From 30f41147322474fb9edb772231c16a3eb6ae2403 Mon Sep 17 00:00:00 2001 From: jwmueller Date: Mon, 8 Apr 2024 21:58:26 +0000 Subject: [PATCH] deploy: cleanlab/cleanlab@5eaeb983f10365ef634bc0cd24297f9c84eecee4 --- master/.buildinfo | 2 +- .../cleanlab/benchmarking/index.doctree | Bin 3248 -> 3248 bytes .../benchmarking/noise_generation.doctree | Bin 81345 -> 81345 bytes .../.doctrees/cleanlab/classification.doctree | Bin 290603 -> 290603 bytes master/.doctrees/cleanlab/count.doctree | Bin 283717 -> 283717 bytes .../.doctrees/cleanlab/data_valuation.doctree | Bin 25689 -> 25689 bytes .../cleanlab/datalab/datalab.doctree | Bin 174487 -> 174487 bytes .../guide/_templates/issue_types_tip.doctree | Bin 4354 -> 4354 bytes .../guide/custom_issue_manager.doctree | Bin 31452 -> 31452 bytes .../guide/generating_cluster_ids.doctree | Bin 6318 -> 6318 bytes .../cleanlab/datalab/guide/index.doctree | Bin 12087 -> 12087 bytes .../guide/issue_type_description.doctree | Bin 131825 -> 131825 bytes .../.doctrees/cleanlab/datalab/index.doctree | Bin 5445 -> 5445 bytes .../cleanlab/datalab/internal/data.doctree | Bin 105136 -> 105136 bytes .../datalab/internal/data_issues.doctree | Bin 77301 -> 77301 bytes .../cleanlab/datalab/internal/factory.doctree | Bin 64553 -> 64553 bytes .../cleanlab/datalab/internal/index.doctree | Bin 4573 -> 4573 bytes .../datalab/internal/issue_finder.doctree | Bin 46989 -> 46989 bytes .../_notices/not_registered.doctree | Bin 3440 -> 3440 bytes .../issue_manager/data_valuation.doctree | Bin 79832 -> 79832 bytes .../internal/issue_manager/duplicate.doctree | Bin 75245 -> 75245 bytes .../internal/issue_manager/imbalance.doctree | Bin 68346 -> 68346 bytes .../internal/issue_manager/index.doctree | Bin 5282 -> 5282 bytes .../issue_manager/issue_manager.doctree | Bin 80662 -> 80662 bytes .../internal/issue_manager/label.doctree | Bin 88614 -> 88614 bytes .../issue_manager/multilabel/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/multilabel/label.doctree | Bin 78419 -> 78419 bytes .../internal/issue_manager/noniid.doctree | Bin 90559 -> 90559 bytes .../internal/issue_manager/null.doctree | Bin 68181 -> 68181 bytes .../internal/issue_manager/outlier.doctree | Bin 75294 -> 75294 bytes .../issue_manager/regression/index.doctree | Bin 3685 -> 3685 bytes .../issue_manager/regression/label.doctree | Bin 108542 -> 108542 bytes .../underperforming_group.doctree | Bin 120431 -> 120431 bytes .../datalab/internal/model_outputs.doctree | Bin 78458 -> 78458 bytes .../cleanlab/datalab/internal/report.doctree | Bin 34190 -> 34190 bytes .../cleanlab/datalab/internal/task.doctree | Bin 57819 -> 57819 bytes .../datalab/optional_dependencies.doctree | Bin 3451 -> 3451 bytes master/.doctrees/cleanlab/dataset.doctree | Bin 100920 -> 100920 bytes .../cleanlab/experimental/cifar_cnn.doctree | Bin 407995 -> 407995 bytes .../cleanlab/experimental/coteaching.doctree | Bin 48525 -> 48525 bytes .../cleanlab/experimental/index.doctree | Bin 5365 -> 5365 bytes .../experimental/label_issues_batched.doctree | Bin 158466 -> 158466 bytes .../experimental/mnist_pytorch.doctree | Bin 555175 -> 555175 bytes .../experimental/span_classification.doctree | Bin 34890 -> 34890 bytes master/.doctrees/cleanlab/filter.doctree | Bin 94218 -> 94218 bytes .../.doctrees/cleanlab/internal/index.doctree | Bin 4492 -> 4492 bytes .../internal/label_quality_utils.doctree | Bin 19410 -> 19410 bytes .../cleanlab/internal/latent_algebra.doctree | Bin 85348 -> 85348 bytes .../internal/multiannotator_utils.doctree | Bin 46750 -> 46750 bytes .../internal/multilabel_scorer.doctree | Bin 183513 -> 183513 bytes .../internal/multilabel_utils.doctree | Bin 34042 -> 34042 bytes .../cleanlab/internal/outlier.doctree | Bin 29778 -> 29778 bytes .../token_classification_utils.doctree | Bin 69171 -> 69171 bytes .../.doctrees/cleanlab/internal/util.doctree | Bin 212686 -> 212686 bytes .../cleanlab/internal/validation.doctree | Bin 41565 -> 41565 bytes .../cleanlab/models/fasttext.doctree | Bin 2465 -> 2465 bytes .../.doctrees/cleanlab/models/index.doctree | Bin 5009 -> 5009 bytes .../.doctrees/cleanlab/models/keras.doctree | Bin 106237 -> 106237 bytes .../.doctrees/cleanlab/multiannotator.doctree | Bin 165197 -> 165197 bytes .../multilabel_classification/dataset.doctree | Bin 67275 -> 67275 bytes .../multilabel_classification/filter.doctree | Bin 86794 -> 86794 bytes .../multilabel_classification/index.doctree | Bin 4916 -> 4916 bytes .../multilabel_classification/rank.doctree | Bin 47085 -> 47085 bytes .../cleanlab/object_detection/filter.doctree | Bin 38032 -> 38032 bytes .../cleanlab/object_detection/index.doctree | Bin 3852 -> 3852 bytes .../cleanlab/object_detection/rank.doctree | Bin 149811 -> 149811 bytes .../cleanlab/object_detection/summary.doctree | Bin 166882 -> 166920 bytes master/.doctrees/cleanlab/outlier.doctree | Bin 91933 -> 91933 bytes master/.doctrees/cleanlab/rank.doctree | Bin 113711 -> 113711 bytes .../cleanlab/regression/index.doctree | Bin 3738 -> 3738 bytes .../cleanlab/regression/learn.doctree | Bin 222189 -> 222189 bytes .../cleanlab/regression/rank.doctree | Bin 19815 -> 19815 bytes .../cleanlab/segmentation/filter.doctree | Bin 28604 -> 28604 bytes .../cleanlab/segmentation/index.doctree | Bin 3788 -> 3788 bytes .../cleanlab/segmentation/rank.doctree | Bin 51266 -> 51266 bytes .../cleanlab/segmentation/summary.doctree | Bin 69025 -> 69021 bytes .../token_classification/filter.doctree | Bin 27210 -> 27210 bytes .../token_classification/index.doctree | Bin 3934 -> 3934 bytes .../token_classification/rank.doctree | Bin 60167 -> 60167 bytes .../token_classification/summary.doctree | Bin 79104 -> 79104 bytes master/.doctrees/environment.pickle | Bin 15407368 -> 15533263 bytes master/.doctrees/index.doctree | Bin 42320 -> 42320 bytes master/.doctrees/migrating/migrate_v2.doctree | Bin 28116 -> 28116 bytes .../tutorials/clean_learning/tabular.ipynb | 132 +- .../tutorials/clean_learning/text.ipynb | 1676 ++--- .../nbsphinx/tutorials/datalab/audio.ipynb | 1296 ++-- .../tutorials/datalab/data_monitor.ipynb | 626 +- .../tutorials/datalab/datalab_advanced.ipynb | 332 +- .../datalab/datalab_quickstart.ipynb | 136 +- .../nbsphinx/tutorials/datalab/image.ipynb | 5406 ++++++++++++----- .../nbsphinx/tutorials/datalab/tabular.ipynb | 142 +- .../nbsphinx/tutorials/datalab/text.ipynb | 178 +- .../nbsphinx/tutorials/dataset_health.ipynb | 44 +- master/.doctrees/nbsphinx/tutorials/faq.ipynb | 690 ++- .../nbsphinx/tutorials/indepth_overview.ipynb | 214 +- .../nbsphinx/tutorials/multiannotator.ipynb | 148 +- .../tutorials/multilabel_classification.ipynb | 100 +- .../nbsphinx/tutorials/object_detection.ipynb | 188 +- .../nbsphinx/tutorials/outliers.ipynb | 614 +- .../nbsphinx/tutorials/regression.ipynb | 204 +- .../nbsphinx/tutorials/segmentation.ipynb | 986 +-- .../tutorials/token_classification.ipynb | 180 +- .../tutorials/clean_learning/index.doctree | Bin 3019 -> 3019 bytes .../tutorials/clean_learning/tabular.doctree | Bin 60582 -> 60582 bytes .../tutorials/clean_learning/text.doctree | Bin 232490 -> 232490 bytes .../.doctrees/tutorials/datalab/audio.doctree | Bin 336296 -> 336292 bytes .../tutorials/datalab/data_monitor.doctree | Bin 145209 -> 145209 bytes .../datalab/datalab_advanced.doctree | Bin 199380 -> 199380 bytes .../datalab/datalab_quickstart.doctree | Bin 149271 -> 149271 bytes .../.doctrees/tutorials/datalab/image.doctree | Bin 398347 -> 520045 bytes .../.doctrees/tutorials/datalab/index.doctree | Bin 3292 -> 3292 bytes .../tutorials/datalab/tabular.doctree | Bin 119428 -> 119428 bytes .../.doctrees/tutorials/datalab/text.doctree | Bin 154241 -> 154241 bytes .../tutorials/dataset_health.doctree | Bin 324921 -> 324921 bytes master/.doctrees/tutorials/faq.doctree | Bin 210677 -> 210677 bytes .../tutorials/indepth_overview.doctree | Bin 222087 -> 222087 bytes master/.doctrees/tutorials/index.doctree | Bin 3139 -> 3139 bytes .../tutorials/multiannotator.doctree | Bin 137376 -> 137376 bytes .../multilabel_classification.doctree | Bin 64488 -> 64488 bytes .../tutorials/object_detection.doctree | Bin 140179 -> 140179 bytes master/.doctrees/tutorials/outliers.doctree | Bin 104221 -> 104221 bytes .../tutorials/pred_probs_cross_val.doctree | Bin 17310 -> 17310 bytes master/.doctrees/tutorials/regression.doctree | Bin 106980 -> 106980 bytes .../.doctrees/tutorials/segmentation.doctree | Bin 1994473 -> 1994473 bytes .../tutorials/token_classification.doctree | Bin 176721 -> 176673 bytes .../cleanlab/object_detection/summary.html | 6 +- .../cleanlab/segmentation/summary.html | 2 +- .../tutorials/clean_learning/tabular.ipynb | 2 +- .../tutorials/clean_learning/text.ipynb | 2 +- master/_sources/tutorials/datalab/audio.ipynb | 2 +- .../tutorials/datalab/data_monitor.ipynb | 2 +- .../tutorials/datalab/datalab_advanced.ipynb | 2 +- .../datalab/datalab_quickstart.ipynb | 2 +- .../_sources/tutorials/datalab/tabular.ipynb | 2 +- master/_sources/tutorials/datalab/text.ipynb | 2 +- .../_sources/tutorials/dataset_health.ipynb | 2 +- .../_sources/tutorials/indepth_overview.ipynb | 2 +- .../_sources/tutorials/multiannotator.ipynb | 2 +- .../tutorials/multilabel_classification.ipynb | 2 +- .../_sources/tutorials/object_detection.ipynb | 2 +- master/_sources/tutorials/outliers.ipynb | 2 +- master/_sources/tutorials/regression.ipynb | 2 +- master/_sources/tutorials/segmentation.ipynb | 2 +- .../tutorials/token_classification.ipynb | 2 +- master/cleanlab/object_detection/summary.html | 6 +- master/cleanlab/segmentation/summary.html | 2 +- master/searchindex.js | 2 +- master/tutorials/clean_learning/tabular.ipynb | 132 +- master/tutorials/clean_learning/text.html | 20 +- master/tutorials/clean_learning/text.ipynb | 1676 ++--- master/tutorials/datalab/audio.html | 4 +- master/tutorials/datalab/audio.ipynb | 1296 ++-- master/tutorials/datalab/data_monitor.html | 8 +- master/tutorials/datalab/data_monitor.ipynb | 626 +- .../tutorials/datalab/datalab_advanced.html | 6 +- .../tutorials/datalab/datalab_advanced.ipynb | 332 +- .../tutorials/datalab/datalab_quickstart.html | 4 +- .../datalab/datalab_quickstart.ipynb | 136 +- master/tutorials/datalab/image.html | 90 +- master/tutorials/datalab/image.ipynb | 5406 ++++++++++++----- master/tutorials/datalab/tabular.html | 2 +- master/tutorials/datalab/tabular.ipynb | 142 +- master/tutorials/datalab/text.html | 6 +- master/tutorials/datalab/text.ipynb | 178 +- master/tutorials/dataset_health.ipynb | 44 +- master/tutorials/faq.html | 8 +- master/tutorials/faq.ipynb | 690 ++- master/tutorials/indepth_overview.html | 2 +- master/tutorials/indepth_overview.ipynb | 214 +- master/tutorials/multiannotator.ipynb | 148 +- .../tutorials/multilabel_classification.ipynb | 100 +- master/tutorials/object_detection.ipynb | 188 +- master/tutorials/outliers.html | 6 +- master/tutorials/outliers.ipynb | 614 +- master/tutorials/regression.ipynb | 204 +- master/tutorials/segmentation.html | 10 +- master/tutorials/segmentation.ipynb | 986 +-- master/tutorials/token_classification.html | 20 +- master/tutorials/token_classification.ipynb | 180 +- versioning.js | 2 +- 180 files changed, 15388 insertions(+), 11438 deletions(-) diff --git a/master/.buildinfo b/master/.buildinfo index 6231a23cf..94b5705dd 100644 --- a/master/.buildinfo +++ b/master/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 3ad80fbb8ee164815b3a9f7204198f6b +config: d3ca6c8f0d76410eeeee41a393789392 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/master/.doctrees/cleanlab/benchmarking/index.doctree b/master/.doctrees/cleanlab/benchmarking/index.doctree index 1a5320d167bae411fe61d69cf33526d7d803015b..6a8a5a45d06c3b85400902366c614f9643adda9e 100644 GIT binary patch delta 117 zcmdlWxj}M6IHRGdfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Yg{iSwnyHET<_^XHPBOG{axZ5D0J0(=D*ylh delta 117 zcmdlWxj}M6IHO^jWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz(bFtU=NZL*_z+-4PKKNiw$1ZkbFYs1JtS%9OEEbZ-^EjjOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= OOjglSY+1j)Dn@l|inYJ3Kb&?lBJ)0}EOPI;Db)`NVxqi(t zT0(|{H#?eNXD7?CC7bu!FXSXsE3?-_DYCT2PhPLbwYe@ekGyyVYoA<~DzJH4UVtnG zE@!&gMt2gt;itzVU0C44K*=n5b_*C&buCuJs`O!g7q= O#m|NnCVpO0}J5{($HCz0Z5!^PY33Vp&tM zteIx!bUR#qz2U3j5>H!MhtuT>ARVmB@lRu}j4wxLxVE171hLt^r$t9WWBTSC$U=uJomcuGx z^2=Nn2FN6b_7H|#JQo)G9%=_%Z5MUq&>@5Av;4LMXxK8hhr_%ew+z&i{%t_lccvj6{ zZO1FHiJ3-jp*0^b2Cr$e3>!(86UeK?%t5!V@b77023qXpeLFF+U(DokO>`~u9NKuu zDLW~f?l@1Q(@*&5am=Pp3|Lqeg_rqtbRsq#uEqIK23o`XI=6|tzjzchAZgH=4v4o7 zWS)rGm27&eDx+$$E<(E4X(L^^Y)!(7WI;!e&G>(!Vw%fSYLTxZU24SiK1CD3bTyMA zg~}N6NHlFo+MGd_g_%Sw>{qL4+@p*)gUvJ@YAB{F%1z9nfn*B~0_jNxc%D>nA%kmF aSfHM_VYNF+rayHkak2T6PVz^8)czZKuc;FN delta 4197 zcmbuC-%C?r7{__vbLOwMjwa3&Aqu5ml3UZZWkP~c^g}nTp_$>dtvp z$eV6u&ak(qv!gc}tf=yY+?8%`*i%&*b~!vAugC3n1%r;@Ay22r>F97(xxxn>E{8F~ zJ^(U(=cl7$yjj(BueQZlR>u6PqyKrZz;#GoZ>$883MSQ80{QyHqQ&TMRWcxprWYLv zJERO4q5gKP>+MG1_Pix^s+hH^PJLiFVyJ^P0Q#?9*M>C^Zww6goJ(CR=VT^zmGBp{ zkP(^d%fz%@#;t{i9Mw)PmH~5V*4$-;zWHFTZ#fQY-~6z`HAhzrnEQJ5BCMTR8$k|( z+2@%!iy;TW)Kam+?xRIhO$M{Tw}X9w$-Z4I3X@yP*fE&w-OVOpa{oTo2CjidYH_fy zMcAHiq}h{fuo@6=-p1XOdyich0u1DUou!{SysZKgH|RadOnQHq`+>)gIcXaP&uaOr zt#}1CG2P59wCdyK;5BWQVI%2s0(q5~Iq2pU{yhuKKnuORZ#yRTi|InHiS8v{Kv6P4X-{{g{s)$7~wJfQ98zWQkuxCt}0lYLXA-pf${`ahtgFi^o9&k_PSBfOzvj z7Kwyi$)~rfGODKQBBYC**0Yt%)-#j! zR2f4aiKY!nn={C=Fq4S+y=pCuyOr@)u$iVq9VK){xq&$}k!-_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz)~74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL1Y4EiDf delta 3571 zcmX@QLh$Gc!3~~_hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-_K74c{!F*1<%ktqPjlEM#iktQ$M42)VYd zv0g!L2;Xt|!c2PPY-V)*Lat+LJ$94p*aN<8WH=U_e$NHYA=lPVVdu%U)iZhvxmsJ} zzmS`f7?T>vjU3KYTXMCYOHU!!ue-8ekrz4kn?(w>cu7ycz$9V6d0pMSAhNXTPxe!n zoE{s+D7yL9#oL_Zo3UB%j+H&>+NTFTX0(`YAjQbO{f0E-EixQ{WP*|!;}K)h-2ebn8myXJ%@`$MV)j5 KwgbCfElL0_$NnS$ diff --git a/master/.doctrees/cleanlab/data_valuation.doctree b/master/.doctrees/cleanlab/data_valuation.doctree index 59fc8bbe189b17b02162ec783f68b2ab433894c2..61b90e459ac4f2fdb13dfb45245564ebdec4c3cf 100644 GIT binary patch delta 475 zcmcb4g7M}F#tqSohNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgziS7;liFtC7uN^HruUCi1jSzQEc*y3WmwY|~gs*EYG4EoJi>?mlL+ iv<7b8!=FY@xHhr{ZeAjIBY-Sh9e^Rkzxhv6EF%EY8;Jt| delta 475 zcmcb4g7M}F#tqSohG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-sn7;liFtC7uN^HruUCi1jSzQEc*y3WmwY|~gs*EYG4EoJi>?mlL+ iv<7b8!=FY@xHhr{ZeAjIBY-Sh9e^Rkzxhv6EF%DYs)>^T diff --git a/master/.doctrees/cleanlab/datalab/datalab.doctree b/master/.doctrees/cleanlab/datalab/datalab.doctree index eead05ac31e6ebba67f533ab0690f0873bc2a533..41815e173bee5682e0a3e145e611045e4d77636d 100644 GIT binary patch delta 4228 zcmbuC-%C?r7{__vwWV9y$$pp@ktOu&#;M!RDMC^TscopWkwKzo>dDlN)iha2KaeCO zLv|Pkg5feu!iv~Syg}GaQH{)8UP*Sm7Pb5AoMItR(wDjR@+Y)Z1vQ7b%7_QzlT+AlbZlvE_Jj7C33$jlpdat{SLQRL*?cN8d^-;JNwN6A8)Y@~^ zk6Ova`C^YF*H;M7f7}rp1AQ4Bcmy$E6^_lS)wXQz2py)^{jG|-d1~hAA@;z#un?in+b#o=y^jp;G znE8sL{Vy&8hmMiV5Na%a6+}_n>r+6pV!F-j%bR9w9hzBscE1CI=&ft5{j)7;ZE^Ck{T6CjKp00WJyz zD?qk9N6v#2Hw0VA|9m4E@N1g|tcLVm#6Pw~f*WYV%0-pg5^x5m*T^|g&UgPJ*=?BD z*n5x`a*fgnpC$D;HH_ z+o3jmTnf@GcC-5o!S3O)7FvQGU0>p9DKG1yNi6(-yuOF773LqEtNnBwczhay3-D_< h=!}%V)Tm1c_{n|R1MC|Y@Bp%F>wo08a%Gyf(SMO7$1nf@ delta 4228 zcmbuC-%FEG7{@thZRwWwW<802oi;yOT)HZarkwN0#+1^ZXtkh&B{XmkC z4B5+gAs8;hL{Hs}8#?yJeTlp(u8xLGG06>=B34p&qq6?Cci#0brUE zZesJMla}I*2CB`QBrRo)19TzL&NQ2K6NE;XU6RcJs)SqE%FZKY5PFuSYCa$hE8%vw zdZ^h2S*HL>3|DI%E@zWU7t(Jb5n*Yy4cR9Hz26n3P}321r{^JRecaoFS|{Q%YVE$} zN3CZDe5m#C;2>aSg~VUf7#Z>aM$K4XdbNj^@c40ByMY;)xv0{& z9cshJr4Y?yH@i<4>>l3NMk}zR>r2j5@~S9JVd4MdP2F^@wD{;;>8Ins<5L%0kYB$^ hvr_R=-IEmX(+9L0*f%cV0c6+K|HyCU@-*$B{{RVX%p3p! diff --git a/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree b/master/.doctrees/cleanlab/datalab/guide/_templates/issue_types_tip.doctree index fcc5f9f701a0bc2acd18b2d9205c3e053f96d89e..f38fa2fa383f68651b605c74251e1763c7a90263 100644 GIT binary patch delta 62 zcmZotYEs(Z#$sq{U{YL|lbfS&o@kt6Xkw6No@i!nU}|BMmYim8l4xdOVUlcNZeeL; RVQOraW@=)-xtyh&2LLj85l#RA delta 62 zcmZotYEs(Z#$uReS&*Dmn3t$;YLRMgVs4pcVQP|QY+zwwX<=?|oS0~kXl9XYVQ7$K RY-*flWMFKtxtyh&2LL$=5nuoS diff --git a/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree b/master/.doctrees/cleanlab/datalab/guide/custom_issue_manager.doctree index ea23bfd6de8a37afb9e3e7d7559456ea32c9a1a1..a2a22734a0e81aa2caeb6186a9c80e6299942ea9 100644 GIT binary patch delta 64 zcmccfmGRD3#ti|ChNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o TmPQt)#%5`zCgz(P8KWx!$MF;O delta 64 zcmccfmGRD3#ti|ChG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd T21&-I#%V?d#s-@k8KWx!&Vm#N diff --git a/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree b/master/.doctrees/cleanlab/datalab/guide/generating_cluster_ids.doctree index cc50acee204e462ed360690813d5e8607ca9f7da..684e9db9dd7dc22beb801b76f41371f36864d6e0 100644 GIT binary patch delta 62 zcmZ2yxXy4xHlv}bfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET<~fW);s8~$5t;x1 delta 62 zcmZ2yxXy4xHltyhWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e@q{G^3%Zfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET<{rk?x&Um95|sb| delta 62 zcmdlUw>@q{G^1gfWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e5~lzF diff --git a/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree b/master/.doctrees/cleanlab/datalab/guide/issue_type_description.doctree index ad3aa14d0f3087ee1f24780ebf64008e2cea78e6..fdf554484b3a3bfdea391493a16d8ae2de39acaa 100644 GIT binary patch delta 72 zcmey^%JH$4V?!#Vp{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y crICfHv00j_iFxxh#`bB9jN7L%GDR~207%XiJ^%m! delta 72 zcmey^%JH$4V?!#VVVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV cL6Whlahj2Vu|e}R#`bB9jN7L%GDR~208j4~Pyhe` diff --git a/master/.doctrees/cleanlab/datalab/index.doctree b/master/.doctrees/cleanlab/datalab/index.doctree index 5f32eb1f322124d139ae296b640d6603931c1e5a..7a8704117a6216592917ba6bfe67a2ef1056feb3 100644 GIT binary patch delta 117 zcmX@AbyRDEFQcKUfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Yg{iSwnyHET<~qjhf@Ek*6TZ&~0O)NYZvX%Q delta 117 zcmX@AbyRDEFQZ|aWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e{QmdC8yY_5%| zJ7<(eVQ%^@zF|fC!+!#+#Y2Ao$VkY)gy4cCDk#CA5a*;ANI#_Sd#}X){=D%1`}y%a z&*ypHhj-y~*Mfd_QbRNx86V4zWJ9s^mggHH;Y=*u6bnb=jhUfLERt@D$0I}WSiHG0 z9^KNEiAG{#iWUJ>dHo*#wP+p@)KGcz9V!z(V+>Ok?#c?TbX{5v!>hQ*y$>|6)vI`W z>AoUZy_%o$4&dt5ywUdpsLt+6u?jLi#%+Gapp$&@@e!=vN&Y0zh1ELAA8b5;s?G-w zqNSZsUgv^lniA*YCA`$+#oA=S?}5UJX7`1cH;I<5pWy`JVsaPf zx9tb}CfZty`C8i)Ht3W{bo#_Msao-{{cEfSPIP{2K+rzn-RluoGQ;fez6PXCl-Cz1 z_;A99&EAH)dtbr2XTg`?(yRHsWDc9UC2We&euF>lpT@nHic@J*+(_MpYp@vxI(PH@ z;2AUpw|pMHk{NOW|0r98CcskPHu|Ikbul}+Mm!w<5$vKiP+)jBxtp&}MA1ZOnhPgf z{QB`68VJisV8(hKJS`r~_{I8;4iP>%fS1LAnMJU#Ja_tsVo-VRw84M8wF(V{hKu~q zCZCcC?NCg^t*b|PyJXj?Ph4EpgOXSlGs33kc_UU z0}h-h?c_0RH|)7A1u5gC2#qh3)4jA^ZK|W24nnFMsD zf?mRxVFiKJCHoot28q_&=<&G=RnNL*_13}x|!ut}sQDUXI?+Ms415`Hh6e!G#iOqLy0YkWX_6j$;G0Um9!FxST-BYZnXxjrs&~V zJeJ!WjYY*IEdZ#>#=ZPg$s8i6q4MqWxxNyH*KoIYKWJX7*YJ+= z{Uxw^EkEw>$JJ|jec)M8oxRm!1!R1TTZ4>2C-~~4N3eP)_`OgkR_g@6wf-QgIu|~K zs$Oqs2HM1xjc;Ok&Tw;djR%@(MqISYcyX&AYm*KC6%D^q| zegN#7Xl*IwJFS!0pfe)X5fGne>cxY$Pp}#|)$xS^L3@RNpHJM(4Rf&T4v;oc*;u6D zXHo%d_72?J^8(gA8@>paUdz|gd2H&ouqh%341T|F3in`@mgTv6@v4`gd z&Z8;#A>iYixj{GZcScIk1la1^M>n}p7c #Df#xfL+uEiVRoMd-&FP98H9#xqRBg zFQ3Yzfv}B)rtR0k6XMV5pjg}9E~01p@v=BHy#V%=XU~0I3M$W@Gx+z{R-l2`lF_wv z(1jDFojii=hBKGNFy-77q45=Rs)u%{4GnbHMM%}z2o1Y&qVax}Z=yVEqENqD=}l>I zftOG3q$Mz+THc12$uFOxUKbqmyD6k}%6rgQ*hVx-SQU2R0k@l}NoLS&|8HWUi^ydq zKKXZ;HmVybN}vIIXve2c_RwQxE~Zo0MW(zMp$3)hBg>7QBGc(6+Nq8oqE0-thH4q2 zb{BZ5@vCLv2>k~4#c((-jS_Zqbc;g0AwND&l`4OfhVZ;NB=+@EycpE%2{$XSj7`mq z(=mJ*mND5Ek$QL1%~llI0`i}*j^W6Zo2_t|)V4FU5#Nd;iAOD*rxAQ191^KXDy04j Uw5ZLmP}m10a<9_=W4~Sb9}?zO!T_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz*l7@5e>HrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEqHrY`zX0s@BKNsmXg0xOHP=X_z|&4K&}naR_>dA=|+ z3t3vzCp*XpZ}ydlCeP;d%?>gb$gp{{qhb;}Sq{$G?4apMUexAnR@3fNAkWsxYTA60 z<9$5H(hUye$-WZ2o8x_tvyyFu#O7ez*4z!NE|ncciQiRnWy#EBz{r!>{ITE!CAMc4|0mP$o63vGw^(Ge zTxAR;NnWdd85yCrnX!2{8QLZ@HaBlBXjdYmL<4Fq*lgTW&rL@1W^B%wyr7MH@`+pO zn`>v7krUcbBQ}T6nnX_Jwee8l=I*7Z$?-Qx>yK3(;-vd~^TtCP$VnO-57liJILRYO zx{Z?s{}oJrf0JkO$y@))*S)#)4wC>`+G{8Cec;(__|}=6fEN4*(XRJt6B&tYv*5qy zoMbo}n6ReH@Gy#QU&g_Bmz)v=Xux)$0c2M9vD58^7)2*X%o5&iBEq_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz*#7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{AqHd4+2 delta 1137 zcmZ4agL&l-<_*4#hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-_~7+aV~*Eac~VZr1D;sTpDv-k*+t-YB{omR5Ko3Be8VkS@fW-D1+ z7P7SVY&KCcBv0$a&FboIWW*0JpeJtD*Stwy98KJON+*z9Tkq;!Cd1av4-L1llNGv^ zo9(T7GRV?exH)&R3mbV_C+9Ba-JG!MlQJ3F1s{}c{&`M`oFoC%I{D{0$<4Pfv+|H` i^Jc*Ze_2V_Hd*jN-{!N=428+i3d!;Oo7erSW&{8j2~;Ei diff --git a/master/.doctrees/cleanlab/datalab/internal/index.doctree b/master/.doctrees/cleanlab/datalab/internal/index.doctree index 43ea11698711f0b54628a7d0a7c1a8403cf98111..00954aa062a494e4f2ca6e94b28ce2ec302d9302 100644 GIT binary patch delta 122 zcmcbsd{=pcKck_kfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X fg{iSwnyHET<_5;O%tj<@)1Ul+U21bCYY7hkn{*<^ delta 122 zcmcbsd{=pcKciuqWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e1$nT3T(vW2;Y zrICfHv00j_iTUOZMoD(kwN2hAUa;ATvz>`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8~1E`7t!bMRcoewF()y4rU2&5Olz1ld$q8?E zkThl?--yk8aw=?OYv?J&+-8RWd1kU5Zm?M{WHXsjzd0dVmb}y+HyNmP ivt~M*E!hs|-F$k9Hkm;-*&%>;^64cqo7XM7F8}}oq((0Q diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/_notices/not_registered.doctree index 5260c116a51d4d5776c2c04e1b3c13487ab218cb..109e4d407ab9ec2d94983307f67337264a942fac 100644 GIT binary patch delta 62 zcmew$^+9TbE0dwAfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET<}#*VTmWNE5`h2! delta 62 zcmew$^+9TbE0bZGWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgziS81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<0N`r|asU7T delta 2628 zcmccdp5?}SmJQL2hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-sn81IsyOVOxqvjlSk=EeSN$Vg3-Ax21Swh8Sd$ImeBo5INoZJ_qe_0e^d z*!(K?6&WE8_xHg>JxXl9ll+Jh+gGPAB_q-{H|CtgL%khskx0fV046iwPC{q&sKx!}-B%q-z64{LIb&mX&dk zsnu=+6B&NpT)0b=oC>CJ*Q(8lhtfF7aIB(H!Q_TF(vu%t5ZpZF%mi|Z7pM`NA6(c@ zUfm3Gf!gM{`;9#0d0=zH8zoILv;yOJ`Z^Itw#mvZ!rNQL7+;VX+mjcVv2M3fU`!=5 Mp>5ArXUr7<09Ka?cmMzZ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/duplicate.doctree index d232699a9acda6d08469b965bef5a8a565beee44..da3144404815004fa17825b8ad6cccf07044379c 100644 GIT binary patch delta 2632 zcmaERn&s_jmJNZ7wx$Lq#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCg%Dn`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1OVk;2~+?8 delta 2632 zcmaERn&s_jmJNZ7wrQ3H$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s>N+`N_rl#rdU0$*Gek+8b{^$T*kLkYrlB_WVQ+7B zUB4u^0EEejzP`gh!hj(*WA1fOL+BK%8kZbz~FW$|O^QV$)J4pNPWoG2s?w`gs z`NKM%$tJNu)2E9ws&2O0c!<0NkUcs6y!2!pf1b_z_e>z8r~#%SxDk{0?_u36esB$W z^>6m(`16Z+$cjyn3)D6rzVk_gEbaZ%<9Qfaw^y+-zU3g#0AMa+-L50R7)EA#nBFVJ V$g$l^oKcFr04UiGY`Z;S1ORKP3^o7& diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/imbalance.doctree index 39c2439a2e2cbf4570e435bf98656a64e3c126ce..172bb69c76314948b4a0053561acc1395fef1276 100644 GIT binary patch delta 2563 zcmex0mF3q|mJNZ7wx$Lq#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCg%Dn`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qN+`N_rl#rdU0$*GeYcNuR!$T*kLkYrHY?fMl{eoO@Zlm~`{cE<9FyNm|0Cao&1+?SDRY4E*O+9CFjcgK+oFf4nov4FiyNPrtY1`X8iSDkz;2 z+fzgCk!kzp2jQiZ*lZbfjZB*-gZ%wDb{@Hr)}UvwIWD<|oy;WDprM@8+3xF64&+#E8|+N}S|+qT6WmoZf6U3bbFFVoA2`dMcYQ z%p)@h+a@nqBe*$wMIU*^M%(5EYc}wb?(fZwy9CJ425fdr+#G!3iU#R6LRu`qpnCC9 lh}?z)D7`0qX Rg{iSwnyHET<}OAFVE{+?5l{dC delta 62 zcmZ3axkz(EB%@)PWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz*F7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NS#hvxAB delta 2506 zcmbRCjb++5mJN}NhG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-_a7+;W~ZL;Hvn#uAk4WwHL)Y&)yo*bO zl{_OhcL;1?CsXSu2_5o6taI}XDK<6oY@IyAF`7J`o7Xy>qb#6VH~V@tkm+S$RD73y=}Yn?+L!$P0(A%?@cF$@4$NX8x=cGHnJsJTT_~CAPoM*Q3Pt--SCUv3+7` z4Y`q~;KsfAa@8qLvXV{rWIbQ5&B?7CJVvJW&Fc<)B(Hkwn!N6Sz~-#u+T{7W zYjeOwQSxfXuFVQJZOOECvR*FFW|ha1b=>{x}+?!**Ns_65J5c|2 SJ+kZuwWRpBFE(Z@W(NRGzUjdL diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/label.doctree index 499e62fed6fbec0b7d5a2a438071de7b9c07ff90..e25602700f42d5dc909689fb1e0263359234b2c7 100644 GIT binary patch delta 3034 zcmZ3sg>~5$)(xJFhNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz)~7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>io@`J_z delta 3034 zcmZ3sg>~5$)(xJFhG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-_K7%z~aZL(oY&UA|iM*hj)mh$65c%L(kb#v4xr+eBFp_b+kvg?cZ>j|-iJ5< diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/index.doctree index 98e2b6bd99411b7862f92226a05aec129b8c777e..d1cf508fee7b93529dfd908e5166879814baf508 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TVfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET<`%|>JOE+q5^?|l delta 62 zcmaDV^HgR-Fr#6bWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>eJOF5X5`+K% diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/multilabel/label.doctree index 725ea62aa58f97452a66d95ae1472f39ad8bfefa..7fd37515e09569941a7d9fcf4ffa2b136a44dae4 100644 GIT binary patch delta 2704 zcmccogyr%RmJObahNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz)~7(bGsZSukRrpau_z>E9d7XQ~TNm zq0LgwIs9a5&z{b`IA$_=1^%qbK;4^-X3iHR)AIK^Y?EWHxi+s^txul!i#FG7-%4Io z7fr6)uCtkG&q7|Z91qeiJ$e0g?#(%;T6xGfV)OdzOqyhApS8V)k?{w44TV|T?YS8f z*+{o{`$a)UGj`JT0kh?-$>&mex8Ij!oJWSeaQ&f*jD>t;*$-+D@^9}jU_8wT0I=XD A6951J delta 2704 zcmccogyr%RmJObahG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-_K7(bGsZSukRrpau_z>E9d7XQ~TNm zq0LgwIs9a5&z{b`IA$_=1^%qbK;4^-X3iHR)AIK^Y?EWHxi+s^txul!i#FG7-%4Io z7fr6)uCtkG&q7|Z91qeiJ$e0g?#(%;T6xGfV)OdzOqyhApS8V)k?{w44TV|T?YS8f z*+{o{`$a)UGj`JT0kh?-$>&mex8Ij!oJWSeaQ&f*jD>t;*$-+D@^9}jU_8wT0Ny<* AD*ylh diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/noniid.doctree index 3d3ab00be3f77c072ef96d72510a67ccb7a9a0d2..384c76b3a35790857fbaf6cadfcc03b68250c7fe 100644 GIT binary patch delta 3004 zcmdmgn05bQ)(zf_hNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz)K7_XC|ZSuwidDCylGxASnWGN)wR*?3|3%GAy50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgYdXo}&N& delta 3004 zcmdmgn05bQ)(zf_hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-^f7_XC|ZSuwidDCylGxASnWGN)wR*?3|3%GAy50}1zfY3 z$GF|aNOl5PSq%%7O+A9<-RmjrbIQf4e z>*fr%SOK!Nb8M~;XCg1@fNU3 zUqu6%Uf=woYCjX%4wu+mS=U3R&0vS0Z#Yef?I|rQD6#!o+fhnvPwncU#P;ny&6L>A zGQpp`5(AQCWT%8uqTOc39r7H%V6uEM-{$YLJIP4zn>Q|yAWqlU&>Dm+)*3c%n{$_Q?THST|e0W#=R> z=peyg-^sn1^?MO{&dAs*z_^0E@+4!b0HenCN*2aeUb37I(l5PzlMrJ*4+Z+K$}=9+ zAWMJKc27^nhva1%aLVV{{?w200l5a831Z}&{Aj!I^dEkVPTQ}AFs5;l<&C`U!1nVK FMgWClq5}W` diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/null.doctree index bb7eb1bc9968c71fe8ff5f7a0517d9246c2d7b83..79eba8e105d5b40308e16484e5c569907511718c 100644 GIT binary patch delta 2688 zcmbuA-77<39LF0wb1XBFTo9*5bED06&d#9>QL|FqAj!*2r@R$yq9!j%xzIEZxuD?& z<-+DCaV6!(jVlz9TyrB_$=k_a;JZKI)93qre$VfDu9oyyOZu2c=aB4TV0d6~z$W{g zJ*A>um3=PRE-4Pxugap&r6{6bk(DxsA~{{EB+52coh-5qD@XgfR<88lJbNtfV=Jkd zbd*x7gYhYd4AZqSO%I`rw#<20-4Lr1I0|HYdC08cJPqX+Vy6|ND&ZRsp2dWQN>*V_ zg|df+g`jr}1&-ZptTTV+V4Fe{pg*g^^SKGh1k_{PLXats0!yjB3Bv0GSAZ}hx zqk_mY^4e>54L@6XN4_Zy-&jwl;N}c!*YN%AgA}OyEak<5z>TBR_<1g59A~kBfrT%P w!Z8yhPWk*wJWEBU(l3q11&{Q5o5dCz;!)uQ=o(HyNcmFS+qZvW7L=91MO z#jSXBRd(x=sHz@SQ6xf7V*<)EBTehar zQBsWw#wQ^%OxLz#GlVkQa%5w5gRD~EXgI^iLuLc#X)q@rJFOs93g39}bS5-ZuyUsr z${r@J@Ekqxg`!EUGNWtPN&*y^ku1%j)*1N(wep@Fz)Fv0^@(857w;@!{M}wgPcj0ex7f;KH4dviOq zMMm$nuK9S(pZ-`py~lMYI54)>Yp2fsUF5klh9(5;bT)Em1D4XjA4*e6nQ}Qm+_98Q zxshk&wKwbrezyFMd{YL#v7SPK&1uwb;QQMLNl^D0%8mwr8%L+H^DM|1V$op>3t!r( w_TmYdcjSJ7-f#MWH;p3q7CRVPc;U$R6hmj+^~%%UTc!oHN56Oqe%z+~06YIKF#rGn diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/outlier.doctree index 703d1876393ec5104da4baf402dabf8eaf3e8589..95c51d2b43b73cb3cb2c5154b8b9292b4448cd3a 100644 GIT binary patch delta 3004 zcmbPthGpIvmJPm)hNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz*#7_X6`ZL*sT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1HsT&mLr{tx`4YUMpiOm~T z8_4xFNc%tawM^tWeshBM5=v~osC$u2n}JDHVspOX3QBB$Vtkhp+xyIID6xII;$yJ(-T5?690~v+7Dca$Nw@F1}HmOxq!G|KEyh^XFaF-K5{Lahe9LXJif0%mJzMn8+jRD gl9zp3w<`!Uejr2dc1Hh($ diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/index.doctree index a17f62a680d1e8339b0e0ec27d186195983edef9..9a6587417c20be5874d1d85966d2dfb0d602c624 100644 GIT binary patch delta 62 zcmaDV^HgR-Fr%TVfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET<`%|>JOE+q5^?|l delta 62 zcmaDV^HgR-Fr#6bWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>eJOF5X5`+K% diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/regression/label.doctree index 14d4ad14a862f3bd10fc195c8bf1de30511e3d4a..ac328b23e55049e531f882fda41eac8f83239752 100644 GIT binary patch delta 3483 zcmbuC(MwZd7{>W(XIgU;Tj|6SB#4O0smPB~fE?T1<;g+(m^AT_B|v zevDmIW3>vQV5=ARK}22@T}kdHx>+=WF1m@0pe~BhIo{;$p8Wy8_j#Y^ec$hJsvG9& zhB?>Idfc*WDm*bc(XIG<$9r6|ruaRI>{gvxKvP_PkE*%?s-hlqs_tHo=5{G`l~n+Y zGkKPGnqsvJ8sxIYPUF&d6Gp$ZEN%zLO7I0w4_N7X^B5vr3Fhg|?inO21Kr>DXB*UX zo}`Yu5`Z!}LzlWP+GN~xfN73cfN{xO$6pqRg?A_P^C)n1bXGImzU6VZ%2wi zv-;+zc;BfeJ{Y&_Pn3-U(KOQh|1u8xbq>AFQ*GeKA*#W8> zxb$k#0^<8_Sb2F}qN(=}k>%*u4J$>Hy(MktC2`s`0#Y*q6{g3ci=`h*9 z<*ZPA2HueI=MoqL8N4yU%S#M9(mYFGt~PW&$jFp zYscAF>~J^vq|Qqs>SfPb@FtR#Q8tX@V$WIjVHd_Hzf7}Eu{z13U5HT0H+d1h$)?*N_r|YLvsih+Mt1%K!I1uB delta 3483 zcmbuC!Ap~I7{~e5-f7KEY^4)RkRT!|e>%6lI~1M<3gs{nQ=;Z-Ek@QB?oeSv7f7jv zKgJH#Sgk@RnDyX(5Rr$XljJVZWzh&abcv0i4#ntwz2tS@{Q;ln`+UF8^ZZ`k%DS<# zZd~qTT>T8*tx2@RhP@|^KqY3^{ZWc-0rXky1AXxRaOQt z!T7XjH^izJ)X7DYmCh>P4H*5>G`|%f%fS~S-EXGrjbn&#Ihdn2JExGWbaZdapDj?+ zIa1p0DgerOhAwoRw^WZ3&PR+_6<)fPj?PXMGgT1xj@kd*YH&sU=i(`E&*Kn()t}s)oR8K$XhDqv(}4Pb{G6-i{Q2 zX0^>viQeN4VjynSo+u0XqiLl1|7C3S>zW5id~=D;so%Aku~F;vSPfm!K-_{%VzUYF z?BN0 zTQ)=S>3CbBz)UpvbFl$0u~J~A{Scm#_YSZ_=;ZRDI+@})zj~=&K60{SMyU50k!{*7 zSC6o-*x_#QNsU)z)We=N;Y}pVBWwuA<*rfoVF$)1zf7`rxpI+3!4RZY;4!woGrD+d b(i=z3Z}2jFlTEfj?)6`zM!EEW4R8Mk4(S48 diff --git a/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree b/master/.doctrees/cleanlab/datalab/internal/issue_manager/underperforming_group.doctree index 9f27c7e93d3f0d1c05e049fe9a7d488bd3b3a48e..4c10798080eb8cb9db71070281c7236a9f846b70 100644 GIT binary patch delta 3969 zcmbuB?MqW(7{Ybn~2oj10|~l#zW1%bJs+Fe_6sG{pkbXq4lL zj+&B(U>K>GH+7K68MH5A;2?+u33~lt_|o^R9j!lLSAW27zx%q*{XEYWhm4Cu#?czG z+AX&FI!~=~fCV<(6#DJXyB6WJ%tiBinQH+;*EJdTAb@d=9T@ zFqpY4+J#8h@HR+1$zNl486flxQ=)>Q!=lt;;O5jvDUeymj8hlToK2^puqps#VnDs6HXc1`E8}03wHNXIk-+# zPHj*E6?BA)Uv$Sse&#tPP;QDG3m@7MvF%tIJEyYZLHzg0?cDLM0vK9ZHq)qR{bJ&o zxex!tiyHl<|&Lxfjf r+3}nVS_0DvV2AZJP)c8tarN%(3Q&QjjMEBu3YELBC|+v`(9g6#WQMFT delta 3969 zcmbuB?MqW(7{}<(J03g z9W^Bn!7x%WZ|WeCGiYDLKp}_(33~ltOznHtj@BQrt3Tkk-+f)@ex7IZ1IGCQ<8UQe zy!kaAcWt$6mrcH4&$H)yWm}%tD#>!bY`0roF3Gh=_Q)2=ZM9jwyCth6x@iue{0^U} zGnlz7)`Lh_@D@ls&R^rV86flxQ?i1ggQ8S2aAW$TG{~&u2_xAitSp^Q7X{fSHf*ml z!UL2;_?p~;MGkRz?@|mjaELz@_)zQl16yN3>-D03)S6jR3|QIku%i`? z9jyV3!tV%i)`@dy&W4j4QLFD%J8CtZoRRfcv$CAP^ zRlV_mSq)6HTGxg&tfM>X?LbXJM?H;qFzZ|X(In8UH(FaU>og~{7ou5@_^x2zcA8(` zgRO@96=>E=4Lfyb!0)IR;jB!px`M`lYbx@`ZG{hCq`73EfPehMMtXu2_?K5Ae3E9qO&K}B5Ruha rwmc_;mc(=n*kOGQl+u@ET)sOyf>fv}qqGE`Lgnr&O4OQy^fTiRsARCh diff --git a/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree b/master/.doctrees/cleanlab/datalab/internal/model_outputs.doctree index a568c9bf8291d293eeab39f1a867e421416e69f3..de9d04b85ecb93aacd7bb50b2933dbe5e47df60a 100644 GIT binary patch delta 4920 zcmb_gTS!v@80Of_xz$#!bYT}l1j}+W=gyKY2!W!MiuBM_@RE~ihBCX5(V8ixNi%lNP@{|6AR6vG0C#iR%{bZg=UMzRBRC~yLMWV63w)k$H_#eC04Tq}+Q zv+z5~Z!vfc8}?=cSIzAyeb}<=IBtJAX10zGrA`56r3$Lxj~U5WCd;TVM@_rkG5jT4 z#AYtzzMMf&osHHKP?d~U74OMYDS=@69hIa#5lW>KC)rlwM9j++N^Uwnj0_;d`(f`o zdVh9ba<`$ftUT~r@~e{kj!UE!HKhJg#cL|A0-0sMqZ`Sq-_gJsXWjsclIcn+ZwRM3 zr_^YBhq&h)1wq4e&P?>#$u9J~w)%1q4x~Z!TvV%9fH^2{Q1RCKA{1_Pe+Gq(?iKu^ zF%LZ)jYsLpj1uCTJguMsiGg!l?8y5}3K84yt_%Z|UEZqs&bWF1A~L$md!AoDtN}8| zF0TcEk;_|0qmTC`_u@t2@}43?mu|5v{&X}WiI-{goZTrRr6IxD&^3c7KN)aRdaYa- zk9%(56nfs+54|I02YTM{6zN%#;B0+v2Ckf+3`_wqN%1t@_A4phKL%XM0-C=L9!0Js z055nJMxr&A;$L@y1|$a0@CG4+-;L}*T0(NcJf=cg!tbzA)~u#!I+RN%W{?#uFmz16 zLymq?UrATKbpiYPhd@ogzo+3OJUO!sIrs$+G&!TAtkh8U|4jHFG`+vT4-cECEnJ9w zWECnw8v(q**Q^kr3X#?!6I@#^fL|OopX4AFse=XaNQ$jL;QOW#B0v)9Dzu(fo$v{c z(>z>FFB;Q)SJw$^@!Qf~4;Pf4tSDg=_Y$C>yq0ud^hRL|(lK(zb-u6B!l)YXA^-WL L^&K?|t3&<*jGox4 delta 4920 zcmb_gTS!v@80Og2xz$!Jbzv4Ef@Qg5Q_qx2f_)xyQmy*Qfmm4-A@(u@G3`PZC{04lAf&Q0j|e^bt%p5+m;XQC|DD68KB=ZYsqX9) zG99_jYJ2^Dn+iapO$5L&{6z%40vtxs37P(na12DR~ zrHWG)>|HQ_#W0js#vX@|wdBzmc)Pki8iTV(SB;HZ%bvy8qcBz3bRxer41mfr@XCbC zk*MEX-WZAcha_Jl>Zz;B(FYcvD#c)1=aKX=bY@kKflTW(?8_Jg)k&4J3-dh_alJGY z$-=MZy}{ro*|fO~xN5$;r3YJf6Q^%=VrH9oN5L3iR<59W{#cxcWwMTX%C)r7m&#wu zBy8q7?kVpF)mgOGfT|=~HN2@pqXvQ*a=A&rKbm%r9AHO{2QjZusJU(5ATodge*$|q z(7Pk~c@IqPI%oJd?^h*-T&GDd=}7ydftS{|0-5EI>j9G2kgJ7@55EQ!Wz%kQw#3o2 zM{cyu1N`tPML@&To)YxgDK3n>tno|)4&*_MY(HgGfjMxtXn0Mt9fga&FQBmKTgbiV zD$v8x`PKfCBq5{Ce;YI)Gw`mCTI78uhlp#hEs6z{y@7_A&bV~r1TwleaExEvItgTs zy#WgVBX6LIhP(6g9^pmd4ICs>mtn3f{@iOv60gu0xvWz{N<)UTscRBZe%$AwqEkv? zbU(a^Qy4k<3G|Ls92j}UQ>14}hO_l~4shlCxNi)A$%=>QN=QwWq4&U*%%b^Q{~qK@ z!tknRu_Rg3DC1QpXh3H053Uf3`R&kpq$Ok*%~~76J5am{vpuP@9%{;36D;$MGk(}1C34^sI(xOLq9YB2hF2j;D?99e~ z<1_=;Qt!FKU~9av48JY?g*ZX&FHI7LaW7#Cs^};RrX&lik&aO^ZU}x$5r(yZ59QA% LeQ=K`EQ$IHkrCb| diff --git a/master/.doctrees/cleanlab/datalab/internal/report.doctree b/master/.doctrees/cleanlab/datalab/internal/report.doctree index a7d5053a446810d78bdd7660acb91b864eb636c2..915b97ba01bf691f8dc7b9c39b14a15118f3df2e 100644 GIT binary patch delta 1062 zcmeC{X6ox^+ThJ-Xlh_mT$q!aqi>#QoMLEVkY=7}W^Q0=VU(7fW^R&bW?^BHY+-I; zX=Gt)Y?fwfV!pYC@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeXsBdbKYHng~nPy>Xl4fjRVPR=uZf=~IXpm@Tk!)dT zkYsFXoMvQTY_Pe8@je^r+9q%044wRtV?OCRH*e(pMTR@U78>%@l5XMTj{(t>_X-Mc z_T_!TOrG}5djtu7EXtH#cZnp64AR~Y` ze++m?PJ;LtP_?->xR$&Ss@l9X%#?*JeU^%LAp>8 z#OE@CA)-XVl80zFb~A!*46lR`a`QqVh+TE3;CUtgfb;DS_`ILz$M=2TgOdB8t`xuu)Y(TJv4x*6A%m{6^>rE6wf2rVsi(V>c1G;YN-opY{3w{wh)@Br=C zJ8HAS%oDt4SdcX*6;l{QS0gh*t$G$9|>V4HBEWd$BU0cwayd8l~fhzm0eGNA=9m-W_f978!(bY zkB5g)>mRcfKshqniY;Z9t1qKypSxq-K(QAiDrWkS7(}uo9_Q(?jY%qZc!{zB)^mh> zH1-kvXzn9Ww6yd5!X!53B+V~0^4yzi0kH2o2|vf*4x@I7-*}hB{yT-rTWx%G^95oz z!U~tS_K|(tsBLcMPyw3yCGOcyBT@N>Q=!;E?K{^g_}at1FA6w=i$)5?Q{;YMR#N?1 w&+R+U{-*-_2r&E9)bHb^5@eSbSK>3@dXWT5T-j@uTj1Oe@SRJtviG6o9HlLSlK=n! delta 3077 zcmbuA-%FEG7{^)Dp_7(Qb`vxRlnn|z+q?Om8JWV+EHd60!%~!Y(^te84GM>#2+~DL z5I&a?j1VOXmOMnev6~Teqj)8VP+J!Yf$XZgg5D$f2fSbZfY13nKfdRj!;1T`;{G`3 zidcy!*-SoXcE#nC9@7(+jK?fZNSTnju9>DVyJc2JL`I8iR#a$$3$7n-=NK8`VcKsj zVkH0e1aYaK*1b7EY)XsYwY){drkv&DOAU>H)d-L9(?CxfgpN{A=*T(AM);t~Ic6`_ zqL;?4wP-T{tML}2Khg09bw3hcQ)(eDu zH1-jEfAIrQw6gQkat@nvik6mJc=7qw0N8hL($C$m$5Fe&uf54*|DB-f<`urYF@@NT zu;A+EKC*8cwau*@DnU~}!#!JBBr5-LDwUh5W4n`r3m*1;7T^p{8!46lAou&MlKPh> v?$~~Go(k+E!0gk-As??)AiKJ_3ZMHrh$K+qVy{(gfeX9fJC|ay_rC2Pf>(wq diff --git a/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree b/master/.doctrees/cleanlab/datalab/optional_dependencies.doctree index 303b3ff47378fc9bb060faabe193d22311b6bb54..0a25358b73fdd9df46d1c40dcb43e8be726f9442 100644 GIT binary patch delta 62 zcmew@^;>E~3zMO#fk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET=B-S}xBz!265#*< delta 62 zcmew@^;>E~3zK1*WkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>eA_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgzjt7!Q-KYkGhzqtWIiOb^+})I0eFX9Ia!jVFH)FxdQuYXU2o`Zs?N z2xcNv@8k_)rkn2w7m%xe^9HfqWJD4uxQ)Sfvq;vHYd2WGjLa^I?9Z2TrO19?#pf*K zhW!Tt+09$k1cfQl?{0O_icI~}*K0FMZf-5L7oo@i$1cZu@(c*t&dS9oMTYmc1Cvji rBzcw^Z?`gMJWhtC;50iOs9AV>g*W3#8}h6-0u~hf+c$SGwlV?$Sms>$ delta 1253 zcmdlng>Ag*W3#8}h6-0u~hf+c$SGwlV?$FV0?J diff --git a/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree b/master/.doctrees/cleanlab/experimental/cifar_cnn.doctree index c4ec68ec27559d0c5912ae0c071073c775d5632d..96b91f6af3b5d34df68014b22c26ed760bf3f623 100644 GIT binary patch delta 13101 zcmbuG`*VzE6vyYhm#~q|=IVZFLzuW_CD~+YNg|pWB?KW#B7~F(5gIBkl{N$|!G=c- zEvgJ^q_*u5#ATRNCvD1TqQ))Ki@T;xQDLIb?si6g&3FHR@Aq@gdCqg5_kG^oWA$y1 z)weB4q=6Q5#QdDB*;%1cQ^Ke9i!f(IO^J*$TdZLj=^0TGQzEU_h;(a|wSSn^5+0dh ziHHiFmYqI7bbfa3y!7d|{JyW+4$+x@&32K>QTBSpL&v1zdJhkiZFS2WOm1InIG|!u z+hT*iZEl)oKViJ0Ko*I%(Dp5Cbpih3-Z=8M$N6@{LUH=o>jKI&EDU>S`%Nt%=>&U1 zkmA*RsXf1M0X1JHdu5Vs(%@G1?dC9FSUv_&Qp!7yMKapQ#+Ca)`Ybz-OF(j_lq~zM z@ShR5d3a zrT#Gw&b2Bx38j9wa59?fnY_8E^!(C7RQk{IL^Rjh4~C%BGb<*b)Y8Iul)7!rQtPe-2mp7!M)SruEQR?B%F(|d@lgB7EXxlWD+VwLND*b8a5>$G7_e?a`hkF*F zRN5biO6_05)bc|x^}WOJ&KdblJzC)#JP0k*(WCHeDmlI#rQSWc5tX((a~756mBS}p z*10t()mCvCT~|XT+`}C&TtTVD7dN4~mRCPRsi~K@p;U489!l+UV1MCtdiRttd6~el(hE{KGPoy5q0WD7C1*0;N8A3_m0O{%2t+OeTVgWAa zTj?yytQ|nJ0H)&-iSG`i&rxpA7#fOlO>tyFxi^PU9LhcYCXGS0Uk#%TsP@JPLSG5E zY9yi0Q+#DK%?0+Kh<%%~Szh7>17en95m)lnjO2?dJhd2|J!I}BJF6nlVTkzGh8VZ5$o zaP5cWg_O@3gS1)D3XLJdMn8gD{<@fUwgJVW;V>CRe3|AW-Zv_d9CDCG0pInU%gE9z z2kwFUOgF$Jcz7wL1^{Ab=b9_Y0{2elC0V`$L)3WgUqvOrS>mdkv?)Qho^$s!-Xu@) zMGgG|RKVG}(jdVIiiP? z8lnc2O?C4QvTgb^u>lUE{wpN-;HQp#v6W7aWN6 zx(k<}f3&g=SpnxR8v2G3kBY_l8Hy%4jg&3a`7I?6ZexcHOPi08Y3Lj#(jh?9bl3ks z4+^F!6=*apy{^G0qO&3iixh8;$yHXPF*pm$(q>U0I^di&9bTjew_*^|!J8M@l+)eN zKu(=d3{AF4i&Djk_8UvD9TnsA;lGfC{jzCZ@_Zq z6I_KZWtxG#_NrHb`v}*`?{E;(!H)~}tJl%7Ae=T!kEsUns8nriei>c{!_pV8L-H0e8)Qd@25A8-GUPCumK6d9 z$FjR`qsOhIHa+;zY3=(CAYS}gD~lnoN2Z{~VCnD}eb{gD;{W# z@LP&w$gq+0Uhv`L98=OEfU6b#qybzIZf(@Nz-#fXuf7R>IcV%9W0x-n+hM$PD27Mk z9;@!#=_CS9K?08OmqCZ7)mbzrV z_)KqvFSPpjczAP~r^j$~#aTME2mWf{{GcEbrpp_->W&_Tp3U!8$3Ik9{>|i??|=6t BucQC~ delta 13101 zcmbuG`*VzE6vyYhm&hjBY_9H?HiQWxE3vZCl0-B$N(e$!LV~2kB?(2vrP3m3BiQh$ zp+%KJjnuY1BCf-vI@*-cM2%ad7kAaBs4&rIcRM4$=DUBu_xm~LJm)#j`#$e(MSbgv z`qpL1)IU2WZ}O!4S(yy!=R%Y7KS~d?S>YRbeugY zMDc09)Lz(Y88u%fdnL`5HqhI?)g0*$%SQo9N`J?(NJjhUgvtO&Kf}&rl8~G!eTIEU zY8KLB4(ZPEJprnn(l4UKxf#O%qRkQP#7P5D>VT|0sC3!Xk*IXe^cQHZrdeZAs+ymO zQva9@=UP2C1*LvBed&R|DD~jRIFwrQ$zzlnvSkWN?fjVumHxDS5h}g4a~hiKgI)7b zD(wwMrS>mjYUKf#`rbi!=M4X*95#FKj?_t*m*5QYT#6f>OnmyC}8O^=T+Iv~DO$_5E!x zN=>;5pL9{TH>1>?d$DM)i4TsV)NOx_M5!h9XHn{t$M7@a@Bh}I)YRv2H^nzT0jXR~ zG#V^1SE}?k%1voO0jO5}8uf0NR(0mP@sSxFM>q?tYZCV%=BNug!TCE7D(I|JmnGT`aAEIa%T4z&ViU+t{ zXr*Fq1x-i2z@2s z>fwYwPx0lEln3lT5&t&jvb@9%1;i}H$cF+4^j%&z0fM^3<0p|3h}b1IX4C7SIE`zj zQ7kOpF_To!=HHY%!cO5H^XN6;I1+_x)e$0f5e19q1#}spI}BJFlzM<-ky}J2VZ5eg zbKQsJgOtx1gS46FjmD5|qaQ&ne_cx3TY+NHaFC25@u=n}-Zv_JIcz_T0KV%vmyxAc zKHLNMn686K@X&Ia5Cn*woolWl3*0+77iIbO4N?<1rkcutv&2<7X;X%5J?HLeyg^># zi(2{xsDQI`r9qMr6bths@@&#T?H*Do+5;@TdcfUxrGfUNn^#D&fdgOAIk*l5fr>Zh z8kN;>0@7g!B6f7KFlCSrk7=X$psmcmc2ds64QvTfwgF#RUE{whS}`?gp?wx*2ONm> zx&xOWCRSO4tblVD4SqvOM8)FVR7DdVhRYV}_?A)tx3R;9rOn64G;|IV=@2ApyXya+ z2g{}?XVGX_dR>K2L}x{k7AU?PH&{_0N9g{4az@G}_KL&AtIY8!Me3MuyEhER2XdoXr~gNNvqpx$=JfIl6i9`bX` z;cANN=S~?sgmm!YC1cgvmhJ>1KFU*#;xSXGXqBtpcgKpQ)wqtBL%J&jQKFVN-+<-J zC%6ioj%o(>*{xmy?ju|$zr#UDhX7u-SG|Ug1>v+=T%j7oqjI&e`DJ(+3`>`suI@O9 z+Az&iEWM*@ytq!iiB2n5PA|P0?y8$D?