, 0, 0, "-", "dataset"], [63, 0, 0, "-", "filter"], [65, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[62, 1, 1, "", "common_multilabel_issues"], [62, 1, 1, "", "multilabel_health_summary"], [62, 1, 1, "", "overall_multilabel_health_score"], [62, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, 1, 1, "", "find_label_issues"], [63, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[65, 1, 1, "", "get_label_quality_scores"], [65, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[66, 0, 0, "-", "filter"], [68, 0, 0, "-", "rank"], [69, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[66, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[68, 1, 1, "", "compute_badloc_box_scores"], [68, 1, 1, "", "compute_overlooked_box_scores"], [68, 1, 1, "", "compute_swap_box_scores"], [68, 1, 1, "", "get_label_quality_scores"], [68, 1, 1, "", "issues_from_scores"], [68, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[69, 1, 1, "", "bounding_box_size_distribution"], [69, 1, 1, "", "calculate_per_class_metrics"], [69, 1, 1, "", "class_label_distribution"], [69, 1, 1, "", "get_average_per_class_confusion_matrix"], [69, 1, 1, "", "get_sorted_bbox_count_idxs"], [69, 1, 1, "", "object_counts_per_image"], [69, 1, 1, "", "plot_class_distribution"], [69, 1, 1, "", "plot_class_size_distributions"], [69, 1, 1, "", "visualize"]], "cleanlab.outlier": [[70, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[70, 3, 1, "", "fit"], [70, 3, 1, "", "fit_score"], [70, 3, 1, "", "score"]], "cleanlab.rank": [[71, 1, 1, "", "find_top_issues"], [71, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [71, 1, 1, "", "get_label_quality_ensemble_scores"], [71, 1, 1, "", "get_label_quality_scores"], [71, 1, 1, "", "get_normalized_margin_for_each_label"], [71, 1, 1, "", "get_self_confidence_for_each_label"], [71, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[73, 0, 0, "-", "learn"], [74, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[73, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[73, 3, 1, "", "__init_subclass__"], [73, 3, 1, "", "find_label_issues"], [73, 3, 1, "", "fit"], [73, 3, 1, "", "get_aleatoric_uncertainty"], [73, 3, 1, "", "get_epistemic_uncertainty"], [73, 3, 1, "", "get_label_issues"], [73, 3, 1, "", "get_metadata_routing"], [73, 3, 1, "", "get_params"], [73, 3, 1, "", "predict"], [73, 3, 1, "", "save_space"], [73, 3, 1, "", "score"], [73, 3, 1, "", "set_fit_request"], [73, 3, 1, "", "set_params"], [73, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[74, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[79, 0, 0, "-", "filter"], [81, 0, 0, "-", "rank"], [82, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[79, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[81, 1, 1, "", "get_label_quality_scores"], [81, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[82, 1, 1, "", "common_label_issues"], [82, 1, 1, "", "display_issues"], [82, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 86, 87, 91, 93, 94, 97, 99, 102, 108], "count": [3, 99], "data_valu": [4, 19], "datalab": [5, 7, 9, 10, 12, 88, 89, 90, 91, 92, 93, 94, 95, 97, 99, 102], "creat": [7, 89, 90, 95, 99, 101], "your": [7, 83, 89, 90, 94, 95, 97, 99], "own": 7, "issu": [7, 9, 10, 22, 31, 83, 86, 88, 89, 90, 91, 93, 94, 95, 96, 97, 98, 99, 102, 103, 107, 108], "manag": [7, 22], "prerequisit": 7, "implement": 7, "issuemanag": [7, 89], "basic": 7, "check": [7, 95, 98], "intermedi": 7, "advanc": [7, 89], "us": [7, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "gener": [8, 95], "cluster": [8, 95, 97], "id": 8, "guid": [9, 12], "type": [9, 10, 99], "custom": [9, 89], "cleanlab": [9, 10, 83, 86, 87, 88, 91, 93, 94, 97, 99, 101, 102, 103, 104, 106, 107, 108], "studio": [9, 10], "easi": [9, 10, 83, 91, 93, 94], "mode": [9, 10, 83, 91, 93, 94], "can": [10, 90, 96, 97, 99, 101], "detect": [10, 88, 90, 91, 93, 94, 95, 97, 99, 103, 104], "estim": [10, 99, 101, 102], "each": 10, "input": 10, "label": [10, 24, 26, 31, 83, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101, 102, 103, 106, 107, 108], "is_label_issu": 10, "label_scor": 10, "given_label": 10, "predicted_label": 10, "outlier": [10, 29, 55, 70, 91, 93, 94, 102, 104], "is_outlier_issu": 10, "outlier_scor": 10, "Near": [10, 90, 91, 93, 94], "duplic": [10, 20, 90, 91, 93, 94, 97, 102], "is_near_duplicate_issu": 10, "near_duplicate_scor": 10, "near_duplicate_set": 10, "distance_to_nearest_neighbor": 10, "non": [10, 94, 95], "iid": [10, 94, 95], "is_non_iid_issu": 10, "non_iid_scor": 10, "class": [10, 84, 95, 99, 107], "imbal": [10, 21, 95], "is_class_imbalance_issu": 10, "class_imbalance_scor": 10, "imag": [10, 91, 95, 104], "specif": [10, 22, 95, 107], "underperform": [10, 95, 97], "group": [10, 95, 97], "is_underperforming_group_issu": 10, "underperforming_group_scor": 10, "null": [10, 28, 95], "is_null_issu": 10, "null_scor": 10, "data": [10, 13, 83, 86, 88, 89, 90, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 106, 107, 108], "valuat": [10, 95], "is_data_valuation_issu": 10, "data_valuation_scor": 10, "option": [10, 95], "paramet": [10, 99], "get": [12, 89, 90, 101, 102, 103, 107, 108], "start": [12, 96], "api": 12, "refer": 12, "data_issu": 14, "factori": 15, "intern": [16, 45], "issue_find": 17, "issue_manag": [22, 23], "regist": 22, "ml": [22, 97, 98, 99], "task": [22, 35], "multilabel": 25, "noniid": 27, "regress": [30, 72, 73, 74, 97, 106], "prioriti": 31, "order": 31, "find": [31, 83, 86, 87, 88, 90, 91, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 108], "underperforming_group": 32, "model_output": 33, "report": [34, 91], "dataset": [37, 62, 83, 87, 88, 90, 91, 94, 95, 96, 97, 99, 102, 103, 104, 106, 107, 108], "cifar_cnn": 38, "coteach": 39, "experiment": 40, "label_issues_batch": 41, "mnist_pytorch": 42, "span_classif": 43, "filter": [44, 63, 66, 75, 79, 99], "label_quality_util": 46, "latent_algebra": 47, "multiannotator_util": 48, "multilabel_scor": 49, "multilabel_util": 50, "neighbor": 51, "knn_graph": 52, "metric": 53, "search": [54, 89], "token_classification_util": 56, "util": 57, "valid": [58, 91, 105], "model": [59, 83, 86, 87, 88, 91, 93, 94, 97, 98, 99, 101, 102, 103, 104, 106], "kera": 60, "multiannot": [61, 101], "multilabel_classif": 64, "rank": [65, 68, 71, 74, 77, 81, 99], "object_detect": 67, "summari": [69, 78, 82], "learn": [73, 90, 97, 99], "segment": [76, 107], "token_classif": [80, 108], "open": [83, 97], "sourc": [83, 97], "document": 83, "quickstart": 83, "1": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "instal": [83, 86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "2": [83, 84, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "common": [83, 84, 108], "3": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 102, 103, 104, 106, 107, 108], "handl": [83, 97], "error": [83, 87, 91, 97, 99, 101, 102, 103, 106, 107, 108], "train": [83, 86, 87, 88, 95, 97, 98, 104, 106], "robust": [83, 86, 87, 99, 106], "noisi": [83, 86, 87, 98, 99, 106], "4": [83, 86, 87, 88, 89, 90, 91, 93, 94, 95, 98, 99, 101, 103, 104, 106], "curat": [83, 98], "fix": [83, 