#2}?YKt{LP6*KgfnN_csgjIqQ@C5v#HDMk zM91B#pLkfTrSpnZ&5XV_I7`LS@L7brA^D29b+RKPLbM>3acy@iBq2j`8FHjen-K;E z$FjR`p~tPGHr@EZN$vY~AYS}gCyODkM>5f3uylBgK5V!aH}|%-#GMitgmm!b<@dEl z_$|dTWY|c05BTtLjw$I7#5Ib3+yE{Jw>0XV;I;VHU*7<~95nWjvCEf(tuS6Xl)@u% zmsR&~@&KG;(JRoCho#qTv?tjwRu6!?K#GlA7N-~V1RFr?o2gfUT5g!7uN{Jly$|aJ zXwife8#(ZVeinWFB6tc&u@~o8>l@Jlz$1$nT3T(vW2;Y zrICfHv00j_iMf7CesZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm90Cw&9p8x;= delta 1676 zcmeDE&D8swX+tohZJK34a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV zL6Whlahj2Vv4MU{esZyXaeir0a_Z!RjY^X@F&;G}*%YA8pv}LSI@rk5I{E!>{>dU- zg=Fato;*QNX|p!>Lss&%Z=N6+%}Acs$sZ)tH%}AZ$V7qmPhwSM+P?XN#A!-wPLpvW z(`K;0gXPvyV*47!UP^3#q8v_%?a$O4DY5;MMlvO~KhU;hAv4KL5ai#y#$Y7}1=?R& zGE0)F-62$Jb7!zInL)SNA=HVBOq2XFqfu7HOutwEdL@1Dm902jOag#Z8m diff --git a/master/.doctrees/cleanlab/experimental/index.doctree b/master/.doctrees/cleanlab/experimental/index.doctree index c12f8a014b4f3f745f0da558e0a23e3601387366..1350372361b3a9b1f24ed779699873d0c7585ac0 100644 GIT binary patch delta 117 zcmeyW`Big6IHRGdfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Yg{iSwnyHET<_<e(^b diff --git a/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree b/master/.doctrees/cleanlab/experimental/label_issues_batched.doctree index ae3772ab354e0737bbfe51a3dd67351e9ded0e5c..e3e5d5ff0046255f11991dd3d8a6ca8f6ad24fdd 100644 GIT binary patch delta 3290 zcmbuB&1(}u7>9YcP3cG6L_;z4Ga|wEAl)RJ-HlLaQ3TOLi;9Av#I_rdlvav41f*#o zf*{el=%@unf);E+?FcV|Y3oN&5S3nv*B%7HlR~0`2WOi@&in2k@I1fY&dfWr`L(wE zTHCV}MB<7%c`-ef?$wjAk%+38dQ#JsxDhpnO>LE zsF=LJX;+8y#0|767n*3OwGawe-C>zW1B1)TagI$sDa(vnlwcu$mf zho2I0KHhW9Ls~LBc{g9|Wi2$EuWMm15xsx#Gc7g8cOKQcNU1sAJbL0Z37xjumo5{@ z#PTZ|$>&xM(585rTW=CHG;dA4n{nQk4^)m&1N+|Jbsi`#oIJn!;rfVkl+6_25-#nB zK_3-<(FeZ?Lsw58Is|e*F`0P^aK<@{;*(>o&N;jALu)zY!Pz2Y2sczi@ckxqQU&`)D%}*fT?m3Jg+v7x-f0$D&zV2q`+mQ<_nv#Fu-Z{r z?RcJskfCSBk{2%|2BKOj9*OIQ7L6FHqG`GokE@A1I=Hvuz; zs|Fux+1_P8aUHG6#TFWB&INpCUr^>@-$*N2;pZVg&>Q&q+Lj10ozDg4X~}7Gyg$tQ zg3pLJAMd~JA}yJfyo1jVur?ab*J4385q+@lGc7gGw;hW0l2Y@$HFfj^37s@M7p@RV zeepGo<5Yqr@*f*-#B9*Wm84Cj0<~U z#6yK&4#IE3&^3}r_k%n{OlGbkoV3rP_++)+K4%qvWG)6=I9-A);f87ozTbi#ssO*- zflE|)y?*aB>~bXVJ%p={1er2yawIr418*D&>a(B|p10-}w!MG~VaS_;`yBpCPEO%j zgfwyPN_evZp9qhRRlmdp?82Q@Xeay}S%w@_zJiC%*1^jjS0IVURzM-P$)Rw4Bs{&1 zBAFlH!&l$HOwo23A|T>&qyY?Nxm zZOEd~9NA#M1OD7CoujOu;7YhvmCAnmq2j?zv!zi<#?)cy9pN6Z1SkYg2?tNGhFOz6 K=shj{>iQ2Jz|0W< diff --git a/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree b/master/.doctrees/cleanlab/experimental/mnist_pytorch.doctree index 15e0a1af2a36168edb6a707c623d2c95670807de..abc3a779c1a0ae7bb184c3ddb8b38654dc393ffb 100644 GIT binary patch delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39ZKN^9bX3^TS-f*1p6QWS|Gq7uj$5Ja%X7Nh7g zVxpF1oTVp48y2yG()yg5om49|+8P2D6B5PHAXchUw2GD(DUqJJQ=63^`OY8k{eJe| zXPhM_#(uI78tIPjK zNVVK~R|cMu;K0LNa!`RhaJj20v=fjyt3ua0O{)~w)ZtUGd_D5Wk@K*eJ#xzrTCl~+ zbL}0w1(kmM!(N|(S6Y-T)0G_EhEX$}$;bZzw`@z4Hbf z@T1MYLaEcY&OvjX_RE)0YV3AsFmm^B{Ejq~I&zCwEMaS0>u!~x*u8gV16X}Dt>`|9Qdtjt)!qL3 zcPMp6Z!DVY(|t`Sb$@>bNToxJeFb7EMq%ifNKqQQiE{sJWN1g#oE*fE*BLQm(oz$f zhnCr4W(JfS63WbIsXhy1yHRb}2o`~AJHlB%sx2SIV$eDlj$!R6w|5*{g1zRHkn$9( zK)Fd4R*vSoF^V}+?rAIAhHAgDvr4p|r%z=GDA)Qd`vle2#I>Z`owz4zFZSc;~QTHQNL_ z6jJpXHcT1#GdPJASOa|B;9j}x_qVXc!0p7VMoIJd;_WPiKP+cg2OhL;K*Hdxii-Dh z#*tdorW)1&8jvt>4FSdct#izuJ5r^YRC}5&0J_Gr0K#Sy zy!_vuXGZ?(M%D@@LBim*U_k6{T>hs5v4Wx3STfu|U7c(wa9VnLUx@u_*DY3w>^!{% z|Iov30?9wt8u@X~%zWBrC6(TJ!0rt~z1ABg9~z=a9cUwvaCi=G!6cJ(2HnQABUozl zA9&&;dSTddLzU>Ndj_!)NT4dAO*PtRX@K?8dVpUy&_crM;!_AMr2Tcv|&x?G3@Xz+IF7a;@RoV@#hl3UiEtAmC0iPDA&cq-jq|qfpqn)`RabzpZ8Zo#nul7VNj18YC8SM z6oW6-os#dtW2f#A`;pv^Zg8$U9Q;)FM;74!S#aUt%a>(IX3B1sZBL@>A)*;fmR{ND z>y^U=*^prc9Z1A5UjxPNa)wiFoFVloFC2_iUTCOC?)k?HV&uXhl=^;VD4FO@AZ{Cf zZaQi3p<(+Bjb4ZJKd&vdhH;Tz#N|t|pBsA68&U6hE*!$Cy~WTl91MgkJ%&=aB0?NY z3B889=uqIvqPE{)JbpoOdRGhK;zxZ3r5pY%pdTY^!j$pe9V5aal#kqJF!O@X4KGmj zFr^$l3FyNyiWOcSAr7LlNM#)`rF+J%x27p4P(0PgEAOFW7u}t$jDY(=hzHYq$x1ui zm+5_yADQPX_>H1F98OazCJcOQ?mVid@}^BnGbW|+o0Xa*Ow03HltElP+nT88Gi4=E zKzHyYTrLCio1S>rZN=9U!QVTTjX)FV5eS!^z)5iYsJb2Kc!5l(21R`U@AT(QD*o|k zYq08vPERy^w3-8~v*-Ophy%zRsRjUVbu`DSu1B6uKJ8H#(xPWnd+5NMoa^GzDJpcz z>*AJqYIi6N z$amWw@$BpBdN}9TJJn*~#_*8ey{%q@3pVMliv0G$Lq2q0y$6s<^!9i--2)HReZW=6 z=g3+wF!%apmRTUB${?6o7uyzrRghq|hWMIMcG{`kt zt3=3g8Cnj%VbQJvSBG0mnNixmfr(uFebCB}{(ED1tN+f8GAp{9hS1CS?Es delta 15985 zcmbuG`&U%g701`PckaC~2#mu+e39a#N^9aM3=D0QAjSZi6h$J4s0fY$MTFGYVia9Q zOw_WBv-G5B%OX}#TAx$1lWL_#TSLHNLZTQN#7b3)R?!k8CDJo@YP0g=eCH4Nem{Hf zv(Gtu&dk*IMAY^~9L;2t>~X7dmlUtenP{~wjg5|tv)ioE_9%z@)rxsZXHevQ~`A9aVur&Q70YAYI6ZIJ^CS zh*Zm!cU9n72@X8WDF+qGp39xpp7+Bq=uz8R91I`=M0LmE3FztmZovj%Bum-JNL1eEHquLG#gg#7a; z(YYMjyskWtuRI6@>u^cck~~xzvU&i`wSG-LN^L2ffl|-C4(HlZmX1E?_Gsbzo<$; zseh@SgHq4_<|~w%SNj@D-CP%lO5+bzpwgcm%|~f)wyRQh)FB~)r|fp0qV=X+6VX6qGnUBCPS?qO4V z8%o{XQH$n!>-v9CYQ>GiDD`GnH$dePi`iP|`rD-_cHiAu09GGOD|=3%RMrb$b$7n{ z9ZH?v7mw!pOn);bUxHYQQ5ZTV(qxU@Lb-o7GPI*=PYq(o>x`H&X_<-5 zMayhAGXu&E31w!qRG)^iJ*YNp1dBkmo#AW%)mDsRF=(BO#;^{Q+c%Ca#$IzuNqL%8 zqTCbMC9)cz&b0A)b^&ERN@5uR z({=e#e+ok$pmgn+m)Jg(TawD=qxr5$V^)+qFP){M+<6)71yq}y#rC0EzK|iG3rNgV zy(sfcE?WicJ>Ii{74SnvEQqcyW3k>igi*tCmW(=(h~X!w*p)yS9eI^K<(s^fZK^zkCNu{MLSpse^kM)c^4gtmdt@F&E+tZ~PRCk8W2fD_+0K#T7 zy!_u>U`GC{Ce{WfLBim*U_k6@T>hs*v4Wx3St{H>-Cb-ba9X;1Ux@u__ia{%>^!{% z|Io{B0m(nn8u z@UC{D-!@BcBb}o6nh^Wa$Dd0!)Pc6NN%cU^?mgakRhk-rCSLI`DH*=fggBU1J(O}S zAf9K8m#=_YdM{F*GZ+vTuaxJLkgmQpUpXNA^MM+u*!saB3>uI_O{X7? zGx$>dY56`pcIpoCAIcr*2IsoNp-*IgWC8x41s4v!e0h#!rrZ`e_WS61h-e0rrB62c zdgX9YHe^{r2NE&N(?GGSoZ(cLU`T)33kM@r6d4+jd;ZCS7`bo=rT(89N+)^~h|9*G zn@$;gXxM&3lh+~r&ueR)VO*paarsjGXNF$%M$~(r3x{y(Xf-qr2LmBXub~XCh!6); zQlH@-Iuy9Gs2eaCPh3>485B=*P&~FlD@V$B1wUF%-Xt*OdM6i*F_%Dd>;MfYYYBjA1z;=%N8s?q`X zWoEzRN9K77exv9PM>3Sk37&7wUB}dP-n?09!K5^Pi&C3{X?a1bGKh<3TN4$3s=Nvm z&=ouhmn*>hrYGKgNAYz>@b@ld6VL>D1j1z(a1xw2rtSbbULZ56QBfblJN*Tdihn%X z7OeWA(-RFJt>yvi?0!EH;s7#7ssX@T9nH3?8<3}yPkPk_wD4Kg7V3GEb6q?-O@&T* zUEDfX?O6emxey2O{14S6%%IdUFf)J(&Z>>bl8Nxk=pPMgEONu?;-*G*1v2UD;#+@J z6Jc`OMHTtwvTMD|=z5D<50mFyQWwBEFTA3rz~qcJbtg=&Y*$-g^2lo{@-q#0wU>3O z$amXr@vIx_1~})}yVMfk#&DB=eMh|x7i`i!75VLhn|%0zdLJN@=N&5&)`&*OK!P+G>5*js1lYs@((;(+) ztqLJ0WNCT)rbW93TpcbgWlz@r4NTq^M3&$Q#hLd diff --git a/master/.doctrees/cleanlab/experimental/span_classification.doctree b/master/.doctrees/cleanlab/experimental/span_classification.doctree index 717bfd5e23dc1254ac5e94f81023a8042f20414d..461adc063888e9817b61dcd03d83f114040f7f0f 100644 GIT binary patch delta 976 zcmX>#f$7u)rVXi#hNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz)`G4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7*WDa# delta 976 zcmX>#f$7u)rVXi#hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-_GG4he2ZSsDll+BjRH<(Gc5u|nUsW$$}TiFZA(p|RsEXOof^0ZDq z%OSj3mcO1nFPDL}hY8MRqQLgmB4Ol(8pQV95(boLUn=vGjG)`RU+D&UK~}lhQ8nF= ztl&!BY!|LCK%UmgcHzRC#WHNz$kcwITy`^SzA6WK+BY94FXbakYs%(RZ4Hb7Mr0k0 diff --git a/master/.doctrees/cleanlab/filter.doctree b/master/.doctrees/cleanlab/filter.doctree index 3ba35454b29a25d3ed72d0377f2ba388db4e1836..3982296ec0942aa16ca457edee0faf3eecaa51b2 100644 GIT binary patch delta 1139 zcmeBrz}oeIb%Qsfp{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y zrICfHv00j_iTUIj#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3>tspI delta 1139 zcmeBrz}oeIb%QsfVVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV zL6Whlahj2VvBBgT#sg&N+Nf@@c`j2o2bo$sxeJ)d((1A~kH3VKJgt+@Nl9$Z7u`!v zC~Z`C0c+nWzJQ55+c%$+>LXJt*yfkAB4h>`SbLY^H!^~4^G5XroMidec(R>=_~tW) z^U2e0IQ>F6qu}Oy){K&5Sr6486q>S)eEqDG8zh9c8}KlCkeANEjsP1n9cT#a_U|H$ r2c*e&j^On7HjK*KeGM7)xhXJZJJ1w0L$VAonB2+Dzr8h&v6T@3CAv!y diff --git a/master/.doctrees/cleanlab/internal/index.doctree b/master/.doctrees/cleanlab/internal/index.doctree index 74dea715ae320ab034ded10f6960703efc13a8a2..d07c0e0edcf9f26286d2ba9758b2f7a26964617f 100644 GIT binary patch delta 117 zcmeBC?or<0&uD0BU{YL|lbfS&o@kt6Xkw6No@i!nU}|BMmYim8l4xdOVUlcNZeeL; XVQOraW@=)-xq-2pnG9__#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz)`F*1>%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?%Z8D=o%w|>QWn^ld9OK15Ii0nTboT-+F5Xne}*2y(& j!kbre?_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgziS7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6lRPAa2 delta 1690 zcmaDdi}lGY)(z2&hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-sn7(bJt>mhg0W+vvkY{1<>y3WlHxqHa5@S}X^W_1yFCem%3 z4AQD0ew$pad!?$$i4u^lpJdLFVe96P@}gvD1N-xU(m!&wR;aO(tJPeym0Yc5I_xZD z#;Lhs7rC}po6I365kBND+`Q9fA{!YF25Oxw*TAv)i}N>evb4ucz9T8Txhv)!Il=Xi z8?1e@d;|Mt`J@O@vRn{7nXf@~a$k(VW{rv{@`5jVGhai7JejsnP?g#&vw)j}0_|s4 zWUG;-J!UfhUAE1q&u`};Py1&6yIB_GY2D5y##m3Dr(?DY$uk=2kY#TWuzcs=e$|_? GpAi6?AMauS diff --git a/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree b/master/.doctrees/cleanlab/internal/multiannotator_utils.doctree index 9e4b6d26230e8c53ad0b5cd0703bfeec02eb9391..6d1877b0036dcf0ce5b4de803d336096c0594302 100644 GIT binary patch delta 1932 zcmbRDmTBHwrVZ(ghNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz)GFtU=NZSqH!#LfE56Uozhk92oVUZ^`|^At8A4zje)*qqOAL5^D& z>dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$dx3)Ah@21EL&%8ekn4EJX>dOb`?KNuC14(K9j4pU+x&WTIH2)kn7ijDqG04)m~!< z*|utt6R(>W>Ruq%vDSu5$r0bS9LG6FXUpls%T|i4SyNoAOaB8}Sc9~rsE4vfp zL=Pj9B6`sUtPXgLinQKzp&}w8N<^t3%IZb+BFZ|?45i-fyZ(UB_xt_*&hK0}FT$o5 zVbf)WEO6PK0e^i%eU4kn+vsrGYurk{+wSt@)>PHFol3sP_kz@r=i~B+_R6BW}TG&~GAH(^ngi8htWqsB({w}E* z3?9LU&E*tx=Y7^8+}XzKCLIHvWpEomnKm~b3f{`>WftBxbwAd1m0zE}6{}n2Z)R3t zHLLv7tfi>y(Clu|_3Wy7Aj!wu*Q029-U+l+#g!BXO@+!c3(B#HsO6TTIxFN_%Pd6( zo?eoU)f>Utyp?9wU)qTWkP77x-OBA{2e4hJa$jW|R<+7I*4_qYi-)`>0F&2)%9n2# zM$zHw8^}m1!6WjZGV^`DG-NE5V2H18>O(rLqdzzALh9Ag!j>@V8s4e_u3QN&0x+hB zt=GIJiF#b!|ErKwZxrSpsZxo)y}Y1RN|%(8r59rhzESte(nK zFFH(^GuzQ^VnbbDF`Dn_o<0FXS<@pUUv#etTV7uTFMIGlHF|gMAH0LO`Ugw7cpX13 zdPn9TEar|6+cDQ-p7rq*awzJq&M#1hb#%(N#lS9z)cXAUCbZV;KYjtOT5lX_(Ozpb zTeMS>2$&10aL5jHUX}9|2O7uOKlOf;E z;^sYa6_|{_rEFr(V-gR{`oA*oo{;nZL1x)Ag8aLTr4h0}S-{pCQ_wqX6W3mnI#fo; zg_;S@SY(w=;@|*zItQCEpJuVr@m1B{RS5YzTu6Td_e;CI delta 5860 zcmb`L-%p!W9L94FlywwZ%N!I~!Ve)v4CCzzqrDgq65_?C2?&U&YhJJ<6oD23ObU({ z9c;ovnzQUpvp_V&3zY=*Bpl2%g1cc`)DUBq#SsD-CPYy$rWZ!h^A-ZpyFT>~_&m?^ z{hsgnk#j#{xgW87q>?jjof9_Rn*h&R<~1W zah18+PAM*>1>4AQc)RdWb6xm$6-_aewnDR<*`wUj7o8Egtq- z08CyF8h@^37e#k{pCKcuh9>1fW#yOr8OT_wp)fxmSVKB&pnvsTMCvuriv9@d8o8hY zu3QaO0~j;H`rd#pAp>2|R?s@D-g+Gk92$3_u7NAPsOx)^XMt_b^TKbY00)a2^7G1> zTo7eBz7stCL#G9EX2XjXwzKdXM)Tpt{Kqhq1->@(>e~TqdHqqm;qH&=vAgr&<}JiE zxLL==!^9)8JF?(r4R`)Dh`HAAyq~9$L(y<8eFSybK(l^-2G|ABTJQbQh1PoW&%Xgz zeK~>j>koBWD8?vB2F!(2cv}J1Htc=2)RPdZQ;As4CuoU!OCTf~(O@@)||V}9Lcr$-l3=@_tA_u60xTu-GYQF4sdX2%{w z$Z=f-8!#a%oV4x5}Ugcf2$+H+I-KXGP}-O$VxtvZ$@Hs}X+u1tp{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y zrICfHv00j_iTUISj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGl@vQ%gQ delta 1199 zcmey>$@Hs}X+u1tVVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV zL6Whlahj2VvBBgCj6ccHRmc;zS%7&RITix7PA+KXpB%zkNS4J_n+w=3u#&EIb0N=b z^4wd$nTLNq6X`Zio+wqnIa;Wh99uzJ`$YW7wY69LG8tMoPn5buhBmN2h2>1hh?L2N zJn5V7D+iDhL?ErlRYir!h?qj2@X1|f5}Ru*nAj-LE@!`#gG}vfM7cJHdgQQEpglNX iGCz6RH|Hf>CNHwWC+8*bZ@!TxC_|RbVVet@yBGn}-&N26 diff --git a/master/.doctrees/cleanlab/internal/outlier.doctree b/master/.doctrees/cleanlab/internal/outlier.doctree index 9c30c84ef592cc6a6165d1620b0c4a13a9266ec3..1ba26a518374ad5d60f9d508a9c88205edbd877f 100644 GIT binary patch delta 731 zcmccgg7MM|#tpuVhNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgzjt81IpxD_+!P^F^jPg=ATrGg=ATrGwx$Lq#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCg%Dn`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dgS3>Hh!# delta 1705 zcmdlyhh_5|mJP*>wrQ3H$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s>N+`N_rl#rdU0$*GeArSvA>W4vofvME5FS)0R{7ci2ib^25uM*hhQ zSPRM0-nID*n;sikTKhKdr*V^+tfWxB*2Ua*aC^Oh|NWZJ&DVA~S|@@(Gx;kh}Pwod-=TyXMiH=)hXUWzD@ NWqa0kU=cr$5dhAx>-PWv diff --git a/master/.doctrees/cleanlab/internal/util.doctree b/master/.doctrees/cleanlab/internal/util.doctree index 6d5349c61ae6cd372f6b327f637ac10ce48ebd9c..080ac015c1162079708f3d9cfe620093ac0e6536 100644 GIT binary patch delta 7878 zcmbuE{ZHFf6vlIJ*A{7|E${DJaMpyNE40wEOj?&IHqF?Oj7%J0g>?g=$XE})gW*ZCH3!A$vXBdpe$ugHfP=_Ws6)-XWAVT7tB@yDcW$q7n_yeBj^PF?< zIp3Rhe91VzWV~9;a`SDDmga`Wh7C@?y*Afj3po7+PFub!FHjS3I{XDLm!rnzbQR{g z^6dqIe1}tMWs`tv##$stxQ=5|5h~D_6pywUlGjO}uGj)e8>KCIE7GMIYokm{-HO#4 zl=_UHFltbCtlffA16k!L^_BHI0IHm^4g)e}#u}7`*(0d*gQt5?>8Py@mHuo$k4m3# z?nb3gZR|kL)VoOlRB3TX0kX)M-gwT3O3!R*LF*iPVLM7a>um?9veY+=62C361H?#o z&u!m_Qm>am--_^@p4@@lqDbIxc5VY|m8BKaXq^+4)c`RPcD&k;QpaEGMyboSyHM)l zo=%jSS)T_`<)MbVDDi&K0}vwz^IdZ(O1;^#0i|}oxgVvTYpp}6m);sgsf+DhDAjuC zQ-CTh9YZLwwsQ|aRIfw53>@}qp|@aAmUO*{Qge^pTLV%r_4Z=apqv(+Xos~Y7g1_o zUnNRC{_zczx^Si*r7regK&hJtV5;xp07~t-T!_|MfAud^`mbz8rAC79uxGdmp_W!O z$)b@HQP9wp%j(g0^_Wzt9@WamvBY>t?p9u%j+NTkI&534$QOQ_G=p^8I)n6tbdTY3 z#S_xfEygMnF%NOt$BcA3nf;2LojYP6R0Az(ve*}ER};g%nf0wIhH8*X`+O`x2gW#d zi?2~K?PfB(#PYCx;THd!h`m!ho+itf*#yP$h|m2jfnKj+8Q3@Up+QU?dmFo<95Z$SpEHWO1bLX6La4Zc+_mlAr@{D`UlGx_Fs2WBp&zpOS0< zozD5cnNH0Az+y$rJTue1JFL%$l_J7cq+00{R$-w0Qfj2uIc7pZY`%Uq{pii+kBi%PSiDgCp{G9>j{~qV2DYiZfRU1$-HOs;L@ z$78T-rG!mBE8zwj^YR1W-U^$LYLXTWhcHmt%ls(LH&8_t??Lqw2VyB$!=u2_P{R69 zEkBY9)}M1QT|Cpz6DaE)K8+Tkno!sKyvTrspiSNU2zr2B@0scOQ@j>k1}Xi#9@L7% zlAAu)x28Ja_pZ-#)aB>qJAID4T%X$UzPuf!o-b+xsItT}gA%_jwgbd) zcQ0(;hf;5rLf?weoSxc&+@f&cZ+312YLzABQ)r#z6;%K+9CobAi&Dp`yHM&Xo+#Q0hWkCrY&* z{uH1}OZy;7tnJth5Y_9@Abm%Qw9s47FN-^0L8;ltAFKkYS9*Fds$Wit4z$DCQwu1y zx3>bNo;Z68rOuygK&cCTmr&~FewgaH+>cVbuR76M8?OI_O8=DsRB9yn4!egc5o$?! zvn&`s837GlnXDRlPmf8Jsu8Vh8jX*IK5Bt zSSls7vO#P@9vkdD#ImrTgj^!+BNjvYE_M-1;3Cx^DginGmoi#trps4Z0PFv<{bI;?vS=tZ-gYiTK$JJ2GYnB3UN zPeftYN(q^KR?H1FTEq{6dn;r@s!2*D9Kt}Qukm9z-$3P+yc^YzAB-k{4UYgvLka1F zwftx@Sbx@`RPlTtkE4ut`4n1&YC@eK@B#xCf;M&Wqv!#4zHg?NPV-uH86@@b22d-G zNNy4xk=#tt16&6V6R9qjK&?`6GJ%GM_(O0rhxNH%@*5yO^op~H`bi!`t#^47c>ZA* z+H;?`0WpMkhL=&}B>xKN0jc6~0IL3Kv;2Y;f6nt5q0%k%_3!)>Ai@(XQmq=nEK2Wy z`f)7c@ihC0Uqe4FstF}6@ipipG}EF<7Pn0r@SQ=b{$nt^SWMF-Esvr%QIiF>kyMvs PiO>=&Aoc&?@Adxy0gN4h diff --git a/master/.doctrees/cleanlab/internal/validation.doctree b/master/.doctrees/cleanlab/internal/validation.doctree index a2dcee6dc3033009d07c7a4bd694a741d389bee8..fdbd3232839079f26e832aa6445a8b1c51bfef1e 100644 GIT binary patch delta 1783 zcmcb6gz4@PrVYW2wx$Lq#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCg%Dn`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VN+`N_rl#rdU0$*GeKQ)MTwW!z^-vMFGl3BtOYpE0#DlCOR8{ssJ# zzp)gOZ9>RqPPPy>vb9HSX6C)dM1l5tfyrcQ-<%+Ph+M4&V&}=!Iypf&a`Q7uCGz7e za`SrW9!hL~B$q~s_VX Rg{iSwnyHET=6XgY4gfls5eonS delta 62 zcmZ1|yij<9AERNKWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e07cfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Yg{iSwnyHET<{HMuY-DH);Be#y0Ia?sDF6Tf delta 117 zcmbQJK2d#xH=|*iWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>efzDtNT@*53mgPnaw+I`gm=|J& zaDrnYIs)k`8yxUlNm&Vj1y)2}h|rCpT{P&zB884~b?H4E^IYfg9KnBPt&-_^0Qyh zA|*IrqRbc4x*oX6uD@@!Lo9ICK7O&#lO@b7bCN*4B=wLPbSy( z!MQF0$WUk(P6-pXZ*KbCOq|L>t=Cx18NW^dPnrMH@n$km~vFU`=7 z^hi}f6*0sQ@sEdL8ut)_=G%nxA%tAfJ{RlwhNn0K!#wp?J*Zbr3mh6V3QcaGTQ2aG;)B%GAZNl z8(w7STl^o4G8rl4gVrQp^jn zLO8*(5FLSZl?@JbuB5Dlzyd2GFGT2Op}#&-3MM&gN~- z<|TA+Mm*O#!o62QwJxpGUGMfpG*^8@RW!|`x!r0gq=Xu@4$Y~ARhJs6Q&ffZ!_D06 zWn|9pW$pQERX8badjz}5d|ebJ50IG8!WPtrIcT|!{m}+?O2~^Fzwf}wSwynkMnqI)bXOL3L7 z;D&PRbr#Y#FE~gKeS;e@mKZ;lhm(?(cp>pq2U+}VAL)%R{&r36ROv z0&*nz6$vlY?7_F0e3V?LC(FP{QX9E!;m0Db{r^1-?C|eq-0W?8u+&D=KDjy!^ra2j zksgUks3gX|J^bTdn8rN>oeGm0URDkc+%C)*tl41*w+S-_)uw7mPsjp z-w5lt91$(3fD+P7E9tE!c#DKcd#uJUaL;jA!h(oOOtdx#20qyWW?Z7Cmzs$Sm&>?t z)M=3uis?Wvn8^C8>wLNk+ORu%%ZUr8Zd^!aP^JbUmy4*R*zK6c5H7>GuuQ)YGd*w* d3P?@TL6=711^$_sxiFeHqYS)U{IzFt{sO4I(0Kp= diff --git a/master/.doctrees/cleanlab/multiannotator.doctree b/master/.doctrees/cleanlab/multiannotator.doctree index 9fb4605eb128fa9bf4cce35a9dd508bcd4989032..ebdfd05a3f260633d490a9ab6afae05f56d88a14 100644 GIT binary patch delta 1709 zcmX@x#dWreYeO`np{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y zrICfHv00j_iTUIn#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y)^H=Q02Q delta 1709 zcmX@x#dWreYeO`nVVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV zL6Whlahj2VvBBgX#v5ela#VKMe3i*vo;n(5iCt zW9|Fogb+w;j@}0*GHqoudPJ_RlT2ojYwI<0Ei$xjHnj3&CexoPb`Qw)=Q@Y!WH=Ta zr|+HbkZWtH+ahvpJ?QzEoJ8oToCr$#tedTa=82IJ%uxO8n~O4k>?BYBWCsJT>D_M` zMYc<+Fy0U(-;nKnW{gfrr0d_#IFpf^i*$X{f%+1*&t1$I;Ypt6=*jW6T-$+OZ{VcF zfQ8=~?^=*+^YX-u}V NWa)R<4ov&=7y+!w=_&vK diff --git a/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree b/master/.doctrees/cleanlab/multilabel_classification/dataset.doctree index 2d1068dee1725035fc1427466df68706f01eaffe..6d04e936828a455a2e451e237065a9fc19bba03e 100644 GIT binary patch delta 1200 zcmX@z%W}GxWrHuHp{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y zrICfHv00j_iTUO_MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgRc-Rzv^* delta 1200 zcmX@z%W}GxWrHuHVVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV zL6Whlahj2VvBBm#MnN*PO*WKE+pNaCgqd_3L0Ts#vNw>WbJFG|96@YkX`QxtFaLD% zygF^Ow9pSGvTU8c`L^gT@@$>HIacB|xwZ<(d?3Tt&4zMu{H0 ZxOjq(Jli)nJkU}hOKaM8M^?rzMgXz}SF8X4 diff --git a/master/.doctrees/cleanlab/multilabel_classification/filter.doctree b/master/.doctrees/cleanlab/multilabel_classification/filter.doctree index 359840cc8c35622a8016d68b2d8afe9c2b0e5478..014b637a3d8ba56c71166455a7a8bda0e50a3235 100644 GIT binary patch delta 751 zcmeBL#@e-vb%Qsfp{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y zrICfHv00j_iTUOlMm{pMO*aT+Oy8`;JfE3#D?xgTC#SL(lBYFgasZ#|<_R3ytYqrn z9Kd&kOfQ4%*4lho;0Y6%b_4ZmZY~v(WFuFX ug{iSwnyHDoeoB6Fv3_xWX;E^j{^UXqjm_5?MOckUHwUO!d9wri7j6Jfe_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgz(f7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vB2L(r delta 760 zcmaF+p6Ts-rVZ|lhG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-@!7&*w%wvp)MWO f+U!%3ORft*kq9y(x2)2hELVV15YOheZRv~vp|9C) diff --git a/master/.doctrees/cleanlab/object_detection/filter.doctree b/master/.doctrees/cleanlab/object_detection/filter.doctree index 58f231577d118c420f1060b45b59adcbfe134299..392010fd9c6e1f65b7bde1f431b61df0d349c301 100644 GIT binary patch delta 474 zcmbQRl4-(9rVZYVhNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgziC7&nrk%Yi3o@&=|wyg_K&uD0BU{YL|lbfS&o@kt6Xkw6No@i!nU}|BMmYim8l4xdOVUlcNZeeL; XVQOraW@=)-c>-fEIokY~_i+ONs9_+G delta 117 zcmeB?>yg_K&uExtS&*Dmn3t$;YLRMgVs4pcVQP|QY+zwwX<=?|oS0~kXl9XYVQ7$K XY-*flWMFKtc>-fEIokY~_i+ONxnUr* diff --git a/master/.doctrees/cleanlab/object_detection/rank.doctree b/master/.doctrees/cleanlab/object_detection/rank.doctree index a707ebb29f1075c918668205fc7add3df3d7c850..d8b692148a949a6ac9d12187eed285aa3845d825 100644 GIT binary patch delta 1704 zcmdlyiF5NL&JFI2hNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgzhX7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^0OY#m-T(jq delta 1704 zcmdlyiF5NL&JFI2hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-rs7~hhiYoVau<|j;cOyp^uKGmIxfAR*_Lb9}1Z9c>Hk)159^_z3~ znaObU=7oZP$l?61IWQWvMb58^@)NKxmvd>&m~tY zqk0OtT1B+hk*l>(cRefViEwkEu@Nun+9n4Y=WJGRH1H%{>*mI;iR9###;&x@DA z8E2B|i0K6iOyb*tfl)0$o&z8T)U9On$s^Bz?Oqa0THNI6oetD1w_QkuiA9+#1N^oF IOZ<6^029jR)&Kwi diff --git a/master/.doctrees/cleanlab/object_detection/summary.doctree b/master/.doctrees/cleanlab/object_detection/summary.doctree index fa878a4a1d12cde285b6c77546ba0ca6e099c4f3..441208c192aa494051619674edcc7aa529ca2f32 100644 GIT binary patch delta 2578 zcmaDfovUL8*9KokLsJ8j;=-KV9DVad;}k;^gEaF*Gjjt|3!}8;G;@3kH$Sv?VJ0iPwQRm+ zzlRJPCqJ}q+3fA?%}SQ7Ih&0=%elzZ>K-yXh%Bw4n=_U#<|R+-nVufQxNNd~95)|d zLP9}KiC%F=ez}Hb!gRs+jPldnVi|QO$+9v@OHEII&uG4Vb}Zv9@^VV(+rmi)0*#ybgRVJ0O^qsGB@0x4UHs8KLzm4Q11 zA|kKw3p#jMv{Mm0t_PxGEh}-X5A#Wc4PRXu9FTTvC`9xwuB`iG1{ zO{4KnTAAI!aYVZ}oXqf&q>p#_BO|p(N^=#5gM8iXmE|O54C9;`18fql6``L1Cu#1MXx%J`> z8fwg~w=&1qA9e67R}YJ=v=lrqgUmxt7^Ur){wLscI}A4y8!UyP4Z}{b^Gg9(q5Tdz z7b&^}0=Q9vJ~Z>tgrisBEiT2RdYkR))cCE=n~BNfp$-g=z&Si#1dG(N8!wc=$={E_ zD(#l&7`zU$F`Kn>Jqp(>v=!hYB-ilos(a9tf+N5CV(~WY!wHKTbn-SLGZE zF2-$(&~*8K1&7Oj3%)Lc9Vb%If%(s3^q~lC{CgQ@Yby7OcSJW_M-N~Dq-s195U1nh gCVU~Dj$cV!B=HlpCR`3l--x@5g5Aq=1JdBJEe6*LV*mgE diff --git a/master/.doctrees/cleanlab/outlier.doctree b/master/.doctrees/cleanlab/outlier.doctree index e98ccf2f74abb8b6b18ac6a7dae8d167cb15ab17..46a27c19e393ee833d96697261bf9d56d0c5cc53 100644 GIT binary patch delta 1369 zcmbPxj&<%i)(yUlhNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgzjt7!Q-7YvX^T%}bb8v5=>AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUnv<)gg- delta 1369 zcmbPxj&<%i)(yUlhG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-t?7!Q-7YvX^T%}bb8v5=>AdS@yl|KtPgg=A@W*}RN{jXaxOCNJX< z-fY6l%SxWjlO3d3H}4h_U?)%eW(TPVa^h&?f0xM)3xzi;$gFN5&t{+QCCYDk97n>YU7p+}aDuG{bHG3IfQr*}F~FW2_7 S=8TcLWEo(z9auz7VFUmR9HmJB diff --git a/master/.doctrees/cleanlab/rank.doctree b/master/.doctrees/cleanlab/rank.doctree index 89f5b1054f5885f9ed083d5c858b4735c2e1cf84..2ce5c819209590f11fce220f148860d91138a66d 100644 GIT binary patch delta 2066 zcmZ4ggKhl}whiu#hNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgzhX7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DvOGU5 delta 2066 zcmZ4ggKhl}whiu#hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-rs7P|LL)!w{G;yoMr z`VBVgD`b%oSks~Q8*ElrTFpeJ{hJL`Pf%ocn|dI*b_2uCU~{V08jAGK*DYZo)9+yW z7aFBdT1ZF?xP-_!mBMfM+eVq_&h{v+#sg(lxwEVy~wVp$wgbz6JKUt}1C@M}jLCl;wWn{WWMqK^%dP2*3KZln7MOAD+xzA+PLd(rVcUUK^F2lY DjP^ln diff --git a/master/.doctrees/cleanlab/regression/index.doctree b/master/.doctrees/cleanlab/regression/index.doctree index a892a47f15d23a8eb19c3165f179d318fc109308..3b62887094727e21ecb038abfb0802b41f805809 100644 GIT binary patch delta 121 zcmbOwJ4<#$Fr%TVfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X cg{iSwnyHET<`%|wGPF&ez$m&oklB+P052{fQvd(} delta 121 zcmbOwJ4<#$Fr#6bWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e=9?R9y&I@=@dC3>i=#qDv0^^i|@dHto~=CJMw`TTxQvtRdbE%kfLd||Ig7bD6y z05cqk3cjaNwHwRU+eD7#K#_Ute;QwkyCFOvQk#CMAR2Thvp{rQcRE0{y6Om4?tpQz z*J%t_*~GqGTDEz2-Wg=O`O^}$P}l-XH=7rb$CZwu6(Wxc-ls2t(5Q$Ejxi9Wa~&u; zJsiSLDk`SWhf&wrQ9{u*mnKlOC*B62!jbq1V6u^-;_h`Diq_ru0H7jt8+Nqac?~#b z@;r6#AlgN-`^Qk%(~r&ouEPB|2b-o*F;DLR$4rT8pWH(8yga!Lb?tfoY1nU7uwg>h?G`m$#1ZDOB=#!pc@qJgx-ni%~gj zXI45prt}_yRB8;@O$*;^XAV9TmqDc(n2$bNSqeBCnOa7Uq}+xaI2?@+m9v#pRKVWi zL1=WPkOed_h~r}#ckN(VG*Zq~>`v7fQiP<)HQ-{AY}D<*1WC7Nkmed#4Crl=Z{6<} z^A$_Kk$cD*W^KTkr{N|(*~2ti-Nl^1z|AO-RA{pSu|LmKchc29HV&+Co`$)E?euEi{~?^=XHFlE3jp)^7`@oE888 delta 4106 zcmbuC+e=hY6vjFGj80AJI8zaae5fo8tUS}GbEJGq11+$|TNlz9t+5hE9W{y`6tM?0 z&^ppCCZ>WekVTiBE(k0NMG}&jmu?2rTMI?@9ii{(^LSIS9C@Ktjb;Bqzd_He5s0WLUX2YX5d5gTEt-4niBg!`b zGhMMVUe%yF&1LHyBEz;n&${(LjW7A#5bhU=O}|tS4S3>dAUf`IyFj$E;wV;bzj?9O zZ4OsB#NJ(6x^;Kn8DP8l(*iYDIQ&aDTNjYWm5iYUB995)=UW1yVbL}?#z2(LwWH|t za1cAGu$Vp{LS1J^2}Rdjnn2N>Xe)pUSL`Q%$wmr`yVo5kT6^OIfQsO4*wJz4HQ<=a z^VGcqXctB9A4gqJKRN@r3eV#VY?_9}JiP-PQzfc-atqD#^5izuwd+{~bscz7in<1- zMp0LDCXTw=X1h_>Rj!gxcXFUdad24x9u9D4TcD90|QN{0EjLIP= zv(wozrS~ADQf=xtZG4ZDx%g0229>C1#q`HPp} z$OP>Fd@nZA#|x}qUxY$F*{9fGrF8|8S@eV1*V0S3dKj6+e-r02aVLFRs|L{ek^G+J QY_XoW99Lx|f8(*V-;Sc7%m4rY diff --git a/master/.doctrees/cleanlab/regression/rank.doctree b/master/.doctrees/cleanlab/regression/rank.doctree index 391cb467644a17f18e5888ed2963a735cc1e97be..22025c6c0b2aab8da5a0436a2b2d72d726634551 100644 GIT binary patch delta 479 zcmaDpi}Cp^#tpHIhNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgzj-7;lrI>w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7w&n_<~vN!xX9Bw`L{R!WEZ|dvUEpJz9%faIfVZoGkMxK i-xIz_hStpw#J7_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgziC7*`sRtV@4#Ah*oq9%h5dk!<{vH!<~)X~gCpW`8C!^+K($C11Pl qjdq#FcIHRGdfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X fg{iSwnyHET<_^YMMkA87=}(@(BDUF=xt<#UfFdFr delta 122 zcmX>jdq#FcIHO^jWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e!f%(t`<_+$QhNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgzhX7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-ADDKNH delta 707 zcmX>!f%(t`<_+$QhG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-rs7$1_MOP9@lPt%^Z~iMalaEZTYFh2VWNCGuT;D0a*{1F^7kSz@*LPmCAw#P? LYv|_N$I=-AjAhIQ diff --git a/master/.doctrees/cleanlab/segmentation/summary.doctree b/master/.doctrees/cleanlab/segmentation/summary.doctree index 53885bbc5b3db5f223511c928c7be8124808db68..ee89a5f3f3f40f8abf883eabb7c6dffb4d3c41ea 100644 GIT binary patch delta 1079 zcmZ2Dn`Q277M2FqsSF!gJQ)p54NQs)b8>U^%@d7N3{4Eu%oEMb4NNVJ(vs86O%ly4 zEKHIu%q=X9EKH5f(o9XvC)Y8)B14zpb-Bs+g!MK*WpZI6U;E@`tPN!A4%mE@O_7ys z?ID{xc{Y&~U=Xi|Y`(|WM!wfWH**NJlWF_rd%|ZavDshzDGS-bX1n=-%wB%-wNE}E z!@8MIccSy;_@mr>db2Fe2cV$mae_&g|qHu{q$@URCZ4)~TJm3}CQTg0Y92Z1ePh*^Pg@0S{v# FBLMHdKlK0r delta 1081 zcmbO`n`Pl_7M2FqsZ1MLJQ)qsEDMs83iA^6O)XN*P0TIREKE((j14R-EG^80j4)M+R_}a(}2Cx~MKM2mJ&Rz zHQi27bn~=|U|ve}SGU!9ldC^pRA6)4B@cE=^he)Xr^-3Co0kC$CLf%rvek?+i<@*K Kw*wRJ8AbrpR5{uJ diff --git a/master/.doctrees/cleanlab/token_classification/filter.doctree b/master/.doctrees/cleanlab/token_classification/filter.doctree index 4ae9a630140ae3e24caeabf408b3ea56c8237c66..f446355c06ec9d849379a60770ad9ca95ed7df6a 100644 GIT binary patch delta 483 zcmX?gh4IuC#tq(#hNcE4#f3S!Ir`>_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o zmPQt)#%5`zCgziC82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5daZajS&C< delta 483 zcmX?gh4IuC#tq(#hG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd z21&-I#%V?d#s-sX82^)@>n?ljW=`hCEM#fDMV79p$q9U_o6|Y-$g?zRa{}KEW-@JV h;1=4vRcJ9e;d_@oYBEUsSCP12vTV=X{5B(&5dgoZjiCSl diff --git a/master/.doctrees/cleanlab/token_classification/index.doctree b/master/.doctrees/cleanlab/token_classification/index.doctree index 8c14692f9932360779ae85dbc303664513126a4e..8cd01edc715da49b6050a50867f04711633afa39 100644 GIT binary patch delta 122 zcmca7cTa9ZI-{Yffk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X fg{iSwnyHET<{6CZ8I4HRrayTfi`?ev%*VL_tlA@6 delta 122 zcmca7cTa9ZI-_BlWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>e1$nT3T(vW2;Y zrICfHv00j_iTUIT#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OT~N$Nc~R delta 699 zcmZp_#@v35d4oHnVVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV zL6Whlahj2VvBBgD#-C*9y2u{6`8U&27P7QnBSV)Wf79kD&S|WqYu&8KKbwhkZIc!G z+cp;qEhJa#X;BRhvTV)YJX!7pIWeiopTGIHf@m)3wr+OpTS1PEj(s_s+a|O`kZ$AT Ni|nbJ7rabo1OOM$$khM< diff --git a/master/.doctrees/cleanlab/token_classification/summary.doctree b/master/.doctrees/cleanlab/token_classification/summary.doctree index a225e6932ac28b4193834a50d70d928c016ceb79..d2501e17021546453986cfe0aa7597d6b193083b 100644 GIT binary patch delta 1013 zcmZp8#nSMKWrHuHp{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y zrICfHv00j_iTUO_MkaE!ZDd-*M7nL0H!{Ufe#=@*md=>T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E0HCHU4gdfE delta 1013 zcmZp8#nSMKWrHuHVVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV zL6Whlahj2VvBBm#MkaE!ZDd-*M7nL0H!{Ufe#=@*md=>T`?v5<<`os*EXf|jN|6!b zn>Bb3kl}5h`(dsS-#nXtE_p!!GeTnX8=+PTT(Ox~bT*|fh>@saCO;@Qm&nYb!~?73 z`jg4D{Z5Pc=DSTrWZJ&@PK#g>nKtkJCbYTdyCRu3PX=lC`MKPZEZaf3hi7}gF=HVk E04e1yE&u=k diff --git a/master/.doctrees/environment.pickle b/master/.doctrees/environment.pickle index bc2f0eac1c2b99f470a5c5527fb561b9c9e3cc8b..63d6ab607026f73f127dddf730386eec2aca5304 100644 GIT binary patch delta 615806 zcmb@v2UHZv`UiS@^1#e6Ip-NvFd*hEYtC8Mj2Kw6V9tO!fS`?(x(3WShf>TrD;P0n z*EOuT>aMPn~NYhqFmM>jyNPPbR z{Ua*IlLo7c`nf(MEANMU+%B-pxK zV`BRkv$MMH#o41>i!k9Jespv=%5$-Yd)lM}d-fWco@@e1SCl4n(*QiujwYr$_~B}J zb@sO+ZZ@$*BgO=NSbM|78p3p7%jFwl_F@qaYv@&sDbFTNDbLpK=?GEv=-(@5VE>rz z5j_SC8#t6L9b1Zh*u97@B>#SFpZ-I8AvL16JNj5b*9c9>&|yOd4ek@ue@H|h!Ul+| zJix|IFBuNpvx)_??xID&q5UH*VC#UG65#%Tm~cUID9AZyD$2M({M$$mn0;WRhb>dY z%X-6gNHEX)D&cHMjF0t}Ffm2Io6Sry@Zi84JxJI+Qq2BPyg1`yV|qGSb(oZ?0Fu^N zDR`Y_xGyVv{*e*Kg>0tL~&5} z;2bS`D8|XAhn8dG=7>>=MzHl!J2U%x$1wbSFmU~X9JNK)aImb)Fh6*6V5F0cjPZl0 zse|o;tAb=7U^?COv7KWTY_(V~ zF$8ta;@)2Z0ZVkXWw0WHtzWZ=x z(Ot@5*W-N!al$(ir&b5}L3z``q=SSPdK-xIuduLfJNX$iNJ<`QX7f5$z_!w-C;!9Q z1Ac>E#D+&&!tP>cIK2iVm*?CYxfiaM;NF2b23gFoo_z-8n;qNZ+xp0PCw|h#zAob8 z>m%Zq_eN~kht4CfJu16)nmo6%+165;aiy-AR41>It9S`ms7{7~wq zPSR`SQ0x`BZlgDsb{Q7RdPhxq~ zK_!ljiN`JpV#+oyDo7^P!AM${|Bs3;;cGvs=A_oljtxg8;FgHZLDE|=yB5R|S1nP3 zYs3)K(NhPzw8_f+R%UR_zYOhVnh+L6FqCsfVb#{l$(u*0VMRGAOO$}6uj1@WGIx^9;J$H$+DxeT)dmwPlTcgQ zbJTf44QVr!Q=mP?4t5ByR?xo}Cy=sH>v?B%tDB<|Y#IAju3? zOeEAzLM?G})J8&$iJC(4_7ke|f$4-wBUG|GnNZIN)ggWkp|%og^3J)0x!&HJ)wU{H?Kp$t2Z5h|Nd%QH?9>H(py&pk~jmQcTh zpCQx=LV0JLB@`soq?Bwz-6K@Y*&ISmB2>cuyBv9$kU@WP)LlZ&uW*GtI*m{>4_znJ zLqh%VDwj~V2z9ytO+x)bsH3wv>KLJR54lD14iIWlt=oi}OsKL6T{!Y7AyZPGkj&kL zx_bK=p_UNpVA69!Jtow)buS6EjZhmda?~P1wXXMufA$2-W#2N1Y{<=q;bJTr88Q2*)2{`jKAq8ckE@5gZp?WEn66y+} zejn1{GR|8-sOmW{36)Ez9=~wZ213n0Q|k(TatfiUZT>*0Q-oT0WcF2@_cNjX4*O5; z!b*tTPRJ##5Q(VSggQ8-$PG-bBUJ5=_Q#mIL@3Sdl1~=0_v0Ee``DCuCSdC*P_oV9 zRqU3<;p~+7vdnY#&4w^EynnN~EPHU6j%m#%4fl}YemL8Cuw3LWRVo4`W-PL?7lt|6 z<3qh{*)3i^f89_UTX9S=mK{=oeH34UJ+{cgdKUz82Q9D*)B0}u4!`98fe^a76nkx9 zF@iv_!P4?GY6qpK^~L>0YI-sDewq)LnBI{u*EPk!Zd#4YS-Q@}rmyEptjxICH&b;W zp@B-tjvwx4DuXw7Gt04KSxsk{o3-N0nz%$=~bfZ&^XI7lE1B;-eKPdpa9A7AtZq zt7iv|4d1iF)E>w zOJ=M!2eXeR)L~amjbbG;OXD~|$JR}V#A9L|>h~+4r%HjepWQN6m{y%Nj>rEaKw2xi zg1s`n3j0TL6*gsjLl&30hgBt3km4TjTa{O0#c8ETIr=2bJy!UXc%&{9a6QbGisMG5 zCzr-51@03i)a%HSImWL$%CAc6i~DV?_=5VdY-%0Bw;E;_+gL*qmJcf_avJh3 z&H<-Q)3besaZZXnYq}lTxhN6`clTJF&NIrfvu6LmE?-#=S+UMHAfc;EqUZ2HfJSU= z-MKSKx#?l-g*1t3eypL7wAKrR+aIxhu2xygry2*BhkBbW(4Q51-?~pl$yOa zI~b@}#7o)pvx}he@Brrf@{Y~PS0<`#*hYR9={->0wd}Epfd~Fy+>EW8-VilcX4Ej? z5fOs_#*3NsIa4_|)w2;}WGp*3pnx-TLy*%vV?#2!GF#b!8G-t~A)}lWkB~5%Im2vh z9T0GZoYihQ9xUM!y7J2P%qzy;0|r5IF}B-02T&I+6Rbe39Uet}|5!g}7HYK1Nbwjd z0A0{(;kFpJyqp+#WQE`UNBhlky2>xI1S--F+-+*8*&`Eig^vHZ277c47S}Vc#(%Zm zQ`s(yO>Fc+187lVL=b9GO0q2$`ZJykm7{bSf^{gnfst*xFp^pLT}!Vc?p$NLot?Yb z@{LPlu1hT~$wmze!<-{^o?%NZF2!6!CADVOBh{MbER)X}rb9i22jv2G+*W*tZ80W< zbRM|%StbW*)tZ{vI@`23>rN(afV0{2t17Vdw&84aOUYEvcV<1iAw$mMj^@WqWJ}z^ zRAqN&hVUFbKusSm1Eg(hsbhOB@gX#p?Ygu)o3|AAIjBA}9rKOnV{a@qq9-8xfH(lI z?TwZfWseQ@qPzFLyBo$_W``~>!Q5q+E)SFAu_3lm1p8*GnUkQ%vOuevw8D!Ze3&KV z^myQiP2PWHzi*U>CAhUB;Ee-kVfEemroiPZD@gIM62FOCm6%l(5EdR<@^_dLT+!8= z>DhuxS74K3s6ybeC+4#0H|iTW%fb#@6VAR{7bv{=`hbfsUDsL?hDHgcN&(H|8(sTbSaYYlng^qhM8TohLgP&;t`KxF^~7x1Zv)Q1+XpG zl|ZsCVV9=*zA-VIu)$i;|Fbb0BiXf^)ok{s@VIR1}RLp8rrw9e&77muOYd327$F{Hox3xlC9^Uo?`sn+UR45+AxE&FoDh5JDNScdmMXo&p7rXlq1b7 zV59bp1Emk%l(Rn_iv`V7muuMS`@e#2smtZ4bUgURrB4CO>s8}{Dt5J8fOtd16!h{b z^m700%?@iBHu{8&?R|JO`{39(Hu}&+_Tka5?8AfO+4~0*K;{vI{_MyIHu^{+d-qr( z8+|m1y>}cB8-Hf|p7@R3a$3g5orq)GpB%v+JT;QNcyc6L@$^V=0lkPGn$7M#J%L%r z);Kc?)Hsf?=3N}h+AoY@H=j*lmz^KQmOVQbC~(H^v%}d17e;~3x6a7fwCo{l>cz3_ zlJjFhw_9iBto`B;cJ;Xr;OkwKtH^OMYuQ6Nk<3x@Hhv%~N0pn$^M zu+6V1L5nrHdeC8SgBb9+Qd2GHH-K@l-Uq!XAQ5+6w;LaR6;Zwm_Kp|0*rUH>(!C!I z)N9ZTxcjqlyYtt(5^(5aV-2g!yHZFr=k^tEP6#-(G4Hw;8ZGmEV-9Wm-+x{ba=70G`BvQJO9@!NB~(bUwcj%$1oij!Wg_MU~cir6Cwuk$yt*8WIGx2m@67I zRxlJRY5ypDr;<4>CS`+E9Yg7b-^c>>%nF{r{$^%dp>^}X!VKoj2YT9>m_p-Cb1g_^DH;5 z$`qz~2Wl{U9f8&#n01^#z^nC`gCfo?S2kv@apl6~=FCm5uEP=Sn8*AB z{W~#hsikZ&n^A%|7%2mb2QV`5X=nzTOK5eOUkXH} z)Zj&UHH0zpN&RT1wTu&Y z#VqGdvLTBp&D-qNL990162m6PnC5(P!>RnF;(UIxe-874f1vj@W*YAc%njz1ltcJ> zpGlE($wkkZr~KXY-q<(#54G^mmq?dphQ2x9X@G| z7i9Afd>ST*l+kIiD;_#rWuD^!(Vr9$crXMnCJGD!ikD~S38TQBVG%MA*FQ!A);<$x zGRjIr;KYf77Xs!v95hAnR)wxT<_baR!8QDR#y!Dpd>!&Y;Kc9Ec`TSmVKMOEd?(XM-wf;WLS2!tak8CLDpE ze?L)K`-BQuX0Na+cJqPzgnRKd{D5#57VyDg;d)x;N*)!4Q}%js z@WXN8Of1=?Q^Iw$3|u@dOr~tk;^5zBg#$1HeJ==C&@!<3qEJDtfzFqN3orwJUZFQZ z?Q6m{)C?rw5H7(Cl(;RV2^mR68FNQ?gxUmm?+J%t2HHHNH^KZz!ei77e0d^VjTu<= zOt_ZT2l9RuZl^XuomavUn1Ow-X*2+l393<-J@73jyzviu|Lgvzur}pTs}&gEbD#{C z{whp%A`NW4Db|B&UxYf4IYVHDUmT*nxP8jzj(mpk+i$(REBW?D!_pOkcSxYAQ!p?=z7EJcn|C)&^d-i6>!Qw)csfD$sRRgt)gIT|=6PmAFtxbMYCPP#GDtIcWZNpckaN z%JqeB+lm>)E9dlQ+K73luh3C^f|7ND9s-uM?kIt?yNY{ZX8(*46R*zcAx^=XiS8{n zVuKAIAZ|e~M7&r9)MYwau_XQAjUi%5z9ef02PE-~6hEVx%jfjO7a@g<$B9W$5R}A8 z@^}I#$>6DC2bLr)SzMB`el-V)?*@oLNzI_?@GL71M{vX(Flhe&08<8!EfFuqM(DAe zW4-!HadT{hl(pg^n002ecm?*fRlCG__&(Sx7Ep@P61aM|6kw|0?mOZhm__?TF%E>`uE*kom>&MC_zrHE+I$fI7>uqPgpxE|X{xIw zUoc(GE*Wj3>sFhCytN_?_*C1iklCbwvbRxk2D7a zrEi_MzTjd@$zjCP>{b#}5S>!d2OOUIO=0sc5?W6q2(96l9um?-%VH&yaLb(%CmBcC zZV|+C;8kS(L}(r+DNE_D1u%B_euU&#Y{h${B#W?{jvFu0W9!aIlr*Aj_Q>3Y4CEb< z>cHr6aaxf0SBFISXo{o*rF;AX&PQdc>)&;yr|_8IcoQyvQZp{UWD73; zbxY}EoPVV~m(OrgKL z_Au!_oIigom*0Lom(L_}`A3tahj9L+X0Ew=3@-m3;PRKw zmmb0I_srz-eapD~bIZB>Su3U4I6ry=m+#!f<)7TlZ1@4RG;V`L& z>;%JXf(@c%ZV|fnsUxe5uge?Aa`AO+Q`r!jWv)Om3n+v{@74q%t7S%RW^+PE*@7Tu z6L9pBr4|Cs39H1)%rreqfFCEk-&>X`K&&M7lg%p>E35m<`qEUC0#=p`mJP?O7>CJH z3dKs~aG9T`+b&?`(I^=j5pDwG#>z4Z#mdrgvMz-)P;w%t72!nLtU|Hknk35=Bbh!- zmn9SmNIX+E2vsC7ELFCpP(a($WC9@q+QrHS7Yb-sx@-on@;_wAe#3yJ7szO)y$bCA z)6cR9EFxGU8(tXBz_?{H1zepeYmM3av{d#1v-fVLjAm{cvjt-h){M_R*a%$g9xq~?)w(smYu|&7<*Ut04WMK zcp&SB@2`C#^B`w{XP?Phpf&>9f0JFu&%Jvs>xS>QeJeYwL{|?ZA8bU|bd$UvdTy6P zuG1n?A0h84N7qr6s1l9$2jEoDrV2WW8NR0ps*WAgVG1IadSVVDmO5z*B7(kh1rb3{c!T!i z=Oz^k5+OF=^ol`fHEt6$R0)d57N1%tCbF8>=9fHur`6k$^Q&2X(`nm+| z$JYm4gSO%;+bxJ@4hA9#e#ZF9xS%~{Xg%g@k}L$4Umg^f?=e{$gQDeyf|~||CSe6B z_Xja5bPYKh)C5<7&bNZjVh_Piq1`VKz+lkL! zv?>%}L-*`Z&`chTb`d7@)WK`-f<^`$1{{AMqyvY-2)QjzciBe~^=dMjV23NvHnGzjrp$ttT;Mcyv`%&8rk{X!} zz?KxO!eNW_;Ci?!f{b9&w+xyWoQT_= zyrsc8ScylL2M1x(oL?L4#!CBbYw#Tk58zGnXb)$a8GD0!VbkQD4nBfay!|3)nwpn_ z(Spb(cxLySJQiNkhEA&?or6&wg5T%EXR8+vq?L1CF>PcjRg47df zl7iHe6BD@W+&%ZyKYWtYWMN*#^(QgHLl5d>tCH zQemXf1J_Z1SB?r=*D3zSEs|*yXS9Ah>5aB4OHmV7si=LNy`0AtPORVR=Qut0zRc-) z>rGD2Ki*Sx#&+59NUMGA- zHrF;$;xREav{Dl1?%F{~oLkgYNm>-xT}hlfxu=piclTIj5&Zo0eo7~e6Qf#NAG(Gp z(L66dp3EDi45Ep|FcLsWGB|pyvK*FW^8_UsW{sGnB*Ux@QX~ zl2y*d4tR2|ayxD?#w=EPu}q7XE9cS3gq(nz%7Z)BD~A*TD?5y800v!B(#$iUiA5_u z$srhQ*^w&-n-*Eo*SQtE?ZA!8N}8ZPzJaP92#;>Bhc~Y%WmFE?Kot#k)+yE%Wala! z6vH^gLKH}RiliBMSLwyOi}i5+4JF#q_XIS)quf{+NQfXy(sV`NF{OZx$I9UpBP#F@ z7{gQL1|<@U1WMQ5DpOR<6WCLr+8{<(jZB4x5KrK*a#fumbSG&}>vCO3`(` zLzOPT_uZdIUF^*I&I`U;Y#H#A*PQGNPCUOt|!>LCEx#=2Ti znyQfixW`6mf$@fF#=o}(M50us8BY)uth}unz?;E$Pc`S?7Y_(b zv->I^H4j0LR8c$+ot~(s)ABIxsj3}K12Fru>L;#VB)nAp!PQbQ<*kb9Yn#uiL2%bQ z)SyvFffyMC5B;ec!7HP|UsQFIzzq4MdPU)r5WW0>D}L_85Spb%QuiZt-)FJi|6+i4K}j^hgKy**3ryWAOTu}i)BM3;A5?jQgB;j$j_9cNqzONOMLs>kJ(5!CAMw;O;;o*D^3L8HzHkO0CnucUjGlF5@o#r85XeM=o|zY89B7R!RqN)l(l;0f)Z60X%J^)`8M9R91Mut(xv@8H5cHc151^ z-ksGE{BU|rclADg6h5q{x~rHI;&C5!2LHg!IQ2a~Ic9`<4WBGGUcHqE`(uK-H_bc& zu~Whgl@!zoA5j+Sr>beIVq-vH*5pQ8LEaQ!I2=A*-GaJSEXmZWV2j!6tJD<&BLIXT z1~s>M4B%j>SqigR^(zBi!`&EGUZU&1Yk~5B|gTeSSYAM;74kC`B;4bsD zX#kvgOf3?UdI}mG4Y+5{Np%s*j-fFw38In?avcFmZdM(~vvyb`xa`hh(W8G0~}!EGR+B!9t5KT*Zy2HyuVzd z7J=+?12vFYqlrb6MmRZgon}W6m#n^1!`QfF^K6Zue_+xjjfYR}x}s^#BUo=}&MCQP z|9q;MEaZ|Y&oyuP2WG$4d|}S(iEd$Uc>8!G{J0L&b3I8C8ZNQUiaPq>UAkRM+X+Z32?=Bx{>;sf1bD;askS z)xKv)u41mX7?)cY1fE+yUpq}ga;s%(SDQ%c9n@~&-q^WEdyq>_-m5*srMm6c9_CVI z4r(VW$s4E6X+LrIu3XUm!llk-Yxi=gd6%@uxzxZb+O1rw^fj%ARYeD2?n^G6c z-J7G<`PAgz3Ac_HZmL)J2dAQ0MRi9wac_7g>uzxD1y9%Yl9G3m(sZ0!cBShY za#D0$q`S?%P=AT8YY2I4*QNlUBe&@O;(#Y^*KOyY+o{{eX(}iypp{E|b(J~e+fVCu zbI(0FqdUpHyZ^jS%B8Me)Ggw2C+6t>;8HU#>l$&nPp;}NbE(t0y8B#i)=eGnbTe-2 z`iKdCqKCSnoM_XZ=&Ep9zVb?UlzU^%Yh4O=uigh;5AM0FPr3+B-oHe8-Vsko^cA_% zRC4`9&gqt!^t?^oHocL&vAVur&pp<@i2fm`@5UwdPq-I;sHPvpDdTXIelVxLIxX}O zoXbt>sMm2UuZh-QSc7w&|a;32AJ$)ZJa~+;~re7yO*C8+T%_#;*tYx$Vs^93<3}}-w zxFPyAsS+rVpJ+6LS-;bASQNClmMbIcmEigIQa+%5rx$})Z}px3eX|T=CK{T7gg^BX zc;TI%YECzRK(la(-<`YIKu+k=!y_N`AtF#ZbchB#{98|RYzvR)gkfLwf6#Ox7+~jO z!_NYajYdKP%^Z0?8wn!AOIkLNUYt-SHO%07SuQuwtfJ-faxuuzn!4CaQ_E(UR48tS*bTqZa)XXOGoXod z;=2nx2AZksfS$u(w%2fzSMlB=g~WPO)NqK}>QQ&I72r;JgA{yTlwpz(9N$0K z09%wXjOE3>Q_esW*%5JZ0T2~1npW>1z@ie=s9?~5{v8bMK&MIun&Wf>1_%ZhD;a`- zx|5+SxKY{gst`_90ENcwoei<@OjSb+wKK0|Hs*C@H!TW zxUR0@YoSC8K#5_~`Ua}Q!x3BUKtxA_9QJK)=p*1<>{-iv7aP`w*2OqjF#1P>3QlZm z_=(cbcr40cKnBFYGY_hSvU z3L{DoKnQw(d?pr_>|>}vGa-T$8x7ya8SEnBGhp3dgAQbW)yrYjFhe)Kf!aEP)_bDC z(~8J(4vsYZNGWMFTs7Lzo@>lu$aq66rOpR}^_2~!K&=Ue-~N4Fg-A_RX{Kn=doe(L z^|~08>tV3KCNm5IO8&cn>@tfkEjM(bbR7cV+O^V9nzE+1hC9|7 zx^e?*=-X_#!I1F@RBkmq=aaJShP{09$_~RaJ~?%lVF{nCxZ7};Ps+0l8~Egjz4_0M z+MoYy*g*rDOUFYX`1>KlVIP+~_SkTYzdQe_VG(8X*&1g3YN*A_qWsO^F>&ZM#YP#; zq;J4LltD}D45d*4KF>Ask&7$X7{!m+;#5YK&b#wLop5W2aS4wXqchU%+QI?`m~_IW zdSgAx27p6BtLM$(37fGQ&59OL_IaIA0ay5q7pbcQMgUFghBSfAiyBYL>6DC)WcrdV z0m_<2DX=CP2SIHaW4xSe1sat#a=iy>1&&uW*5O+LYYpRo!W0KlaV;q2E?`&*^P-Gs z#+%fztM!cC`07xvv2hlkeA3)FfU-J#Qw~7opx^gCVMON$_cH3MtffCj7@58~i0g&m z26hQlmJ;oZqj~3s9gOL;iVdJT;a?q%kEpeaVIX2|7H?~1HzUpQ;NJ=Age_x?y{HX= zSki*O78}a~=XAFOTpMUq!PHpejKavM1$Uc=G=m>|8%NSC?F7V=fYL*ZN^oO?u`H}O z)VQQDEOA({&v2uQh9!nIc7WO>V?zn9y+*KZ3ep-L`;pqaXsR)hw`i#u#u*e&hVemz z6r}qWGmQgj1Pvh2bTa7OG2E7ZR9$ooaHJWfa9^qs?W8A@3>D`X=l^@5AcBph>4MRF z6QM1`h!&Jd@vG(;DWrn&^NqjLR0~vmFNijRU8gidFF-o5olA|$G_Lkwld(U%yTN#g zqIig2PNOL_=>qcaPkVU(Hoy*tj2n6Fn~qX>G(jwW%s7@p41iw-=w%hCdBRBZc>)6X z)}!I#Q^t5+9`{)qXT~f|gagh|HU1F2{FyI4HHXHTx#I6!G7h5gXjFVJ(EKL)Nu95F zf1^FuxQNm!y&!_QMd@K3!HeAMDsXdyu@e0B#JHG}2Og&HaAR|r^vpPeh8xtykd+7* zT>I9TCSp>!#qBS(N|ggUKNu;ObBdzhLozEs>PO=r|Gv2d@l#Emq4tvz9q^a}i+(mv zL2SWIj46_4Fpa@Lf0>D*;UtWJ_8nzmaG%_iB1Fn*q%_g|8XaL`Ub@T)=c-IAX(CI6 zFple){??n&iOwltu-UYhPPvm|j>XiLQkg%2v@nwlpdVAwf$^(`2Z4p{%-vvZk7)yT zo|eNq8bFZSq(#S68m%z0h^Y}WA{blDL~|w)68a~Iilh2@6Z|sfRR!{XG--glfvGmQ ze@0yf4k%&jffNXHB24Jui4+)A-Xy}F7E;lq3PM-s52oUBbZyj#yAE${xEErXJmTMRbs#9k&DX4*wtBL)vQQGM4! z7}z$-vesACd0TylL)s7!zP+e&@%95lBqexAQd7F#No0Z&M+OO zExSXq=`E%3yl;l2no_V&E=n_@kMmQ&@VTa)wA?(%Fi{<}^}|xr6t0anEiyI4I*G}o zsS*$YHKA#q(R*>Q)Ed(^+`K(lZ~7Hq&u%uMBlT0@+^wXx!p_@Gb!o;<2)s9V?aT>= zb$6SncEJ}Q9LO>$Xugp_2m?TsY?HEJ<2ghd&y%pO$;a{)&YP$rEes41@NtB+>x$_R zR@mXIrVF?~NV{)Jk)W&d7xXJ)6h1|;556{?%;)mwx2AIxRSgjF5t1Hn8;7nxO)5Mx zD)q^94)gozZ&P{9XQa?v68CG-GIL#;p$00YH^{4MmI2poblQ2n-KH{dqRMQbsi6PB zD&F2Kht1UHKDf0c20N!UzmXzl4_M75XvVLB0t{fw1mqTr^PEz+A=Er3zkq7R%v&gR zO|(z|tOVCfn9;XELX#R^Ep9ep9lt7VzJhIVq`Y}9t*#-`^%h)H(ZM_0@wIJja~)bR z(BjT@EpWLa<*;c(b6M;c=uE7R)EXdg2P;J?;GCxBOw3)`mS)AHlbLp)#{=hfF?YaLDbvHe6kFxWPv+xT0}J|?kKk*Uer8D1uA(lE z#1JlcXs}trFt^FRw~(RcrT@M;fM~bd4H|R2S!#|0pI2I3aP&xXiU6!%sL??47&H2! zmLzA7Gbc*8q<0dkVO(n#&0(}XzCoo z83pTRnP0g$m#ux%T$D2o9COz^kWc>g&|HmA*8jykl22y8FrVd<8}iJ6Pquk)p3Nu! z_-LLG%;8QKTbl59pUN$R`D7oJC4jq2Yni~`ZD_JI;a^+jwbbYDekqdwT2k@+*Dgfl zzZO%@LiN+7NCojA`hIQ@_*%yz0gYcaMJGm9vm}X`+aM-tgaHnyWqC?zY7Q78U_CE} zzoF#|!|9}KV@o7&zG2NQN&ExS))oVQw`4m@H8J<>=uY{sP48kU%RhTQ#$w5RC@HNh2z~6FNVe$}EIue|mxHf;VMF-MS%vShlxaAI&3cf{`0`%3E1Wq4i z8Opbnsz z_W>epZRT~qb#6YxBY!jr;%vJX@ z7WC6_i{Zx$7OE~hfZPsLR$9A)C6_EThp`1vDuU9JtO~F<*TQ$^NtZ3?gvZ5T{B_GR z3S)ea3lZ)LnjLE2!+=tG78$70z^em}ZcGq#J+KUyA|6QqvhJB>BsP@qg@tB{^1n+` z!3HlajcFzfzsG`zYo`KPy6NAR(#YaF$6MQA!(SFzH~epO;=(R4rm$90!WJqkK%9YR zS}V;C;P1p%0)*ztm=i9C-SpNzwDk|y9palD9!PXBGC0d*y^T%X&uXRla_|4(lf%uk zS=-}=qoK<>il$HaZ{T1s=vS`|pkpuQLq`#7@8E#9E{L?w{@>^%7`Ps}RPcT|t5=42 z7go1!m!m7JXT8OsE8Dt*xU`U4cb9SzqD%`YzTOF}e=#ZoMHv*A{)O=tt-m z!=nAH=*R09!<+rBXij)BTsqKt4CBR)w0_23+jE??6h(WV-w+aGmViwsSliHa_xUP@ zsJ-&z28vYvK2xnI@?H$BGp*HR%skw|Ip9#%x`U<++{3}dxz>{C%hJu^8h8L$$BTeL z)q|YkSp^(eXr*3Gi+Y~x1{)Sp)vtK1Z9F)1MJWMek2H`$+Y&3)zMb!3z}}@+sx=L* zZ5~uFw>A<1b*&y6&~LT%F+~f6n3)Fso4=F-sV5B5+r=(S+~;{f9wMwpAkLlvL>|Rl6F%GIFiyy=zt_O%wMIn9Db; z2YBNxyKOyK7$1XCcded6u>_+YSnu)NlzwbIRv2zLE!}!zr8=SUA6mNp40VZ|^^U!; z9xps!aj&f93#BSfyyQG9Ixvs45aZukPZXZ7;_t1CY5E_euPkm2_S9e2<9wsF_$#fW zAAv0yn~_pMM_@;h?N?qcZKSrtbZR*QWpW$ca+}t61pXFmyTtR5qoU_wvf8$nqCten zAajJAXXuT#y|gMgVzPCj35QYfE5LK==*t6KbK$@iHpnL{w8}4oX_J5VbX%K{qBuYV+Vocu4P4#L)|s*woDULX zZ3+vh`&EGA) z&NiH~j>iG_Rdlk_q2bQPaLrcRS~XoeQvjm^_scmX&~wxl$1}R@q%B6qRTO=;?H4JR zROH&w`7fmUT)SaIM`MxXqFXi}|3J<|+aMmH=h`@hyYTKiO2gGswT>SKgej`RvVO>}#mYL5-dmhREz2_#(~)*{9KhL8r#P zjmLSQvu6b}JGn{AM=tv+3KNn^%lozMX86%<*U)s^nhW-!V6)Fov;7dgI}4nz?GJ;I zq4rlou=#L%4TuP{-=vU)VC{cmb;76N_O~>(f*^EjV3)znGIpO5Y*2JCz}%X4Av|2(k7RFlPAhDY3FbH{AWC+MU z;qC@58l7^O*x25XSJcgBcA8;JfdvP*uv4A)S%9ExZQmi_{3*AsJ&RUT#GeNJXg@=3 zHiBU6Xh$PT;@uxR+i9le3M9+uYNv`n3J})B*w6FaOzCN-2^Aw2xl$owNy&S0%1HY@I=|r=DKpysm6j2#8+4G# zIQuEyQg0Kexq*X{?2ik_NVQ4!6Feijsdkz@r~!kA!EMv*Eh(F4q}b+m1-zJQU&e6* zC(N;%gT>{^gm0S#>rZm?hGC0M>0wRK!MBe&X7I6;bx+MZuz@Xq|Zmv`B}&`f5L(w&2I z^l;^2`!2rV{>SX-8*EZqjT8ArNKV;rQdDS&iZDn()xGTvu<8{%)pjfdv5XvB4F_Jg zKb3H-^}1`HK*0|nBA32(myabbJhrbuhruHDz?nyO9cXdiZiPFZ*}HL-9frQNQ$-a8 z#gM2%_?sO?6-1}^^Xw?9Ajw0&+if&a1p!B%DFH3yzIm|nCp(JA31ZjJ`R)<+)jopK zBl~?5vg`wnJNi@B{(j$tEF*l5 z6*M6WVK)%@;Kd=waGuAXDmzfLLU_FKg9Ak?B$?CDfua?X{JF6MMJpuPy{Q95D~AZ876 z1X_#<@%ijE9O6i$F2_AFM+!4XIo9z-bQVsw47$1$3wfeT1a6EOvh_LnjTpAV zNe5N9RNxx9ryaWlh?UfHj2u!z^jvH7>RbD&J)7k4=rrzW^-chyy-@;sc>o|j%TJXpJf~l4t95gFA;2)a$ z<1fc4%+$fpj+2GgRNPlb7s}S0*A!ahK}V0*FWL%9q|Sphp%W1>>NoTaO=)lOe(Oj;w zhZQa^?u?+B@FYT$a>x?M>Qc_964bxUD({>@Gw334-JbJ-%C2h8QMgYa{pzfm&Q#om zIcq!h)Rlrjli);I*Le=<0p6_dyvLwxRzqh5%@8bLbqU-`3cp5Csu)DHW0iP(>Gm<`(Y&*zS}woB{?St<+*4*@7jKMu0lTqF|m^dTzc=kO3@ny0E@$fKb;pToBZ&dcj0$$iB4}0j z9Tv?#!+-&N+~ys$By$D*3<%a#uOD1AyOaZf#o_B(E~jJE!EnKIleTT@?qqPhD*bw2STss%dNebU^ z^P?-1rXL_iQg?Oz!h4IX2feo-m!RY*bXPsGbRE|kLq!(7{Wz9x)x(VU!807$+d(2aJL zp>E6(Ulwlb*n%V%nySY7f(IwM&( zxhp&3>O|kdoN^uH(eIyeQGM-CnBEeC<^}I%yU?Z=!ql?ME<3e@rd@Yg@qV}_V$nBx(EVYDVquNE9zP zFtJEOm?U*S6>!{-4RWifHH{F9!Dyu$EiV!FuBzQ=d5I*K8{BAli6ql3?xxi4vE`Jf z1AOFm2Zs=Tfj+{Gem1fMvT*6rZmKQ&oU%`O?A+!!MOio697h;Uspv+_O(glXrW-9c zk>sEC-DtUqBo8-q2P)#U#%{FSMDFfuRIr5Ub zKS&MpxrU2wgX(F&>^od+LY`npZK9Ng@UpBhYltwx{zS)h|h0@{aZSE8J z`83Eq_tPHkIqP2Txd;1*u<*e__k60)N_ia;hG}9c;tFxBSHCMWw3z@tKj~gXlz+xe zvpb6TgZ`YGDuyC2ue{)1h#9Dr<38~3$G{L_P@NG)%I7 zwe&(>-geuK4!cVSz3;h?(lYSjzMCdggKr+Xt+*vnJf*F63*qcv+($7++ZS${eTPH` zw_mzXVT_e|ZknBx1f%5dZmJK0wu(GIgQ($t3*7Rj`wgnMVAFB@{>?4j9`RuAFtcM`1-ZvAjR%fgN=ur zt>OM!o^~|D3#6a~(83a?1MZDrWm%ntx!F|W1?&@5~U zxLGDfOr7IF3x?@Xp5dWeBP7P;;Fa(f;6Y1->2Sva4_YEjhv^GFU#Z=WR46o`f_^+1 zFESro;n_=5t59e5(>EIxXKe9Qq**b{hkilV z9311b!Y*2Gbs9~P`iR^@1`>CK^@aN^-Z#|TM0~z32Q6Yl`@(Fu*GtptBZc>eD4vX9 zn3LT4o}{>U4TW~_M^tQPPbV<>R)mmcL@=&+F&%7I!dq0toP^^`dsmB?9Igx$NH3-= z1O3*c*99k3@VaQ)rZ?-n6F{|XJ{K6!#oHBBse?`ny4%G|Qza49{ERW~aQLu_7tJ>0 ztwtvso~hw|LLnE10-622P6(pBIW$g15O4&IwTFnD{nN-fGQsWbnb%qPIdbDfO}J0 zuZ~kMywu*ijV3n!4x1)6#sJ9HVespc(B=X(zvSJ|>+3@gFHLw%I3gBb(#uN~BNrev z?(N;jb7Su3rHGXQ#)62OXViuxqQnjI-sBnSG}ucMI2Q;d9qOfuo(mBCBfM96Zh}U8 zX`<)?tes=LG@&$6ELX96jrT6*xzQ(iX{NIZxY;qm`-pFF)=crz1RVufji#Yak*oT( zlf5)?b^+GY6fae?x~n!DaNGz*+WND}AX?`=bafCWv_ zF}6_+gW!^1y+SEUb)g8BMT7I1R*X ze6Y2swhyh&5$>D~d}wu!B-2{>(CQpXPHXQ&t8*mTs-q9B&XJ_0vk$G#kz~^zKD0VV zlIMT&q18E(oY~)pR_91EE8d4b1|!Mk!+cHX{Q!kx5QSn}dH+fp?+etchKc!{sVDd{ z=!@XPGz<6X*4Jr1^ywDiyzES00yS(PY~x`SbMj%M(tUfVVZWOod9lE^K^Um>8y5R! z@hWe;%ty6k&Q<@w97(wqKD1g+G@)7TL#yQ^`DTr89%bu10ivi3ZEc;w1&B+w`!Xp4 zDRPoWl!$&i z_xbMpdzm1@`aWac~HEwrNm<0gOb)ud@{5!2I2bPngq z{lQwIfz`WhehwC#cKT_iT@Y$2jCA{HVs40DPUaQYwTOQ^FRQnNe;==b*CqYk(WV|O zcK34r+WZ5%D*G)o)f^R+$m_#kB+WBer{1#x9 zXz!z6|0G|7 zKlkx(C=}MHe*SYjR=YudnvJXlGG31JQ^n#0;m}0Cm)lX_VYq)Q-+$P~(AO>m7!KEr z^^0h_VJ z#gBJ};wG?H8odt^ZeGpySD@_QlR#-vt_ozQ+AZ8-SF`#4k(B*J5^y^%Nzo~pE)FVh znZGwpOh=Sd`bWQ(d{qhOZ}JbLg@K3m`2Ub{1DCUh{SE0oXpdjd9r1Gim>(VSLb})M zXZ_tNM|nvgV#~b{?zl+ZCBH<%@mMO?Kb9Y|?7iiu8uJtFVQ`4Poy_H24EDM2$Gc1Cc$J=YMe8<1| z@%CDrWQCzm_`B1kp;Tu#k#Yjzc4K%$6`D*lj{FXWkJ?MRL-C$k%;+Y6DBe?xlkSqC zcuy@(n#+gcJ+(ObutF%_Q;U;pD}~}cwK#dFW+>iMi<4dIgyKE5IB9DbilTOsY}70i zMeQV6wpC~eYG0kzE>w#5-dngm9h2IJ{!WdBTu8!wjQMkP=tpXp`-A*)hz@9(L(^Cx za}0ziV3gCe2P9ri^Pzb4V|*ypYI5ZD(7vGcm{1qY8yQM9E(#zlpcuQLcmE&OzB;g} z^LzhWpaON;;=1xE6=u+wft- zVT|9o?|qYQpZ|9H`(w-7%e~Kij=bmfbBD9rhyBH8VSXOrKaNrZtuVgeImZ7OC8BVI z!bSdK{ZrkcQ5B|NQ{RtyRH$hWXD0c#qfDq;QQhG2EPv9GNh^XMiw_SFU#4C+*FT1` zCEbcuK0}EezNF8Sa|UQ`U+BHkpEOb`L-@4XzX@gRUxrYp*q?MTvJ7G42LGYu0mZFa@q@VOBjdsus z3*~{%;j{iaLIVO40wwa}b1Pu^FJ#-VfG0QopHfyj`I|T0A=kbYaQ&|Td-9vtKJf2O z^tBc6#~=PT2v%Y!^F(=B(c_i>9?GUvL>R#qZ})fDS`d&y`KUDqaQC?)l3y0N2ORdI zwYVeL^v1YH6W90_K*<*Y4Tx>Y2$&uk@U;t-!}A;dWxFx=#RmLEY_>-*f#k}*$_j9U z!lVE@%3y%&_qHj(1+sGk9unPi1R%n`FQ_^}|8Qq}5`u6iw)FLdM*{-fh_2GwlT45C_B14fP6x)P*JGQ?U6IY$C6Q|crNF-6`*xUO$a1uJn4tjwykv*5(e_8Q{P z*iM0N(C19RO-H+Z?9STiKFr~CKvm}PCZHA+UJkfWL1sVjmjKF=1`?PFx32}Xr&MBm zco|f`8Bm$PO%hTd=9{!qMXCN3W1blC!9l8rNFaf4o@5cCkPJXDhCplC;&P1tRzcu%Pnv{ zH6pd~2rLzWEy+7@0~O|HpFmP)KS>d|Qts^M)(+e(M- zD-Pon9T-Px=ybLQ~7!U9<}>j>K^dp2D<)%UUK&! zeMBJX;D!~rCWEnoo(x-f4>tXBohj^_F@Z|fCUamY=n4XF%WW@&ObBd487K0$6nfw) z7XSEGmnnhkDhU}NXhz^DIeNj4*?6Sozt>o)%8X|mp68;RIyX=>P|$6DATFv%RROXW z1b!mA^LSRzE|8Bvdcx3UfoCWVgngi{{}_BU-w&L# zFKV9#;-U&KetH&&iz>W$@I@dls_^2wcY(O5!iz&b1>&L#FGf{R1PVXx<*2|#6@K+A zXGJ*KWfR>M)>CPo3R3PD$u*%(4Ml&l>y4_b;A!r=!(V=iP)a04BkO;dQlC$*woCA(tVQ8WcR6G6sji|;7> zV0WZ~6xNpHD8{g9F$&6vkw05(P>97Bd!6D#MZ4m;dc_AqXp+DH!NyX25Fg$mk6nY( z6{989uFX~)`tK|NfsRnRH2Bk=+zGB${456_jz2^-XTDx|f19M7ANYzj`S=*~Usi zHCf3k`>&x_Uj?SNDTb{B6#eb-H)xmwQ`!`78==6AHpQ@cqyo>`7Q?Vnia_bMrDGJ& z(AF?>q9TG4HU5W3ag3rBt8!1_6*uKRJ)seTZu!R+!J9J`jxchjqD0cTevaY-)iFNL zRggyH$Y(cfoUb@65g7b~;yjf=^dbdmIL-+?U99+BB5;10;wqKE{1pn)Sez5swOVmY zBCues;tG{On_>lNftwTX*{E185!m~af|8-1V+`4%c!G}4I&D{+p$gGpr{Yfu!)LF8 zGPB2doZF|M41i(DLB%Aj*DT~XtsWdyl)&>7iffdvFTT5k72b5M42MoDevvG(_^g7G zbD0D2G@ZT9D@dDU%Mi?$WGcZ|$yDI^FN&YZ3gL3ByP>!uDP;U@np;Vl zY^z>)1&xr}u3puHsuHbM1PHr;vaZ7=`{yAY_IyG^4>=JFFS$3Ur-R&}pcmN8%7^tV zAwlybzK>Nwq|7G&e5ETq3=6`{CdIH#8-$rnieYYKP$sFjW3zNwW|LrjkQ-%P2qW4* zPu(@j4r)UgZ{$WsKLbpPC7J?oHVRETrxcf)Y3LhHC zY?hd(aDuNY20PpIG`LFeK7yWbEjCENRdfr!Bzfg8p21TkO?9ajoGxi~CA3UoX0SW8z7&sjt+|Jo<4}@n1+f&*SdGn|KY9QO16}*GM zqV0g-DeSf}*blOEg0E62SP>}G5BO{`+c-N|Oh1e<2Y-Pd5*h5{$)Hj2dzv^L&==M< z3AT`G`+(rB@)5hYErY+V%6b&}_&}FF!R{4hV&C=;CM-w;O4@)_3kC%5g5HCJ?^AkH z_|jbrANFLQjlr#0?BGx@*2fe~=?j%vimy>$8Wa4Ry{wSq-v*y9m!)P;4kitYt(1JB z@zh{U8pHj@P#8=Zo0VZX%?u`uktGC>Tv_*RxU%h{DY0n-$lWc zL3QVN)<^ zKA}vp{kH^T<|XdCi4c6GTx=@t2(}aP(`Qfcv2tPkvNza4V7)jHe7sy(a4>iYr9;lO z)aFsJI7ryzc<>4bSyc_r22(z2X$1_1kLQ9(IXlY`s$UAmFWhs(MP8-XbrdfcJgx;h z6I+L3h6oK;)wvlgdl4va2U|pFF1#B|nJFuivCsYBs#IQpyb^?h);}pHk!jC@lS!Ro zse{2)eC1`Zw_x+>P4H!^KXa_>?}A^GV-QEU`Z3s1uzB$}JqAfwTTg_LBeSfUa}`70 ziV*aRLkKw_a>2GZh3uuO2J)Oktj*_Ow~&+NvQdsl$TyThqt*Fc{xO?XuSSSJ+@AG=FO=)}I`Lxk&icTi=DeA#CJfTsL`sSA1C5k`MSZoZJ#F;wDgCN1?2cF zK?6d23PCK(ZS22TX)C^2WfNq}nve|2)R}B#zboFDj3&f^>G2CE7Woc#a%>Pj6(NN+(pETt-M2V7ZDb#LT-)Fd6b3& zUon%F4D!u^Km9@vQQXstASQLEg@@waAx_UdDirq)@#1KGDDEBN#i8k;Ru@aj47FOm zN_Hsj9pX3W^Fwj(5HId+5{i3=cyUDYP&|;$i)&kl;@%-%oZUWj07bLBPE9TG?GMem zg_4$zI6|8Np_S!i*6#g6drF)Q>TB}yW~D7K+g*@}hC3#H@|JG(A)jJ$2xeSYYJ zN~o513qy|*WI>?GFuW-A5hb?phwCj3U0MMN{JcDLEtNpf%FuR{W|I?0UlY1cBJgr; zC?P!#AjUlMyT8~d3xDJ%y70;^p`?TvNW2G>>^24Sy4Nrzx01V982 z$p*ag9DEmApCHhj8OmW$_;+Y2A%Je3p&V*^zh6aV6lG1o?hj=rmKUjXgAdNi5L+zJ zc_?v5O(FB~Qm*;${>5ylET=j`_w`ni=B{lpfG`SzivCT+Pi`~=8!K@`;2!#hKpQPq z(@!a{Rk7j&$}MbRZKWf`*H(^_RJXgXlCl}o1`Y^*Mv6BN8z>29dHx|f0{KFlFO;On zW96g#NBCie5ES%guyULvXnSS31dW9IDkW*f$4V^{28SyrOH?XEC@BZxBp|>_P?6Hn zw6dtql)o$6LHl?mX-Hy)ac3SQZ&zUje<&+43{NVyDOvfl996IkuN&K&s=SC=;sI-Q znlgzHu((@6L5@;Ku8#O{9q4I91S^-_CM7G6>QTn#N(cDdMEMF!EL_Wn%;FLrHLXfK%6M!8a|iCl4}4svJ=>P!la|9XilOzfh(L(!xS29RrD zxez32edW;DqNkELp5Th}0l!|#E|R9c?W?4mj@b61SC~&mePqOj2D3)us>EP(MuXlm-t_}zHn>|Egt@xBOpgUvUxO7 zN!beWZ!}3_U+6nYd4Uo%{)JTq-cDCuqQeAUsRyIxmc!|9O9)NpDU)mgX#IR;7M;)p zWnEZVqzoX}LbQKf7`{ZAED_?#4<0O0R%Lx|ht`76OO*r2!Hhdrn}Nzo;P<1F_nC{= zDKAmruz4E5u!}eeHf>QZwFSd2+vQ-GvWpZ9IcklX*hMVbt<+LRBsK)Ls8s36aJcBf z_I+PHh@IJ|EG2}Cf8mYQm9LjLfb}|QjT6{G)JbZ4aERJl;%L6m{)lpu1mtsq+ASOa zNNYDG3ZixfLg`uMUWvf;i&RMlGQ{we!@JjITCkI-`~zm$Rk;VKx=!r@{u6D}4drP{ zJm94I1YM~D>fegJmRkdP{-YPe?v4)DUmSyFW2st%X zhh#Oe`gK*S{=1vmpcq0`W2G;HD?@)@RRy8@3H4R?301&~n#pvT4ZP;)bE|-_LiN~# ztq#=rfN!j-pKMUJBu>?XPTB;k;#DmKl$Sx(r#w(~6IJ+S1@2~j(^UACI9{xmsj4oD znc1q}?BuKQxvFQ@qDhrqNxsS~Di@)*ElpG{#MOGuRm%nL#nvi6!X^l-Hh&?CS2$Xg z0ma=^7lfzG?4_Dr4k(6DVw`cgw~CVdkP9TS`UljYek%MLfTVL)d7x_E{~vyqL8|Li z_eFkY_FbWB4zwDnDzTGYS364ONv!{XfRBWGd^cXTP`F3zWYtr`B)wIINo;z^6&EO( zrV1r=rT>k>5Tz1KDwL`euc+^5s`d)kJvvWSBp44_sKSL_UOPH2QT^&{w~5vN(>s$D z7ONKgce62hg|Nj{C-`o?s$~ThwxO>lyx*w$M39G_t)(_G*BvT97Fk^LOZI59sx5(% zgaXI6s16bgW1~RX%#SZ_#0oxR_2Mb$n(S0{tH>3?O82OWXp(S1OzFH&wTaSG;FMf$ zshq%cSk>H%!I8c`u;;33kZdWIdR^6Nxj^uFKj!S5cO@t$@BT|AnfEsu0O}eBqaust&?D<~J(R3Z8I8 zUl{vV#mdKK_j?071jI8rJfrXTPO9L zaa=!z6`zpn!1?QFo!j zC_>eD1&ptnVi1{4>o9c*(M1cORHJS#IK)M&r&C249;GII!w)^99k?W@w-N@&lJt$) z?l&rDRv}(m#7R>ZkYQTqsGVV?QEei&B+>;}iaR9CGicLSa`Q_r>M zj*1!X)Q9D23%xq1pUAxy=+Q;pi?YdC(iybwuO=my;0niwtFsd)I{Co6f$I8#WbknH zYhrW?gM!iO4@Av{F?_fld>pHuO4)CK0)?@}>1scg6>e5R)Kv8vDiJ`KSfcxJDLmlO zT=jM8>m@ySFhp=+`?Aa_Fk!y>6=hD9Yed3=$BWdzl#dM}I5S_1ISIxrQCB3oM`PA| zjoJ(9u2P>OvS|#6pcIZ;yk1S2cHyyRuB+M=0=BBpQ;BeZ??7EoklDRk9q4R#gUwj# z>C4)juI|C68Qm_iUyiBku;)M8d$Pm>o*I^MO#PY=my=Sf`p()nq!znxc5`Ksr_ntg zo>Y6XqTjq*gXVTi(^!^K)to0p-qb zY7J|1UF`sC&#RADWFAg#o-pCEI;w(PJattaMrre{xRe1SKHEv|H?6p#?qSb~um-=W zr~P;N0I~cj173Wt7p%Cio-gZxnIEYq{rA^14m0?%+KZ^eUJ&$Dy-aYp@m&2Km4oA- z>I^c6C$FSVm*g6(|6BDaDu)^G)XgYuJSs7d-EeGO8zy{Ko4wiom##kW$SZ6=(XbrM z2_kBQ4fdA3e0ONrZsGfr!onK5%2)R!ge`4A6IRQ@MugR4hKKoH@TN`Jj%qULgM-7I zC`|)uKnsW%87?y$R2+t%BjWX7w?W)Md8W+NtgIp~6C2XB| zY~=N@zr+ob?}s^w$CkYe>rh!d_9<+Yc&xNyc$kxX)zc+>T2-=2o~diG4PT)hWBkIy zgdIm}!w*nZ!omci6C8>OXFf8=o~H0Na?pUAjl%ti9;cn#G~6BfG!GB0$!*8p^$Yi6 zB?rT5!Oi~Rq`rz|MG2K5s^i>A0S@3eDEyDwGV4k+!;cAl-<%iT&r!bGc5(RG+BALh zu<-^%w^Clk`e{%2N&*-*XVsu+Z@3+y@rASd!e3ELfX{u&a*u=)Myud?G#t|@ zt6Ca8*^(3C%LyVQLMM4y`uCIJqk}aBRCwBILQd#zYlLAs~a3Xg^!nuTYu2Z78jE$X-13Uc}LAEds&9*u9_p1 zhQ;gprOnWAWT2#7N{X*R^$&q z2-4up4L54{Pz_=7N)n|XEK+Jn(|P>i4{8n0&2tW;H5$s~FNfKt)lddjfDa!Oub&&E znM(8PesDNebC~E_{XnhPv=$tS66t0*m!!Es=?HTDWu<943J&`+=1OCRLUV#(2D!1h zJxbGCaA-4zu7^2eHNTTN)S0Nk%^%z!HcZkmYL$36S@VW$i!oC*-v|z#g&N9w9Cxd% z8Jb6AJzSb?tLS-+~6SuJBs={Z6`f zp4+AAMD~npdo?2khpziIl#Lc#ol6gBx{x^(AJQxo99kTu=mF{<(|jPme(y=m67l*z zXEcPJa&p{XTdEmC=5YADW`N+3bBW$)6kOJj5~gw+{&iKeMsV16U9*VVXuQ2qjt0ET zZOvlAq2_OtAc3>)8q!Vyu7U&iZ2hRhhZ@S#2!|RM|JX;e!~nPcTJ-`CbQAx>lVgP9Gq(}g-U{#tUo**!p8o9G$+ zASg&XQE=EFLidc1q1s;s%u}^?0M*Iu!?hoTXLv+v33KOiea(o{&Jt`M$7m@Fe%!dO zI;}N&R7lX0XYHc(TGEj~nM0Dcu@I$Sigq$pu|=ucyX4j+Fhe^;aM+loCCs2g-)!wt zvWsprYMYAJ`{ilLvzO+4?E$h1wluPtq2`xb^88TdSK8%5luymHJ*n1oZK1s+U|zM< zl4r~swARvRtJb#F;-Wfl3&J~SXHZ4y*ioBJ+27Om8*M+nA)h@SYq-tU_s}|mv4^&c zpmeyGmNHv_sKdaak9NBVLTCDuLL!Ip9H_<9a&ntHgcQp-OqF5UIRa+mNLuClM%$RE z;;+FnPOGfISC-i7v05)Yj22!C_D|4~CcsgkuUWtfgBz$PX-g|{<$%XDEor|Qf;D00 zo?2I6v$W$V0?t^Y&4VB2Yhx&3L3)_s!!@Ai0__RP7D7a5$6D<-d;?i4wABggmw*Vk z1S+{0%q`Z2Q4U=oL_WK@Q(J{)IyO|Xf*soHgsLo|0HXZjAhS8PU%OHeD>$TmYcF5@ z_Jp?Bm4=?jcDykRfZ$)WTZG#@yQ!^CX;P3X2lD`SM;k!tyGaP3f1o90E8(xlhh16E z`$;}b^+@Z(PB%;Q1T1~+DC=p#3+-_`xj5*hHr;<}K{P%WYYW!oz!wKy(O$3E4Kct%i;6~G0C z`9)yreO`gW0wUfEm(>MF{4BR4;HHeIPpFxUzheEDiTFL8@Ca|=vbQ56NG@vy^MFY) z5rG7i0U|_FA|yWdHS_3@=m2ZdBGw7@bjphOhVqR!?)uLMCH8~MO(RwdofNjD>BI`= z22pJyvIsh1yo&4@taV{GCtwvB*d^jE1%?y3IWy4(-uHus+p(+G z8vS);_V{3YXE{ZBAavS`iQEm-h?PTC7;v{{#+ALiz*Z#l%0q$ zMOz}e_z=PsSI)C%iPfR#ctjIf)6D)%1Z9+M#i|R{OCvrBV*ZyST9W<8a5ut-6^5kB zx|(x4B8aRjgbEgvhCPmGSBjZHO<<0kEBd4a_4R{HK{K2=@HpoM9)8ZMq=Iw9!MATiF6Ug z?foJ#T{^$28Wee0zPieOXrzmLvD)~^&jKJ|Vq}fF@>TQl$kXDgYGvdFs@|Aiail90 zu8nk~4mTv)q>uZ5uQjm$=g3VID)?M`sUN!zemWdkB2+i_eB=?K zq!t$=mx`j><;Xpvc>PLb1Yr|4Bt4FtNMVW3bzrUBB09m(Pa;c&)|S7tu^jQ*#!~$@ z5i11Nb6We#b{df41BDv0`e zHY_dKgPHm!`>@)FBN_MwL_HNY_SHsNZTu!8%4*{^QBkErdy`|LV!Z#mCo*1z3wkH( z*=S?b>v8~a;?rP`IV!+OHt5N(qHYLwJDWwVri`l2_Kxbse9h4qJ9|XAv4zu;8^fR; zQNe^wk$_k?L@?UdFRHfaKs_E5bxC;Wxe-w}D8o|(ZVtL}Q6`GrrH9$^)yY4=h6z#E zoMp`|m>E?=1j~bSqJ|2prthOJ33rHG6*WcNaPG&bZ^R94H$)AkbSv7 zfE`h!OcGWEFJ|ZyqSlB}_SMr-Ypcjt=Uk22?Isu7J%~ChL`nT4 z>Y1=m>a!?wRr!YHcF{e_Qr-5BuFj@!P4Qw6l_}qX$vN7QvbS224-o5(km`Q5=-&nZ z>;BQBTxF&`w9!|EC|^cLe-@&2(nYToc5RRz-IORwXBO5!%AVy7O>qRQ5cMdIic*xp zxWa=b(Q08DMayUrUbeN4UMq<2ZX0c_zdyE*)`+W5I!134T3FvX+DCLBFZ7JAE)??D z@aXeG3%5r_e-e*99TR<5)U)5ejqXF#!eGgk<6-p7=naI?HJ}0x3KCI^qQ&lLSh+a* zv5;u#Qkz6aS4U%NGVa5U5PeNZ^m1o3eyopQ_1qi%P=Glfq)CL8zZolio-!8}oQm#B z>D^cn>cfU}(eve<|IqASw6EN;gKwWjJ5zKm;X>Va(T!yZ*_cn!lnx@NhcIrugAddH zj(#ZoVUk^pf?z_%5l4ljPJ?5PF@9u~A%Z82b%`ky#{9w~rdY(*U+ct77gxvBi@8sJ zMVsu@4A2F{G$b|)%@`uo+@^?ercB|Yo-8meGNuVp$rgqWdox3uR0k-Ci}_Vlkp2lV zzlzqTQ*z8>QEZnH(}U0r=A92Pe-)E1ylmyyG2}5e!c=D)#^5mWSeqCZ_9(+p8*a6X zX({~8*e2#Kr6TbD(dlWaLm;GEjCBpLYR?$T8n+e88v=U8;0FqM7%}#Zc}wvz4z_qm zj0ZdVQmKN9gJbGY98H1&geeJ@>GWL|^OQQQgxf#GRHKq$_^=a<+7k1(U^4Ai%md+d z6Ys=S6LwtxTg;#0>ZZFfuS9X%{g^LA#C!Za=CyFk7q4T^h`#9AzhivJQwc4S(=cDd zPOTSA_Kpo9PXr)LHOQ?KD~@pBXBuJyMEjc;5c{nQwe$T$v$UyjPaCTtyAdL|!pfM~ zS3=2a<6^CIp(7Gv_X1s^)alILS21ZTL=J@zM|BGx;09kuqb4J*=$q3@{J1tJ>O9Un_c%EtAC zSe{H>oaO*w6JkFIv&Kz|4HFJGqA>OkO3T3K@axTqtqgDH#**eRt><)W!mFa#ARpF# zYt2m7ack^qf@etwjTs&^c4Hocue!3{+hQLQP>@j#{2o%Qj(t-S>%am_!oA=X#5z)% zi+^EJHriPM+Q;D098k+K3(hH&F->^i~b`wOvi%B7pz7h}&*TCOrSZLY*_XIc0#$-^7PkO(z&iOwe-9jJ6N!JeLt3x5~U1F{V=wW611!c z*H6l+(|S&Lsd=-S~2 zGo>3?72Q!$?BlLGh95zdu4a4caPt8#`g`eCisE%|-Fi`6P)+xq(zIK}j$>{~S8C$R zbsA`2N0(h5sbwt4_SLnjEbDPkpf0*x?B-sK^?|9Ox*_G_#ZeZibQ2t8TCtJ3sB+O_ zQ?A8UgUUMH@N)5zVSM9tg)%YrAxVdux&n2z;CZrcQF+`sj-8%)-hu6Hs&fRtESzaI3pZmKAHx6yqT#V!QQW7qYkauwA{| zM^{l?eLp}qQxty~YO4c-hU-=dZ&!`fO%^vC8*RH`*;rd8`DVPWl0;6lRgzcV>V}EO zMorZXqD+sK)t6`YVx3_0Y#okEd91iTUpKTomf}4NKlZjrS7J9!POb8Jv2Gn9G+TQ- zuJCz@ZYQyaQl0(2u4V%kb|f78(ra~UJG*JndYx{*gWU=i9&OBI`*yc?VAtoLcV}O2 z)~zfT&Acr-ABqpQEspENp1a4%{V`Uei?fGX+jP4su; c*4Eyx*n9pA}g#DyRuVP zojqC>--_kk(s{wqgSv*4c)212LJ0rwX{jQ_rAeI0D z0V`5Q<5o6)Q1glI5*eYzOPw35^#mjNhS$0n%E*{YG0GvXgi?|5;R29qNFCOFM}Hr1 z4votbcJ2`tNA#Hjsm?jUs_?iCU%XhQAI9x z?H{+M7JBwHZG4FNvlAk*{v0EyNS<&aaA1YQ-^5R(Ga^PE|wTJ$1wl3ag^f$_~J3F z>$g^NGjd3NQXpBmS+pVR`L%D_@0Qyq~zCX@mF|;>FFsh_@Ob zJs>_t+%P>T-cBGa35h=??j5C!Cw)Zo&WZSe@F^mGzbB7p>{3*`7xNewUu#=Nyjgw? zYm*h<fXQ50h;%CYgl)YFNzl~;rbueyy{CZhDmhw|P01Io54E7mvd{DbBEEm*Od35#{2|Yg5wC0TSvYB-zPopH(-Zj!=6^{RCn? zE5mkystpsI1#wkCLcY*_VMxMSGV$lf;$7HZN1UADQ+PtWAa2qoG!?`lI)T_|4PzYp zWTJx`RESN`xXNlyOHbG-WbnvNa1}DB%n64mGR$a|Fdz0bN%&THdh=!pT?O+CEfWY~ z9}w}R@Q7aR6LyJ?hOT3RQBa-NEun}q<%51Qh&?}b$A{f=Y+ac>*{SsamwpM@8%58r z#%lLPPnEhLkUunGoRHz(NUGbEy~+W!qY^@eNPWg8v=DM!|2E-+xO#tTf=YCX1Lh(f{zecsU`BsNrU;pftggxjjS~`RC+r z-AE`FN?Uj*VJgk&WvIUJ+plD${S&6$-30vR5;x`__Y)?ThZmr%S7Zl*hc4=G41pk$A^S3?8XP+$Eink#Z7 zVrUazK?|#||H4bI5*;J-q-o;j`U2PxslQEBM*$?p=qCufT-ND{@)SUWcs(hZH5#=5 zrs(xJTf{>{V3Pg^nmr0&K(d~a%$jiypHuan1cyNxdP+ho4zo8?Ps(V`AC5HY@$-CK z4?E0sTU5%|lQLR!4wD+|tzp{hE4oj%Y^tXu^Z?}WQmCL~OS%d+w$f8$dI6-g)sGe& zF1Dwuz^|hocS6byUS~ZenKd_vdsqE!8D?$|J!KORM@jFgC*`u{4`1x9$0W*J5_3O2 zC9N2TncH7a$_~UIRt~apST#gX*_y>+o)6Via#_nUqW4HWo~ht^xHXEdhk(&~QbKDk z02`|xDLD8~pvTI76ZMphPtbRg9y6G66?B?H50mSs>Pfk*xe9`3=*J2UduP#A;5-LK zp|&-P=jrDP4jBvdOQAM8p*Nu493?g4Fypu$7fbo;kDj9Vr0iQY z&R~y_TB+3M^fQDe&tA|krouG1q$g#t=4Obys^26ye7Z*0gYky`Te2P|+}7i+VQ!1u z-}FnVdMNrGhm_QZkKRWCWDac~(c6plkM*Q9*4!2`PxX5^hpNo+g?<%Pl-7Tenr+#k zZ@$uR5qenmmL4Qtztf*24>$XL)Snd`8vjk#!@AFUQZ8$5i}(tLYl4Hq-msQxi*XJH zdY9U(vf+u~;OSy0rgG@*YM}e%dv^n-f#P+uf|r4^e#q6?!P`K}Wz8RcQ_b*R<}kOG zVGC6a9cvp%sjNALPre5H1O!*ZruqhQSFU11Lt6ne(BD9AJLd!#qDA9%Bgn9vsu4|y zft1RcYhO$WV=u^D7-oPpeS{uOT^WwFK%>1a4+Fnlkp zIUt$t6o*p`n5U5Y){b-o*g@KgCnsb=k$}mN62yAO0Po4H_ zXCQr1nsaE>(a=M1DD7+@Pg~aLY9OVu<{ZB3ZnH(DUIy~?P)=_Hrm~hyI=7#Ja)6eT z@$GNGEri@LY7R1x=gV3THqhs)-V8NN5*!Lg7#2`t`1O$nQYLHELp#<+t9N3hQw?HO z5OZ4N#$>LR))NiHxq>oOUx057Ck5c_DbxTd0|L^-{3D#)?itkZ_D^zNvkaIin**Mj zORbsz1gtmD(2%+w#!Ue?7aG2;BriA)Uuy6m4rT-=1akt_3d1G2Q2?JG4Q^z5CB+7J zHgA@;Jt#IBNDKXE9TFQ$nXA)T^ftpgg1cJ*YA{TFJqmKR8%9u03~-ofhYeK$lVGo{ zL?i-;uw3>YNI7mur5wNKOm6JdI?GA0(=Hi)C9+|NG7JK)7zR6Vhlcex4VVdA@@?q& zs{u1%^J32jh9j=DS2Tg0Zwv_n$LTKvDUBow+=L;HJ8b#eprdsC5TPv;*eBK_j4c5l zuI?mj;=NlU9yjGmx!{r5hLV+y2hdU989V@UT^Er(G0!bx0Q3$`R8uND_aH>@V7)ve z93WPmcuHdz(=&1bD@7z$qwIi`z@aEEF^r&V#+l*6t_+i1kAm9?iSfcUm8psE zg=I^Q{Qo*S(SHwMgt9VV)9_=rSm6>iKB#|^H1 zlh~f3B3^H9jYEW66B5Uf>y4EAnjP!n(*c?mCfZT0y$WH3Gd`P>i0NLqGnTMKG3Not zzE2dh)bMg)BBs9PH(Xnqc!$hfN`1{R^>qh;b&2(<%o)PefPotl;{~S!n-fVXlz2^* zl3+7Tg53c&>`2@$5Qpq7hmRnl7XnkBtqi6q@36cb7FUZn~xG5WnHm1PZKEvcL@*>u$H4ttk&Da!DPp><;32qPg+CP z6{6IJiS|kEB3`d@P8wg07;&Vu)-xfcVUmGNrz|nH9{xW`v9EPa>Oj^LVtK;FUPoj zz|7b=Rk)T}k10u%X-e+cm=yb45mMhzOTv8Eyz;G{k>nzZhh`;VK5Tw9jwN9}Y^k`a z>i0=5^2LTLlkgZL|99=`B+Q4+i(el~!hG2BQ%8~>kX0t-!)BNdTg84mnRJip;)v28 z_Mc9&6S3v|`6O%4tK?!*5G5lZ4>P?RMmexH_mf;%&I7FqHr!1LAa}$hEI_R3u3T-~ zUMFFqQ?9@(Z;~*NGB1AjE(s5n@?x_ON%@3a*}T^WYS-ihGE;omTh5x@-97o9P-#1# zWGi1?^<*pGCpD5WYc}V5s#bDMN+N_ZMN6r(0aIt^lbLfJHxEpnLrI-&C6Wr;(~{NY z;ZW@#sk2p?$(3B0Io?tgQkx_n7Rsvql}&}GnCA+plvHLjU5-IgLBK!}J*xn-3=mx8IXIhC4ODVQpo7uS55a#hft)jZ|1puMbR z3Z}~DH?;1W(vLu!;p)~qD!`7_;5|x4lReKV1jH;XJJ8#H4YCPlY*H7_|@?7 zDc1VxH!%e>Wb>=-CZ%A8Y+h{mT?%H%=EbZTDVQOf7yA~aV1{g7Y_crnlX$HC$`s6y z&963Fmok|uJPVthjBUG@p)xz8OsU1(XGZq}?`^i@&=E6XGYd8PUj&C!x!_UkFIwNC0yIoh!0^;0Rm zO0)#Was&KSj$(iu{*;m3+F@H9<2sogY0rs2Qim`7!|C_PNjTK0}x>oWxf}M`%=n$y&YaOPu)yZ4@d9@%$j@>I8Bp8S`Bi!hsQ~craE1V@0D=sl#w4<<17ooh?q8K=%05 z&lHE3IyHdFvN3lR=ae!tm9mP?`$h=k4J~G+VxDZStTA&_ohiP~!OHSv=lzh{fZWMM zn9cCxqSS`LGN+qIQ!5Y*2%c9``%p;Wb6+z|kv$5g{*rn_kQi>CW_7axj%k=Do2zR< z&8`?b?BPc|!VmUL+ zlkEV-d((cROpx6fnce|T zA5K%&me<2Qeob2`dmTISds+d({SmPn{CYQSBqiwJ!^4?}L#jK}dXTnPM309r(nbiy z4SJn6t)e{CuJ%4{pt$>!zj(?< znCh3lSlB}!n0`zNPu2(%poIZy%pd z*)fDzK7^^jw`z+C;}6zWZZ(p>Tx>#p#r@;2h@S`t*--*kN~mN~df+<1m^n>D$TbTny>f zJ^o{Mrmvuy^v16ABV-QE_oZXb7OAykz6a7N``x%6`v081jM7r#!<}LM@$^}8!Up#K zm^J2(J)ORv7%w_AM0A4ROVh`SmSxBVYYYRY%jx+2PTsr^zMfv4GLk^jEm_#@bZ0j7 zL$g|}^RMYXEOwuxCtwMc$&+QM@20;Z(wDJe_xx<&h*Xg?{ zv$>ppV$uc7lKnB=9!|bbPbM>!U;tr`RF=gaVV^;oaO0fnxn(#(TbGP*Djh(CPjW-f z2D)a5*1NTL#!-ryu@@J~!s=%jnYpDyBT&}PSV)Bdgh{AiHy?U6%;;GKf3GVu22*Tj z`s^F0-{ zCf&;)tGhj8lPKQWk+ELfyQsu=Z_5L=dmRqi?mc=a<0oF_ki7YRFed*U7~6`uv6~ z^)s#dWeqc}I!pA=wCb!vVCFiZhkZ)hz2B&9_XdXB?tQ4qye0H-RhLQ4(i6#S&c;v= zYvE~9W;LoZBrFT;Zk=iMxR~}fjc7V%eij~=JTfy;Xk^wHo0OJuHYq=jw@JBYV&?Zk zBVDH1?hP!o-CH`tcJIttndgN@1}(@OPZ^S;NqMR=KUlUbGpicASZhjMRk$|$PMOHU>wmb7r$|wyV9?KkRn_97$#4NA4Df`p|diIh2 ziwukC-?vB49_r|}+796nVV$DeMn#83#%MaV?-U);HYz42qJ2zsOspm*QXADNG9nt1 ze$MP}Z#R(@AI&^R5Cb2d!V2ozIYH|2Ow#tvG6cUezek{jS2KSq7m)Y0%w-4!+izwDQ4Ees8pQGjw{w7Lzh(BIbT+IAPAqI? zRwMZ9Zsrq7vQ59(d&A!kGnYFcyJgQao1!nkU#~Nr9r4%cQ)Yzpn@}k$qZ0m(cgi{< z-Dh;qs$Cg>yVl71gYrpY3|HO!%&c7!-6pwNlx)s6XxM1X z>MeOlz5J{TcKG|+l66%2-P<_p0AZK{7$W@b?0%4wPx`jZq6~d`q_c08b(Y}!ZJSQ^ zW+el&>OgestaYT-cq;)tDC3^Vr3a%bNj)cwRhbXhscg2LwP>`7RYC0JwY?5{oK;?CaLkuvVKA=w=& z%NGZZ&PG-6ThGkSzAxT;WMOs^WnrmI?R|!2)qpYUv-dj68gITKTWEaDw(J_^aq_y1 zV|(w+J|OgQe^0hmp&RyPj~4n!I+VReF0T4`Jlj#0(dArrH}UTiFK3@3bxwtca?5+N zjbpO>*r~!Ujx2F(7q4x%v%je#OB{X6Dsjo9?91ho7@fH6O|B62EW1x7Ss-|sT~P>h z;$8Od!U0M?XD_HC-_WB<&T!$5?_6^BiW`o2<$Nb>-M&taRV6p;=d7eG#9Pf?#}@WI zS*4JiZEW+jx|z&lRZSHO3(Xlsh>g5CTf8#A@~kt>?crl+&PYO6Y}Te?uUV!=&g|K` zn$_7xr(7qv7oHPh=YG7>|NURL29E#te=TP#OjD|{O}~9v9ip{47ads2#Fb*m;WOZZ z59_MSA$4t}FUCsrS-~0{cMOcnc}Y;h=!H2xY;j^v1}ib-IKapFoES>T`WFo4e7pnz z$U|4j?h?C}nsbII3p`KD*-hvmF)l%$COMs0mFyrd=x)r}V2@O0SR8yHtWnMfN++8O zg_sXr?Jhy{_Bp5Q@K@0>=K&&vXZM_`74WyHXUy6xW2M{ie|=^(@P^o;9GvCbcp}u3tyqz> zr@W}X&|pfWxLrR6ta=AIl%#jCZ_>qY$x#otdD~$v1|K6eIVy%PIP&yjxP&)mhAwV zUvr+w{s3Y3a{h4SqJr{i&I3^lc$0%4d5{zUAK&I262-Icb8r%uUoHHY^F3M7rB1oE zdCv`gx62I^q6InRl5!Ps6(QmkAWuvxzSrfhv$Q|d%4a8~&=6bQh3pur*fhzYsrEUBdwu5Z1Lt(i)gm}{|2fDZhuKk>gAO7aW znTK*?UFG8SbGci^)uk75-w183xsqE=yrT4GZmCe*rhB;_LPh5u=jKud4U&rHY&1Hv z*hwB1rB1;xp)p%X#re zXZo@}QAXU53Hbfuijeo+30KxT#jFH z{jObA*uL9{U$)~{HT#WwD3h0-*NknT;F!_DLDtcNGsanz+9lyI#QB2djR8pjf}4v6StFDtv#^?xe6^=(=JK)})Pu^JS-F_H$IWndrP8}SQFoZ0xljGYK7lY&EQrtEU1Izz9o32Q5uf-A{pedJ); zK{2Zh5wfe8a04u-_t?cWn;3q|IvBs%mCEay1|QQlLR(<%FnP1QYNq!DfVN<2%5E;p zcYrI^O%o`}u_E}fo=?oJ*j4v@+{Uqlyp4l#yuU(B)u3J-laoCvD5$>a5LGk;@`X7K zOr+@mGmZiqE-aL{zTJINi}gPCdz(tNiaac-cp)bt5$r$ zFGDuagDlg!aw#M?$27Hk3YlS&72=$4qI5FLWa?lsH7p+$Llcv8MYK&$Qxj!wx{OLm zGm{ggdFKclhnbw%-$8jp;kULXCokk9ZF|`^&@^1~n-POeltZ#sWH(qg#MGbaJb>I3 z)Q1^9EMo7o5hl{^$bZ-B(vhaMl_ZsnF>NoG6aO*Rj zKiNb{uO&4`BEW2$YI-SA`LWP+uv}URm}#0z>DC~X>GG69;XIRB3cI%#nn>S6026~| zMW${<+c5ZUscE953$GP)0#jC+0>}i0tuZZ-2vl2V+DbD9gIUEUJ(#7bz1VcWh;Fd>n8{qlt`wf1Hyx*pKao&37IqmwMP2l($q{;8HQkfon*471n+gX{ zADY@bBZ%d-X%uCmgmW@~G`YdB_a+^&ZRiGwfGhHHQ^(i`lNY<)z*KAN&*mx)Nbar{a~)!Lh>PRF9?ezjV0wmmJ(&pVmBYBezAWIj__%M(C++Yzzrb81U4QYdSu0)lpJu*`p&p!PnzM;6*9>lbZ|-Vi&~kf=+3-So)s1a}UYGf)Mx z-V%Z1HJ%+pY&6~@izAAu_yNOL= zGgjF1iZi=)&+GwHpPDa8d^-GTUQ6X;Lt}_mO+L7D?xlG!xzck$L(eN!;rR#iQ>h`k z^~rohvgNAJvQ3BB<(-rM&Z(HUTl#gf&s##Rm6A5RA;T@tQ5tGVBT+WNGf!@wp|EOR zOJdiQtJw#p_~gx$YN}t&yxmd_y@n430IVq*F=h*ue0+0lI-(mPToi9_o*>&y(9iE zY?9YRy6XAn}A|?^2+AD7unSilx-baZ*)_}Yt|2-^#WFATf1fS~% z#^HG#hz{6~ef7~)8+wn-yMSIMH&{)_=Z%nD?&6fZCz8wkJR|Rb^!J4Md8Z|pY_cG) zPi6c)ygaWu{`;z%tMe#(E|7XRwz$_7XBf9Nud(Dk{3zFx9eIn0RuFLEd-6;Y?}Gh# z4$|+$LwTVR|1Br;yrjR6mga3GHL&|(o=O_wJbotY|LUu}K&hFw`ylJT^kd#I>F*r7{HBsT%kA?+2?hYW zs`&$KeXGfJ@<~|%5M(Hu9?{VOuKDGklp@$_Mg9W|Ks+6&kn zm%mxMuTN_JW{S)6PQoIy$rW~H=aW)Smmw_8&9{>pbMATD&H1j9-VZm)x0eJs**t%U zL^!Q=K9HKqZu#Fb-E5-@e(RENB)AH+?UsK_Qe9HN{0AQR8$34ul{7H-o1Wi6VmNMg z{#i;AG*m!Sz=g9>cI>w!YH=vyX?DH~D_xQAz+grG(*GXAn6#b;crv02K~!n75_gZ5 z=EtzVe?$s+Ai^7RR_BwpLH!Ghaw@_KkOg7u^6@P09X4rG{?7!J*nn8cj(lIJusPqE z65IX<=I5>XyDA{5QQPy^l!p``DOLITRQT~GtA8pp3GVMkIOJ7rU;e`K@RF6)wIu&4 zarTLOQkD$!?qEK4^X{--NB)11+J7{^9;FW|SrE{@*OaGjm|0B2y4XKHm*1cwO2j+f zvFG!>n8!&xO(pI9d44f}ExIfGa4r8tCH(DjJ3pKhx%GhGMQj$h*<+c<*$d80+pumei2FPL zl}%Ga?JWP$RNo4gi1NP%Vw@~{@D1?B+48f*ey6JihgWxCu)C$MWPmwdmg~}QzZw?W zmnLn7P}i|IgW1=junGiI>RY~~3d;a2D$D$5b3vb2;O zYMRz^Mv|*lq-DMI>l$rImagZ;Tkv$%9q`p#xD{U-EXRqX*s}2N$J%FD)-mq^Z8O=% z#IB)iY^H^L(l9a0@{ACS?B-iincI1b1N@k6Aq7b*f*5cD@WQE29EidimV$EY-vfW2ae+gabK%e7aSUSrja@rOiWOQUR;b5sGE3o5Q3t?N{ru ziBSz&v-F|<^1;Wsw=A{T)r*$y1m9btXw(gEU9ynQ+e!~JeAt0)ziOFHdwch}zgil| z(o^SAv!_P#qxilTe; z8#YHa5*FA%&P)!HB}ztSW@lz&Pfz#e9AS51VI`*}79vqaf~e$@C?E<7B0-d#M1fBf zkRX|NtGj0qfA8%ci{D@GpyyCMz1_ENs(Wu$-CI4PS5MmRm&ry1;nsNKxh@EXRlkRSY|D${S5?XFNf{qnJU) zZuqDz0lktWg>@b5Ov_%k)}U%zb}OAzR9GEy8}jsyfM z&Bl{7v5N5WQ>*bfLEvb-aTP81BNL4&G)_)Hpsn4wlpye}gI19Xu@7(jk{W@$bmL@# zz~f9KO@6pQMCWWHRj?+!d@I+ui6F3|!1z9`2yPS_TT$!4=OxCXI-wZO_L=6B&+(3& zEG8{`Zu$xzbabReiPkMM2BGo^R$nx2lu<{C;mXu9BQ=5nqm8A6LlY|LO~l@@Mqg?K z^4>ANOAzpzNUx*=CK;&`D+L|-Y>IIKL7@M1BTedu0As=o;}6t^>Up(sGeKbU9OH6I z6~K?@8mT4}0`}!dbK*guVI}{?o%hwq%kiN%mG}5dL2>5T?WIRvN zx9DZNVq-i(VBuE!P~qq{ql{YoB|D8X2?AcbY4i^t-EI7gqHnzZOJk%PbbI7$;|H`t zZ*aiakD_mp@$LtW*@W(b@92&HXNQefDJ7qU8lP_)hWj5i&XdV7K7Y&zX;T=z_Y>8$ zLD0jqCtnd81lSD2U!5`bAt?EsGfpNb&AUWDEDv5bQf)g4^vwRnxQa-q^ED&Q&ZGdN z;=1uLwTj%jVVpn^D7i^*88_TAQXQKhV87^&v6>*z;XcjS6!kpgFQbl{1N|O}2%LOE zk3hX=Mhz_jn{SyMgaIZu6SaAs;clWjz(bHgFCWuvg20b{CYmx_0Y<|BQ#)D);Oliw z;|KzoAtvf+#M)5P5Q>crqCaLd@xA0mcu}OuPHcg&dmS5P3PqK@j1jm;Gt)xK36dEz ztxOJpiN9`Vf?Z0C=XWrDL0WSs6P)pgv5&&Eg|xesCSMO|59&;aUeLZl|tWa>no z>t!=3X{kUb*3p0O*&ToY`JW2`DP$w})dHFYHIoO07W(oP<0x=Px-2__Q_Q9T!!M&JR{OxL}Eis8jT z#hR&3DvIWr-lG^j7+~56qZchU-6m=@W2p&>d@wFvVS>DQjC-s!*@0>JgLS4oe$a9| zOvRMA4@6JDhErvePMI3wiF-|Jy?_d+DGEnZzHw3Ut?6x=kpfh_fbNNt51YmlM*n)u zbe{&CAX+(V48=)5naU_bm+pu_KmfrLb-g}39G9LleIghBx$w+fkLiOWj=9A>_KeRAwXmngqo7@AZg7D;aW?~6M zQE%^L_N1huI}*V4RGK#t0`6abmpl9@%S#{Z*4d8(Lng^J=h#Wjd;))SZF#_ zo$4)~FS+k+^8=@5p%AlEB+ty|kEw}qb`gkmHnSP57@lD_?1I;h(F?$BZVm{*e@roF5wXP2 zFhlY+#<{c2O-VavzBz)lpDr}_B<-yw<~K>J`oMgiCaFo#E1~b?HRcff?kY1?YOo6o z1~8CHC#h%jI`d^pt08ct5uU!uOts1BM5qxSy~TXki4d}4r?So1VctoNn*7^SVfg#q zW)roz2?X>;Rcb?Yd9OJP8Qcd2pts&N#$dNE&5$7`@y~X^Y@k-vrw7fUxZYti5BecS zTgBfwso!G!{pUhpUQQYl&0u0(Yvl+&xh@$3aCyFsw%onNI zD*zt*t9cz68_M6z2Z?EWcEb!GrNMarALh-Zt+-`gN7{~miodViF$;0Yr}xaK$^FTH znJ2g6w0NoSA8FD^^!Zqz;p@I+N{0<_8 z-8+dC`6yy(1B>qXur}7)i9i1BjaaG=r3ixuAcf+RuCZ`(5yrQ>$KIkgLY)qQ5#oBs z4x#3t072I`R_io4Xnr53Xg(VlI|V4lZw!k)+kn=o$w!@xMA-{t8{(a5v44?Cv@q-Q z&2;v1KQs1cYM1YX?ujC|CVAq5+}J}z0eTe11`y^BDUSV>D1xRm77A!E?phujPt9!T zt1)g-8B6wb@yc#;jNqAz;tk*p}2|4#2`U zMSnB~_|S z9YYxFy)L#dHHx@TmzQUF{}M0V~|5!px2V?$_Jif+kF0ccU6MVhXD=wZ1*#5Bv>GUJtC zVt{#tKpGotff@r?)eE%<;ZIb!MZYdZSBQllr5*@fMl{ z9# z{tH+=3M}1d6!is!b|scM5;otDw9sV0y?_;1X8DX}h`)f4USU}+U=xB`R9a{<3|_!u z$6BghjW=_~TZ$y!G@N9aMyWR#6wyjK0wk4bInA$h5(os zuJfG*4wqk+o*aTJzPI##74*DO^{F4W@V8QZL_=UNKx~TF)V21K@P8I!T`ys}yS^2^ zZbLjEu5M^uB3*WGWQF77g}d?5)I{ZRC(hCw*7qcxC1XXlLlpz)l==j!7lT5Bhn z?D!VF^}L7dyoh7VZdRHc1A$n-?$%%r^!@k!gHeaxR8-zRW$l70%dCO;%|6z}G65F8 z)z|u_n|Rr4fOTz@aJePj8X8RDxST!E$N=6Qg1St!O6P!oS#Hg87s>58);f_683AA< z=Ehlfi!>tb1Zr3qkQ*j}SvqV-s3B*Qz>C#fOX4L)UflPSg(pYjDOr{ zJ?Aan-M7QqTe@ucmGuppiH(yNf#~8PTFK;yVSn^t>qbfOt{k({1loX132yp>l`3ai zczMZ>R``;zFxK0iqQL=!Fd>bd}C$FEkZljen&CtkPaN;r7mu+o&-2w-~sZlx-65?=oCrZrQ-VZ@*GILx?X zeV-!G#>@ljbQ&4Ldr5foBkOcG(JntPrR2BgG_q}wF3nAB5t4x&+syWjbT_VrZKkL=u=-`A`kZjj z5jHcb+szh;;tD)Maa*Mg_S=Y?L7(eE4$DqkBk*p6?EuZ}h``1GyHX-;Sx*;fg}q#) z>H65-r11v;JrQ*Z>=%j~4F>!~c{~_qqghkJ0PKi_Wz$$EmUW`j5OaNm8r`(n!f+3( zEmh+CR+}w~(wz@QM~+Iu=$5rCltSw1WZBO2&p<(5v=5ZtN z7g@GhVuXQK7CA*fyV&-IWSY*E+Gt`80viErZ?tr@4UVcCX$`Z>U1(Bi8sYR&9P0821WLK8!Yb$cY7?dQAHiD-URfK|A$o82%s2I^lFk}>uprwfeR(VugEQ% zY>b3f{uUce3i-?M@J4K-sF*G5x zEdSEBfWpN51K^&0Hmd06A7HHeZN(B^7r*)6z^lbU+eDg(L%?g<8k-;Pa>Pb;dXWnP zI(MWmoJaJ?T8XC~vjs_RXx#~$f*P^&pW1wJ?&()Rj6gsD!4pAv7LFkJNx@ss+F;fw zcy`Nqr+K$uuu<(g67uoGE4D6D7&PEF+g)nY191HC;oogPNe+0+ZKngqQ|`FJgu(Y* z5m4!4R|NF-Q&$A^=X2Y9noJ6yB@R`3$9bZc5(R+`Lu5d-1p2pU}z+fNnD%wD(UXScJci@#Jj^4uDide;y;t_t}wVDbnX&A(p!A?tKP0>t^MNrOK>*~ zj<-rkHXa`TxrF*JrufYgk{`#$gR>NH$hO8W3KTCJrN&ncrWpN#sN`GXyM>FQsyY}y zms(T+Cm3%#9IuyH>-J;3QzEB+iXSLZs5u`WATegd&+&I9Vl7u)Jo@8${CequbvIo+ z>iuW@C(_+I4_tTWKZ>6(-rd|a!6~NWbrQx(k8<7#E;0Egz=4ti<4y-9yeZ+>p+SO^ zvv(RMI61qeQ9>6H{vo)3{cr{5k1Tk`Y!bRzB`s{?R(%sJ& zB~aC5=v=;O(#R@q2%oezUYlD@e!!c_JkH#zdd28 z#FiWT5~jQgTSVB{|3E?~X}}FS;v%Q%v4r^&4d0weNRiZ{=cR<6l3L8UmM~UgNQ;{Z za_N%4=i*K0zg)nAA0~{F9$54|p{-;Uev&2nNpSCYCOYqS^hvZyJbyPJaRtrnNMPR5 zv=d>dZe*et{yrp8=Phbdqeh7|M|>d{L<|sj2tYj|que^(LUHu4#5gyRs_GGmpVG`ffU2GtAhOaR zXzoa?FCjT7Be6`9&B@%v016fUM?hILDsi{$@;n*eAMH+T?T)4#?bI5rDN8J(;Dj@J zj=+`WiQY6bg;}!`c^ox5u?vlQk(Uv??1>t0O=>8H$~jeuG@r%=Q1isCM*f||Y7cZI z-WZI$rX(Ju;0nN6jF(MKq&j{}FiO=hZIBcAi_{qP=0RxyTG$u*tzSsQ3TT=JE z-%X@RvJ}AVSeRHrjf2;c#A6Z;|6P{&;lF1A5^#urKXE=yTnI0ZK~MI3H^MttCq{Uq ztbwuN_{RD~3nf8g(4iilfw<1*#7Iv;uvoD@afq9ES-mSU(_Op__%gAMbQ!%r@tAb! zb|^94TYMn*hs5jB-Skt$0uoKdy7P$3;{4tyeT5-uCIvR))q5a;yKFujH#nrJ%+k8bNlk7?LX>zwf#wiHk zw8EOyB$*_Ze%VQ>;_%123zEiA>P`w;Gczd$?W$@Siv7xxE(D91KA)CEbzT?26a&O; zKaq27-b>ml;d^I!(zJSXOnhNGzmlC1bD<&=-fD|RY)dMpfG8wH!BR>TjUP~)Omd*L z=L#F*b32k^XqhUNk z0)KHo=?G2W1K>uZBe$A*;@*#wN<3s|Ht$Go;U_zTFZ(4|_(PlAAo-{lw94q@PHxcJ znPG1lDClGecB~o@`1LMCOMbfUtmavgM-fCc3qMilfU=xo?J}sf6*)X3Aw+c zZ}Lp?d(gn-Y2^2*!O0EDb9aU%H}QlvI5v5vFSN^<2cXA_CDxO!{yLK@Qp{FK05-krRa zAh_tOm=ih&p97vvDFJn^4?+8yuVB|_~=1;<)g?@~{;I=``R|MXzhRk!JZN@-B(i!|! z3kJTMdIryL#e7cMp>3F*qz!1t93}0A_RJ>I&h5y+F+^wZK)LvLA0=~>;Qz1-)3_xa zqaDa;9#+e)iuMj{vp;%1`b1q6y)+Q2(YC?b#+}h8V$jWt9lg*)2SaNJ5g5V6c!x=jBpwagZD<_pjpg48fQ&jMwLGg^FztQ6N1q6kl{mc zgSpI@0HA|72E2ATv&cub55M&>ljsKRs!y46;4*Hpk*P=8E||F$2yKV28J!2T+(Bj@ zFabaQj;TwY_dCk024HyedFEGdXct{&;LAz-aQbzz)&Iu8fjj%~gB#2q(r){M`INk$ zcAJ4uL+-=He=$iEGi4+YHf-`qe>_!Y-$>0G0s(;g9m^>##_^Y3c+BGiTTvcDhj3d2ws zM8Sw3ZeM^lor>&_gs3m~Z9BEG>rs~tMslOw3w1bK7>IVi)wVSX2<;e*>egZFqp!>I zgV4I{7OhcMXh#~c1YbGT6kV{`hoT8a`&J6dodC3G*t5JaeAZ-NM-zuR!F>A)D9BNC zf;~ixE`ttr4a2E6`))VcF4QK`zWaX#ZX{lmWT%QAob*XJ4lA*HBl$;fjleBa?5r=~ zC=Bi;dG;nW)2)}GV}O1nM79gZOtHf`guC$Vsdo5U+Ah3ox_vKc*_rl9O`*N9-VTAo zF1%->eVQkPj)zbYZtbjvaj=i*7t&aP912MT(Ykqzk6S`kMo9h|4sW5 z(k^&lALEORJ6iTfNp9>W3RVlNU4p6~zH-V31!}Vz;hFC2do*?;rZd|J7kjdtOg0{$ z^z+P{e?r7bQYN(Dh=bA-)jA?xYzVK++J@D2%14Gl6$2#O1e= za27rnmfNc+7@cX%(tO1pV2#JUBiTEYM2yG3$FT3$5ph`7oTVvU6>zxPf}Ku{L)$j& zaS4aO_AJdeO#~d0JFrhE)nPmik+WY&I9yh;G+6@z4std7DK#JF>e$T^4z@Sg`Tu^{ zV!)w@W^O9rKBzmpPwGDAO?npO^kS(#g$g*N{4>(39>^~7NAAxH!*MSQE2AV$0P8J& zjrzZFtSm&(cl;!ah3Y~w{P3Y17OD${%d$Kcwi|`ZZUyW!5AkyFNcO0^c-d(*3p+5v z1MZdVU!LNn|3vnfn|OJ13JaT?!UI*)S;kwuyf=^CE4_9Axq2&kmt7~_)xXEy@e`lz zveE_N$ZB@3ghSD1>_`cR=NsAGG@&r?cqs0^o&C{MWNO>JEY-d;fr9`}gvivyuh>%( zlKl^|W{D-A9c33tcP&4${Up@aonfic(__?JEb1};L_M5!nO#>`#9#R*TShh9oWKwO z^Ad@$++(}e75V>>yTd7~k)DoKf`CG>%G&`&i-KG)`8b?P@}Zx@TOxR8umkoMg$GX6 zb3s_!!10OnT6%=zf%I%ajN`tL*dhj z>1abWBnkHkR18oViRYKzcTu+KLy70XIO`*ab6_@J<>L8;)sE*9qi=rZ;EBkPwP6uN{KhDYD zYyCN=PJcXrbMkllFwUvdKbc$**2Hq6PKV$$E9bO;FFN z5I-p=%oZ;G_mm$REaPd|r10jAD5nm8iUI@YyPjz1#Nse~)s25d;}@J@qR@CRp5h1} z3;=HVpvsB{!AKdxe@;Qk@)&*!UJ=T7put~wd3rtm6nux7;84<#Uq*|=u?U`OOIyIf zHMWW;FtszjQp+>`r*OduM(!9PBa=a5&wSpF+!r zsO~&fs4C!){U(1`l0`uueibbaKlbGZQ|sjU0sLVJhn<6|45UCx_)vZ)P3RAnDHG?I z`6<5Ww`mQ-aUjF@rO|By2LT*!{E+3_wHF2%)>QK`(c)#wI{pfLHXN)Ej>kMqu!PI@ zTlrnm<>PJq1NeeCdBA-Szel?J<6eFsjo$`zOz3<=J_={0nlF}ET15nG0d@u@f@IiRrc|KDjvF9&*JBgTz|MEkmyJv6l2ShJ`H$UQ| z#Jih+NpW&xbDfkACA!nyQy@?hxS{iOJ>cc-dSHi7$_nX$e7}?)9^Or4vj33((0ac9 zAmkaG(ph}{?cfy1F%=-S4o!hrPq=&>mf~dbclA;_QEH9}MMv=s(9;en-UwJ6iZ?e& z`NLmSq|e)?tfXcy0gD0b9Eo$w)hSMXo-?F4`PrpM%5-0mp3?(dOj5d#7%fF0c8dekNV6@=JZ>;qCt)$&Otb=++Qr zX_~gizXhib5M3nh8nAcc6YM%u$8QsSQ(C)e|p!%Tt}hxUn*|O9Sz4 z+JIE2Wz`N!wMeXA`gZCa$zXqAadlB_OLZFLcJZm7OI_SeNNot^v&2(Ha<02q`BZ=D zu6wo%!cRFaBq!vhu9YD4DoFK$47>j+-PUMEX{xBU_-bkDEjO{7YvrjQ(g+nyL>2B) zl{&~r9GO2&O%+Gx;c2Nf9|ghya70}Zr_D=KoqlWlau<>64_uP?>%-KJ5_h#9r$WZ2 zz%lu{R9F-dE{^*g5|KC1w(KGUylmDB$q&eAN=9%VX zf019Bll=n%(&Q5Rr-r3D*}t$s+SgKylGilNDdC>Y)0|`NR*N*J8h_F%&B@ZDHm(Pn zw@Y)f^lU8=-Re%g-R%P;# zVD#(Yv}!uSY^bt{%p3a*P1{Zrr~nSV(Z$3xZ}jkfolq3{tdlQJG^aK6kS!H=z^BEf z+3Sc%K2J!aI%5U8z|h5Znh1g5hl7~3NA3a+xDlV`6)aw=O48;}q+?od1R$e`7%A3x z(4I!=Ly*-cT}+wXJT@JQxCANo^GK(Wq7z;uF7!;NsyQYQFkm!SlGHQ5beehg3q)E3 zr2k1Ht``tC)lG-vGz7ME4oRm;V|xM15t`nfB51_`p$nKIF@d+BQ97JfdN(ZscW<3O zfF{@haAq9TE`51jQ33b9ksjqEUjErD{e-u8d2&#CN9nS@DSe{I1N>QR`Zpfp1CtZd zE2YZ_Ha*jqLWKd7{`h%T`ZYhGZtQ>t;rQuDYJv4f0LdHYmZ$Fw6fx{JHNBBUSo+-b zkNm{DG0W1OL(j0@McC1e>1SyS50KCY_1K#3iEe(K?uF&s)BU}iqN>{C6xHax>GxS}u(r^53p7JHBse33;QZ&kFkB+FaJU3TnJat3zU-)1=!#(4!OuU@qnE}hQ!rdgF zjQw8Xr7k$5ox6Bh5S}qydf-I;3^mPgaiRcg=@A(eb`}Ewm53QCYML>Df(z?gWUzQ< zvy9smwhY6|Q6lHirPdh~hX>&0Z8FBua85uQx6ddPC4jng%BY~Fey}_P&ix^hM%k(i zmKF@B&M-;3b5N7g+Qn^9+qT6F3OqM2M){$7V)LNY0r6^&ldz z8&1#MD&75gcIHmWq^_Uql40t?%y%Sr{B(KdpW@|~HJO8@w-P_gET9;#2(VM2Tir4u zQR81S;pCR{nV~pyOQystuQTBY5JAC49?EPb(ZBwf zOV`{^W>!(kOM#+ipKOXEf64U3K*<1!h@8ur?Wl<$5HUbB))kSiy6eKf?IS1to9$W7 zp|Z&%YdJOgL7|YvBFNy0U)Deg{rI4)w`tMG01-|x71&+YD9g$DrZHJg&f8kKP+!|V zYd@t92|?u@*#@zstVi3{O4L=8MZLar{{1{Z^u_H{emF>*wTWib?Lk@L*jJxrmB}_> zhau|^57}Z7xrN=cs59RQUU*rLEUFXh0Hxk&Q9)J|s$7^Ag!x`sQ{7~X@t=LOH0>#( zB_}wFBnkxYzKwQ_%&Lck`iq|nvvvV0=>5_xM2E@S7@#H5ESUl-HgS>ZCiAv0x-m8@ z1fLk2H8KS75h`p)jmru}$-A;5aP{1*oI0|_^HCN>c!!}QDpLmUCF7ihS%1tnl`^&bhcrR$*+?&QB zY=3GAWJhK%AqWJ-WK-*4Qq$~J)CjC?k^KQdU|8$yb^o3N7^JAB?%Th8wqSxLbfoA0 z(N5X>Xr+(eP-f33#2-~>fBf%>7cD@HHhVcW2T}~#WdwnrJJWNZW7q6M)ErpaJ^N#V zz`!@@^>1;n?E5sH9dyTxMmw@0xPI;yiZuhXe+dFqg!0f%@!1DxVj%((1I%yS!QuB$ z%RWgQe@sU9b<+A}We52}+qfhfzGS}`Un|XqQzRDSt)sG`FnlqdSe|{JwEXDobnwmi z=!EQR(Xq%}^0`qXUdD$cUpq;%e`waPe_WRi@$lt?O zXA6PH&ug;VlE5YK)9iSHSH=eM{u`UJ(@B7`V!QaeaA$TifB3!No9vC`{-C4TZ`6f$ z;>B$EcJyNG{d0B}X^Vf!Hqn%B19L{;p?9*YNhB|@`R;@4W|Z!01bodoyDnNf0>19B z?n!nA5V*N<&M89weOb;NLgy6EoV%nQ2!#)~XzG%;r>VZrtp;`?)}a|HcoXXmUYdJ!-;r!o0^+xK#!35y0U%{ffk zh!1mqCjCBJljBRqozKRc;{=~`TXNd@kl(v=;OL~qxME*U-*7rRJp$cY?H-Jt?)UaZ zPZeDm^wFuDQ1tt)oIrHr5H}nhiOcSQ>}PV?N+U!3yD(=ud?sfuV29YtIiJ2#=il}4 z48R+I&KXW<^SGMx8{x_AYdP6O-ID*vSx>1hBT)3SoES7ZCN~s+b2sNB=Rm>lJj!W6 zJGwEzj3P|$Q70G9ivVNlo!f`BGXir3eNPX{-AWK|UN5%=X$LgQok>jq2*({o|9qkz z`s{8_1fCU>+Xt8=+Nj@}=l)9RUT~N6{5`wn zMp3NFk|1CN3fljZKi>RiZVO6BEI~-`o!bGFLZo|bpWI6{YrMjQSsv4GFdCZRIRZ}} znoFfvPB0_zbyMztiK_k(o15huu-N@S|0zoUkJo?xlm4&{y1?W%#3}aNcp5!(cA-YU zEBaNUk2p}^U-?|xrJ;5Rs1{%~#+%Y|1#7+}BX=>8dY9bXFk;tR<2~|(zxVUX6aL;hQ2hJVy5irfgY)1_j>R}G zH17xUzC1$w`^`q;-xo9y-?v5O9U^~k)l&TXudT$t&uk<9eR#XP>%`r3R^>H%WtlI< zRzu$B)LQOTofddu*SrHn!fcPcHH3SCee)Eg?J+QqYSr5*r$GoL9fIE*o);DJO5#p+ z=S19x$L94C#63}D_t8lryGKnC+1+JYUJ7CNhja2eP}(hVaTjxo z^7I}^QvwQ55AxyTu%5nZ;hLH z+4Hl!Od795pd)~;LW76H!8jc^TRI_6IOi(taUS*7%$OPZ0dt~Q z&-sr|!S3lRWOa{?7r{}-Qkooi9j}5f`@u|jm*UbEjR5}hXBY0UZ zTI#6r1=4xITh`=5dipBr^mG9&bpG9ZtGE@EHa8y*?hcwpveg&l(=0>^bOJ!C3)KBsg zfD0dPbnEQJ^95^9ddfao}J$yeOY7T|FeV^vH3-@++ z)@|K>)~XBM98&P5#KFn+3ZUdfcrvj;0o0-jm+FXuYU%wG(FJi5GCf-q^rl%kb+Wh} zit1Asii0{7M0o>ag$?A?_64En$ku$HIn_^tah|5&vDg`^c%y(KebdEou`dLDNhbw; z*tuY~k4Rm=J_Ybm9Dz`ufdvO7LN5<5SSvlSG_C+@(}V{~5(!0qQcL;8hG;0E&7l9_`_WsL_hpRIresWL#Q6aqP=WEN_qBTUHQDv6SF~f^%0EJPrnIgq?%Rtp&qhi9mo> zPt51b*imrGL$(h0*;~-S8`{Kg3*vxkyzLNJ0BAFh75pTFw)YPOC&}+7rwh)K_R$6L z{;^91Cp_Wzs%r)B_(9v@Zox5le#`xWPswYa{Z-JD+`e6>5TYvp>s~mIygtmgkUWN) z`4HzhC=AWZt(izdWAD6T$+omXz2ntR%d79 zLZ2Yu?WGQb!tvSmh4o*Fw*(|2%gyNO%)&sttW)6$!hzz>g#v?T_9_$@{9B*GK!K41 z3X@NYn56BX%X~XA*$)2*^c$7!ceh+Bh z^eYPSh1L{a^e`OSq3w!Bk^A4ui#mEi`%qT|#~ts+-x!L(cJ0Qcor`vmR@1czQs8#u zyk12oyrJzksOUCLumiZ-{wBH0u|+e`yfrJO6_C#@MLQ@YL9`Mdu@;@9lg-B&2}Q#_We5K@^K9!Vq8LRO@QtQIbwZI@_)r0Y z4;6%>GbVcgUcwh`ry4>MESeP6OB0H6(5-T&E$*FNbi*B3q9`b$`4pKGP(8G}dv_na zy|8F4h1EqbzyzfMn3knQpVR@Qei&7>f&6t-DC&x^)W>o04iQIt|*LR zuwww*kCM0|e0Xxv*L8s;VN9=nw+KF8a1i(Xpy+qfsy`_*1wlJyXAx{~9K@zCiXOIr zcIYofDi3I@{#z923+?Q?MQ~L4L7Z~G2;!B4SpJ~sCg?MceqNMK+L<23A5qm(PAG~+ z!}b@4pkZIJo~X;EVI8qsz2Xs+DlWppx9S&bfI5-nH)4u&2`L}9EdG{|Tr4l%M1;~# zUF=OzSHDqQ;Ro%8KE(nHD*6=%lixGnE{4Q`gSeBect0Weuejnvq}`WL+=bkiamCxb zq1};HJeno}0E8-x$S8ENs(69yurO`A@lG*?RY1gwp(Axp3x_fKp~}t!Q(*>JOjE6= zXkQX9%+W9$t$3M6>zoj1%mcieFn>T1d{1{;L0cR-t#~7>Mvt`yqs!IB6w@*EcX)7o z3^_Yt#O&fkO0rz2NuV<36@Lx|Rs=uwg5q~6495QjzlrY_hx{+$H)2uoVhKOl(&Bml zJNOM-R(zhqhzX)V!xo(kLX|5E-0_hW#UIj)a>6kem=Ty;ReUE1HCk#7$5~s8-64(v zY2a~tiob=ma&npQO>u_E1AOXW@j+3Y@a7}Ma0ZI-!1!aua0ZHSss5q(cj-0d*<$!0 zwQ%?8x#ARm@v`W@uDd;M6t@T!?-oCI0qZL(aRR$nrvwgE5g=@EFWD=>9q(TP2OSA_ zErG6Qy@E=<^%d`4jwmrf^%Oz9e@uyuX3GFrR4j&tC2dP4Q!p6=gic`sSJBGuC2)|! z*5U~KevcBp#NXfgmpIwCeSnLK^g%9)TMa3BB2lb1mw*6ro7qC}dP~W-k^rV9xFEzQ zxghv4B?qL}uB4VY1@KvV$$USNCFWw+-I&snLy}mYz2jo)(FrbKm6J+tOH3U%r=$R? z(+E>N-*t8T<3iW7;}^M5e{)HRM#5pzijsbkEG~Xr;w{~MxS`}ZjjvODRg#Z(vLia; zZ@w&{*_gxt0lvOXlpVGB)+v_ggC$iGZJUmiER-&jesq!9>7Vkb(BAIX8>RHJU zDxOK+C+qn`CrxFWaEPk(feczdP3c)*Xs>lIJ>?1Q z-oB;3d&xGfTsNfD1AeX_QJPu@`h>P8jx(2baQ*n!Qrexo;G0zX%pF=EM=5M9ZNlx+ zOL+iD-Uvf~m6tX~OXigZBX~RjUo0$50|0nHNvVajAB-$@kk-4rbcY+XUyUhMc}wr& zfJvoa!A$`WzB;vZf{znw$=uQ=cV