97], "level": [83, 96, 99, 108], "5": [83, 86, 88, 90, 91, 93, 95, 98, 99, 101, 106], "improv": [83, 98, 101], "via": [83, 98, 99, 101], "mani": [83, 99], "other": [83, 101, 103, 106], "techniqu": [83, 98], "contribut": 83, "how": [84, 97, 99, 101, 102, 108], "migrat": 84, "version": 84, "0": 84, "from": [84, 86, 87, 89, 90, 98, 99, 106], "pre": [84, 88, 95, 97, 104], "function": [84, 89], "name": 84, "chang": 84, "modul": [84, 99], "new": 84, "remov": 84, "argument": [84, 89], "variabl": 84, "cleanlearn": [85, 97, 99], "tutori": [85, 92, 96, 98, 100], "structur": 86, "tabular": [86, 93], "requir": [86, 87, 89, 90, 91, 93, 94, 101, 102, 103, 104, 106, 107, 108], "depend": [86, 87, 88, 89, 90, 91, 93, 94, 96, 98, 99, 101, 102, 103, 104, 106, 107, 108], "load": [86, 87, 88, 89, 90, 93, 94, 95, 106], "process": [86, 93, 104, 106], "select": [86, 93], "comput": [86, 88, 91, 93, 94, 95, 97, 98, 101, 105], "out": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "sampl": [86, 88, 89, 90, 91, 93, 94, 98, 101, 105], "predict": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 102, 103, 105], "probabl": [86, 88, 89, 90, 91, 93, 94, 95, 98, 101, 105], "more": [86, 87, 90, 99, 106], "text": [87, 94, 95, 108], "format": [87, 94, 97, 102, 103], "defin": [87, 91, 94, 95, 106], "potenti": [87, 101, 106], "an": [88, 91, 97], "audio": 88, "import": [88, 89, 90, 91, 96, 99, 101], "them": [88, 96, 98, 99], "speechbrain": 88, "featur": [88, 91, 104], "fit": 88, "linear": 88, "workflow": [89, 95, 99], "audit": [89, 90], "classifi": [89, 90, 95], "instanti": 89, "object": [89, 95, 103], "increment": 89, "specifi": [89, 97], "nondefault": 89, "save": 89, "ad": 89, "A": 90, "unifi": 90, "all": [90, 99], "kind": [90, 103], "skip": [90, 96, 99, 101], "detail": [90, 96, 99, 101], "about": 90, "addit": 90, "inform": [90, 91], "fetch": [91, 96], "normal": 91, "fashion": 91, "mnist": 91, "prepar": [91, 95], "k": [91, 93, 105], "fold": [91, 105], "cross": [91, 105], "embed": [91, 104], "7": [91, 98, 99], "view": 91, "most": [91, 108], "like": 91, "exampl": [91, 97, 99, 104], "sever": 91, "set": [91, 99], "dark": [91, 95], "top": [91, 107], "low": 91, "numer": 93, "categor": [93, 95], "column": 93, "construct": 93, "nearest": 93, "neighbour": 93, "graph": [93, 95], "drift": [94, 102], "miscellan": 95, "acceler": 95, "knn": 95, "obtain": 95, "identifi": [95, 97, 98, 103], "explan": 95, "vector": 95, "perform": [95, 98], "visual": [95, 99, 103, 104, 107], "score": [95, 99, 101, 102, 103, 107, 108], "synthet": 95, "result": 95, "predefin": 95, "slice": [95, 97], "i": [95, 97, 99, 105], "catch": 95, "valu": 95, "encod": 95, "initi": [95, 101], "sort": 95, "6": [95, 98, 99], "spuriou": 95, "correl": 95, "pass": 95, "relat": 95, "transform": 95, "imageenh": 95, "induc": 95, "properti": 95, "origin": [95, 98], "understand": 96, "evalu": [96, 98], "health": [96, 99], "8": [96, 98, 99], "popular": 96, "faq": 97, "what": [97, 99, 105], "do": [97, 99], "infer": 97, "correct": [97, 98], "ha": 97, "flag": 97, "should": 97, "v": [97, 98], "test": [97, 98, 99, 104], "big": 97, "limit": 97, "memori": 97, "why": [97, 98], "isn": 97, "t": 97, "work": [97, 99, 101, 108], "me": 97, "differ": [97, 103], "clean": [97, 98, 99], "final": 97, "hyperparamet": [97, 98], "tune": 97, "onli": 97, "one": [97, 99, 102, 107], "doe": [97, 101, 108], "take": 97, "so": 97, "long": 97, "when": [97, 99], "run": 97, "licens": 97, "under": 97, "answer": 97, "question": 97, "split": 98, "did": 98, "you": [98, 99], "make": 98, "thi": [98, 99], "preprocess": 98, "fundament": 98, "problem": 98, "setup": 98, "baselin": 98, "manual": 98, "address": 98, "algorithm": 98, "better": [98, 101], "strategi": 98, "optim": 98, "9": 98, "conclus": 98, "The": 99, "centric": 99, "ai": 99, "machin": 99, "find_label_issu": 99, "line": 99, "code": 99, "twenti": 99, "lowest": 99, "qualiti": [99, 101, 102, 103, 107, 108], "see": 99, "now": 99, "let": 99, "": 99, "happen": 99, "we": 99, "merg": 99, "seafoam": 99, "green": 99, "yellow": 99, "too": 99, "re": 99, "One": 99, "rule": 99, "overal": [99, 107], "accur": 99, "directli": 99, "fulli": 99, "character": 99, "nois": 99, "matrix": [99, 102], "joint": 99, "prior": 99, "true": 99, "distribut": 99, "flip": 99, "rate": 99, "ani": 99, "again": 99, "support": 99, "lot": 99, "method": 99, "filter_bi": 99, "automat": 99, "everi": 99, "uniqu": 99, "num_label_issu": 99, "threshold": 99, "found": 99, "Not": 99, "sure": 99, "ensembl": 99, "multipl": [99, 101], "predictor": 99, "consensu": 101, "annot": 101, "major": 101, "vote": 101, "statist": 101, "compar": 101, "inspect": 101, "retrain": 101, "further": 101, "multi": 102, "beyond": 102, "mislabel": [102, 107, 108], "given": 102, "hot": 102, "binari": 102, "without": 102, "applic": 102, "real": 102, "download": [103, 107, 108], "objectlab": 103, "exploratori": 103, "analysi": 103, "pytorch": 104, "timm": 104, "cifar10": 104, "some": 104, "pred_prob": [104, 107, 108], "wai": 106, "semant": 107, "which": 107, "ar": 107, "commonli": 107, "focus": 107, "token": 108, "word": 108, "sentenc": 108, "contain": 108, "particular": 108}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [19, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Inputs to Datalab": [[10, "inputs-to-datalab"]], "Label Issue": [[10, "label-issue"]], "is_label_issue": [[10, "is-label-issue"]], "label_score": [[10, "label-score"]], "given_label": [[10, "given-label"], [10, "id6"]], "predicted_label": [[10, "predicted-label"]], "Outlier Issue": [[10, "outlier-issue"]], "is_outlier_issue": [[10, "is-outlier-issue"]], "outlier_score": [[10, "outlier-score"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "is_near_duplicate_issue": [[10, "is-near-duplicate-issue"]], "near_duplicate_score": [[10, "near-duplicate-score"]], "near_duplicate_sets": [[10, "near-duplicate-sets"]], "distance_to_nearest_neighbor": [[10, "distance-to-nearest-neighbor"]], "Non-IID Issue": [[10, "non-iid-issue"]], "is_non_iid_issue": [[10, "is-non-iid-issue"]], "non_iid_score": [[10, "non-iid-score"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "is_class_imbalance_issue": [[10, "is-class-imbalance-issue"]], "class_imbalance_score": [[10, "class-imbalance-score"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "is_underperforming_group_issue": [[10, "is-underperforming-group-issue"]], "underperforming_group_score": [[10, "underperforming-group-score"]], "Null Issue": [[10, "null-issue"]], "is_null_issue": [[10, "is-null-issue"]], "null_score": [[10, "null-score"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "is_data_valuation_issue": [[10, "is-data-valuation-issue"]], "data_valuation_score": [[10, "data-valuation-score"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[12, "getting-started"]], "Guides": [[12, "guides"]], "API Reference": [[12, "api-reference"]], "data": [[13, "module-cleanlab.datalab.internal.data"]], "data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[16, "internal"], [45, "internal"]], "issue_finder": [[17, "issue-finder"]], "duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[22, "issue-manager"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[22, "registered-issue-managers"]], "ML