O-?>3s6*khFJU^|$ z$bqCi*?8n;^4yH3BYz`*AJuYX9df^-?Z_v>?~WrOW%m%yQH^{+ey8e2Hu8k_ovtGx z2Mq3aAE}LyeJ|4VyLIH=e@_!y-fKdA)U|3SrZEZc}~w+(_`b?ix z`%{-@lr_LVy;Zi@H(KS;G8&!MA!pRATC335?VL)IanU8T~=d9}j87<3Mu#?JAKS}tdFtX4!&UE5Ovf?p(;P4$gdYFLGy)fu!J z-mccOT0NuJalFBx)GHaaMxzoT*7}qHv2AAAPTy#QTnVhx$vL%3u2!j323})VDp;k% zp|=o8a;B}r588g6RqMOKdG2E`ft}oGQ8{qc>KkaRvB9R&b+fP-SC|_F983ss_g51 zO$?k|!?B!BrI)LD1!GY2pixSLj^`MT-MptF*FDNE*Xltb>*R1OUz=adeWN~=KY`&5MC+%w}&%Az$jcB)pO zw#DT`qHF0^hi=b1ByVj{bd*L$p!B+4Wi$4?j{3glKgdpo3RASULQOQ`qeaUZLO|dPb!M6N7H6svF?k zz>1Z!C_Nyo;fVy5TD4MXusiGy&~Oc>VmY;5gL<|nlBpsL&cjZxJsCr4AzjkktblLim%-DglzEn2F6`RQ6Xr)`?h9_^c1UN5Q^ zs?gD2$F)GW##VVW(dfW3$Qc+J22QQha0cE1BgUb$Gj@#{b}(kv!|Nid;@qRudPb`R zR_T;#&^tx}hR)8~ReD~hQ}Zf4zTLVSMjeGTFAtI(*`JeYeW7(BpS z4sJ=IHlVR>4uwf%u}Vg#QmT{+Ua3^e9ZCZaPD`cbSf#2N}T=3P!HeX_R_Kqh)pI=&EvQ;6=(6j6%-Z zHN4#5Q1cA4>z=0 z7L2NvwIlF|&QVuezsPrc`HRBF9etygGx zhf1MSfK#;VSqy$;mn^d84$-XGDrIEN-JxZ>mnzV^`^uX{>o^rJ2XCq{a4;-190aa< zl|rR+fN#<|>>4byf`^MV=)q?JJ9SDSjlhuol4Ily&`<1Fa@%vG|+3cXe< z=Qt3nTCL*^dL{T0ja*@nYrqjM-(C%8f^CL zen6oFb%)?gU$;FJC$<*F6&EPDE+JmH@2^odI~O0PY$%pcJ}P1T70E(eTG0 z4_2#TAk5M3os@%^$BqR2_I|jQ;UX=8K*$inkr8e zbE~{ndzC^y_(k~0@p^@d*K-;@g!LK-pA29XNJyb|800#I45 zZNhnZ(A1)o|A;kfVVQw=G4+P>`jIu#q(Cvx$BRxZ60}Gy2N$I#a}k4zH!v_)(11WS z5KnTb^7c}}lgGP9@(ML?hoK@jfJxNpVH#@SIJpYK8M{KO!!Z|@f*S+h$MJFw77-w3 zG&n$cbr6TjS*;!1Bt!9wL-17>ll?ZW&=cxFzWzSp56Lc`OXv8Eo^%+ajS(YGTmu~Dwoc3C+epI1=6!hyIKcP9jk!}fFAt4j$;%& z8oRR^T$gb+j6H)v1uH5VgPN=vsO<)D8yv&1AZs$KA<~tcT(m>0hLtCU0xYyzt#zmj z3wDmxy&y$WovWlUEhc#NBa{$?7WkpzJh<4Q6H~0zS>T2m0Er+3rp0ulI31$&iLgY$4 z*f+9T2~%O17N|j4^(?ECqgiFM!|}zZOF=YRh#qwYaK~Ug40634q9AbEyi#XZGQ?|> z(Iomity~3@5C|*54ymDqnI0@*@*LPvy8~><-v(aI-Ggcfizc;n4J!na*9+EEv}&(V z{w=r!={xj*0f~lyG}ZtT0OiuFlrTjFUw$d13VeCZOPOT7$~p2>HH(UUdF0imq%S{R z3*Ve0uYP3BGzkNbK;{_*2-cvGa|)fBWmN{XLjihfaL9RZWg0x|${`3W^$;Gyyjlmt zMhg=%1+lJjC4`@_NU3)iM1L2laA;w;fkMLagPMa#5<(gsxDpOVfmVxp94rqP-Ca~I zy`n3Jj255PL7Vo&Z>uxG?@VFb)W>WPRrTVu(+;m0DK zr?!iWl)@52R4siAv!AG%duCj#KX4}gkcx&WT&s17gFJ~A7qlJMa*U9aSIFmavW!5TKbLC*-21_cii2(o& zdRUg$IOGbQ9vGofNy|R9^eWEdV9roer_wy`o!E*N9aWl+%D*`}SRgSNU?mG2IGAud zEY9im9E1=c35Z-&7z`O`TrDg3qPY`e%vyx>kEpR`CAAw~9&Qje)Wk6|jYHuZ#?=FS zYov;-Ftk9sPkgLHp-C0Y>urJ8+X8>{aJ6hnyxtagX+y>7<6dtIyxtagy)E$a&duv> z0dYO$^|pYx3-Nke;Ptk^>urJ8+XAn*1)Mu6ueSwY)u*;)`PbV5ueSw+e6H8q0{^ca ziPzf#HLuIR-WDJ^rLVUIWUsdcYS@x^y)EEOT&`sS{r~rEf%y+V_Qw~7jqdL$+w!*} zBXjKNXv!j^DD))gbO1Uv1^G|BkUSb+NFL*vA%nfT!(-~yK~ok^^GA2T8`ECA^C#3e zAoz;~XC56B_4glpWN28>D1Ws6#F(|>vyWuRa&nBy`D5aQ(_`?2)0Hds$*$q{OUJq$ zmR&{itZ{Eea*)fb*Xv*(Um;gRX^NiH8|;wot5QOWwH+PpHaQ#*n_30?#<1Xz0yh3(=hmQxggbyqGTd$r zpM6ReRb%H`J-SsiZfG=6bPc=uXh!ikzbJ(g5=x**K(5moAge^pXdEQlMXPi` zvagQAu$~WlagZzy$v_I&F(i4g4%h>S%|Zq?zey&o1FgSO?#!amL87$^lK1qG-3&x% z4Y1J&X$^KrRnV}k0Yk>aE?IOfy=uk1{F-}J{%v1zLi?(iD1#0PqhL$Xz#AaHmQ(5> zsU0%2RV2Mmr&VD{Oaf9^B}l{od1+cmbq7&E=?7%CLNb*Wl43c;ybIg8!e)LXWQ{^j zJZpdiZAJ~*P-OBiYSy~qLY|EVs|(g4ibDIxlRq47qGPriV7Rna(I{F z#pGgfXR#I$aWC%`LRwc%y2-r!bj>`ob7W_6UYDwR(X~*1kdj>OfHEW}Ks}iqcJCoAM*%f-kP@a=a!{e8!;pOj z6%LSQZI`Q{W({(P)R2{LcQ8txg&Zy&WZCeHD@P5|mTT@+%aNeTs|BWm=JIAS85CeRK;;dj0tYf|AZJzsB?6$N8m)t4@t#$)VJz0%vzU$sp18(d z88kevDmDtT$sqSg3C0d`U6hcS3~A#G7z!|QB$wxJ`K-}U@TKGI2FMmQsMJsv3$B~h zsX%&A>;RQskPNiA9EzNH@Pl?%4r&XDhYl48)xbdpHh5GmB;aZOp5jwm=fX&<<#IKI1_WiH$dZRF9|n9FR5d}S zGK?{fq_`R&*-iVj&~&VP)xS~w?E5xGY%s~=f2QKUjl%)gF; z5-%tNg7PmIN>E1w!30!-syMmQVSo}w2qefri{ePl7(^NlUZH|m39_0EP+3jNT);*# zN-?cksB(xT{!Y$87AZWf1{Y^gl8R4IS2bhjS+smYRX7%1S08qHF0^2!9n( zHTP-|3-`hoSGDS((&+x?*!2I0z4w5xs@V3&-IGuf0)jvUAvuR8J)B-p1Z)V15Gx7_ zr_y^+lF&ovlr$I=l|;QZM8T_WJ3$4Jjv`2rA|N9D+OGFne%~o4XP*$x@ps?*|K9KS z`R6`gNcNsRYt5`#Yt~w`W-X|KK1gBQ$A)rWrA2&DBYo>u;dCD|*iV_SAB3CKw zs0T+t6@-~(wn7LxpamiZ57&#>g;BHFgPSvMc2NxKq0Q}pz6^#(DD(vV)8WYuD~>iD1(+uM}kKm}(jiHbjSkE?rYl zUk61NA)O|6xdB&lOjb7ptI>dKzu(e1EbRmz0+rd z(0AfCpN}?bu?-i`mlVCEWZ)($qLeKrT;9R|;gY@+CL6Afd(611qhc{*|40OwU6R$q zjEx5qO4?fmck7@D@>?W`qP4+ZhUJ3m)Y!WWHUvrf&um02D1;wuZzqE5?YN+iJNI5l8)5G3Iv-|tkm7>p`?N6; zWFZ3A7dW~&v#c6cgWb&Z2m@}VA-*3<9oQZ>Ef7TP_hZr#b1PM2of&(%5z)h#ai~aM zTw6w>2Uw~upB0xa?OKm2^qF`RsuIhYV0Bj6-4e{3o!Ms_e_NH#0)OL-jK}mooZg%$ zSF!(%{<=2H_cQto{ux~3CaH0g)VN8ixbSM+B-J`+YTP6>Zju-eR*joPM0(b^Nwm(H z8aGLeo214~lE4P9ag$W%oT+h>RQ3PVxJhc%&^v@HEV12tuL!5_8$v!uaoL=U6(6@1aM1JXv|fCxu*MuXV~rzO0C zI0=HA8+XT%=gNcJLpXNvS=5*QS#Xx9gMKM6D*sy_HT_xA>F}TDr|4P83{JR_p#jH&xF^pNx3L5cENv7*1KcwC9FAc; z$cAOZkr2X#+-P8BM`$?bgd^3>gNGt{VURTd=QVCbvLFV61$N+o6UlvWpo9DMPOnJY zmJqH8X-NQ<#~2yt%y;JBtMlPN9Z3e@+cnyNyvvOYM93Y5TxZB}XoeU2(yGXPCPWLt z35~-ayh6wePL`0x%kJ^u2nIO_EviWL=rH(A$o+_cOJJI#KD@)W|1Cw zmYY3oRr)W0S$=zGq`+6rsTwtCJW+0o(B`o3}pn7NCSgV2?N3q5cq;z zxo(`mA&(-0`dDT=oV7?k(S#soIUKSe zDTW7;1<3S)us4L@h>Us&E^s4zEDn792rTm;M~xpznL!`}MrE*x(-SciOa%e~(cTQ+ zMdmq>5NU8An>{$11?5Ce)dXNgv{3@6c4|C1f3(hJ_L~qgiMTgpg|%V;UgU_yQt=@l zkjspK8W9!ZnV&F@#Ud)4e- zHM^JJ8p~)kyI19gS+jf9>|T}X#Q#0J*ASSx$?6W%g4^p*7;YJ~;q$YvQE%zKpzD8d z+hZZ>)u`pSENnl6o~T%O4MAq%i61Y#PW`!J;Vg35qYDasCo@=IUA1wcLuoT%YR=eE zzR5#}P4P^a>}%ge-+t7Tp~EVlj+!!MDxJA=;Y#|*=7sg?Q`;A2sk=U1c;G+%u)VlV z^1|M&3l+VDq6Hm+Jd6QW0r(q*ezjxag1^-ERIVOX8gP+;)o$=1oEC9vEDI*H-w>yY z%=U;tV`X3xw&LdTZT%J4|s%28;=h_!Mc=N!_7<3Ag6MY==; ztE?yxAGC))dGq4C^a()wXi+Kx?7QExxLzhR0Fk;Cam#Q3Lnk#M#i$oi$}A8Ec_u}; zmkY7ANWux^;SoTNa#j<-jvVML0Wh-aV;?-)6&I{9l5O$9${es=?p%DU4!IeT9TQ4Bv+&(4xX_Pmy-28zRGZM~#SC)2 zR|iuHw`_0|$Yn+O8Psk-R3+{Nu$0>iR&$HWd21wC9)cVxJVOfHNb}eH6EGI zH8yfW&^!Xz79T20tZApi?pxfhHmtxbla20vx9D2j$w6?I2h)Zd3(W82@UpuQK8F>T zO5o)YMzRS0ioeE1fD{7lk$yQofvQIT#$TEKSRDhkcH+$%vyk<4V|aSggd^i7GE(E+ zN>d(Q+^>e=Y8Wn>bU6{P*Dzc}O#KH8XXpNQ+w8@I>L?pE{`NN)E;jxLY6vUJ*PdSe zVR0%QxaB}ybx_gbe>{zArRCNoZ_^{M2Aj~UjY~Re9@JfaxGas0C!W1Sd+uD8rVg|(dCrI@mkyU%Xs;7xzq8JJRec~jUpp&Mp9i$6v{ZH!aVzP9+AG&V|ZJ^F;8+i3P(zBLo=^40?ku*4s(6v)aFk2<- zN?MnEotH9e>;#uLYhrG9R2VRJ*WW%hXX<3%1Fp&AM~xrRU4QRLpMJ7$;)E%qawbg9 z)%zz**85#kMvj^=e%QG2qo(BOJrl;~xJHeiqW4Ulk~3i({`UIxkBuDV8L1zKCwjL} z@0;fHOwI9m^*Iypdh%qSCueM~o`KcpjP%XYdtEuMDZZR6{eu&xqLSWtJ-VBSM(nK? zI0NMypQCr>=tt({Oq|laTep$^EYE~)vV$qzVo*zsbmw|>!YBr6)D-UFL|5;hjQPrGgF%k>P0K;+(U{%IzOg>chJJ!yKRhz7 z;Z*r(VPkp}OP$ov@Bd}`)!~w9_alKKGWd2nY4R!q-F3K3|6k|Eq5nMgvevhtezNo44Cv7!xN!$NAcm6jq=l}2b%C>)jFSF>S!Amm9;2PTfKd9#z z>`QcXh9@v0WpyPd8n?`DMQ6X1Z%}XY2D&TC-|2?C^Iuat_yftTMkR@w#?w2(`{OM9`Pl|+q<1^LZs+Q`6&y6*|7SJ9%;ftK{>%=~WZrjdb$O3It! zMZNcEQNxmKY8V~(S^vO|6DRv_O1*W$W8;}}$23Uy)KO!-zRCJ2p2?#o(ngO3n$m`g z@@pk!A-~0?!6?ezEkD2hfAC=k`oow&4$T}N$fWm73v{K0!vbjyVxZ;F-4pYhCtDb( z@{)WDJ@c2^wHMOwt#N^oCUDC zXv7??^w1QL^r)cR2O5$t&tW7z5JS@Cj|P6ecHrd{os7GZbkM1J>9pa9{N!ZRRzi*5 z2qphFKIlLjT>Rj{LXuEI)%EHILvj zML3g*6(; z9{bnJf(hxX|9ZI&C65HIiGACFZ2Ev+dL%eGwV_1h;}7VZ!rZ3x$$!7hsdf$hVq*Ta zwODrpmOqqlrk#GP_Qmy_v&g;=sM2coP};CTFf}zj+UKNJv(p=D>Bg)*nw_8DOmt1p z&&bbg)FWOC#!$$K)oX6RpPCWv83MB(slX_HnDu}nXYGX#XnE7{G?Jn)f-XuL&|2Xn zRa#NwvOs^5`JtdFB2-Y<&F=6c2oH7e+^A*kL;@|J2h~PFS=2aV6iwKQQB>(pH!Kch z(BaRm?8!%;(n;coIFn^kyebyOeDJG-60rea@TT%y<&^4ZnJd^S_2wuDMs{U}n9g3imNj1P zoP7-$A*a;)p`d@3pg$#xR=lnp=2J-yO4_6NkK1KN#1u%5)J8~$hV)^$vX5#%EOm%W z&^}=+PWxXf5tXzbC=vaU!4z97q*s*oK!Vf$D@pslvV9Eg+tc#Lu~^%#ugcxm67crX zf4!W+H`rLJN8WWLz19oPen|G+V|{h>u4T!xn5yOM$P3BY+3Pi&jfKfg2lRPGS~pK- zJ;z~e*?{piajmDl=LUSKBcdI13U_C7V4{^2#$@n`Yqefb_?`%dkChz0QcT(k^v7g2 z5-xa=r41D(5l)7qAr~vtWk3`sioO|JoH!McOtKNXFx1hNs|Tl35{$8;ByxiTjI~v`XS)GWf(Dmc*SFA#RZ% zE*V@QcI5leA)_u%8F46ytSu<1hDcDe(`!O#Ap-aeF1HD_00nguw&K*CR3Ucc$0d^E zE5wdGrb6t5#q zgP1tfHFF_L3j*L#tIv*%98Tn=GozX+>S@~$t}Z4nVJkjySsTQ}eJGLZyg^J{hYe!l z0Fxo7TusZfgDpyS9qB^#%Stn7#kgRT)VJkF5#AUy`6-toksY!@OybXv2DXyNHi$|5 zOn#8FK};g-gKi30v?02BQ+LKTp>^{DtH}zCoC%n{(U*J*C!t?9g#gB}92|pX?d31b zX~r=nABj070}j$wTNd=CPY({XA)jOH<+EI5=LR}yW$<3IO`<$!X5b(>FH!zRf;=Np zK0hnaQ6Yb7Q9cvfgg!kdP)@G?NTB>v^d(36I}GL1{O)8AfcoblOgc=72n$U6QLoTYD7symn zXnDW#zO-U@ZX5F8M`BF(eH`z@Pn`$$7)eU-L{FV$~RSA2d*PF?$G6E1Pyq?1yEEos@tHJM4H z%O&nWL^FR~1lA{#Fm2*^y5-7K3$c#zu`PfPSxek`bD zdm^wwQCYuIjm(x`y@64JQtFbGf%b~BnYFlqP7DOPq&^Vaf;yfGl*9T(gByi7dnDR` zFYI+63tj|Fj^K)qg*fX^xEfErnXA*)`^sQ9leAC7QXX~LQl22_cYfG=ZAiyY#8STg z6G6K+pU_6>dEMxX&jxmon?Io&>P;W1d?KjU8Err{r421_70je%dvXm`Rx`;ZwD+-s zu5{S*frrRgfkEnAIfzl8(DLSCoqF2~0h>bd|$}oVlzlC57sHZa2`LF9jY~ zLe#i^UK91)OM#md^2{f6_wmpJWEDQ07ib9udrr^1CaStRP^^%(vcKiBKQwZk4~?sA z{G=H5z^3_a$aXpEEppVKqGPsV>1%;@waK@b1IEF}<+yjsaeo>ex9qhA<6(CM1X)k$ z?h)aeN&SsN-hUEBrO}r#POe@}yO9j}a&z=0n-$u<`+$bD`8$EJN>{qu7HmPg%#pGvxJq}lHV`loJ-evPhM(~D0o$Rd4Z*E^yw%NB%m>Vo$IS2rgQ zZlsF3_;xy|eYjKV=g}tkeh?WYKfNhQh=(e(M{ZA|8|SqpNAQmANryIyMZbTeAphq_0=ad_KQ{{U z|Flso`(tRugcVv%`mJDq9H1n;*O;r1tz;{W+frr>{Qm0C+(THO$8`HT*OC~7y(RH^)WbECW1j++9sl6`+UaXa} zOqV1wKB=dF4wTeV#*4;W+>Y5KM(_YWVj~#1iHlnzdY2=J;Po2q{lscYR^S^Zbe91$ zw)a%D4PLjbN3eU6-D#kWY6Y!H$l^u^whIor{OPRzI00KnjkgA;q`W0Z^eQ#p8N8pa zC&6BkE;`e$Nx^!NelqEM9Ux8k4mOJfXUA#P3AZ&d6(dqADm&kBSFq#dhzuJTyt&$^ zt?Bko!8GM_*3Auctu@#=b!()rO_Yn+)tiKf#RPDT5%Y7*iv<^%r#-aQ>s!~7TAzw} zBA<%Q2{%;W^m5^HCpIT!19jPOTLyWBaa{=ofpO`NIZAX1TJigrB=b`tJ`PFDT6`+h z#b%$1-3cIp*&WIzu{rIP&43{HMf1(+E`grXpO!xm{G5#Vlq(M@r(|2NdU0?tNg>ld z)o2UnA}>D`n#I-DppPuV_?TAsWAr7TCKq~ST48^VOdsVA+Uow`fJ$XB^{57`r*b`& z)Ay@bX6q$>?=$@R((#W3=a8=ilBriE3mNpK#ADRed0BMru;4~=T8nP&D$Tm32S<=! zCA#&aFFCrOOLX5C=rVM)R3+CW3y)@(&4R2QH&f%I`Kk_XOB9B;;It zQw4U)WLhyY_&GMmi;o1Sq_&eymu^-s4Gt28tlF%hYUj$g8mhjwnNyX1Jv>;KEX7!v zi*V6qLDI}M(HE+gP7I%q(D}Aoc5j` z)X|Cuf`7-p4Jc9{o*+MZ{WGynA;6;ZKDF{?beSr9#q3RwzT>m^+Gk>+J}%K)UWs1R z8ciLkK~b}6l{wUSU?C;-w}_cd-6EDOmq6EV5jNH$`E8pm0-2};vTxC_R;WrdE`j=N z5dw2r^d(1HkG`3}1i)%Z{)8lXouMoCT~jxSNS$!GT=uQAf^TbwSWa!1U*&F(;^buaD+ z^HdS+kSIYb?kjtDD_^52XC;a%10`L^ZwNHG3mLE(iqQX$ExXKT_O1LlvT$d=R*vik zY;~N%XKd9bZ4+euMYg^)UlY?u`6N#2*p zJ`{b)kzG~=SwQ8!B+QytC02%0<6e6cwP8*W&hpbcK!A%c*J?zcerd6ZTmmXX;E6d6 z7;ik5DPA+{o+Rz4e4|fa(n7ph^#?v&`dIK~(sTzk&KDmRP7C(XeAr%mm~?u39oi~< zbt!)pwd;M+Db!lXWK1pE>aF~~ba?%xZI!!d_O76t^xq+jZ zUCHA+gpI#^hp_Rd)AGqLHBtA?4h~kx3wX$E{F!nDXat8(ruy#O;1ELI1S&lOo$2s9 z78u9}a`NzS`~2XIu`hQ3Q;;G(6f7qX>=YiBdv^*l^g<&>1~lSi5S>XfMCPgVNF-Z!(N;4` z?k5;YwIlvP?3|?CZb5_AyM+P;OAhs8kSGQv4J;^hfg(~Clz_k`O(QDlnEWEfEm0$G z*4;#hPYU@{|1HtGVYg869lN=Tue7G+zEB3$7v^_Xbacb8kk+dENqz(ZMLkL5C9Y$3 zi_K}!dMv+%yTx*;U0dit^LAINAzkUkTcK;OA0KE$ul^`li(VWZOc(CGZcT&Ly=_fa z?A9!@v?_g`-2h?tB4!G1sFcQ$muwtDB_MNv4Az-4Ml-gNm1EN=Tz_iD$F^a%Ag6^h zl-gY1B1hy%4~dbg-);;JP{=>!P%|aupLVP3J`HYDa3Z)n7&6jb4f4B)@Sf`{Tky$H zleYxTiqc#(n_W1+vxs`?7HOs#!aw8?4vA;_oFyiX9dkTNc2Vqf!;_&b>e>#W-S=~` z;oSbY*l>DK<=*F;(D^%p572jhYfzv4<|Pl{E!%l|N{DF9g|+;O+*X@5TKmj61)-ur zEDC;zH|cXBZN`5tq>bUrWme|jXASt?x#V*$ag;~trP-lOf_7Zsh(4vvjsUnz&a8@W zn9O+tjhW0Dv?usfGi4X+Rr&_*lPGS7YZj6A>g;pDqBOEBiO#9tud$l(ui(>Z$}usM z(FuR4%0~r_LzXo9bmvf-I=6ACcNzkUIEgCfKJ}027hFVb`CN!7AjTOMh;tDY89;U& zu{2tJAqJ571>LR-90dx$lC{$PoXwAdrobTfF^+38-0X6tWmOv~PSv6ed495N8n z5pURfE|jA|OMal(!4~SL5c?jfNjUK}{vL7@&mO@G!vTk#@2|OGd66=Uy_38!9U$2m|41}syDu7YW)Pi9W{5y| zrVefN=2EwS@S1?|iiGeI#=ax3k6N#1Xi+jk#Fy4rU%Dk!nykQv?8Su$;Le*)M4EoTJ-e%#sod_*?%6-nN9Rubi9!1F4}AK)9vA1<>UKJLjM(LGq!xA zf2dEA(t@_yA7RTMBVT_h*fKOQ^iGn}g|*O1zCWup+i_2*Ym#!KXcpzZdNTH)*_XoM z-1JLj8D(STRsZe7z_rXxPLMDDG$lfqJH-!!w z66!{#eJN;~$ zXRppPk(cH7c++Bd=)uYsQSk3aTUcBn7i%FPWJHF)M~GoL9NPW4P(S*bcXm7FIGZsk zh>v1Y5HO>BO&c8wb)&g=)NVv~Y(Ln5=6gf^ss2)^J{{@}J*xaBzTvX@SD?$*<4HN8 zUjr4U4GKtA)??SYVm+?)&TdP(>=nvp$Gu|7U%yu@$c7_B15?Nyc*|n3ZE^&+?G=mf z=DmV|S$oCe!&jVuZSb5ezHZSG^Tju?(e(CYx&)OgK|Q*cuReOJ`Kwpc^DD!()iXJv z>yyZey+ZiSlASEuD|EXzGhVf-Yx6?O6sli4yFLx*#NSv8FTr748C$(1_B-{f>7iCh zSA2Tfi--A$P&Or0G6xA1n1~cGGZ6C=AN=;#~XH=%>*G|Bm|vUDj5< zRB_;Ms6(9lG-v&9RKBJBtiP}PYG?F$j40e!R~%n|8V=Wr5YD4n(39iG#tBXUuSb1>AkOn+k+UdWQB(+sdTp?EJD+j9~q3hSod6C zi1hpmRer!8w_;^zX{EIKT0DEdZ25r7eJ?~?9epN?UU)Lpo%H`o%UIs?b7(jQC23y|VJqO=QAXV(v$Lr8=JprSP|6l9d#pIpAYH z$r1>ulR_2qs&NXAPMU|M#3}hoOmZOrvF+~G=RQ(hBIxuAIk(Aku)z$c7b z@Cg?*qI)^r5|(leUHjs*9$Nn;?5syL@D53M`!NA*^E1C3YF=(o9xSty` z>c?+{QV8k4Ur3q3kx%!Foo<*KnnB3W{ThMdi8kT!T%LDB7ZfsfzYr)BqHnoCxed=* z45ATW*%SdR$MyRCLZDmm;|D%!i>tIwI#QpF_R3v4hX9DI3N~nuS21gWat4Q86G?!mg#M1#Atv$1BPzaQt56}nBgpSJwQE#l0D#VI_r&Bkb4P_~$0|I~9dQ6JG*P6D&4J+MR`QD;PPh3K|#nqXvqkPmYk5H zXGus2hNP#`buT`<00u-9#8L@j(Lo_=?)fRSCArSBP9L#idFr5_LK~84uXUj`1KAd^~6BPP6E^x%g@L(zESxsV0iWL5amzK%Xhx z!$^2cE#+UVg|vf5$}WC6D8$gib;Gr4lX{0VVkoallhX~t*|kWELqZG%qi?ww`cdM1 zRL&egbDY1#Tr(ZprNNnrp~xhzN)=)#`Py(>`b&EFCUW;7E{l|b^wOGe2KiemReI*R zaM;|yD)9|4FW}8~!Ee!stx7avt5S5;lE;Qdy8V%LYZuWn?Y|ZRrtQ~N z1c|vmjME%$Jau@bcYSV1Pne{*C%*~0N#F~Ca!)7|@{=DYom1;XLsd%?GecT#$(#|FT*eC&f zBmv-~%K=dL)UXU8`axoTvD(gQcPB94@;D|X<*=BP+K0uY;Dc&9{(V|_1+jzom?XCx zu4bYK(a){GbAarwpX?58Ie%c`Y9^V!JU!f$4pRcZlWFLbsq6eCVCw)njm$pG#GX6} z*#AN42-c=()1vFxzf29ILuQ6k2zt~kG zEny2$F%T92{RSXH9iX-5gi(O|)^I~YHgY6fsg`;|GNTFC7CZL|Z&1h=9O=%qtjLi} zGy0;dgNKEL$D3FBhVv?0+|w^?Bj?1+`d=Kb49^|hj212oucS-*heNC}AD3Y<#sx@R z%14mev^dI_j=)7lm{^BABSt5y3?1XvLTa zt+;3x-AU0d`zC$rG12Z8-9LOp@aRLb{|Al;+5W}d;Ul$4F5WVwXONtbM~?_0KIMoI z;=_&zA&##&!SBU$CdB(jCy)#AKZjtItdXEzmY`lZq8=NHv6Ih^2=y^2zuI&}7^xFI zOOolWw^1|QIXt|N8>;Gx;o<8Pa^Q$Ymam9@##KtEJN$w|z6UDIMtv^&mdo;wCF-xq zsd_=8{@f8E%NJ-+XRN~vOJ6C`NI#BR!7Ae$~-Fci8t$UIZh&fzgJHvjgF&Y z{widrcpsJIcgUBYL|<~H5eBWE&K(tgkqkbnk?F&a3Ym_FT&8c1eioJKIkL|!(U)AN zcODy_P>0Mrs*&kCqD{C=FO{F3i9Y8`QjSUafyuGH^p&aMcI5A9%Ov~SqheLAIVvRk zyN`y$WE%#_B>QK;o=NsM(TFWdG~$a=bSM{Pr1#&VQWA<%_VUvH$0 z8`D~|!c!~B4$5+QvSwDeUqqfz_u6nbdh2XFalxO?gvlf5n%SM{0$%eu;d2U^AmKHW z@X&}WmJOa?Q%`-eAiPf@GmbF|L#E7!axnjx5GQ!(TmYFCd3kt2_)bDAU#jyLhWqkQ zg?V~iw0k}ri3`!EG4r%99rSp(t@0r~cBWX`sP7#URC^ovU_VwfmxfCe1y(p~!BxdQ zK#P&C0xcQo(2|o*bS+62fzvfj$P*3+KJTOwH%b0RfKa{>;^aaYwmZ8%kXE9;>e#Pi^EN5^X1~tEc!nCb6n-04NLH+ zqeQ%IN%bq|U$0Ip`9A?^eQrBk;lWTbVU=!Wn2-@S7FvcD02y~mz_QuE9cm>W3vuA{mq@!MTbhU?NP&xWt7 zooYdvU@L8~GJGw)<%gwBX<1shR;^Sg$_>y-GfErN^-qRt(a*omOQ*do3zO;WXYl#O zvT$;e-HveAM)-_B-%uu=*QL+?^tWqDdbNN)&)Wa=Fy{I2O3d^B7z%qI2{%!uu*s21 z{uDWT6TcCg#r~(DWbIgmp}e*VHqrm#87g#z(}gEBZ`J=W9<7ymVqr#eCd`bTtCYUD z?V@M@qh(KE!u}_g)SvEfefsZb!fF3wOR7QX{L(q4GfKr?P+G~%A_+vwlE|Dfro~0Q z_h)q_<0L~r2=0VfRI&v_-}Q}99mZ-HnyC&E0l6%V9gE#TQ(p+TQ+5aj-zph=Grnau zQL`7r%aC?NNE8-cb>bT#f_F(+2y(xgt$pT@tyT;_4ROz0FO7~1g}uS?s@o@ySsT!6 zUJ2h!FXmwnZGT+sp>2 zE%f+nVOM0gBT6|WG)b|Gzw;_;jv^1 zhju%yShFgH-tcz#Zq_FJS?Q2!+ODdmtr~ti{Gt-u`1ft4!^s=6F^@Z1v%U0o)`n|U z@5+GzKRz)0%bkWB(rEb$GaDy&=|`@j#=gikG<@9L=9w0+2UUnXCI>34Sqy%Z9J1O? zE*nxS*?e}hI!9kNF8e zbf_kVJmO}X#b@v#$GIEz;!JKQiY$3Os37GRsp)yb`K?@6{D+&t9)r#0MN)Q`Ro(sG^a;tC7&I!g zp`wz{VFC827-zxAkPgFy>syFiW+|dY-6ey~;6_b1iy3*+Ek-}`-`Jd}W@khWDx2M9 zWi`{9sl7TCJdZ47@nMTPQsxApSskg?w?>nR4V`K-80<2~m-vIF6{AI;%x$c*+K{XT zRRbI*Gl+_GSq3{Y^|*0uz-2*fwwV02*A)y&)_L6+u)%}`A09i3?4g>U-HNLtX1l|T z8rLRmsVSrYwt4Kx+~h^}eWTIu@E{YH!{tO^Hxk)${;ofEV@3%uWj`D7t_MsEO!etT-d8meJWC6gE})7&GH% zc%#RrZ)>VHe7FFa>l0A5O7-&uYup!`x<0}58Iii4`p(Wz*T)~26*H(5cFHijJU&(+ z!D{iLPJ{(j&a5cu;Bg^^zul)A8(q$aiGGh=R8Q2Q zE`!Hqw4>;s1=aa1b})*^1fE8bGL!}I(Ckwv=p{JS6c?zC*8>uqifRH@$*J*?;Pn(c zvF4IfQM}CRaC)pxv)hWRlQy^6=HS;T9S*EXo0`3g6|7^oUaVNUev`>>armJhVilms zqQUJk`>bwJhft3MCvFsqa2W8$;zuMp1d;(mL~RD74nQS_N!OuPL}q-5bPiZA5kLxo zW7MX`6D%n*xOEqQp#DR<)-z^w(YN+PNO+L}&50{K7ApwjLKQk(EcAi~5Fw)KLdCts zLz6R2c2w+hqb?*+wmNXH3xydB23(`C_`S&G*QmudUKisdr_v- z?Do379|FZi2y4Yg`QQ`iv!b7U3mqzRGt&An@CFs=FBo?S?vR&+zEs& zJ{PKln9W{`$?QPl89!=#I#J%!?l!qZO-V7t_}TjC?iZ)St#$2;#mcNi^o(V=1Pi-L zSss+&i!*<2Cu7e~!qe0B2}b5%?AbBHj8cSFyTJxRps_&$daB zy|}rBNKYiCL~&LKFO+QcT6`wE$%-PdZlBufrGiyTrp@7X8O@M&s4#;{sq8)trqFFc zDHxm4P0JS)V0tze?NvS4XgT`g{I6ZEg+p3m-w;IZV$LaH;u&dL7fuZ!Q-RVcZIOGn)y)_hV zw5b#4Y^zW*>{f%#<8v^fgG#VSLuB)K{AQcW>cRDCdP!Xk(L8SPY9%8sNP2AhYEvSJ ztOSbjw#)WVmRavI4)x(er3<+Vk?RL_d5uPw!D~X%S)b1c$%N}-nv$s4Zrn&>X!Q6| zkH%$nI#Ec{=SLnA{O7R5)Sa}tQK8XbH=4c3pJz27Vq4VK<)SaMF&|8C{J=EwkblGl~%dcjWuB*bS`yrxWEr zZAQP#;WT*EW7iZ+O3sLz&5=o>2%CE164mXAWz+cU+ii|*onQ*>j7>NGwklnhU`%vF z^MdwmAd5{XXKDmnVxKf1uO0Z#>v7^{H>z&h?I`b~7OmO_%@DeyAGJii?9R8(Xu@qK zj~B&cQKr*k_DRi9R9bQ(AEFsqF5Mo~yfsIx*&0_PLC1wXf2TDZY1c!6+{no0>95>RYi4GTu!t&otQ-* z?$G+3ZiLjk957PA0}hMBLob;tYfahh9;o$pBMMGKi*}>-u>*yrjVNyC_4!dl80C&5 zT7Cl9yu_+55$K{Hx3#0Q7tL*)!m>Jc6S*bX?rO=h8a2Bs$}~GrH=Er6c0;mbX(1IO z)7G5O@myvVh6IeIQL$i^+s? zWLyW%#8Qca3#(sk>4Vo~n|H6<%%1N8mg*6MSRW0%_#s-TVIc6{>UZIpB zcp75d!?H&^?8qDKWy6oSmfWZhXhhLz^lPwSq$O~=3h^m^%4&yc3!D1%22fh_md9V=c z*Jp>Ci%R7vzi7l-fJKYRa3Xy<)Ow_kj4~=pk)vRs*$!3HXfZjEXBYfzgM_mgprOcu z-kHw0P-(A4(@n^g9v7(K(Z9H}8lfY>$-qjI8zE!h7qgljK9d1?Z{SL^t3@ZaO-#;& z{c5-QVV=T41cd>LkHrJpdrf9k3U_MUXPGvS*#K3+2UdXF$!Bz;Af>_OfWZI-4?4*` zGnz~9Spvw^cy*aE!y6AW-TCcYGldphJC!F{?Z#8Wma}aY!_az^Ja)U^X?MXChfmLl zI`U>4DtIE{HTE&L)2be;U5u3)KlyE?A`Ev@d{S1~D-$ehZ!Dk2pFoEne5$99w%yiL z2j6VGQPJ#KVr#7hPmtN|fL7#yZU~hQsl8#W`*8=+gXQP)u%e?NGRzumGgj2CgoTeB zvPO>shQ7t^F|j=S(y-?~U<+(so7ds?84Z4TmOKv3DtsC6)0mBzUZD#2s$aZc=@cI_ zw;1HU%6C+~B|a7ow*Pc%Z;?D|N3~Ih4ZAs1a5%TYoK8PDkmX{ zh6h?9lGCENDEtPQ{7{sW}0!wmn4&kUCs^arn3&`0=k6VRv1E}3Ah zR^inI^JZeZWYgE@rf0?<71R90E}03pA1qF6D^?W1^}}>Ay9}u7>xXX}w4ldq#nPLt z^TMNK^tfzvJ|oUz zuz8&26=A^r5bWX*$r!gX1KR!|jJ#$AAH$x~vz*tKSLt zB5Ya4a&XT>QFo#kFdU**R2G2!4R0^13HV{DnlK|Esm2_`Hh~Hf9vgOg98oyjC`VxM z!*zl!6#AZ*W`8zUnq&F|@SRk7tH78DG&jfe&rDCF*If!5bx@b#Mm9q;g(?Tnmy?;& z@MmF67Ms;0m2#7x`Jmy4hq-9+LfF`hE~xfCI~$D?O8F@`0E7quo58X)7~w&4VgX`a zptpML9uJl|%n;F(`-2j}=32Qf5$H<=r~%ylU*Ys-_Up&y++Z+tHyFAI=QQ&wXW5Lh zDlmMN2CET{ATw-xho9vKw|n4`$KDUt6-%sPL-?m##>*(KhL>zB!!8(~YL?iIEy0?t z!nO%!&=WB*_0IT1;)g07b$+AQ>vx%K4lG_)Heo zKv!VC6c__=``|Fl>2X=qvL*}4nA~?_S2R2PUZ26@gm(~1AH)<}uO`0_^yMXI56=Bc z(I0{6B?bsTo1AmKh6D z9Nuvp=Gk0M=)^D$;a3!!xGq6Tc_AUN-z`;U#ivpgGcUo)tiolmSK`eXJG#_U|JnIX zbqR*WT=3kFQ%eu^%7Cp2mXO^6ADzu@z{>L)Vf#ac@xm;G76WD5Yc;|1VaIj=N0$S^ z2No~1YNO5JbK5*td4vgH98`21cH;084jhz+hZ+Hc8tNMiZYf8hXdX~9;{)Z}96XY7 zf$}3uvCFZF>7bnhXBuEGuN}&*73}1M$>4=CE9AxObMqfgZt24!_8D!cOl3h}h0_R+ zqt$3;J|>@29rW4U3a}8mu{kY>reKxkZC*DH?!aSK1Q#%N6O5)$08^d}K;*;$XkqT} zc9d^z18s%Z>uiumeuo#wz>ENgQ9@QLo=;K4hX|^BFrqc)qOKQ0GGxGOBL*4`uI?7+&(p+98qDa4xA0dpcmNS z0mZ2Wv)26ZbQ&N~@KpNpy(UOE9NfS`hGJ?4*lakkfU$rG2{WA1g6qWDjKjk8OxWmt zm`G41vD<-`kR&FYKpP-4*)a48z}jS-PJFOVdhC|s!CAH}v(}V@He|)gFZ5#g@?gC% z{Rc|F8`db?&iojL1(PL6kqzAg#>ura;73V7m?{cn{1sWnl7mJTceeP}_U-NPqa+v= zKTu?tKwdhr6`7Ie5aD4q5Xi%}Aq3T6GT^`y0W1hy@?sZ5zz(>}>_C&GO-@9O<~=b zEHH6EJ*y9)2p$$zgb+H4ppuAH3J$cv1O+D|MiAjD2*|?Dj^jhN4ouh;q}B6^lHr9S z$|CTfX2MDDb@@<)2&>x4PAT0YP(>dfFhULa@pmGiP{53g$?9dgy$- zX9~LbgEG+aid8~;)EPlfBlI+@7ye_A1{v95V;S6Dp9e<)T75-t@ZdZM)JFs-jCB-p za{1sjf{4W_F#Nl2)%aWyHZtawK+F{LX+j#qv4o&2kJDg)n-ELEs=5{xoKf@%;QA$l z#RtjADfcjk10kpg_d$dvEHIo#LtJzI#xoo}tK~~^c#sJxZZ~;w42@tEoP6R8%!_Z(z2KxK|K&o4kX<}wKN<_!M=dr3)DaYSHvS3KfgNjNkw=p0defHJjVTGaaLq( z>qK+L93dxf-!&I@d7)&S1EFt#PCw&N36I{$V z-!qxvmPJgX1Km5EJ{v4|RA08ZRmHs+QEV(?4cY0vFlL}k8eMLjuX_O(~z z7cM(G=7G@hfjW?=8VBh@QDlKqsLhA?6PFWiNFRbUaYO~{*n`k|pPwm;kQHv2!f@cj z+=8hLJ<)47AzTlHVW)Op5g4m;LbACKr(uX>m4JW}mY*CxV(zGg8%`}_8?Vlc-3N7! zamfL}R&ZZ1=L}+K5NU)W3>Jq9u~nh8M34!16Xr9{`K&%K9KcW%jV1(kL!X`XL1Bf0 z%A4_^L5XjaS76k|hvpE*mLG6rMqqhegtNykES9ah|&LHI2U2Aott zmvBPO1J6J^V#*Va3{kKc8ZqLin66~Up&4SSJ#HhGoCkN23@T(D)IaD}(DY!o;gtnW z4@By^p-KA?#%YC?qTQepfHm?BN}m9%ou5z(M+VpeJ~TM%ag4|K-C<-qBa2UDWwlX_ zw$jZF=Yta}2*Se=uM6iKqGS9BqrpHB5d}W1ybtgK+!+?T-;PsK54(ZI&K*3k$Jx0Q z!WqoifK??A+f-%(*xd1!0IFYXQsLyHdYMKquHnF|4j-ZgsM(u8iPJ1Xc!E3ZaA02XIuvEOD#RW>R76F-ei2 z-T`7~xf%#>MgqE2*`?yI%PPB6{MjXxa+x9U79) zij!L=r?Bh5cVL8VhENcbk79R=D1-?RaEi0(1hBPd(|&A`kQK0w0UWk7E8Yc#$_T%^ z6=#*25oIE3gxz;@dj0U;;1JCPl4BL(lmQ_!2z$ye{z%DSp-gsmuYtwHAwU+vqtL+M zU$i1xN*>WXzYTF9@!<-mhCV(>zg8oJ#ACs&ZU`?_V`l-%hzEd;;>RUUguJS_x-}tL z4-YB4PtdBJFuFYO%laM6N#Mkx39LK#H8(UVgGU2qCvN`1u>;11_U^LbN+XU35x5HP zjM`}UHdtl}02=7A6Z6@rdOUbcHRq?$O>Z$&gqKlTVF_}kR|aLVOGK#L7KdI{JnsqCDZiW=^@|`#EY2i)E8{|R2}UKX zu!=8N+i0%6=-Qggx;TZYxvX1rS=U!{S-0l0ZoKQkHJ5c`F9_FM){T1&8Nm`Ymvw6{ z>mryO|J7X9z5E7t&1K!1%ewrUFgH$XF6-j3z4D%L&1K!{Zy(oO)~&g$TXR`Aa_C=k zS-0l0Zp~#~aZR}9vTk*^oog=Z)?C(&dwaI#vTl|8NHv#rTXR{L-43p~ ztXp$gx8|~Lq0Y!Znw5akaVTvaU$6S#w#p=CbY;FIWHHc3JoB*NfB19#q_& z6!N8h8m++F^Y6tzRz{dt3U<}$*qHA9dvREqPIq^IwTYVdMzJo5{Cb?ORExdj$xo>A zcCoqk!i{yV3S`itwg+^i?It?p?P6=~k{x(0DZ&$kGiM`E|MqfHk55Ha9s%z6d zcvJ7uQNG8zPWDZlFgd4m^le|^QQBCS+c&oBs3}vX`lghQ?!lgQri0oa=-O=00sP)z z!ql9xqkNMqTWmW(C%prF)*Y@x*Uh5Wk(UnB*WM}a&~(T#2Epr^Jf`cYajp@pw|kD! zv+opNUwiyGbhB^ujE9?W|w%aPjE6@3Egxe!_mT5iK6wb`$%_MzR># zv!4w2#T?zm9Kpq-8ET71Z{t6K2!4Nw|718U23Yo!0bM*A;I3Lcb@b1*uexeRX@}8i zC+b`^dgI&pF{?iNb@aRV(SZF{4~UGun*Fxw6Z~k%ep>>BMmJ)=wFgq8uVKF}2V$ce zv)^w296y?{-MJk$X{uVcTy z0nA6YV83M^#gCTkw?{C7(HZPFlx4nD@aSxM@x9_Yw4Jr}9kl2B#l6xj?A;{{YIN2K zy4yW-z+Fbo6TJHe-UVFUa>h+$|Bqy$QznfaH?|wgzlvItEbSu7#vl`bhh2SA03p z@|>04xU=}Jw2!nMvK5lPUh^c{AvNB><+f93U~lm~mw()v_RP)AO8enTA5*%o_*|M6CN&aBA=L)|#f88P>PUZ=rTLT--)U z>#b=)t8~^vbk^f9bk^}`@hwW)gWAp%IxjoTrG4W1Fn<7f@FZ>fO>y7YwroB%qsS0| z?~4!ESTZeJGi!3_F+?bOD%W#`r9^lBSUNJTNQ)mEzNW)20*jEg38Si-da~H6q^*j1 z{^H^X(q7O$;e%aulK%c}@x8Hajm@UEqO(JeWcu`**BH{?sqU-#-xaT_@>T4T%c=&s zIfc0|lHDh%>&e_9nsFGaY1(Maf~M+&-xn`b$gz`DQ5TQYd|;{OgY3z<1JYvVcJ0iW z{m3tuLF+9(j%gZ?48NZ%E=_Cvt%fzYY-p%?qFuS`7LQK9!n@fQiXTtwr1_5WnSOZu za~;x5+Q*DENoYuqjeqWeDqqCT@Kgm%7&7Wx>MEb*O7k;p`L^-m33{w)em~;*mhRrVC`+CHOL2~(PWz=esF1ne z(ncTWk4T%PZQc9R{O)ATw{(&}FN1wG>9>LbSDLUnujh_RfY>Zrej>9m9lkm@=SqC^ z@V|=#X>Vxfml066PV*!>n#h3XQ>AB~E4}(g^sC>BH>GXWbigH(W`!1tY1V#D`6AOk zi9)5pKZZdD*u!^=cC-?N#v{XkzbmHbl<{-?_Z|Bq8*rL<^Wa)dPcPOOv$-)ShvN$@X;A)0gk zy8$;M5*q$<@(`b;>qwPE{6I{9;W4rG=vE1&~BF&fE!0*&n z9ZJH4jF;mYqiw>+^}u&x<_F?mCReneHFJ=d0|wkqjn4-brLBlFzJYRl%d~B{RyC_@ z$=}kR*FNTge&T)O+NQm#ea!dZ=f9)7vP!J6AC!NSJ20)HYTG1qO0#y3ZWY^@X(yVA z&#o3Rwm)j;gJus|G9kVc9594t?`+b94m6gGy^?g@Z7lg`+CQ|2X3w5?S5wUc&BQy* zC1cVrRQpbS2k(@$l+#yUP-Eq|v>nhn?Us5otL+gTvAt`+WZG)Wg1+?pu=m<1*VA8~FGZM!B03%_%=DEg5@Smpt{vmfon)WkVK6Ki{X|pf;fa~q}putTg zkHvmaWvR@mZc2^y15MRNJxeAerLE9*oy~N}GVK$-epj5PH{DY5Mr>QY;B~i_+?w`! zH6JYhcW&DjS*7z!=ae!Z!$oG(#(=7VWua4V^D&n{hfH1c8~7^2L8lXzJ)!@{>-hX+}}OZ+vySXz!g1vS?oalCf!RzsJ*v zH04T4E6tP3zb&V|%_VMK{6;U(b)jWV)F19FIZx7V(DcW37LC|=MNYD|JIdF>xIrZk zDrtSS-*Wo)T0ZLLv~2BTz99O3uNK~2qO1BvtdM%OI%r%)(!!69nXbAQB%4MXrI)(X zrZSi@G@blC=U?^r`%11>lp@wlGH^)SmJwFTqZ?|MW)ghDH;F62;|zR-cOMQeS(SjU zpbewz%MX_L(>~Tt5w{*HG*2``ne`ClWA*Re8p3FBK=WNy`h6~ERQtW4-^rmRcPVM# zX}{&h??vqsPP*^Dr)M51*-%Yeat3%t)@G!wcX){_wrv&0-BTS-+}_Y)8Jz+A#<}7E zb^T+(Skm!~PzJ7Nz+>p$=8T|sV^4__zN#~HL%r!E>uH;D9`1Zb@GzQlmAHDSl+*eO z@BZm4DI;Ug2s3BY8QSW%{5#aF5haZYnU7wfVQN&ub8@_M&j=NB(ge*T(RmJ>Q zv>lA%rmB8i$*&4|9_?aP%(_GfNA$;4%vopXr4jk}6X3C-$DBTCTAam(u6+`nw8*?R zp~gP~lUTvsLGzb(L@R6PL8p!2N@s%_}j<2P!a2RY*g0 z5<5wqqMcxp;JSDz-#|`-QZq{KCm15PGPLvZS7ypcFE!pVp4@s?tiax9qm#*(f^rjW zbaSbW>c3oe8+rJw(6k@Yw&Dx$_OoIE-gGwM0@P_yj6#c$uDc-J!n3rzRY`vaysx@r zZppZoqzrw>F2i1OMxHt=mf?<7B`q_^y33~jxhm}@eNb{wOS0jz8BR$O%MktXW%$Hd zu?**(y~5;PL5NZHV9B_&OKg@RqJ(dA=QU3*ANdq&ygRRny7o}Xzm>EufgihP5Z6Z^5+2kfQVRmi`9W*4=Ev=XK9p7~w=a-F#UpV%o zSk>x}N?bG@bHnt8iOWs2R4KhXZLqdu=2zAzf>+5yCG8kEQzRHwZE8HQ&`#GLnrA0d z&kGir%-}>=B-=Tszj9t|+_vP>g9-_q7c8<=+l;fwW9J2nOgR4^v&aW^N(;${5|Q_` z5IBpxeO|E0z?9MfspJ6K#j;3-oQ8ep1&i!CFIc4FykHT0&lkv>F;jUZ7D=z1RKX$@ zhvu~>4K9dTs&_#%OLLOv_g5~6jroH5Y<*RKZE1QEO<4(zcA{?f01X#UmYuf0AmsdK z*Oe|yA~#&9$`dnU+tE(l^7QJ~W~C1(>QH@Yu|oRelh{plar6_;9&Im((Koyx=u-Cr zZ8Rrz7sosz%df~CV>E+j&MocAijG_z)V8#vk~WJ?Mx;y54}G1}9cc@-k2x#MxI^@IAX=l{jtdxuw1tdHaFgoF?#fsjH^fzSk!ob*r=q(dNxbP!U3 z&;_J~jwqo9&B+9Esvx~991sz(Qw2p7#Da?0t`d6ZH)T)u-938}@BRMud!EmIo{J~5 zZ*Ma@`_At4%)CG8?dFPFB;{$NFb%FckJgq;4Fuv3SXwnN>M7wpkbx$LO7(F0!dG8+ z%7Iq~J6X7XM<6+DEAAau@p@pY2f4D|zcu;Cw5kpM5{km7)U#kjF|m`)CKB$sJkZhL z&Enb!Ujd+CO8p%UbAw;`hm>t7E>t6EX4EaR;*h^69&p4}qFthRgrycGqMFx5TKHa9 z;Kcgd=enpK#8C8{gj!q|)uSndp)y!pC6O#hnGQirOLb16lyq9L+O z10gS7NBUoPoQp52RSiw2AgUekw2x$CyhPRd0x}u6irxrCsTV&BTx`?)(s?R3cp`D7ZdZ3T#U+Rh0*Hf(PKDaLG#}{3T z`c**}u50T@9Sz*pUPXsJ(61CuT{I#TI94>IBSP10vNxzWykgp*u5OElmrU&JKVn6u z?t)!v^!hF(hSwQAq-aIhSp&ChDf`xiA7PKD3boA zPP+{*s`!_ zpM)1fihL^XSeuN(%i%B&?!`Aq*H?;;Y7o@Z@sCc%&}DpC`}&fiyLde$%6Zu?F7J-F z!C}s8{S7kYwW8)41U0Xp^my^zNqv3El%+*8&=+z&1Y@VQ;D{majh4G?@R&eBxqm@ON(Ym z(&lp2L&@Zr*oqk_QKzzb#lC)^Z?lOyY&3H5iIIL%~g$rUEfSZh&T315a3HA~Ch zPC76T_;jWpo76XaY56>nUf38&R@;j%;F}fDALNd{n_MUF{!`qaM73EJfok587jCz- zk>+ztB*4B6Gyz)NlGkkzOsv~($?LXTl_r2YX|`^pcYQ--K?Xt&VzqWl-1W8FTomAi zrc*feUEd^G`>2>t%8u&?{`)_?Nef=(h2NTiQ8dn+7g>f6){P{Yv4~6T>?S91rj# zva;J`H&A)Rf(8^22BTRQ9dk;iO&K>q{oF4s*jD-C?ap+8$W_JbL*yS$(`{m^;)rDnxaxKCpVTq=WnTRM9BB*#(#T zYscxLuF}h7NiGQ~DOI|z_cY(P$*Daxwk2KgH=(HnO7)5UWt zd06+U=yRxbw&-NAeitzb+xL1Z+Wd=S@}h!X68%AT?|=Pw^xbVT@ynvVXy>ow$d^Tp zz5b$|2rKFmd#g+JQOFh+f98qD((D&+{ky?_@&1sT>=*A`xW#_)N1(UaFS;Mm?3uhf>?hyExXXU=Tc~^N z7ti{rfh-h%JVOiA}!j*~TS`iF>?@W|Aiz8)mK{j1(&LChr|$MTCsg`Q;GaAQ02 zW7_PnwktCK9~;CORr2i*MSj@l4i$x0XrDWxK^%_IYkY;)@Q&Od?(QOQ5Kp^OGzTX_ zf-FIUMf-xOEaY2`bQvJW}|is0h!3HsJH|%V0$DAN|GV<6h~!WjM5Apn=5R z7zG%kjB{}zpawd@OW-i`od*RJo#1K=b>V9AD|5yDL`u6rOkC=yT<} zMU|K|Uugjkg&tNUQ#@q&Z1x&l?;ag+<_oXmwZVvjMy6n6Ua*^MW!N|kCEgSFJ8=vj znn5y+DHB=V`tLMT7DA}>XYAym>Eb~wfr&vHAWNiLk}ZH>!}9p-nKj()57JJDBFFp zDLSvGaR~XMx3LbHi>Va5dK(*)27dWxx~}`o8)9BY`I99U4IFP=F#{bB%bokFgc`yst5sJgP~BTGGcDP6GX@&HB~I z??}e=G1emzyKuEH)u3a|{I>rZc#MC(ANoi{Fc84mPEYN_L)d&@^x(X9U*staL*C%z zu5zV6Z+runvDk9fKz?hhsM=0eRYj3c4RAyWVP~j!QW~w1-vbfq)gLHuggx0N(pNOl z4Fim=CGz|GG}?HVbp!oxCS?U2sG8?#R6G| z#t?=-fH*$d_&1J&!y42@x~OdV3R9}Ww8eSGKXJbbc&w3ms3`LO?ZxAa5eScjxO{Kz zNQeAa@Mt)!+;eW8Xv{$)ACelAj0@DL{MpKTlZ=D$9Ei$YNf9PZHomMupaB!2#OND( za{i0*vX+&X@o4=+QCVz^Ib3rg^Fz@b5IfaaT|)0Y6tn0-2**pyTMtEPq44}E3p5y@ zS<$NNkLk3u{Q6KVd4HyKSQl;B4C8qz`Hk?B=8lo3{0xcAn`OMB3`~&FQwpiBJ6mOA zJbEZ*y^)suM>5KexyE@&`8{23qOJKzTa)%`XbfLuJfpB3B9ZN{7%!^^d|os9qA*HG zU9}D=glN^08)@%96pgf0OTHHjtyN*b`WF}<<35i-KJmzDyUdt^2f|?{wV@r$;5WWa0)2)ZW)!_hhtOo@l;j3#DsbMvI ze%9l|YXY>5s|S7;OO8>Q=ElhTu_z3lj}*o@ z)CCI8Z%Or8i^BqLt{t%%Z@UYz6L#Ys+@CRZPTu_9GaZZo!T)%Z&Q$u>9OKp-9TLt1 zh}y{Vk{i1r0kILd^DX0TJQJew?Xd-LgeT<8$7I+h<6bqa#%<2y2`Vlb!&F3Rsf2$5^Ze)!40}o_i{?+x5N18B%lN zKdU$sH(?xAW^43BJX}qG$9P{#Wl-|jrw$O5o9@{sBE~5SpZoO9Beq@iuTkc___Y@2 z5ym|cIW~q8WUXc`4;c3#=@lk~{IFiBcX6`X3!jL4dfL}L+e0!6f%(IF1@<`&?BpXx zf~2=(^zZ zXFVf~k>&hT7(xHIOwCnhUtP0I(qR9K12Z+AYUlYG3K3e81mbeQX=0&FcQ*z`BW4H!EJqIn8rBw-3QL>!< z(l`T+e=25!v5coGTXLU@Y>EEL7>|}b6_ddt2*xvI;!}|+6uh!baaZm9zox6iT~9@V zY^QWsf^_@FIK3hIjQ*uw36{uee*9D+{~E=JAd;xrA0I%ZDG%0nSV7bzT3#3pHNif5oP&yar8N*ai6 zsT{@`298AEw!E)6lw3bPyC&Juws;L%$l*uhc@UHbPu?>mHIOufx1i%QF3c@J&7#bSweSU(u-rONRbS-ElD{! zs}b09XrqDMFrav)2R)HTVTUW5zG+>ZVC3vi#l28%Nhs|h3Fpw;MW*yUs5IO34bfA& zxlAkg8Da<`S)uwKqY=d?$9|%}e)q8A?-71U0=c8v7#LVi7Qpc0rq94JZ)7o%a6ttm zGu)A^MCQ>-2fnlscym4D1rq_;B+_q$HPVrjReTQ7CU5R}zK{1FgyosASs0t)grBl? zt0)U<>#JOqy!XkDj-+P){88w4i5zpR>xq7q$dv|`?v6TRi<2b@k$zRlSP&m`WD`7< zhrc{9SiW=I9$jPb2Go*Z>`Rbtju6QP+t_p(bh%9`IL^@hdFWw?aMY5I5TYKX* z5S9nQTL-Qo`Uo2bio6d*rVpG?u(P zMai1nWlq=Xo*+h!b(zyk@)VKO`&jW!6v`n-;|36lN0K+aQqLShp(_idU^k-t`5|5K z_LW89Ysub_3$OD%JVBkG`*CrpHyY=u4WhHM>SH`b5aoD^AnNBSf`}5~hV077R~kgl z12p?RL=f?2cPkXr-0^yV+Lo<%M|@pOJkcqxiAxZL zYJl^u&cHK}02Ex|4ash!3K@k#6J1OD06s=4)Pkr#Z8~ zv*<_u{+HtR9=N6#v@1K0r%XaU%EjM0@!A~)MwGJY znDa;Rj|iuLi=cLQhr@h(BE^f;`@49z8bMRKoyR30M^U=rh#~_!E-?d5@)GH``{y^i zR%d)wm3yq0$hUfB#ShU^4muhyfnYq}rg#a5QgEJdZW!`AOgGn#-J}V3Ko*84+&;*L zC){2ykZ}EP7Z0k2&UlnYUNbpI2^u?>V*xkuegU z#Z2L>VSHu9PuVSm!#td4RV5EG(H8vcxD`stxm!J*UUIh zH#5*vD9t0thG)k8svt9lg_4V&sJ^#0Gip>7{bF^zMP>wfi_DO`MP^VUJTmU6OzZA` z!&{~%GGi&~>kX2kx3@MadU%UjXj^kK1EF!=+N5YNlN;kLl44&=Qq2R+;Yzs7LOnFV zU82YcgjR51m!ue|0P|TWM^?L^w@3&o8CSb2li3-)ZWAIwQJW=1B@vZL-OeIv!Rxea zd;%@>q1HmuQL^AI`XDqro(9wp9CS3k454^HeI`qNlvProOTd{3z*Lx7EF(_~9DuO`B&Nj2hcc&n{cO+*tV!OiN$h&#>d zw$4sa%$lA;mXZ$JNQl_O8}1_95Xz9PioZ=Iha|c=K;?4T#CubwH?x`urxu+_Yb32; zur8Z;TNPNoF#fJ9u}hMP!P4_x>?EeLWO!SF<-s()n#iGyY9g4ZY+UPsP;0lrRH|rQ zQFZ;XC!q)Q&q9*Qk+g5%u+lcekEETYQtf=Ro*GrNY&cpj1Mm|omZAFL<1Ch+knrW5 z14#YnR<|a7(@9Jyd@Q1@GMwN8$T8EZNOC5fynw6v09JgJR0WJExQ;dbNPq_p0vCz@ zK++F4gd==L3GyMs2aqi~uu*!jhX<0c)UX<>oRO^p1>=jUFgT)!>QwV9Ix)vuC!m2o zpc?jPBB<6?={{oiXfl)}kUB$2Uo?p$jKZ?wlU1PuKC!XtLkKw;>=YcgHMPThJ6Y0psBPxecq6{^Lmp z4AI0nQKiiI$VP&E#abSY01X#TAg{T*GYOeUM&o`^7?yLPeZYu9$r;GO#BN>{;1Gv8 zM*>iAsB<(NRv+s0peUs9c+pVo26s-yxQ@aDt2aqH$oyF68W-g9W1VPZbu#6>t*PKP zua0a?sIV|598pX_9?hc9RVprL!9==AtKXX0WR1Hvo1}cQE12)p%CjHfzz=aYydxjt zY0)u@Ifs>UTx_N}PM zs(J5IThQ-5T^TShh+KdBbuTii_N6LhN6aO^R&UdtIPLk)R&?3#dcKnum)-M8eblQu zIX$0*qW#s$-}6bG`JYhY1$lw=G(tfhlcs=6QNWoN=*CgyUc#^E~f9;FK+hl*)O`I+WeWkAJ|WRJN_g4#pk3e z>=#djpV%+zMRIO$G#4#R+)VSqWUc0(|tkfZD7a~5WN$Oa>Q{B0K=nE|cC$ ztEEuz6%_iBDaUCkKe{;DKe!J7S9BofvP$Zc`Wd#VC=Zju4BHGm9sm*zT|Ys0%)g`S zD0+jOqOXFffM5+laDL?k%Rb-K57&qJtwqPai_Y;4NB70KpI;$wmm`f7TpC z9ux8dcEI8AVLJ!mBXESf)`7{owPcMNmbtcp;+QZOF2ugDB#6|^pI3yw#{32n2-V01 zygJ$Q)uur5bt!odUE}c4B>I=YU=rQ2Rv5r+s)Ly^VQU(O_90Wuq$hgp!Zt=At3WF< z?oJCa;kv%m+|DdyX%id_Mu000T1lR}Ysofp0Y?Ko9)UowUP3fTnp?!N)=n-+sDm#v zVKkZC8~Kx(N1pQmsC{)%nO32Ym?9_r#j|mUIQBTqS6N?HAIu~aRfR=v3`rk2yDl2w z%hs45qG=p-boD7}s5TyXBYgRKN*X}+G+i4)Z0Bc1yR(FUOY_)DB+C`YAFnO4%?XCS zDwhqDvzIm{kV~7%c)SrBmANN$Js43?oNA93XId);dWoDHy}A=R%&k5Q#Q6+iYkM>100Oq0GN8NZj%o9pCyO@I{h zUFeEzOaGoeO}TD*H4@!-k!7I^4o|rtM~9uH!CUlRJ9X4rgOYN9+Y%Sda&9qFU53|= zgw>c0v-CX|l+pC)D1LJQ-N> z9BvP<*dMJ=3vL5O6pm!~pptWV2)G7jw+uMUOW+VcGGRzbf*L_HyPXm`Lw;g*>prw( zIGX22HV!Qrg%?2DY!(Vois%_ZVU8d1|G|_RJPUvV$@$Fo%dnE`m;eA?PXMjY1+6zK zrlpyDWC2tv@OZ8FV#zJM53=KC+2cpXjw~6A_rNO}vz*g0i=o&YMP`gD*@?dJBh4~O z2IKRP!oo+J!pZiGlBM`tIBb8>(wSK6Y_CJ2FV(6?z8h8YEU{f)QOkoOlPU42u9^yy z0~q8>A;($SAg2LkwQ;ZGXKH}(()j4SAoHkVGSsf}sV!(rg^%M=PDx7%*Mp3>)-Q}M z8HO9dVXpPl(IuT~FlgsdwxqCJvc~_{0AkB6i6C`6vwYRWG)}mn=L9xI=!-`MQU(*qeuNa{2Bz4xhN$zUJ!HFf)kfjEgCrg0wT7?>wF#bXD5UnQ2K1grM$wVRhJK?+@+hg>0{m z3)O%*7M2XELSMW`!P=5S|JmUHHco-%+br~DWEFZ(lAIGEu^5Y)(Ka#J1t$7BAemKugA<_zhg*ro7MDo zw5E`vdrfL!=ghI@_=X{&{FX{R52f{xsZp6pMyHj#*#}>#IJB>SRM@&6jzW9MR4nbG zYn^ptfegRNSUX907k9ESPXQK$4Yu9V)da-83{rPbufYr#60kDs~rHekW;URU=0oR9`R0nknnPkWeFk z9!NlozOrbcjvuG4tBO#pKiIWX;%%@K%%AV@IVQfmZk&Xk9bFWr1k9hxXczoNPL8-s7aHgfeS?O|jml2o zdR5l8uZ|w*8#F}$<_7&zHt1nlt#_eXZsX=&xmp#*&2Im-Hu{c`vf-r-irX}+O;X0p zu7e_LiPH3It+k$BsAny0J<63O>{d(YKCkZDakPP|mToXD&;U;kTYJtEjpM*B!BnaM z^W5poB_pm{$aGb<_j4WB&h?=U?B`}uZu|}VN}BbQTO6Or zHvg*c+UcJB{SprPbD^h1^_p1G`oP5yH)JM9f*e<-uJc0ZOMM$WEQf=Ot)KO6 z;8{&9d5#2$wdH%j1{-A?KyCg_$oWkYW-#!B+d!)!6LAI_8YPP`BA5pmp@r-P^6)EqYxI8A(qC(l z9q+CktNGiz_=j~E%?j4W;g>$bQZEPdI3%>z6+qNhKds%a`8!yA9Bvs`)+JWs<>w$y zg0vp?DJRgYDO$(TMAU*Asl*C#)`K9 z(&($0Hm*(-N0rXWMm-~p>L@Xk*7ZVvxLE8NEG%|SSj^EmsdT;#{45=T55~J7(Tvq7e;%zye`33Lw=y-1RgZ2^mujj0WhzhLOGfOlh2>C z)ic^?)0OSL`K_f=q2P5iry-)EaRnDa1>MHkZ{-SBc;7JVwNjfzU;M?~aHqCQIjmJj zn~wu!jcU}9%VFa>y33A{<#4bZ#&TenDPgPv%x7O*M=U$2L|o;69aW`;r3X=N9Z>+Y z>VUBNeNE|*T4+A!4-4RInf07Hq5#gSBbIU$nX?{M=ih|WRGEr1oX~D+xLR9!Np(ax zjo(!Ioew(hVofjk(dQ?1L@-_6TY9)Ux}4}DMV3#m@Qvv2W$JG^KL?!y~!f5kPG>lfs`Yf*t!syP=rB@oEO`Jar zqmN|P8|sQMvey-1M3Fh`rFH*J7#)_Wl!wtbvJ79zHkEu#reIX&V$*%{6Ysxen?{G5 z>efbxzA~`@!NRmyU;B{?FxP%~JrPk< zBK?S}xtN+$Xtls_5Mw4 zjg_gC$JR6TNk30>o_J~M$Foe+y+~nBsjq|nTL&i-eZB=$|P|`C5GuI2Y|EUxZ5a^`D>tp0L5Rgr5A< z*MF7*%=Ldo=#QvGyg$-q`m024~6 z`_uQmp5j5vhhxg3f}RrlMfU7}{Wo-#YO~!G=V9~pCTCABZc#mv-si7qlAALvYYf3j zuQo#8)hC79O+C9^t;Hl0TtwZ$3~RavU~K;JTB>d_KUYpJYc{06YGcU7mHio z9md3@58}?t-C^ff`a8bfVKRBsR(N||8Zh*mLmkNH`%V923s`Nk`#n=N@~p$;hj9bS zm_M(;4MYnV9HH0vRz_$8(E{e?8gBtJ9WX`UWJr#;fF*ztg`C_1*6X0@Q``+e5dM%d zWvFck?hA+cL&^pIGrOT~4T#~8DN>EapU8zW1lR`#S@X6C#~+7GW9eJKAZ5;Q!C})} z{1P1I4CfCTg2|BgO<5?ffp`w6Le+4U7ZNJ2yiEp<029c<(hWBDP0GhdOcU{1C<1Q< zDh4A8F1d8nlvi8-nm2j!U}inX^kb%3Rq$?rE^J%>6Vn`g01k6iuYF<~j&?U7T|PBU z(ZTxpQ`1y@+68OlXQmfDC=cRaGPAB4O=Fx0Q7oazV!Z`NfPytnm~5d5fT41Y{^DMy z>kwwRhbK(0;70(GP{Z{J0s{&v`TL|PFZjOxwTY)pi*W6R6xx{&yz?V~zI){_Q#~92 zuV}PuC$xivN!eefAjkF7rk)5#K~(-|TZz>UI;gB?(ecAs(|8GYhp1eh&JD@NFHB=` zXLyCl6QB@H5kylOibjw202CO5HhR=^{Pm^D=z%8!2*TKSEbMzZiT~7u-mHfD|>V-Ez z2$@vECDRyptoQ4{kNMWrK@Crv4I{|ri>6ronGSsRWz+L&cwPv8zHHi!FF|;o9Y23( zDrDkL|K1d>#?lzRlQ4X4#fIlyF)rRxMGtLO408PWgDKe?(X)|s*$TTA71Yi;(Zd=e z9Pj^TIwN8K5a2sa;0@J5<-Lkf4iGK*f0~x#R*)cfX7dn{9?jtuO?u?GvU1S$*x`XY zLoD8iaq_xpAnpx^c_&ck5R%$vQ-}`2P=H`yhw|Is7xzvnY0K#XClb1mo~PaNL)|8;JWPav6l*E9;B&_Xi>lJ2>XFIV8Q9zvb_rn_o+cvtV= zda$P-nBvv2n!p(C8W^H(u6$^^EMcEe5WYOxyh6!Gk4-DE7resbX6_Tyc-#OE^SGf1 zou8Vz=^#uVV)iCSpPD-1NF6NW2y>wtNh5lmj_5q|W=iJj67C6Ua?!hnlJAk(j=RDu z8lvNMh*p%76RVh~p(&wC;}D+6s5{qe{Jl@(=w;S4bkfs21fgXdcr<`)(&t-d(F-At+-$FE0`c?infSS4PplW#>c!7zX#32mp%u<2vF)j)y;Xq z`qvy2usKn}Ujjt2=sD+Wei45QhsFBN&)f}t8A?9$GcQtOY5XF8ssnNrs~0!|WK6DU zo0i z_-teI4yl^}#b&~Pafo4a%g z*D#9oY+){vHUJIn5HzFH`nHm+AjS9}6?7D~G|xf!B-D_vYLg?)>+qLwn3um%?*-N- zZKBM1=wvwA7)48@3RRQmPuv)%;yh2IuZ{XVFp$(VnBS{pHdrcVgE}$hRTwn_QORb5 z(5FCrC5-4VHs_?#W45b|fsUA1^I(K)LSz=wA>|9^G%WW}LUIl%!Q2nwkP6WJbkM{} zi|>=nw{SE><+FXOMx=Ecb0}^FukeLR{*TLg<4$mxms*Mt*4EtC1tEegZ)@&|U(iEn z($3spjlg^cw5_QpHaiF9@Mv$YhtT*&np+EiTT2g@H(ej-NS85lpg?6)xA()Zz!9#~ zoJPby)!a%As}ZrG9vgmCtIvB`bVZ(O&P1jP#B{b2Lx+kr2(5b2BV81{uWlzTb$X_cA-w2waW0-Zb|E zAc9gK?)Ns+(>{$zi!^hb8dal9Gq-a7o@O41a3rL!$;uXbxIETQrkjgVhsGqUpLsY= zfh4$yHJ&#YqIQjm{dsdLuvtqzdVC=b!$c_~WLAIkv0(k}CX)Vw`74|US@VK48jL8E zoCPV7f9E2!VxabN)f#B__rMDQJ#kiu-l6ow1#p;$Wsu6g=?>f?EFy5huFn2h$w_2p~`@$o72&sRX>#Gs?n(~|;?3fqLYt*pE81WV( z%`NfIdI-BlnrCVd*iqq$?b>$0xAhSIGsrd|@g$ZoX8XPKvXp?D5D8pl8|zLE)v5G$GB2yr^Y4MTo9!_BpV zab_DD86lqP437}c4v&mC+tEx)lpV=XX1qLE)9Df7q0Y?-=4uiuhyV|@6kz9WS ziEvV_Cc;U(XPED!$R=7Rt(NgxHsMYpHRsq{lX?42^d>cznghu7yp_RZRNidg;{7LP zl@B#S9h>NS(Ws#omT$g@`f^woFPaos?#1R!gcqs6T<;o9fZqJMq@LbO%k}0-6jrgP z?Xsr}WaGTrMDcW3v>`SzDLNxMIUy-FE;c46DI+O1Iw2v+U`R@iHN<3*)M_i2Rt|M# zRel}xCf6DIdW$TmmHMOH*QO@I*HjL!^J1v8TVJm)*I69mL0`z~d@lPs?5OZxH8ScI za|!y>#q00L6n>MvZaa2jYPolX!%2@1z*r;nNZ;e{DwO=2S%b-}4^MPqlmdxu=t^Jm z!-prjvOmKRZptFYB?^uy_&f@(%27a7;TAasE#fu`c9dJB!ctnWj8?Dbnu^3oX)0H* z<>ozTcvEd+oRUcnX(|%q*U$y6N%TtdUuXi?MD9mZs?rx4g!QY;1kKgg`l15MwI0}1 z#6FdYKb3}2%qv(h9HDt3XTPKM8gr_Iw>AZ-!spjHc|EIqo4R4djsolF4s|fUgMYw2OV*8qoi{c^2b+N%?fpy&xN9W6P4?8ZL^--{H4h6w zUvSvb_;U!x*I9>}iFMZ7&BTU^K7X-os(;NXTXSNM+tHJMv;#ebvOR)K*?tdgH083r zeboFVVy%&#Eb@1yf|>(0xP0{ERQ#0g{mSKYQ+G(x$L4eHZd*b>F>k^>8CU13h2OSx z10#w=PEFgAjH;H*(29Xl$(~ZWh4AI4=KTm~0D6S(14NL6C+LpxSUAk9Tn1J5B&~lc z1b+KTPMQbce2BnPz1=Bu7heYLJd++uc70|JB|A=;{dB1OcFH^i7rIb+nlq#uqP#Di zHg8p9@x*uwA}~2s96J)*adQe;`MKFwjjIXzuJRE^Xg3GDf0giI$Ut-3+d~J9(2`3Z z)|@l{j_?-{m)|1s2aA{BFt_a&%}L%@w7#nm*ew#@()ddcVc7+`DX2nVN`dm-OP1~o z{fHWSUBpR1MTs0>a1MvRHTS`7^bm3{Q&O%7QA6ol$anv0PQ$&mSiTI}8EuV8;Wy^SWT?T* zPlw9o@950@qLu(+im}&Ns@Q7mnkL)Tr$uFUt>>8ZgSnpvUI6)Utw$BlYKND?VQ$w2 zEgY}>%y#uv7#jZ0qt$aNiyV(JdMkNsS4dAKyFsFHGS5x4Er^ z;~*dIhROe!r{Q*Rn0p}ZSrLUQ1P%KEvInA{tuP9e^$VhtU3kIYNz~anumm zVpC*CO$1aFKd>@f&(ZOr`3n6+Cx9S)miq^e@DRE7EcyP4xvvha)DpzI6ZX%i<`Fuu z0eY}rlBJyvY!e;WVq|$<4a&_sA6XXQL>+h$)++rp)*2>T>*tECRUX#CFc5(`cUQ5D zb9c?)X<6@X)%Ay`8=HfY@iq4v@TO&vfY%UaZ}m3Ft|OUMQ7XfF15^$^Hx>VNGU7W2lSR@qi=1QiB^=9=gc^ z$JoY}WXagT>Vs%cIS+p`GqQXe0*LrGv5X7VzveXGN8(;%R};(c5_SMGA{lsWAA!R> z862(1?B`aDpWK_JRKKZSM8XTAZU9(b3}JA>}Yw`IYtxthfBi5hv`mPSi-!bOt*d+>8V$V0^2tPiwJN zm(*Hp)j_>P;KC8bYL0&0Eb)??$R(!kmLqrvGcvqq4&Dkz6jJ0w4_dwTuQ_`4w7iY* zM*vZDqP0x3?7*ksFu&Jr-p8^8ebm~qtB=JfsnIl17bzP8@)d_0&Zb+s)6Z=~+M30e zK@XQVo4^0OJ*-S}ZVc1LDAl z{B46<23oG;rjQL^2YfQfG6qM&Va~m2Bq83`|aF3U{H;Sx`dp*a_A(medPKSIr z`y<0G-SJ>JJZ1LQJ|1*{^se12LXE+9GWLzI{D|`)2KDYAC_R#_9BC;~BWMIplm+hn zF9g0d%JL4vt05mMa0K}#%hC}OILz!-g#ikQRVa$YTObOTcy%N(=UP^)d1xd~mL*$3Ou3!951y0M2g)y3eVrE=Y}OOvijF3MZO{!K*IN)OefKKmPC}m z`N^|EEM&^N$D*Ua;mK}OEg9p`^HFRuFbquVFUn@=OHwD$T70w#X)pC=zhlU#74xd0 zq$vKG6DgY5v+4D)Y0F}8YsSi1 zukU)2-r)0wWZ5ZGE`A8f@@@OOQQ`!}U3i7%8pxV@vI3C2sQQ!tu+Wbi2SfvZ^5PXa zaeFqd4~Kc}42UK-|FX1EBWRd4&|_9no;CcN=2@p`kY^nkW0+@BJ92K3RbJT4{m1eU zpgD0OwK zL_1mWQkp94yOZzSp$l2GD_VE??fm|z3{0lov+N*;mRQ?~7g#DQoHT{%vF;~((LCgB z5{sh6$^|OGS1zGssM(rVgUBHjyoS{nJytBN!yt3T5>7Ktq~D<||JK?F1BmjWOb!_3 zXb`>3W|J4Zto~Ke%N%$#o(kc3gpV|c2&eFTHqno5tOFz5!h^HZ%9nD!FqdI9r9wUYgx|h&3LM zhr`^O*|FsE5NlI40$*a#hd|HcdAbNgt^L&q8uRDrNynEMP+nl)(BahlZ$b0F$r!7W z*c$7g=BID=cwe^sAqc`PzbRJauQgWWuN!U^n4ZkbvD&2H$ev~PUg&D9$l7;utrw9L zr_I`8S<5G}B5T9OSkoj_D^53SEoxwLYpnGMYQ$k(Qg@RA%TiZ*NRF+rw;|WrOSGs= zyk!fjCU!*N2(X=PJe^3Mj}vvMZybBIQ4jL<1Z!Q7#NL;N&`o?%qp_DPh+QP~D7RP5Y zeJS~g?P{@Gy+YqkA1P$0ox;h2E&0(XCyv#*&SX^5vRa7h%ZnYfO@-DPF_#A7QA%Q3 ziG163I1U(-*MWDb{`8Bhj>Ge;`4YOwfk)#D5ROOV2XQ02B2C| zJPyCG#V*AQ?>!SQ;<4Uh>zAlOyfz*$%jT#XFXC~*E7rCWY8|f|k3Xw{NvBt>2T^+t z>k^NDDzJPi362+236T>J2Q2lEZir*?ck-x>g+`7;MuK;Ak#@#%}>hZV;4)cvWdWNb$S`kmoh1M}@EP50p zoV>VxW-Gh}V)0u(ig0j^HBAShV8hJj_>dmL{@1NZY6QN4!{s^+5ma)uDze6^vAA3- zimYw$PY_F%%Mot0E|Jt2oDct+-7Sd0`Rq7d)RpPaKV+xe^LWTFn}sGP8Lu4*baW`O zZj?OgB+$>sdM*nHh5*1{JmB@OIaaT;R&~3ByS>!914kxk!=fb^0c<`qS;qytxz@vM zeHC>}Am_~1NZbS96Rvn)i!}>%Nzk4=36T|tM8&k*+-m(z!dZ|IxB18f$2hz7Rr&=% zcu6x~(vRx#7s#u~@&ht+*ISR`e27Zt<}ADzj_`RrKY>(z%eq1ht6|efj}4oaLm^|u zfb~015x`%}6q9lXX1a1!d$5!R=tgl?&ae3+oi%n7r9qK>Mly zsL0T!Tdf87V>rwm^>nLsEIOPZ8jf7C_HMII$Cvc5dY*Nr$n-7A1zEOEFQNbAp(zE3acqDaeAWg#UnJL5C zpO~DTo0F3pmrGJx%?)%My*OvN6l%y!j)}>Li8I7zCC4Sj#U*EECuC&D<`^;)Vl(0s z$ezuM0v(gTUG$9tSlyETux46a&l&F zR!$<-Eh9NMnk*=@2Fdy)WhBNW=O!EC42fBBNzs`}@yWUI35J9is!dK@w$Nvk-{Ngj zXmVV1Ok8euMp9y2MqGSmMrMp5DKjfRGb=GZE+;<8ac*Ye`%+lNtYheNL;IrW(8}0S zRSe|CIj4q^kP}v~ki@K{oQ&Aqq=e|$xHv;XR&s7qa&Bf$Rzh}M0$qrv7S5SmB{Vt5 zke!{F7#E)t9Z#(tpBYEtF9h>K35|BKH~%t%g*Pm0Nm zj?W?Xz*n7Fms~N|IF@yNLMrA;`puVGczOCke!u~NVSbij!mXe(TOxMGjcOyGGk&%S!|&*Olfw}$j?g5 z&CZO=iB8DK$%@ZlNZGN`xrqrP;X*56OH!B4F;vQQ&8<^SNZ6ZmFiW~Nq__1{eRAe6 zt5;}dE7d}vXkR-bFwqDb7B%>GZPK5G1LYz z@s98Ta}P_EaU=_AX$Y;DA-!R(ySNFtUdNUYOCyNJNo0&Fy$xk|$d51WycYm0&$HAgI7Ce4qj*iYJAt2jUt)wx!g(Ri+P zJwphLcCb3w+5mhqdSbO?m$}<^A83SHbG+|E4^*6Yc*^dH*-%{r_glE55(2 z3hD8j%^%H4WP6#zK<7k?-p%5k7Tbf!AJ5qqxO-5wptEgIZT+_$%WsROdtLI|qUkUG zw&+@G>AmX;kKBwYMR|AVD`r`R zZcLhWx3xo^o0FXGwk~LFOR~MYttDF5id^h&8-g~qCUHG%(@|M8+1A6>#_LP^q-#Y6 ziE4kT1qtkFYl9}mlk}dp4ybtoDeP$*iMAw=vYs}B&l)C3ldO!1t%?2ag>aJA%T|3p zldgaZR>0*cpmMO0Z2JC;g1pZ3a92UzSlTpQkhhL@r55CEqWyXWd1bUopdgQNF36ii zcmE3Vn$x|Gg1jyKU&aW$<9a*&GmrNq>|no&*?V?(vS0Ltf%Biq+r@tJmx=9Wzxb=)lIJjj0W&8m0V zFSa2tJTodFg_|VBbKiC>0&%1A(7tN#pGt?(wpN1dJ~hCl$ewplN2ADkQ*PDNI$;xYHc#R z+ofPKf1u3|pJW2?otu-1;?>%4gkIwhuf9(duhw>RjlWvE%V1kK^3N-?eM$2MXVb{4 zE48ZPdyqQYJga>hj40IQH*H4@vHgR+l7K{flZL-(+Yb)&O&b2DZLcH}Gt8Ev#$vld z4Zmlc*v4Nk`IAAAwfH7=?cuiNC^Cs`7;amQqag#<)EA&okl&i!DoONdwg8}t65@>b z^cQVy$@Llis*A0F{TR}JIDjT`Hv^rPT`u#Al>+0KTalp zO|~_~7+%rP40c1)VV+{^BH>mLm0LV!s;xI_o=g@@wKc@e;brcp6H{%oa4H<;SZ_?D z78h8-@^{_nUsa~tR^Wjyz&}p64W!4_4S(6_s~nT-H34x`M@L+~7YmI7GP%YKn+eZ? z9Qbp)m%#{tt~b+`7wqQRx|y~MxDep+O*+Kr$#1_rz$A5+eEyht zU$STyNtkE*8A;~_EPwswIS9)i6(3IKkBX&z%n9_tv+>m!cXnaV&T8vR zL~?G4t+PZAp6GyQ>wxn#%UQbNW!xT!M(hQrb8r_p!V|B38~zXhh%iQnCTsd6>HFsy zq#?R;$nShsiA@74$WgbzcC5BEmLVBP^e=(IB)Vg*Fu-l1J8scmtuT;7{p=y^qaGar z#%Uc49&eC4@I=X*G~P-`*^Bl}Y-IYYLhbc7q9ft5Jlh(Zf>}-7z@?EMp^Tv!4IPI_S-h1HQ}2!4*Ge}SP7RwhUdOL(GUIIM!bIM zn>M0b0MZq`7;r>U&9Qo`ZMB3Ow53DNV5R4_!%460wnjJt4)b%{4cd~=w%Z2lAf)ZE zJ&P0c5Wd(!%e9Jwrd%@(R(Fr4llAbO3r zy=_~GOSM9Ikhb3Ryzzy0LL6dpvR|$kn$C0nwR{B8pu<${=pGN3i6)=w&~JE;y=Mz$}ceLs{H!0ttjQa z-nEVNV2Ah^EYGihAS^HC-?kM!XcULP=+_Nb-U6Y2%`yCl&0E5C+fgx`fzLbg&IZ5M z4u`{G{s^^hJMny1g}_1rSjG7&Qpiy>E}S`LBOW*zQss@8sc?kzNp43Peqwu94a*Op z_t(ODPp494qh@d3?%dLx;eG5Me|S^OknpRNo*G)Z{#uM)8B<$(RNoj6W8>5y@Ts# zdTUT7A2EhXj#U?IGbMDFqsTp63d(Q=h4*lsrAA@xz*J=3PY6}#Rk@OU%p+3n8$@bG zuI!?nk`e96l}om%QZgy~-WEqvez83!KkQtYq8;!q{@#XBN_(vhrpVH@Z!cO4ZJ!zY zNy!dMY=&?Yt!Egjbr1ito4N2xX<0ibiJxpo#Qq(QyUu%g89A>HJK>^9p zFN|So3{B>&kR^p|E39;%|4uXK{q`Vp4l&NE%sD_kK${y$^jF4s^fiYajn6|co;gR` zi_D?m|7+&>{fA}_{emuEEI(;4zPZ`?Z`=F^s9pzcfY@bSYj<#@R=2llh+1~gjRQ~l zY;x@mBAMb7?M?k0%@gh2{ZLzu;^Oc;1%+ouUr*MWk$MgU*AOY1y;xmU105Gmo~|z!zH5(k-0o#x;ei|+b~Jtmf-&DqHj?okT|<^oC!Ml&bH|VuO*g`{ z?q^?xu0dgbfn0b*TE9mSU=AJY#qQxVbc9r&S0 zM2T=8eh(~1_$xp8hMcTDwFB>S`&*_)r6#GzW@VC5ndZhQu_G{ATt|)3kfEc9+^ZS( zs}dQ~-RSF}Kg%T4zoRyYJIesdb9Gh()R0U;ot>mMSifVl|z}?2$k9(kL9M~m> zhbh23hSNF|*v0=w)^oBmX6Plqb5vfk)%-Asml{6S4&; zJdaj4EcqRe{xzqbi%IIbZ3Ib zTeS++z~t6k``4%ohZU|?c2v_!oUr6d+M5js|Au);3NKlbw;1DRfT1$tHVcj@o^ZUs zz&>2UFQw2SXJqi(tZs|!(Rel-X17_s4A6Ni(~A7Fz}||i{jI8>n!qvk2CuG*?M?9t zEdlgW3i))g{e~JrGqr7ym4qUTsSS=ON{}r}?2by}bi9Z7a?u;F+IPF#9vSkQ{XG5% zip)x~$I%pTV)y*IcYyr%9QwCnELNI>4}%dPR<8mYDzMX++ECAxSLELq5m=GY zReHIOIm*#`xjjrmRZ_jik<}@yXAt_hi2f^eNUdACy4fFZr}M08wJR zB(-F0oPo#Bs_T`ck7TNcQ^Z;Irysu(fnI^)E_4xhUaF&CseOhAvZZRXGf+O)ZB7-H zc$n30_dt8NGA@-kR0F(ty*%qlV6v{qDqHC0sOd9v#HP<6M}*jJ`V zRp+-wZXEbvv;8i<2PyLMdmD^^s2R1D2Bw>9SGLl?4C({|vsNd7%0r<>C$Zy{y4~Ji zLXjMJG;RsucwpA1 z8Bu4L@;6r~Q}zEx+II&=QGAcP6Ka^y2_-;62WbhtOA8PnK%SS;F6h%e!_vXzW`}S@x{QP|XxoqCNK5yRCogJvx5M`ha zd1t+{7p`k`QCghI;{}f|QLr5LM@U3}ZY>RqDew{Y<=qDtG&6up@DllnKw9Q%E1LTD z)-vPb2SYadz$qV50vu-oLCM$mCIk?emkkD6S%y(aZ8e-Fdb|O#^Cyj+hf=U9sXb7! z10VX`J5^MEYwv1Ster}1h1(HajGw>s_<8Vui=QD!AiK3gDSCEmO+{fyw`@nU+fPUL zHl4_l+XW6dr|AwE+)fQR2eeZIt@w5-s{s?tYRx2jf4GFqY7?HgS7o(f5vwY*ja1Eb zfoj6H(zN5Y1mEsB+eyY=Y8RNl_P0}+?bimj=rDF14GGF@wE~cLG_hqeb_tP# zGFwvv8ON9&-So}vR90K9o4%5o9x|(y*17%KMvXD8;|ZLIBlGw?s_(Y9w0#%~jb64|}S6ekcPME%-z$s@Eavug`a z8(S)C(q0s8Ya7d(5t4v?>%>Ie_(tO9SI{pWUmRN`vOd8#M2I%+Y^z!K_To}I+f1HB zZ~}RD(|IO7ou|B%$yY7jHeBOla^Toq=Q#4|9Pt()BO&_jqi$2zKD6y*8z~xgvd!m< z0wt5x$|PN~iC(6ir&L70JfcnPrtxfdd(wHmAO)Ec(6;uf^9t)?E5z9Ah@8q_rFfWp z_O@4@*EX^DQy5iIZ3s*3w?dR1?PgoYzV~Z$&)uN_6@qE!KkYH?_*(a{Jt`nZT(h;n z?KCo?8n1gp6E|=9M^t~yI%yV`cB?(+9qm6-Mg8`l>(sL$bI<4}K32IW_U4?*tVuj^ zT*G)`<%x4}w@JL3>b{(8Ynq4kjt|T|=X91y@hbPsA8k99hmDH2oby}{Kt46z7M+Jp zL*$^`^T0sHQB^nT3jG44X7MWj)QeZCx2{y%pL#>)AOE|<#oJ^4iMFml;Dq@HUT2JH zTU-pEZo9=jlz+fTAVNQmM!BiL|7?bBGWX>`TF8RbcVeb37vq;G8D^^U@gio9EsdY2 zC2|f$)<%lx4Bw9zMba%bq7iI&G45AeC2^^} zty%#h(|0$+20MOLJCF)Qb1QZbpDnay@rtx0z}ynL`0^dpQKQp@F^Oa2YFJuF1Yyr& z+e4m61<7%AOlJZyu;B^gqf}mTzns06ufIYr%^EOs0{CbP9&99 zMz><9vZCZ5LPNxg6N`Gm=|FHR$(nvzs;ZhYP>8`r+*x6pp=}dIa@&XVEmDvvOK$9- zR#*~O+79H?UY2P3rq@dp7c=FK4yp|T4X(0;5GYgSQ#{!sui99?)6UNCP%p<m${mxT|YU<|ROj%stzL=dprGTcg->~5o}_+V?ssP}?Da@alz)j1x`wtW$5vE?PF z?FwH{HO9uix}&)1vJK#?X$dZ}tRxUa8{u)=#ztC~`JVOIzSa24gfMWwc$RKFWuOw~ z;eEC-8h?+{V#4fnz?RG}QZOF5dU(LriM^-0+e8(RspjYsPjDE~%Qj9~8e>$p`o_ffpaaJCYQ+X7{!&aWRlWOIFkF7j} zNNnZSWgr>bflY7aojR#j9^XlgEIJ>zeZg2tr@)bgTX)&ePHJTF`bk@tFgCf9WeYzP zfV}cO+X==NA#zX)f6G8l%77sb7%v+*D1;51nxR$+D1!$|v>|xiVBtn6fG_hyRRn41OPh7;=4`FWS0k{8LgWaP{`|C0h&r z6$RrVnNK^3!Iy1S%me}H;JoeK=C8$p1mCtMgVB!t^ttlwPdgB1V=VM1*0~*HFV>(i*-h5l!QT zD^QF(GT+!r=VHIP<;HYYm0PZ}${o{h+g@d` z#h=nQc!W?zx3^Jel|PQ&wN(n!fUvJ!zp~mGP1Fs*9rLqo2h#>h+`(j|*33Y|p+Wu5 zs%k+U%p6p8H8h|Q!%%p_l-OQqzqBtViaxYuhKlz?4{eX0l4H)Q9P`KTwoQCjXW;D* z7wlTMcNX9OVQb5`(-O=sf5n^$ivQT24InVjbrN;)mpaR@jnoz2|6?1; z{^-29n|%y_L^;Y~7E!yqPWMo$%^q|Xmpff5E@o@?PkGTU#D4*VJ#@l?UC>@hxHrQV zE24)Dt;IkK_@@o0PLOBITLg~S{a&NqSDBVVi2t_bvd_?<_f3ZpdwZ##sRg!y&$P%K zo2(^p@mU`Go8nj=`*m%Y#Mg)JLnsk8$Am5_*8(v%#}JaSIff|foZr5Ot?Z(jiP}KecFWeQN{&tGz=}J)u4&w{M zmCy3)HYQx-n_d7uvk%9br}pUe1L zlrlisH9Cb)SN0WaW&LQt*jiapqN4prcC)Jpt7LD(zorsV*Xu#LuG1xdq3c?qvVDZc zA5+QzT{q|yf9SgYX059q4H$>eRjX#d%PJ*``_=5Vd6h&G)~IWR#K0ifq)RTBsDj{8 zb^A??KSwD8blsv;GzSV91WghxgTRjlj4gGI@%67|_i1btu&HBzj;B(QhyK{#O$*X> zt1dZN*R^(C`z!EWcS?vO?}GL16?rBF zI_4AOCO!c(%W8wsw*q4J-PFD8TYLoP7v#}kK*w$|gv26e52Tf_R&;AS=oMRZQ@vu-ZfcPF zL3{g{+^`P~QiHn1_jDKa?4|~(XFA(2=GI0_+;SqIU%U~38=YitlUtjvaN%8(pq}tg zg8+NN?%h;R2#R4(NbSR(For@5@4ypwV8!x_y_FbT*Vf*(;M_IXo~gm%eXPV!DH>MdJKa_>45PyRBSeU_yPTC-U4=yw(n!TyNf=l_IA84Wsd7) zr&H~t_z()lb+XxG>|I#j?&7^M(4m>AVC+*_Gq0Y>eGqZs0 zRKH!O8o;z$ae{psKTQSVTJWg}_F?=21)~p7cNZBG?aj;t0kz%OsEC^ zX@(N?lOBz!7|b3GdSEgZu-X{z+cn32nX$e-0@s9+bw~8-p|Y`Kfqk=bqQi6Dm`1s}?E z{oP7?35|WJ*Z)C3mUyh*D6&6Q+6GuBHKzGbh* z%Ox4+3p^@TCP}@m2n6VPs)Aa^p%8-_p3w6zh(jf^iit_1CAuAlr-tJ104!TX-_iJYX`b$P$&~pw;lEa1=y!aVqxI}V@y~WkH?Z!GxQ~? zcnl#A^HGR0m)pKh%OjHNIm(Gi@pC&A=t)(9Z_2Z0dXjTzO}+N#!nKMLe^Bu>WB7bm z_g}PV<8tVyYRifWC9|8ed_C3CGvI>}`E-*qT&b)fdYI>Y`+^7zLH(R#bRiq==@ ziG!|QL5lY1DNfY?Ai;OfXRjEhO_sQ73`-6Hv({$>*L;722!7Z{Ew zimdAmIAL>64p#@yl1|&d3o+93CBAEK0b4LsIu7+d?3r&%)hnaLrCqc0a`?wk4%=|X z`_M^$Pr=wpf7nwrJ7ce5Ccw6Mk>DCZ180RbXyXNW&8T%1N);e)(DYP zd3}n94J^8sYG8nm3Ex@)^`V>)Wph7<#y*0oGmMJC4u425HT(MQ6Z^M}Wq>gG{S~8i zt=2sflG|hJ$9Xp0*6XsmC$KxzwYP#?`(JRG z?An`rYmd`dp5AI`7uMU5sto=~HyH4-rmbaTO-Eao`At6|^=d3yZ_7%750qm4*6wZY z-HV9WV^{Sf;kLEV&v&5uU_alkx9aDC6f1zrR24uWhBbaI&gzNb`fdBENb9;1Z~SP# z%;!qcv~nV65s1N9{Bg&=o~`XIvhLc4^7RBKurK{kkEzwY)ih@%!6p3g)0=00vcJfj zy~V71_C?%H5Y=>XZmn5dG`Me%&A*nt=@_jOrlEaq{P%KmZw}0E)6kwwe zIh7Bmcrw*%u--J&QC_0sQjE1|mFca^e4iC?oP?{fh-E5>-;Z$g=9?%O<2S31m{HI% z)q>z|*f6*%r;wuucUn=ME9BTGE;#aD}1&2|6M5WS>rYxen7+Ttq z%yM@Z$4Wcqus%tmMH$BsmY5`VlyQt;=X-96atvn0`iP-Xj%|6SLle*HAa<8=M2RCk zuGR!j1^S4NWkJL9eMDASN6!ptR%RL)1i$OyW{u3W@$lkqX4;$ZVq9k0%lKOaw9ibF zHe{wPhm%v8X&LzY3Y>MxOxpyiW~NDnGeJ-J8v&~knQ6K4w+{@BGt(0B_dJZIGSiA7 zj#Mo(tw09;b6);VOZyEjz?-+JdfI>C-!y!!;CuOmH!uAlpYYb2Tk;9t2frDAKH-^x2l5H$i@(Yz zT#fuqKH+-iL-~YL&EMq{PEY@kPdKvuQ$At;^hiEor}me8!esYYKFOfPTNH)saOr_! z=g#y}BE}tARNP?ud+sw#d5wC?w$ofg8{#$*n zM4tseQ_|MJ0q%L5(j+8viXPrrlmekE+vx*L{5>nmVRxW(wImlzUksW3?7nGhixFEtk)2 z?)aMJ>nBoLI4bb)e#8-Y{N-TYtX$%73r7oHgqF#UpN01mom)EM%v8AB=x*s~#Vb() z)D#HXv~oDi1X9srhNAjagn9a@VPqI#Lfi+#$TGfno^v$OSUX+!c!H^p?sRVBn83SI zFpgIwqJO+{S1cSfC|a!TJE)AP)!Olzh-l}C;AU24{YolFwt1?4QR4S@j&Inwe&Vb4 zj#_*I)dO97VaQwg#B=eE)_fW*L)T8|C$7djjs;MeHPLTDOnbT}z8M`Iqctw57*ruV z!7-WdreKsV`iUzEj@bbOX6dDsA2#MJU5;`|6zY|0ibC8nIJjwcLfGkk@J7q6O`Z9B zK^mRxhnw_-RaB^eE|KUM#jf`ga}yoU^P7~DTyY?gR!(vFQn%nLK{ZEOlsMVVv5EcG zPYmep*vfw=h&T%(Jj*Md5B@)RUhLs`l|}Rym&fmq<%Rl_hKCc7uag`Lcq9em__0ub zakM8?nu#Ew2}LU<3iMY^CFy4fU3Gh;kV%8vMW&!oAyVg|Cc(LpDevYHi zOH+9maXtHs!vh`nc~4q`A$oZbq>?cdtP}Xs20P|z0Td9UBt|MK-A!s>xTOzuoZ<^8 zQ%GCg`3efbjJ2RY+|BFgXvRgol7~6g@$HmA>ZQTg-2Zk&1>l>ts$!v)T=a{kdKwW3 zPnf}LiZ(YFC-b9Jq^v7qZv(~oErQ~U8{ufL@$&?v<|hYoWq0KtQ!vKY`Tindl%tNB z0FQrt7l<1nnfeo{50-#4Yl&kc99iOsV{n9-K|p8JC|FN<#M#aM?k`7dgNR8@EKucr zs=h;G9I+ZJI6w{Y)(v0Mgiy7xph_9H9= ze=|XV|C5!4RJgjNcH3T2NF=h&dBq2NXO;B*G|}PF*bHkQr&usSH&M2R;o{Jm{bj`~ zlO0aJjw&4x!c+bw*MzB#sqDZ2vKZi%-2DSKT!?cGP^*E?X^ux4dl!*Y`ALe0>%K1y zQ0u;ckE;P843QfvPpRD%YJGmUHhd*l8VAMofBZ(Th z-BG@ia~yRwUT7eY_(!zZpG41dROTfqSoJ3Z)kg}02^x)=T$$IfB#>u5g9#4K2MNtB z3FMvDCW3%~+@@-s+NG|l_&CF{P7}>yvcs7inw!(z4ht&mWqw-d_?7V#s>*%&wdvwZ z9S!;O6fAuZArbv~tb#~d?5HTB56zD-GYHUlr-f{cerkhJf#Sk4M;EqoU|@Q4Tdn;+Ij zF%-XLrS#;`fDf$oM=LTi?-ZzP|P&-(RD z2L`F#WMGE-A~xz$yg3gi<$Bil$3tzyx$5S;gHA^!_DENE!Q~|u>i#-NZOW}b=QvY< zl^m=#<&4<;M(0_4u-cTnbH!0NpH_WK0$gI<`rNFF#SPTo15oWZ9KG^tO#oHjN;Xg< z^gI55D{jaY8LalF9_v*ETA|%PQ@e39*~;!OpV+O|e?wGk|62|ZA2&F3a8}i|qVzd( zynh>lGjlL$e#<0#Q)dhxi>q)4;?jm_seCuZz_?sBST#I}Dc`fB;t4lA-w>*-(7qn9 zP&lUwyGXS;Pi0|ro*As(!P|b%u~}ocgQ~lQ?t~l%79QJSHasNM#^;}R{0qJ+5 z&T$jPk)7(RXR^y`Jez_8NYkxIarBYSvR5$fqqJz^;UT`>xwG47{4gyts^Sa*x@0fY`*O6W&*XIkT2WK?^qF_-%UCN_?A3~lw!vZRsDay$n0#Eg}A9alcHgsoiy%_k(2JN%k#ol3h^acW99mM#i4^bzwgwtCOwY5nRIq`fVQa_29@5 zez@E$du+6I8SufNd?@Z0`(T1rSrn=6)W17aVVEIA&AQ4DQ#tA77TJTemI@WWRnd&1 zV(nEOrfLsJVEor9M6~2od2h7JUZ;&G`lL}Im!GuG0+ z*=2HRe=3{T6`5Uu*gV6J3QmHPt?Z*=YC3XEuNj|i@hjBgkkgSahQ*;)+wAUfHMj#r|9wkN(%Z`f4Ijq-&sl_&HEKw>Y zdj=byLb6qwluEM|OHENhKXZ8Yc(x32Q~6?wh5PS&IBZ^_gY$W!SzrBNLiBJo@y@*~dvh7B zzT~FAhiEj2)d9E_-pKx_l-5q+8t)+*1g8xG4EVCcmD%}*i=;9;%WK1x)sLywA>+Nf z&J0?(jQ42k)T<}YzjBHDON&N{dp$la>|6D5_E^RjN!R%E2)2RwpvIN#zxjMx63_;; z+-j9=_Hfk(W)NJ%)uatHNgD#@bP3bXxqO@DKj&f{@W2DJy_OrB#Zwwj-rS#cqB=K!?|^sjb{j#mOqUTxZK|%d(+JgY#@x%UnUAH72wbvSs`E@8;Vbe- z_J{e{95h0|ch_hHd!OK`7M8}GMe?y#h#a(vanwM@7Bf;eyT=GsMW7U#9WT}O2Xn|K zGv6>fbQdAMfFH#j3mP3EFmTzff(TcPuN87 zs3sbnGuAI+?_^JLkzU-nk5?r8)Ij%Mu8mXcW&~egcEl^Eqt;>98 z$~c!YzMfhhP=^uvwXc*xPWFjb<-x!gse${b=9p{TP%IBD?}~P&GWMQs;VFuT79P|s z1bkc^rAiQ|;pjL-*`Z3#J=%S7d6laRy9?JSm)+G#v>vcIukUVUXJL(nj|xm6Rds{& zj#7)D>#I65G!`{Vrox~sQrnCyM0Mw5Rugf9l1M`X7n4Y?QR?-7&5kJ zJYnF&N5*xepaov-oPR5rHQ z83Yoncp}^+erDP5@;M^GyF6f>xF73u@%03gG}vtvj16}EDAiz11OW}UzwQmHqY7vW zF|-zQ>q9^vhst`g&2~fzHnrF{N2wNjtpT*y&k;A3e@f9Xp5GazS}dSriwz-B#&fiF z83@M8AEPRNcw;AADE!Q50Eei2|IO8uom$ga(A3EoFPH=E#89q^q1+5#_?4TMM~#Q- zHd|9!t0~eC!w|T-lw<>Oz#= zZs**?CX802h_RzpCW!veuDqgpyz_T$xsXq5~OcW|a^@R2Um74HKv zMid*(xMFW7=UvUMoAu;65CeaQfsgrMA^1aHObEJRKA?7}d_W$&e`K+ttPS zc^LmBhiY~GkJWkr+U+;xi-{#Yoadi1c#LAw|`TQTM zHD;2(2qf6#!*J_Ae77{x8q4>4FK3FzBU6DeMC&-JyMi)M$$&x(!6KnAB!l{?BpJj? z_NKtD4aKr|^Yn9`W~?hBr}6}fCxcpRC{Fz7EYAQPlR*fH*tvx$iy7=Z^c43V7AIa< zQ%95^;_SfZQ%~Rm>>L6y%z!6MGS^f@{WQcmE{tapRDqX^tVnSV;F~BIFBgd$?(E32 zQpN1yPWbi|EtXWi3&WlBH145rB-=jH`G+LK4H^?!Kmz|tuQRH~7t*;)h!|RDz+Rh@0!&8Do9G(%<&}t7lMcp7Z09xZI>yzrjX- zHw}6e{oOQpQtzgDKy!G#tah)fJ=xC##L)%LI;`nX^=ewBWKnjZb9A0RAhTw*7R~xz zZOf*P66Y5>Yq0yH#lwZpo@{2S=(5OJpYVSC4j7Zy1iWJtc5X+OiMz09KrhW`oo634AX09xk0M#@m|K6!xXg z+M>=92;?iW(BFn&h^)Uw_3;?_?oXV!*K>b#P1!pKy$WT$L?p&9b)M(8$;+K*^0A2L1BEDqw}Bdo*&Cc|cw@>ATWJFVA?)_N<|^ykxY2ngjK>oU`R-38u}U~= z@k9#7gdP99D7w{IJBXly7`N5gnYKOBSUrZTb)&v#X+};^wCcr-BwHIJ{X0sK+iCxYzVIWytUKCzj%-`vJ zmb;#g*I<{k9)IKMct7s~e&+)5P+t1)RZ5#RmFc=%If*O>0A2K#Y-ts$(Gi7^N?owW zIfnm4Wyz^1VW_{y@}mjm#}`WYrtEcIhZ`~}+~{j^r-2M?xe%l1=Eu*Ad=BRVGXWml zFKLC_A=`P|j2mF6{tAalFFd1P7e2Br&*&RI(cd>Qq2j5~uUt;}9N2S6pq~mgs4A)T zY7-S6@t~emXY~67iL9rHO{mztPzb4pqx+q&@O0`3Y>5*Hgkax1;M~SDNEtbCznp^6 z^BHOC#J!0iz?*HAzEqxiQbIR0G#*7Ld<*xu;EU-%f`dtu zi~#qK`InBoc+A;FgRd30aKZfBvEw-s?D`7|)LbD?Y-`;u(PvmlPO0gR6k|>}1y3gC z2t2i&N+EbmBYCVkwQaPVITk#hoZ8mrSn4s)f(F~@-zS}KmD5%!qT^e`pM{%?msKPN zFSMY1a(Y|aVJYo*3z{4P*Ej2HXJQzCh1!lQc28_h%&nhkHThk#jHVDH*x?B$Yz6R4 zxOQ2pIh=nWC77DSxv{D_6#oI1DPhxGRk_@L`Y*-BCh^f&wd4Xc_t$$ml^{V)*yhk0 z#F0C&;!=E^T5%~dPHr!C6hGf}ejs{`c2(ogjw5{VLYQjf)P*pB8~2i@TLB_cEr8@~ zJ-p3uv3PN@_P%pdWQfdo>8h)dnE11ECLboH`&%QE=f%0Zw=tJ$9~QKy~u5 zvy+($Rr-h$_*FXdw{wdb7so$Y{{V|`EeKw%>&ma031mVmZ#0J*dUK#Pq-Ol5G*=Si zk11DFEcbX)yK2NRPJEQhHPwu3BW~RU@zeJIxIuTM0|6qQJSpV{Y(%?MT zI8ptB&Jkt?0rk@(WW244a&6K0kAb4t_v6Lfa<1n5ds>2)<5lE;Q!rW%1S#cR149uM zo)+QDp1P(q`lUBl?6i;&c_)RX(3`4d`e4 zS&`<{5Z6|7O=CMIkTK_0$==iwH$$-;bKa>Axa<`~PUVLv9yZ0D;5m8IF5u&yhIM08 zdm16i3f6Y*VP8#9J?s|~)SgC_x~`AK%I#SZ0-kQLhrnK5wP&Q$blvI)6V%a%t+B2+ z#_~-hJDdjcTmxB-gM2;eyIdM8g~<9Ar-8h}K*lYN`(V7>(g4+POM{w$J$fXC5J%o> z{KGkDIuBd?>*bMyQUaV2tgd6IE=R z2(TT@w8Aad+%>_>JRnkc=T?pB-1BkXR^E>sh&_-_*>^~D# z0A8P{0u*r5(}2>t}R;Uda>@7p(|s=g7;Tf6y=vv(7IeN zR$zRRWmujFVAeU_^%5(KxIs~Q*1*N6{1rSSqZ0JRsH8@!sH70X%f25wy3R75FbP2Z zk)sTsE#V*3{+=xdg=3m46#owYx!TS~*EYQ;!N8I~0)0n1X4^B;3*Vt?KStt1&y`rt&=$53^X- zB$dSg|Nj_Gw^TG;n53fV>?DjP-(S64vo!V{us4U(J>BT9C#kL3e0^Ov;S~q#aPhyL z=trK^-<7Pfyy-Hwg5pKfkCOv3#>)*bUd9V(^snMY@Z1L~_`V+GI;8Oi=_F`y0rAuj zS3}-{f-!0uq>J7|U8~Im0rg!_SCEEjj(OyAGSv5obdo)WNx`NHACm5a?6F&8a}h6< z&!Q+;*Q3%^T@OirYF$TC-H52JBcaD~rmHHpr>i;P!cne^;`mR_>IJAsoD#l~uBL>5 zYVG@{q^PQDce&{pR|kHJIvZES{!1W+lD@lRTs6Y@@1#)eAQ>H99lZu9162bQVz3n7 z7yDoaD*+caKRHBFbTTQ%#i~M+Rg+7d;EK{%9Yjv$H7OqE?~)?@Hso(W#}*etA`aj~ zl+{UxTIfF+Ye7{0k1Iy3`)()+~teRTvR2N*nzi6^$X6_n* z+<&?&T4Ng!IjE`iHjuHYjRm8jsfpU(xuW5&w%M_qTA-3Mg%B5}&2r5O6?K2ia$VtP zr6c`$8>|040x>xGo}1&^%J^rbP~iCV28Cc_{cN&WJKwb@09RhVP3X=EppA})hPka?yD_!^>M#}V6k@n=%Tm`zq3Ys?rLNC;KdKAXMQ;Kz82RFsyUsB_iWCMm z#mTyEl!4NXLJXE-L7`o}GK)r#^J4+yj8NMIaxypp`FG!(U z+Mkk|Fq(f&!5C{_Oc4(@xt=u>VEkO%y7QnonA??m%NAD~{wt-#KuX-c^GyciiNX~X zOzzt(Twxjyp9-q^+aHpBzt#1QBujtW+lDOntkP?gS|#9+K%}U!-8Jti2|rUM{M*}I z-FPi3Q97z*4FWM7l}|+7&MNCWy~9#3PFbrW>qdUh+)%Ts6o>0XN$c%h{hR^x ze)>5Bc*1iAY~56G*yU=Kdmt>pWr>@~S1XCqZdU~BJW=e9^VVT2rizPk-fHX=^lWZd z8J09f>~yp;xQ11yeHqw+#rQ)~h}pN?MG28P%fCZR>D9{YnKxX&F`j!Gu>(`dk8itH z@CXXVRFKhc02h~zxF)dN(?si|u8+*5vW*a_5o*W9Bo&vfb{%t_;?*g4Tn=A*+;xe^ zQZTM2R-dLen+$Ubhhm)UgtDHshKcFNVCwVx*5 zJmqqjsRC>&8cOsBV<7YWbK2FAJwHt}de@c6$5JV1N$NCpW29k;eg&$@MTa_i>x!}O zxlXdh(?sn1Fw0m$qoBQk-(nc$)c&6w+*n`a_zxfULaU%Ac;*lcuxuTS)YA}(&V-nPncuWFb6}FP9 z-=Jth#|2#qA@KV0tA%Am=4EP%u`-%IV^{FJ1l2 z1OcAyq^zbw)p?1SuUwyLn)ivnN{Ti&T-0BkEhurHnDR0VfG5n_eMQQ+7sqO6L{c61 zaQ?1T+TWqzO!VY*wS?XKKdu5{+J7XPel-6&#l`XOIfym6j14q6{ z6`Dat<9tS-O8KF9$nLtniQl_=GFBatQ+XANS0paGIoz3m+5q~~w28LX#_yx)>ID0Z zX)kV#3=upn@3>y%1EmW7t{Q`W^^fw`xhuL6vkr26+gzqqDrd_QH1-5?H@ zU!hiq`u*kFRizrldu3?;yRbI?QAYz9(e4Km9gC{PGAo_ups<82b_DGfCZ}+K$Jr4GajH{O#&!CNOHE z0;Q4?A|z-3%5P^8{nrmAMf4+A1M#SK@rVE}=IU8wVGFi@T46>E!V|WCxUti=XDsV9 zlQg+_sg)@Uw4JFYz^^j*Yj9ny`yxw0f>b_~;$jx)JX5thpuu)$Enj5;>oOl)=s7!# zub|Ee=pFToGbz1#m8njC_c+)Srldw6zl(xpl!O7IsPJQ0jF}=JO!WIUO~SAzp%CIS zFLzI6rk6c?#nMI9{Tb<-Isum3w$92;sRfYGH((0 zZkBJBT4v2XOD?m%xv|@+(ju*xyQ$by(_4*~pGB0%wbrOvYONLUajli|R_AXh#Gr;J zjH*}F*U!qW%gE=ORl@zT#uKCre{M9|Z4w1zyG@v-lAVdbNOmKv2yT{g_b^Mq1T?g? zdnBJm39w-nE#vOal$etGcbMV7MP=Oc_{t#U?osaE5;;4{eab8%AV}V{Xn%O$(}S|^ zUl{jL&S+@%EYUW`oyfCk3C8L=*O&(UEeiG%bgAHO7C->IPU5A>&YJv!6+!cg?i34x z^A+7S`E@ITo|W9G0R-|2yzeTxJMsHg1eukARj>^)&BwIhVY5l4`)!z61z4E~U=g#j zxL3tpo0qU8sOs)&LGaR^(Y1LsD}uSz+;L_C42P@L+>?1zN`T?;LUs2b29<$_wM}{< zRozUthj$C2YWA#qQy5^2l&f{in1uxd#@iNw0Vg4|`16#hQSs>%j81!gwpg{!-QG+P zAmx~al$>(Zwc75f@b=<~BQTuXvpBm$0V&m#^Eb>^IX@$5XkO8}uDi2#NTQG7FH+P) zAHqm$w#xWG@w6-zopav!K-_;kyOX$^{8lCHE2SJBa{7Xb#0>h`Y<2m=fqL%zk#L<4 zXr|u}WK5wxQ9gM%Tcr2Rj`SrYxGO}m0&~b-#S`4bSM)tZKwkLb))Kz^$?ml!SQH}b zdld%qCVg2Fka4f#!EAN+#SPsNpxpnGHWOj}bHME4zKt{7({u5za{?Prr#WKeTo|Qy zq9qtObz6>U#fMTb1`ZHp&2!hcASm2DEtfc0E4(V7WJQ%e-yLH?HL2l+%6yR(LCXyH z5G#VsqucXMRs^FLxT~58@OsDR#ONB_X+_X_p}T^a04=}qPNB;Dbt{61Mebo11jmmK zuguR{5tLr+hU?;J2}+nGZMa6ke&04-;;wE%5PfQR4}RB@V5xhWnZQVW&&;)`?wK<6 znN&goOnpVI2r%`T2r!AgzZ_CuWlCVAJ_r&_eZf?i`kDq&$<)Vy>gY?TyOx;%Rl2v@-JdV9BEWNT zCL3g4EpIgSnfg^uG;gUF1QXV}=kgaQQ`)y5Bc8T?Ov_1Zb%W7%sqaJd18Hub6vD~;^yFe&EXHO9)N<@ zsXUTK1Tm|N-F<`4k%k73b{A7HhQ%BZBd7Kz0%Nqh*^1y;Hna*80Zu5Nb-HcbMG54D zG7J#a!AUcPIm+Mow~-g;cJGU}UJC)saSkw7eLSVMAgETkxK+(c+dCPl#2s+&H%mbGg}(^NJYqhnH=OZp3bXKrg-esNH1rsNO5ug&O!HB)?~gIc*s4GHw$D@++cA|XVGZBT7Iuj za1GC@<#+eX?%}Nae8CSxr6dtV+{__N&+AMRpU%{m^ol#5Ce}uH!kOHng4g^AqYFBt zkvTJxYvv^D`fW0KRL-VEOoz8}`LbVg_tp3!s=rZ(D=8T3aM66R?{)XB00MIzUbLzR zTtA^Y82*GO8Rdze$Xqv$9hy(l+>25JQx@JQQc8QG<@wFRzOUbMf2pyvNRZ0kqqvxd z56@SbXWx94hppwS^^*`~deMS^g0PGr>KT@dPXaDvZj8Ky)7^|w^0x|AOcY>MVgoLD9;g0&s-PDX5 zU|kK}I;x$jrDw0Z-`9AiiL3lJi;)p(TG3)Eq}&W!;Rz!(PQ+bZ-dG&G?QO`M3rH)q zOJOu0vONpb+CuBE-KW_x#7*UIQ#4G4?ggst06H!#Sj$(bFhtp*Zy^=_us|(;ez!m! zBv!eQEeyQ$gMg`8eV(=H(EDsWcMwkPs z_9_Qb2yx%zpCAYJT}Zs!YauDd9N1%_%7N4FyN|HRK~@gZ6`#0J<-pgMhb`q`0J zWc}jqDTbxZju2f|5ZF+**xCgt0h~@gaL0?+9=M0Hjn-}$V-TPl#w}C}C;b=VyJ*@% zl_RO`IeEhu{!k7Vk4p~(C&c$D7+cx#g<|j@?mx{0n29j4T%`nygUjF>7PQqL@{C+ej&q#E(_w0o;|cdn=EtSq z{9%ZF!w~{8>e08dfCr-X15zk(&N48<(~y5k!5D-eEE2aOJiROk>OMN#kbiGQ@VKBS zA%H+GvQIDMsm=eiBKW(IC(%q0(4*|r>w(&&4kJ>CVWntZ#503cSWGfi`NgCd11k!O z#}^J#?|G!*~rDJCrDYWBHCNp zlUrl+fUP{|ZZz|=y0xchIk#B7JuxZLyJTbXiTonp^|MVy{(hcn{2S^^+}pbe z?SA*xt_+B9KuQJVB+_@JlIIHJg_eL8{wNQa&EB$#5!?iespe^}@p6E)sLF+I z+7h*FWWvXe3|3$Billnb%$HaYeO}K~%Pb_ImH(<6M|H+l{uC=7>0`fZOB%C%OP;j( z4h5tVbm*sLi}VFB6>fcXR$=koAWtRV%!ZzVVeAwVrScP$K(>ADfVjNgQ=VlnQB9v} zMtIAnA7fqS_jCcc9(wxnE$r?RH8H*|HAxVEq%q3@a$ zy&#dSE&4Ah&m|Ua_C$(}BRuh2T6t2{h^gyH{BMd@O46#2;t|?X`sL6%?W$3pQc_fs z*i+6^P_WVde+%^TL}=9|i@_uvMf<6js^O!yRHcpE5C?J!O%2C3{1jJI)?LwmsY-`^ zfUmrgLnV-tdIBkw2?=DvQsQMyAY+%R1Oh~uK!SuvQV5}581Fg3w@H2>@<%=0OiGW@ z_Y`xQpyf~|F%?hJ=xtnVHzvCEU@e8t~;U7GS&4o@8KD* zu}aG?B62FfLh&$gPA(Hg z4xBBoK@H2#IfjUh|BuAARBx@hmaEpPE%zNt@pRW%x#fYulck$pX1NL;$WiIAK)2j7 zcs7`k1tg_AtQF#_;34^In;%zb@5@pB{5f@5$>o@ZG)=-f1;@@)TJ0{~tO>eVW0#W% zNS}yz&fUoX2PbtPR91jVu`@15;w z9LD+}aw_jh@vtekTA}&?z{j>6LL|0j>oSmxRd-1b`ivE-Ezez{dV@C?cr=Y|1^zG* zA?@yp?&Hnk#0Q>8U$;e`u^RKNFxoT0{nCUhS}*bZm%V|gL4CnDe$*9eK(PT#m-7%% z2L}|?2sNOf5W|grvwqOc`aw7AJK*adP>6fSuj-At{|nF^{6pP~BZ|LPs1XHFVOKz9 zsVNDC7}9+wR(hsr{Mk$Zg=o4DtzuM$O^h{5zd?`n5BbQ8>siN45=HH$G*c9{fnpg& zOV)UHGBym6Q~3~zhf$P}siFw*pB6=t*4l{+8=%`=DdN8LbYaUgF?0lkPI+-{v!}b5 zw8^tcvx}I|Ov^Kc^*f38WMZEnAco?7fL~Q(uVfm5M24G@0Td8PrKE&z;wRx*$W9?u zP)wCGsBnC-Q>sb!dq7|7*a~IrknLdX17+-ec$?E7P#cH7n_on~0Ks_aqUH^T+oy#LH7r2aNdO}kqj+Gb7Kqq+j@(q=aYXcYR4ptAtYgS zH&bJnfyD0Op72zWgo9vg4m8aLeyGn_p6Tl+T&dERd!v3K_e>wePFUvR0AYn<=H4a__QLYU%vt*FAX|%SPl>ZlidZd)KT| zxfk&9tpsZg)K*f6vaxT&fZ{`{&P6H)+wyrRmR-TQBc8fp?6$7X_Y@D+`B+y6@Ubfh zArc1^)@A;h+@L~NDsLgKEtEHwWQq3DF{yOD( z2zR~$CT*I#%}B9Vp$9l}8orz5eAm+v?tBIGpjPSh(_~?*gk=m+iF5#<8@5hrkm}wk zgw*iW_n`yGP=?I~rcavWb(kHza27g%i|wFEZq6b!IKSMWB*!*e8^wU|-$`9~9;BXB zQjZ(%EHB1i0{de>fZRA}^}Y!4_XSS}?V6>F-_kt+-!0W$9IsPf^z72^1UmbK86BKm zMohfq8K6D3^z-|EbluON2KX72wzfFN+Ry$_x}b+rZLxPfgwnIC4UdZnAA8!0u@zu0 z)^2s6w_A&(rQT*DX8fFDlE_+iq_u1@_*3w9x{^3y^^@Q&FAiRTC3ncjErKKXOWgs> zMamcz!SSNgRj8Z-pM!gMNSdGpxUbDL;NvOUK8e{PaL4JE9~11C=T=~4Qkr*<%`L}3 z!+&Sqx@%zG7s|ZPh(kAChgG)Jn%<^j$cqrd_k)~zmpBy&v1g$!%&Fn{THf$PFkW^I z)Rezd2v`7rtQ%=!iPI?xAvN9XYsh|0*XYUEv$;b7$=#HT>#tF{c>6b=D8_msZYu9i z@i6%{U!!s{;6E+-g^HS#@4>Be#r*-^IB}`f>N0HB8Vntu_`&m%#x?_I^M+1|yy|6u z4QtfG$mh2`B^h(Bu^j(a2tb~3*Rxq;uOV{Ku(ytZjN!6YX|=BN%KR#3K(&8Yd;i?` z+z#Vk=TLjk=`v|usbMIEkovj$8`R!2Ye`r7m{tq+U4KG_$-b-E@1CFXv(kv1$|Khj zHduXZt*So2{~xd1F7a{VLvFA7Ix0-_2p*M zbql9ZJhU)bw-E6E*8n|G(7T82S*u3aJJ+hbwjkV|S45ZbmK5cSc`J#R%6RjMT7|vC z*&86p9Iu;o`(Fc9qPznY!Oaf5=_X5h-; zWrx8havcCP{&#tF$GfmQ0{Jaw9f=|wHJ4kbM$Le0E$Jzp)xo@K z7Sm11)VhfDh2Chqy-fK1>|m+u0v+qqEgref2abJKV>8!Tdhy5;JT+?uFP0KnWuV$> zm-F^zE08M4pQj8e^k>RC<uTPLGK`C}66*sU{kiUnqU%)z zU#jB0#Hy~hboO-v*B`Q_CG(lA5fTLX`8$IE{ak3h^79{|41Y>A-PWUN^m-M+Bi28O zU>Ic71drQ`!HLAV>jT4h)_N7jKwzEZqpdSC@WF}L15sgB`(k23ZEtF*3Eu76-oquW zFZR*zV}gmXejgJ&sr#5-Sug6wc^k9dGeoOD&o^Wj=Bay_-dv>aVS0IyX!GcNxv(^N zTccDxZ|%IF!xC^-5o5z;3KpcQa84l;QB` zm-XsyrVwR#H`Co#-mN@h17U|t`QZdY*x?tGinR7}#-j*^x})ri1n*E@iGtzUg?O>D zv$rdY+8{c%^WHU6$%XcEzerPLMEdV>qM~uaFAi>+oenW^AL=gOj07jJ#OnNp!DKybc`x0RUycQw|v*w=u&tO(xi>TPZ& zkj^eOpr3c1nIOPg{ko{K8=vm=(fz$K8t+WS z$e9$W!qUoh9dc$SUvMFfOs{tu#j25=ALyOJM^bTk%lJ47K|4oo6psf%pqg-{okWWM zjV+TD`Err(lfhoM##d3M*kCZ0Hd1gvEUnroyvg3BX3_xf>R-@Wt~+E2VHX(F5h>oz zjK5AWaQ%^ZSO3P=D>*X@@UE_b$!?t6QV7vS8|59tzY5fXII@na<1Z)*UdHucl=pT1 zBL(BJw$DdHdwW2^3(N2Crfn3nQ@xV|@Xb{gYat1SL{M8|?N2I(H6C=JD?>)uqZ6b|N#-sS>vNxPTr-z|f zZ<9KWWWs343k0 z`n(b=wz=-+dHg6rBo~ssOTkbL-Ly^W`)wxtfLfTWbf>cAePktk_Bq}v4DM(^7a5<= zGOV6zK`E_{ro4jffOitW4)M)=?vswuOd|U~!Hcf3RgeY6P%)2#`2078C<#HGlCQGUQ zF(wAWU;;6);Ryo)J~QquRLnPQ1uQG@@dQZy%kYZo3pirNtF%bmBpjTBj zHCwH9QHbFPacrG;s<`trG(>zS{iwMJVfCKYs~7Nb z87PE2Joy)*?AR{vZjt@aTW(9UY9&SMF|$jtuq|pa2tPRgXt(!w7QF@M&ZO7-OqpDE zi(0H)y4Sm0W3gL|xii82%7iO&JG`UC?{;qnYmNA7>P+yzeS(k6m8He{zrFpWR=8q7 z?Z74GXbLer=?^#fR0HfK!^;7%Nt)ZuIjj{&0}Mm#m3f(Y1*iMg9c6O z*Q-;nzPOx!X&F(_odd?YnLA6f%plkNtkhqoTq8<&yyJ?;wXl#-;hnS9#gUN3DGgRv zW81A=s(;4MFXNWi`<%6mmixRtt6NEbernw*LpCklv~bhBO-f;}b#46f#2l!N3Sxn0 zPAt3=0M3jT!BZESW zC=>iO@2fms0EDK%$hHJRuw#ARv7yQi`C$G#7_}W#-cYo$t|;Y*-?e1pf^eH#;o>l` z>l@yUd@fN+ovkbMrnezqLcy3O=L$7mG7-Q8xU#tOrWd}M7Dx~Vh+_TW@X}@x_}xr5 zMaF43aL0Gn3>%-b(p!ylUYj4s-VQRfjRk>k{Sj~ZyzD$8#~N3*5?{t!kYTLAE4f*5 z>{^hVF;)aPG@{i(DtO|%UJw73nruuxA5$>;`Bx!Qete;fnLu_fMCWP$R)rhyd#AC= zTgmvL!d9Xob};3)s@Gdvo%K#+EfF`BH=}6Szf|3-h7W*_{Ywa=v406sHsHK>kCrM@ zs_pB-Ms5{a!+j^k2k*dfySL^pX)5-W-B*pzqjGU~9Ino)wy&PR-Ekno7D@T57D*w* zz`rkgKjUu6)88VEDmX~NSOxB_V$)^sSTlh!eSgP_;H?k6&zcDW>TE-(I*Yc}8Fa<9 zR&ev#W#iZnwDP{A-oeWITCcqNpLoYJwoO)aD*uO~VddS{D-Y2B*UE!$dhKDgw&9pl ztFfiwzEc}7zL#J8ehXgSI$Ry9uI)DBc-%F4Zkt+euCeW3R@?on-b10fjMu;LZjQDd zgX*s9;#TiDZoB4n@C8yUf92ycFo3HzSyfZa3SwO_Rsz(e}6vvR!6k@2Zo1OT!jF<#5 zZ1~Pf>_ZF%_#$+PIr03WRK_%@JP*Zk&QRhzuLn;4=yCHs#lyJyc$;eUfRA$qYX#Jt zAw=1v+mM1vZ6_(H#P&dSibAne=Yt=;(Ro-LBB$~?6c5!Yvt6kJ_!!0^L}CsKQMT=Y z_YF35yP7%;+AcRv8jE4cb24HYHyAx?RD=2r>&G^2*q~{{kxfU}tJi4ssQUHmjTjME zuVGUWSMXeB^wW@Tu9;Jc&DbsnC48Q(1%rT#+goo!{mE@v&Jmi??So^8;GZYo54$J@o0Aa~%hsP>cwY_1ZXnlOkMR=CmrFDUw9+0r z`~AxNcy&b!^w4Y9D~yEo&@Zp&83^eAS>%q6_w0hZEU3Ux!eWtYO7!%QPGU5R+`RRq zIMK64%@Ee@Jt?~c7xaJW_TaOeCf@_>%UIuo7w-nzH@LJcU))&FN4oA7o-Jf%O^-xe zEj&45h4~w{4P#g3c0l-*Z#6^n6yjGB~3>$c$b=<(KCGTWqGOLZpP6iag z5TYN}%c`X>oJOEW0)Sq-TFQxUxMt#w?R5f++IiffG=+*+RT4`tvoV@hQVb;wt*C7# zW7~t1p2!#e;e^R}avaS3Tu844MH=2%pLIbbUhrnok9RbiV-g^E+0|>gPAPey&HVp9rN7?6-P4 z3R0_$;Wffu$|hqps}V{Vsu4f=+v?d(MtAbWs0D=8$gY1_BY}~fJ#cryV60r3^E`sl ztSJxPND{hwtZIfZ8}@72z^+!f-qrK4C{4stnKE||&qLA-jAjm?gdqpO{mQqC4WhV=4WlwQJ0*gjKbh;&Gcl}+(+QbJjxVIPQQ??#k$c2e=G?rj@9 zrrq1DzMk}o;ya9Zob)!PW6|v2$fFtP%Zug+;YD^2gk*KdSM2y>X{kkR&_av3$C)DiRq*tl(wuQNvn|Bww9~+X%^Vd)AA! zGs)l-k6Vh%L_xx4!%?Z8g<{Q2wg(3-a8=h5#S+JzR1a*dXpaT4%HQ_{$Twm%i?;Te zWa^WiR%!-z{os2~dOApbF$2483m68ac}A%j*nIwcn&*J@2xedHms7%BzR^kpIHVCX6#lQWNHNkT*(rdcO6Fobn zSFv4e%SI-~FiU}kBu+Y?OeT6~R#J0h{jqsq-L;5AF(oi}vZps}l0XmnAuT1z#>=I{ z0{FLi22AzL7NvJFFEg$PV_5aRn@N_;@Ho`8EFNk<3)$zY7DL{%o{ee-Cj192+Qzdy z?bWm_6sFGd{4GUig$MKT*`C89n6zk)XN#IEtYQR(7-v;43>3p6QoB zE}V+ZnT*x2q1*)7oYl{Jd{N>G*_; zBR2i(D6qZm$rLt`V>NvJ#f(in2qwJY*(~OQOmz^1Zm{3KiO=h|toPIt#KKLQQLspM ziA+p-ZShWqY!uy%^1g z1>JKzuZUhy>)+H+%@x+h_WaW-`}j@IxOj`+=(eTm9B#AIU~(8-PN&P7;&fQ`7PC`t zAg8*e#|5$*E`BUJ!DLD?>+A-n!Kk;JQXG1_+2Al)O>U#xYO^>}$*luR>ICvG%vmNR z8jQ{qYl_?Mayi{5oz3kqSe=ekv(x2r+Z{HiGvHXd_-i4tY~2%edgO>zGhY_~lr9q)2GZ7F)E!{jo$OyG5!)eVGtv)SZyx{V|&V|83$ zZ1u$+Azlx*!yXj7E7f8$nXOR0Hg}52>~dRm22*O_rg2rC5MQ=Vvhedo`oywT+8x9( zYq5nqS>$P%WHjgp_JX}2&F0SSkk||YMrSe@%}%4!0>=v6PJu z7@bhgYZKD5U`||MRlT|C!hBcRwc~0AO79;sV$8t7efkaO`J$F2@2qF#e{Jo*w)S6J<2}It$8F8J?zTq~Kio`5UUm{3)7BeD z*5CH*iZsO?b;nasPy76md;|?9qw*0nfY=eVia$e7zPvLjc3reqp8DkY@oUmXtR=ty z>1i#_dX2RB%hOVP<~7p)FOQ|t%P@#v-eVf+I^lee%4y$HJ{x?-{I;hK`SdSO@;E9f z9k}V=S@1?ZJ?$Cxm-3}EdUUF+@)j6Zu-yz*D8%;NR;3WzVpfepY@3KgAvXJup%6@g zNY_u;9 zGQL*?bFikfg^NjyXM26n{eog+aYT~ ztUE>T3sOIA3;J>kNJfDNDQrE9WCkWg2V&#A z>qMym=4bPVGxfZ4q^20n<_{V5y{;&rCOKc#s6!ew@McBn;a@%5M>P-|Y$YEy@V=rJ zMyD0X82KBqDr4Zj=hvhGSQRVw{Ro4L{nvn64Fl1Qy^}@haYRDcE`gC-110g^Dxx$J zKMFIVI?oeW0bk*BH}z(V(k#r%q)y)&nApNQPL!tOM`2Q9HKek8Egh}B7X|5M%u46S z$SbupSfL+T6S3+~HG0-eR=4v$E_tw6wt;L1!YFVBDr;zk7i-tkrh>(n z>TwMMGm^X~qNI~Z5dGjvQxY>b*i0(HXtp?gax3{v@9m_)Fu>q#CtcTKIA!oQ(qLd3 ze$rxCXY?M`U|3}Gc9AM>!{Kl74iryr4Ky%&pAs}Uax7kxR9}OG^squkRFyiciW~EK z!oK5yGtB0FFe*legu=&cU#XNxPIvY;7dveuzjpSvl)9kj1a=y=CO6ZfItw;(?TFV% zCXG&O5Owc1U`(&omDKC%ZCG1r#PM9SZX4;-)oYcoCVm!WM_2DQX_QLAWH_mu(apOo z3aE*`{=;=i@9y6Bqn?I;vGxkW+V${0s3B}u5AQ{39u~$L{|7z2IZPO9{Ofyp|BhOT zgdOPZ?V}bJ=03R)D)+HBpG*6Ak4W3FzOV+8sNr~abn3Hy-bzt{5Bqr&qr|=2=l~6E zr$#NTnU(-LQhRxTcS^)&7BkV&kXQzK9}s`rLKY45uI{ao`_q(KicafWOMuh-X{Tvf zzJnAzCG9?r`Hkjdh9ON8;WDv#>pN8yZ*K{#ZndSa5Jl7Z>YXuH=ToxLYZ#$pO4@Sy zZU82ZNjOCX7tueRX(O@GKU?XaP4v(E^ufFI&vg1{3jOmc{j(PSC|3@+#G3{wDL8QQ# za3e7c^Y#<($aU3YXQi6Lue1Re$jxEi1aJwd`JmTOnK~N!-PP#Afte3__f{6;w$oZ3 z*?IZc|6`YXX_Pl!sLV;yI$?fljOjDcrtoYQhUzjYwOGj{91=*PVir0!T8%f?+0 z28qitZ%L~g;hEmDrE%cg7;nD{(s0Dh`}LL-Lx)WL>+q1qLU=OTnc{t2l-y;o%4fD! ztgImxJ>l&iHFdjuEx~jwf^~$?z%|dqHuP+wSRtR-R*7QYTpX0<{ZU-Go%DXn`>V7H zOQLPNwjx13SiO8ZKR}+2NRh+nv3*j1yf+|j-A+!8_v)nWh>-7vPM+X(OMZ-IFCn&X zC*Mx+E>bhl)P#(XGyCTM!H9vAyf27F+sU~}-epn=))rPU`Q&tA`7#6DpYd)Jq%Ty$ zrg(=+-(w6b%op3qhN<4(YFf5$GG>~0tR(CJpM~O?RT(g_#a@;0u+qzk`IE9OWe3Ac z)tjp3+1><Bgpv%DSE4D6-Tq=(11kVa@Rbe#>os!9W6NRIKfkeD z66J6WRs7r-rSDjZexwF{SD-w ziTKc&_cV-VHR#;Q5521x!YX76F9z1f7JCAhS9$A*;v(6@tDMi-kh7*~aIwN;IjBrG zU-3>Avv#8Qg&V20q0XDVlY3()-?lk$t@nZ;9%RJhqyVO)FXe>IYbX2SMWAM{uj0F1#(HK>jnvc6d(FFC`Ud-zRoo4PL8X}aI#gVQXSZJm2UOXG98hr= zVr349+Ql6(e7zUGztxNpkCPHG9eXQTZ5MxI3iNEVLj;v?%iD#oUx#~lev6Bk}b4kx*Go2*w)Xe7MCTw6vDFfH3~8kerok z>k#)5nj-we@u&>joI@CJvT=pxIFAIa|Xt+5)uzT z%&fR{jFwQ|DZyc8VUMOI4h^Qj>Oyaiig3|0E9%`VOi+1KG`RTYCVHM(IHRfRIV~m{ zwAxipHolwRgOrG~&B6~TgsIziP7eBu+D}blGM3{g>LXiUyTi%A##Hp_k(d;G13JUrQUVb5By^G#2r2bef+Xmau%eOrn zyu4Lo(d5?j9h0<6A4tFK%@U;PR9+|_(h)YQgl+%OpAD~gr-`pH|H!8yR$*&d8eie% zy~?v!y){J9D?4*1ren@r>*dY_de*VxQYjAOJNhC#vwsTaT)^g>!)lm0XJm88XWl0T z@dw$Q?=c-S=aOs=(3fXUId%Ik(QjM6RBG&t?Dt~X?+q{wYrMrbydOyIFq#dS*+j*F z(JZgF^O3<{!@Q$31DmMy(PFTE;~lJK2+OOdw2Y%;dV*?pw1OVh8rt?XE?d&t4t=}>DssyLsN3-ckckH zh98AIwMPO8q4O}0l1aaMN09ga@W!b5!(8#5mMhq%W9*#LG4c~}`~VjaSo~O;5SsM|$j8+gh9>+cxQr z@7`)y=dnA!{_qi)gLCw zOxag{@~Gt78Hpi!cX)Y#!58D}u4V|cE_CQxWgVMYVhoC+%hi1|#P+*UkhP(TRYBHr zH?PVrvA*77A4WS)>WRr%RVMA`K?dY(I1xc3n^#46*1nc+l{gh!Ga0L4J>Z1h{MLX~ zduPT54%hZos3NY~9X7cd*ha3U6~wW?*O=tBBwgYA5C9v<*yZ!8h|_oTSr!OmGmEFN zw+e@smZdmkHEcjKJ|NZUsjZO ziY@aq~95xF}J`rUfrGpIWLAvmMYEQOVzxYw3tw@?2bUc0GW`oN8d2Qt~pQ zDe!ud4>~JzHVWOaA=;~V1tFR;L=w9W0(4k53edq+yedEkWb-lFYkJ>6L41l4kCUFj zbTmTgXR+47+6R!Amjxr_8uF?Mta(+oCUf!Dd#hn3EIwc6#=Q00Y`BLlN4CX}$#PCZ zl`%_z_Fp#@yDw9`l+Djue3;F*+Slpq+eTh|eR&K4=uPn_5U-B8T-p7%viYX_5nX&i zxWy}nhEb`QJ03>t>jr6EjAO*5Vy;jjW^?%Opyc%I1(?QK7;f?WRtAhwYBcb5Pv2-! z>Xn1yBP@n4{L>h+^@Um+lY?St6cw+Ep%FPehF-nb_d6VtV8n1p0@JZ9=g8q%4(R`F z5Wy+N2l;8Dt=OhbSQiVW3~m$I+TS-(JR+Nvi^-Tt+hvo0{NF}X-atsa-(hRM#%h=~ zU*@31J8ZBowW?5+G%b+l{%E1-9(mtjr8oJ~R`i>EY3pVVPr4w8g~Vr6MX1Y;m~?O7 zt!%F1pJSE+7|n(uyWb>- zCi&9T3}K^+)pDt@etrdY^Uia21x7vNt1d{zSaev6eML(^Sy_MNRNswAQ?3!yd^yrB ztc|TIe}^zADrQdiJyloxS>VoeA6%1Oc@L_KFvEArhGPM|X02s_t0cl?%Fj4`20)UF7>-%-o~duM{e@ zlNb9IiP?;-RF85-A!9vCI(UWlC}0U|L)dD5Nejj(P6LRwj|;4Qkf`T(XorNZ# zU8K)2nl+D)_K?{x_{?gCu;%fxRwc7HyIq$041y%=1rtJzol1@Rb5CW`IQ6QNN95JV< znxpAUzQ?4#;lv_HKmU?1S52#!^N1G1@YTLKYKE|~U)L%-Z8r&J*YTJ93>*6zn@VAQDDAPFjQMSVLN{mp3G!XT7Vo0eoRE!ZRQ7WeUg0Lc!l( zJhGR!qnKI+mB?4G`j(3qL9n_p{UMkB{9fLes=V&|QT%$ZW@8eg`Rk4l?cz6llf~Z| zZK)PjMWJQ$f)A)k=wu|=_ODu24brs2vO0n2jlSoir8fIeNQb4}H=YQa{jni|;+@0j!Pn1NR{ek~DcM^aBx|6<*xYBv50U@0uVv5I0(AdlI8rqjKyc zdw2LYL}Hk&#Spj4*HO*D_99Q-<@-Zgff?9##KRun4iVIh^ZGidxo*+DGn+6&$fW*0 z7!|3?5Z16d$TfgH!8x%agTek0BsTe<@)}fK3PF7K{k8hSbiD*$>vTvM>&hecPq~8z)|H8me`^cOUJ0hrLFYdLUfo9eZ_9ps^FIY*oX<=;=vvXxj0UJ00D`o~h z1&`^K25;s1T%!1*Y~Tx+ju|*bHW27pp42viuQ6&r3mNzbHIRsV-{K>WoVR$!?9gkw zo^&|odsPgA3U$UDEmvs%TRdYfcrGJ}^oaI%qzs8eH@I?dv1A*!ne78jL95@D|3eEn`$b!$1)sOq* z$lfOY>4A?w_B||+#OwtzWO;&r8vVCJ5WiqWG=d5)Cy>9x_;f6k}jhVf1XSzX}jnUNXC?F(P>&7-#bFj{M zML4lIWq)AgPrhhDO{{n&Bb+0K+7WuYG=?1ep+Y^<=NI2_4FT`{;_D~ngbM(bB<)up zQ8Tc)f9$#yX6d*V!?E9d?bHlm1BOZ!`1le#ln>c31{@n2Twl8Fn<0Efu07#*N?%Zw zp$9BIe7c|aCY^ux-HsBX$gxR&*gHa}u=gB5v@BzNv!7=y;Q5ysYwcBkrkHeq_ap5N z@P4GO=r0iNrJDK55XwvK<-+zpz?Vm-M)|u6!Xw;Dx-^7njcQtAtKiRp>(zOIw!FcY zhEOi(5~3&9ruySa=ArpXVvhr?Ul7`HTw=>vItjbA%)a4rCI1WoE+3u*jwaZ7%+YHO zD7^ygbW!}AjY*lG*B_vMj;A)jHi$OMIz-C3Ag4dR>7?K=m6>! zddK*as=$ubkgK{QuRbb!=?|zZx-IVZ0p2rwc7XK^!biwc7paSkXPKdi@$J*YXD@G8VPSA8P_ z#f|*X0X*H@4;{cH#!{*S*srj#4&eTS+zaM|yhVV0tOICAEf0AhVh8ZL;(@X{fTvsg zuZYqXERy9mFUHVB7(;17nQ8$kY3*M?R<`$7592-NZ9!P#IT9{F+;Wh7KYx2CH3Q3y zv#-85Kq}E<_;bPb7HS4&-E}S6dz1ZJ)wHa0d2G@4Inqy> z%Y`TJIuf~^t;mef`!|VF?OcRsd(vv;lHn%*6H*QQgxTE^V_2^UwA0Q0Hfma>KeB2u zJZkYD*I;0qL+;mNxMKBRP%|)V9@C{wO2F$jMIrjRV2n#1RHj7nRWOM>0~eaBG=>68`zQoi&w%8^bf;qOBFR5>NKp1O%` ziQhmWwn2I$h1gc23<|L|@=OY`C5+ttxFowl*DdZP%Dt!)4#j2xG$F` z4LI-R{6C)eTK0fHQF@cAV+rBSTz=jQW8fLdIw= zLE_j~X5$C?cSK9yA_{(X^T(n7LDJ6{%|5OA@-TlF@!MQdGR!|&%|*kk$vc#Rj@Ck7 znZ>I42n1u0F$*%cJs~wd1em*?py!blf%1{81}YLdj&1(1zmF)j!+7P}ga(XeEwa{JCU3b{>CD34V{?VMuRJJ$xG2>*TmdT(s0Zg(sg*G z|4}s;yO!<=E!wZ1$?c=2RSGgoi-8@YQk6Wc7UbhzDyOkMe$R~d?~-1|GU>blxm*4& zr-~DH;qDMJiGFx)XL5Dmtfq*(DIajE$k{=jlVki6-SPlTdgY@+h_j^zC)??V1BFc9 zKpqfaSEGh%BNw0|XZZ|cP^5kD^6!_fQtt}FDAbk7pw7=WT${Xho^%rtpd%>1 zVKl4tn}_%j6cs~Q#q{PzW2Ni}3i-Nsu%8f1CZ~eCCJhj4lGvlYt0H&Zr@_cdi$y8+ zlc%5XPlfwSKwcC6Ws`P?(Ni{XYJHfGI^TcN{}GI_8R>%d+Xqy`lx)!1@h~6C00&#o zilCDXIU_uK^l7kX3bJPs*23%=FWa+ky#F&{IVWYajdV=P44Nhz1T6p7paGM>paaOD zx3Csw(4ND5{S zJ;#4OlJIU?3|;2=A5t?g;X|}&2hI1ts-|Tl#o7z}Z%ar4ExqO=D~W#>GX+19m{axt0}XU~zq<4gS`1T{yPvN;;c953X? zz0m7LKm2yXFB^V2@Ou+}d*HVhe*56}7W@M6+Yi43fnF~j?3f*O6$(hN^r(xiS3;4$ zc#H6?ap&CQ($}~cN?iVk(X4b|%W^8C~6lW+R0sW?^O#AbHs}pj$j>G&u+P~ zg3yFGy!lN?55o{RH>A$YD>XRT3+0mTxpugR8=IrtTw=s%ey#RVvZrURPR+nd)ECpT z616`{vU=sVSJNuOAHfVE;V;e&wp25~5u_I6%G_XU=}FAMCPScMV4vJ))C{aKeA6e_ zB+bSQA(Pm!L{;7}C%>ZMDmEocyf?S6AiaWxf^q$&H!z0U6$Lc>lZh%~<|ZE|W;VTY zlziVWx0hP55>-dF7{0hax4W8w2|pE1%Pbj@8r@t?%#L;C{RF3sKfxT#r(jND|J<}N z2KD%Pt%i$eKVMFAe}g!dKUIhH8kjp?s+@-!08<>DN2(5jQEW7R5>_{v5fn#i%1sC7 zP8B=mp{1D)RC;L6!aC5ldHj9Zydk*_1hF3@9w+t1bgc8#=kf6c(6hzE2pNKnFCsjH zj{|onu@BB3D?CG*=H~YoC+6`L#AhGM9V0FS!Sr>3GOY;k;x5hO@1UN1IQKnqeV(!= zgh&r7q{DMZie5&=mw^z~iMv$nb^Q`*1$tc%=CD;DY(8Hx#2Dnj>_=X03{#Wb6Ve4- zYfAK9!)O-n7xKvBk-1NWG0-W_c<;b&(vMmUdmqc~qGn(nSmLPMB&otN6i6WrtdXls z3Jav-e;7zPqjTp-?XW5qv#pMirH|*fl3L*>VX7|vLsc8bK+Fz3hGKRQm9C1}{;>Ch zo`twGHuqaGjnR&i#$hrRvJW2PAq(W?g={%Z_iO&8c%y_o#T}m}cz$dYANCYVI(xh*6b_UHKF)2xPGfcQ(9}{|L20 zJ7mi)(7#}FZRKZ|yWidQ9v z58*N0U-A2_+~%VADNn&*v6Ov$4>y z+V3FOK4yIZCN}Up1i!=ZI|9F>@XLeWG5Ea=zvJ*b0l#!iHpIM*d~#RcxKoiZd~qdE(XM$vT$KV7>jp-n3BCiMx0!ULXO$I86Uw0? zS69w%Ag(+?M+%QAL)U>1$Szw(6*neV=gsaYETypgEpf1feQ9$dt`NGzCxN|`kX;2% zWBWDwC>6jyx+@&v<;gw42Q}Fr0ewNI?`W?QbBlB4PP(j?vtS(jO3l!p-tuyM9naA@B#eIynR3*Ql z&@TLLNB_H}>@0#stbo&S0V7uLl)D9F)f=IK!_6O=!Z%?>zaba>gZH3?S0Gun3Z6tQ zF!benI3{8*hzlgVpWjRn>XM=Mg3*ZTRarf!BJbsco>ru3T)`;RdNM*p@AAR?->9@; z1RK%g?87Ia7^7srz{p_!6N2=}yQucr;O)V8Nt5FIMCn2N1o|vErBIx2l%B+Bmbro9 z_u~9B8VrAx0K;r8hUKU7O=^a)RKM$Pbs+oT2Ir0>^>qF)X&n~I7RX;g7^Rc|vBc%$ z^Oinm^6S9X3Pj33%ckUv-LhURjvxBMn9>UNv1C~p@A17?!h1CT z+()usEm%NCUCQr8o_VdHwbbxEg_D00x!!yHau{G>jR+gS!wO>%_X8j0XNvt~b$zkA zzdr_b$1*|P4+`0F7%^h6VJOP#hZ2Dq1C=#rKhj5CaQn6@wDcb+i~J{FdJ(l7?1V3_Uw- zk5@CW_Gr_h?Q$poxSCe6<^e5+qrc}5Rx^Y(uW0$qGIp-~!tIazvx4NrQrYZ8_hNxb zO2cU8E9d*9{onboXfO;B`$UuP|ITkA&C%dmJD~vHU*ZR07FN`i1n&<$inV$(%D_1AW4u; zAX2^nain6w0I3k8nJ-Vg&u_p}F@(9Lu3R>(pYJuo7{wwov2wu-@yGYkRPQELtV)I7 zz8`?8UL`@4@+sXosY*T~VJYxuu#Kj`Z{O!BFoHHZ&r8sL7V-^zJ!{zPY{5<@?<hbr(+posv%%-*bb6i3<}}g4e|kcBL~QIoEI)kgpCr3) zFx4*4`UX&Vpa@2=tY@TU52cid!~WJvJ@8@wB2=FF`FzL^M<`zr-^dRi^4nzISM&K? z?~fBZlgQZG1^J?v8C+`E-z|(Gr%u5{@erdeHSF)J(6YJRT54ApGIrhUMk3h7iZ}-s zG2*~qf47Kb2H4Dc1)0K+sPs4U`QGH+^$Tj(6eNDvPZ`P920{|3mEx{-{o0 zH6K(B`$PA+$W-U-1+%Kd)}Gb5s&W5wAz20d97@FkevAoBUzUr2;~?`M^ebW@9$Cv1zTH{e=SV^wzF|3GE63cd^8}nqMI?W?{idL26NmycpI8th*}~(Xda0^<7-BGE%a?vAAHh)D??m z>&u-G2E@s^GjQX%f}4WWA3fyh{kNqBZKMY=nx*&tg(Urjf@BSbPhTkLA*E0Zm7cA9aV7+&`7Q@jO3yf-pupZ|P*^}4_ys9upaSK4Ks^Fu_?4#5%%UX!p zg{c4WQ8QHi&#po~6z{d7;Cu0XMmtV=7n89*=*>bNU_j2cn`!Ik2ROB#g=~ZSM5%4M zYqML3zhK*b#7bG)zbV_+dv(DLu||;hk5Uj7f!X$(Y#WfXDT22C|HU>q&HuWGi1r|# zELehfCku<=ok~G>((?+8qz7XQ*koZqkWUtXf#p7I0ndFHgY2J83NppHvbtG{y0^)J z5}1>|QcBY*SrgFyGfnYtfTm-zrXz}`#pK+2DA?cULEZUM>OPRw0mDC2cWh(9PFQww zyd9Ls8DbIg<)TbbS-cihHY!5ipuQC9Q>IRQ-VIDFXJhX%eS_VXyPCCF08NTfAb=znr!`e`gr%U+WgDt;usu{~cNM%UNVo(Hm5!%H8s_kVs*m@d7XTbJicryGP%c! zhGN@dHcUq2m^-r5S{2iAOjB}m$n3Ua^J1Q0zzWtNsurU_jW|&LS@Ay`D2pTH!VCx5 zjW_lq=K}@ri_a8?50azhld}_HEJI(2Jlbek()O_j3IuU6Gq=PU6A1PaN@FcXcnX)z0F&VSQDO&^N|F#t;6hOzfxrDdk%o5%UUA6b37)ktDO79(6 zFEIQoz4vjw?cwX7f!7}p+nhq>ZSp}us?_t8Vk}=(?{MDzhHO zDE_HT8ueS!h)nvZV7v4al^Plvg!Oad{%L!ybfsWig3aJcNikY&Mw1g>vD@tS6o*p} z{fN$GNpb1z^y}<(0@)20KNcNtbKBud^hUQi6+ZiJ)9IZCm(AozwK-FbF1v-~d^#sC zkauCuG9kfWwHl08v)Q4u=}l&Mft#9=YK4!&TU~}!lhICY9avH)&?DyM3qV??dOIn3 zrf^_F*_sXHScAnaN#dqC)kxyH!YT>S`#Ibeu+?OAm~1JqkmN8s9XePsa+=|Va^Tjz zt0qP#>Y*GCr`=^W!G9@chs|QQS==cpcB|fHOSL!yw>HcPd6wc!c<}wUX5v3-t-*C?yMPWG*K~w+gBzI1Ns##hU7} znk^=i&T6n(T{@TD>9(cVjZU3A(6hr_D1^~sw(4{ar^8@QH5pP24!z!Gc3W*O2dtc> z+RcHXxr>hq2|BmiW^%hype!bXO-I+(%to^{)tq9n8l2`p(}(9C781)*X(2UdE!KlW z%F;-N&R+y)xtxV{iPyZiR!5^f*dj3T=9gVb`V{r&$;$~(x0>2mj`Nz0?m#}f zx3F$vIYqOf2hg)Z} zK~y^I?o?BXJJoJCnDsiN-U4kaMW+wkYO^X+XyQys0YaBsr%N@t%`UsirZ*dOso-M> zZQ{s(3BvQzq7Q|{vK6PM@}^df(y*o$Z?fA>R+BkZ@3uNjFy?gX>=1d@6sO(cG+F~a zSIwCeosep<>zr1X*^ruQFxkvTc$AU?Il*YM8dF_HvheV#`hk)cSMPu}Ud+RCI#LMPo+ibX!~|m%{~h z3o&hRL9IDW7K1rZvt=eUIGx#MH5*NC2W@K5!I)DF7K>4zsVTgGFb825ZyXA#J4S zQ;k-AiqpYKp>NwIB$lHa@-{T4a&exVCGWP>$XXF%-?HYB>-HiHAg zMQ3u`-FCAzCDmxQ8O_kvEP-ot3LzDi^KOd_eScA?Pb;T(jOu3Qa+MjERyB2b{t7iS za7I~$azmg79(g+bwdv4En>*B#gHrmk;l8R^_94x8QzF$e>%Tlb|O72>T{r%RveaJpa^4C5|%ubFDFS`5|{w+$rH z>aHK?(QffJp z(*PUSCqVb$HaQKD0qm)e(k$>-2i&Pf9gI9pFa@BgpJxn*LkBNo_0U5?i-bPUu7iQ5 z11cF14u_fKG+WKevt5WUM?Wo2eA${w$>)mu)3(TS#jt+vziHcl)3)%rb=XAg zziC^93FCj$w*RJW;ad{_o3{NoZHq8t{BPP8TKO+~hV%dPX`6N3ZBKOVwF&nK_t5|5 zuHiRSR6ET!UZBJOQ?%aVv2Ba@SJ~-~v~5xPrSP>#N9J>XDGb!pzDHBOwG_^H$+wmQ z#BVLtorXI}jillDi)Qh!!=&4tLbKQ$j>q3AY$3KeO^WrqT35`5ZRE=vlCcvnHm+oa zZF9?$Tx8<1^GQ)@{fkJW-+?mmH0k+!Ve9!+T6)@FaD7~QT5~uZnx58%VW@=kG|HO} zJoIlO#Vfa&_J)6^vFqUaP>5Y2*Ox-G4l@v^tD# zSbj{kIxJRLV>6_>QmrP3#Re;5Hml8UfEOATco$$LS-qdHM{W;)wh`%2F&HB~MwPO6 zwU3?V7oB1ZJYyS*CY*kDKT$Z0}i zgGMP2E1<8bYbz3}^T@7x}A=Byv?~^K=fnwaPc6Hfna+$)J z^2`2uT<}||aT&5|aar}tmPPL?LDeTaUsZkVNKN*dS@%cT&cHnnU#)pS>V);OeSwxU zBx~4)o=8+3u3sgJMMD1u!I|Q)GvwU{!QRqCSQ6XxWN8>&DLsbKY;W{KXZX<<6$1@E zRLym{${})*2O=S1p%bXrIQX<6%|#S^XLfcIi2o%R&9u*zwW}DywAbU>XO^u!%;B=h zDlf5%%`iqW9w64tnvkB?7LSqkVMA#6GclqUd#{V`Z|SFC=Mqq(fr&xm=~4wfn0F* zbtpqA4IMw=W$uWdC}r-0(aa=ZNNN|HAVpvpuElU)`=CyPVN3hq0O<)W23qJ^N_K6} z3*DY%Z4CCR8@bF41F=cLOHtB`rDQ%Y7xQ`iL@DNajAq3Ih9*A;yGf-PhM1!(kQF}% zlO(?uSFABOMuUq*P@Wb;;;)cjORIUw6l^1%)?%pl8+06{8Q3*ZpK39DZw~fXGq5w6 zzi83^W(m60w9HHCR_LrNpAC;s@KRV+b>LOCsLZMgODA$nmu~c%?7`QiHdt#|qfgdo z^z4Rf3pwTwjzWn=r$GsKg2n}IbPlc+>1Rp&L43Kj5_~2NPIkF9PImlq>rvradvRVB zB~6s|Fh*&&a2@7fYs{p$M{tq!EG{-18BIeNg@@$z48A5kkDl>9Vf2J8ZKRbL&Extk zzt~#E5H=hd#;wNs(8boBfvp;M$1mOU%<3%f9pGE`EFa_Vf$OPZQ$3~MtGKg ze=tL=c#iM)j5^1Tq6x5@X-KecWrMzx+1d&AHYGZPBb!<5$uPD~HW)3*c58=3gGs0B zWHzMeI>Aq`@6OpH?{NVM7!CZY&Z2!OiW5jPU_#Q?x@7&7s#W1_zbQ!v|Fb2A)F!sECL2Ndu;5>cDK*oAS#6EU=468{*_<20i49?PmDo1jMjYnsg35 zWy6B;=K@(1gXvN5r3n`0{7Vy8{aO^7gflSeaf zX5-{6J-Iq9I957BZ3r!!ut8id!YIWE?4BO17A+N`heWvo{sW9=S9BJhBktM3SJVt_ zQ2#lmWg|YIW%tWR5dIrx2nlER%c~fa`{k>iM`dEmD4@YHFF0Dmn#PzmWX+uU!JpN% z^wST4jSGSm1t}SGuvNUD76uPRQ(H))&s~ocEDAPPbF*^y#(W`7-o-FWQx$_vW-2}h z)BlIH7?wR3?4iN%+jDT#_TbOKsv<0UhJ-I!66~U;4I4(^;0*xRI6rBIF-i=O?B|31 z#ii%j+BurJ{H!77)RN3T;;W@dZ)=dU)sw~#4yi&$><-3})TP14r5(8Jic7LFniX@$ zc``jcn4o6JN)M(;Z(~{(1wc#Zg2?heHOyg$9*4X&PcNP;W&Yn9^z6G0uPh7R5ya0K zgHHJZQT*LxGcZcNR|~tAAF$M&U9J~@;kpn*=w@UU13N#9F{pM1z7(7$#(jv+0oM8u zJ*Ig`s6md^DC$T&t6<$ZnURi@+G8q~hU$ID(@+h#QTWJ)fpsG&WN9eEvr$Jgn*=_4 zIS8LQ9YN)XQVgrKhd(5J)&$=s<0}-gfTdxHO5R+{RcxiqyEeEhYWjzzR?23VQt|AE zKsri<2 zai)IAm!BsiDX4zfZQbJQ!EJ){4x-?#`PhdfYJKn_=@@>(iu2rhNC@XKnw10?5;g?; zXfUvKo*P;WH8#T1qDn(pNm|JzIb3#0*k#?N%a0?4UwJh*BbX~lF&9vLurm2KgCTJk z&B_#Wfn3|NBcU38!026DfW9?Ghv?tj6fBOUz^=srw}aKI!dp4mMNTcMT8A+4{k5n+ z-2!!@vOg@8+e8fIkGBTrMLhv3*rM;uZLpFz9;?V{85|^BAhos!Uy{=BgRnXYU0a=c zfk&4M(S}FYf*rx(@Zl3g!K3S?3q-#Q7U*BXPr~%HmrJs&Y&~IhAF@tW_blPBsyHW_ z#Ce0+QUGhE%V#JRBx(7NCc#83Q7I=t>;$e+Ag9K?)JrHLs~ZVc%%w4~A= zOZZrmzKa$;E5(rAul_k4GOf1z4w7Cp3tDxFW&i~JR}!q7{Lfvpgl z-wNIrO%CSYCk0Gz1s{qQ8!~3?j_6)3F-$M(h}xCXo2tdY7R}18g9-FT$fw2oFQOjl z-iu0I@kOiN@R(k5zwI!TL3A?Wancw}$NHrH7kQrq^#8I?3S=A)ih`6*MTfd0P;PTLZ49LeUB{6?5>5mY$;!0nW7NE1xnX%EzeehBi*IBOBV(N# znv40^r|(f~REv-&WS<^58Eh$vpU6JFis_h73uT`IJzId(u1~%I8R6NBg~3cQ<`S>V zs+ag(Sb4!<&&pyexDu4!wXH<(R=LE@FY%8fuQ?Zl@0?mM(MXrCl~9O}hY{yr3AU^( z-p7dfy%Nexr-9c)#AI@#V)+x=iI?~%w5w9wAPEz~485 ze+bglODJeq49vk87B5pT@pw_uDgm}qi($pL!3WgB!-AxOd=(kCm4CHl&Ue9a6{MU} zQhk?5x1V78;KNV&$cK($j$<^l8yMh4k~x0uyh@>6GV-g+(jt^sOJ}v@uvbf^x!927 z3oQorYN<2>d$n|1i-EmbD$T%NEmgaWDk)U7pMHb4U8NZo+y-AX(PH@fc5qN6hK^bc zx9`9hL#2TQNKY-==l=+fRMUoavz6rf-g$|4=i87Ilo(~NPXkB)42q&O4(rLe?HvSf z9asRk@B<|PW@0p@mjDsUT@R6~e+C~SL#j`!E=Ay97S0d)s)c_rq7K=QkHEAEA!k zNUczHO1h8u6*M<%6wMR|Gum;|08GaEB-=;4p9gZ*&ui=FeNu#HjcOHrBu&R|2pd%< zM=EXI2ok@nT{J^{1($CXHk>W-t>EPg^ouL<38Ggn;7&}(3b7MzBce>{r6de%7??I}%)4f+N>^C2goU6VDf&KAC3j~swy&xvAH@;|< zAl~z_X8$`#;e+=)ae;!wq6|@tWyJEmPD*F}h(gTPQg1-<+ie>zf^lpu6&HlBrDBW{ zDuK~0izbOu*N*{pcZ^0u`%Y{4uuor%W(mIQ$Gp!i&2XYkQ9J1oEr$Es79CS-V4scY z)UGH=dQyww?RG_GH3PK!!P0CkT3`Djo0^v082wj=qADc5Ls185g%;P=4n=LXxy(|A z7Q@P2#uma#l_+A8veVjle}Bih##S{CY!ukcW> zc;z34dhpGn1)?XL!X!!F_KaI2 zUjoJ$RQ16?QI_P#x>%R#K^TQP@X`LFdV+KaJ>)kfDv6`BYycL(J06TtL;}P*o}TpH zDJ#jo{G1h5NuW;U9U14SE>)bKf%=E5&jNi875yv-KX6+1{^fg2%VPBs_?X5j@UU3b zwt-(Js{Jfv-ynW3R^zKYRvW;TzlpE+3p6@bl+#2olVg7rH-t|OtsRU4>mk_{hO0ba z$6P5|)P(N)p|sgg&TLA06wGXf7}kU_Jn?7I&y9uQcNv7YHmtzc+^|9( zhZuuQ2*ww0h}2szNC5K!*bWw>dl5#F6v$32Hp7xDdKey~ZDixH0A^ew#wa2IVlkRr zf%Md^8Bel=l6bNzZgyYk3e}>D&dX5QG&;>KiZ=_w@2u|Dxwa0He#4|JI6nnH(%=LZ z7M$A3S#XwPSf>i?E1+V_YdkueU1QNnh78$MA#k)!@#odVZr8%c5j|utbiT&J(`GI{ zQ%xLvO>^)tK8*O~p2a(>iengYslme=3Ng#5wre~t!7LV+xS%{PF$Q@wc~J4;NI@YC zE?yy#Yd{@}Sr!y)5Jr&{_;Yaay%nXc=po;;#_o0WVKfWzt=CBHM~dO|lK2UmauwWM zKU_MB(K17z&ZEV#f|?_&QIyDj!8Y=^!x+VCfLPp}uRtb`S~{M%s)ge26Ka4e?yiE5 zM`v^lOna<&m?-`Y|DvBC_yg0ip!@O~4?3V{L8q;m2c7n_kX4_^LD%*=54u*@b`Hth3|eHci#_E+EU&3vlV&v2+{KH8*YW7v|-(M=Q_{6Dz30V%aDD7ZQ$7#V-%~%ADQQTGBe~zDdI((U*dD?KDpLxoGY`DA?SwH1sn~JL; zNS9kk;?#>aaqV@|gnNFkPpqA0|oq;fO`!D;No z6MYxI?d#$;!d_DRb@2h=5Sd(~q&exmSkj7&YF833CS$bg z@8VWu=eNa;#m*Rgr72Li`L4LO*bk$BsSW6j-vRZ*2)#B1uvaUWR3N$^iep75dPKzU zK>phAi|dOMG5Y5iV2Qn1oGi}4=!$;=^`OlqEyQ$;z8($KnF~uQ6Wy)iI^sI~>=(-N zQI&?3$?jXl4aCj(*(0>fiecIK*;h46T9X=!YgQw>e<-df9!AfiVWnyXS@=V7GxBt; zQw_v?^o&gW9`yNir{cu(82#?AfR=tLt}A|u(PCq;U`V%94aHj+z36wKW?uOVqcf`k zHFIyZPf^v4tO)2oelD&j*2m~s)Q2T6oT?|b#OQGXpl|+C+(y0DQV%F9x8rAXe*kj^zjV5}xEG^W-vM;;AK->#82#m6 zfG$c*tWJj9I9-u6)s-|Nm;NYDCNrx;vnjcCx|Vne(@@)tKDN129XT;JM$eqF@QjSu z&{%%f7Cm!Emo#6ytfY}(LCC4~fuYH$51PV+Qc*GTXHfjovuEoFLlE}CUjR!(RTz!1 zzcc{}kH`8dk-44v!@B0w4=M_2=y|n2fa}3$KWHq>Kv+*z;93w>(oA>`VJrUtv=yRD z5`@(VJMT}xmJEBgB3Th#QeW7J9$Bau8V!O6VMkXe=`ZX@h(`5*tXjpAS^|7f^sal& zRj3UWK_qNTx{H1OThR7<#ge+h6@)!k6KF?t98q0%>^I7@wV%VIuPc?*7H%s@(!Um9 zr2&uCt<1ahil3u~`B??1ZWaZ#F*<=ZW9oJ>5u?Rh5HrP9N?MCa82vEmS3^ z28WvI$x2YwRJ2eJVXx4}+qK5C?MQ6xl8QnL^r&_NU>I*d*F(@FY;I$~&O3j$IvLyh zTs@&1dh|1G7c=iYH%RD@u-%#h!ynJhN+J`7o~tN4iXKh=3mCqRE9oJ?m8N$M9o7&S zR@N;UC_IC(UfK*+wK`RS9GQI13g0kN7%tE}@KL>zN9fkjyJFI5izf9;x(Kf!?7`mv zo0okqLD+_{$7wUz-=Jh9e4|K_aN|dyU3P7amBeO&Z}QNio(aH^clKNt0loxsS7mo9 z+`oT)HFC5OFkD2BwkA^ZZ=ZWm_yS=Kae)1}aY;SlCxrdvZxGYibpCMxJ~;e%sQ!l1 zw%s7UhJ7-8>x2ei`a^Y;mG6iTM8NR~A#sWtyl^gZ{aHKhZ% zmnoD?p|2>^nL>UF^`p>d6ndCKJ1OL(&~ge*q|k8+&7sg{3Z+x%B?_&h&@u{brqFo` zWm71fLWe(@58w(4=2PTl3Z19W0SbLep^X%}MWI(I^cRH=QmERe0PUkteG2WSP)iDB zQpiA|AceY9Xbpu1Q0P4hjiAsefaa&AQt(BJoI;_q6k0%`qZC>}p^FrHokBheZKu#- z3hkxPDheH=(3cb{qEHTnE>Y+s3VlhTcPaEUg|<;h{0yK?^C?(^f-5Q1m_l1A)Rsc8 zQOH7}7bw)5LhC6sghKfg8cm^d6iTCzhe9(bL@4weg-R&2nnKqow2?xuP{{LH<@xud zZK2?PiVRTb9SU8c&}j-iN1-beIzypvDD*LfZc}I}g(`jy&~*ycrqCq{B~s`M3MEnK z1cf?L=m>@GqtFrx&3}l3pHt95q5Tw^K%oo@&8E<&6k1B5Hz~B1LK`Twi9#1Bw3|Yo zQ0NeaZcylb3T>y*ISOS{=o1R%QRpUx)C@!4x`8p-})$TOK`iqH78qC}@**h%7u^VkI|Qm5dXfrTIg@?pR4(lDFqn zO_JTZq_#NiOZtA>DovpxZoX0dxASg^X@j(gYItU3K3s`hcq=WK42`~B;4v(GKlPHU(!;5b(hCWdWl!QB-dt^+)F@8EwbRs2i3@e4kdlX%U{CRz)J=p zN&gRD=N*_u@$~WcIUos1NF^a5of29aq1O}yq$Q#EE-F2Mf{N0_f(QfzMp2rIAPNMr zHv$%v`c#UAVg&&KvCw(HH@EjZ``lfA{}{RFc|Nl@yE{8OJG*;=3shh`N==8^Q@ku^ zCRpKgW(-)N=PX#sRI=PwgGxVW8uY@bTS0Ur%oD6sKWD@Toa0mgBmPRZJ;&Bw!?%&~ zsr{WH^v9Otc@)&t9;vi60h?I^({t_ZY~wZH{W9=QuKj*xtO+y9glSsrD5mMnF}|$U zFfYiMbqOd}NelZxrOd=y;$=llg}P8TT-6_ls?J~S%2V~)yQ`xmZM}FT!RAo~XpJh4 zT=f(u1LXE}1W%^fTUKp2L9g7ytuf*FPb=BqqGb4SB%NMi52f$79}lMuZBT(%OvU^2 zoPS$6bH`as+d5RMP0Ku<09zW3E=2&XtXj25CHW7nrWrh{oxP)y@Q1NR@md6 zqPPuIGrS08kJxuCgo=LkMA{muUn&mq*~4`8K~t)DGAGjJ*HE5NhRO87M!HWkQ(aXe zX?+@6O3&{0U@UkUMD(ppL=lbcVb4_-$#R}H%K7tkPbhWhY42ov(g>bs3Dy8rBD$mDWZ3DQu53IzX?M}59C@^PiUe9YrQyX4kFZtm?@sNktwPnY6c!l9@ zp@mYP<$~Y_6}2_Ly!==_+fyvTFuE?d;BPT`bX_^fo~mq>-(<7&CO20ci=rVht`HhF z*xu0gy75gmN^i0bF^_vOWrt}m*yt*z6+`R|m18p5Z6udZ!U+EKx5rZH?!=%#S~3zn z!eNwg*jmP!-DqIzZn~?})?xOVwyMM`PShBaXCrdV?q58BnmHuT9vH3LAdl590 zeHSnN_9#q3M@XWE8bpm6ZO_Hz-HP4cnmxw8%(hq}K5HOmFZ6`a#L@O}n%nNRhO~Pu z0v2d77KO(_BNm0{hI8^hds_t2d@6d+ASI$0m0K~+UTAyAlD)%{z2|=WbGBb4>`w;l zjtXd=3%~pIpt^K<914HRQos+E0_F#yemjqcDUJG5vks@9eKgAUr{*G{z0{<6&)KU} z$^?5mCG=0DpHTfz_7fDTwR4MkaH2h3$rD5#zS{ecQN-&o{OaShT)0YqGtrGD+r+m$^IULmR>G9#5f)9j-{_ep7kJ`pV0821Y7uswE~;cs0*%i zp2FCwQ-RaoTABw0Trzr`pZ^&N*XLn-fRe>O&tV_Y)P}-5GUpN|yD5SysN9D5ckhq%Z6_ zx6qe1Hq6D$GnDpxs1FO(Y5Dtd73*~oN2!A%0%_!=^gueb&k<}3;4c~tc@_0(p;Rlr zdf!krss?2*a0J-eNb*`%DsS$IurRv30iv2&ipnvH(zO*tKT<>(qKFXzWUmEz_e=7| z8sz2QvPaYDD`63|enV6Ym8Lp_ZKEvZ4L8c$xe!fy=Tr80+Y6F_GJ}BAE71m?ds+=5 zd;rf%9r%5fmE>wk}gV;{xC=y*%YJS_J6Q?e|b+tJXIVyR-JYPh6id2`rT6AFGhJh z1foY)r|%ZqYbmv_NRDPL>b*~HXZ8>WW=?w|VrX_)cnHn?0`*>#zhi7-k?K=Z?{~Zj z1)f-9&r!O{V(u}Bx%4{T>-O6=m?^Un&B~&bZ=x$N#GQpKpxzR_NarKze)3To~A2cG&jo9))}O6J6lvQJd`3{ zfSGyOhnFnDi|SL8?tEf$Rzl2SSIX|J!U)tcsPJ8N6j}{ffu|;X$`i)?TfBBC# z?Dl{1d1Q=Ot1B>YqUgDo&;vR$N77F_^+BQ1`Y-BTp^YkMW*x5NexmEX5qH6tn;G&K3B5n*1D@D&A+aiF9_YJp)q@RWH)} zY_ul*d^a*tkoKEMlhc(P7)ebmlv~OHQYqzrugf-?Y)2XdRzO z5;nhyO8(F&;XQu|3%5doQh5XGfd9#=n-@(LWlF&C_%h zSBRjDuiSmLk2i#Rqn#~$SwR@S=bsU#J|_}UOOB)G{B4Y*XZ~%WmC@sk2&JQh90RGmpf_C`eu(kcU~ z^)B@86(-WMN=PRzM#TuyhX&G{@7mLp_e`XBDj_wl8J#Rh*l{aqIg0APkI2Gt6UkEv z>4^@}F_iZK)`jmFKlZ-MzVTG|FIZUtM5gA;4Ks7nZ5SLNZrvXQl0!O zz3tV1{JYfBFEFmA{A+A0VPD!al*E6H1|puH6etn}qjO7&`wA~sXrjFI6=LOiCQ5rV zh1K)=*C@+46Q$lhlx2*GGSW<8Pa*poP@XkWc6@`fJY}LRFjKfJAAf6auDoTU+`Hf2 zR@q{rY^sDZ@&G!|VH4$t1NKJB0Tbn$N+>XvesI(Tr;9 zkK#^(wyk#({x=36_21O{H0Ed=?|E&8o8vv+ND9V!uf&v@Vu2Rpy)IGG!NdPq^qhKb z_zP?N7*X`H+g{g3UWU|fR!XH_{-1wWe#L`e?q>#6@KJkh%mgip^TB_T3v!G+N8up2 zH9TH5Qo-k}45OGw|EQ^tQ@0Jmjvt5ne8WoEfBwR@o`A5L$cuI$1f>eY=ejV~Janc0 z8`)H9$u-?Seb=MK+L}09N@>D?Z2xrg~|3-M`Oqu%qf(I6*^Y_#g>h`aE9ll`9%NTC0=(KDea6KI&89SQH~eRrrM* zajN@=y^iv%EaNFjM$RQ?B8}=F6GNYmjR~Om^QiX)mNMpA%h>t1eE{WMK>K=6mhp}x zW5dUIkFblV{T-I%xBbc7?VzqotEQHyl|N;H=OuypqE=el&iVvOedJfGx;S_lbrE;N zSJ6t$4Q)Mv`<-4H1xnNn<9b5)4Q)Lk^oGCc&;JG0cb1WbGLm(Fd43FLq@H6{S@%kw z3Etieht8i+rpw%^GFR7k5|z7;1(UrjCY&Ds1&bAvOz`nOIIA6+F{z!qVe(5cp+fC% z$%41Yf=6A$dcr1?kXLW`H+}A6k6%X$ut!EYWt3ipwO7}O4W(g$jwt1b34BnL{#&2k z*^WMQ)1Ig(H>Ik)>&L!@7|JaZ?fMNmdCT5i0gZKmVw-f~xNRS;w3EoT*0i&=ZVisy zvA0HIC?1%)e=a7mUAJa=v!ZzIaDDrTYINl;cH@kbkz*ueNgMQ?xiuXzbh&?Q6y*$w z6><8JJ~5IZKu&2JN1-zKrnez-?On4uQk505jAfFH*)GVaP#kTM0qiZi1YP8XvR?2i zCcR9HMuyU|s@QIFK$h~2Bn1)FbQ)jHQ43>$SBlgr_Zl?B1-~!AQBV0tMk0FU)pyDP z6g(%;(b0z099`*B!7pe9KWEU!>>x*drOqv>d8FKudivCequ3D@;z*zyZ^cGaxHA@E zY{e0*B;GQ1{PT}D#{jhefghD${ z$*2V~N>@(;mF$a+q;&^G+fnA4@Q;fZdGwZl!wCw9s@{<$?2skss!By%CbkBJIU#{n z^|ndEn?4DwD!h=YD&;{j7Q-Q8)pgUxY1PLSTdk1r=nXmXmaE%b9q8qyQ(Y6a4{4UR~qlZl*vTWdZYZu@J!yp|(fnJL3($ner~EXB@=b97ZoO~}b+ zB%4H6ydzP0O-62zk({@Ko)kkHKCTr_qrSry-hd$}^jedIHD(FyXWUM5gwUS}FadU1 z%pqA!cri+jC5J*~zlpoAaxQjg$jBQqGW9EG5|ym4l}6W-F-ZJp;{I*sa_5OlMbmD4 z$JZik4Jd7pnEi31V07supf4NX9JY9<-!ZQFq^VB}6=OZNtmDW~2FfD(8ARNv z;}~e`ZOJS$F*zM;Y&|d+%1p%P{fa&17iZGyAC5Jq8_AAH8-n!~1)gn!BWI(S3K!JM zpwH4B;mS@~!ghm%+quZ={BeOJl1BY-tPSP=9vMh?BCs;~mZh*QCSgcu?Mvep*Qy)Y zu+d8Su=JC%SRCKy_hLI5ImXzITZ-_QL~v?mN)tz8CFHKJj+LOha<3nV=J*&>L~ZfVhd!kdM`+# zi*dCQD55=tbuqo(pC%hoKU zdI!uyh_uXOo@^tZxa)7&3jT1GP|1^VVZzbdB)`F{+8co8_|lcAPD@bxFT^ENjfL^( z8@U)C*PGtq74Z%)-Srwc_7sAe!%R43{1FR$>btn6@!#g?)dx-FZ_Q+$QN^}&G*s@& z7!pyZI$rQXwEC!h|lQd9s}>0>Mn8>Q6Dd*`9yMB~~%wLTr zv+uoledPc-qYnuan4EA-1Te}OCAn(bSd_2fu{~}7lb7Pr6y#(D5kOI-FW5&?&YAcc zRDL`@gqGwxqHITeijpK8{6E_GoTdlP%vxCBNVnb9uy8=2cMYpgbp*Dw(9sBCUMtlj z&a0~aD!|Jzbfdd)so&`2XrW}-=*nzo0czAXM<-{VcGRK#_}Up1k$_|xUW8Al`Hwr~ z?9#gG12OLgxv9fhprGigvTff=6##|tGX%%gO5u7wz0@hzmB%gft}FLea5P%)aYwsQ zR+*=s?Fr@^D*7>-TG2l3vx0uO7cRrA;yu=D?*T+4l?`?_q03upH>9GCHPKObAerD5 zeh*3AFCp7fsGC#k&USa?DhCDaTZy)=I%uV}5}H%^N@tYqYokKGkQ7n@sI2Pdy#T!~ zporC~s^%i@xbA2|B^iL0{(}+gsu6nG8j3;WDJ5Oes;(|=T&(j({-^P>sbae`!Ir9i zWa^4ZwC8!W2dR*ek0J!;>FsEx^cBz&3A&|^W2UW_C91m#b!9YC*E9N|0nZbtCw!>Y z{T;Jxk6DstnMvyInS}$;NVf^nRv(GDI_3>@bg?1f*Wx8#H}Uo?$3(6EP)BVl`{h_D z)%YG`{daxU+7wo1oJL6$T29y$ zQiXP&bQH){&fJej!lN23xFcllch8}A2Ab>>Dsqv0cN}a0Q7^GTDsp@Z<>P>_d=_3HeG61SArm4k= z(Ufx)-bhaqs#{g90dxUUHcS&SQY&)>5{JTj%e3kh)PKc1M|~<=;s|Ezq&#ZE&NO4$ zlzhE4vB~N_sIa#M`b`O~b=~q(M;GM{6Y(`Oky~n&>5g{F2|+t5({9~VtN-o9dXzlf zQIk5%fTQr(R#-hXpHI@Jy%O@!hhSj>5R6iXK{T7~!U^D-fnq1w{*NCTdAH3xwlHtZ z1h1Lk!t6oAj>KPY|JDmW6g%)!cRPxuRv8jt)iH~y%R;~k1gxVB zi+IZMpsk&e)7r;j^9I|YnldGk?NfmQtHl4lU4=G2+M**c zYl{MmX6@+!f3wDOf*P+SrD=9;yC~{gqNt!mQpRa?&C3thtWQ&C)kGvwb-=b5OTH<< zYvovtjTSqaE5`-SBjeD{CL?{ypur>J%@2YjOdC6L4=sUds}`vBYlZgg7yVi**~2JV z#G#~Cbi|HA-8DjQnW601e7X#dO|F1u8=x5Hr(=esN;0MqdV7a&h3K1(%J)u$3?p&kH!>*naPywaPKY_OvDPNlPS~ z^{uPnA$}x~?;DVse|#Vb!-nd5?y`iJTf(`#w_Zefe-rSZ4e-M+p}aWH(?YdBS|T~= zxckenCecA!6NsRVZn()@{pdqYDF04UGc92rTkG6rHyIo1-1-bhYFr$OdVVd8NWLI< zkjN*J)LFuTq;&S1Y}i(3L2hMDM)U7Y``3d!S&(reuz#6BZp`kJ?Ey>jeU*~2L-kc? zV~rq_MBY&1Y_j@Lawe5`#&ERK61?0W%r*u+muD{VoVQ%dY_Ans6=mY)*+ciklHo$tNbk%@hB z^Us<9cY;(qHPN<#vbQ*P;cyf6J6e7NKH~D-#7)YdxOnZJB~-i#*gXabUAH=#A@$rs zLdWX5geGr6!ca*9KGG$yhVVA(zY!?mrldypsm}<>p;XT!!!a}7mn(iiPo#!lYJRyF zShR2c%ljPG&#E2GMi>dH02Lw)6+i7tU`5g0I*vr_t-^rzp8C|ZIQLFdAyakTzJxZU@gxMR&+UPAfcBgA1| z65Q1?7bh(U?xnx65HYI28L7Nr;+C1Yy!q+-Pq5hewcvgsbMqD<(?p=wduU4$~EM!}&_`qEK@{v6~;K-hx8-HqU3 zUpYF{=?N({wf!tzjo^DK1vf+hgPF4|m}6}Z8A;PjBo34x`r1(kp$jIxZX_9Mt72wy zAnllg0MSMxeVv!i1_#}l4GywR&gy0lMuVS~d7t5Y0FQUeWDDN`g2*32d9)m0w{{Q9dz`C^NR;23ltLSwLskGuGURU zruBy~dF&`a?Ih6Y@s7rnV^58voN8$yS}3lyk1H9Y7V1-BjB+7EHb(CrLBF0T@DECO zZpy&dp;1MM(2lbtkNF?u-y9fZUle2{qkA>5z8ea@;dp8e+Y0P6@ajS;^Ri0FYD}%Z z8?NV9g1lEEXRp##^2GIHwdvqD$Ya`ViN_H-Rw`kS=Ha98JN^>*OA?+ne)&dfT`Fyf zxaS2+@;PfVJM>$R!=X>9p*4y`vL&Joa1ZB};j_|QtK~{s6dgGM-N&onl>2%tO^bFG zD#p6}^E=FxdJ23uBObBrLMmCDCg$2*jL=S2&|+%vBcP88=u9IN#)BJSvgYc}FhWbM zphbj|M$^2AG#oPWC1Q_n2>feCJjy%@{)^%D*P5VgK3_iLXrQ+_&Xt;qAj)zTdK-ssCX+w~$pC!GwKb@^6Ob}a0 zxQ=T7;8-Ax96vk9)=yiv_?0AwRy_dLwn;6DW-#+N>xsv&vIv7?yB^k0^-K5B-V5*= zKhcW8qVN%m!rFxT;_M~%#|+Y&`r$p{6&pjn@R`K* z8ix!I*F3RM{8c?M(4vUjb?NLn4d_(IhT4LOQa#-0i3Nmv4K_pXT!G1JBX})kUio!L zAD^98nwd~J;hIyI38c?H7t_6eqx;=2kYiog`a=fYzUi2u{B8pM60U|~ z8qn2Sj=GAZCgdDk6~^o=jcrZrN1AiA6+ zf(HioT}Otkt46=aKwq`iIRTR-1Fd5vH1$-K7{%ETJ`$I8nt?