task-specific issue managers": [[22, "ml-task-specific-issue-managers"]], "label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[25, "multilabel"]], "noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[28, "null"]], "outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [55, "module-cleanlab.internal.outlier"], [70, "module-cleanlab.outlier"]], "regression": [[30, "regression"], [72, "regression"]], "Priority Order for finding issues:": [[31, null]], "underperforming_group": [[32, "underperforming-group"]], "model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[34, "report"]], "task": [[35, "task"]], "dataset": [[37, "module-cleanlab.dataset"], [62, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "experimental": [[40, "experimental"]], "label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "filter": [[44, "module-cleanlab.filter"], [63, "module-cleanlab.multilabel_classification.filter"], [66, "filter"], [75, "filter"], [79, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "neighbor": [[51, "neighbor"]], "knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "search": [[54, "module-cleanlab.internal.neighbor.search"]], "token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "util": [[57, "module-cleanlab.internal.util"]], "validation": [[58, "module-cleanlab.internal.validation"]], "models": [[59, "models"]], "keras": [[60, "module-cleanlab.models.keras"]], "multiannotator": [[61, "module-cleanlab.multiannotator"]], "multilabel_classification": [[64, "multilabel-classification"]], "rank": [[65, "module-cleanlab.multilabel_classification.rank"], [68, "module-cleanlab.object_detection.rank"], [71, "module-cleanlab.rank"], [77, "module-cleanlab.segmentation.rank"], [81, "module-cleanlab.token_classification.rank"]], "object_detection": [[67, "object-detection"]], "summary": [[69, "summary"], [78, "module-cleanlab.segmentation.summary"], [82, "module-cleanlab.token_classification.summary"]], "regression.learn": [[73, "module-cleanlab.regression.learn"]], "regression.rank": [[74, "module-cleanlab.regression.rank"]], "segmentation": [[76, "segmentation"]], "token_classification": [[80, "token-classification"]], "cleanlab open-source documentation": [[83, "cleanlab-open-source-documentation"]], "Quickstart": [[83, "quickstart"]], "1. Install cleanlab": [[83, "install-cleanlab"]], "2. Find common issues in your data": [[83, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[83, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[83, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[83, "improve-your-data-via-many-other-techniques"]], "Contributing": [[83, "contributing"]], "Easy Mode": [[83, "easy-mode"], [91, "Easy-Mode"], [93, "Easy-Mode"], [94, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[84, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[84, "function-and-class-name-changes"]], "Module name changes": [[84, "module-name-changes"]], "New modules": [[84, "new-modules"]], "Removed modules": [[84, "removed-modules"]], "Common argument and variable name changes": [[84, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[85, "cleanlearning-tutorials"]], "Classification with Structured/Tabular Data and Noisy Labels": [[86, "Classification-with-Structured/Tabular-Data-and-Noisy-Labels"]], "1. Install required dependencies": [[86, "1.-Install-required-dependencies"], [87, "1.-Install-required-dependencies"], [93, "1.-Install-required-dependencies"], [94, "1.-Install-required-dependencies"], [106, "1.-Install-required-dependencies"]], "2. Load and process the data": [[86, "2.-Load-and-process-the-data"], [93, "2.-Load-and-process-the-data"], [106, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[86, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [93, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[86, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[86, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[87, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[87, "2.-Load-and-format-the-text-dataset"], [94, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[87, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[87, "4.-Train-a-more-robust-model-from-noisy-labels"], [106, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Detecting Issues in an Audio Dataset with Datalab": [[88, "Detecting-Issues-in-an-Audio-Dataset-with-Datalab"]], "1. Install dependencies and import them": [[88, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[88, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[88, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[88, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[88, "5.-Use-cleanlab-to-find-label-issues"], [93, "5.-Use-cleanlab-to-find-label-issues"]], "Datalab: Advanced workflows to audit your data": [[89, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[89, "Install-and-import-required-dependencies"]], "Create and load the data": [[89, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[89, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[89, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[89, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[89, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[89, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[89, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[90, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "1. Install and import required dependencies": [[90, "1.-Install-and-import-required-dependencies"], [91, "1.-Install-and-import-required-dependencies"], [101, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[90, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[90, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[90, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Learn more about the issues in your dataset": [[90, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[90, "Get-additional-information"]], "Near duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in an Image Dataset with Datalab": [[91, "Detecting-Issues-in-an-Image-Dataset-with-Datalab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[91, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[91, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[91, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[91, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[91, "7.