{2O@WOmd#+AHvM+FI z&M#8E4fKiDbodUB!aZW}Is+KR>_hgaaeifKHQ26~jmQ_Rk=(kM1~@Ztl__%%7`T-A zFa`n?IGf4?F*bf<1b<}>M%B&7);?xlGcr+OrM7>Jq`&-0Y_`x5RlA|!EG)E;0tH>3 z?Z_{Z9SQtgnr-p{)LpPkTU}*+ey^BnDxD&Y!M^-R|1SP+4QH@xR641{T!}trE-?f>|;U(-fqo zbXS&{aL*eGbs^H3q3jlbPX&M{lVwNhHKdBw^|0X@lU3y-6Y70YvR!J)I1s?DXT6%v z#>xdjJST`4jWHt|TQ7lfVw?%eZzkB!CKv~w2FE&cl=vvk?TIBv4-9?Kc@+6Po|0P5 z_O@vCBhw%lp+41mBtmI=DOr0j#W}N-E&_~Wt-WC1yKmTocb^wsTO2}=Zz-ZfWg?2H zSBeu$N#&=+D(MU%tW*+)nb{cIWJ@rP$F8jGHIkr|4Fb1T!l5yZ!xkJXRZwL(E@zf< zNZ|HMIF#-lD!U3T_^jSOOZu0Vbe=^%o91k&+z|BtBzmtp&SC1oyB76!#S+K$_I_Pw zeWgLP)`{vxYn=!V8n>=w%Bg}*looC5M9I-wC-OA{I6@CA{RF4C;GjtN(1zjlH4~>4 znK(U694&(1(AhwlFJN;7OrL(HQpMzYschSn*(Ty68d2GWj-qCNpntMC8Ycb?BeJ{$ zLIvoyYBaD`6Q`Ek)5O_TIT)=Oq0>#A^^|X;jrQkjr1{8s9-KBmB{m-01yrl?rzr3F zXtK3-4kF$PbF-tfIb}}3`uAB=QGbp0w`a~P^|d*sEsoNrVAzbIjZ1|ehayFiy`eLM z?7!5Hp}CvtYpbfZDE^KyvJcN?sZ*@eh1T@CG2DQz=3ubvtVt*|Na$Gy67n~tW9yM4 zwT89~k!LBPy|o0isbcDskX}b!XvH2aevhdJDI0bo&^_vE{a6Z*IgU((7aIp^^Uq0^ zqQ+M$s)&ZQz(BZO6Z48e46Cc8r85_?OjVIaC9SsR!oQepJE$SQH6SZK*Gqo+$NC~l z^R*@X3u`#KNeO-3##tX(QLLMP4HEJ?ISc4?5l+qF(8^Uy_+@K2cj$}loLR_rTRt5P z2uV0Ibia#R5HdECXv4|+^=QL~^~0rQSmfl)@N>SB)Ca=(l3P$K=P1g_b853iTVG91 ziBS&gsbXGwUCP-B-v((q{`BtFbdEudI)Fv-QTfhf+dPeqR2~1fK$5O_iWQugzeEpbqt!K5a|P~Ef2U0u0gIxkzhE1hJt@8sl?JQnr0ODR0e^>k zk+fFaG1hCv*fU?1-yl_sluZ-tDF!xA=<@3|z>O|y&e}vDRth>js6H)J#)0megB8)5 zUU0A03GmAXFvn$csx+wMi`iq(r21mUuD{Bf?kt8!c|g#=G0=G)P!V=KQ!-dzSg<~>+Kt`1YiF9NbM&tax=ruSH#iHmq)5}URBl=++uU|_W$Lrv) zI)CP>L=FsWr+nw2bha!OAVyqhJw zh`t;IPiwA#KQ6;L63GgPc&>pK7gHWJac7#j?ABHp3hvv2`=-prlE?$f8z#_eW)OGf zdxisaLV%9SAYTEK*I=E*WkT93K`s~x|2-g1>t|Ic@$Kx~`y7?hJz1qWkL!`_Zr$x%X zqrDTHyKu54>y9I3_-M~!Poeio2<5l&w2>Bzy^%5{HC_`I-WKUBN%2Mxvv#~{OT{`f zD=MQy!#bL!E{xaub{_t!eH(~KQWwdoyl=w{DK^#~MeQnA0xsc#> zS($Ng1teWVF5I-j)7Fp{vgS1IYnOU};98-nzj zkMzSD=OQfV8OnqOy-G>dx-`kBlFf|+#C|kvJLAq__d$oQb(Udi&j7{Jo)wh0I9^}p zY^VHRl194iBSHD2DWYE!$YQ!PIyCZF;~KPhqcdE|6e1eao*&WI zxOudC)j1FAeH%~sRd78@`xSjnu3NQ6TD}3^y2qMC(Y4pW8zOiEC0^`ilo?-%rnpV8 zIsJ^}-j$L&DbEPrLVw;<*f?e=A9j#hm2b-y6#893*(p(;dDFSjw%tg<)=(=-+*{5L z${9g9DN+7<%Q@Hfy^(_5pH>v;zM~SB%$2Hy;IHbju*wH-cP>zZl8r7(wPekuFe?4* z4iu+dGM(AyF2r$gKF;29=Uk@lBX)2r=Ogw^F|`?Y86MJJCJQB!sM318dU zHbpbv7sos6;ckX$SDnTj%H}DOZ_Dpp^tm%$8J42;e4L?q72OiQhgYj!(GtEJ%Mb(9 zr=~ekUq;$MjVEm{FTj_c&t_O7eoFnZy(7Q!xX23{csb?X(v` z;9Y`TE|GI)Vv};f=$q_LW!IDm9qpSZDaa~~r6(W%Cc z7=cKj*m=m6^v^fW#<-@GN%=AfVX`D-%w)pGw#W>kA*X@sV8XRc)%tZSU}f!M0W*La z96;QxRAW!JVmG18qnUwJ_LDPMnP6f+U}oD6!6(Mm*y?+)k%`!YpF{I{WY(hf%|ZP1 z7Z7oXuwkOK(oAF}%szsG?$@yUWNc12+QRuhS&^D1B8FsEqa6nz;Ph`0@TEz>9-jcN zL}=SsiQG;GkIvMOb*z%6b&&tVIUFvLqoh^kFX$yKJ7-pAU8?Uw1>81CykV%%1UEdy zOu=kyWR|VN`&@E6i!mxfob2}0qn)uXF;7WL^RG>~az1<)V=EhfxxD%km%4EeD>2JN-LLl04R5pm4cY z_Bw@_Qmr~#%cx1V7?&`e+$(cV!*oWfPfaVhVd_(1@j~kO*CO}Hxo4c|$~_vHeg}a! zx^shLw*5==_<27$YvV9%D**_=SP8&Nc0bzoGh&p}M5z%K_LdsGbC4PbwkR;-z*ao& zmabn>)^&o1V6c}bb<4)b8~A#p8V$CPfoQNSgX<9**Xxo0jp0lEHx82KA%oMQet5>^ zONa7aQ>~nneZB7jmQY$~yj%lMKg9~?H&4!rrA52Y=(2rO zJ}K6o>=Gx%HUe1~Z?;a;{&d!{jnT+B_R6oMI797T^>A!FiF7(3yE6unRMu2D zS*!|pRsM8euK+!mB2uzLSEab3uzF`Gy2BdI4XmThm8t~R*Gx0E1UH9i<|@-q(BrZP z)1ms=A@o^;>>z4a)fJ3wL-?l2T;H)4#O| zmZgj)bf$%W^W*y+>aWiZ50j4q8ZD%ZkfiVhBcJ@|OrVbI@FwLgvI8kU0IxIDQq&-m zC|zX%G(6B%TUjb(EcVKP6R%+JbWV_~k?mPa=u`g#I;lFKp9tuOMku$Tp24m}Y(uir z{ySbW+br~XwoqTF{Z*_nz{c>i*R^LnJGvI)6bFfTrfOj>tk`x}!qc^3VM{3vHV!3Q zp`Wp;p6<2Y?DLEZb7d$^)3s)lrG8r*4)AN7^Rv(%L4TgfPNNawXrE2^V`FTyq58B? zsSmI)-t6+siEuSgMhNgwBe)$7lIj)dQtw7nMH-p?O-!!9=c8PWmBoVjtbxh*V~&V+ zHOF;mR?Gz^X78G=Ny>);_nrY)G8jetc+iWnT0;IimdqVqCf6L4%e54sJ{BuMZ#*rf zO^>YQs-^rVDkyceo-_S7e_t~DSA4ZJI?go?Q>@5h=s324HpRj(qX;)3)uF>V$8mvO zJZ=w*#wlk0%P|oRv^i0Y2Hu$)YcYF%SABr%qH#OPT#QR0bTj980?kVRH{ZnVfJm0? zBtDw#O2G7rOE_63aj$LP1R>W=>AB%_;3b@QHNk{?Kos*nVCAVBW7lffH8QrShdWL^ zv(5i)SDG>Go(xEJC1Xy-rQ0WCaQbB&l{Gz{NEa*co?n`Xd(1>wtiJSM9ak+}d&|VX zWn%ekTxE8-ac&Tu&cJ_qz2**9u9&cYnz6mx13RUjD;~$pEgz0?7#H9U)5l@1Y@Gfa zLfQ3Qtq`2TNAh5tpgs_Tu~COJ(!uPlF>w*DKNHR#7C4?j^~}q~mh=7%V7hx4>GxXG zSrLykgd*l>blijMPiJL>7UV`y_itgSA2EU-wgz(xeY7!J)LR-D_u=}3^;Xp!`w#Gu ztcq8ynLII?li^CmA#$uOGbbAwxNC&ovWBt-R^_-7lw3j1mdN_sC(z|)==!spqS7+d&rM@` zBicD0HbZI>FeSJhGuIWXj1=Ty5*hX+ohA;;4WT*BP~5?m&;ceWpX;`|Iqcf=0=h_o z@+G04%|#n4ZQ+W=rhBWBK52qtYj0nAv85|U`A9(D_d!=p!r9wH+hA27=Yia6G_w_I zY?mdt+yv&Hwx+c!UinRcfA)b1j@dofXm3@0d=C-y|hp@H!ZIx)nf=?Er70t&!Kt#N)>FW=Fj5WC5LEg!;_D zj@h|2D0n|Y5Dys1_nFA7$?f?duMuQ2lDW833t+TX8hOi2Jf88rTj;8z>}yOrtGNq} zH14B`&*j#l@=j=O-Szd-`oQ~`EOCgD@G^}0;OfSb*Z8=pnn>n=dGc~y8xQj zM5}f+5bjs)Iy8!QcZDHS*9-ls9ho3c`&T=+rL*^?QDW_ zcmJ(By8CPaeZ&amKEJz%D+bp+845Yw#N!(JsV8b^i{NcC^0loNdU)$VI@t>< zeboqFZvt~8{ig^P&m+K2BiLv5w!I5iB4g%;V4NUmDDpuQnOi_&e^)S7?F~IB8Tbhf zI=XAbbB*PH(ISz09qt%NBMzY8w~YAfCOmeA_ocADt|TQ}kTa<1QhgBM`S_9Vu|4s0 zUso0m8N^2>E1j-BHILqU!BdrCf;?Cvb8#yU<<_K%uW=qr=m1#20hai_)_B%YbQuf-@xG9;OOoL;Wp;ON zFl7wEE0kN}w^`%)6?zQCgy3g^KP}<;KEgt+)C}=Swp#rPZ{p2W5X7d)u zQ<}xo(fiO4&s&N)Ybi!=GBs%JzpZc)ZKyj8KKlH%Fz^Wogs2PB>=L5k;9Sb!W&zZ# zhC51$%Q8-2VzRX9n&hx?8=p1Fl@7n0iTBDxK7@T+nG3hkp39A;qMFSjc@$GRo7jbw zu*WoRU5^s)cZI6=1*t`TSQfxnjkgbn9pKivA+A|8ZJ6qcQl^^(Of?IDaV&+4&e&IF ztj{h28$mBMYh8o3*KZa`-$!G@wBE#i#mr`BhQ?U%{ zy%kz+lr1$3pCz2yp;;6Uno4@Mv31l%*jzotQfeIte)^=VCGP$*K$}(qUFdpHc|h>)Gx9K_Y(S~S&8pI?4c#$F zu`@tN_(M4yg+PrOj#3Z+;(sHm#NnwwrSR054%%tUd=^yL-6Oa;JV%QkcFh-uPUH3- zRSSk?rMGjuQ6R)wCM#}Ha)(rMAfnVsRXpXK#<@e~4s4WP@*E88VPo;JxmZ^;HWH7H za`V1aKJ{SRVpqC?^)QhiiSLQkX{O_Po}SoEY|sYw6Qk*jNabYk>1D3^%1{9wB!P81ooDNB$?Q`(^ZIg3 zfu9x3rz9qNcRXEwI;}_yeGi#NMOC2hEc^zS3Oj{l@{Li zft7D^w8n+@z>VuoP4&F4_H3zkR~=3pFIN6;s@({TLR6($&()Spdh&ouXAbdy}0 zR3GaIG|g*v_<-5xHMz|Gw3>8?4-HU)*iFv%dRWv;jRavZ$N#kT3R zY`rT$8Ih|swV~?IL{kGSim)3Ygi0eZ99}-vwmA)4hlV^z{gP}k`fJ7Jn=ku7h8)qH z9MnFDCa-lxD~pAUXN@w@oZ+O+IZ+$?7TZ>*LF-VtPZ?z_u$IB$&d&nc#cA*Hp^)*O zQO3MeFijhx@g6yc+s4qy4X(PjcZ@Q2Sj&JnJ4^Xhka32czlLy3N(ha5)zu3}q#5*r zL*Ufv)b*ktLB~r#$$Q%B_xa&)yHgk-!<%UXB(Y+b;e3QPGmeebn|bS! zlkncy1hd;-Beju9y!rh6Jfsv~j_-hD<2JRgNu#FNqm-5=X0vA6c$)*Z?#Zhz_QlO` zvBzud`(-w^!r%sXFZ=SH_91kx6E5ExYhsTwvyrPk*S1>2z93^SZgq`P%1nqQW(15- zF%5kiGtDnFPKC_zHQtKW9a>PtS5vj^@ycf=_Q#g&B3i!P)z)@dV_%fn-#;h4dN?+f zbx=>;Lrnb-6Z`i{*eA@LIv_D{#x$?2C->24ax_szNO&S@FUQvto{NdO0 zYO22yEey4$Eyy&}MnGdv+_($V(g8wTUrC&A>dSp2e|?8wTKX=;l^DhKlEeYe;$T$R zPNB^R+Z93`_G>m!9bi{2wkIg7nrjB?q*Gu1S-~iSfm()no>*n!V8GWOAmsFcC^8QI zRW$@e6k*&-$2CkHFdo$O1ly32>#vvXQbFGWRJKSbKEnL@7Xihgzg{TrSLkCyTCP6| z7qfU(43yr9*}Xb&x`TdeVq^=g9>eI&HLa9Msw-53^6$kisED6B1k(9WG5ZWrKi486 z(%M&03;!42Zb$g$m(Sq5wQIroxn3&2dk$TCIWLHge2z-O=Q>czdw>=G2R0=eT>0HE z?#6iipeX7%3A&@gRgAO~E7V96iVp`2-RnwIRteM!38fGHHOT&E$2iJ_@wh95GQLEU-7945mSpgd!T1e%9fK+HD-27YTH-%4;d#iIn&J+oJ13yT zqOY;ae@V!=Aj!CR%9TSGyLPNW!y2IC&RODrGvQe|J->l+5?gYUP~!1dof31)HE1WN zq@%W2q{Ox~n)v9JnmLv#k$VL*UANs9^{}Ezz@lAs33<AQy^vFPc`p|7(MJSMj=@jQFUt#|ycOtRLnk4MibPQhL9?v|vBI*KBZ86eJ>F=ikhWct zrfaPomQ1b4Tdc`G)AH6rC?exWSGaOg;J=sfY+o+_h&bADOT5P#?=vm!Pq}I;A+5FQ z4kAa2Ufr-NU6Evn2c}9^)TfnHGMmGmXJ8In3up@os++?^YO@km`$_?-HrG-{wzUin z*j~DW#((~7eiV)lafd47grG5!AT|m1qT^NR(phxxQNO_Mj^KX{qpRLKdxk*Hxi=%-Xc`j|FQ3A##hd#J~iEwlqJ3fIFRdYYAq6^@-s{9t^x{j)Jn!#QoCD)e9a#^Lif-q|E-V zaB806UaSr3zB1#}AgVC{$;q`c-6hJ5vot=_-NWRE&A8@jOzpGu-^24vr%~5k8I+K% z{c3Wy#jn^1Ja-elbo&j+?~bcZK9PmXdZ}X;9l7m_q6W=0(xc7%NqU3BMO)4FLa4T3b=AD;tN%satt`N= zvs-Atp5Ma%*F0;Bwz;#Ye@p$>`g%tVN)67dvpSnr(?bKF%mi= zu62y2^3qN?u~t=2k9OJ%u5D*{LEc~<=x$BZ+UpRW)cGK(A9t!n**|r{iZK?YsCNf< ziR8ZH?uSB)p@27a-mLC!M>9L>T%4T|LMMaWgQ9|M;?STXdfi>8#+yZ{;z>JFzz z^Sv}tiQ0$istxro@WbMo2P-V=?ZGg220c-z!}PV3ZZy1;rl=jA{1vrlIkwil5CLs3 zzDNJnWf5}fOVc|0Nv=VTo)${sF7JqPH=tL#=nOsF)0yUW)g(K*`b*Z;fW9>69&N;< zt@rA`=W%XS0bJkWOYkDqH`xPo1j`^eVFW<$HoDr#7b31-<-`d#sThbSh48C(w){orWlN z99<(_^$hVpw2f9^eYYWI;={=D|0W^ch{j4g9K=G zJG2LOwx3Oh&c7P$$2nrn;cACFpQ=>rsCkYGMUK%uM?Xc!)4GQ4cr~e`kJ*t#7KdC+ z4$~mQpoVD_DTKk|)Wle^<-DU1+D;ORB_bq@4!Jjq>NdefgVwZXj9cFB-=d>8aKY)3 zNg3{1%7X$lP6Fw*lR)_iUBantJJ7~3O)`5U)gK5Cco@hcbivX4`dJ{a666&USzk*; z%1HqZ$*hu%Oxa~d^7GbYUZu>;aU;qg$h#%7K5goN*n;}rQb|9u=CMj!=elbumjv&E zkH z=8%LT{Z&(_bq6$r{U+i*Gm%^5$d2w>>apo6@rEB!Brb~<*&)vzr~GHa{%yu`Q1RvN z?pUR9z8)z!Gu^H2PT=s7o)ad}`2|pUJyO48+)jXNx@V(c#u^_}=uS`u3VJ{OCGSFH zx=$6UVO^2O+X(OeFkR3ei)c3T~YS8EX$57x~=HW-u8Iqq@aIa8GZF)6n%C#cN8K6 zRz=6<+y=O}QW5)2n}aF|DvNB6)I2-OjULsh#((E4+pDCKz* zdy$##ZA`e=g4v(S?CyQ>t{<5=@0&S#&P*NLV!@nq5(fqZ6QG%gWT!r6kX+Xk~x@9rlX-@ zKlevn0%_grCy?`V(Sv;{CUgf4ja{J|$6~rs*4Gw{6#@Kzp*qs@$d5%8UZ8niTgc#r zDStt%A}dP^ji;zB#;LaQ3eDZ?o>Zj1@GF#ySHSPFQ>Owp zKO(kUO)C2p-b2NiAhGtg&GZgig?cuFEk=Ak{`ZN%qe;kwVfK$Qo4w$OHr?vd+~qR` z_B#{ym>G*EJ5#CANi(guooEewC%%}3i;SDILgNM6R$za`#lLUin7gzLIcnPH?xd?KP5iTaws_T$t!?p!_39 ze@P^yJhjIWQ-(UYU`gWFygu2TXRAYJw%|mY6mq-{-x)gR+lWHw^c45K@S*V36naHx zeqD1sqi`Sx*D5N6yGtc1SC zLisw7xGEF$E8wR*43mSzBUM4)s6XpU;6xG3bxlg`)T1#?or$sSEA=CjmiB6eRPz~N zmsw-{5)j2NfpDIxMYb@{e2Sx|AQel%Everla5{pKt*@R!R=&^4TlZ_?plriU%2hji zI{{bcmPg%LN=9eyuSz5QRV^)kFDi7-WA1yEbR4(szbme8XU*KEf+p+UJs<9yxk*;^55$bw0bV`GW(j?C1y4^;UnMo3Zn75dPLBr+3s-VX(8oF zSqg?$q~4w`s!nA&JsZAIbS;pD%rgmj!a~TK*v1q$&z+;}66kV)9`!wr=(s!&zVJ2^ zXsa27*+emQTL4GubZ0esf+E8NRGv-w0p*nFlwD_vAOuZq2nt*0tM8=KBQi^Dy;bul)aE?xW^ zPU*AmTwEl=1)JD~3ZBF56^P;uR~|GKXPhX`7$8Jz;lVj!+92F0H|f_93i=i4%`a=P z7X=IvTimI(+Z{$ZlY1r6vK=R2K^J50waO%5g;@YA@8I+BBEHeEUkNNnK{qUM_f+

RXM6%>*>PY^ADL|u>bFMRa>Wi#c6w23GH~vov8dM z%KM#GUi?0Cb@I_rO8DdiyynM>B5C~^4D-i)MV0&oRF3Y5v3~n!;lRiVmjnLq|0V>g z`=qerrz-6^Cc2HvCY&)7N@x^e6yYq&qBmXv+{WKA&K+?gr&^DfqxwbR6jZ-@{BkX9 zP;(&xxr=@haKzD2oP?l0G$Na*PYacs2Hdsv?zYNkfg54O4Mu@k8)d&2Wkx+b;r{~h zdL8QFKm4LYEhP;yN#a=VsjY|>mfDJ|)9_cZy17)yTx^h;s-FC`<1MUBl&&iZ_O5`|A}SoV&)Ikxf{PzSvzJ;{v2Oh>*ijubsx>8@4H zT?vTuDnuvAIW;N#5 zoGorapS%wuF1^5ajGel!`cyqDr*{<(C$IB-yIyojtk%f}3kd@Z67IIeh_d!WcfNYb zg$1{Sxk_qx%@s%K^{Ub}g9%~@oovuMR%m90khIKSlFy#*&Mb@@u{iF9}T!b!~3zvG%xsnu~ z=|<4<8-5KNt8M>iV|k=fE-C{0(JMmlGd!g(7J_<8g1A3c+>8EL@ikJwH@vht7~{G@ z2!bD8AyOCO<(Zei!Wj9uAU`URBhp}^M}F;Yi&5ObL!N>a@5*RTUwUhwySehF;9<(- zRS7O`5h_{tK<~!5MYu>f39lLPnBd5Gwj&taRh=N4oX1R_{1k<{(&+NHj@s%BDAMU^ zN#*+yVLID`Jq6nt+VhaTE-u|xX$D{6rykxW$PFamAR?;4J-H&4K>WoN2!OI)I11qK zL3ewlYEPqs4S$)J#_s?nJX%K8I_yqYS_xEhFKT%rZsWe`#DU*;52Lv^HSw~{Jf20g zuwxc+pWu!5@(Mza3SNW*H8{e=8(ImktrNWEg16MfYpEjcoma zeQ--m#ff-2HKb1d7Scyj}w*Ra*wwG4xfU_#_0;(#gYmkRefkTqOcUo5VnOR3$ zQY&|#G+{eO^wQK(@x8mAG8Fe`zwT%y8O1@kVMy0R7ABAH{D8^)JW<*wL}~HcND428 zSzmn0U2pYIeL`u|kJ$40n5mqzL^&S{c18T9VbL`XtbfQ|>fn zvx)e+naBnt`>DQx^y_JNjPjkp9+RZ*#rYIUg!;L+x-FHU68k3WNG!y<`)9o;b#xo6(|1uAVWh)pFT?y$$~sO+CUiFEnX zzSyAtE4W!EZWCl|sv9LGopJ=V#_zB?qXl<_%*COYT2;{oTi-CPu7;YpgM3_WQ)mio z|NEov)X7lyY1*wxy_+~&QfL4+erzbx+S2LA^%(M6oWbMYpw<+58x+s9o1ceW+AB)A zTa*$21Y*>Mw6~%>n6X@NH&Q+|74Rcb!1sZaOyf z|Aa!%nYh1I!tHSh0gpr)o$kRhY_V4JT+($Bo_JcH-@h7_P3j*=bBp^0QubwpkYbCC zjUc*Mt1PL^oSf113fSE=b{Cn=Vc*#g!wsna7fRd7M9eo6`5uIOt|Fv6QzOohi3p(M z6r^8at}6QWi=@no{+JsNN0CSTiz1hr1WYyyU{7!2KkhnMnq_rtkOW|*8`~ep_KT(w z!}}q9Po=IkQP-HM+#4SL51Zxe8ugGwB}AuS4QC=><-TiB#C{WTpP9&!zjq@BB-fD7 z+q!T=&;td&pAoM&>KyglD}N}q zFlBp0N`(aF>f3hLT}N3cpz{q-)L}>UpeujeY-=2+2z_Ytq$xWEZo2_T8=}xAHdOTl zkbU!j8hZ3oJ@Lw4!WL@@tc8jyp2o^aA>n(Y1my07sD5GfRr7FI(nq@n#CWCP3@m>s z9&0K59^X~NdxZ4XsxpY0=6et%SIrT>LeBmZ(R6(dDzKXRktqhIkS)(6R){2pGx_I0 zkXs9K3nTgVfdSEUD996u+-)mzwl$eY&kNN($;voE9wU*lX*Pr|B*TPO1bfnutZhXe zW=&=)YBM~DJ$rrN}$&eyf|CKlc?+#&`%}kkvr%pck7|J z>pp}%Dm!o@kiH3nNzly z?}-~uW2tE`zYdP3(ZPnxRD1dL=m_9Aiw>312Lx{BhTN^E6pOOBhHJ!CxGtrZd zD^8gHpOJpqiE*WT*T6*j{45$>SQ54r{%xdRv8HqHOHcMBk!7#0y^hIj;hhl2mI=aJ&Y2ie-Pcu8Wcqrqu|SBx^Ot0 zqJC4Zy1V{z*gb}0%kDA38&%!o)JNo%tN?o)g6R;BWtB%zkb6|5ar$4-&+8jwh@OUB z*WS`n?r2Xl&8NWcu`JUDVGv$UtXMfHgACWgA!?N zmM0XOuvyCGVYt@GrxBJiB?2oFx|BFd-Z==d!E8)TzZ?tA+1uHZr5M)|YiX?fwK=dO zUr4XBaGc-k*pcQ(bDMdPAo|FlFnXaW49I83*ZKH=3kaf*b3IAeukBM>`2&_x+S&dv zvVXT`ql1^wx6M6CN>YDz3Fyo5e#qiE2*56F;c0>G*##4!6hk1pCY_n3I|Rlm7*}I3 zj$&da^5jvc7%}ft@2DA^ zJvdB665bVz@>=>i6g!zAMH9C7*K#3T^iq4zE~G>N*q+MfRu53{5f>C$d#aG_L#0E6 z&j;G0m0JSec9dHb@wyTJZ-2G_=u2&j5Ux0q2hS*Zfac95P{Cv9e*o}V!XfnB;=xEp zpFcQ=KFNpGk5fO_YEUY3%m8nvMO4b z`g)1ZnWfvic$(W@v1Gnv$=ul0^MrCl;0{VSBzuO?kPCy;DZJy5KpNEQirpa(6>x;Xxn@iyoi2cvXZe__IZWlSMZf zBgBoA#IY4AEB3TNDjyfZAPGm)F7UKb!A_!FYY;`AeLJY zSpom_!{qHZfyD{5UMvq}T-x*fJu&K8v=-POE5p_p=xMG*57H_yf(llm|MJ9}J2`K} zVRlaJP$V#@&9H|0C3!5zk+dtJ8qRB)=T!q2y3JrumXa^%9gK9|AP_zTj#FDB6UWk4 z#vD8p%*lc|!IGIh49o|NOdLq7GnIJ*wJ`7Cf!^lE%?}2Ujp$X)h%QR-TI!Zmqvy~V z(F8vnq*?n*NxG$ekKu;Zh<9+-kBI%UIyzPzgZ*#KHq{cC@5EailimWzDB=iH!Vj1# zSF9bHNU5VSWVwy+_ywRR#l)%ASjp8&ig2iSi(rZH~b*!hmnzrzYUlrb| z1f^asIO{$%yyk+}RN}F@=0e)2oz<$dF{S>@P4&h2w;_;V*=CxtpIp=BU3S4Yk zMkCW`-MY2d!7{`YH65ZwO(TZ*+KF1ZO{Sq9x(RL;152mhzeaZID5nsZ~1D(@R-v0%@(rJ=yyF@ zk{y1IdoUhQ|FdFqCPf^nj`gQb_F(0Xsfag45w97l<=@$!9Hps1XBp5HpJTxl%EN(Q zFOR|vvrnK|HsS9Who^?>QxQyq2-X7Lf(O_W5UI|xUVmN6$U0Kp-asiGs;ObtCS+ty zW`yL;O&H1^D6QFS52w!aJex2yvJ|!HEBKUk{DAh1FCBT|K53aFbpaCbKV%6L(3#X< zO7M4Zf|^h)?W4$T6^Fy z-89bs2&R#FdV8!*r+*sVklub8DzyH3?bglBGDU506D z&D*SJJ9kng7^krL!&LoBiO0Td@dri8$Em;TN&xW^X9)H9{R9ljqT}(tjRMGEw<`Wf z7O9QZ5Crksae0usyaO(Z*Pn#Y=B`=>GOxeStuj_0vo?#@SXQFtAxGPAm$vyeHu7ss z#7T4)mSCdtnU@@?;3HNSZqgR=L+EM^v7#^^vUlhvZ!ng zy7O)m?Nc+2XCymb_B2%f60}P`n(%l~-U8)6FBp68C9(Ie zpki6EVDDIBB`rwS#0JZt~c@spaYC2Tly9l?&6neW{h` zUYaRcE!|C$S0HK9p1f4}Vd_fLw0r^1OMmlhWFA@{kA4;S$gL`UDe%5?q2g+%^Xw%G zCl937p?ckPyad4+nOR#u zJe*pMhCDUJ4?j)qptKuoj>zyr?#>lWOY`C5;r8UZnJcpAPF&}1-VHGw`qU1L%lMcO z>f*89_!Z$@{;VM1U9Wx|yX(cM^iS-jd$1W50TD=>a>IY#)ldsl&M)y~VS!-J*qAq1 zbPry^%n7(#g#+;nsg;bxSKmM?PC>ss&q`;qsQAf)Pd7F9!fb*qRd&{*A+Y74xzI`M zZ%#6?C&<_jOF+v{yQw8;oIhYYw7|{qv0kvMH!OEApKsJ6)c7RVc0Z% zb2_!Avfc}kT!=jAz!&T zX3Q#|b7}c}&{LO@`IIMTh&esM>!yEquEjsZVWQ7(gs3U_)*U|#h!;=)?iPix)cf7? zZUs+QIjzf&GNhcxe6pd1j2BP4BV(b26MPlMd_*_D#zGTspLR#aqAw$4?p;59gZ;sg z7BXHz?T$QP5N^ap)fj{GH?8oW2QJoq8R7Er_rtg+STt298mjvJd;N7Cn4| zv$;%PCI3**ew=40?{jR~|A)0kRp55qogc&f*fQYv1!AY84sFeuTuA9Z)C@NdBb{fF z`V94467|F^lRcVuga#+49#tmr3@vcqt!7S#weILP)GQ#rmc~Dej`?H{W&2RFHPQO; z#jmo(3w9%i<#S+u29!77jrw>K>IKUH=Pd&SG{e(({MKyn9k}>euezT`@$#ZAzDbrM zv?4XtSNYL`dL={gQKX3jjriOP>Zxf)s?HYT6zIB^9F*c22rzd`}5M98L2syDHhs98I2FJ z9rV`u}@M1@Tr~_g&i$%(7$E@hZ*m=2k;)h{1r@{`;vx7 z-kxGiD9iJBMy^sczlfuy>=S6pIk?Zkaq&?eH(XZ}j=$}LC!I=}Ku zdtpLT(+jt{iHir25K3EO5OPJ-6IPVnC|!%SqHLS7(x%qNT*<|i1)*jbe;$qrF}pFT zM1*>V@!8l>aNBd>Gm$SW?YCLl10fG>_#La?&0gwmu*|TIW4BO%$cL91p=R`-cvKo* z_;$#5p;R-`VGRKfy;OSOsgi3OB+Cf1p%hR)2%d7Db-jCY;z!bc+XpW-|FP8k%Tg1i za5e8*YQF4es)?@;)WwiE5ifkto9wH!9>Hwbh${Sx^W=>}oa14O5uS!@I>H~<{WCA6jS$=2;-#qI_EIi%&Sjsun*_E~m-Y#!oA zpVW{^(sLuq?h&3|yK{u;wc7z{4P~xfk9!ubF5}{mPYxR7@5o6(3tkqapSDc2wi0kR z&EuH%Ef+YSIYVz=`-N8RD?c!eESBoFB4lgfXh#7*J1tuf`-kqQp7V_qm3O_}qA`;* z52GjzMq1tWXLtiYSk>^WN#&$hT+|)usc5Z{rWJyKZCQbj!+lCR%HZgT3wwl&&Cf}8 z$?j;V4D&(^_D1BhWXjZksT9ZUrXdMhAHbbZCxeW3vihUXbYl{mY7lT+Y9;F z|1Fh3Xw7DBA^%8So^>sDs)w1g(Z5)5-14&I&5<6RUGyw0D!GPT!^4G!00|@7SMgo05{7Ebvopvu7kxOa$AnGX_VC# z?cja*6ws&byDW;2Ukqxj>S66`ioa7!z)+x+NlPlvpp?mJr4Tl5;G z`e+_ManAs`&AAF7@({lr>tDjr1Rt_tDV{Twk2t#d@|H3H_Utms01Fs*HQj*OhzAp3 zVnLN8zO%C6q|3m_;7Nurm|9n4ob}v(fTzr{POCcr*oH zy2+@R2v;$9KZbjAlYr@!&7t9v*$B2{ z=0j;0xR`Wi<-DsHEX>Gx=wQf0I( zRIS+byq3J5N~J3}8q<#h9JpnXC5u0OD6a)7xQx&n#9mPb4S%cPsH6C*o?XsIHT^o1 zD%zB*H>wIM`BS*V*Vcf#hC12-VO}NljJjS3wf+NPTV+RQ9LTVQ>sN6MRr+}e_x=yz zX;mGKY!Oc3ny+rroi!VTE;o0vcg;<*!|+W|*jI#bh8RC(%!^B4^f zl~R%#f9&W4V@G|A0Qf>sW0l9EFXY@%LiaIFyn3C znJ#|T^m^{%-403fv#|{v&GAO7kWq-$6%ISfDa*%r`pl9sBCznPCN*?a!?fQi5=haN z9GR(4BS(-D?a$C%xdmgs?TR@-`fB+)*6|ka?XUhvNzD9kmtROD@%{u5t_V);PlD=Y8U+YMP{S`*#EpyarnVk!y zhX3cYnbl}~H`H*81^s@hb2_!r3p#eJcl#)3U4m8vo%RwuVd-=n0CEE*UqT3cBm)e% z?5L-tc>&z}4}hdzj=@Uiac1K{^*pqww_~`1*A00z&U0 zIoiR5cqRBSM}52iFfi6pUz!eO<`>L4O1utLZXl5JiDK)^Q4L-|vc(r{7% zQ3%7INf4(-Iojj#508T9{vU|+(TJ*@6A5J922n?_`*50Zp{8~iP>bgZJ4UgpKIPML%^&{%?c(r!UyU(?9d3TTibXc zww&PJ`SMS4)WtfQiP-Sz=ZM>RY1br-t;4+}Lrh(i!9b8>+1bgC@>F^cn)N(Yo8o9f z>-V_L5I*}4xpq?>pV;D^B_F2I28sOYOze9nF*^FS)DU za+vnFpo23oy#CIF`K@0nRX{7C{4#;6&%}TQ8aUt47M0hrar~iQLKM#EBK#;_WfT^F zlulkKpSn<->mWWG(v~2gPm%#fFGbBJcma%^C@jd|vJt$@Q9)TP3qD$g_K)@wTxOLV z1pwKC={FsCrNB;X8hk0E3`}-ZQjU6|9CD#>w}3j_Enrs8qk#{%(OTNjOw3DeKflGN z5IlgbE0o+wd1n<8^vXILM}ets5#?7`1;sd}6viW`Y##?w)<9K&Qj*+;O}v6A2^Pye z$-R1MF^;B6V_AIa8b@mcSP${K8H@k3cWFgRT#Na~5E-K+Icj6o?t#%SV~n76aD@f3 z_|*TpCdu)@VBzv=vyZIlR<)=>)`!{@x;N5jcVI{|8srAMt zIZCldBsI5PxGa-Bc3ipke{Ml|s3J=**@{U@MJ_E>{v&?DJPU?*^8%W0R4G8^-YIDX z+`3d_J2n^k%eW73VDGh$r&c{P)M~~Kbh(+b^t&Bc+E4S;YOl4M4Dc&{T)oCtFPGegB*wpxLWrCo5M zKV|4yd*BGac`EjEhKhCCi&41{+0rp5;+;5kFBZM|r+9|xJX6dt9l%psC_r{{p(Ds=?Q^$|~~^jFjK=52{Q>MwXRXNSz@cH9Nae8A+2 z?VMsNrk8c#RlZ%}{myOL6NQueW4gq(ODu zu;roizq&=_0Cu6J;y=~h^lbk^sV|GO4Gg?f-b4K3jKy8s7XxGrwtayGiU&roj4|?7 zzgvm+ox=SM#wBpwjS)9i&y!Fk!1@Nh1)&lP0JkXR?vQCp4kjI$JR9eyGm8gwhFju0U z7_0+Xi|WcU66-;DQGo|iId>%9iC`1%oA3|L!_62^3!ghTAg(l&y3vwHG4&|-Hr#3+ zXO*|MQA#=67>+ENdek&wYCeW=Z(ZgR!L7RXjykp|PZbxND!y6WH3yx~tx3yVzMpeQ zM(BST3-@?WguVZXF#d`oSh+1DG(G9?rRrB5Az0^l*eb~#rWEU{*wtx3S+=jKN;mFA z`SR7S^1FQFCn*^DW_!WR_zxJ# zeYeXnv%bbec#9XzMi-3ftFS#A06v>$`YxP~@i^(i8q?f98$80?lH_yW#Y?Gzc zyx@`8jsDK7sE07Q9BqqfShr@GVYV4$0%`f**ttWtY)uA&wHsC7C z@*NCEW7|huUYbLd;TO!#E@7}$YUWnCvSp$vz1LN+s?d3cYYptvVTK=l=)JBHby=wS zDjjC#cQnP5 zsUApu{|{2|3&${JzKl`qr9)-s72Iny>;GU3d*zs?d?8~r{=u=>w#^e`^Z&uv`r6S- zx#WiNqvKQC1y79g{|95)Kbuv{DlcWEs&5?AY~On#J^4RK^WHkzDLH3J?Of_-v|9FA zp20dRK61?tU3fNfhhH3{l^_`)=dX?lN;NNl%KrgSV&j(DwEQ=?Y!4ab^>2?wG zPXB>&VAqx)%OX={nDu{P^KFtB%mfz|B>FGxj2*B*8%8+q z@$B;g-95`aGVq|9tA%u*Ipnm zJwaGdRW>zRb4V*pbKW}wlmfF|0aeL6n;yJ}CxWsaKtjdx(993;M7%<|iCZ7f$uCf; zM=6-JG}QQ9frHOz3h;_bTM5^v)oi?({*!I3sTA$^Ra(jDH*8vWyanF@Mos%m#&PQuU(M_}l?32XTnrPiZ<*|bo+9>l|b7ft)I zCt>mCAeLw<4AhJiF5a3c99X+yjQpy{_mb*9f5XU!n{V&HZ}upE%M}R7q4l%<=~;o_ zGOR#Re{Hx@agJnP!(SVPQF~=4HwP%gFPJ+YCC&f2#ewRofH{}tezCe8H~F<(FnRwu zlGF8>LsbH_z6z+z4wCc#_-VlTG{0Ad3UB?C zzRIsvQJ%@lem95e7tmTLpe|)^7tlK3y&)dTKA6M8iuEoaZr^tuXwFAkQTnGK?mFb1 z>oTxU?zw){EO5tAD-`C&T`|$Q%NN#W;H4oUecViueQrjk=vaTpTuLs2?$>0l7T0Pi<0Z|Nu(@=oxHgbc zm&zkbXyb4I)I;SF8LC_{a>q#eu_RQEl~wLsN}GfepB^f&mQ;>5{|~;}F9&7=PK}-O zGic0Dc{Nrp&t*ru@@Ee1hI#7SzwkqxpLZAe6h+y)305cdKpsh&itUJk{f5}#NDEt5%l3BZL9*y)qU9= z>edL)UywGJN0Fs@UQ6ek5q{L@$`0onv?1bBC#Hh7U&$WfH4lhzALM?msP$GlL`Y8Z zMI|(2doRH@5!B*qe97K6RC66QdQe&GsEm`P7go`_D`UK*N14*t&*tNGR)|=x#dti6 z;MV!1SX7}G4;N3XAzbX2?38m)gkPp9L)BN<&|2Dn!n@yXNKw@_e`Swsgg4a@t>V12 z*%84eLoKn5!?nS{&$Zc!2>`z#fwQAx?<=iXazW)stBPm3Ve{*i7vA#-)(OXy*WGvJ z`u5J|wJSHicQz`0#1UFy0urrH$rNPYllhr_Gp7SCy6w?rrWWCdO7r5AbHH|7%cp2T zrsarO>EuPR+S*{H?mV*@OKr7|Uf61JaVc^J&2w*lc5jWAjM3T?gv`4pR4Gi8ZyI!A z7%k~wnC446SDGIa;F~6&)WbMF-Bo5Dx?fLg#tvsdWhuVk!zG_18Ai6!9yNQ1F6<0JZgQTF?wB^EZ47zRuAW`JT%vN z!AdH`<>lVkrdodmM;Q1H3AbD6W?C?gTX~58EyTH-K?~M^8Cdd4_qh60y%5%}K{D#> z7Fuhi+I-J0TzNj9%4dMHsijs%=^;ZDZiNY6S1*W8{|Ql|wN_i1DnsmVtu<68c|lB& zA?l>uYNEimSp96(xE;*>jbeGEu2i^0a$Dtqh5cI|bftY>u)F8GJ80JST2m#-B@;-S z+iPuEN*Re?h`Bp-pKNy{k4|LYcKhiLf$#paVJk+qkXL8U0}8~bPlB4 z1GNU2WWQbF=3+S)xa<8xM>It(S#D$}trE`PGdZbqRAU!f+A7ohC@HRv?W}cCddt%J zyJ)@fnHmpiyn{Le>GoZaQ{lQNY4B$~Z!hwY(mlpzjx*BaVlJt5X+ z2ywXwM$AN6x?NAL8qPs_sDF}6E0q_RaTqq_4uk_Z(_oX`j96zkccNKY&};Rl^pM8! z-dZ!oXQA0Px&FdwmrM&iJIlWw?b7bvu7-5*GfXqexC8_7kwC4TQqoJh*g|vFTzFvy zUe!hh;9k|z3!s?`z}u}x$pFl)lu$2#p$jvb-<4br14qi@o0n_Vlto_R3!r%B+b!{M zB7fK(XnYJoecaUXAA+fKf{eFm2yA=I3-2)SU$4Ud&xphCh zPjM5%0qns+;Vs+)-*HbhLs+9Q^LPRe2T3Ee4oZlH`|o1st9u4>TxrA^@R_@v>W@Mg zndg$ji)%+|_3=okhdwh+eWqc_V@=R6BP!wa{a;@8bJE&#cep^%%EmyX5A`?CyLZyZ9*Po9uJi269iofGmb z6gD0qGXEkz&Gp&7H5+X^lDCvK{Vs-wQfA#Ur@1Uo$q8B=M)~{}cF#ixCLl!SS>)N@ z0~VP*77FtgMMLlw#XC!2Dzil=9F>B|*~GG0DRCm4cJLz8T^b)lBpKj^+;@?ClUA9G zk#depCXh}{#z;BSOK_T{(qsV0(}wCc)M8KC!6KyLB^SnmShb%G|mQF;N81;y8u zq*sq!E|pwY(Jj>dLC(h@Q@v1cdDMsB1N*}zXx_0^e)ST3yNFiS!#Bh{s>5&D7Wv$? zAqvhz{LFblyw=S9w0OSHGnCKq)Bc`T>o<{6X3Wuom4;p@^}JB{speo=l%HxIh%C1tG+SwHRpY>VKU4Z z%ypDtFPK690n_QTYvt+CQVjK<%P0ZMuy?W03uWGapzxt~j|{+v+Bh$O9WDUw7BCC% zrDzz=qnSB>1P#S{?XQ!hUhBUSzW3TH<=o`ta>`4u0={?Inft5DPy8dzR)V1ACw`Hh zt>hbN8rvt*-PqhuYRCZGPpWzWRB{1$`$=~hfKO$*cmZ@o$@1Kx!HFBy%~j7tSvr+4 zV;}D&9cC3j+C%@>>##^#BLhUmVvJtp1+d~j0ETtBS&rTZ!c9)dD0McV{~Y&1IpRX$ zt%^$VR`oP%wMRE=ThZ)$8Ft_%1cWDEu#a5E<*;aL4*LXczW8<%dcIjJ81WUh7dqI~ zRgCzmFBu6?4>01dK4nBv_b?KuE@dQ>`VAvl)g6r3)D?_mR+lhRP}NM%&PZW(86&yW z`;25!PcmXtH#3r1UB^f!^;86-xzyt(Imk#(bt@x2YLdytFcP3%V#KDVm=~iM$)%>6 zTp}X@>Rm=`YP`vvVI;2_%}74=IU||X!;IuqA25aO?*m~-AMzX5Q8L_E5 z8Of=}GSWp|%t&T+BO|`*RYq*8gAqmD$4FL{7|Et4Gg44}#7Gu(H6uRi7mQ?86BsF_ zrkmVnnKMN&nA?oCscDP^sF7ykV@9&5_Zaa}zh}gzUNE_{j40|N^Wrl`vZ^N-$*yi; zB#Zilk!>-n|hj&JSsb92Dyif^vSMXVKlqCjgidi z9YzAw^^6o$+2$9r?q?*s`Z*(h>SdE`V8mBF%7~A;(&Y9sl1;ruDciJG4VZHeic!m9 zFD!(+>Y$j4>V*QfOsZ1QmMN6`E4y^8HZDD3KhN+Js-C1y+qED}h39V9niXT72b7;b z*nq-(49uN@3Yg{CN{eq;3eSJML;n1%9T}XhZ2D#O1&dyWQ+(FMdMRV{~|jwmX6upCxZ- zkCe^$3FUTWm%6b-c|F-rANJFq{S0D1!R%)kenPonS>AqZb8rCr8N_~uu%8h2GmQO& zvY(OcXEgg6!+yr%Cv*zwUuY$H@QCIHT>&f>3%C-|+`P_9(cHX@W8pz%J`~N3?YtDt zt?uIT%&}!+9E%vyYCbovfXqdxg=AJO;>Hzo<4U-3rQEoJ*UbW1+=*5TyKzO`xZ-YH zL`gTcv>R8}jr+)rtKi1N_xN|cza}*ZSqSef9oUa>~&5g@G6TzElV+#7aCFXMDa=US?doVfHU7~qEadBmC zn`tcGMXTl9xbkisdQt?3VO=Yl_bCQra;$T?IM%rs$AV!r?`1CTd77EVf?>4!(vADU zjbj~=$+3&9hjW~Q;wW_1Q1?@PYkm;AggMX3H>*VF*- zOL@F6<@df+$oo=J?@J}5OA(g-^{i`VbsM;Gjoi2ll{Ky_CoW(>+C(>9SI*qvSN!6&x>i}g%z>06 zp+h`2p+8!W;?+0IsW;%i)iIUk$IL;^-{2NhXLSoMbym09DfWO?tMqoxO&!8g*x~Wc z>JD77t6$(3V{4q9ULVk^<+4WaKt6h}qKXH#@~CTRzcVR1;Qq)AZ#=OsfH0hM75LskhTaX`vMMYoo)AN z@L{cVE;axmM`jEbA?jvYc33NxjZIu}?Gznm8IP|$g5QJG<%sr4Ha2`9DT%g%!|P&R z9?^PavnCHI)aEEIM$w9++B#bzRXm2YyQV-qEd+fz253%v)L;5!0d5-oeHzt?q%L0p>oLvx z3exvz(^p!-wk)h8e?CO=5I&h@trr7MO}vAj%J?U=XnfjbO5R1x4^ekfr?XnY-fT+Dvd#Vx*)qYE)e(Q-r_Bc@aL!7!WyY+^ zCkvZZnR7OE9R`CCK6Pfoh5V6zIwyYS7GRlf(5bUpF&?|1DVs}!u;2m0=F%W+E)DXf zN!VN(9Ggpnd}|Ummj=fI3&=y0u&FdSHkAgsW0LhIVdD)hvZ*x4=Z#Iu=F(u5Ey9zA}XnS=FQ zJ6}`U`I0h{uPE(&L22jfNjqOo+Ia`H^Zse)-P6u{r=53ByK3h+Y#nLm%Sbz)6WaMA z(jLJVk#_YIPd?6n5At8u5$$~WXjfzS|Ew3<`P$L0M)Chs`EMfsW&P03myLGy4F5lx z|32rxY{_WnD@HpOjO>55T(qkZY`JLXt3^9sEZX^6(ax8OcD_=y^SP0ocQrd-CffNb z(asl%k$jD4=S##$zCyI~1)`m=5A7=JTz1~K?0ju#=SxGo%2tMU^&T62?0jKp=UvIp zJC2?A6}!q7g?7FswDTpQov#S(d=6yi>p?qT4%&HNu&ZqTW9LgjJ6{RfxqsWaOWV0G z+f}v-wDU3F4!_0H+0Ome&fPYWdu=3l+DMi8Y$SKtNba$beDN2_{ngIhHIgs~`$QT1W?KyuY@v=Wqiw_Y%- zl}Z8MXx#-f>Kkp4V6K0ojS@_w3)=AV65@xFfZbKrSzx_#qQIB*?FFroCHRuEeycST zOs8+PR)V2#wNC`|{kK{R!PK~@brQ_Ni&{s)I4){!1ylBtlx^B2t*c16aY@Qn^s?4L zq>Q~RrJTAf0pz-(6|%A&plVmNI)WK}MQbXU16Q( zDwr#%WzwB_yFCZlUe*#JJ+$%*c$jUdDnmQmC5Ez zq4X5t8g{C6OL(fC7T(f&Shcj%gIih~!Bo1fbr#Ir+uEmsxp`abDVWN4B$=sqB$;b> zB$;BVlFYPJt$_eYNY&cpm8wv^EvodSt&O&(XjLdFZvlT-JvuwIhC*n!!#JG|^$~^tC3spPlmSQnmrQlr3I&Wm{{Ap0tcg8luc)6lMskE~9gXsNgax zdRKrgqp^2Ie_2M~+!g%=+3soGtg5qdQ@t0As#h3hqm@5vWoSZJ!BRBdKP|geuVr-W zp4QKDBA&l;DDnr7pjX)PJl^70mI++BCt``c9i}H4K}vs25{^UVV*iO*1`+ z=JiRb<8;YWRON{_NyzP#nUYVnu_9&lQ*Df3vOJSgW<1lziIg9oi3T}NIltFJtd!$4 z<$ED>oL+pdg^84b&qW1~Q|fbVib(19LX!FRg(&AZHGHXsTgGOSG4*ylDtO`mCBM*m zQF_ke{-UjqQ-xPzZa9AJN0;6g*?< zL`wQm5^njEHeSG<_(_=QAk};$rR;j6jTYGozSTwwX3<+I<+rz*YE_7<^7mD!((9VD zLS>Rfg_3B|&stv#C5fK=tPK}TmtREBOrn#&2-7A}#a~5XNwn@)F?UI#e}2`5SVl-< zMp&bxs2m0b{|O_MN)0SZ>B%MiL=jhhlgg|8yA~=^w#tnEAKDPBJ{+}i8c-v?bJpkX z6H%WSTKR|8%R-5v*MA7VjGmbDaZcS28wbD{-gC5%=CYxlzabZgK98mSo3ivOfB(;H7m2(@9$BauGpb9 z-S227#p!-2H1c0jY6{){SA>WZ>hNBhU=@@?U%waeB88fLkg_Fw5WOyCO)cFSZ&KFm z*PZ<|g-Y6VRbWNi^e`*Jq%ido@PsCX7B+u|&`(@~@7=PVL*u&*KQPp^Q(>t`A|fZVr7Eqg!*B*R%TTgBU-;-%P*cuLm=}Qck_NW#mNalvD2~ znE0H!vm+!@;avJ~%lvFvslMw3^Ka;^knLxf|6DG;x{&)VmuSO88Wo^BmlTO~JwQUN zpIdj1If=A0x9*H6iIhK3A0d~Ow-vhB>T zJIB9xDqBFGX$72k9&pA$WxQGQP=0+d&C6ZdKc90f=E-ftkc@X3ru~a})OABe93Qpm z*+e<(3+m1=98b9m>CO>2o+1kg$BrjkVcj`I#?z$2`Y0Gtw7<*BDkzn!{)0YTlS22B+V44?~04^2R7l@RuCG^FD zNt2ndlKST&<*$Nww2LG(S#$nd_|u>Lj}s{ zGlbyUGNReeP@%H=Y|Atp<>!q+>A1;hnnqiMX`<;=S>3rRji&77bmxp7pExb2J6Fol zbfTQ@T*XCG?vEs9)JM8A(nix2nWm#+?|Z2F#QF_Ql0I2 zsqd1Y>*X6x)s34%^@}v3hEVV#9j+m)agqM0A@DC!vmm{W1CUBg9Hj*b)5KAUngTM8M${B4$I-ExqGoaQZ%v_79JT*g=oClGKbEp-A4_N@ zYYAtLqw%$*Y$s~DvaPKxsn)u-?%eE%BYSPVx#e(ilw4c1KpYjXqc^oeG}|v!=jHRs zq_!yFLx%_ICFtSDALpWZO>XCKhUhqoucJ4U1qu{|fUS@vFd_P5d|I`x2!V0bw63K3 z^16~$?#oQ&dXl>1>q!+kT2BJ-sqd;Tb*L|)#nu;&8As3Ml)4Rc=L$ZK7B|paTY-qz z_otdr|3EF;(ox3;TJqE?NSp3`oKr-jII7f8Dt<;o-MIl2M>iXa&W>!2bmufNjutf% z-7}7!HWFa~?cG>HTh~~3?ufzXs%bMp!T)0N_EZAO!CHV&7>At+e~VayUldx?q3|0 zYc6@?*ybYoY^SBog`aIFqq&H{+o^gB5fHZ1ycWU=+v#=--MJCBoeH!R>TIWhE%hpv z3oobTEk!vyDZZtcC+wtrtwcFHX>=37oCt@Qqu<#sYp-!&VC$hpFY<_(6Yca3jc zR#;*u&1fxViaY6fYcVU?NuAn=3FS`uvW--9@wQ?V-$^UlirM8(`m3#ow!G+aU!dql zJAJGnJ4-qW;Du8;{6!e%%pIkBXCDoOYH zR8nr&r^5eZ$<{&dDC=|kGH~x+q2N!UPg=v~*bc4Z&5Yd<|KBuKQ5U!Fp9X zSE_lAf>VZv2n|^6@?J-lNPHlp0qdpO?UF9En2x%0zc`j&brk(3mKt^vt`JKrI*Cpc zOX+e-?aop)mUkB8Z!A5NnWkMN=w)3*l-NToK4R&kp27`bgPvld9!vl9l+b$j z62T{yj`k8x9ZN-e>)qwXTJ4A1u={i1yjW+wE(Nz}79e^}EG6}p+M-+^sUkD_h*%Iy z7yC#qRk*LzFr)iQMn2J3GO}+!-FYh^miqUT0OI?J(1d5S`bhxI`-_n_mX`Dvqd+X( z?=Qx~SSmX}(rv;3F(ZkkuLkHXWv4Ds8I@mCnF9Oi)u?&VwwbANqdU1>zSwV|B)oH= zRQj8NV%$RG57M3czPtkzs0&!FZe|Mk6dj;>D|{yDeSBN7EQ%$^Aice;$I+S)Xj_XO z4bp2;(8IQ3c#fsXgT)9HOIHW$-DSBB^&!`@0oQ-+lD64sV6Qu3k2#j64H2v8SV|ot zd1$p@5pNe$$6%4Nn7#-Wt-P523fB8t^QgtF+r|w*c~u5ww&L8e!C=iew~?lWh^f;? zN(d2cxRL%2(d$`}ej_y)Dn_A=GNWH-{?p?U?Yu&b=FM>Bx#+HQR}QxxW)3d2O- zbI`nDqB8qv%P;}CkN$RL+ebZz3rp^!y~D*MeINOSipJcB)8~3iOO1U@jm>LN?qam7 zx!W>uy-D(B- z6n4!!<)&(*^n#W;JVy@OB?f4kc6v>n;OxPfqMu!QrCez_C(R-5VpD@u# z$<%kOhy=;Bf2>r6f5%GY^cg2X9~q~QwmL#Gv)gs-JgJB8FuPTw{&~6;vHUHWW{np? zCz-B{*N0iRptx8)+=5p}KX4keX__$RBZhkZL1sE%7I$aIPtdDc#qoq^>B!jO5e*rx z7p2@Ux>d4@dqjUu5M%lyY8fsuOT&eiuBLtAqRy-7L%4`>tEuxub9ZUfM7<~51v)!X z@55-pNqR3v$4%0^Fq$|?@4;xk$$D=_!zPQ}BJ5gE7RFAXdy_?9OrVle^!k>v2{d?$ z=&}j4d5Y-x3G~Yp5l<7S;Z)I%3AA9UP&R>5rs|C>yCg7!T`Py9Gn*?=@JzUG?ueeb z#aNO+eWpo}o2QAHU;;gvrni$()>jA0CpGB(ET9BkHS!6Cr%#u}&Q2Fo%LKB`5HTi! zn$6Ii_tp|<-VCY6i8CaCEHlMOl|a2_N>+-UDdxZl^mwKOU22wS(gadxNgBk@lAwQ) znFg~Zb!N_%n&#Wtl4Wzw5e|}0Rp*E?ES+Y|5yN9TU7sTwAf1ZNl^Aud&^n!t&Xr_* zBlM4~Ai~Z}sSj~tN(!y9?BKW=$J3}=gfK)Jt%(o=75YXdb=^?pEH{j{Mqr>SHBa}q znkJ2E%@b8gqgnIBq$!P(=7~WxjSA0~n9%t`;WRohUv!ByQWi)|?*+mZX|!X3n3AN? zy9FXzq)~^360>okFlHp3UMO5Ul5&40!dfJa`%Ks`lFoc4#=%I+zep&GCtMbZ`F!hCaKpSV6ezZec&X7J8A0{PSn#GBdvXIZlE!z^?#T`NFa>|%{}mQw7x^LFSWmh0~qkaCUB*%xp3PPw0^l*7oMOG%k>^s1D#;iHQM3`-ms3oR-13_1lF|K z7Mi|7G{Y83SRuT6%i3rWA+}JfXx(`lWD7%dgaG1Zs1tF>2!Z&7cDV$f(93Ayi%+QT zO5J(Rjz{MKuR|2E^5lw;5|z zY!kg*C4#{wsWiL(J`WhH__P`(e*Y_u{9DibB)jz zXlo>Zl52(Pn`ru4DchyB!pAmIQIb+rk^s(;a2|uwNw}gx)z*oW@2KNC5tqLsTBldB z`U^Xtre4D7Ovyx!bYUV)zcQ))(tXW&LdV#NRh+AbT~t3-Z)F*pXY+djv9dVRX-?h# zWT!h#Lm#4TvBGH%(aTt&a;<`lWVkdgWkca>otZy2d72V&BdJflZp#`b`DSdy;xQXAB8zl(Q#9& zI_r9aMs5@)zd>g<>K!6Xow&@$HGz?(t_3+o?Sh+{?4(>DP_-|9mgeX*e)yEI&^CAp z_>7p>N2KMU+^y3>tjUf z{l+Xg1{Yk()0c>XPqI{Y_{5dU&z_jjn`z}{QJqtC(8V05BrsOp_bF+2j~O651r%~XEZISe<^U8(%0vzf|o`nJJMXjkg>g4kd;Q=hS%-@pux-h03=JO&}~Y@w{7{oVu?k)*5CiUxViY?~>(9a5HrylU<0#xhr-5 z3ZcYRULCfkb|v#AwJGeNkZr>L`zXT25N!f8(9FhHP3y7xbb;_ilbPyVG)bvpXaY<7 z)l9#izL#a+yy2;od%Iq&m5IUE5e~RP+69z$7s^KbTElXX5 z=OSFG7ua(VrtCFdor1XFO6KF8nS6sv@6^jFIM3Z~r~VP6<96!Bl!dEk=}tW~;PX{} zneeoc`Ufi`a@E>6y;Ol!xHhVu>XAfsM_&fg zVXxj9Pb#h7t2gpvV<3PIuA;QP`lq;BX`kK?WZ^z&@RA{4(KYlFAngFSq|!<;Km%}-1UPzOYK8?V>}uaen_trz>Y+t++?!? zwP^kky(~rR+43Mm`XRjwNR7jKYmmu@^-dsPAJ*G|WIF<=12{PV-~*I$L>~%L`zUli zK+BKvocE8SdIzY=G0Z5Rq8K$ur}-O;bzLxYa% zb^O@Cj>Ml=QMIr1LX@1KSIrf}9|%$79s()uAq`2;+xUfr3=Iv#_eSwvwAz^U4B+CYo_cEu!?waR?mi%XJ_?tAUP8C ziMAayH&O5Bx5F&A_G)^VsMoixpu*?$<~dfFR~xMM%S7R2jRMs5vYwSbB1)dw?In&^FUuhN$2(6+1bNys8zewespe-QINrurqHjU z#S)78T3-l~>l-}`WY#w@Kx|j_2$1<#_30q*uIe*PnMEJlsM`*JuDOPF2`^`KEebvlFAuz~ z*R^TX{<>Z(2b(LRy33i_x;}=>ZN9D-M&gOA0e@k zNo>1{`Sqdv`E$|38~VpSF?dX{`3= zTgmzqkoGA&?O+N|D|w5jExE&;qmKgVor)f8r-W2Ark%<;^s)Y2aBCL`ZtX%L zse0%9!@@!)p_}o99$k^ZerVejsoG_!ou(H8M6d?Gx6=&`HD5*zbiHkMHk*d6Qs7K) zIzo*%IScvIoO^n0m}(jQpzBj|@(Fi~zJSILJt`vQszWyoJpfqghCT_T$6b9I$hEur z43IYWI7z&x&jZ)|zCIu1>-%~%NRJ2l5|H!<@Qr0OB#p~yY5D})eQKYsH}$)3D)weI ztw=}H-p5IBbbiZ?@WK{xLm2 zO?jd>&CV{Nkeo4ov^3RskloMpgCKps*AIdC zJ=YI|oPN%;jC`T*2bb?9C+A=4ao|S1(!T)7`GX$k&&z(e1y+B!g>wI;*Wg91eT`A( z6b*ch+8@U;XuWH8c8nStRfR^SN31&Z$*6n>oI-{^Zl`n=V*f&BGW-wv|zXMHC~%U?M6^cQ_2xCOuJ>p_bD z#<^3!>6^gy{T(VDqXT?5zx2`Y6k4ZV<3{?HdfrGs?t58xc6VSl2GgOuejeHTdl zU;JX%clr*0zO-t79_ltfPl0bx>xXxWXQ%YP^={NT$OuIC4S(x9K$`u7Vh_@Te_*nM zwBTRPm3psl2AB9=?}1l;q~f2_)j{Z zQ`Fsy8lPs5GE2OT63_X=ccY6M+1C~~f+*rb*)k|PifR=zB9Z&6Vnz%|x8lZXkf+6s zSdfSk{9?Y6Fh&&ZEorRtXMpOgN?5hdszfDA8nfwcRwEZujZ(%6kkO@Kl_>h7H0KtV zfx)A2bkZQ@=a_`UWsTff@nrYcm5q+s6HV0u*7(to2bdZ}S2G4dqeNO)1r3@=K~>R8 ziFBzd+B}hlS2H&IGZFQZE-3tyE>yZAd@0$dLN*%mvC-al{P^Kacy)CyT%`tDGm$RT zfNLdEa1iJI3PNip($bnx3g>t~=G>u=QR75vT?@^4m$ueIGvY=YYo?$z%wHGbTT+W_ z8$ANz&8v0R@Zh$JTGTaGLEm_qTL;Y*PeFCjPVw}puJI+vx_bQLr}d2^;Qp;|90xht zfO8`nqG97HZzE$b$k|4m8`Bt#7f*$o7;zxynixAkhBr0F;Gy^Arp72gwzmMSdgHCk z&5S*``l^|64rG6GBM~I5h4C%O$1RO(An#imw?I-_@hq!a8()L#)yB94QoJoEPum(7 z!R>EnoCg`#-nal#>l4oX_K9&C+~H4+lOSU{aIQi}<127aIvV5f1b&ZB#-{;nM*})V zm^KNfl>JpJQL`=v3;59#(Ak)doROX3kI|H+i!lpizDfS=VtfW}L03+)b~6@&Thh&# z2jbt|m;(~k-S`|Num>mWdY~zysYFj>0m!zV9ISXRF23C)6?$`&eZ4tK)jmcuydog1 zkI~qV?X5u1y=&-jAEOVh`t>zN=j1ys(@(*j@IyfkIAQbA)w5FLzUV14qO1EO#|IcAL5dGF zMu2=akf%K#Xbc6{VURHjp?PV~~Rf8`T0XnkC&b?b@2E55{cv&|o8oeJygZ z(H*4r5ThrEeTdN>lFup@sGuUXFogFQNn(63R2c{dvDJUG(xfz7HbQ~oG!_9GE zFa&zU(XtR!E{?8*7^D4}lseiMN1aCd(zfA77g{#d$d1%?L!o*ceHdzlfP@S)hJ#!j z#sMl1hkwS=+Tr}--^2OEA)&?)Tucl#ffwEzo zTNZ|Ph@*F595ZCBF%jIIv0SeCI3pa~k#WWpkc#7tX&_t2!?oh5*aTxP$c70#XV!2y zeH={J#FXbe5DM!t=jF&NW8PD=&nNvIcF;Ml#Gm>C`F&Q6F#NtF*_c zll`hG*c7F2K7oSg?J?Tg9CT@q(b>;ornMp}u@|l3pyhiJfcDW(dyUrF_nC>GLhz^4 zMxj+x0_ed$3@_)54h4~C?>^XKAC=l~O!Q}2)lh6^;|Kd_Mqw*6o>H2BrwHB%NdfT~ zHullvcnqKW=x#h(ji}uLqpKg8#S9?YdH@!LDhD~)co3sMPOlw;2NLZ#1n(p&cNhU1 zIZaaR2z(%!79PR$gxvu^{~kv?0u7>W$M_U8nHnF3WHOyO3b5O{P^R;7rN%?+K`pOfycR<&)|4 zNqA&34L-%?^iy1*$7y4QKU2y)19m-yS|k`f_!%(d9rzX8J(;e4W!TM3{KQwiyL9** zV(o-PEGCwnF{KLXBb ziaUqaT1`358~3vvH}j66Z54Y|rxM>7HP=4w?w`>AYvZbd2a!Me)(FbZZjJ!d^^4`lo$qd&;iOBgH@sOn|R zbP{O(WiF>*Hv0K9Y&EDdZe0Xbrmk0w2DCMEsxJla?VSrbmt29vCeRO8jJ_aku5z;Z zs?iJFuUFA0aPgYa10?nuSK`$*o~8A540;K)>pCy!{dG*0pkNXg*q3As1efgwM;UyB z3nZ8%_e~Bq{H8GoS-!r>l`o!*Ea@~g*=U@d-3fvz{MPy5i!w%`)m>-hz@x)PU8EOC zK|D&Q1u3Y1I=wVW_ghAYKNC`0^gtb3^q|ryMjL9rqA&VQI+eO@G{DEX`rkI{`mq<_ z0J_LJioI=AvfZX{ZW}fI*ug1WExC^Vy^VO3MosP*K>=yz)pF~2cfcown)NF}U38-? zO-MDeppnz){2iDsjmo5QvM?3RkwyIMp3#!0ScE(?Gk?C0u0Mqi&nV~_jQxyapCRr%!^;a0vvL3Jd&H7w^vdK0 zJjWiy3EK4BXd1w7$3a^%3k#;2*+!J5#2*a2vU}D@bkGyj=>>w-3A+3O=EV`Fml&>3 z(6N^YWGATlE0l7Aw!cEFpP+0%Aby^pB|l(zJ3&6LF$Qg+)~}6fep}2^4y>b@=GD`$ z(Q&p=;Ex!fwou5A=yzM_=#NH2yp`<7AB_rr>{cK2I=zlc`~+>EQ1DNXctT(PWV8Z# z_Y+1ae3A1F`sNc__XeHo3B7#-?|4Ez-x`f=M`-0+qd@?>CkU7uX7!p;>0gYJ^ygcn zj1A{*em0r~Y%(+4HZ!zk8QQ|So9M{TaPLi&`xgYAO*HWrV~9V?tN!%`?iv2|1=)T# zI#K0cjl4*0`YS^ICff5Wtg#9Ebe#OJuJ;azB54A?T~JsA!~g~|idhg85wn<3*EQ#a zh$xI8NHCqc7xg?bhc<`PGbc{ZHJu6dJhMKYVH8+`Bt65K^IKKDQ+Iyf`|cmx)xWBa zGt)EEGhMUjCG3`K#jBUFudWrNU%|D)T5@ zWYK1&SZ%9%=?;j)wrVH@Pi@tn5VR|+eg(nNvg!{IgqKrOAvjo09SDK5of-^5J3BR6 zk3Q;@zFqCb_!hT9g~d+waXp(&7gVC>QIMmvh3L_;W3A51lqQO zIu(LL71Zr|R4Tv5+KWAVzv?f3cTtCcrdmaHq5dFhHh*g`!bi^x6%Q(^{w|216)R*b zx`>RCGrdJpoppj+xnpRvl49UgCe}Lx(kBGmDQCpqcxDxH=}RW6Xq)Fc>QV2 zd+j3o(MBvw;bLf}wcU8g%GwpCYST~5ioGG#UUibY&jA@KKvB2J0pp6YT426(Ca;nRi=-s%r7 zXJttiS<)aZsgd~8TMe*Bjq>Cdp>tE4iXb1@8Hu#pZf(o|eAFa~OgrF{D_%c!5c7Q1 zk&y8tUsXs=%prSmeeSI$;&(r_2WZOIRO2C-TvJW4KZ^Ok$`{XSs)HOb0-g76rRY;j z?JITVj>@vLfauA3VH|I$_S9R@R()wNa`xZqE&gh#)^S7x zDVjqH;S;P@m(~p%sWqkb&O+}9=NoI*wYw#MjF2q4;rgc z_J3jnG98662=*3?K-CAW61#)cE_%{cdSk6Fv?W5CPyHZ{S5O;@6~StXBN=u72zyIk z+*@jkobF2kaX9KL(;s!zi_aUEH4!hHs6i6#v(<}$rfLTnt8b?lPwJ{}BE6{^D$yqg zy{vD3Q?;E$T_KxM*KhfVZXs|CQK9=C#f%Vjw0l(Tjs{Bi5LMf#GbFm!1gxIi8Y^^d)&3I2 zH`9yx4cE63tJ%7a!)Vj}(*JsSy%w0hGIXeUNz74h~_e*!V~UzT@XQ^9FTqAMI=V3HH9f0`kstGwy^g7U*T$RdqVSDiAEjNxiX@( z6~{ZM8)d}YUX1Oiu9GSEwudI!+=gE4q)w3f3Z2BEPU;z{x9g-Ajkj+cAntZn6Qut8 z2x07^o|BR35yCw}JuM>{T}6I`dQnCebr-*NRd>m3=5*H!qvhv7A-buNQeS<5_}EST zQ%1`7GGFel>UGlErk7sycE3GM4C=Of=<)Zm$CE^*!LYXn^n)W1UE?ZSVqx=zZ0;}a^@BqL5g3zYOb)-F^h(r-JOr0(D zKR^x{rla*l_2F=aBmJplsJ5$^xOJkdm_A%hk%m1}^dfND*3P2!2o0S9lsIc^7x8g~ zI#A|aD^&~~sp)4x-W6AG^%T!WszdD0V}&yoi9V6)2p5b%RolqU?k^&v;8@6sR73P+ z)@L$|3yW`uiaw*%0W#%<8CdIPB5xG*AsLy!wN`ytl-gdRy?~t6ZJy#p6l`R&>ONO5 zEakTciipv$*AlulTkIaKekJuCK(9;Q?ja1(YPdw(7wN^ZjO|_`BU&AyUyb$tXOmt$ zYP%y`3>pJh#E78wLstva7&sk}#lU5Hv0=)NdgA367{CclUJ0$3y`zqZiGk6FP$Ho4 zgF8aRvlunnp3s5~V%S)9lM6*kH$mUG3JLTbARfQn874Z9Qxo<3u?APRKxg`1>n6&@ z!sRp~sKEr;f89iHwX&}m5vw+|C*z;NcS5Y1DpQ_=lnWZ{@~=1>96WD<&w7x_o6Xkz zevDJQ>la}WvySS;u#vkO2|Gpgb3g<|e6?BxDR3o07Wvy@Z^G;C4T{=UqJ-Ugd5X3h zuO``(Rq?N4#&~t3)QA5Dr>u&w;fBS-#S-afLODsBcefF5;?+U=9awb04ZY~qV^4E2 zKS8bKfC!3Suv#2RfJ9{R{&(vx(R%_6zl3}<;UJoIyRJAlLG3D0ZODgq=eCJZL9*KY zr(Vpvalu>soCpUlp^!^@F|zE%V9_WEwiThSSD>2TU#uxsB&n?>@`Ai*XL^&Q#yH-< zY8K_e=4l}o9^2w3W=vFjyC8*{ZkO9(uvnL>))DiEsMV%)j^I_#{s`{NYUJS-jy{`I-@@ddNWSj%& zspV>rSe2%_n!bZ~K^6RqZ9Z$Ml8&)?S`6QpRpd*vpc5FwKeAkfF?>swoG62Otp-TF z9%GA94NjEHfcj?*kb1KgGbw>iq~D?u<(vzFZ4B;ICa{BnttWw94A8AIl(7dvDHe*$ zO8{hOfC}BO#gtw3N&VYm2a`2{+JcCgO{(=IaF{`8ZvsadOzlhHcLvu65IDi$(r^N& z81x)TAd|r#CP~gRX*!Bb{$S7}iol-?@c54 zK;3Z@V_@7{D6_mmU##$H3(=fe#E0Nbre)ctRFs;Jrav=%cp;Y#1bbB2d=Er1EDX zb_`s=uOw7N&tRR7KzRo5Yza6qaJC~*fk9V2fr<>!9W-QGSpz0zVR<618c{Ag5vYoQ zUS)f`Pg{19*iRK}QC!Bg26u$tVS>gvjh+5nB_VRP?j6C znDRpysefkBy#;~I3^pS$!Iy2A6iAb840^PrG&>l4lwcQwL9NJQ4+9~=J_es9_?1Dk zHk9N50TVW5fg}gnGf&gEDr-iJL=|2)^=f4-MM{n$)f5jkR5`i}i zrcWjCj=`yE1U?`*jAb-}k0U`IpEW=otb=#A=_4)5LGY#y>aqY#L`ZMP`mar-*E3iN zF4`eMc?Rf|9e@*pBUmE5Qjfqz1C(PWEvEFFOX?~N&Mze3W@0jb5s_*PzFSP727@U} z2zW3+Z|zX17lXFT2>39#vz&k*1FsbXYH7fvoL@<#wnmf+@PgR!!) z4H3}W_|rC$MW6<#^+8%pX#*cWfee~3z_<4Sge=ALFXd2n8<9{pc`HE}gNPku(UL)p zodjAln7@laTL$Rt9g1ns;QSr}9T=pT_7UmCU1lsXGne~&wy*%irGH7;_z*h|3OE81Mp})w2jwLE1?G}M=*dp^b zf$tcgXL%^)hkw&}+$A!bO*Tp}he54-WHFb)_xB0RV}PFJA=d>6mSSUZSv-Kn8lc`< zs>PJX59CO*oJr@$lwbveKO|ViV9FD+Si_*|Qv&N4d@aES1`#jF;%5f6UJ}?$#~)Sn z>sLg!uu1T10^1nee?wpggPNZR>|&5E!5#+aiXK|O4*{;!P(FPouwMhQ&GGv8H;i6K zJ^Bd%a7Y8xT}QN-qSul77=!zE1dcQK*`B~j20~BZG=m2Y1kP9ij6a_piJW7T7fuAu zGgx1Nzy$^mst~xu0KM8n#jh}E<3`{bgG>o-AovN}icSyk{QH+isIj-Tm;&!^VU~9p z1bGs;$KV@(0$B`fYZJ&}a6p1w27T+0MLq-5hq^=_Fu|oJP;L=}Mhys*Fu2{2z(WRJ z!36$hFk6Br44z5w48dP?V057*FX;F~Lal$r`U~I$0&4Mw!MYX%-Z2={lE4QBLs}8| z#9(V{0%hQxep#qzTLLx=y0tSADa)iZoPZsJoDKx^41VfFpge=&oe4NG$djM~f)m)- ztFp0`G(c^wLNU7jT^vCmVIZuZ5aL#}lh93McSK7+Eu2sC6cL4p7VcO+|p8|lUM=(I={{Xr%c$PrGz@T{w0V9Kr67*u=m`WCX7?{43q#qOf000y- z00FK*QbvKtdjNwqK;1D^iz!!Tka{?SkFyAjWMG<2U=)L(9|?>GV3K8Akz@>;nC6hl zSO!5q5r}2*&s+iugWKr@;u&n5PhbLrpBEBHVz6nkJpPiIOkYYSsSNPb0nqwM4DKu^ zFol8l8UoW8{3yY62KeCs$YUk~TtG!GVE}xy46i?tP@jIs`qdjK!4C{pZ6Yw6f$wGl za~N!rU@n7@U&vw}1G{Ym7BH9z0MCDmm^_dsOBnRnPHC1gut*>n{JM)QRx)U?o4{%Y zizHaf;Ee?95tyhy()UoBjchV9gTN*Rwi~V zNP-g#OcVYflT%DyN|4E*>IJem%ix6se=t~hku3gX5Oj&aMFv|WxXi%wGFe&W+T{wMVx#nkH1`v zP#O7JOqupKC3wKV`7wba1}~oyC}FU%oGq5|kO8i61MoM4TnU~Kp!45sdop>(CXe(4 zo-;UEp1?~6M;!^gW-#5Ez*`316$rd%(9DIvM+RvXZRz;?%w%LGGSR^TD%nA}f(|Ng z%OJZ7fpQG+3kqOi&!A6L0uBuDlL=tq$e>bn0?r6bv>gK7iMX&ylm~%I4AQ*_RAKPh zmw+3CcYXw_F)-C4P=i6OdIUTei2Am4|L4WTt`V8|F!&~bfFFZ_jS19ZfS*)==GA6! zyeWaY40<&qP@h3U7=eZWOtPQT+7Jm~lelmKjTuzxOdyznu`7Y53|@98(2PNu9t4{I z3wjc0!63V*iAXCZ_I(JnVSry;fabMhP`w|4a0a;Q5G*<}NEuF`GlMxJ2}Cg1Hi|&E z<#_&~J>WwW5d)jx!bHf`$e>ybfnEq`Ipkuec7E?aPk$NBlT&W25gBjq; zL_GftWzsg0OolV4m_%SCgXL)iMj@DwLr4X1Rt9-QYk+DIgRx&wjlRr49jgISD_Ts6 zGQmGFsKC|ZUB(P0Ken_Aen*J0s^TF)~p~fi9wrH1g0=}w3@)Q<#_!^ z6~%>&kn40dX}O-jOa`Af5crw_e%Aq#e2ajVBBEQlz+ydv(mx4oWPl%b0E4zO@R`Bv`edPl<$QGHnH2oW1XRsd zBg!ullw&ZyAz9cnD3-v10WPM6JRBL^lE9fkivY54VSpc%fF!0$Oa?Y3QiZ{r5CU!t z@XHmDrW%7H32HFFPfmb^2ZJ#!2zW85(~^LX6~OuLTqh!aY%Y9LY|8qaNJ`L*LFOm|%^7Ts zBG7_C?TG|hF<6jFpbdfxSg7YT0_`<`Wtx-@7`=u18B*U_15~F7EvEGPijsFjuoLZn zg^OosL=O#+eNQc>^!kp}y&1gxfk0mduvVC^|N1kTJeN!cGVp;n6`+j44Df>&0EQwE zSc@DOJ^+l+0M#N=izyGGcR?M+U<>%H0uU_$%>OIq^+aOW6%_JmQ$l&lf0;a`GmR%&WltKNg1ePFaQZ;t6a)1W0+W)-WVmfPtoB(1u$z=o(9tb`^BSO9T+m|5k;Olm+myor8ss$4$W$>;kfkzDfZbslS zgW=5yJk@|n85Tz5AB`yUS`v7{;IGyMUNP9!hQJ#J-?b(1j={I>2z+4hdwT+(7>w#b zz*Gj-n98j^y(1AD1}i!dD9hkL7Xo$++C~u2BY@*ZIzNU^bkqRtG0s{{@imgY3xoQm zUPLM}N$*Xd3WMZ61l$@ z5(#0GLvaK`8T3;KgfSSCM4%;uG7|~3W-w2JwhU^el0|z4Cfi9wIxzWuGJ#GAe#GuT z$JEfg2n|qobkkzWj_IT}Fesf%z{tRPIe}gbHm@eo2Y^YI@ooc=er$r@Fo8k`Ab{}} zW+TA?Hh{qzpjr&oVoLgUQV(ZvY7c>t3@-diU=#!VrU|}(HX6x2ECbzWLm4p|pfbj3 zF~#=?spA-UpCd3H0Sx(NlqTRx8#0)n0m>i=V{rO|lY>;JXaLkuewr3lj)QA%NIsbX zehCG@R0PK{2L--r0${oZsDPPTOeuv=rGWZt1aPqhFCvu^_)Y_4{{zMfQ9ZBJMEV~! zLi(Sym=gFmsnZ#>ctK!3gCnm9EM)M$j2%{CF@x5Q1eP*rQI)`Q1c%@f68w*WH*iR^ zk_Z5*#cD04?DQh_S_bv~39M%z>J!+=z!XSe6N86A1b$&q*pz^2E0b=aM7A?XX-{A$ z1N_Je)N?lixMnP)pc``l`!qlm|5b}AFX1aJpgzE$!XN?%8DyA-6FI~LKf3~Hjv#>R z3h4|T!0#HMGEQhQWrjlbrx-M!NFbBJ&r=DUWiVqpfjwW?c7@RmrpooFV?J$uNCetN&$iQ-hEdFNj_9%fT z3>N%O;28t-^#E0U&S2j~0xuEV#qN81jldg|MyP|{X)&eW4bp!=kdFyM;Uh1QI`CD6L4pMpNhfp&l3sUKuAaVkfo0XC`&&rrr4CT z#}aEHSdR7w!F4`>IvODRdKiOSi82bh&Iffv4UjrOiz!E(K@H_MW`ZA=fds(_(9r~b zP6k1U1}KM6Ev8KKCUqEtMs*3aWPsn6feczBfO|9PmI6RK4VWm)a4o7FZAS?@F?iaX zKm>y&VFbD}@MuNA$e?O#0=*e@Y(tSAaWvspBYq5 zBk&7@x048LV*oxfu!x-qPGgziAp?L(*`pCEbe|Se)_hM1_A>xi8JNRC26;acILyH1 zCj!S9#LXvgg26H>R5^{{6xPD@?Itogs}ZWjA6g7uX<(rj7))GF;4*_Qg1|Kfi7N>F zkHOtl1a2{iT1((A0F$gnpPR!+}6y0IoO?BrpI+90-yafEx}3DH7oP>wZZlA%U4! z^2C8AQ#C*}|4NG~;ClnrGZ}#A4FumXP(28Ij{v3!rSA=}n5_ZIaSp^xQV$+CFo$$a zuYkV|1Pd5|w+#e~8AR10u#7=?JpwBjjBQ9@H3QLzz&Zw-1589VG6AO>Sj=Vy;Bo`O zRtDg31Hldk;BEuKZU*3N1HnE9^TG27fc*$oVRwML4Fm^Q;rSm4^~WLBgNF^&A7wDV z6@lXnl(qy;F)+6$aE1Z++Q2;iU{IkGfeQ@4+XkKgFEjZ*f=sS4m@dKp7-V!Mi(3p9 zbtiC_0XW~la_=*!E*qP}pnNZ~$U|VF{s0#onC1bS^zB2Sm_c_59y0i|FIhZhP*E21 zi~+dgz)W8-0B0NsUNiV}fS#Uzyh8#r*XWOfOg?IWw##RX?Lsy9;lLbhU=ck5QkT_Y z3V7Z?wLJsyyMdrQ1K&sj&J0ZGdIL-i&1Ho_&P(4R#G5BTxsiPQxhYhqJ z!vOqiATW(%vS0%dg#o(Q0Fwj+`>{~)tbrg&15{|T7E^xyh16*bz@G-%f8k04!8Ej3 zggMSK9VL?)8lfyrT1){q8kpc)2H->kKw3TJ2S&xelFg3{z>x+fn#%y(Xdsx60G_*% z6Ac85R^#}Ggo<6ldT^nE`sED3fd+z=48VN`f;9}lc?N>@48U~;f}a_H;|v79FaWn1 zH2!TvLar&$YX+F?)Bsg$w-!^tKL)DzF#zuv2=+4o-xvrEGT37waG1gTTmr|ezzw`q z$TTO|BqvX_Ii!Y|jzPzafK#3fN@all5&%As!FCy>%K#qwp$?vnVgOHWF@Pt!7~Gb@ z92v}$!F?IP^F=gSCxaC-ID&@;(BEXRR|Xqoa9IXRW$=d#;OQVH_(=wT$>4+x;4vWT zcFO>sUt(;b42op{k6RJK^Fa*G!J}ym;V~`-@BkPCeB}%Rc-V^pJbA`owhZ7wGsZ5+ z;Fb(_%0S5AnhfwkBv>wy!DboYLnwebGWZ@ZO(BYpCm_H_1Q6hSJOnr)4gtn1Ol8zfB@$XAi%qM2=J~Q0=$og0Pk!ez`IWf@b(V^yt#q^Z)PBX zD{>6*qIkrhrF0z&QM@RG0I%dAz%w=kc)o-H&x;V?Sq1_e!y&*S5&|5wAi$9Z0zA$k zxFI?o1?QZn#Scf-7T|L6#8I^kI6nM%RBi46la^%`!1sNRilk$z-;!R3?400en)hGY zzyYQ%|26V)4T}s4OqwumDHzWEuf|)nx6F6I^h>_LORk!UF8+dwp}(t64)ecc3!5z< z(*!wW_3Wwmi-X!a&6#ci@My`~61rFtxhJfp`hS*z*9 z#8Xgst+^!UES0wYOB#8O=+-aksMADY zlKI~{1UPK_Z`5C0Jf%7~z{K>wCjOP1X`6rDf4Se19NDN1U(%6hsiIrHpkl*m*rYIf zP5G`Cl`_>D;tH~TU$7-t|De>n|4VB-?EP=leaXr5)RH}4P%%4Gt)io>-IrL->BaAv zs-rb7@vw-8KeQ)PAtzq8;YbNIarRC4B*_;a?zr~iw+#naLYRE1Mt z;(KRQM+cZZ|2JcA_-G<9n3eyR)ps!eH|o2@`wAU~$G)JIn`qq*^Y#BG_O0Ahq`sd~2vx#fGYC1weS7 zNUw*e9>nl;k=_7f?!x8x;_{-`1yyf{XODC*k?XH|foE@vm~la^V~3L<>7F7y5S$9` z4pto?HJ(V)y~V;1)f?2L@G zlTlG*vRdrBsQTy@iE9^CKRZ0FKr!ER-{V~tFXF`C1EnSH-HqcCse?nCjj+bC+d-D`wlgxkF^48L)^*Q|RObgJ=`&iGn4dubXL z*cTkGN!M%^@U$kSf563>l)S*Vnv`nzTBS6_$+=9K)TLs<96NWjd)0gP*BfH4h6l!K zkZF3Qj`1;36MDo%B~OT(FfMRx95@-LQfugp!)#`Y>qE-bumvJwi|*AgPnxMV#w9l5 z>dTTESkHq+_W~q8WMe#UEBs!S_&bu_1zY2N+u34b=Ojyf$X#ct- z0CU(?d@mrP6#K-~8vaOH1RmU^v=3ajNy(|7COsddN$h1j|7&dr!-wVTT@9ww5@TYh8!zxhozq2)lmWA9JiKw@Z zjmlyf%irG*b|U4rvc@7%ifhlEJTTeN_xJrUobmpC9SnbYf4_-|EKij)W|gyU{rceQ zO*(~(1Rrlw>ITl;q?7?(-K6v$+__1q3;1!9(nWCKCZ%_WHK`Chwn;V>T(wE*1^8$q zDa}D?F$Z^@^lBovz`2@v(ue!4t5Nk0K88lnGGF1hC%d{hW@9PehI+NJp&j6gW1>={ zB2!|clHy~gMvk8_L3Xd9gW(5ihvIb?ig*AUJVoiQ($48OucC)J%r&cQ3O2s&>?}_V zhtJOPs7DzuG%UjH(g`w#4@n1VACo5C62o%PRTjA&TwG=CRv1h&bLqBCB@1WsCZaTCTSTFoEnjE~_%NQr+`tV&10vLCbRV&jhgnB|RO_K#VOF?5-e z6^LQGIa#!?4zq@n=Va9#wjGa-jHmENQmglxq_Y7BYQ#pA)ubdlO`4?Fq!r*gPTDy- zYSI{Il+17EWVNFar{(D^+J(P5oz)&|^84wm5FhHTrG^dAIu~qRU}St^)R@RIAYubW z#mubgp=7krkO4-H(kL=!Vq~OsyYDv~28FX#5gU~fD^+4-rrgfcGqdO*SecpSg9RVS z%&MoSJg*r3Cr*NuK0Xe=egL`(XR;cgP0KS`^;^;Q(Cdtqu=AaJ;3vidBO~KuCTL|F ztLThXY0GFztzKf?8ClqgGqMs{*7&D0S-x0+@7XMW47;4os)gbBvsrY&uRohbW6Gar zv#8f>&&hbexvYi}b8tHuz|WU-GxiDGcS$LsttMrGYc0uajG8p3w^d40-iPVRq>547 zE4m6_ziO`LKh9-kcEs}2%V$%=50%gEDtGfZ!`IMk50UX#mWQb8m`#J}K*#K!XuicU zI~>Cj$874;@=n<_zyw&s-cH%|QU8@wc0&xeIc3vsdEFZSDdk4a9&B-|2@=_q=Dc&OIc@Lke=OwHs^)i*}-W0 zad&nnS^vF;6HtpfqK}J*yI5Foy8@~w@5%0f;n6+Wp>9Vo%Rj)|mGr(9Do`@p?aekc zlvy-0gi}kS(yrHWmW}Udm9K>!Li;K7xYtdtI zPWQ6um}!46yF+>E#OsDU7&_a3b=_0kjk8olqa*jS`^s(g!swxGs}%5hC7oOS44$f_ z^axy3DZiOR?`L0i#)S5zGWS-cvcHl_vzxo&RGZQt96m|+QtQCeld{)*tTcNq_0urV zoYt6jrDqQH-!ab|I;x62bLeQV;FVKb?oc}o`)7;x<$dK2HQXzQ4x<@fISuRM1fJ4d zg`7!R3$Bf%R0uwer1WzRO6KccITahouIg;)2VK=vWOU7`vb<|fP1zp<46)E3`>NG+ z745s`P^We8np0mU`NnVtlK6}8vVOH`kJ;KahYrTtNCeUPQzZ9kJsLuy0YSm;Tx!U9pRUe<0{7N z&7oqa?bX_~&5#3XZ{gR|zlzv!%HN3^cYSY8Tg;}?z8o6K+V9J0gK^WooFvX;%6xQ>r6C`a`@5%O-SGn(vF3=xv%Sjc09&-|r@P}y= zY%QUbztLM~^u=DQc&$!Van{yS#SN#O71ut{4J3U9u5OeQ=D%$%cj*{8U(Z5&-N$;C z5V;rsgu{T?Shj|@7*gL-Pr~(vzW`3OZQ#|G4*feu9TY>Si$;-<<8ImjahkM8(WJHD z)kSJIgF6>xx4E#sCBBW^6uk^1XNyWB8V1p(m_N?aQeG%5G3*nSVlB1Bx@irokj^pI zLRT|AVlA{=rN>%&V8hi|ODhbk#aRsULcO!jI0(BbO!S%4z)viSv(Syrt~d+re-Gm< z?c3m_yJ81kTcpdE-r%l9N?!9csc60?1ufE~Zc9)y$10XSm9fyH(=9ZN+@CHhg z@S`G~v^-`>0aq%L?FI)aQgQ`HC{n7rLz9N=)})gxo!+Cda^Rpurij<1G^O%J7zyAu zAUZzAe1E1Tl$z$c&O&!Et=C!TqHf4K+2m>KEOZ^Uew~GGpw2<)R*c`DdPjjCMPCDrlclYPsc3{LqS!wzX+b$*v-ibha2Ld7q9MU zTorpeVy}fRvB&MT_&H`^QG?Gz0U72cdo9@`1D`d-nX|Vqv*=ZZ&K|4ewlEw=I}`NAMmZ z-5vNnLkYg0ncJkMY(zc7V92DJ2=;DCyYANZxpWQtXZu_~x{EYSFrd4GTsn(YxSUG^XsgS)bl!=-oJ#}$>dU!d zat7hG&gcqr5IIxY)S*4y{)$Z5_DU|D%_m;T^^?bNhK=!(4K&AF1fR&QB0inSb%eLm zXe(Z|F+N0chrg^txRgbL!RH_RXrj=Ug^E_M99+zi$49P0s9*3vMq^RVm1na%6;f3Lori0V!e{^DjKF`gI z`V;QAdg5^Dh&k}bhoL>E^m%khCn&t~%+a>M# zMw(<3ph+<-Rc)fN9ZgX(k8;TKpi9RYHS*l$@EMMMA;JyOG;wgEMxJkdYHW-_v2I?s zfshuTb}G|{Xwu1HD4F%{dHuKJ78#kDMF( zZ|0k6NYvQY7=e11$fV@72{DnQr$$D{N2O?U4+dLff>c-jSD%<>oujfjo7aGDMT~20 zjpx8l?$=S!NPNDlw410&+fz|84?3H-$~vRtZs-lgRuxgvcdENm*Y(q;YvR5F<6GwX zS$PXuU~e3$nr}U6g<&H2_Lo84&^T1f4{)cnKNyZfZsnsB6Oz(k8ZAkVnZ2v!SMNsq zkgLwvO}iL~`wp_lN6m^0%;HMP^rI#%nyX1I7HHBTc+#ruG-p)H@7GRlem_GxRAj+& zBb{;@4$7}553I|E*H90y<(2|3Ik2Or9(`<$<=;krZlbWxLaD8H^8W5?)>YhZqA-{IcgG{y!U zmKKSJ^Xa;2@8SH8Gz(<3w=p)yfz&x6Ej~4l=HRp~Tj@xCP1%i#jWH38;PFG!ordx# zNwzU=(ni_wJD?-*RRZN9JmHp-GrT4tCC|f}6be^dl68eA_fi@F4^X7^1kSip>IDz& zrL+v5+e>K_Jj#%ge+kUGOK}lAbC*(I)heYaHt_f$RVim|5&d|K_FfZIBaY9UNqV?v((A6*qxnxbO)5b8dxVl% z&Cc&k`>~%*0qy#2Z3=40oh06{1nOg-5S5e!6Z^P3iwQOb)#SDK0Yfe*D?}&8CniUx z#7szynGmgA0TdX^;&D(Z66QqXqoQNJ(3>-D3S5#$P*3>C+1}{*xTMGliE$}0k;!l! zp`A)P7{)*@j-0(s+Q zOw$>sLz9JNaesNY9}gD)5je!#g^o1$)aeC2cgGF?n9p zZ*qaJJR&~oj3IbLc#7)-3q0j8lsH+|Wx?cvT67&~jI}W)p;h_ll;p@sDXCHN8bw^0 zT;MOq^qDrsrD)-Ty)hvz;me*d3LE1#P>WG7`@7MB+-ypLJP8_qvoW5+l+I%lli{&O zaTzw`yU%yOg@)C(>y>yXh4yahKw6u(VxDsj#M9 zN=L?GOlMiycS)sen@q*+xmhVLGsRepkeH6k^6Co zZ+Tg%{6)8jJj4p*X{GJ71Wk>U2E7%bq%*4S_LMBhT2nG?p-U0 zka?elsQ~dTd#JnEuw$sBwSe2uK!mle$E^isaF?dLi|Yr6%FBrz*9&O6=KghAp2Lj- zx|D5xqaf6jjicZPSiCM*pwEFt>QWj#Mw2Rz)1*zXK3!^^VI8_P1xx3XG&W$OCIu#I z(*0CTN`%$sGVR^TWl@~{^hSaC>5T^uqHs{S9a0#Ip-Zzux_E5StdMR};+qx9ZZa;m zH3pT%L#_8n8eUE`E2PWId~0YQT1YoWZ9`>FlR^svXd=hhznpOfJOoS^QM(`b$sy#g z&_cS4sL;HSu31|)FQndzZ(c~VG>e^Q7(my+v7P0HVFmC}@~nY0J#Zb#M@NxzQNo8!X@<$OlZ$%QnPICHWreB0#0 zhH@&Z)M$(2WDOBM`;JF5s*jz{I1m^OFI!*3bQ&= z7auEZM7QXMUB-4=7A;|gyIcw%220zOd*)%s3fI$A#D}~>>){uIGuwQd&@I0(P@ZDv z8ctg)a`z^r#n%y)POyGmIb&X)U-+(vY(o$|8mJs8Dy>^vMeg|~nxb_V!L~*2a=WNO zMRjV?@tR|J0xhlrSMrI`F)1l>ypH52S+#JWtBHm&C6YXbi+@xsq3CHm|T^anrYXjWk zBhO@6>a(KyHK~&O3@Vf)XG`H?5-JNfBv9kgbj48npCX?|WLIjm!z#JJ)d1cx!bLru zMXZ;}4mzVVs=dXte~Mg1%@*)DoR>6>@n41{|&|qEeINrcnBu&x`P2TK=Mlo)WZuQPd=ms`OH4biz}p zOa|93abqG=q7##?7fnVN8)H?}`-t90i+rpNd{IQZU&)Ii8W{Xu7SXub^JP&JxuH+V z6D%ARQAKy@`fcaSB07q*UKUvgjk)v|#Zr-bE{3i_0$vqak7s>ZV+;%@bo_J$X9v