-Use-cleanlab-to-find-issues"]], "View report": [[91, "View-report"]], "Label issues": [[91, "Label-issues"], [93, "Label-issues"], [94, "Label-issues"]], "View most likely examples with label errors": [[91, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[91, "Outlier-issues"], [93, "Outlier-issues"], [94, "Outlier-issues"]], "View most severe outliers": [[91, "View-most-severe-outliers"]], "View sets of near duplicate images": [[91, "View-sets-of-near-duplicate-images"]], "Dark images": [[91, "Dark-images"]], "View top examples of dark images": [[91, "View-top-examples-of-dark-images"]], "Low information images": [[91, "Low-information-images"]], "Datalab Tutorials": [[92, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[93, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[93, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[93, "Near-duplicate-issues"], [94, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[94, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[94, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[94, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[94, "Non-IID-issues-(data-drift)"]], "Miscellaneous workflows with Datalab": [[95, "Miscellaneous-workflows-with-Datalab"]], "Accelerate Issue Checks with Pre-computed kNN Graphs": [[95, "Accelerate-Issue-Checks-with-Pre-computed-kNN-Graphs"]], "1. Load and Prepare Your Dataset": [[95, "1.-Load-and-Prepare-Your-Dataset"]], "2. Compute kNN Graph": [[95, "2.-Compute-kNN-Graph"]], "3. Train a Classifier and Obtain Predicted Probabilities": [[95, "3.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"]], "4. Identify Data Issues Using Datalab": [[95, "4.-Identify-Data-Issues-Using-Datalab"]], "Explanation:": [[95, "Explanation:"]], "Data Valuation": [[95, "Data-Valuation"]], "1. Load and Prepare the Dataset": [[95, "1.-Load-and-Prepare-the-Dataset"], [95, "id2"], [95, "id5"]], "2. Vectorize the Text Data": [[95, "2.-Vectorize-the-Text-Data"]], "3. Perform Data Valuation with Datalab": [[95, "3.-Perform-Data-Valuation-with-Datalab"]], "4. (Optional) Visualize Data Valuation Scores": [[95, "4.-(Optional)-Visualize-Data-Valuation-Scores"]], "Find Underperforming Groups in a Dataset": [[95, "Find-Underperforming-Groups-in-a-Dataset"]], "1. Generate a Synthetic Dataset": [[95, "1.-Generate-a-Synthetic-Dataset"]], "2. Train a Classifier and Obtain Predicted Probabilities": [[95, "2.-Train-a-Classifier-and-Obtain-Predicted-Probabilities"], [95, "id3"]], "3. (Optional) Cluster the Data": [[95, "3.-(Optional)-Cluster-the-Data"]], "4. Identify Underperforming Groups with Datalab": [[95, "4.-Identify-Underperforming-Groups-with-Datalab"], [95, "id4"]], "5. (Optional) Visualize the Results": [[95, "5.-(Optional)-Visualize-the-Results"]], "Predefining Data Slices for Detecting Underperforming Groups": [[95, "Predefining-Data-Slices-for-Detecting-Underperforming-Groups"]], "3. Define a Data Slice": [[95, "3.-Define-a-Data-Slice"]], "Detect if your dataset is non-IID": [[95, "Detect-if-your-dataset-is-non-IID"]], "2. Detect Non-IID Issues Using Datalab": [[95, "2.-Detect-Non-IID-Issues-Using-Datalab"]], "3. (Optional) Visualize the Results": [[95, "3.-(Optional)-Visualize-the-Results"]], "Catch Null Values in a Dataset": [[95, "Catch-Null-Values-in-a-Dataset"]], "1. Load the Dataset": [[95, "1.-Load-the-Dataset"], [95, "id8"]], "2: Encode Categorical Values": [[95, "2:-Encode-Categorical-Values"]], "3. Initialize Datalab": [[95, "3.-Initialize-Datalab"]], "4. Detect Null Values": [[95, "4.-Detect-Null-Values"]], "5. Sort the Dataset by Null Issues": [[95, "5.-Sort-the-Dataset-by-Null-Issues"]], "6. (Optional) Visualize the Results": [[95, "6.-(Optional)-Visualize-the-Results"]], "Detect class imbalance in your dataset": [[95, "Detect-class-imbalance-in-your-dataset"]], "1. Prepare data": [[95, "1.-Prepare-data"]], "2. Detect class imbalance with Datalab": [[95, "2.-Detect-class-imbalance-with-Datalab"]], "3. (Optional) Visualize class imbalance issues": [[95, "3.-(Optional)-Visualize-class-imbalance-issues"]], "Identify Spurious Correlations in Image Datasets": [[95, "Identify-Spurious-Correlations-in-Image-Datasets"]], "2. Creating Dataset object to be passed to the Datalab object to find image-related issues": [[95, "2.-Creating-Dataset-object-to-be-passed-to-the-Datalab-object-to-find-image-related-issues"]], "3. (Optional) Creating a transformed dataset using ImageEnhance to induce darkness": [[95, "3.-(Optional)-Creating-a-transformed-dataset-using-ImageEnhance-to-induce-darkness"]], "4. (Optional) Visualizing Images in the dataset": [[95, "4.-(Optional)-Visualizing-Images-in-the-dataset"]], "5. Finding image-specific property scores": [[95, "5.-Finding-image-specific-property-scores"]], "Image-specific property scores in the original dataset": [[95, "Image-specific-property-scores-in-the-original-dataset"]], "Image-specific property scores in the transformed dataset": [[95, "Image-specific-property-scores-in-the-transformed-dataset"]], "Understanding Dataset-level Labeling Issues": [[96, "Understanding-Dataset-level-Labeling-Issues"]], "Install dependencies and import them": [[96, "Install-dependencies-and-import-them"], [99, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[96, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[96, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[97, "FAQ"]], "What data can cleanlab detect issues in?": [[97, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[97, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[97, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[97, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[97, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[97, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[97, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[97, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[97, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[97, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by Datalab?": [[97, "How-to-handle-near-duplicate-data-identified-by-Datalab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[97, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[97, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[97, "Can't-find-an-answer-to-your-question?"]], "Improving ML Performance via Data Curation with Train vs Test Splits": [[98, "Improving-ML-Performance-via-Data-Curation-with-Train-vs-Test-Splits"]], "Why did you make this tutorial?": [[98, "Why-did-you-make-this-tutorial?"]], "1. Install dependencies": [[98, "1.-Install-dependencies"]], "2. Preprocess the data": [[98, "2.-Preprocess-the-data"]], "3. Check for fundamental problems in the train/test setup": [[98, "3.-Check-for-fundamental-problems-in-the-train/test-setup"]], "4. Train model with original (noisy) training data": [[98, "4.-Train-model-with-original-(noisy)-training-data"]], "Compute out-of-sample predicted probabilities for the test data from this baseline model": [[98, "Compute-out-of-sample-predicted-probabilities-for-the-test-data-from-this-baseline-model"]], "5. Check for issues in test data and manually address them": [[98, "5.-Check-for-issues-in-test-data-and-manually-address-them"]], "Use clean test data to evaluate the performance of model trained on noisy training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-noisy-training-data"]], "6. Check for issues in training data and algorithmically correct them": [[98, "6.-Check-for-issues-in-training-data-and-algorithmically-correct-them"]], "7. Train model on cleaned training data": [[98, "7.-Train-model-on-cleaned-training-data"]], "Use clean test data to evaluate the performance of model trained on cleaned training data": [[98, "Use-clean-test-data-to-evaluate-the-performance-of-model-trained-on-cleaned-training-data"]], "8. Identifying better training data curation strategies via hyperparameter optimization techniques": [[98, "8.-Identifying-better-training-data-curation-strategies-via-hyperparameter-optimization-techniques"]], "9. Conclusion": [[98, "9.-Conclusion"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[99, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[99, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[99, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[99, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[99, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[99, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[99, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[99, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[99, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[99, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[99, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[99, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[99, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[99, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[99, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[99, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[99, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[99, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[99, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[99, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[100, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[101, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[101, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[101, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[101, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[101, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[101, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[101, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[101, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[101, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[102, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[102, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[102, "2.-Format-data,-labels,-and-model-predictions"], [103, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"], [107, "3.-Use-cleanlab-to-find-label-issues"], [108, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[102, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[102, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[102, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[102, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[102, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[103, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[103, "1.-Install-required-dependencies-and-download-data"], [107, "1.-Install-required-dependencies-and-download-data"], [108, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[103, "Get-label-quality-scores"], [107, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[103, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[103, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[103, "Other-uses-of-visualize"]], "Exploratory data analysis": [[103, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[104, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[104, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[104, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[104, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[104, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[104, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[105, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[105, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[105, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[106, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[106, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[106, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[107, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[107, "2.-Get-data,-labels,-and-pred_probs"], [108, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[107, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[107, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[107, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[108, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[108, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[108, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[108, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[108, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [12, "module-cleanlab.datalab"], [13, "module-cleanlab.datalab.internal.data"], [14, "module-cleanlab.datalab.internal.data_issues"], [15, "module-cleanlab.datalab.internal.issue_manager_factory"], [16, "module-cleanlab.datalab.internal"], [17, "module-cleanlab.datalab.internal.issue_finder"], [19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [20, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [21, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [24, "module-cleanlab.datalab.internal.issue_manager.label"], [26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [27, "module-cleanlab.datalab.internal.issue_manager.noniid"], [28, "module-cleanlab.datalab.internal.issue_manager.null"], [29, "module-cleanlab.datalab.internal.issue_manager.outlier"], [31, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [33, "module-cleanlab.datalab.internal.model_outputs"], [34, "module-cleanlab.datalab.internal.report"], [35, "module-cleanlab.datalab.internal.task"], [37, "module-cleanlab.dataset"], [38, "module-cleanlab.experimental.cifar_cnn"], [39, "module-cleanlab.experimental.coteaching"], [40, "module-cleanlab.experimental"], [41, "module-cleanlab.experimental.label_issues_batched"], [42, "module-cleanlab.experimental.mnist_pytorch"], [43, "module-cleanlab.experimental.span_classification"], [44, "module-cleanlab.filter"], [45, "module-cleanlab.internal"], [46, "module-cleanlab.internal.label_quality_utils"], [47, "module-cleanlab.internal.latent_algebra"], [48, "module-cleanlab.internal.multiannotator_utils"], [49, "module-cleanlab.internal.multilabel_scorer"], [50, "module-cleanlab.internal.multilabel_utils"], [51, "module-cleanlab.internal.neighbor"], [52, "module-cleanlab.internal.neighbor.knn_graph"], [53, "module-cleanlab.internal.neighbor.metric"], [54, "module-cleanlab.internal.neighbor.search"], [55, "module-cleanlab.internal.outlier"], [56, "module-cleanlab.internal.token_classification_utils"], [57, "module-cleanlab.internal.util"], [58, "module-cleanlab.internal.validation"], [59, "module-cleanlab.models"], [60, "module-cleanlab.models.keras"], [61, "module-cleanlab.multiannotator"], [62, "module-cleanlab.multilabel_classification.dataset"], [63, "module-cleanlab.multilabel_classification.filter"], [64, "module-cleanlab.multilabel_classification"], [65, "module-cleanlab.multilabel_classification.rank"], [66, "module-cleanlab.object_detection.filter"], [67, "module-cleanlab.object