i?tH=45tvC3qS>}z3<%W&uy`i+C z_*_s5-}AK{yUINLUD2{8&ZCmzQv*|C6DQZJKWdb?S~=BS1T`xzFy{soH?aS|Xw9JA z?(%<8U^0t2yL0j6=JM1SLXSdnE{?TMYK=FngAT1O7I}=b&dhC}QA{0reMT|e z?C(LFr;!dG4uG}8q_~tc*f`T@yNFgZi)p4hX=btYVhm=K9B@0;5y73t){)!k{7jkM z^O?nd@(^2KV_b|@F0^xv9-TM^?(ActXde>IOvN?jKDOS*xEalyB9r11;j$`bT+DFRgH^Ws|aMzh%H zCH!6#R~H+e7t?uu&+}q>4q0Fg-Cq>bejD+knC?-(c~RU&j^GdAHePE$!=6we+zppe z>J8SUiz75?)@YQ>A6^vu#b9-OhL+GK>^@Y!12lDL3C-Myp(S)`JUq07j)R9oOK8f) zXIM$=e$=r|Y>b1nG6ndLkd7w$fa3@$9RrUMQWD@QLP}l0MTC@&gKr2a#e-7_rNF#r zSjpa%x(Z_C%MyP%Wwg+60JiD>>%Az$L1PEFUFO%K{&-nJ{aN}_Hl)U@l1B2zx|)r# zE=*o-^iOgVz1}6tw?AgSDrqLw18j^FK+SJQWxXn)S~#rU3?#x^Qho3} zcjfF#s4+=n;q_!GrNaxxQrZo#4@;>Byo)QP&IdHf3tmf=tP{L)s;o8t{kr5Z_4qc| zQaWYdaV>2qCw_jy+c4NEl?mX-LAh(L=2q(AFI8SR^N<3nzTmP!$v1atQ96*WKGsE- z(n;)ibZI?#O1;Dr$%PiM#h3AwTHuEPoRO6qQyO5C9QOYkX4e0hGSj?fTxn~k|HpXY zEatlw*_kV*mhPfHI=-fqW<7G&lu}zht||4EH%s9<;{+HG=+LV16iUTa0E!9RI7n$E z_-|15nY*qn)w{~3`54k<)4ae_gL2Y5CZp6VNFE_RhNa@c)!lX1RsW}|d%%6~d%y2)asBU4POsdG++(^cJban^46%$-~0DH}@n zs+`ch+mJ!=rOH?8S+QKj%DpO;FW0MVOr=VdD^;vmHaap=$R3y^e zcF6eH_FleLdnI4wEKXb z@q-4$cPrJa?|@-Fhw_dNECmM!cN#V40Ep}eiP3~b zvctx==vbWZ=JoJD^mgzMq9Ora!{@}8)2i|b4UHeve^GJ-x^&K1lu!4R<8>V^JRhlt zTHKcLgS*9W#fVnCDDB{=Kz^hzZ1Jo1ay}+9f|qo!$~n-HM%^7i!;In^wKQ{!(1U^T zQT)OpCAFITB6`FR12-AQhZglA?V(Y|fMh$6Gobm)6XkG6(!o(h_@faqD0iFLi)!v4 z^qDEZ&D{@+xzDEZ%N!^g$D z_|85Hzahc~3MU2>`~&z3{sp=rwe)L#dna;TIiUvCx;v?tiCT+}EXswW9rd<_i>{{O zCl;%Uj)tzc1VHVRO5U-E+WGGe`=z5%R2eiIyU=8gM3m+VEJ=Osafh&l(GGNS-zZan z*jj*@=Flh;A5*Njs7`JXzvMd`_|EDscN~0$Xb1nahvsV&o$6MW?--@zzG{ZVzqLg@ z9Ju?QJ08Hiw9V|}A9W}#x*$KHcLYj*=%~ooZ0~_KCpPgN-Oa@JzxH9`T$3^v=}_0r zi=_O*NIT!W8?>FS8-tFa`MG#)M_WN(phs?bdn0N7VxuFC zg%6Fe5{{%va^0(Qf^#9wzEMR{*RqX^f$O6Mf8Mr(`Gn2}#qJ;F;mZ{D(ze&VeQAz1 zdH&DuLiiO$JaVCHSj5L%iuAV%&P@250fP1(UOuXa8|~~gyhuQDfscw!1}N(n$4`)v z4u_+SyvVLky(>s2&XxYxf6bO}&W#(jOdr^90hO|PwxH5fDur0vQ7M^9o6RXr4NEeJ9R60YY>|{Y&L#0ZRQS{tyDs>DMq~+3yr1tf>G4$jK zdU9yJBr0W7>5gPFl@3yAon4T!s5CHiDm|A;r7;U;Q0WSluKyrNsZ?_9okh>xrBYs( zWGY>i{?|k({_TSKRGdan&Xq2tQVNxZ=mqI}Dy3^v>A59TI@@Onm42ks9^dy=+E1k} zl49CsxyA36;#Tzfx%zl_tIXjY_krv?A;eDs89IlX8M|j7q(e zKGAbKgmdAasdSo3vyTbVVJd~)nJ9>}sOUcWghvQJCr zCz6v#sko`#@I^#gM5WmWqf&{KPNl1BFHmVEmBv>Yu$Y{?NTsYeL0UnjYMx{C+%+mK zjTnQ-m5ZtLzFF}lL|RRyp?9t>TUH6gTU3k=xVDU(Tt+2X{Fm>Ew2?~ju}3x#X&aTg zoqx1(8UG-mAvc#_y~&8I?E_SNvmt730pDpzM{X+ojpWxQmf%|PHD|c#96m})Cg^)jHenPs9pSHy-O6s9D{^T$VuUl#2>nyFv*ITRMQ-SlPQyc# zDgDS$Fn>`oo*VAJTR5lUpR9EAYZFWIl5{gl+1WzJ|Fj~Czdh0q;V+~B^ze2|a7sTi zngC$3i?2CGhbA^qtN8s>d|V~;aLDZPeAnq3o=+Bvs?1l|K+ultbaL(T>*wVY<_7X< zb3*yOBm8AeNDt&4)6|lbez`~ zYx5hDs`5i8ROOA6YjIWhA>&KIM9&_~|B_sdUplcNe`#JNzV*z?{IBCn!Awz4FNsDe zEo~wEyYY3QK4*A!QUz`e-!!!fKWkDXKV(9w#hXmQ{L~>tH%6qsY*zAybzp-3LDNL9 z%lS8R8&F4SK1TZgZ8ey}4H+MezPzz$`G$-BXW0L2z!S6}h;e{U{FKW4^ese(`Myzp z1M!Xjtw)4@r48w#lz!P1eE;+sT-JZnK5>MwnKhxVndB<2k7!$3^sZq#e$Sd>U%B_{ zS+=jdh_ohuD{4Kn5`d(F){T7LFs0Boh#}if((qrFTTsH-csXBggQyw)@!Ik{nq3?2 zxl0TF_HV8p&j0`Gg3n8?^1o{#{Lgb6b4|qp7JysF&hH$M+$O(74}Wl;?yGuTnpY8c zP2*RjdwJc=n&6AkeA)yRZ(2v}L(I@I|6bBCL)3}G;)f-6Nf;fSFnUq)e`>XD7HX(k z61Ln{guq29{m6uebTKgtBWNLQ7W(*nJBxlD4m6ff>pfjYistwl|Lz+9q1zxmTtIR? z>W}G3Q6xb8Pn7;sNAhF7gFs)IN{S@v`ji^Vx0zHH$n58LtQ0z$*uK$9K6Y_Q?gxI* zVxdKc^IH~|eS}NVFkW>lzwR!B=C21jY(J_WNQ`eEgIsI!ruSMp~GANey1mv_Q+iPoa7z(uHLP zP{2LD(yog9``s}C$z>?|;hY8rzUlJPTpFcxU`1Pg-7d?&4Lgk&iH?&`)Vsa{H;<2A z8O>eiJFRTRcN`K0BU*7NVLcpm@%G&+e)XHu#)HS(2Kd->gKiope^{-$sx-+CFn zjCXA?6pTt^(};3O?GA6(^0(7MIWPZkmkEBoT9K^fVSCW&7DQQ6Qvnz-#6DTUl z1eMsn9G|y5l0UdU1Uy%p-vNby?~qBW;2lIEL~CSB&stIH?_JfdHBo%YX~b@%=7>6e zlTFru(|7qCuSVr(~ z(k=Y&Th-h#;#ptM%lP)&ii<$$+l+KL`TGPdAiWe{d5ebsoF2?4EL8HZw)v-A>Y>V@ zp*?#K?U|U^ckm#7(DtGt5KO6{#yhBHbJ88WB*n&;hVJukqh^?r1Ox&*=T6(=PeYXa zz+I$cKTJE7=$$I0nm#m`xCDs~{&poixUugn0@tqN2kmT0)m{_+x|ewQBD=I|5;2hL zO~g9UXhEylI=G|8u3n%M52`A)Gl za0RW6&>=AZftbX%$Q*!b?7d?EToMY9gVX3ihitZjkI4vEl9+%Tp5Z@igXt>?4d5Vu zc>hSg_P+5bXXBkf{stb#x5VSomrZw+AiP~n(!=|Qp=QtLkpsg}mnrj={JG5Gd=4JR zAAtMLkDsRmC9LFQv&N&e&2atmqrK3<n=}N2?ldg~8~|V3Y&5 zz-7z${bwd~8~Ga9qmeBgP|BTqgYpiYSMqz$j^OuYkKsdde&=-;$MI#)j^kIIAIHzX zI1X*u0avD7NJPQ+&MEm4=M#DBg>igw$cJ3AbGiKCOQpF>^zU=}HwXTv1d!bM>Xq&8Fs~88OQ;|fva=n3=rD(0Y-?Cf_JUByMW^spal~H>hmM+ z?`D7^Z1}hy=ec004IO!c^cdOUHJRI=y}&C!!E~9 z_W~ho{PgBY;gB4=*1kO%07(7c4=pTG+OLfPY1hxcKav38#gAJG0k{h)2`H%*xe^y^o`bUkxK||2kaDL;Iw4R<>nXVRP!y^f!r{V}wMWIBkpb339XGtNSU8+p zOL%oOaYqY__0Y@>1>2z3Hf~5^v1Z!2mPCKI9h_1Mm`^?2!NOwp@^M+f4||Jpm|_>> z_RAPS(KppNJFZ=dYo!2oJ8sFs@sAa`1w@tAt8%PfjsbNLp}4IE*MX!#HMxCYYJ8#| zcM;TpQyX*7pbR`Nj(Z7B6ZdY*y(h;zcHlCZtCF|vrV*tL&P@amj;GVs>MS-l^B1K>*q8cH6H<2qsQt243J7^F0nan*Sm57_c^$%e!q4@&N zjr%X+j$8fIhi~^&ACk^pW7ZA@{*b}_K=i(R9~VpParY3{nNY5Foa;i;<)?-8uX94$ z@e=ou9B+4xTSDyk_6GM!4(Xc*+zKV6b6;}55qavrxLV}8Q@?SCi9GW&_W)dTPu~EJ zXsCZ+zgfE<4{JfNn6O-G%{0DP63N~RINGeD3j1iqLQpbucU zc|o2e77gq;T#Yup2+%GrD-T5%TW*!%nNtFu1#naG;OPPH)R1;h4LHL=S`r0>k>jyT z19lSm-Le3=1k#TygyZV8fHy@!{(LF`X5&-wx@!SuIi!c~23#Z8FTNjehop%Q103YO zg--&OFxUtEjdwCz#hc;XKLy+d7AWO)Kq@Q7+Ft@LuuLMM2F*~4QKCTiCJoe~H*uYU zQ1#yfG{|+ZO9;CEL=}udY-9m?LsopN$1AjwrJ#9K5gt@AawWy7acjNg0L#Rg5XOM; zEwS4Ri)1CE-6HV=hhzsMgGdB74@X_y5;dC=D8MjW%_BKW>Y*qic|`p5RXNE$4W!w1 zCH=|q3JoRmq>!FyDyc`(kd~6-#P2J$mJA^Bx^|K*;@91}N|I%ezUe9HL+)$WR}xCD z>(gIynfQ6Nfs&s|8aY_bh=SUus^Re?Kn;G>_z0QgDy$I-xmQD@SRZae$d7Bk!hkZ~2?+M50 zizGZ~1l3tCS;1zS1Uz|#m^$WkGmV$dHlLb zq9;6pw@MiH(hwVEaW$2(tz{=1P_k0>58jH$m-dl8wv+l5a{@5dtOdNVc(RVC-GV zQDzg|yDu3|2(*60Zi1zcCC8Zwe10m~KnSdVA=$*LfxMq2yO>Q-=e1-cA&~WkMFSZ6 zs%p$-4|*q5-tZf{|8@IaQk!uO))E){B3a~s%F_UL=4XixrOgho;LmpHe$qAVb4wY= zqLwJ5#~?M@S40|uFLFD$HjdTXNZs0rV?jUmhv-B+}ZBMvNNp5ol$PSUy_hhnMqRSm} zSrRF}Oo*&3Io>N&Mq{EFt?Vf|Z_vrsk@Hzb*+Ry-S!;aRDw|4l+0H9#8UpG1QnEfa zNJE>*RHRUQoGhCqGzNplAB*%b0n(z;rB=CPSS>Qi(hRja*rzFctGPbHX)Kxop9zM&(8sF7b&tyWn*b9!(LRhrK>?-;@4YMQPAJ+Q$w<(PGoHu}5qZQ zZ7`%;B!MZUl~mURekO7?Ti_Tg+YlOu@-|7eunIr8KU!KbP=}^B4OF9QBW2@IT;;$h zu+{2sOnN-Oa^O}*r4^JQM>%<(Kzu7U@GPm_`r3i83ILsX-N1gtP@ftF7H4+gg!7Uh zlvXDp5dBf4RWx$ePUwxAHVcdGN=Pfsct% z?~e{#L0otIgurlO?1f2zjTrkr`s_l1@(#*%sM)B5h4}IG!0#9x<=?Qv@Uc08Q%LVo ze}3S6!t?rqz(K?r>!HB5jB~3KJ6Qb2H+Px-N8$YEPVyV%{PiBf`Nh42^WXFl z&U5|b>E!&*1mXOUp~88~FyZ{2;qokUe(5;je7gz4c`ivfe{7QcFgZVUrf|OYY~lRR zbA+m*n3w6QnMx zTvRSN2ff2kGJ6W3`JM~El( z4pa0dn!adO)Mi;lfSJozPx0{@k0Q*3dZlU|sCiIy6#A=*VkJYp=)%Ios)`RRfo=Q^ zMKo&mox+J8$dpldQVqpP4*j@XtHteN6&k6K9bHEeDQ0&yP@ERC$xRjAgBkexi(JNb z?>8uPgTf#@%$(d_u`GykL?wGFCKdwFfvfaVm{`UWs1Bv%zz_N;(gFlF3;HW&7K+V= z0g8SsZKZ(Cs-cPzBAX(^6)b&v0aob|3Lne3U4Za-v|_2qX6`t}^g`)o^>{_6!dWUg zDPK3bDT)b&V&j~uxFHj)u9&SDTqrEr9K~Rvb)jkV6)Zb_3N*eeMG+toc%9@G-3rAk zW07LE*e$eJthgt_#x7GVEfj3;?-ixQ>TX!2=v5djG=7aD1aC-Fv=Vs+uTi`Zc}mwS zzGuY7(ARt~Qr!PzA+`A97R9e3r5)*tg^ZL)_vgTub|}Uct_|GUtym_u$Z5EcEpq8z z#S#&#)_%o+Le;EVmg0k`rMia|GYW;({)nOsOB4vLs6L8W-%y8*rxkZXxMbl0fa0p6 z7(+LR0j`=jXl}csz@mqaxTm-zC=IuJsAw);koi=h6{?SKzfi;qJqs@Ji{g}cn>0_+ zT)d#?JH>t#ZQ{5zr|f1BvTKdX4&rSZyHXM+9QBn_wpI$+S(TK(iwFy7t+ITOzlw{uDZ?1N z0f9G&aK@cVpUADrzWgeMXXRJvw}VQ(=ohwQ%G08^{CYz9QaqZMt=uS@a?=In7ZEJ; zy0W`y>yi(Zjpai1XT4CKWLb>|Th~J|&6NraW*!^ruYPBFP$ibO<%d&at2*eINdApB zsHEt#C5=ITgikgnSp=w>7AXvQTg{anMvzgZ2YKZ^hokc{Zq;*wzNz4%#m| zP^HKDx>7w2Iw5N1@w1?9Vs_1oAdBdj=YJ0B#PT?THjYvmH_M{t%3#>KII)KgUwa=k z%I|jQ#IHd*bT~?B!70+qIjLb^mFa3fK7@(0)YGl$Q>!jc?LEE1v1xK)S=v3Q) zSq7~fFAK!`X9Nec?0NLVMB(O(g6oN`d&A;j|EM@|NpOPDgIt`54^B?C-q|`jGEf&4~eS zvDlT4C=yaztXOu*kb5lSA+(SYi}!`h!Z*rrdwaNL} z)T#N|*3&~8i3r>0g!Eyy-=Tl4^`d6VV1>{j?%_kmX~B|Yr2~Cj7$P>&#C0JC22BYQ z5`PhDY}p+0m)I*7-Ij0Nv3uC9o3StC8?nhY&&oG!^obC)sQ;$t@=Y=7a=s~!+{!ma z@B1N5L}MO*9P+)W(}bTwF0u}Pc-6a*^Q51n`w6m@DsfcV7Nly%Fvtr^1WYF$t5t0m z305_#u8Kp6+o4JkIQTbcP9G}YHI{KDWv9=Bvmg&01fYYckDZAs zcnU8DVtJ!gK`hZPK|+9}z+=X#%87M6G+E`JaL$;j@=rMX&QJ*xPA#54N9CUd^qHsf zKmM%AtEP!geLYq6gVYKu` zVg_}BoF3a`S5FNP&brh!l{A+UseUS;OfRKwEaV=QQ+L*}+2l2so67ZSfDU&qra_uP zqh%-uMHoyjFoD8mp(XD7VG$>RM=G z8?_TxZ>qk?(lGr9EDINKZzB}*Ky46w_F!9evV_Y;joYi&GpO8;=D@Q%s2{ToR}>+7 zm|B7Jx~Wg8fC?E0@wo(bzW@*_CaT9V^1^^xnxzr>DXCG=5w#XA&(^?qE-?P&2*IRDf_IN8O!JiM*_4S@0+T>UKqasBl`@cTL@hP?6m%q=72mQeQ3{m34R2 zu-`lv>F%r7FuE>=?xrToEU7@HL66n3ghk`0YL=Cr0-*8F)NL92gxV0 zBi^yP$zYuE9(uQbu1yT}fVb>&QKdgw{bDdq{HT7-;1YPjC-p-pJ2f$M<3DGPfcap& zp9?L+P;KGnxzf;7Qg^RBlyRgQjQc7=XEPJvgG2ie0)MGOStfT>1C>KVFEA)y(7*<5 z=r%&2ZFnfliw~5*T7BphW&$Qt=q5tos3mkOs}F?QLe*r#;c$i~v0~J4g~Cg3xhT{Z z%GetW#tkAu?=ZW<@nWH^i6YF!*$K2P5xSY>AqkkV1-e)^6!vS@3XR4)ONV~XXwViI zU{5us__&~1#9;KpcB=1mp)xYAGtXEY5>VZ zzgQktQ)T46Q->gjuZRVY?-=?9CVj#*c2b{Erq%JkVG6r{(a3~QE&ArECN!hG#T0;4 z386NWHx;%Z$NkZz2(}FhRm1EV7atpXo6JS!<3q!YkXjanHth*%pFcuhkhyD%&!G>@ zkd`rNDn&rrzq;l!%N8=q(A7?(Msrf4b@+BY%`vrDYxJzOMu%c%t1b9J8x7NIP6QnT zdPPFHT}RC~Wcs|Mo8}y;TF)LD*lC)Juk_WdC&$MoXx@;t|47YVlKLiSj*$DFP1cNJ zc{o6;Ht{Ar6GVB#%Hr@D8rBxp7*UvwH@a9*-gIvi9x+SPoY~n|rG=?+^97o#%zjP~ z5Fp6VH|cIYIuv1&;~ZY|TF=%KH%2i-b7i>3X0S`45aw*r+%hmCEIz6UMia6%!ixo{ z)NzQ`(#{wM;yK4PQZh===c)~k`CanTDNPZ^j=wP}3qx7(nolmSaY1vKxZ{_LnhQaY zUbv;%A%`^Sk!C1si-H1_sQHLoB~E&!+3aVJzj>p{ECgo(5&@)q@vI_&2))Q{lSUgRbPH>> z+JmefLvRt`2IF6J+Af4;GqaZV3s$SPD3NQswD6u)E>?N8CrNt6t8GB~1A8&;RF=8_ zj+)x$s97nk9vz%z4noda+ITdzq*jOK)X=KYU(d}gP~Lai5-7Hmwxr+R=y}=&ZZD<% z7fW6LR;nD=D5D(%Qx2S2PFtCz?Kj3`AWz1AJN=?IN(K zK)PXj?IPxGo?v3YgjY9nv9+7_9C4Hvy|jOkf#m5x?Lfxfx(U8GT-zDEQRsd~jsbU} z?l5?)_8N;jfCic%zzoLc$7?5%{w8jw_E(noY5+-m{&t)_5B^z(XQgV3 zNl?;wlNKFaqGj1W2aimB{GIj|ykezuzOZ+75(BLN-Ys~n6>hGn{Qe0@seRU0Ht^8r^U%JVRL0dHmX8cCMRUy zR}Aw7qxc^24N%wGVd?+8FbtZ07^HqqzMJTg|JQ$YTGTALB>BmilDJb`SQRPv94~1V z_QAz%zzc?jaV(AuB}AaS^jl{1-Tnr_IAlavwi=}y61DjG)UaMsA=`OY*iNV^IqFUh zYbs_Z&I=nMUJ%HK{R)*P7lfpS6%#M0i}J7iVQJXRK;eRFX<-|TLiRllOBZk3lNokM z%ud@MmMvzx9teX?8x*(9p|EKxA$$5<*hlf`l?!3d#q7D9u>E3oNp2XdGt%1zT?yME zW@D~}f!EQa-EM^S6RUamSy&H=aJ1#iuywGSKx(0Q7q(rz?ezPwJz{p=Z((i3TDC*XYJj0{=O;q2!qPnAE5%G~aKVNTg z9V|f7+g_E>wN(n)mKAgZMckaqx<tK%{t?z;JI=Ps=dQrDRykN>D z-EU%c_GMio@q(vUb(h8LnH#zX;syI|>HID``;M+Jw0~k@=_B1RvBI;S>Z*vAxbj+e zOuTL58{J&-XuS`*?&7ukKI%$|diYZs?sw#qf#DU!g4N3KDWc1+F^2nHz-0|L2)Avh z?+X_%ZC51xk!Y00CBvVJch#&G4lfZ%PC=&@7VhwH>jZ0r(#Rn*?R zf#Is?-WNsc>!-2V!H{LlMq z1RRUP??=ec!FbAXNz2ZQ0nIwhRekueJchpMe&>Ut>8;)dbh9!a$BSSED^NxGF(4}fsr3D5?c)V zKUvgMfN;d5PZ0G}%c`GRC^m^U{ZFiH;5&8tO(KzHZvCu65y|oBZ;2}2U!;&&Z;R>= z7sl$rI5t}UQGyzGDz3-P%jn0^N`|3(<@8LinTgI6i~v@FeyOMr#4pS12eRs&IHrJw z0n5n@qd5pqfmc@67b_G30t6Mx>8S68v#aXkne`5A!ce*HdNaONQ~#Oe=?`roT@T)b z$Hcw#Wzgoj`Y)_5=|_>`ruFqq-$18iLgV!zxL=&UZ-C%SFItGcq(#G9>l0Yn5m+?l zTfG`jX`}DWY(2^jVE$rO_LrVu`dgj!K}a)MUj;Sppnt|%rvj+1RrURFg--h3%&tVS z4t0lS2L5Dac~(NL2QW7LrkB1fvxW%*0t6WXH|m8;_SIKldA>r~xMqVdy-U#Bq|}$t z=An8W%J~wm$_rLQdxf|51*{;ZAstkR&)_(9)^*|7k?nXyhE z!_YNgsNoJ_rj5PZ^*1>>pTnvh`j=u>u}cqOA(@KfE4%e;#O#a={VFkAajza8me327 z`}AAH?8*J)TFva@VR*~|{Yvp@fRP#btgXYqqN z@QzT!DiJSUXJC4L`zw+TygJ-ak7bo7zp8iRLgVmBtDzaovKLkMgCj8YTIVw`ZH~!D zK+WogHpX#94X2o1#@MWfuUGYimjpt-F({B_l3_3oD`Oa<6gq%LWes1AFDI%R>WJfu zrG{Z3n@xq{FcjBYvf3`O~E{t}y7|6{N zZLR8RVEOR--zw_BE#eJ53uA~d^yf-LS>%}Ig0Ik7+Txc`=M<2r| zmK7y`^#V~$qCtgjZZVX_6^9vC6^4?4h5L>$I9Vuhyx}_>Hp$R1P>3`VW*D}LHjJKa zn9bl;1Q9iuYk(~na}0x6s^&*v8CKxlvBHjhXdpTc*;5R1oHgIjPpnkMg$9PLa2Q~F zu?)I!-xO?JY#1XJzkUhRU`b)#FEtEiX${@(DMS=K#M4cKRz|AWM)IKFkmsUfhYC@@uqi% z6e+seb+jGD1w|J}pKC>zLwi0L7?*yEqO@bTLecQ5jT6aBUs{x~#TbG-e;T?o3?4&f z7(3#yj|TYe#i6>6k1vb^p> zftDWLjq4cVPXq|?JCfwZ$-lyl@Ez}0XsF4!iA}lF@Flac4Wlx9qm)Ra0{!t@ zfDYeu8R3i5uTYB-?e!?gWekH)k{T?ybP*%Gkn;+SD`sSQ9Sy458$%&XzhXmfCJfam z?^~l5xf&R2qX*fVGI(GKV|P#+zEsLs2{_}R@D1n`$jhTeNfN@5apOK^(H^&zJYK&u;(_&zs zK+1kJ+jxYv?C+9|?-(mD`ex{S<6PpCD^iR%V30r~QjL39**siqWc&6R>2XSRHY)M! z<;Fy!llU~&CLsVJ05S;kvWu&Y2N{Qp-e`Ll_$XJYjYjyDqgVLhkH()!dUm@J_WQoV zsXJ&h#vOMV>#_tC-~heR)|2ogs@`5B(_2yn2#59=gIV6Jp$PMb8-q}d9HWwcE1zy@ z$FQY+60rn*JG#PoBU9LxkB$NT2*71rF~T19SNOlI3IU{y5}PueSdEoc`>+tfDIVMfg3VJ>8MmJUV<+QAys+*Z8>+SbsN3%KyX zu=dRQptuJrl~&`0O-*TpX4w`d)|q7|^x9+$$5HJ}@cT1@JD}O^O*&yxIjw_Tkk~lVTcSIPu}3ra*2{uZAdem}&Jt z?+`HTPrJ!ti?^f93Fy;0vlEXQWttm+VxIQWV$)btA2GXNyeSDD5t5^xsV3M@K(ouI zn`(;LUuK%pCBo6|$);t6;(#W8ZyJimrkGfk6=+Qyi=p|_SSN0QX_~+bJzZpC*;qyZ zF#z6SX*+Q95R_9*t3Y4Y0;QB@Ep7PPauY0`5e1@Rt63=(pgQo(HKy|{eP=#74CH@1Dd zkEq1;_L+Wm3O--^mZ_*8zODl4n9p?v=Ix?- zcckXi9f{22`G5p<39X{Vv-g?H1PIylS!N5% zINIWdxiji_%&bN+xn?a+J!D=hAfiS`%?lWK5E zCn0~M%ksDj0Fs2ke$r(#e8H0F5zV`9X4t8L0ZYvih{1jRP;{PIfvPm{=#afD7lfS; z%_HP!W6>&ly!nNBlxTypuUHxw@)w}S4SqH^W_heg5HL`5ga}sb^q1Ksm~PKJOC8aO zkENF7EQ5ico)cA8S;n&YSU=?QT0&5Q(IS2~Yns~9P2hz-gjv=U7S(~fgj-m?10*P) zki$R@-cX_*Hr8Tcc;l}Ci&WHs^Q;!wrAV9pcTP)RmL8qz9@wc+!cQIxf)8RW#r7hW zKEZQ$6u~UT~l(Tpg0#RLc%MVH+d#ax0EGJ}tXkd{C3)%gxEdAs{ zwn7KXUGV~6Crb;NaCCY%%NcmLm~?nu`&!_ahiJB9e+%qnquG}OEb!4&n%yzTvRf=| z#3;*a(NTwuw>TL3aY6kx&fT=(hLbJr7zXJA1axSYSxH_`*Pz(ZMYZU@wSHTCW2yzV z>(fTxcZLN*B3g&2IhGO%Za01N7Z2ktyIBgR<5yCurDOp5JaLp3A4HZ3Qf@f`rC$lH zj1DfhFt5JFKDF4%r$Skte!5>+CZNMtRDo#R(FO`^U1ed~0`zwnw12gQWjFwoZNhL+ zXDacjT$`Zo^$~IvE%adb~!6rMRq)JyUEU$9|RtCO*&7xxI1L@6|Z(0tDhFWvS za){N98r-v(nK?9gXt^$OhrMHlAV=Hp3DE4-LZ8V6qQw(f)d^&~sQYpuZ&Neq$OR-*L!MO`RonR6HpE13^o zu~a^IKxu1HrnLo-ieVb-PS@CA5-E~$dsj1FzF9m2z! zg9@z}oByHYxG?J4RvVYT&usNWjvt#`zu#W!0= zurzpDj_az{iVlx(G{zfuST|`HI-S44sL_LR_CV}DW=#-@t~q6mR|xGRJjePRzC}n{ zO~?%^d~=3ouidmlWJI$oZd<+L1(zOK;oA@NXp868tztIxXRAY)J>eQ}tv5sk6#doO zg2~t9wqFsz>>)=KAg{RDi_X{fMdH#Cw$~Dk+2)R48YV18V#`Rl>#%#5O&A%Lq=je)W-Cq&RRZ>pt8I}iu>irwK-mK>hWYKbD}-pD9X8l~d;-Vp62L$17UW|YHZ^M@@R9;F zvx}WChvRieY#D@m$K$q3q?qWF0{m~MY%dGdigDTn+jJSY0Uc4RUa>K4wkl9Jz`={P zd7eN#=(_D$AW&^{&$h5o6w!l6V8Ylurxjm#Vp~fZHX)0$A45^iAJ{B-_X}HBVhsJy zw(!EW3|dt4Kb>kU`NejQXgnv+cAscG{a?1?EOAJIYGSY5)S^SxBh5nWUHPNnj?F#^ z9%KGuo5A2I7z(JssNZGe1H$-5sJ$oAUJaf7JoMr?#AN@O$bVSv;~1OtbRmiv>9wzA ziDIBi6hRH^LiQ1a)3=rFLllsnscHXR4(XAGcGx9+0?%n|ht2*caLcClvgG*m*7k|y z`oQn(2S|FnlRX-|8^7yje?jVWrJd_T~xCLXeRu$?yjp+f{N zl@sl0g)0O4EEx(_*k<9PW9(j1M&ohzS*(~iVY2-i0jWRDzJ}R_{XvBTZ=GuosQ38@7&_6snPAO4^2=JicGyP(DSU6Y zJx~Ve(@gsqmS-=1b}X;P(R=^LNGSHGy)jW+@(DZ31d)PM!&W$DX9|J}5N@2Y!^obE z=AW~(1Z4$4l`hzsLZ1SJ2RZgDgvy@F_Dh9w_a0a6OaV^;m612>7YUX6x9u#^bOF$> zckE1I4j`nUl;iebcoze$u- z<&FJ3o4vj!^)}D`p0Nk`8s_3Vdp04p?6?05QY}8%S(a}|AO1C|-~O~i?3IlUeX^e_ zyrvSq*gG-y<{~Lr*|DOW`bAsfK)K@(OMpWw_~!D>5ESDn-XDL`ICe9Rbt!0ju3dvB zRB%tousfzRqa?hri)$MN`&F(KbIc@qr}Oo`MIAa6yV-8RD~mfyu{_*Hj0D581fg3I~J_+1Rtn0pUY7{wd7?;X^jIZ*)NT0Cm{nfbbz3ci7>8@B!+Q z;ehZV8z=5_v}g4+43R@Bqe4>9{caEv#F;$^1oAJw@17sn=|ecB0{WKQV7v(Rd}b9|w=(v4)# z6wXPEQw)(SfkB$8PA!fNb}C90ni9ccS#2rM9*Hq9thT^wm074wP3O@GW8XTN9{u>;slO0ywCe0!OWf&0w?es7f1K3AX)R2b*B{Y9V`6XTabmeT z{hY@NVL1`)Re$H(!dOm(IXuV-fpZobIizr;G7_CP{}1RK81961%q%o?l=DF0b)*~P zEW_HXV;HO8S6Q?0_9@VAAssW#`3vKOlR9@-^m(0s5hZJ$6Bbdj@TC+1d-+0VT;Z^{ zRga9qup5nxGx)m|0<3S9vqRxv54Ux~vU~-%Mc6Oq+bHm^yx9rsHCb4_#R(5>v+%X8 zLV>Hd3v%Bb&UuWpBvDrd4~W}mIpG0u7Vdjcz%G5*3A4>C{Nad`=}R8|UZN{@oObRY z$T`{0){OH}fi1qDDb^=0Akm(HGrsylkn&zT?kq4~~o{qTuAr&-yJ!b`c} zSM^FbEjT8|#k8M3zkQI^Cvo#zNLd#|fLVBaMHfVXS@_L2E{FiL@bmgEhyb(jj)pGU zCPy`PK?InEx3qLY1ek?OeCvV;Fbluz;DQJ+3!CFz5CLZ4fS#^tg|Qe7BAmF@K-T~T zmnnoe1Iv4gp;9AU%<)vxU$=~CS_Mx$9zN2wj%6?#veY#I&5!grQS;wiozct@uJ9_S z*uMo_I@h&GcuOW~tZSJBDtcmq>lVYX2tdp6fF##>mc9upH67>8a7|GG0otTzrnqYL8o7BpJQjRSy({53h2)l0v#=tqXpoH4_ip?7GH5 z+IWj=CrLkVB@UX2Pi%L=N>3&}v(t5wT%Ur4>w0Gj*ID)p*FDUlRm2Yuxt6lL$O(0% zTv?(bYW4))6P}S4(JTPJJmp$JwVmx^d9Q`qKKz`EDHftPue;z{P6*VxP!{ zF8~^4akG7n7F=a<5qCJ6kKs!LbcyPc+dY6~iHeX}d<=fu_fwSn2+Oh(txarYw+_R5 zKY=W39Teftq03g>yq5bI;~ZiFJa>-_N3LN-!|}_8?sIam51mb%ZQ*8mpiEf-rUh?o z?G7P>{+{pLx5*&Cpo4oKNt<+X!#2N6?C9c#Pk&|Nhh5$9=qwYj=6OT-NQ+R<7c=hu@Xl~zuXMP zX>;ATNWV)hHh-ZT7Wgu;ahYo$jv4vb+bC6kssC@&q3Y&BX8bx*`0_#77UfA^gk4 z+mE%DAL!6h1t3G!_oR^8qzHvjG zmx({+x#=|e_`lo`=Vjs#f4Cve%fzETyCKfY#1$l-iln6sQg|TF%f#P?fXp!CpdO-m zaZ`>CkM){yr!Y@-MompX2{XMOx6EwP-?$Vg#aV0s&T)A>j6L}P4AEgJ zj=Lg+tbxTn8yU1ixBcaG^q8@;gr~EVyMiagcs5A6)cinrB`fOTPq#c6VqhCfzcZ<| zXELg`)9XY7J9#>zDs^D&yVuFX(g*=+>Ef}jDEz33=eh)Hwy%cgSB6Rv9F#V|g8{xTr{!FxI0*8@Z^8G>0!X@C=m!J<>0tijAPcc?~?m&+ScV=D8aH zr{Y_97@}kZdiEwun3@k@9K)f@ zJdap>mfrkyxhIDhCS#R{We+LE7_-{L6w%R}BiDK^5CR|8GZ~a(WNh>VF^p&!Zr)CO zVD&ck%J)q7G+`NdpzL+R$14nbJ+NAsii_{_z)EB){%yafHp>JA5SO8x>0a4a->z73 zLcrd6O28g}#^Yuguqk#z*DGJI7Ph)7VE4K1fz`rPT>Yj8RtruL~{U^^8a$Qn@_Y2EBv%o&|^B*siUTXGF!Cq?i(<<*! z7B#gf?VXDXR=C=jy)9S*8b6E$PjGl)Ju4MIaeE=4NyR&hcp;!k#jB#clNdZ51M(Ox zLthQ|eJ^~RVMT2(#4V{<-M|ZR3s|7J7vdJMSUWGoEvdLxdoRQ-saV<33vmm0Vs|gZ zEvfiGZ!g3xsd(%FFRV|c;>|<6q|e9vaBoL;3+^Z;#RtcFVMRC<51HVlK3_SBGRTXqpIO}CVQ1f9Jn^_UjFi3bw0Flp zFB=gI1Q?Z24&OnEec9g444q3pj0dM&@?Io-s51_`=B>mM8Tnax5Wp$$h+E!4fQg^p z^PcA*-St37Cq42WAo4d)yh~+}-uy{8zTuUS4u372FZ%{M8aSWw-up@d>9`NxIF^Sw zKx-0)EvQAp#0qZMYxMyj%5?ZxqECW{=x)=}E+0z>O7t!wH23&Ek-9Z2;yXs_8dkyw zzfy7+-!JJK8VG62a=upN`1;DeNR|eiUlM|nw4~v%gsp&r=o%AUbwyk2`Q*4sJ>Rkb zP~!6jz9VcNyb6zMu`KUUjOs0XO#4ph&DUG`4iW;3+xkwj zYM?|rA5)x436$>OgP-5Ji(Yl|o%rVjFktj%>W7K;P2GHxN!j1`@Ubi-QT`FVe5Xh| zeBIZV_0Rc}RD(LHf|(v8*kE zqDA42<9t#^!-xnoC;E;N>ol3{JIbcnNf;`|^rX|Tl_n?$3!>gA96ZOz z6eAZ8+&9tf30M&|<@A_bpeHVZCzz37;ySVZr zUm(lIJ&FkCl%w<(juCj!OW!FbI~?%#`D$&h-fzCDETJq+Yeg9PIl{P)K8R=U;ys^z z5YOJlQzQ|;5_z;dBA%%o5P1K}T4Q`u9g)m5r~4X4T%arIihw}(E?()2fI#;y)|8BZ zK=&?Il#hTw_b$$@5CMViUA(kX1O&Qw@%e8eAke*wo7RbdK=&>VZWsZ9?p<7^Sp)>S zcd@r+L^Wo=8ytEi5FHxp{eP@|XIKd3FI)$3}9GwO_+1Q zoH3wl#>7Ec#T+p!WfpT*T(c-}T#{n+hh>~r^Bb*k#*YEQDU z%&QqpYUT3}8jIS7C4VxnsDsZ(G)z_hrZzx_vvW}~hYr4g4!&$qj!lPt1@09d@P43= z8e=sf*L-@BW}|$(;pK22)NHyDVG*J^q-95us^dPwC%KM{_L+q7EF+8;I8X37g;c{R zlE1`sp@{n4$C!g!&tOP(zd-2wOJ$jHnrh z*V}ziqm&;U{wehtR5K3Jy=cehoYxBu?e__(8Has`e1>B^A7}vi9b1@1A1_Ec>w_An z&}vxBZxKCy(Fe2B6c_>~@Y8auVC7A8-LHb@l|FxC*5|l4Z@r85zEyDRzRySWn>Rf2 z>5a6tRq*VY&uvUAPi3CMuZlUn@!5~r%}5bOlcl?SEO+MmCS$%w%mEbdzr-(fL9wIn zaaUZ6JDSXHPB;5i^{7__Wlen>BioYEFgwV%Z7nQ^m$!YY4{*W3DBmy0W_vUdknG7X zslE=7AM1-+*5mYBrT47`Y3aU?k>)uXD8j*}Se;P&a3uSc{&W<}GW2CvhJ*A|(UsiV8mY+7R1LSq`LpR~`PZ zsBV4^FyMl3r4?mJKOgT-EYJJ85T|#(o{)ddmmYM;BVBL$Vipm&cXNvfRTaLSk@}y+ zEklqKy(mq$O5a*Fhap4De6z{Nwtj9zwcHOgn&7IIb-zJ>*H>miH8lQ#?-6X()_&xR z>Vb21vFVBLN>)Y9p8H~EK{<>^fBT}k-(2CmSH6cCfs{ACCx2c8KryaidR^SRpMLPA zvr~Cw*Jt0;KmTsRVYK+_dkSe&%i+~`U%I(5k8C#eJAoyTYVLOtP2jnu-(*H$u#F#P zd4bb_nVsJm7M?CR_#w{s@mlQY%0E>Gk}!o15en zH1tFHp~!C&EN|q8T9Tk7HbGufKbi+TkEHwg9sPMr0E)2$GrwDyd2SA-Lp#4ZhwYzc%Y2Kl-2{e+~^e%?sy6<)zI5fYe4ztCB`($|U1 zzE*z*89TvG3=X+|wJc5Ypx$J^0mulEN1Uel{TSi&nBiAKBL%-w;y=f49F1GBZoVIC zrG%>}1`oLfel$N}9<*8LM^{SnKvCppkLeb3hz(8rxZy`%7_q|d0?LBk`u6 zKQ(6LK^q7Gh8ubG*x^T4O7h@5_|cV;JotT|AKm$v2UE-Zx}j{0!T(q(d2zxoAG1=z zu{6R6DDL>+c#DEiF;W-}dBY=-$jO9+<_Dz^O@L_a&o_94?UVyeplF!6Nj{;+ zm%`>%jd6mnQc)*!lcMT#Od@h2RD>P`W;Cj33^?Mu+wt;poKy7)|9?m zn=z4$dxQj7kNThFA+Vb zRYY9-iZFv*O3%aiYOElCH{xU#z;|nV*5bk8a?A7 zK8FnjJ;9#@Bb9SSRxoC+h~`u*BB})<%;_i2D83hnPy=SJ@Ro%l+EFhe!+sZG&OC7# z5lcj<0W(+l@1>%@7=cSGL^rT*v2c|LwOGXw*t=GAhY={+Ai9nv&~c*(wM5MkaNif6bhla&^sDXf zg0NzsycCW|t0mQERmjW9O`Q0g99z~6O@nlQ|5vni<%fw`f&PVz;!}w~YM98YuKMW8 z<6wU}Z&?JTa(_BjEP{eC{}fCw=SRiT17kkCkp!sx9Wbjpw4u)V*MPBEntw;kfbjOW1I8jK`PDxk;}#seaiph(#LoU(F$2c`zz74zlY{-~ zfUyXoM)=bKV-ai^?@tGeMX+M3KOHa@LEq{ATz4yUrav7p7D12s{&c`t1dj^+>432a zRxkFaTkDG8%5r}?U@U?ItNn5LNtx%D(=%j*o*}EpZ>{US(I1rn!)PGZK#z@W!YG_W zFs{<|hJpM1w_z+b`-1-(qRa2@3J%Bo-KqL`zluET{{b<+017vR>HOLy|4HoH_PYOD zcFnr&f1K4#-TVIaFI3Xa1|)aUk=FCPQQmznBHs zRqJV(ZNNcY)!(^L)dBXJlKzz??JeY=3RE+&P% zhxZr|;Alqw7(OTfGrDHbK%s{qSfPw0hKtDI|K8l1)#>kl*JinJ~M#!v z0&ms@JV*M*8Ms{%@S0V@#mxbKVhL>C8i1M!;50C3M*z*pQ%Hg#;2M^I+3o-n8uf_9 z{s7E;3diH-fdET}arbb*O)L*M8n6u0V>WpmaDk5reNG3gvZO3rE(Y91u%JNK;PW2= zsBDT{;o4UN=oh~WiO&s`OL7=a6#;gbt_m$&zNUU<05u0_P!-UL1;^a`0gteX81OK_ z1%h$Dz+GsB zGV7b(5T6qGH>ShIqyVSpfzdX!KDmRN9oq#CM#hCrgdz#wWk1_7kRIGDgzen}k02K2 z2&djEo12c%rC;DV=5E}wRO`Nht_8~jJYi5y;2ruaG#eUt4~@TMWS}dE#stn`*33zN zeq7)pwDcTYn~8xgj9A~vfixLXA*g@jug=o~X~v5}xG+7?(jMnEo5*<*=t3mR0_PK;c*{hq#qIQMc9n^}!mR@XB?8zhLH&xEdTVpJu!ob2QMJ zq+3P0g5}=8Z>-_sbY1sQ4J?fT0|lnT<3dO~5lE+?3c>AE;8AwHaXN4+X2z4F-0*8a zEuwkpT@QLx1g2RT*`D|_P{9U|rVsgdoqZHYr@IPa-jhHrGLmj0+`BS9c{{+hXS^sY zUj))A&qA2=DzGQ28M<17S8W)Pj@EQC!hg6JG)A@pezMCUjQp{PR; zo#Ujn*g0qtIywzldYRu8!_RTH?iGYuDd8=`J5czrr(;e~AB@&H81K?KMs&FM!!W(xWZ{`FQAW&W{3F=5TkswP_=d*_^gw6|k zj0uQF7|awCEjxi9qBt%LdSp(@K5Ctb^^zdOj1EvNRQpTIO@oHZgO;1}ufMc1s0gRc zY2d#)s1v3Y#a z)iWpIm0EXrc`#_Cpp8+7gZlowHV8u`6w#V^mj_wGydy!eNag&1sSWwZgBn_JmI8;) z1now8%n!u5ILRjPGqb}l2HBYLc02cS(C;{`Y4G?;5Nfl*_-8=_N&bT%VL#fIF=7)F zXnreblu&b3l|f4poQ$wups5N%%|!k{IQnO`9U1NiVRG*=ETBS`AsQs0g}?F2fczIh zZ!qRUA^MW4O_yyT@J-NFOqb~g!rFI1R;Ijz9sLm02q6(+U<5s+6)!~CUNtPy)~474-NdMg;A$A4 zFd~easu36wZ?d^u+@AO~7t>vH`|-Qxet_2X7V}<9HXau5AdBmXtsthJc$}cUvkk;+ zYoa}%_!or8^s%vcWlgXM#qxrVO~t4fWfWP=M@%k85p^IHw=zIHNf39CxJKfJ!9$4{ z6{w8t!eCg4c$&b*B~-iysW6}(VTNgcjYMh_@n7Oj&^boj2NNAQm@Urq1M<1g#O5UU zO^}3ajT65{ibIT0y~u$C@fALDtxXi8cFZ$wkgF9d(C$bJ*N473ioi43rx%l&DBF=Z zwGmsw_ZH&meAPoyEAdGTBJJ#ClK~~HCGIV@A|KzGx{`{$LH%G}NAYSio~^!1b#RR8 zjtY+dd5b+v=^?(0(PcFZP_lkCLSW*0@xk%ezG6&HTO%2F@a`w>A%v{Lf#UTDldZ-g z6w8C;HZZXUt3l$O0_wS;;?*@qh2Y`h)tK1@j$GAb%B$f#u{BZV2@L?ykeDwp%p8xG z`#;cLaB2cBBL0^qP@2Y3(Wfcmby)TN54nL;#g{SR?LXvf;r(p!)tbTNFA&?n*aBP^ z;RhQI=9fZooDi5cEflBLgjfSuT`cxRdnVO(0~oc;NQXRJCZ<~(s)9V>`*QJMbbR9~ zvEvZ2Ie4!Z&lDo&{u1$V3?gj}1{2zKoC;fah?ff?vd6CK5ZP=mDnxRyb?VZtWAQ$* z95djoMj%Vd#m(OB{5|xAKFOr9%1-K$P}VTY3#Z{m2L}OBFR%H%8^@9 z^oo+?(3&K3q9vp8g!Ql{M)E7eF;h!&Yl722BZ;@5;$|mG==XN_f>Vmbk6k0vB(JG4 zLr}WpJ9pJf+L+V7r({X$Gxe-&A?eNjc4{Np!O9=&Adw<=IT+Q2*s{eH%^xpGhK;=> zmzfbv=qEwUepKTSiX)69uJxB-()s;gP(yPhGz0x!@^P>PG0pRTA!ZGg+`?KW)t7-x z&zCHK_G2VvELw3^DIX_sM!Gdn$S2GqM&(I1GK=t^Ci#Y#d^JiMOTG`1*usHX5(%PH z{9hD8Q7mC4lsM&RVdla*!EZ~p)0+6p~W)EKXxW7NTYw;Qb_(r31(r6 zTP(~?tgwdZn3^bW~U zM2%Eaz^pe?`pro0cj{11XO(WyVvnSk8K)3ZzF&e_8!!UWw8RG`sB9=4LajRzYtSE; zv~i`C%~{0$8BUU2iZq>E5JhIbOo8r}~!6W>cn&DiYw zSj{HnOAXm{{fcJ;R5z;xwS=2WQOhrahkC(4GwGq4spYbTbhN-G+giE+>qA_H7ura7 z*Nn|;JLw>S%`gWv8_0K*#v$5S7B+|To;2HCIzaFwCr@eq&#MI})&xYu%sAwNxtDZ= zpoduvrSpIO^*qd_Mp6};!{MgV9DzfkpL8CU!&H%UhyddlDD8oT5d}%_3ou?%Ooi|o z=@2X}Lz-wVl*^=T1P;+*(%D#1MukgJ-*uyw(FtlPr8_Z$U0S#~k<__aip|Z{ zX)YS3gH~z>V{}qIW*E#=Mmk83^NtJs zx=5e%Js0THL)s6sgP9}SVUQG+SAkPGEnJ(NIn&J@J`9mI5=aJ&lDN46!g_nbZtv9?ePB>&p&MXN~j^ zBpU%?%sQ#JV67WBNgrbA6xd7c!FQ(=l_7;W5C?|Y6r=)KY;W;+J#cSS+5uW6s!NHz{otHY1$7iL^ zr1+j&2auhS+F6=RUtrQLg_O0Y83LwVlp;1D68aKPqED-^BGX5=&n5@&xOtG5e@L?s zeDB_q%1FmsQcKuyNqX9hIL)BL*2&kT;imlUxf{}8O#5%d#S9;5*=~FvYSnFN9}A8M zX?#yQ>*wVIisgeD{?c;&VAVtELS7HV@I*TG=U-1am|;()u1FpB1OLCJD+CU=UrMKA zIavK8O-6Hg{)TnHf@9oV$l&+Vu~-gsK1f?*+IyhpST7e zLRKvYXAPlsf`_^BcD^qtc%NYXQ-gz>*z>>cR|YR{j1yN*f=358B^U0<^sbu2A7)fG*z2}R|z_f?K)}*hC)xZ9 zt;F z542oMl71otF_H!6lOZ%qa4DH{CS(UfURt~xzwrFm*$~v8phID@OtScNh!r_`HAI*d zRsIpukC7_55`q~SS3?4YjK^q{A;8SrA@t+UrF=v!z8i81%rK4dz=%>IS2=wryQR6=<7C1e4;?wlc8$^Hy6m(5|< zBUUo7Fe+fSz3c?0NvY;b=-X-&$BQBD$+}%~H`2#NhFBP5?0bQetE{#wWhU~KVdl&! zMh^7ylT{$qmjjRdWpuf+l>8bb!yGT*2rLoHP!oDw;ZIW8P)1;&Otu{1w;V>PT!tA{ z0WEx#y?b(`4AVvD-hDhub{uI=IUrTZIxqsWHF)j+5i7fl>Gg5!Qxj!f8G+5oc>8;m zB14VaI0D_ZyarC_@EWi+$o@n-!0b#}U#5Yt&F~sfw~)~kDW&AgFR}?(8*bEEM$ZwK zlD~hIVU{L2Wd^mARiYKKv4gAyBVg7^hB^Gi5s2$7LrvImh0k>52{h^??99d6BAaDpi3=SA7JCCmZyTfG}jDTzuJ{IPT zmYqRppEZR!P&H20pApEIfY-o+iL$@Y1nN(b(TyCXqdt%0lac>*m6p1|V58W0HhU8ZFk7`g=ShC7R8C(#;cxPteBfvfOQ zc=PHS1i{F4vK34Nw>IF7(08NkF2k_iA{&P_W;|$7G8c0qseQ2B6U?*(db751f@P zWAE;GL5A4W#s~Bb<+9;u0>>}O1~UTDSMjYu?ll=I(GECG)XHL$Pbd*H=yGSs0$&IVeT$nP@( z(dP0!SPc|f$R8p@Kv!_Lk*{I|_S(tO{V@xB`DlhQ!BLKG3RgPGo3N(vq^lfrkdafS zySw}d+8IXGmUGS!?0rFj}wK+Hl73w$)=OJ=>s*JXr!%=aH!>}DGXGb?spwsLtnW)ka==c zQoT9ruF(o()VGkJCQt*yOZ;+ z6P7#NO7d&s{$A&&+N-LchdJW^Y+?$;8LtUWZ%+UT=u0Ro*Ga6mzhd#&n1V>}`vQT@dS{Q0c zw|Bt9C3q_Uiqs5Ub2B%Ex{!vG!|8eO*k16@x=>H7L_ncTSm>C&BXl_C>r|XtUcAuM zhT_wqEvSOY+w-B5uwF)i8bIyx(65Y=`?b)%XoFGT4|ON`feE~d7F31$qg6zq0vMlO zPeXGsU!-Cxf_A21d$9}%E$mJ>vOrLVIQ>W4DEI zU7p@M!h9Tm-pAq4k+7{860}@r*10T!ZO6mPn4$(<3cJP>qrDPFKYUGlI#3y{POh z$w-TEdotE1P6AiW!W&?SG8mvRgB$#Oy%C;6Vw?)LHwpL0zMhOsjB_ITfpPAn-tjO3 z-oD{~v$}MUhjVrLAT*q-%Z1_LRZL?eBg0eN5NtX3%k3YhBI9-8m;*OP0FLY|SYQbE zwWfUb{SyA1@mk+Hd>3XIbFqJTKjLMGps}t`xC2={E3P>V?Gqk=*v- zMo+aU`~jP|51++;&)gh771P9L7e=%p85MDdz;|~zD#?Kn!Ih{7gj+)3 zvG9AWZXHjA?`A{RQ|H6?+R|&@jqtM$^qTc3{4OIN`YilA(|hQP@D48YI^QH>3|fFH zw}{$g_Re@$@>m@I8|dvKtS~!!nJ7T9-Z25Lc|^QngwOg!%(kc3w(^L_jCfK+1pVkD z?K3DM_OcpsNs8!!B;K6_4+^&+86)DYfSPkdjJ;9LKVaB`4N(65!1Lgj>r zx6BK*UE@?(-2GbLxw&N%_n80w_8c(G$~WFd{U9&3{BJq`So-^+AM$ zc86g2i->v{Z8Ah?@FAi(6^!J3jllG&I93$Hfh;|)wuIT=A|5lfjxdRgL{tyq;Kl_e z%z{%^k=|%EQ3Pk0SSvE0Rh^qtK@482KKJ+%YX785F*eO^^Y(HK7P~ zOGS}(n7K)+o-CLZ7TE%++blv0yAgHA1WU+`j{K8ZerILmKP=|AjEnrtu35>EqY<4* z!VNkMzeFZ6Ybt0PISJcEpcu8u<_UCEb*f`zE%GE;T@UWGi)_d2O4%{;EymQjuEY6R z3Bw_niz)Wk{-AG?nYfJ7$nzHM%`;q4C zy82;cC<|N_FC#5jP`&#$@(%0C9r_mOgC02l8ka~9>F<%d!Zf$2K=jC$!gxS>{V2AR zA8fp%!dd&L@r^31g|+A3TPMzh2l6NxCg^ZhLJ{m?b!5~V#;GVeikr{tql`Mw>@PYt zY6a$_Q=H*+$cj2fou2so5`|g+<=9b-S|Du|b&ys0i`G%^kqbf@#B*liJowZt3O(1r z5bWS`@2G7|GgJCU?ZbKl*}N)oBMclDRm8%XeO?siI5wvq3gk?r8xt)dcyiPyR)c|4 zqcqH_`s7D_!9)&jvbo`cC>wZR5Y-M74vi-)>%yDjD1Ub%vz4Tft~;aFB5a%;5he79 zr~}FERN=^fKdZbn>Nf-wrB#QNS4Jtw*s>@~;#U^p3U46F3Mt|bEX?i{BbknTeu689 zq73wWaRZ4n2|E$BsRq*ZfcYn*&S4_0kx~zEITN*;rV3zeZk>xNtPvZZ3sF{>>H8mS zZeNU|8Ra=Pi!Mhks1cj0D^V9}rkjq}qjm~xd@G_*dF=!{>;ZjmMR{U%1JshQ3Pj*; z)Z`kespw?RKR|31CxzPqj*3$>NdhaD z=Bzj^-1@jGRtvYc+!ULH+aeFeM@%Db6g!$2I#<-CFIUK*bA3fxO{C_rAk9nB-iFuX zem_M-jo1}jiE@XTL5kru;>DpXktilx^0cDD6yY_ZMS{Cj)CQ`wku~DQ!+6IiX7j|z zr&tC3La?906JEwCmejOKwm(= zJj2=Q(6)-1!mV3J#dqPhX%~f3uvZh&2Ng4La}i(6+Mq4-%#w)_)0$l0qo_@utcYn(GVUl`VZ>2I6HJKU0G%!kPmFu}b3Qmn)A=?)al3^TAcQt^hm&lOkE2rs8zaUh=0X~5q6RuPFA^D-hZ z&N8|Tw2*7Q1WNpx?dEsZBzRz_py2&me|lRK-TF>#EQ1>Krx1u}$ggcwCJ> z!mc;3M{^B8K}Ga=_IKCHXeBeZ6@Nw#WH{~*q8-?^>Emd7_V2Q%(Q0J{ zv^9JF``#Ww)%sosCUd@1$hfHf0 zm%0JDTM}~|r{fZsv?*p26^zKY#r%%NDA^tp#V{U}#$bXU z6^NSTE}n;EU(9?gkK+9?@r=j4vY0X~M(*L5gA7A+JO*>fhm&R330@!noQ^s0^E`lJ zY@jwrW|m`(y`=Pyn7IsM-qn~>KhJ=9A9a!IF$tI{A+B(n3NB(1O=Zj>EP={9F%FnM z6eTc=cn`9-BV{d=PUP9c7 zEy?WAu9o1^L}|xJd-*D}nYMESm3y(I$;(qQwaDz7{riyiGG&F4v|g@k#YnG-P$Juz zk=4l7yvj|ZlrnqDHY`bbnzAoVQ#N4ay$s4L81i%4D;L847Rui!7O&_wt(83)=cDbE zhzJf8@GLWd_MMeySYIHZtFj#<_**aKW@MjWD4D(ZiW{l4>R?Nr?~yw}tsEumuW@{d z=Rl)vXO2)#V$83O!J5dAH(7yvoHB?B(s81)HxuCOZ%SKsy*5*+Vx2{g1{x--5o5U;;oW?JC_Lwz8{r7!fo3x${sbTUh@SFRkfj~sY=XI_J9%# z)iG2^6XfRrN$uSo?4gN`Dqf&Dtd`2ic%!3gHIi{Bc;K!YZp!JFtf{SXB}<)Ep0Koz zYNSy8f%R0AaMj<5-0)U8Kt_F4EYgiR1aH!DXq;2QjUZn#!b^3o23(M#P54?Olkz699|15=-Ljif-UV;*qELR@!6{J0*5P|@hb4{s@f;O zJnOE?!CI7KPgNBUQ_x3++0nvPYf@hoDibeP_)33OPeBqxjtVpG;$R8}sZgm^xWeM0 z)g0CgS7G)UaWF4Os4)3>`54iEjH-j6hdbl&dhi{uLgnS<1RxVtV+0O9lku@KXNn55 ziw6cyRsAKrzS|6ZnA|i|g-XoJsUTpEYNEj5z&yMP>=sZ_uwJ>eP*ossNG?(>!@?~5 zU4=@|%jrQ=tePuuxVKDIjO8F-p+aTo8> z9#z#9hM=J*@D1qLlc+`<=A2gf3a>wT4r7zNZPmFzdxTgONdHjH5j1)6vI>zBj_1($ zstT2_mov=h8>+1Whp!cQJ?L($enabFa+Qj1f#sYd{hn$$R-MIv(IF+a@X3c%0G>nk z6MTEI>8T2py_c(t$iG$l1rC<4RBN%Kbod9=Z1cuc`9`%v;IQI7K1jU%pgM~lZsvSe zT@*Mp|E5}l)kDd56)Kl6R~Ip+>I#8_$U?mV%VCnG8sDXMwNXD8I5^i*Z^UxwZ?DGN z+94eer_}02LTwI?!yCo%c=ewG%s8I=jIS%2i)I9`I zHn&k@7T!6SH@~V;Ie)pr)7q3=y6(|cFfg?T?UdU{CPU%iqSr65P$7walsgVaw1h14CYM$eaZ7^cS0RlOUbo+@z2 zAFal0uHf`~Ym6F|378h{L^{epb;30q|S_)-(SN*sxID1iK!_RRvToR{v&B#G{?0mu4_ zx;Dl(slY7=#c_lk-_#0B*N-A(L#~CUA!2L^v~X=}UK1Z3H1zBwrJ)v2J$3c}+6C;?WI6?DKFwKY*%@KjGomLZ#^+mEJB(y&$GBn2p zT<7K*tbI0TV0N&pr6w7zvq|kWpV6|AM4FT}c@W)=)oy4UP0y+iTLk4@H2(;Cy3}1$ zh)EK`RVK|o94xqS$mklVh~hXv#aK;ejEXqFxig6(+?lMIg!UVjc9@*%;ob#Wj zIiWChV8~`ojKJyeb`3616!TP;k(kho#9d(XZp|(Marl86*a$^*1;0a@HW(Y>qQ`&J z6E8TW2}U~=g{lLc&TAeE*5CHBW&$R2566q8DJC>caTln3qOsz2Mc)0b!3^9vx1@lc zR(xaR`Cc;&ZCKUGig&7F*P(SqQR=}Ii&#e?Uazr>&GW!@8k)0|!*e0NNvs-8=SR|F ztCq125G;zFR*%=!nfTb2m`ZGv9ov!6l*L`ZqfP8K!PalIkHs_@K*5%yE&PAd7FYC) z?Sj@5#d3x#{bEama5gt5_9MEXpy`XXww#tppBb^3X-dwpY4YOVgigrES+Prmkh*qG zY%SsT*u2=T0^ev7dz}Aujmx6gT6`5ZSsnXb0FbYZt4>D$;7f&#CV;rUi^<$?+~w~0%4!&W&>lZ-mH%!y44 zI|0q-d|DWr`HzgdEs&}`I_@xPY$lFxM-I-VDWaAJRh}%gkk~3nk2-m<_qHL z35`bX!nmt~iFPlJdxaU$W;3Qylfo6ya7`TUC^h4EYHi#sA!hd28COS$sdIM4jS#5T z+aGsTc);{@+zjD?;&X9hg$E>m#LdI>Jg5L&3%;t%$$(wqrQm!kZWv}Ns2|Vu|iWfF~LbIdsPX(b3$E$@NayDMV z3GD(qZ&n-X(#m*yLH+}G6>>pPIxTX&1Rp3IIQSE z^Dpng^ddPrT=M4Y!3p_7WsV3<*eFEWh}eYL!mrm75>RtOCg}-7NiE+<39Ly=zrwe`p5hE`0ry__+y~rF5=?L}A?E z*LevZf-OxbNU+1$ItTV6g>%O5360S`O$xIe)-OqD62M1?%99DEhzbPf>j?ueBxt#| zgeGtv2QzOb+!jcTvPd+V*HgT44>;5rusBruHm&9rO?aqj#Ny3k3&60)*x6Q4RRtdMZc1cqN ze_C#zbkmuSsx!TlmI^hY@=H1@+`3AWW(c=i!jrZMw}Vtk>xElMQqlt9_OdSNgK&Gh zMbcQ|6@6MI?QtW0dN{g6bl;@g7W}PvP?Fq|yCsW;CkaP#mybwtz=R5_v3H1CdbKcV z44)Qh;kYCR!M1nhC1ExUQLH>LpOSPGQ{!CWu~U=A30CJY1J9w&%%pNOhpO30IRb~y zbCYJ{beaci=Ov|M)|xmytS_kMAYPa>@8>xHg=vd^z1iX`7XMt-!q2R6P zWOKpnUMZ6sU}QH|s}=bkeAS9L$=Z0r(fH)MLVs&dYO)9e%h4b3EjgX-e{qF1hUAhk zM9eh8WP#n}Sx;>u71|?X!Wxvk0oyto}GTS z`q{Me)z7}ZQ2p%Ai^Sz5z*t1*>J(i{1 z5%h3Fk%CRu6Gp0yjZi(ThreS}Jg~}OSXr>ILyFPjB0E=WMAkLsyI^r~V^TDNM&?bZ zmNIKnwUnRps-@gNC1sJIkshpG-N7QOc2&86>xXi8UmgPVvBmc*;RQ z@IIHa#gu1Lbs+_l6XXY$@?y$VGal>O<&*_Ak}TvZa{*3E8*ij6$6^K7>1PA(6)DSk zEI3)2QWsPIRLG$uV^}9km~}6u52g!ZM6f2ot5ci7m-{Kt%}BlC*6#4_amq?dPE^?b zGKIDzOlqk0F6FcEYn`ttO|AG}b>^uN=KSpf>r@aPXy=$}XT$$GqE6~98=SVf5<_{4 zBhjuM+8p#vQr|oA^xA}`(#adHCO$@_B5PH^KJ~J(J!qm*>3LO7$h4T$Ntot`Dzhu8 za!;*8g3AW>g!^%+#TGobuK1m8mZ{v{_xbLrj*6xQK^`K`2%R{=+wlTXhjcGb5p-EDpMw= zZmvPy>*3U-)NPpNo>%FN)Jn|07NaJ-iG-wjK%IrDi!sX%MwkYq;e87ivgHIdI2vRR zc~Ql%^tGgLRjMl)a4ppnQfIse*e(|zf6r!wtN zYTr;8pJr=CuPf5h7P`@^vO`)QCwg7qKP{1!e>p5|unoO-9iP^k;T)Ww_MZI?i_ytY4$(@OEdv^h-5kYj1P+4bq^ zG$;1DFBj8BvcHF2OS_G=MHb1pN^&M!CZu|k^;s=FORLhx+8S*k;!c`i3uRBzuGLIB zYHq@70@}2+hwv9^1I#J^HLufLnH+mRq`hHQvgLc)2Ks(zYpb2ktmRQH?RoY)xN3`7 ztu?E!<>Wr!NLz|o4KmhV{p$GZOw0qdr6#lZl*mqN>Pkp(kaj2{LU7H?($$$Zq~pQi z7G(Cho0g=(q#PU4aBW>D@Dyv?Bf3-bmMwOjr(a@6UX;|WO}1F4Tf>78ZJ-HhU!rg@ z@gQ68wX6*ha_tpMlWY9&p@l+=9zJmFU#4r_NKUjCv+6Q_vDTd|)o7DRnObWJpJTL< zm>BXO7|aNU0RZKpFsEv%NYGwD)F+4WGEut^(OV&$1Or-VyAj(oe^= zjQ#uD@!Biw_cIf<6_^Hy6UbPz-XtquTWB(uIZXI4CeCElD((K7qIyB&HChi$9R3eEFZi%td)k!eb!np()ARoyKy>Iu{@2g%wa0|piyyUgGL|cr|5>{T zt>|*=^m=5|;g+uOmq~iCAez5rIx6)Lry`1YT@Yw@t@Pu96!~uH`-Ize_0x?4$-L5y z0$DdqN3G&;<`TS9>rBR$w)BLyzUh;!xC$b5{nA}Y{$;HvG?t`)#I%q9!KSl7tiFx~ zr|%ZTn;n`?k0o(+&@MdvA9Mb;V|03&AnD$?^muFjS4VC7K*U~GpcE3Vd4sddPJf4t zJ)>b$mvp-SjpI6|NBU%epxc1-dwhEW*2B`H1g=@*($`z?&)Vmu|A`sYaF#HtAbo`$ zUl+ZW8SA3s^7JuiYo&;`FlcT13xV{Y&FOy%x7|w98wvai52POy>ZM0n`exx)bU2-! z&*C&taU`97l$yJpdn`T5p1-~INBU0T*X5Vf-wE1UcRk%hctv?-dbyyutq;$3LxnB~ z;}xthp@l7po14Ba`4pqWY*M5sgzuVVs&rXaB>zl^Gue@-JBMheC{{6KChM+Z6v`ET zpQ<}%%5ylEuEWgIaWK((oi|dY#SoCGqkAGaJ=iwat-$JGObeY8VsuM50ot|E(Oo+Y zd&pdfrX8Nc_V&82Xgxg2)*Tk~u(ykD8CDNL-E@g)4zWF}Ik@%FA-d&2)!7--$>FNO zZJ=(Kpn}_jFt6upGj)ir6f$*=X`>}cH}dot~Ah&#!fs&geGNLPLiIO1%de zTA=fU4W{}4bDrH3OZ{#vI|c};w)#1yWWXw!3p}f(pN9-RKROrpOiu7~!D@GXDWV-P z_Lba7hKK$m0w5dotw`mHOiQ?4TR$128zX`@>HFN!p4@QEr28pNk!3{;qtjKwjD zer1gm;uNem!`LpBqbC`VKs}3_a=aFNsJzmNtx9&hvo(5D!m0#D+0nHjeZ1E zO?12-vm2aI0V>#gOf&mK4)0{Xf*z&nOK=q=h?B0>&#ak3=ID8a*k$T59n2pxb;;5< zsTmb@3qAdI?g^r8rN>N5|DaOVT5pYM-8qCUBlXtgn}5a#xRropV|LfJ|WAyYB;8Z0O^t)ZaQC~IyJ%QH6`d-MoAuxTpehSlt>nc2f8LRcaXaXbG>5CWvj}rY(TxAfL zw^6S`6Ii%KKc5khY}fC=5?H?j)!_na2z6LE9k~au{nvZ-xbL(v+ZlC$?+kq?({I5F zKj5(51la=_L6m>cP|i*fklEg$y3gGrR6>XsAaUCAikq@C>t~fU*rEx#OjJ7#3pKh2+Q~G$fxVO0}h-hM7pM zg%QncsW(XtF-Sn8H0(r^p)ft*h}uve*(c(}aUxF&qzagwY}kY*LiNhQ)PjSlh6%{V zOK|>!XLkKtm$Au;UKh8>Xu+O)-8w^yv1cP)VHkc@k>No4Rb^Nz_Tr~ODdund za8KPa;|XO)0=i~khIA$b3T$_Q}he4_LA`LfOwI#v(Gpu0R&I~;> zAr@2M`RuZbIPGW=N6 zZSsk)iSo}GboW0E?$8(1R1U2szngCf!(Co*7BLt)~>|c?mbruFXVkk@^o7=Fo%@AQgg3GFw@Y zj_Xv;WZ~9KWRH{+ER~e)&h!G)?U{BMC#$B!!yMU}x!08EHG5Ykvh&UJ0?JELb4sS` zD@mhsDY5WyABE$o`5w%ii7=%9k+o-8<_+Ww)xS0W;b`U%f!Ej*|37#gI+@uJ(=BD< z0X6k?HSrSziEPrq9cKKI+1QLkzgE&TL60|uf_Fxd0qZO3K-A;R#TMLK;pyL*jcZ~&0^-J3nOFJBf%$JT={9TTa?tZ# zW~oU*b4onqLuNZCI(dtrIBRO^xd2!OXOK}A2WB`FDz?`aN8gv zOC~(fF(!*{K<6HisIrW;ZKlcEgB%ibb<8y#-lTIf{S zU)#AZjOv`#$%0D6bszufk>zel|Ddy{(QD%SXVH5|7?Neit|_CkI$P0e$%L$8_ILW! zEMHm>2F=Q9hd9;)lt(XHm^8X)u-yI%R5k2~r^g>7o z0g^xxdWY?W-bFfOlkBG7y}LJk(;G=>p$LKoPzDewN-t6rhTcR#>8Mm`Dky@2T~Xkj zJ9qAa{(dj{9NwS!`F%SX=AJoy&di*dxjZ%;_x*gVI}4cQ?V~gC_48wy4&{m;Bly@8 z?YK1d4F)|109o_D9NSV_Ly5RDb})jLoT?${yEg@NCLv0pIifGCBIc;ioFqn-(O9OFVzLyr zxkV3sE(C(zqkFJ;Wr~15{>>*^cn%)=zxlg497p;`cL-xM$cgB0pXjc*UAyR)8PLE$ zM^1OPp0m(tM|3dW%SV?m^o&FfVt_ESBWw4~YofjJqnhXp*6tC3;5#qc(2f;{`+K5; z@DID99jrLOHEq!Y`Z0DtKlO4TzVAoZ)`uOXW?0b^`A~1A4?0_JQKQYv%z>zKn$;K08fP{zVzoNG!pw|R z{qg29%9!~R*?q;KNoHSW9P+1_7g8L;r?V^R&{xb%iI_w|HqA6Ipg34&n`bbJ0#AF* z{28;;dQxNFMsfIPo_P){4u8F2W}09SK2#zXAKENp=R@>c=6lS1`1)-#JcU9WM&&Yg z9M&y2M=WZH z&DUx7bKW;kVeNj`2j*)G-6O(+Uf7&SaagyLJ(f7T%dB8lh0?v|*C`H74zQ>rK6}8t ziJ^PE;uH6Q|50NwIByIyVkK0 z9&*tl!NBW=CF?PxZhg%G@7k|w?hUuaZ zB8mY%F>@&nxBX&XW3|`N`Z1kY*?{jfh?z`rsB9R+JPX+n95a$(|3lQJSTy~u)Ns5w zBF5&9hT2j>P+Vk8Fq$~P9ESV0idn=s!HUIPyBNFVb@2I4F|d~@Dm`A+B?j(fB1NHF z4BW{?ilM3)xRZ$#&!}S_($B6KVw!qLweG!Q!dX^EfxtfKLF#1>bYKWj_16S@Fy7Ta z#@9_EHEfVfs^{PsR-=|Wz|a9?xeyvUjC9fa=O`DwJIA=_&5m}_+bSj|l71E)AJg)A zh^&vMU5*UH{;4s)`$+UzGi3S(WyUaFEhICrK3Yw=(7yEiRlCbAc8oO^X@CLSMfHG0}MFte89A5>;zom8mLzGv+M@+rt1co-%#I z+c7t(>MdCsbAi@QTNwjyauNzhuZ|fDx9*C{`~K#bEq+q5cux$|%@xq|Fx2HhOkXzwK8YF2VtfDW04JY{nNHdN+qszAED(tbD0y=*PPq_M z!5A*}K_UbM5IiNK%Pz&_`w^n?&KX` zjHF5sF+fbEx^Ven4BS&l6kzk;F)vYWdMje@QFHL{h&@gl-1LlPQgNA-Fw`?R)*Jn` z)e?+P_{Zv~pYrjKr7n3uV62lt<3&$TC=0{T!4iu2-Nv!IDB|0j#>#%VBrKMrM1C6) z+mLd>uXXG(+V<-25_R=VVs*!|4LFM`DYwt~ti`?Xj%O2ovuu?=bQ-TAS;w773ktV$|wUmB~X zl>^?5J;joXMHDZWzuXAD_Cc%~A6*mMikT7uX2SN^P&|EI>=X})H&L5ozhv|`eGu@* z6AgcGJ_OJHAeL$SmeBVU4BUl!N&A@yB9K%<7u@%lTm3_*ASwW7m?CGQIoG#WHQ?6J8Rq-9L|otDuO@eQ_bS3p0+d z+b_c%aaUtuCk3CI`<$t<9>-d-Jvm1ZAK3n%#{%qUSxDm{3 zN__}#5niqz=O^89pXM3&D;27@R~#MvmiWbe#LO_U0}LI!M}5%3pg5Ufj^MaGlw5U4 zoXn-K8pp}JTi7&C<`N$kCv&NHv$$wxdIKGo8{oi}alw?z@-{M+j<#{znW+@PA^_`& z;g&rgO6smoahTFKxr>X`QQcfbg{tCM%NG_{aoWFFN?JxScFKHZhw|gAZt1prf zit+-mbj2Gh`o`U0_Fy%R%Z;#OVBAP%#u5mI!Et)(TIUav<+W*8+)QeOLr2G*Xv(&d z&Pw*CTOFZ%v8o#~AkaLDx^3gK*Mo zaqys-=u~mmoVXZ@@7Xuv8Z%qvZ1)R|an7PRHyX};vQTFK*0kKvi~EB)4(WBn z?2B!y;_lNPRHo#yKd;gRjK3Vn%s<8bqI?e~t^oUN_?kY3TF%?YKtF9F-x$6Qklyq?)@fMAv@* z9Eid+-5vM+IS$UIkZ2|B7n!4xf5zQn=BNl30ocY8wr@O=vEAltsmILK2a1^bXmNmr z&X`wtSng4`dE3iEV}^6y7WSY->;OXtUsD~J6J&vt7Q}rC!4^5l>K0=8noho2hg*{9 zSTHxz@`#l({G^S=$~;uT$Ia37h?vIsuXdLE)I&b$Xenhy2R#UkX@nmtE%ju#sFK;+ zTWcv~)(QevXS6J(v)Eg`E%H*!?!Fedg`aTx&_GLf%HH}zEplA?{V>btESd8VTab*p zNIcqX>FBN4CY{_olxSJQ;4WPmg6PJcD*?#5dkBX*BwHpjfKs%xj>a8REKOO)0Qfiq zeZg6nPPw$R4nPB zgnJ;1Apo`gtXT;1Ss;4NOiLL4V5Oz&^VmfrIA~zjGGAwK$p+$z^gt6UY*iCd zYC^4W?3NV!gj?Z`eo{<~vKBEo1PmQ_P$)Kv!G;c{wzsleYbpjCII)9ujT`#B^XBGg zlyBG0X!CFgj>dMevYZeg(aS6QuQYt-Y0>1a)&K^boj2*-X7k>@+614`Te~R~>$V%M z*F4bHDJ4Tt+ul}|JJkubetoP#@GyH|X%Ol%kcq}0FIjt{i51oW+<%buZFn{uVBrUY zt^MI$aj`gHsC7dmDQ?fS1_v<&7;+CR5`b?LlQE; z2<(__Js{DD^wXGOVL)y)1@rbyE6cF{6s04tTD1~+*ssRw%V0-{0K2-%>WvrAw@&az zi~5$r8>maIY4EbW$hI}ht=Vic9EkvI0ABu%wFRa3)0I}1lpGO746q(}N*Z=;qxBm} zhw=IMtyf`7Pt?1^d#nR#G4vyAcb2J)%!>eY;{>Z@a;2a@>Xh|;s(4?Yv$BNQfJ`ZF z`I(g|)0}*~GpcjBOqtMjh;=R`HPWLA+{0n|MfzC&j51MG>Ev}OHV zq!kTtk!Bba-=AeX0O-l6Tfj@fID7=)C&}ZF(eW%RN*I8hp;)$zb7A?L#f9b0`1nZ1 z5quQ7VYuLh0{M7PG{mb_S2T}{|BcPzN}w=+x=FR!Q;65GaPMa8glN1!Cw`6;RG`(x zvb5)x#CNCO=xSL!OL!r|MgZFzEgc{4iLaE$FQzfZD^>9LT--PcdRU3j5p0I>E|A6R?mQ;Co;$e*w zvMGJXLKEbmZgF^m9Mq*WPZ+~6c4O#lfV&j$m^vgd9a94kJigy4p@1S-(9MP5V3i9& zA5B6BmY@fqo6(5g3Ep_WDWNN~mWU7#K=8m5dL-PSn!Ko20u4)-_fGhmfqmk9gRGH7 z;tnq*jCWU@6qhN7pa;VeHZeqHWK}V6cZ$dSBUkF9KZYk|3-=4o9^sA3MkNHHZ3EjUqu8|x@VMnV_FLU$ zw3DS}l}^P8FTs1afIF(LOkf#=WPk!bUX>uQEZIMWaC2e;WCIXvZdNBOe-7>mSUoi% zCle?Dv;zMb$M<;~7z2`o|PQ{FsUo*+;|E?SvjWO1W1upt=U z_O1#;-~JLAg3laDnDjhU4iO&;_eSudwI}#A+eg){@E$X)~+&Sne&g z{b-=8t@WkEAr$V`5s6lcWV11eJ1FY6ViLDeB-h6!!iY@Jaat1>2S~;6^u+2B&*3zN zVCDA2-XW6Es*fkW@q9u9U_p4-sYD}XvfKGYSvHq0Bo3pr>aHc$r!0#8DiQ81CRACz zadGR1JBeFpgU$C{+#2{(;zn9q?+;h){D+D2rP^)1l4OB>S}$o5ZR+q&atX{g=?tyC z9GKLf;@G8WlFZ|uLz844Zx2uENp;PwP12ujB^>JyPhxs}huFx0qe=bIYspF8sM|0; z80U>i+Ug@Q-jI-VoSE?=SPWq8Arg*mMM*B67bmswmumecCvBrjb#_`3qLL_|opgiN zX3kCOMQe8~NP>(yB9z&ST)_CnNt>y0wO*aHoigX{=A<%~;8x~H^!D9J7bqL<9Zs6b z$_5NWVgAWq@+dRR~H9*{O$r4 z^k>pI+Fj`LTu>zYQMf;QCd;*5eUjrTXBXB_Udb}&k{xSj^cX=j84!