_detection"], [68, "module-cleanlab.object_detection.rank"], [69, "module-cleanlab.object_detection.summary"], [70, "module-cleanlab.outlier"], [71, "module-cleanlab.rank"], [72, "module-cleanlab.regression"], [73, "module-cleanlab.regression.learn"], [74, "module-cleanlab.regression.rank"], [75, "module-cleanlab.segmentation.filter"], [76, "module-cleanlab.segmentation"], [77, "module-cleanlab.segmentation.rank"], [78, "module-cleanlab.segmentation.summary"], [79, "module-cleanlab.token_classification.filter"], [80, "module-cleanlab.token_classification"], [81, "module-cleanlab.token_classification.rank"], [82, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[12, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[13, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[13, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[13, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[13, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[13, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[13, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[13, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[13, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[13, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[13, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[13, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[13, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[13, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[14, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[14, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[14, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[15, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[15, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[16, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[17, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[17, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[19, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[20, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[21, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[21, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[23, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[24, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[24, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[26, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[27, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[28, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[29, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "metric (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.metric"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[29, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[31, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[32, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[32, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[33, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[33, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[33, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[33, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[34, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[34, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[34, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[35, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[35, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[35, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[35, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[35, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[37, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[37, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[38, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[38, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.forward"], [38, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[38, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[38, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[39, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[39, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[40, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[41, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[41, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[41, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[42, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [42, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[42, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [42, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [42, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[42, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[42, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[43, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[43, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[44, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[44, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[44, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[44, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[45, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[46, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[46, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[47, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[47, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[48, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[48, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[49, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[49, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[49, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[49, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[49, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[50, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[50, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.neighbor": [[51, "module-cleanlab.internal.neighbor"]], "default_k (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.DEFAULT_K"]], "cleanlab.internal.neighbor.knn_graph": [[52, "module-cleanlab.internal.neighbor.knn_graph"]], "construct_knn_graph_from_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.construct_knn_graph_from_index"]], "correct_knn_distances_and_indices() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices"]], "correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_distances_and_indices_with_exact_duplicate_sets_inplace"]], "correct_knn_graph() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.correct_knn_graph"]], "create_knn_graph_and_index() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.create_knn_graph_and_index"]], "features_to_knn() (in module cleanlab.internal.neighbor.knn_graph)": [[52, "cleanlab.internal.neighbor.knn_graph.features_to_knn"]], "high_dimension_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.HIGH_DIMENSION_CUTOFF"]], "row_count_cutoff (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.ROW_COUNT_CUTOFF"]], "cleanlab.internal.neighbor.metric": [[53, "module-cleanlab.internal.neighbor.metric"]], "decide_default_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_default_metric"]], "decide_euclidean_metric() (in module cleanlab.internal.neighbor.metric)": [[53, "cleanlab.internal.neighbor.metric.decide_euclidean_metric"]], "cleanlab.internal.neighbor.search": [[54, "module-cleanlab.internal.neighbor.search"]], "construct_knn() (in module cleanlab.internal.neighbor.search)": [[54, "cleanlab.internal.neighbor.search.construct_knn"]], "cleanlab.internal.outlier": [[55, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[55, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[56, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[56, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[57, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[57, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[58, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[58, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[59, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[60, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[60, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[60, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[60, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[61, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[61, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[62, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[62, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[63, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[63, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[64, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[65, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[65, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[66, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[66, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[67, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[68, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[68, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[69, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[69, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[70, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[70, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[70, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[71, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[71, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[71, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[72, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[73, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[73, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[73, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[73, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[74, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[74, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[75, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[75, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[76, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[77, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[77, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[78, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[78, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[79, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[79, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[80, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[81, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[81, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[82, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[82, "cleanlab.token_classification.summary.filter_by_token"]]}})
\ No newline at end of file
diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb
index 54baa388e..26fc7a6f6 100644
--- a/master/tutorials/clean_learning/tabular.ipynb
+++ b/master/tutorials/clean_learning/tabular.ipynb
@@ -113,10 +113,10 @@
    "execution_count": 1,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:25.084315Z",
-     "iopub.status.busy": "2024-07-09T06:06:25.083964Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.267371Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.266737Z"
+     "iopub.execute_input": "2024-07-09T06:21:39.342775Z",
+     "iopub.status.busy": "2024-07-09T06:21:39.342610Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.557607Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.556995Z"
     },
     "nbsphinx": "hidden"
    },
@@ -126,7 +126,7 @@
     "dependencies = [\"cleanlab\"]\n",
     "\n",
     "if \"google.colab\" in str(get_ipython()):  # Check if it's running in Google Colab\n",
-    "    %pip install git+https://github.com/cleanlab/cleanlab.git@00ae7c83b2015828ec65e1cc06eef34d3099ec0c\n",
+    "    %pip install git+https://github.com/cleanlab/cleanlab.git@e4be990d65e77f5fed23f796725f09cd114a37d7\n",
     "    cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n",
     "    %pip install $cmd\n",
     "else:\n",
@@ -151,10 +151,10 @@
    "execution_count": 2,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.270038Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.269730Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.287304Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.286864Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.560493Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.560042Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.577948Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.577491Z"
     }
    },
    "outputs": [],
@@ -195,10 +195,10 @@
    "execution_count": 3,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.289513Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.289028Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.433358Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.432848Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.580339Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.579867Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.741573Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.741011Z"
     }
    },
    "outputs": [
@@ -305,10 +305,10 @@
    "execution_count": 4,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.462697Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.462329Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.465925Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.465401Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.772745Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.772251Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.776261Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.775690Z"
     }
    },
    "outputs": [],
@@ -329,10 +329,10 @@
    "execution_count": 5,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.467989Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.467659Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.475739Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.475315Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.778286Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.777978Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.786779Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.786361Z"
     }
    },
    "outputs": [],
@@ -384,10 +384,10 @@
    "execution_count": 6,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.477750Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.477428Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.480003Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.479567Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.789179Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.788741Z",
+     "iopub.status.idle": "2024-07-09T06:21:40.791702Z",
+     "shell.execute_reply": "2024-07-09T06:21:40.791239Z"
     }
    },
    "outputs": [],
@@ -409,10 +409,10 @@
    "execution_count": 7,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.481856Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.481562Z",
-     "iopub.status.idle": "2024-07-09T06:06:26.996055Z",
-     "shell.execute_reply": "2024-07-09T06:06:26.995448Z"
+     "iopub.execute_input": "2024-07-09T06:21:40.793718Z",
+     "iopub.status.busy": "2024-07-09T06:21:40.793392Z",
+     "iopub.status.idle": "2024-07-09T06:21:41.315603Z",
+     "shell.execute_reply": "2024-07-09T06:21:41.314985Z"
     }
    },
    "outputs": [],
@@ -446,10 +446,10 @@
    "execution_count": 8,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:26.998478Z",
-     "iopub.status.busy": "2024-07-09T06:06:26.998289Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.809978Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.809418Z"
+     "iopub.execute_input": "2024-07-09T06:21:41.318231Z",
+     "iopub.status.busy": "2024-07-09T06:21:41.317889Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.227263Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.226653Z"
     }
    },
    "outputs": [
@@ -481,10 +481,10 @@
    "execution_count": 9,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.812571Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.812027Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.821730Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.821221Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.229927Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.229282Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.240181Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.239728Z"
     }
    },
    "outputs": [
@@ -605,10 +605,10 @@
    "execution_count": 10,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.823721Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.823421Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.827343Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.826871Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.242259Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.241975Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.246137Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.245712Z"
     }
    },
    "outputs": [],
@@ -633,10 +633,10 @@
    "execution_count": 11,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.829425Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.829036Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.836443Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.836000Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.248251Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.247934Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.255132Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.254674Z"
     }
    },
    "outputs": [],
@@ -658,10 +658,10 @@
    "execution_count": 12,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.838340Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.838075Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.949448Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.948981Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.257227Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.256904Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.368112Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.367612Z"
     }
    },
    "outputs": [
@@ -691,10 +691,10 @@
    "execution_count": 13,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.951565Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.951228Z",
-     "iopub.status.idle": "2024-07-09T06:06:28.953982Z",
-     "shell.execute_reply": "2024-07-09T06:06:28.953520Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.370406Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.370066Z",
+     "iopub.status.idle": "2024-07-09T06:21:43.372782Z",
+     "shell.execute_reply": "2024-07-09T06:21:43.372354Z"
     }
    },
    "outputs": [],
@@ -715,10 +715,10 @@
    "execution_count": 14,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:28.956108Z",
-     "iopub.status.busy": "2024-07-09T06:06:28.955684Z",
-     "iopub.status.idle": "2024-07-09T06:06:30.896584Z",
-     "shell.execute_reply": "2024-07-09T06:06:30.895896Z"
+     "iopub.execute_input": "2024-07-09T06:21:43.374828Z",
+     "iopub.status.busy": "2024-07-09T06:21:43.374407Z",
+     "iopub.status.idle": "2024-07-09T06:21:45.339078Z",
+     "shell.execute_reply": "2024-07-09T06:21:45.338438Z"
     }
    },
    "outputs": [],
@@ -738,10 +738,10 @@
    "execution_count": 15,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:30.899682Z",
-     "iopub.status.busy": "2024-07-09T06:06:30.898894Z",
-     "iopub.status.idle": "2024-07-09T06:06:30.911329Z",
-     "shell.execute_reply": "2024-07-09T06:06:30.910707Z"
+     "iopub.execute_input": "2024-07-09T06:21:45.342064Z",
+     "iopub.status.busy": "2024-07-09T06:21:45.341327Z",
+     "iopub.status.idle": "2024-07-09T06:21:45.352590Z",
+     "shell.execute_reply": "2024-07-09T06:21:45.352125Z"
     }
    },
    "outputs": [
@@ -771,10 +771,10 @@
    "execution_count": 16,
    "metadata": {
     "execution": {
-     "iopub.execute_input": "2024-07-09T06:06:30.913543Z",
-     "iopub.status.busy": "2024-07-09T06:06:30.913182Z",
-     "iopub.status.idle": "2024-07-09T06:06:30.953207Z",
-     "shell.execute_reply": "2024-07-09T06:06:30.952600Z"
+     "iopub.execute_input": "2024-07-09T06:21:45.354672Z",
+     "iopub.status.busy": "2024-07-09T06:21:45.354342Z",
+     "iopub.status.idle": "2024-07-09T06:21:45.396625Z",
+     "shell.execute_reply": "2024-07-09T06:21:45.396172Z"
     },
     "nbsphinx": "hidden"
    },
diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html
index b0265340e..480d4d2ea 100644
--- a/master/tutorials/clean_learning/text.html
+++ b/master/tutorials/clean_learning/text.html
@@ -817,7 +817,7 @@ 

2. Load and format the text dataset
 This dataset has 10 classes.
-Classes: {'change_pin', 'supported_cards_and_currencies', 'card_about_to_expire', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'visa_or_mastercard', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'beneficiary_not_allowed'}
+Classes: {'supported_cards_and_currencies', 'getting_spare_card', 'lost_or_stolen_phone', 'visa_or_mastercard', 'change_pin', 'card_about_to_expire', 'cancel_transfer', 'beneficiary_not_allowed', 'apple_pay_or_google_pay', 'card_payment_fee_charged'}