`|jZZgB zHh4=)6CR$-a_buUCs+(%_fkZ^XqhZ)&eqn+t0;#uIw!wM8S9}-UP)_r_e_477DEOm z+x(ux2en6=<4p@uFB_BYaFV7!>_9wUZKr_#FYme4dBo{MqM~>LT@WjewZQcuF+{W-}S|2qyCzDYC9nAJEI6g|B&~yxKsfd3=+UB1W1ea0tM8;Sa)6eu2d` zFfP2aP0AgAsrbG+Wl(EITyafY$}V3S%@kWo6P6`85O*2^NbOM9qnVz#M|#R%k`KTy zIaAVU@jzk91V&v-L*d7-grgptTZCf2ij?a?GQv-0r7&HoMi3@2?@od6>9d-YAap$< zB@neQQI+A$nw0k_n>)OfvXiRX&&yM0HD+V;Q#bpO;<}Xh9+C8NM-;s)rGx<@NzsCp zo=BDf0?-bgqsusfhf-Ju4**qyBF_$?dsB}O zr4+iOO$RMOX!6mNLk#?p0Y+e-k5f!6cJ~y5*NGHZydl_lolaqK=1*ajoJpCzq*hTjQT!I3B&t;OF6?5I{~oq=*)wbo_OG2DWx8Sv~4F+L;Oey|KyjN z<1ZESnx-D~l8XJKQX}1@VnM6aa7jFPNxRflv^J(w>RBJDfkBs=N*k;(rNTW+BJ*&M zo~iz{t))*Y92_ULrw63M(IHYiF*tPstxX)3T1ji~j7WvdW75EFOlo~ksn{Yeb%L){ z+`^^a_ol_n)aJB!y&$!ULdYpjJxL)9D^DFkyI5P5I)Ju)G&S|JMr>M^iL>8IZ6JvT z*X&GP#NyvTAeji@w8GyWNQG=LLhOc*Qm0aW_CK8(K#AoprCz5E##~EnMvLRWOkGVW z)Zb1$NI&y_;1WamFD^0o|Lzh)hliHZM=`K%-wvZiMm*yLn<~Hm6r8 z4&s$LT&|~L9%}JZqamn|y|@jUT=abCq62rYz@v_i;uQ4DoX!o={cJ82Dc5}KiGD8T z91J`kGm}fjcS<-l%NQemj5btoEE&G=?dxPlf+D^GuQ1J7tisV%9B8~UdTbE-ViNZe z8#xGPRC7#8{D2a|dDFOGVINw=p=1WfFrHul6T+fV@Lf3$oWuRf5;ce)Bjtho4BYe$ zZbE&O_3qdZykR-F*oV-9t?N06!$q?2j`ui-!%0#1KIch`!!dUQ@@2#Zy^e70ATvfR z79ZzeJ&zRqPH`}4BgOEu+`{@&@uO?pd6-0qZ8v@9()S zwD`#n+!6|`{73F@+S|0>xlt@@0fciC6gH-dcnIg<<3Kd~t<(@)-`zIFS7P6)0NX4- z3H1SCHW(cV6{*c_!zj=8w6GnfwR76odQz5LQ`=;o73pj;&!!k{aN`(((5#p3cS>>V z0k*mI+4P)PUL+F6*cK?zGcjx4SR1oP?Aw43LQ1pE3pM{cUytescMU=f>hVob>EHQA zloQ;QMLI2d@ZlJMHek_f@naFAUSc#HjIYGlwy?yDGMHG@)oNoo3@QUKpr|BULn#^# zJkhHWPLH?2ae}T%BZ81A*|wQMmj4rU1YVqCV~SP&1#5Jvjm+?)aoaQ-?~B5hjR?U@ z@@>soCXxSyjRE$VhJ(*QgiI|GNZ^6F2rDHgkp=fPu>qWeVt zcTcJ4Kb=1Z=S0N@_h<6pn@O>HHqUuW#b4j#57Ez#A+a~opmZU>nHG(2@jv@XwLMq6 zAe>ptzd>;*-o(QN?c}p3@AC&(Vrt;*DBNc^f8JAKYR5x7)AqUu2LYTgiK)pS@s}u) zLyq&YlqH+a@(XCKVja?8n zG_}J50;$amv;RTc7PheeMmaLBtsSnFBMn|^Z!e||PIh(GE>hZO`bZ6Q-Cc0Kd)nWl zpB?RG&rwSa2Ibjh?F=ih!-Zo6?zR&9N`}+Ah%i0xj3Wr;&a=}bfq;qjnUwt-U$=K) zvPqHsB3KMyVI_m$c=H_>X&+Q_k;k?Bq;AEQTv!_ZLD^yx}R1_P@xNU(x3c;f(vtkn|-Ib^Liz2uO! z`r9E6S*zC%bpV5jL)U66^*6RFJhpg3Q4u`DOgVG$bRv*uC z)h@_&{7T_2DR#&nQ(flhOW9sM$<ifiTK=JjP z3gHd|fvy?C{0mq7&`zwWw@HcM4LzaO-1`~+B$;ZYb zio?!s!ctZ-1giw5*XjrX7d65zio?5lVIeCHzZ(RmIUd2GPY+=R#oEor#fQU5(HpN-Cyp7QXhBiiuc&372Svxbse7 zA1(g1OZdY>s&zjozy=#>aQ=`mjAaxDbYf6$+2ttoq)VD7K6zXyXg~-=GcOCl^WPT2 z@T4n39wVhsLHnb&H-sP*Xcq$U;cG%RC9&Tvp%W#h>N{a1t^MMGa7-En@V19Sq*S}@ zR+`L>ZS~StP`WeS(;#djEHHSw8hClT8tm~&TS*%f_@(vr@c!oiDE^Q5AKD@`8IC-I z(t1drj}1zL)JX!VeQ+8?ex&$UqcoYtCmW}AW7M1&6cs5nMUT3qc_UzPFy7WY?FWBJ zk#=-UTg}W~5iAC<^C;(*Ytv+YUNxo3{Os8`ZMLsO&*h;mCaoLpVp7V;wC$AOwxiSF zPHsZ`gE6iKE2Gnv(%P7qw9d4*xd~}UX>Ddw8XP<$pY=|06&rGCW0_gj>pWa??3tbh zSDX@y%gs)k%FHMNY<_Npw+yMDOfKyN?3ZJ%W9*i@Fx3=a#nbfHv(+D@6w~6uzivXIgWVIw>dw zSL{j~!m`{i=qxV6*3DH$d*7O01c0Lq-1#FJ}1(~ zQ!bo3=i-9z#k5{<4&{H4+8)imkv59Zi*MgZJH$+7-`;{Rx~@p~!hOC;d(>E>a{41m z<@m>GXPK!KL1O?7x4#kFn&p`eCml#}tamzGv`>l=zUi<@N{ZL~(jR(&0P}*2qfm~n zWqaJBVfs*M+{BfQ(q+Fks&P6@W639vo20`umJ|<$rmtx%6~`&lW!oOBPVd=Ns$DuX zU3RzG!_zI4*`JS1|CxI6OBPob8{*StFU=*U!>zugi;l_Zp~PgKPfPcwwcVXA z2=((^Nbbo`hXo1(p}a8N%j18Q=aI5>NuG!=OK*;qq#Ay2(fKOP6M)Phg2^L<_+H@o|8J+4oD+`3374vQ(I*lTNgJIcl4o#~G$#Z&gC!-ki{{108ceRS9*ovlY)a;P|# z&Ql2YPrK0Bf7XSL^HY}`I(?oF&mR!DKc9Csc;{mJLRvfgayq=2LK<|skuET##v$TG z_TNfxhBe=&_o57+`eQnKKth0_U(#ilul~zLX1zx)Dz-e9xxTF^LuUH>o*6RJH~MAB zOrKmoLrGcoVWSM0>F1he9HAl1+LjrzT+3T$$X3_BZHBDSx7uaMjNI74)gZA`hRjIM zE*YOv!GEX8*zT`*A1&{j!MyI^dkGE@U+b4~^uNdPZ}!VnqmeIzuMHTGah1W2WB?3P zTKIGzP8yoA*$pjj|6UM^7@1MSM8QA=P#U9&%@y9b->8h;3=xWm3tH4X%@0?`W@tP> zAX_ebG{T1yGHmrE>}CiD$hSkd40z~K0Qi{&${Wz#*AsJSVu{YvAg>uwf?CePbdOi-R*eGlZd_AtO=WPMO|#RI|+6ezMjM zZJ$}nK#>Ry1GKdbBqe*;Ju}irDs~*0`MI}L3>=Z!l@>?EWKNfOkH3k_{8&;2d@w0< zA}x;PGqZjFyGQ_$A!u18kk!YTc|#;?($JC=N^bhBTNL7-rYx4nDhPe`dt@=)h($i0)hp{D zWlnP6ES52rfSKGc%a2jhdE8=P)^Uo%qrq7WSCC-9p@g~nPljf}Vl@%$=@D5hn-_!y zPex|F%;3RAI~gQpt*WV8tu>Wk~oGtAI$Qk z#Q`5?Ss5aHkpX?s_zqctxY@^9pM($w;J>bADH$b7fvvxp)gnMb{p$TJxafd5>Q299 zrP11V-Lt=LBGoQvmOY75(J?Z66{YxQYgcVyyKH!rnm|bClKmOwLtk|^T$M~}PiV8@ zdPh=R(mh+|*@HgWYv~ZOZa{W#hS6B$P8XCrI6Dw^SoLxk&Kr^q2ed^U!C#Hcj$;Vw zo`LxBgO>I2wz%xGlsPCldmbgChdsL)Ev9E=%VXP$oa||gBJP5&8?zds_SExSE2DA21lU2*RsP=$jOnN@agT@ z-tLkl@9oNN&Zz89!FuC4d$ZH2-TEHQhAUDCeOpdsx1$WWbIzriJuYTfGfGm0qpoEa zP}Em{ncayQb%4_zC*H~)*+4>d_b)E2Z4YIvw=K$%&FP*;&T?j?@B8II<`A)*Hv)6U zG9wLe)OcKQPJ8N3-w)4`SsmXZM`rchb}p>H?woU!QE5mt8j0Fzb3Q}wzt(&R>f5os z8Wrnum?PtpeRKR!)YU6KD11smIOg;@Z?V|h!Jl$MaDQWtRiW5~7n^c^@KAgx9SS+u zCxYTh_sn}(A&TucOIP*|WCr_z(-trK9!FXX(z;*VTx6NzS7)Byn5(j>3T^_&=Qf(@GYO%BTh3t$!D zqu=I?W7(4+AK$*00}qOd96@>ab6B1#AYj%!$oZB*g)n@4n|8nB*Bq9E6{Pzge#<$; zzyf^pVNOSC+sz*5u;k^D?vtP7Xc@W}9YYZ|xH;jzeIkJi9!{1i3<1;B%lRqGxJW*( z@r92i9E$2YSF*X^BD^oa*@_v5X+h4j6o>Ri>^N)`pj}Ycibh zA06(er@-pXf+IIUpPDu43 zZ4=iz<`oauOX=Su9sU)S#r)Z_iI`_>X#eB816;m)S%oCT?81L z9HWq*0n^xo)a1%0xPERfBy144F>mBT zIuj`typhq+A|wJRFQFg?+G?ejeG zgvYsmPy$}5mj`!k5HZwv=jo`(&IjblMzl3BZ!K+*-8e6V7UzcNO<**lXw)~@8H(R) zk(cU5<%E8Tf{AVFnw&5^x=r3r#?V0mi~z7V1~MU0iIBCob6z7#)|cwMfwX8a<#|$C zM)uBYz_QRyq?LEl4K5rWnCFT9Y#ZGbMGnaOnN@v7P#8eLGpN$Afqoqzvn6P7-Ulp8 z=dietg0AzPp=eZ+XEZ)IDsKym*kmw~s7*p%3mj?p3{{|!mb~WZa?6)AXnkB>s^UZJ zZ^_H?h2L?uyh$vo3cXaIkJCf!*e@-Q<@Qtz5bV@p-p=OFgcm5M;T?z6l`6!FvN^X^bT`0>TO z>rEun+xZ|5?$RYz82?)y9M~kq&_D9vMjlc;^k*KNttZ7Pf90K_w&|#sFSl*&o-emO z>5(tDecdZxZkre2YTGT))%IdgKHQN);JzE24@m{2SQh4LYiQFc=-_I*uv7jeI;vG`^8FaCiYV1mJjay3gVACLgf{qGul!?F7VG=wFQQzJ z9h~2S7GD{bKZg-Xq6nRk&ys;5=-36X={RX@{+lc>9*ataVW|@yu_FR$mYy$bP2#-%lM{PyB}qlaRPv@Ov5 zo&2o~c0!Uf~kR^+dCN24Ef z4Z?%h=BL$@iu=~*uXB@%<(u-e8AngCo8hQ*Yd*{EPZZ5AC~9ARD0)!Ib-=6N&;MA$ z3QfZKjEkHiQZmrR1rd19j{F~4oUe=@2K=Tlt_rwti9}t7@jPC5AV1a%U9olxLEZ=R zVLSLpz7L9O+oT~@AIm@ID+wgz(|iaGh{Wb!%J-6lxB9)S`SjoSf0OS9HzSG?{q$b` zH~#D@a#?ZgnM=-w|CP_O@f>vnREx1B4>hFApn{MX)xTVSVNBJyQFNvSdf0S>M z?lF7oaX!lm5(P3=Jgm*2$MkazO7$*ikI409-fji0-GQ}Tyb2f&Ys&yJ0Bpu^8eje% z)x1{}EX_ONKJsX6Z&+}*K48_aU`z;hL>0_uFpB>HyFU88OF;l$(WYPlz{b5a1)+iP z8#kaJ)enAmj4U{&fZs`@3v#^R_kNu8_YP~pKu`GlQA$BU1NhC$EhzSY-`hn6U)NV0 zkd(4vb-@M(-6r}t>h={s+8E67E3??s#w~vTmD7?T!*==Gz1PLEG$^hAVq*xg-aI|++h$PhL3~c z^&PSMZA%Mgvv&VrS;4Ck7(8o5!DM(B1t8+c)djDx1Vw;Uij)GkY-2%EAj)1E5`t!K zD1hg-uNL^st9cZJ`|K+?%0REk_>`wf!SpP2oV6#cW{BOQ-=@COX}t&7o~r%-wZ zlm(!`S%nPQ1~QO%$$^cXT?lzpsct=k(9d%USF@95!vp6Pj(!fRY`FLQ!nO4zT>e;4 z$Pg9FwArv`QDGxSTrkM#Z;Hm^rG*Sm^(h*kE-Q>{r5r@ZD4XM0_RE^)bl8sO5rZ>Es{UW@-LD<3kxV}?f$`}G%7Gq5vScm|D3T?k8(j2QvRpiHSP=|)gl#KE6}6#kyKFAHNo!A7i;{h% z20iR9W(Ei@X6{WZf~N%tgxB+34Qz$320_I|i4^YmaV{afR9SSFb}?X5Q3opVs_8|r zrAmOs%_{27Fq%E(Mc}l{K{)D-B6!h6GyuGIQPH>0q4s(t0bEkFUDk``MR5H-K{k4| zi_h7cTzo#ZrRWi*=KOXSpY^+oAhaN#9o}CAp#>>k`mhMm;-q6mu+T(mJD)1r>c{R` zbx3yiL1^6NqIXb806zqgCuUx|Qp7ToB~Q!@`=Th2B?jyFMNwOrlox4T@5}__Cs&J( zFc=s52P~HJQ8IwR&s?g#s7bofIeZDu%R4QrtbD_#?PKL+oPC z@Zy^+k(n$cqA`)EnWgwO#WbWcj2MC%TZ==Ud72~a(b;Cw(;P-?F{@@Hzq?nW5X^}~ zao70bos7(nbiL1UW=65}GzWsGIlOU2VsQtBVj5nVR6NELxp%R`Q@8eFmMlH89J>DQ z6}U~%QGEBmI|y{JNlC19A@^~i_!x@;5(w}JM*#AfQUaII=M*!n42gKep)+o_rsC>m zM?BtHe9v9+DatA=W;wU{3^Z|B^OvIHjSL?DS)@cTDP_g))dQpgDvDRKv05fkgqB}f zyv0rNDQ-2fcq>4~=O-68VsQ~qX@$2tw0Ph2;uS3V`V935<)nB zsU%4J`{S`COTFMXBfjLQNT@2Yck$y($Uo~ibBwhZY5r5?z9p+gQhE%l_W~j)VHUXoMN#& z0s&%{NYv!j5*B{~047P(Q_HLpcr@!wbwUtoHm3x$kuw9&o?F6nYXcxM1Fw9uWCvWK zB;w#)P{MKzBmr}9VM#+qZUO;|OWvk9^jKQ*=6~k{1{~5@MhN&W3%&By5G^*YDk)*G zQY1paFp(V+gmxcE2tk*2fT7+vQ4)qf+gWk}(uRPuc+bI-PiPT+T#_Zxii1y-9GAq8 z@1H3V@6i$4?mt%oF$*a=KP&m3ewO`332bYVTEn%HG=HhM={r~LxO*jSf~DHcPh7wz zDoSNw-P}sWOL@dD?zxv9qHy>7mx|YBiM4YB#I_SJ!&CPC14}=KOZCLsX5pnVa6gY& zoZO-`o@JXASd@g6KS&cycl6p$dS_n5viHz>M(A9C^TdubI z7rRieTvDo|I2>A8`Vy5-*oIPXTB~`#^a;y=C5j3k_^@;wvuxnw5PbEc(jFd?M7kU= z-Au{);Y=w^8VQ99&$}qhxagv=>17v%pI<43^}d*UTso4GU5VoS^`PPgn)6Oj1a8)#tR4gF z@TkDDzgsG9;NhCGKNRpgNLTiSFZ{ObTXxA4e*Yd^_Pv+l#_I1zmU+~>;f@sRJz-uN zU1qK)|ApYMF8IyZvM&FuLL+CDb;rG}Wga4&fhlE=-QjnDy{v`!wzzgNr4?BZ|#%CbFf@cU#!na11I`lVOOK5~=)Lhi4YHOIYYm1X$IRd~;v zWyLMvGc_(7D-tzzN7)gv^Wl5Tc8TD;4wl^&>wi8}w#FZs_p}{?TAwM?q9$j`4l|4a z{%6bda9sX&Teu$Tdf8Qfso3vc*|%^6Uaal@W7%;yCk@5bjsGn3lS=K}%i-{`_|Hb4 za?l-8d=gl`7tX?qwI>^uL&78}o^M*-gMw<=yd1VxNbSXzf%kRmx zUCSXWo3!1jDgTz%ZZ(wq!BJeYSn!hv!z0yD$ZL`c_wi^hQ!jZxdO1;OY^U_}@j(F4J>vjNoo3MF3&ArT*RqdSUwo{uB&ilBA) zc;C{B@%5gTixp_JqtYMWezzh<0ZkRTC<*>q{GF`8&DK_&I~<|oIh{eU*=-IRD4o)z zH>f$4(Qb0+)CPwN-5m8sBYb1)g+1D-ef>$k8Es&Yoe>xDYbDA*G*ww=*K;;jE78vrD&aP6 zlU;2v>IJ37Bxns96KBxa)pm_iWfP1xgBGj$&B=9-;2cW9X5dUlHK*2U^kAi&U85G1 zDxF&IaG;xk^Fr~N3P3N)#Hmasod8;G(rUp|*lY%!U9Zs??JAqy&Kq!kVAWnlR2|*w zL^9OPYwMIlXLU77q`U;T3c1awY}LioRiD+rTVYa5A|j5r^A5XFt#PP1tz9pebV`TX zV6%f1)Hb~a|JWTwRHp~TTe?@jt(Z`Uc$A_(y*%2QGGf%gLBmsO*HfPRXY0Bc)-tIx zIviTvII0ecOrRu_J4D)f!J*SD!EG6o;26L;8&pPi5+gYIsp~^zJ~PEvOs?Mps+Ug6+-aRoyzM)hgNC^culo5R4{X59XjZ>5V3hPR|>` z6&nSE9sSr2Fbz~xCAv4$8}%xKO~nIhT9wkl89BX*<6vA6G&&UJF{d$3ZBes95usNJ zIzeU77z_?AxFjRbs~skTMr+WDdV;|{?Ndb7-mMZT+P$NSQr6Zbr!%30V2?<6r!p*3 zt2PK~z1n6{8G(%|-lSHl9R|**vcpq?Mmq*q2P!Fm7g5_Ot@f z%X1oha7ra02P24HX8E@!T1T398y9L_GLYi>qBh1;alrt`635E{m&!G#jzF2!o9?!XT$HfQ@Kj z;Np}!=OQvMpeth98@WJ zL9Nv(l{&3nXEcHrfy=Rl~beIF9MfoL_{p!SHx%)fH4$zto zbUKX@Ml~bongJpyy&X)+p;npfcCAS;@G42T#G6ENU^pfYl-g#~8XSTVye^C^DkFTL zRyho~UsBC}MTAzXfj_`a=s2y)p)!H5v}?ezC>;=;@mLi-19ZEtUT+SYp^Ah-wYCn? z*^){n`t)#R^C;dXa7KsNFApJ?U1w7YY9ovVFdl&Y3mQD>TBXxH5+Xbx72;5nQnV`0 zrghlW5S|)&K?}|Y|JZ!me!$HR;u1KU8enLRDuc;n0-$=MN^61<(I)C}Q+%M&92lwV z=vEr3>*y6N|6r~GT|Zgbrjy|rqtht0DuFX;RR+CL3$e4w!D)Hu-XL%)p0i6{zNV%U zynL+@G`iXHR0!_dy=tan0$;mq^#3%X+O^cK{b%bsxMq?~F0wAdRKsVqL7T75^@s$q zICKyPs!g0x3xPlIzyxj++`V0;G?;My!pRVW8F>vzMyUk(z=)uNINqQZtxvB8Ww6K~Sj-(g+a& z7OLjK8$;yDYn6H!bc{wd=!(D_AQnKA+E<6-iN_~{qSoFkj3r`7Sx2vuy}kTRWvfUN zM7egDmZ$+E7@EK>LR9a70b2uRXHrSgaTEwifEa?)!$eIBA&L>A3f^GUsMIEt-maxo zM8eRg|@j+$VE^3W( z#M5|E!;7Jk5pV#}a2n32fq5YWk}4f2lieVWw~g?`R#i#v&1##A;?bKcmntUIE*tf~ ztfzL({I{*u!7;~ETdRYlv$NljYz<~ddIR`;4UF<87~t(jlR>2cR)~(=D4;F9-hcq? zBXKsT(r^w3Oy3|_)xzLrgP2kAyFHQ)(34j-I1 z2doI@2S%8EYqTbqGZ_VkNoRDx^v&RKsCD2+5wxPS(1<#E7DMAmq4rLZIH^Vxf2r|C zpEs;(-9_J3seZ=bAb0@B4O2%Y1PS1}ZM+_w2h2=$P)~z?vVzd8wzV3x?E9&WaZUA{ zSHb9N6_o9tBUT+c`mfQj4$kplb5ZD{(CU!L+R0KPm(fKUb+EW&RN4#gZOF*0ih|5m|e;CM1q-?X^Zau7Q>F23XiL z=yhNmCZkCWk)+ZHlSsh`D=3&7QUhZ(I9LaSGe&STuoR)R+w?jZ9Zedg8mf4hm5mgY z6hb)|#6@Mci=)4tQz?O9SVPh)IdK_?C@HbGh}wHaV?LOxs;g7ccc_rQb5+|&h*xzE zaDWi+!5WAP;#?gJNhSk?f;yd&ljIR8fKLHZ4WOzb5hf1sQ;Ocxq%>-Dut+wn8i;_8 zfP7A{aY{7|&th;7%VIiSrG!ykrKE9i9X%pN{wc7s+B-!3M%A=I6F1caqv5)$ww;Zt zXTnGujQlDNW-JifL&&4&AUftbJ;V_jJFI$24usC#>R6kEaaf+a)gdANpN3YKTK=s4i4rRFk#Yj0Lf@lLQtoKB|Vi<>_=S7qoZ47?Om%; z#GtCNQFU}}5?4#m{y{Lj*&G^;Ll4svSXtNV)oNH7wZZg?GpG%AHLs*0F$BX#H4MM7 zIA(%H1%nM@MwmgsA1YXrQ2ldRk`qH`2&iG58kQwYu%HYi@Vtq42qrB8WtJBi>gZc5 z1(9|2P1Yqp7+Dn_3DYl5qlO8a2IOJascmYVT4{i=!^Z1i<(1N+g;isS9d#-gZ$V%V z7%-qU=r7nCI8WT7`COQE>Qp8GVSp(etY2v%(u8P44da^*0vHnnC7(f~s5&~N1k}-? z==Th0UtCq2uBxsE!!yGfxH=u|zGw|9gHfwi1NZcL75F~E?V*o(R& zTbWH$t89$_w3|AV@?R^MwKGg(7p*Mz+T6yGbx)>cy_Wi(P>iy8{1PX2FYH0kZjB`+Dn(T>;1`c(E(+VprhBuE2|3ffu_1ur>Q) zSK!62z>8gh|3?Pri(P>iy8{1@y@(gP0xj!WIwxD*FLni9>&M8pXsR@1mQ4w=y!XHuv zf)+{~@!5of3UcPB=+g;f{`D{A@_7en>hVnZQ^oXymnYzZmnW_`toRNKODDOVs&{7t z>X$TQNCc6p{% zjcQ0+7L=Su!)akRR?6Qarye5Vpp9JxiC~Zt206e=*e`+l5NU>9*Pg+&`Md~?7;Z#9_jvbBeJr~rqGAd5hd5|$yU z2C@V65jSjm2i7YxBk0u?N*Ax!F&RYW~I2$sL z2l)Vy5UtU}Mn68-|I|K3R2{ua>B@EXItKQ}(Z0^rEuw5Ztex2*n_ApzS8E|1&B((B z7o0@^{2=`ZFMqo_&%HS$?Fu#}FG|3sQv$-Lmb1kIj2`b3Ah8za1 z4YpTJa5%!m>1`k=9lH7HoW|R4RjyOi*{`%Cs&~}hG1(D?q%<#dN>>f3*T!eI@AU%Y z3ur+mkTNGGXK@Z4{10a|ARz&canL(m&M zo|Y&kC~KF^zcSM5P|AO8C)Ua_E&ntltqy{u?L?COsWh1&85)ja!6vR2cn^6?cF2I$ zz)m(Ce$cqKhaouvWDRMb4oDt^gc<>k6~P8RoWkPa+{)9eYsik#8DZz#V1ooMND$XR z?ixUZTsMcFgZ+CsJEo3)wP^W*$7!C)72#|(NE-HV4%3o`5AFp&QqbpYL9 z6yRHw1`g5;#VlkoliMNasDVMQA!J>F>k}ZE6OO}~1ht@nge*8r!$YbFNvPcZ`MlYR z2&GXCY*UM8JK>Cu4U#Y+lMg%-91MgUKbm`1N2glUHobaOMD3lTIlCwKjMRX0hl7PS zwF=In=?#$S>Cl-}Vp1xonn|E1^k5ir=#_9#$N_#7&SgSM7Gx|N;fMh5uo;agKWA=J zEE$y=jx#`lKX3t@C@3AImFx9z{1VJcXRy(stBzht9x`NX)!HefS&AoycH~#Li-c5k z$XkabV0Cz0ctKkZ zL5jbWs|x?5Qt7pD1QGTc;k=hktK%VNfrN8NMp5eVkD>G6_(dJPk{NPD9i4JFmmATk zangDg9f z$pCF2yAjSjK;Ae>qmol$RJ9A|Ut^cbP`fVv%dBc=nczw|gXGFuDU(kwcs3Jr$9aQI z31$Q7KX5`1j>ifdafRaEu6O2Qg(gvz&gH(84XHuGUKnFxt_W#S?dw@q-Z2#lD6I#L|Eg%SK z6hTVZ-E2ibqFhlh2=;=)RwZ=l2~}!fO9I&)6qI5GK|qC75h183JrM*Hkc1-AK~b)i z|7T|2&Az)NyZ8G4eShEo^M7)m=f>roa?YGNbLPyMGv{#E!Hw@@<7$xse@_T;_A&t* zf!&;;feL6fKuBn;fd)+%7D-8VqYWzhXF^d`7?w{6%#0T zJJv=6=!9!3+&*cy!WpT_PAJq^z8Pkw8LIJI5YO3dYA_l+Jk3sO(c@hse?*gv$Gv!y zWq?OFTtD&b5U;#+4m8ie8{Z6z?3oJpKK7i*0d9P|gjxsP8ceRn`Oa>K+%g39!WdAUG;PfcJXDAQ zm3hSbw#=xTj2G|*9H8(P2HyC13u$sNzQh_f+8`*|+nw^0BvuQweWwj?o^(!3q6SJ6 zoaHePcz7FR)^wWD1ELP#IW)Xm)p!7fNC9|jrNz4(93lgnI_woqRG?bf)}e_GP&iBn zHqL07tkFXZIe`dX(do1ryTyQ@3h>DWB@I>!9eEh+)$gu+76Ska9UKQoT0H#0(F8C5 zEpYe8SfX99c4IZ1R-XK(@WG6hqbvRC9 zJcz#m3OJok=p$z6lQ^d_y%6t#V$6>|VtvKn$?)26@s38b^7WNsh&~=Rv%;A(&expK zl3OP=s0#j+7pSw3RfAgU}Mk>-{v%SV;vV?~<)p0VzzNfXCd^B0?!5ry}&2O;49!oE3~=7z4DH7VTZ$H#r7m zJbYHuXZ9_RPl4SNu01+L28H{D1941XYQ|f7+~8>t?NlvC{j=(|Z~`!ASaH9s!_7S| zR1j*EppA{lp+X1D=hEE*Pw2w_5D2i4;hdj^Y`%6x%>@9|@RweidS zlo(LORb;1@vu~q&KbqAg1=qkf1Q^6adQ3B-O5*kduwnbgRSiOp$X+rm>{zmc1!&5E zffV(|RPa)=Mv4PbC=Iw1 zF<3a}z!jmpx;C3# zI~h0m@KHdJH-srMk@G;lS8`yiYG;gJN_H3VnT^Z0PGKMi~|bhvDT*B!2>aHEdfAPa_Xci@s0 zcX-_SZrOzea0_z6wvre7(iurnixRg6J(^X zoSvmiwc;WXLBJ4F(T>Yf9axKbTfkwCMJYk}MLG0htc^i&6UiLcqD%;nc^SG}jKPSS z@S74`iA5ukCU_H>5@T459p$hWdy3Z7rRIyXdROgeRXbYMj#jR4RqbfechagIt!hUT zD#rh}cCae>SIa zvyQ2^x5_ZzIb!UXp@SVS3>@R8K?l~$cb@1qcL6ioM9zE8<62}BTFdQlRSxoci z+*&74Tr{ViL^ti4gUrVzb6U___RX37&)NsjK5arOTxk(cU2j1MdncUbjR@!uZV@x!2Jd&Hls>BcLxxMF>UQWS_3p^qIji0>8 zBH1FkDEw%d(~u1zrr`jrHsf3k2Pr%}DH--+W9}k_>=4jY;YG$Gb;4qSR0Axe9K01B zR`{U@mTy~d0a56qL$&*zd3{r~IM`MW(on7<*P$cs$x|iafC(oisONBMf;THfDux6n zU--)Fg5mD$CiwnBXNRvATw_^eb}PaTYvIcaFIcNSfcUI9iJ~Eh3^!&SbBg6*+VyZh zV%cfXP_K-1$HHYs0V~|3Qe%LHZzl8d%^#816Gvr-Q4fzmJT!qHq8*er+u#6Z%s^y# z1d!!^QsTKK&XhnNCJUC|29_0z1%V1Na=QTp(8+#?P`VMc)@aVK!z~*gia4xW5Ly!M zV@TcslZTvwBPBXm*+D7>MB#$ye>AUk4WrtS4p%L6LDOVde;hb^0Z%*LTChYSFjT0K zDgv1b>`sah$U*P57`)BM9&|yBF+&mY?hw^78c#+zEXJZ(Q1MTVJ~AX4D!DN0d3x6~ zdA+MvS=A~-qMNE!7CMaoA6;cn2L?^c8&FGnPbebi=j3VrsUqT^j|kl}3-YeLibtT9 z8SNKtUE7R)qMr9&_&+Dp&f0lb%D>fk>%ok9NPi`_s1cZ|oA-F=-@J#h)N7chF0Uhh z8#%;PH!#aM?{y85W|fVar;+H0fj&G|mH)BteVRzihRi!9!Rk0_o-S~U)i)76m;a-= zNWew+jhMGuw9-m+-A7a_ndYDYx|!d8r8KAfRc+%qTE8Ch@jaF7y8chEC`1pdTf08F zjTBZ3WZ&hwoJ3q-(KNrSDJ}A^ZgYEvI^CSrng30FTCMJ)R^L8!%$@v4$5fpz-NapI zX~8^KBi^8;K3!wV>dgP%+(4^KH)hfP_S|OD|1^-ak-1H&&*Cbe@48=2r}-{dL%P+s z8fxcFBkEf5a9Hh>n}-vuEyl9mk=vGT^t{^Xe+w1nZo9wC;=sC$XK#~pwfbWA6-T1j{7ky_ca6L^^rvcZ*?XJ!e9WWiZrc48_JHK?j zLnpuJdM^GaG4`698O?hKj5A!#CFy$^@#{40seMBvSia}DlIWE`C;p3AHq-Up-H(uG zH`C0+uKVb{yIn`5X{G<*}XKOdAZ$NvFFHxLzXFKc!{6XFo@zPuallq|2N+@#Lb63u;=*T&JYYyfdQt zlv;M?SV%gr`v~dqDI?Mhl7;Vca-a9V>`F*5$iwUXDJ^*txl$kh*7X{B77fy_FgnL3&*o;ZNXj*|wE6~dLRFDX8D<#qW4AuMn@k?8g17v4)#XS+tG z;%O+N8{pv|?u__>(%{64bsb(8<9Za){$)mwRf{n?skVh?)^t1KZSvs%V(`RLm3|il zNS)$t&JbV&CuN^f%@5x3wfy@8CMaxe@kdmhROZjyM<3m zpx;?nTZufiMa;_R@KXBsIoEQMy@k(5d`_^CmaUgjBKK^eSIMNu0FHkvZJ4W-+SBRp zxUy)fE~hCi_JS3czTv7(o4nCuH=1PBuBa!f`Jjg$`&~-K4DSx#6B_CNM^ z}-95P+$`M-pL*6~uh5_JC+GC-sLqcf?p{q6AeX&D?%1(vKK%~Xe7B-mX^v2@Z zk4j(ifzf40IyWF&w$jYT6EperCj1y`)Zim;Kl=J7u5SK~5QFDJ1y}BNB?tP%yX!Y& z;%bviL)E7en^5(?TzAyTx)iF14qDP1ZD*!Se<;v;iUp@js_Khq|8Lxn zvwzQT=YCTD-kg@!Y*e2%xWoM_=~YD6-{Jm}mE^Q{?`8j;euwKezu9$fovdsbGXUbV z8w5C#Y9`DZPDT|8-X4xV*p@Q{(3p5y)X6=u7MWKh7<&#c1!G@(H9 z2@Q6fCx%>VaBq~Jr)3YXOs8KM-K)tb@`yhYBc`+GtZW?k%jEtsj_fSr8%RQdj4P^e zT;;01xo_P^m+khoC1+%8Ps!Mp$=K@ea_7{b@yTmdfzNxo=hPt8wh6@l3L?%nl(RDC zXq8qow--V89CI0rw2NwTXHwFBn~-B|X^+E@W9yz-f;3m7-3_U#ue(beuF7diKX(VZ zHp`t5hm;(2dSCY)^xQ+s>q32bxia?iGMnMn7vbk~-8(9CaLO=#Vh-94zM zpSwp8h9TH}GQF_aolNW3n-jg4BXJ$Yms7pU<^Wn#*`zp}*LsIn1Q9&%3#0#ytQ zpIg$uUvaC5eVf=9&jkD2#x)tzZ5x-tr0q6ZFvGa4xLIf}*4l z)ylUnq`q?65N!oMy_|?3I;dIhAW|w%`!RXi-*D%V-$GLr9~UQ< z_^)ENM%X8Hq9fmOcjMFIU+5l35zlakrwxKlKojZZzZ&lVLkU* zpkxl%jN}UZ5?YoQ2<>Q4p8GjzzCiGfP#M#Fi2XA$!+=uJ43qRYu6L79Wo$N~UilQm zAqWm48ly%e1mPGA77HE&Rg{$`Gb|SZZF7%b^>{|<(V$JPHfC!)NE+J&Yru$(r-JCxs0BNXK zWNZ+5SuXXif%Csc&xBGV`srwQ%Qzf%Dilh?N4rgxRo0UN1s$G}@$txX;G*fuSapvGwKfFXK?n+X=V{e&K|*Rx#BD)HA~~@OFd@h*#-}nyZmQIx8*a=mc)}4?eR}JIu^e^aiTW%leix7X~>@vLu_zmaA z#}nquje34j8GlPpuXx- zz3AF8xyf7~Pna3PI*id@Q84;aV9ywRi98A>*rX2?qj+8JWWyIiut_@3$)_5hj<_zw}TnD!(%}Y5Eci41dzLkg`6_O`xxO` z3@s;j?L6A{!r+l(x)=IBq3e5MjV29UIx;zWLpo~Np4&(pKxAC;sf=;U?Sd;(@STY~ zh6xjSHMa|v_)xAF#uAUpXg`Gi24x=Y)7zaSIAVv~X2|x+ID$;wE+pQ*h^k!TdAAGA z;9#hbQ}y}nf)fCiMk>EGTTT>bECXWb$2z zfCdSd71mmeg^RXI##yeAN!4h{3#-Nwkq7qes`tCQ#=hMh|6b#+hV6L1w#|Ljgq0INeZMVei>qF$;SZ6g07L=a>19C zv9iS86JCW;8s>$U>~myug=xE zwyfNlU=9}HW`L=4)xHu+$T)w{O2g z@akQkx{FBn9YW}ih$x)1#eEm)yF&=waiKy!yKQ#}p$kylLKiu+lW0l7+Qh)YBKIpe z4eVg{g${JtXKpQ-v4a~K;&OM?qGhG^lH^hg@hJ+5J7?Y|7c{5K{;pA<_W#1YioAvG z_YPRy)GO*Hu;RzIyStUQ|46iF|L*^#+sFPJvQ116QBHZ@$9>$WnbUgH8<%{oNhv7B zjBm$45N4qGZilcN8+N*1Bfsqs$NXP;p=@|N0Z`09ftuVv0V*hu`D8(L+TiNaM)d97 z?ozB|ZlMV5aX&>m>=ZVcc00xCbrJ3V;H<>JD|_8fNW{ET*eG6>aYiK=pppaAirr5W z(rYIz*^eI&?i9uv{CnYkch~aomeBV(2i!x-zmE=mU-gaq9`+rRl1`Hjx--bEP~kfV z-6Q0}4z$-Hw~o+I;lV@hm&`|F*wpaV^oFn(s;L#Le9!On4~#5nGO@7-~P z)Zaz>m%44FDgMhWTKIRpGIs&{Z-^7yi^912yJSujr54gP)XH$uJyPy1oz}fHTTl9i z3Z19i>2jB{k*w&HdnFmPixzcs^`#%5hA9qx_Wc3Vga2}j#wviOU5HC%1wpFS$$Bp| zCS$kAO?IyLpaK*x*jx^d*+fEK*#_)5m^7j!;$TI0a(EAHcQB!0J$9|t2! zwZFK3CZySJAwW)tN|^wWexjC@m>2-#A{Qv}<4|xme-aYy{@p^N-MgFPIdWc?h>LvY3(#F6GvqPFhbm)C z;)at9*v%wkPpV#(+mHb73WryZT6VnEkEW)1ERsCL4^Xw-oPqZ_NJNT=R0hOiRvQsC z5|2$-l2WT4QBH9LXBMl}n6$n`K4 zA#+BxJz^sMLL;`dG^y+HO3kRWC8$WWlv_2SqqYPU3D~R>sk*L5MT_fs5@_mM?pAcr zTsJpnDGTynSlW_45x_yAUssyK4}|gU!uxx#o@a>Eg~7X%mVN@uedl2L9-(eD!fh_@ zXb2GGqxl^i!<3}vq0#UyGss}bE5CX=C8OkV4aa{muE6R>o-9e4rx;ilxdZGJ7+Ap7 z*b|WG>dj%u-W^_N=dGR$NqR?tZJ%HT8QYmMwgAhwPhh2FfAVk*VZd+O+@q6@(6mi% zc7-HgwH!txcGdDEUEXg}B0baG^A+v$IVPg`tf@Qg@s&G1;b|Ejs&Y9JY+^x7^hv#G z{bjRSlbUgG5n4ka|C8ITPZ$NXW=S>w0^d7j_%kzqgjNU7x$QR{R zgp7H};?b$-u!$a3pufeFsUkD>3W0K4O?jmPDW-1@*ee*|-o2awq{EDA&FPjdxdTZM z(P4Cb{yUVsFC)4RRWBDBY3Y~VLTVc2xtrdX?rlqU?4_g9y-$=UD0 z5Gv)POxPzz2|$(Nv{>L|*(avs*?o#p?wO2HK0FDd9KTPDatx}mQKA}S#fnBrUau+i znD3{0db5p}u^)M|2JN4^$OdPQX3yY6;BdgE{T)~{H z(yP=nn`9P?j=S@=kB~cy8EJb3zH@ozRwuq{bb8(1jmQ%-0u7wgl1ad`&@+~h zXNtM}jsH?c`YBrWZzeT|z12;6oc)GL_MT#zR+`(0b;#v`saVM3t)YQ7SmK{c3SPm#y^dVgKcN*%JTo?xck%tV>F2RU2y+zDq;s`svf!(Lrx}deT+zcC zji8zao+R3%PfiC$J0k}Gm!N_TI$t_=tfz|n146OFooYm;& z8tdu>-r45q7)RQpN|4_c%gx)OI{1ywk6)(`EZy#z5J&FBC&qMdMpW5ScU^qIwA+&_ z1zPU*;GEd!Yr%i-g(`CXYfY!81+lOHwctUZ!^Kq%s+sC(PS?HZdN!djGz29d63j%& z4|#W!sb33CXj`ZryY(kt`TO?Jcg{wilz6^^y8r;R@GqJDi1e0#r8eK!jVwi*@>~C% zp@!_%pKOvl+#UMPFa2j8@HDJNc709L%oE^p|1Vd3ovh+eo$?ERazyUne5f#t1AnGz z3zw%;_c6~H={m=X$zSOjZ7|xCB>e`#e0L&sfA4vj)Yvap)+5I~x0Aa2#j?Z4Z;pF< zlo#Gzioz68ShvRh(6Vb!i@*1DpsGPD>axnArSXT1*fnqkJUL{@M5;|kEtocp+`C^e z&prDE^Yqv+R>fl{JqyXe{bDT);Dz#9xDU|T83i@j8AWsmm1dsD8tgowHkBT5`$^t@ zzOhNOsWjQMhdy}5lS%KJgDq_-#>zJCC8)r*wAuRwk6dFE$_Y}Z5tV-K*@!-S)-%6c zQvF6X%~mJU7Uw(<1ot=Q?y_`#I_>CQ)P)?|FV5@Vp+~m&HLFdRw<3)Kx#vBrC2}4( z!z(Qz=-Y)_{J{R+Mb8|G{3g$U^RlNqkq(F%_-%jS#$``DFAY+aZeHubGTtv#HW?Is zc%26d+qP+KNV@}qsBI2#qDn2P<|U7C4hlT+v&SZp%mXxSIei{LLR(vVKxBk%i8AJj zfPT4vk^3jJwzn0pZOz z8ojd(46XRq@caQGRn&5QK!a4ViGdW!pgxrcvWX4kzQA1KO(5hL3WGvrOt3X7vQ4Z_ z4ew+^F5zEHo=gpuGS|Dn9ksoeCGz(HAw=efO1b8ANXGOtnI4;DOg}szHnCyB`rt~o zi3RE7uPs#Z^(t>a38`e>_6S`^`;A})xNMXhothZ%)b&o6q=Q8Q#2Hw3=4uc|O(u)EhlS%ljc>@x^{w>n&!W(IQ zs4L(dgzALk(nh(1-$I4TQArY&egeC$9s5RW^36Ab zUBCWD$bfy{2pLeby>~IW^o@`K=Xs$l0}g#7_QQQ*9C!7}=}15?&aN`uqyz@RDEugz z9;79g=l78gh7{a|4}2I;>!o|mwB8g?TatcINQ4dtg+yq4P)GzVCm{DUWe~X1+K3k1 zHX)JTs`fgAlP@h1vSO{;+dn85*xKjLRmTs`zmE((C2rY2^yJAQOu2{&QfpJZ;Hdp}Z)>{U?(I%ap{H}6 z$E7k_R)!57z5=sytn$Cem+?Y${2>!;x7=+R8ZmXI&S62w;?Vbz&v}0%%?~q%YtB>| z(&{i{A=#3Sf{-qAAk>P>45QrJ!O(XuGX`gShbNF;IA(`*neRe%LNeoVxq};_Las8% zW2;3iIbI{(`m3iAJvYwVnv6Rv*m3k>!Hy#j3%PN9ymtff9v0l_;)OCdPB<*+jhb9{ zD5KJ8&y*nX>N5b8d;~O@&+taN{<_D+&ip>Q_wA##>1~rBEjE4y{b3&n#Po;VsLJ$* zjfaIT34~?VnP7)lThZ6=75CLr^p%NP%n_mc zx8LvPX%Vj<<5@EouL|M`3TIq(e)eNXhb)=ynjQ27a6=Qgj4Aj z;+h~eWFMN-Y2HK~UFY#W7nkr|En0L}&D*Hd#cNHtJ3&ZKbgAT<`{?pRZzR$l`Q8a6 zDAkID2w&UC^=wdF*KHO**6Mp_LN)$BTGFL<2kI~I>Ts}PP`TOS-tUC)?#rhz=^{SFiDxb4F69esg%bApw6Y}#F& zCN1)6rKw?+0;?9GA!_mQJ`{q(MRpLoC)k8w=UeJEk~hB-a`iQ=V(+75*>^%>r!Vn# zlE{|t_!_~jBnpKEPkNj7@8C^l6}h}dpIlzceG^*(ZLk#b`m)^b1<~)>?}WU5X_@zU zO;YCwmn-o@Wdv*Ec#nzXhKw5Q_nqV_`e$k&8ZtJJeh}l#pELD-;g#bE4UP-z)WzO5 zAub9Azn!N;XgiFgeBsn%38=@avCX5yY5YwR!C%NU>cBOlGIk z9v^t0k=|#G6c*Zb=!_i`N)o81WTJ%x|9vPyNba42k_kuUzERF4_jmI5($IIV^x+_y zO79DJ-u);7G z^mCzl_o$GRvyPTa%7gT_-yw=#Jt`#b zV$@*L8#VZht`j8VhTvdVD_!2kfmu7fc#DQhUKc1DTIaV{GQ!z8FAVhg29Q~4P)DRa zUiQWlbkD`7jL5;4y?vgWqyb;@jTGUTsFxOTCGr-d^@?^1#K- zXu>H`uL)gL>a9;Z>XtO4&z66?z`m^>I;}Px^oQs6K=-o$bv&jG#|eMKF`>CVB(ubO z$G8ei?|spmA#P$8gW^oUf`WXX%|9kv??Oz(<*Mf>_5n4KM7wG-0aeBKYAO` zEhoH9>B!68Tj}!4AXVv)-a0hj=C4P$Ui8+cnHR#oUA&BM^{yzt`Oo6h@~g^Ebm=*K zD>@hUZ8)pfeIw@C+?iyk~9Hz*nawQIJN5B zFIB6SD*pF>m3^9py<>jje+!Lzg|iB$7fvn|JK*i#3$^0S5Rv#H@WwH5Ts<$#NGv+O zQcJP;*dcIkXr;14pd{p_w4P?Rcm-FHCAkf0@ii>oL10^UiS-O7gI!`h^}X0bzyHPS zBNM+DQh6LNl%=xudm)ukvl6K+eaxUx^4j;@hmDryd3VzrE04z0!%JQ>)BH0y9(?q@ z*hV*gFSgNTsLNEjD{L>zk%Jo{o#FIIz=rWuKvi+{JsheQL*Kay=cR{ zp;rCn9TeOz>5)C&&h*cB{c2M4xG<%}9T&>e0qh{F>NN^9y5SvCog^OThgWfIxVXVT zl(axS=4LbKlf;Kv@h8>upRS;qCcIkU?~VSqrSN*~Yv&Il_saE_yf@)qRvc2N4$8v; zVqE75B6zG0&8)FFk>pC$^2mZ-NOG5ffIlWf1`-JCkipD~Xhu4uBSq*Svk95BuXb55 zqB_D19M<>;uFUQ7%iiR59aLkzHH7EW`RWkSm?saiT}+@!mcqa#3BdbPINboJ!P zXb6}rL$x-;f?UW5Ma=@$v%KI)gK4lDJ13u zs<(>_aP^DVyo21B2xe+#xyv;y>#WU++>!!#FMod;8kh^g$-soYdRuNYs|>Pha`QN8>Bckm^Daj zYp@^>wN0;<10=IJtp<$_spSwzS8GQaIWzK28u366k+=-j0Fs6vV|omTayH2r5Jha{ zeuoy+BApS(Y0Hcjz(kj>)hl8o+jJ%^oTzmU_ApzkMIc(_4>TZP7edrJv>^V2gf_cb19&MWRj_?qzF_={s zUONW)SmNOjD1L^ih@^~ku2l#E)0BS+#$mN^n>Xyw^OTw!E_ zHf!}Por&3j{E|q=X)$N8`08L(7T1agCU;56h^1?=;FS%S1?*x)e;S1NQkxJy+wOD( zii&3;cv=joHd?%JVLzXfeb; zLliX@U>HJ#g`7hya+ZYGfdz*VAYz;esd%+Ewa#n_Tuqvdz~p+=GQ(dQ{`H7Rj>N49 zPLZKSN@6`?nn4~NSb$2=0s2Sn)y9G*lDA%{TcAlna$GDfElV7X2=NxZ+0L?@n-RJ? z!-UmF`>#XncM&!XF|D;=T%*RWN0@j#WO6#xaOy@Vc_-p2V-@v9Z1of;ge4*m*zGKT zxxs0+;1!GwS)TO>N(Z6I0wl9BM2A||Cr^VQ%2DC5plL>`y0xGQ%{srZK|CU->kL?F zIy&95@YYnMQ-yfeBU~<`x>;>J6ucR^MvXQTGUp;@^3}5CBdRAw4P`nl&1 z8hvUq?BPqs5uG0+GEv5$Stw$1j6sQr$@z=-*2EhkGsem?n)0aE5T%HEf(MoeqK~D= zgA)eoOOqjDtQND?WML9C0}~0(bsDkEG?1STjZGWKe0w=|H#K+~xd`+S!#0-k+Kha! zi2UzFmRKu7*Ngu6?gr=nsG#li>g@&nQjo7X8d%1mi0jw3K$W6L5(EuP!HcW|5EZ}> z0S6Ju!eV!tk?mgOFi1sW0PJ2)><~!xjCn^!Q-jTdu=#2P0?g271d3)(LSSw@C)OfM zv=c9~YzX~lGGWOgp19p?!Q&N!ks^#?)4;S^lixxb*Qj8zGb8d~Ot2z8;qIJ;>J+?o z)j3R>41*K#yEO=XuEuI|YLUPh`OtONfF`p5a>8ylXz@f0xyq4I7OMow-XSy)^Utbv z7&U6K$Wm=cg^+7BfWeGB2czmEYFcUxka`jAKL$v)&brZ6 z=7Rcsoz>Rr3}&q{UBiPErhpw-mTU`NIwGYzq9kgOy&j2ap>dd<2CI-CA|F@uxI4-q zg)wHy8ot(I@Mgryj77TgAcZkTW)*poZBS3Fh%awI!UG+W23s^vwZnm6k!C1Y$izPC za6wRh8j#_^VY6w$oQQ~t9N)-bn_-6@0=~9eum$YfvlMfN`2NVZtU;tnB!^(Zm5{;# zX&sCR0*TBe#z5L>!~so-4%Q-evKSEA%&O&048j^&&+Rt7-G;>5NZk$IWWi#vT+~jd zh?1WKrO}Kh`B;s})vH!pF;Gml)njpw%bJqd^)5mTcK!fs%%0 zXTTA_jG(bt$k+?*+JNTaJcyQ9pm}aF=sZ!OhB75%V{6<@qX`9n8!#5hnT?PEn)D1c z-{Vq{HUwE)oX|Nm2rY}5Frn0x0bNAvaGG^Oi%O0j2Z&~#EC}v#F{Ujt*+vXb4PT`( zh-e6|yI6ywSD&5SwiOOK83^8mpk0W&Yl14Bp@vd#hO%r&h6kO~Y)5?7TOm-B5e*h1 z6v16_d@a(ILw!(8GEkFc#5O^YLXzQx=dc+OM2YchVqg#{ z_*P1Z0hNyM6lA3!f^RgaV&T>C7Q`cWiw;qAofe}LLIGPa5=rQ>_#JpVpfMraJ!eCq zf3YM$2thU=O4vG0h73c@Xf{fov8?Wr3vGEXjfnhXZ8H zF*qD_{kFa0yp|dRvYc%r22io|{-Om5$ww#Ejl#hZ178L&Dl= z=8F7aik|3jH5$IjB|{O40+gnGKS@KUUCXacAN;JKRY$clrHx(-Z6_lG$~bm4oe4WP zMykazg=>{a`SJaW*tlZ_Bf+6A7=t(Z6zL*PUom(yVo} zET~5?qYZM{Xmv&do(e-5Vip%HH!MTMwAYUIQ5gIL2O9yhwo6InoVE15oaI8o-Z_;aR zwhe;{k;?{KxY?k_MuEs`Jb@GRHG>oOB6jd`iVQHRG2n4y0#091!DR^T5v!|CvfAcA z#BfBkc4V-WIoNmc!rBU@Lyx@1pk(dnAg5*3}sP-9-K!ax% zVr7|hh(my2-jELnhHi3bGLSDTLxaVrH9AFz?yZRh(14@E6cM^(!KCXqO;U@MwRB2B zYG=JZU8_~vLRj>4r{09@IqVz^W1JcS5Qy0zdNmGVf=iAb28K@CzA(6j*`v=+M5>w? z{1~BVI$#})LOK&$TL;E1Xqp^#NM@!uwogW+NhcC^fz6Dt=pe-xk`6iSm@peQFFChU z{=b+Fh^78PtW9WuHpo@PM1lZ>%7{G*XCbFhX-3*-%$HL1R;*GJGBhE`pAIHWWQl@8 zV9@H3{S1Z$v5kpSnkhPb4PRf$rl_!KvAa-1hcsP~knDiT!-2Q}83@2`#{pBV$63<~ zqX!n5)f6as35L{Ea|TS14lE~@hR=ae<`(2{18af>vG{FBW0d1hFs0CHf#w}Q8wv%ap9Z#5L@dJkfrgoZ{lM&W+OWMsR}R1?1uF=cS#84}XGbXx zXi$$KEx08QySzm&C%lRUQ9hqVhbW@?Pg|Sch+>7MrJK?-G>Qd=^C7ofJ7KGa9)Ke+ z65Zi!qs4I%DY%4!QTpDCV6^BlYZ&)Hzn@qLV`KCwidZ%=xH4h`i$OUj7FjC&qS=hb zDX~TdU7GJ;HByXFhmkQ03G$HeF9SRcGo2a=3T#r$IxDsvK?B6QH<)c|EtCZv(m9$l za25r}vW*SqB%TUU&enkZf>ziotvKP>oX90amtFkVN6 z%q`=5D}&KM4{aA_I+)%NW(ZQ=4!}+e4mi;K!j7D3WNXa8UWSMZI*kQ~H(16k$i@Ku z1=a;&=Ffj`#wr+4aT2mSomjvy?Wkc+fUVhql!;cHo)FSEWap0so}Y6NRyQhOJ{q>_ zl3|R~T8$YNrydC5$t+Hj*jJ&|;6PiEn1Ppd=75P+3iVBeS|80RbH3mGGHLm3w zg{o*&E;b`lHXw;4v>GI8b2?xtgJgioNsS{Z0-TBTe<{)9`&cP#!9i6q`m98n^)*Nx z8igq%6w6rTDpwU_jEV`M_9+h72a!t?7Zylp$U?c^7C2HdGO>4u+ z!3m4AVn2%sez>QgFS5Hthm4GSYRcAFvQ6#4rHnPh!t%ppAo~Zd5nvRxu|Qr1JGHzB zWnK&hdLOnvXoN;5?!?R{{NjgiXtlUn6o)eK6H+&taDk}7b%!1LG0d3g*J*=65Q#Ez zR^|4(=ujQvD3fB04pJP+)*LOUlcZr;CJlBYGEl-C2U7^L)xsVMQ2-NZKr?L;mKJ!_ znt?81=z-P%qYX=#VzcAg0Sdj5Cx3<1e{Tk?Iz})q6g6B=z`Ccw(bI{Y&1N*?w-$M7 z#2`|jrAC2@?5b^7XktR;@`0bn*q+wOoNmx5_B4YA0vCr$NNEfVRvD|#iF*|22rxq0 zm_-9FTWm{9i4m(vPBI#6dcrLk5b)8sGGaf|#-LjHDvLfSr?BngKvpB!q|dOi%Ou=H z!&(7*l{!PGK|))khD4mPfb_z`k=2vIu2$IoVa8{-)=1cc6FH7=CY{-7a~i31+ls~k zt~Dkjl`gEdxMhMKihE;b%Z1%p&+aH;>EjjyadDj*9kA9YcCzS@Gibq<8Df=TcAO5q z!-7<{Fm6J_f-wWfFDSu~AW)Cx`*$s_Tpci*8(}EX;nvK;@)^UtqBdHQ*BNJ@!|dJ( zw|#bY6@@!^80YK=IRxvc8GE8u5BoWiLa;mDSP*IEmKmDl=m444+cnt;BRG_DT=|1; zm23NIr{&uI~l`!Ob?w7?R0maKc&uaR*leEBMrapqKasyFRs?T+leMtjogH zQZlv(C|0mX!tM%H(&DtS^iR0`vmsHeEzsa>KE@dpt`&+0OW+$FrjC0Ilpo5{(v9hA zqhfiXHH^;?WlTKdz>WxZuw_FX(Am}Sk>Kjm#`jrz;^=Xl#PziL%0g(2(Pt;(dOA8s zMjA+HBm zfClD-{mo%wHe>`u!x;q^XUKXDzYmRk?;)=*oD%dIurHdKW!YlHSt3J^sE-JXr9on< zQPaQx;!qX~G`H%f8lr=?`j$`b%&q##xLw9o7q|%ukWLG3(&9*h%&$Pz0XbRlD&!=X z6cY&(J#KAm&|IN8Ven9lA^efV3kNx*MBrA)L23D`r6fHrE|BC{Z$+25^@eJ!#$tqJ z4%vG%Xj+W|*}NDXwh^|CJqt7~qQRx!H8Zr7D~Wcy28q3K0EDUwiHERam?8*%E3`VT zRgnrS8TqlTIELB{W{XXiVSrbN7MeT!KVTl$Y68dtwpB{O{TuRW@pNHGtBnNJ@Z^Cp zB?I>pYPd$oNqnONg-XmWsiVU)(FVuX@Js5(nL1;nEg$w~eY#$$KkBW>O2_n9xH!Nt zmVv2)5MX8zh;o|$DlGN+JTG|kXfrHdak&N=b;9)A*+`LGC@QZSEa5w03_6zITc<`H z7koZg!mp=juSXW#8rQnYIjhP!tI9d6a!UUBarIvm#vDs+_Z`oU^K&v%*atRnA!z`-N3GXH_|8{r}iG z%kyes6Uj-}uSNh_B>hUIrDMGv;zNP9-u=~;Ot*aO?-dLbMi35+M-N-Gw9rEqiNuP5 ze#;6|;>di&279g0PSUs1L$4KPkY+_x^?G3|vayJ2UN6+wY_qdgHCIpC-{9*+vl|?3 zR&&O2d}vM!Cge1xdtNWBeaBn-@S)DQ!H)5rUT};Y@xqwG>_bR{;ZhC7i{qi429F*+ z)-k#;d*6Qg_v?ik;yj25^@WM#*@Lv#8-*$4p6}@Tt^VfZ&hO}~HwxR`cJV0d&Te^O zNT#t`9?)UGod?<9XZhcIzGJ`d^Io2!+Y@OP4;UQ5X^py{krxw{=Ch8eFsFdSF&H)Z}4Xo`!yH{XTQUKl^wbRe^;}g z_X6|mHSE{ABlzA(RKO}$RAf1GB2eq?{nvp<*EpR4T8HT-dm&8}7pZx%N_#BG%dV_!>w-K3ZMdm$qv{bwf1G7*?XUO}Bv%)}YS8E1!Ic&k^m(^= zVE-qD@5ZTyDB2@c`0OxXFx>D1uTd2SBfWHnuTcwm9#8vb2<{zbNdZTCVK-YPY#r2 z(bKIJ^klhZV&{Nud*NoH+NA7a)VmY28ikN(CYlCH>GIdcWH$LgQ8h$O#EqQTJn;99 z!d8-MzoG_>=&ZTuY~O#-*^OO=_eiSq%FfnznATtQv+|4dud!L=d@22XPvQOHbr~rY zqev2f&qN2z*I19)DM?g4tkG=>`pHBHn+X=^vx)MHf*cq36+W+ORfaDzYjZ*Y=rj-F z*uT1=p<2}^vKOK$qbK(lE)8!L!H4M;Aj@L0)8hPz3yH0aPTw-|>Esa0sBf;1*#F(@ zCk8qnEJX68(Pi{%{_N)!2nG-%%iOdG?B5%4q-XQ_}fA2mFVtlr#L!wQnbMa_mfF{LzkH< zNTd}(+OmAaHk!K2h16>&1rydk86v7+!n!9#s-G)=6)uh=oly_TBNUkZEqd#CQsnzd zBEGuSNsp7X|HNqn63YcsR=gBm?~7d%r^k_gC+VnuIZubW%W52~N7Lf-ThKwyIi1NJ zC)sH4l+YYNIhw46Hg(&BwD7154}sOpp5(*d+(H3Q1`X+4JIWrQ|(n&<4pDODY4I? zI^X9i0mh|qC1ovo&rAwTYvX%>sQ#@SAU|OI*4C#}RXYvrf>MPaF#dgt&TZ#g6yBi! z_PjJY{6*ST)lk`h9|X{#;FpQx!y82K#`KCvSkiAoV>z8KzT+* zD06vQF|k2M#-LgAxL~2ncFt}k4WY}wDU^5T=NT$teBe0E`5>_AuZg`RX{M;lm7eL! zx||t?ou|LW~4s-SLRMRmJ8;Io9+jbMNS72(8BZ%Qmfl%eypd}GNbdEP%{FqJD; z+8}2BY+s*QA_wG|FHu(GGrw7$`3*ntv>Ht+0mdbGC1rd2`<9Wvf8YwL^alf*LZ>~E z+dfeJVP7LcZaqVplB&=?FUmtrJR`K!Rge0{ ziO?g_70*x7;0(P=COt;}_<^VWQz=oVd|Ow3QPAw@01V>!GeXODoZ(uwe?9FWAsWW0 zc^Zk180hO!{*Qg{(?ojlPsq)YPv&MR@M$jNGX;bGfI1};MQdH)7OQWfr1(d3iS~0$ zQjrBWjk#s0gUpfhx(J9`iLU#IYQ;agOJv1ObZ8%H20EnCfk&pQNiHWwPpV#(+mK*P zEYrzpniB~^i<2JOFLZfkm@nLk7IlJYZ?PI0J6(=NoNhPQ|iIb-GV zDB%jFQTauINx$8`@zPd7Aby;p*XJF*pF<`i@3k;mThtT@A`oE2yI zI%h=+GPLJ&T8;G_oF#UMPp;q)pEakPk}MIpofiK(uQhp6M((kjkbC%SAoG~7R~#9O zD&ey6klfP?XE_7Ytj!2Jex>W8mUOFXZZhrOZILR_@1##H`5*VyrL|Vlib}gmWcJxe zX?h~O=Rl*=zSD&G&qj*WOQCw4%SQ;xNKaEsYhN;X_$=_p zi@tuUbIP70&a&0y8!08mQ5VSSOOTnh&IzWhelC(Jk>Ikyz?}4e>Wc4(L{iTQ$(f|A z$CpR^Ileq3iLSo~GL9R%lsG8*WlJQb;xg3Y+CJ2=`t#?Iell8FN^o41_dX}qN}FGN zSqWt5xyZGWB$HwAIk8rp=fqlh2>CjZu21UC&`hSq>(^@Pu+C#HmnP+O70czuC0}c@ zOvdk(oA7)2Twpoz4~Zk6pi201c|q>!qjN&uFRkhK#gRRrU%0_*a(F$u^qn_q(IK64 zngs@_{7*=9;t#&MfgURVOo<#j7ik5{3pN(xRQq!~k&QA9R>)KJvMAfyFh{MT5k!cx zHim>K!Ik~!Gg(OcKZtmL_tf{RBvpg+3R3fxa^vZ>CRH=#XTDMzoTv2~`o~nzU|mCh z4^@YX8uV%8?-1S~Vrjipj<^B~esMz*{krOl9^hpiZ4J@-lzhLZ}sblYP6zIv6tp5KXdwxK2P1Z`SZgYM37^pJR~JV zAt{t!LO9U6E&Su96;$f$v#ORdkYT&%lJi1P3`_FgBT1WBHC)B*nEF5+WmPUKUOz8n z#S(h8pYOg(hD`ZRS_vuxQvLbTd4bB0%Ko`KBB7kS+)Taq+wm5T_Y#NQ%vD#3z*Wt#m`(Tux6RAqKVZx0dc?z-3c~=|UvU^cRGB zs808vj+2n!`fXV~RM@lY)({%pBUH1}*Cg<^*5ALn^gOHjjG|W4@LJQ1{>^dH1Tk`^ z5-O^;F0WcJ6yUglyuUp9ZWqMN=qWGbqt`OD74k8PXs9W7Z9N~2kpfG*`PUHDYGuC> z%S~6_kpebfZj~@Z*G&Jg%9h)fO#f8X-Y{rvrR`FD2~A93&E5VZM0HeAs90&Il%M%Z zJ9>fMd$0eU@CFep?QVHAN{E6$$}b@tXjw1+cv9!0*pq8tRFp9OmXOx*JXPE*$6tE}!tp|IAtC=}L8VDV*EN!f)y{(SO?j7NVZ1isGtUKHzWN|s-WCnGOL zZo*H?;~sWVtg-BiVvRipj9AWGwC4(IAJ(&i!zxx-A1S9IUGAAbm%J|HwLB6p=~YIb z6guc=PJ4R&;-W_beV+1vSDkD{gYd2Rb-ByU7lr2f(a(zt0_iq5xdrmA{;PzPfQI3_ z^2UfJ@xL#6koBKV0<)g?FCwJuVx)GuBh-Xzryt8?cvGIBS7kCRjvzynh4xB_7JOAy zJb!_y!~7d0RpUzv^737`aokITR7uLuoR=G4qAf=Hw}v-};N{YC$cj$6e){|<|8qJGcqKucGeQWwdwEm)5ZHWDnSUeU6IBcJK z_L4a5&CmDOrQeSA*P&a+`ZZ+oC9#fjlnwYga$XYa2o3qcuVPw@?W&TpCF8M<*2pNW zQbOSC=&eg)9i>n7-&&LGxD>gLewXR6{gPNmpIs8`Xe}^e>j>@nI(l76|7X>#C_O&@-}ab)WYNR)uH*AtlNFc@ zX5?DRx)0;;C6~+j`+lCUjN*Lo^+kZ`&=BF(Sl5=nX0@!E02)h zMdgSnaAzo`R4gY^i=Y0#r2XCg#K2we_-hc=VI=|)OLBK*08*m^_`0TWU0>VC)saqq z*RM^j*u)-0s7DQPJffsRhrc4LB^Hw&FVeJDHZs!ElM0s{9ffUXV6r zGA*}$?7z1%4ZOuB|4WtKt?k<6|FJUH;Iy$hnWRf;V7h*GA8Z$;H2;w)XUT}GwC5K8 zgQUj^dS!f0tGFqrYSA0**Cms6r|FR`{zq#*h$|ykYns>W=iFib8(jtmsE} z_tr=4NBEA%9rZ7kRQ;8m@f+wTm0!5l-~T82*!TW7!s{|BDgevw-dWKBN4R_6H2yHs z@oiA~B}56z-M#aam@t3go~^9Ht%i%r{EZ|PRet9_HcORX_^|0ubnr?4;PAR7 zS7tw~T3=CJ*Qv<55sW4~b%&u;?$j;qpjXE#)^=KQh&Zx$x3Zz^-M!)m|63Anzj)J; zHJ?hMspk51Xpg`1S}JHE`+6(e3tw*~ak;Oz1kF7R3q>z?i(^Ar8#YC^D!+uL2=b%j zKE3ezuJf~E@o;aN+KMlsHgxcLe|D2f%FdqmzocrZXeXS!+bh5Dd29KzaPkhT8!;D8 zi@_*CZM@`fPsrUr3s3nF^`E)9syLG<8!N`p{;GcrvHUDF{bw0=vXm2-%TNC-+$iV# zeyS)6?C+m*AAoRGiBB7_vC+R5wof66`6G;|qh@rz)VX20<1pc}Q+ zK*uEHCevr)b6e5XwR2ljReY|7KE}Q!=x7UCCn2{jotQz}({Ay(&FJkq`oMqHLYho7 zo98AH{V&3hQ!bdY(qykC?JvR(`e@zUCuzzpxlQTVTXK`AU6q?c?Izla&QRf7|L%*L z(;ap3ZNV+ME$KD`ZBEs7bEo`QEu;aoV4S-Zx%U@gVGSYEE&`c>^>RDXEA?`lP+u2n zq&4fqS17Il{&}hkZAy37&uvaeccCq5>n^l0{j&?b^FOUze{$ih!s&&0RC$Fx$b9S< zVT}r55_EzGS@_w!^Dn}A26M)_RLN`HQ!Baz%QA9jKYCAhI!-m?7saCH$J!9wt}+F} z`j5ulEAOIX$udkUGYP%IdJfwtUj9X}cdbm?Ng^NpA~uSR%6eQfuE1QdjRN)mDQ}nF z1KvI<^L8oz3;QA6T>tG_fuw)Y`V#r`Cf<8k9_(+w2qWUwd+BtEUft>MD(r_LvOE=D zlYVs{{fi|18aZp$P&Gblzsj=)Y$~3$CQ3RhX!l_sny2dhYs5UIgb*5D!93NX`R89x zr)M6ZPV&sJw4mX{<}^Et>Qq)`M_juY_$&P_i$0+ms4QXHMPdlVNEyV_zY2B!2}NB6 zs_Y3TRX<42spcvwP!4A1uXJob+D|o8SrP$elniECbTA>MJ9W^r9V(-n^bj2qV+p+)r4Q3fs_n|p5lvsLs40Ikp`7XeWW~C~ioNkD-K#no z1!92=F|2>?i2vl{v^7y(Rkr0upjA)OnX2EEpZQ^P%2U)quKr3-KSig7x8j#63!VnQ z+;UyPl6;EM;9mnERKmcpDGsUrSqm#dF`7_$=NSkU{dFN!vz>Zk|NFi*w7wKYS7? z0M6{5FSLqQ$z%6i7yH|@&(l98)55ex?E;@J&7DF*zsJg6t}B2wyZ8(B@m@q9!(Pwb z3y{(X`V88$|Gp^E7AtdAWB56~oEku&+>N@{A+f8IwSB$D+;S^&beI^*R`dC`3 zDpm3YXO{-!Xb;to%Fmo#O0Uz^<7ifRg9vu{>c3@|v*RgEsrXO;*5Sv8>B5S-djj32 zO8mEiiTOdUf#QpT+5VbHhcv0UEHEX9?ub)$P&5>7^PyQgE)PT5fpDAOKZUj@DzmaJ zf4|eY_WYVuJ)O2w{Xgt|XLwZA)-Y$M5XebrDYP_t4e5m*I)qTADJ@k9T~MSbAT{*9 zXF`~kiGXz55mW@b0swBL22PXThzSmm2@12Fe z@k2bBf6;|^muz&$(hu>B#0YF=CxnrA9j=)~uM`}Kr3uTy@@{NBEPutP$hB6`rbL~F zx$p^xxwwSa@U*|^@V7SXaEJBabJd6sPYBpps3tZ9Eqs`i{v{FuWjx&y!uG#JLU^-; zMk(Z(zeGYfg5h{VConj?a(P$0fYp zYTu-Z+vwBoupag1IzQmXhSggPF447eSu2!g-8wg&WZo1Nn8uj9RbcW>UV-$Xoiv3O z?xZbRJsN1|@Y0uqsr#q;JO{0ve?jCH~oF+cHb|yJ4ZK`2A@i~cS zrA=Ge=uPs0H0OB?#?ASXG$(-bMzRWX`tVPB+Cgo~KQu0hW|LbtMH~4`Yg=t?`il-Y zyRqa++FHx0poI#FxaHYCrbzW0+!6zR*ug!Yqr}psxog9<8+++{3Qg%nqs4&)J-_y@ z#MBb^(*uO0-|}qyMplCGQIt}bE*nJ0Fd4TjU*BKFs*2+-xCHs=yN5x+2kEjtpkTo* zu3*)tUC2@|MW;wv9)mCUaMoqZEze%SES-Swvo3Zo8_d_yDmwsh$p9FluQ=)g3i0+I z>t3Zbn!HS3SI^x7`?yjHgi8zh`G>39s~_WHo>$J@qB~B|IClh(7+5Z4bQ9qoVxWZP ze!gUoI6rU)?8?TVe=`Z(lFMJW_}LpJlEzJ>@)C-$zY!FVgBpK}v;xr8#X&V`Wh+fw zw1O&GG&c|YrTgF9U$m&#>BCXV{Y(bA%&)t$N$Nl5ZxIA7zoa?QaMqN|%g^EHu(x$s z@S}+5Zkg_nQWjN$%2j?HK3DGQ2ij~*s@%uKN}`*0E^5hSGp_n-G<<^&f1o^`J|1gI zQ};7Vx*UN|xb8(Ix|QJ`_V;VTF*FBAW@GYP_)3v&7 zK~Ky9nuBZwUc3Eedw*?2d(+Fc$fVn1qnGX`-$>oZ-xf2%<8F%?;l8)UjBvNx!c{sm z!mjG(J7ElFgmXTxv?MyRuuaOg*+aHLWW#L{Bdan@d;G{@fO8*2b&^ZF2X2e_IN8;d z44W!%d#1?F9&ih@OdI^j`P-iDLO&gj&(rLa%I*M)tbYjd@VHp(p{(5bVx(~!NpdfQ zFm#9_j4Mf-+TZjyQT_ixM)a6L7+pyS!SGyYOcJ1YT#e_a9cV&>)j`^VY|}%E+N26D zxxTpg5S;!i$26a0{3E<8l~Hzc^Q3>of>4*CrVE4&|3~=w5DdrtyfeUoh2cEnG75Q+ zpVcweORR$U`1Zm`lZ`C;M-0m!h5y-J!JqFl!QtKQAfvnYES9=%`A1Ci9UpD7E2IJ> zaUW){@PPYrtSLqz&;7%_M_)(C+2Dd>Iz&@`z-8kW*-O<`|Bv%D6`H!#CJ){5%z&D-#jHCb15UpqGT_)d zJOe7j=$03ux_Q;+FzVH2!6TK{72C$2l(Lm$*-i~HWh-|?{wtkp+7v)u1u%CHz9k90 za!2I9mll|^1IY(qM0XEX<^Eb1+{UG*hXcsfJDwgKx!t4D$EaR;@9uRMg13$g;eF=jXIya53u<_yHh2v(|Ln z9mAtVPm_vb{}DUOaEb24@QWwYt^s1Xx#_iygRAKaofdr|ex@oLOUe5}15k-Kn_gUf z?S;slkwhJbKv7>P7Z>xs(73zegq0hDhvI#t;+Q{G)J+A^h@7`TgJ{--#e-;F+sYPX z&0P`YD;b7cvVY>P=+o@kX8M@e?}{L|U@#u!YwwEI6u^0(2Frp-@;;4^Z|!zMpXP!T zzYj;IRe|uMi^amgj+ujTKyq$j=8HF!%M;kTq zqbqI7cdsjPba*>co*G>v$iqHOYQSZ*`v+)s9i|(K(v5+6b@@vrvCcJUqPig_F6=W6BIz~gg~Qg)qh(=#4OIJZ*N+^eY|K&J-=K z2RwuUxgV9*p!J$Q6|K~u!<(7=NBD4+s@&+*Vbf*>E*WIi^% zz^xgl+U(6$;}zsj%kmdx!@*|d~gv{j7o%ux$sK1lsLZNf+H)WIlig2c6g*%hdo)yb> zu?>^`-W)1WQU&#yLxrOd)RTi|I&T{1r#diMkN)z&N;-h%V(ptEz4D=HMl7Ca(7C}c zp8b2tJ=dRKTnE<;e`M;dzV0RfY`l&+g-X0BjH34QrZ8>RMbm3UeIJ3M#QrHR=864% zg6Xj?h6QgHh1V~`z@#yuS01oE zs74Y5#$(Wrh|2z(RkrN6`(Vfe(Z@IXIpp&}Qkedj3yVah549DV254=sn8ws1MT9we zXK`dhcl6n^zVnF)!pTIq<6t6!un+vra$6Ro?(zqp1J$XL+9?RWv^@p%$g>+;kWwii z^%Rh7Cn6N#XkVuQ@;sN&D-@4On$Hjsig2{=odEI{2gadz+5-;G^MwbHkEPoDHWgj% z&vam((vL{B%S6R6$++5EJk+itr9Z9fo*QG%k1(z?ZK-0OqNu@s$eg@i#!vD!z{T8& zgZ=1vKl40y1P>?vy^=E`$`{zr`@)#K8CtA;5exf1r!LTa-x7IRmCR?O18!-po z60P$SEm2~y`I7*0(9bXc>eLjQhMw{h0kFqU1i&^w5dc7hd%_xQMV|o>B&oRqz#3?7 zL9R#%Kl7AO`4=<|0#98Dy!sQQs+w^I#=QSX}aQ7ct8C##ynpc%jAioo8MT}FWBG1 zgUASfkwL+GR9YNo4yLcwG&f?uB9%D;k?-f5i7~lD-S00P3MlZN&HuuoIyN_NR_uZc zKWApaT)0#1@)u6^N(=L%0Jv=zROw1>TNcEk9R~BHF^+>StY@QvWXlhAQQ&C}*0BK+ z+@(y6c(plohHhD&Q(xJ7u!V91$@sIEj6e8`9`n(T<`)&XB-j3`X(|%WAt}}l5FT~6 zler`F5&+{*hRE}tdbWH@N4PO*Uj$v5Y<`W-Pd5J>_Qbl7dLjnT=8t z$j1%voreLc@ULCE6_|fj(_wg#F3T~8X&t+7P9l^sG?@41|fkhVzm*^_cv3(#1d?y^| zm)i^asb4d`xEUc|28bl^LSOSr=&vuk2I+!F{T&R-qyAcehueV~UdN*j9WGBj!IQbC$O(A*7f90GZ~MxftFGxQInY*a~;2bnA2 z+A09`%F;i2fKJLbv#U@6v@7j7ei6BU92iS?zU)694-+yyB zkhUFb?(Poj;aIhUM9YkMbH|FoCAwp|q^V1lU;8wmbH|ydRWsRihQ@8P$5Vb7^eUE- zZ!P%(mFQfwckegDVbB}sqd0WN4};#s#g&Ia{Q#Q2?7#VbUudB$o z{5WWHFBELTjJQNs&}GILVMg{+l&{p4U1UD!YrjtDgXY5# zJPxI^=^Q9O4SM*7JPis*2l;8xu{G(CVsk2a@>hNul!X38&yIS$Rp95aQ)m59Iyvg{ z@W5f9_4@YWd8z4**4L(IwM!w9#eHG8>v<;hghFReGlvCkgOss8oDPq<9NFUEP(AA# z&73u}-a=R8ssToH;2e4g~>9ikTQC z#Y}(_&ab5S1PuR5iW&WqVn(@yq2rUI)8NlyzLRb``^Ass%wWIx?$Vj;7vC2(i~Zt* z=-KQSOs2M}Q9OtJ)V#zjx-wcsCl9KG$wZ;;!sZHVN{}%3!=*|^k_m`EHFQ(oi`MM^JUu@p4ev4^e zC_J3gK&KEQa@AEZdba~v5nmusU49yO!PnShV)cTm6!7}c1H+MBq*iWr;oW;&g7o|13G)=Si>DNbV6>1T z1A}boY73_yEH{6y4#dS-t@e#khvO1nodbjD?3Ly%9X}+US-H)vV@iPQFf{scztuq%#>_x!nTb=dhi|VWB z8}~+}YPOIQqf=%iZT1H9M+!MFtu%WusYmO+(z`Z79cqNi=14FxBuksk=6U3&ATh~s zjmhN7C#O!94kF(MvEE@Px@wDgI|;1CCK#p!*FsQib{>wcCN?uiGvF&5pUm;a%Kn>k zs;_TnwwX;4#>eA5v!_8EKr!T&T{+CAkUK95M?`3w;Sh zbBO`Xqh;s%k#)wRFEfA#p9#|%l$xU|$S#g$99b(3P=QrLdbjn8c(UJ^-%AEaJYQks zp(^>gXQ?H|xP}3W$JunT)%{Xdsa^fR(?ovfY6VgAo0q!Ky1h$ls_>WY3ed##rU}nC zsvUC%73<7h4Bn-7cyxz4dY3+@{(vA+qxLH<=2`HETC{iH(lmDjk4Ei`Fb3u>8nvi? zr4vZq+H`Th(#dN5+DK-PHsd`(A+)w=GlCJQu7_yUj`uIUuC_%0o{iZ#L91oev^?4$ zDS(>_+=s6ZEd5RGkJ)jv^sWtiU`nT|z3~?hvs^GR%cdWkooLSB(nF-6HvMOC>DZ7W zL?MXQoA^L1eIloHjXDFB(=8)Q`_TJ`l+N@6a5^WIG*U4hWt>qT;RC@rPnuv7BIRk$ zSBI8M4P4B9<@?&S&e+mc?g)BE(k~drg$set47qXeaIS9+WMlmS z6)Owt>ZP+Ha0ya>)BUCMNJ6k^`#Lfq+}gf&!Sv{aig@kE2TC*j$-rPSyWS7O@wMrs zU@<`e@O(1V2RGjQ`S^Arx70@Ff+VcXogFNeYHH?}uJkACgIP-@r>ZME!8yV5AWBKF zm{^RNQu?hw+0B8+hv{%J9&j6Gl#cNy2RWQrFGav9IxwFCSrts}50#E)5?x3u>woW- zy)d`*82Li#^KYQSR;gniE{zH&HzjNK)EZ(vOtStXSj^-83VLb#2NOW%tUvYek*?JG z^SY>LJ{FR-2KC1mK?h1wXP`~}>cCNW&2`QLrP-vlD$H86p>(cFdaH(J{Z8WcRE1fm zmzMSjA@^}$Y*yEK5*J+3-qLX@Dd2EkW^F4sJ_9f_E9|QPf#gPJkc#WqLUoUUuJrJ{ zMbU=(xz0L)ek`~njeRPJhKyfpRdz96gW<*%zOUoRgt8KaJZr4`P$}k7RfB1@KtkT| zQhRJA2=5kYhh8e3rjU<})y~s_x!Q-2+9s(smYv6{Pi@|wy66QG6e2<-04Ca*OWk*> z^mKg^7ovCOkW0;#{G&sJOEn1*E(OTkgM&4gOyeSW zMd@9MHw9R;y)wyHp(8;Sb71UFF>=>2z|A?nD?+>ROKI0&vR>-N7gY6-?x_RwC@lnI zuqYiW^&0G@mrqyvOV^8!gK%}|>ChEeljwz$i_+=jMvEqs*Q5nbhKQ(o=}u`tAh~R8 zh9W8PC(;b}1?-vzyPmwvu(T3R19N>7K>jhdz^+O-9#G_>v;YWWoTp-|R_s|=gqynP zFi8j%?$t3=xL1?rWzz`#V(BgzW-TeLM~C%w)`$K7yUGJ;?C}L5T5$*C?}r1Gfi$s4 zDStw`J#xvHrQrQSg-iAh6)p)3x!~n*G;);V>AA`gVG`|WBOpk3;>t9yX*Y$Y02a=DJd z{c{6YllkX-spLE_C4Ks5Z%Im~I$sU>tRcH>^erq))9UIk0#WX^g-oqP7FS0yQzPdTI<);c1{yKdX1wIVMXn{<`j-|#{m4RY9s z*5r(rNx!QE5zaU0%Uw^lBA1O#nk`pIUI0Btp|emIRyNqqwIym<%|OzjuAvjT)?VAz73wr&_TyP19M+%No{w1VwT+bi?@2TS1trG z97rBB_H=_p!X=1(d_xlgM7RVC>)x|d`N>5Q=~T+QLY%jxg}=-w+g6)gHMTHyEvVF` zH&jc6R;y20!(j58mxZ6v;kL8@xP3#*9<2>~0PJ6a5^$|@Pn3ht>#*Fw{}$@;V`U%| zSMPN%^?W+lW?j9ihFS~9m)S^{dUVc!!`a#et@M2b&a;7dQ}sb>&VMAS;acqR(wamm ztdw7D6F{JUyFj5KDvc2RFy-M&_?`$fpq3aY4X0VR!5aMOf+6+jjYQiRRx;q;d-Y|7 zWyi?gdh}@Q{%ob5@TO};Ws#kgQyKLJvN?YPA%Wp-3>l=pa2epMEg6gwQmPNaBy6o9jq$vj; zj|`S7mned0g1Re$LXsN72>)7NTNt>zumS17F}woT66%=HnM?mI6yj%aCy=<5yCB2L^ZUDE1RAfWLuq?ZLpf+##?ymx9 zkC&ee(dG`{eItM*H!yUzUnH3XKxh4|KgaAotP)r&hrv8<8|uh)9~WH5!rku#llwTF zmy0Fnz`U2yv4QAWMMA5^#^+%TJk|8+W8dj&R+YAf&IKP^*FgB#ng+OMY>_&HFvkAnt7kQ5@$O^fFR9A!K!thLE066SS08fO zji55QwM@@k3nk~!FyU0eVZx~ZmvjD)m$iM4ALmL^E~n}hCM?<`j7Kev9lJ6>>%VRH zrP{EM1!VE+wg<`u%CR5=bEl^*yI&4grZZT%=S7#hRVA!;0*{8cYwoCo5SqU!H9sOW$HT-brw$)~51c7BT-0Jz zxNxR3=XPIdMl!=$jLY5Mdab-JIj4mSZ%Pgq?O+t$azE5}Ox~gnYU6NE!~688mnAuu zM-@w19t;=lz{kJuE{h<`xh!7O63@vM>ZNc?g=&e9B-=S0c9E}j5a>~Dj37>_7JnE? zS1Y2fXi}CkHL}TLUCOt{niX_<- zp<`5+cvEyyu=0f_d?6}DmjB}i#q7tbYRH% z*-V@o#}U7v8tN5Zfh+z1@?mvbeX?Kq;ROY>nv~-xG7w|;hKL(4v;5> zY(%e&*&VJO+F*fqi#u{y+?Sl;4%Tb4WtBp@aWJpeeSr%$QVe*(Is>6zHxFObgn&$Z z8}B_k)r;FK@Az6!FWqiA;A^MQsi}Ljh^eMFe9Jy~Jpi^94WG96`@s2;u$e0!YT|MO z`ZKjek)&EQ#AInl-l;`1O_ug#RwOMlSqAlIfF;FAu!vex{0{$j7Aw(j_+JZu7V~A` zb?g`4m9U=u;>*Sx*e}pgY_(#O`>@sOh}dd%z--waL<`33<`3n>(w+kj#daR|f7)vm zNjtQ^Tx(~!B~-OA&U|ZuB~om&!X@yHFESjB6x*zPeB;}!9&%b*sHZVGzRl`wRHBoU z+pOX$EN_K;f+55@Xhc89IQ0rD7we#}^mFtlpG4A{do1xPMiUEyM;QX%Y=wDKwtlCb z++&%lgxp4yQqYORjCokhI#l9K7Y?km>%yxBN*5a>Ccj`QQuiTply6e0Xh`FZ zSsJSq_zPc^)jh7O&>FMRjvlj2BI+rO#n+j2tnS`eeE)>@>`Rsziux%=<)U0{NEe^5 zOjR%9FMJPxPPC^W`aVd__6eRtpt^b3mWsyOtFKsg_^CA-LAfgja5lFa(%d}M3oIx^C(yQ>1@WAB?%7%Q&}ZzDAJ=H2tymS zGl4?CGNjKnm}!LY^H-KX-38)1ZI>FsmVaYO^?+qNZFSFn(3j8Te`~p{sAZTacSKWT zTKc_Zy=uZ=xHpZwW|^)Y!o@t%07By*Ed31-HvV84q@FZFNdD2X*&V^d)r$?p<^eh6 zCrhxRUdBYZ*q0j9XMeWX)l2w`2hr&UL|Ld-)4V-I6E~Zu5x*vU%TI8PCY8~wcmL_R zi59qU_Rqa_HTw;TwN~8@WSw_A3r(!Z-fVKi62I=ogQyNQ&^0DfreOAKwoA zZh78UL;vU>mdol8#@E#<@rFJdl~ig_+2>m$8v3e%Hi}JXlm4gj#M{o=`EGXXi>bv8#ou3F?qRUR}+_uak@FW7eMO~gU9>Hk>nk|VNG4!VOvrIjCC1;Li?S+;`Y~3XhwbOMga^#W zP3UFC+R+2nJ#6<0SH-NVw8US;I*$Z46_)U8YGjETO}QnsQU2CAg~T)!{@K(W7EBS; zRBTKG`2VFTXq%c=liH6_uJk~*Lr~93ulx_yI~)Y+sFcj1~Db;(~U1q7?ajD*ub*u-;CsMtO z?x3LFt5Q7xuTH%fEMBFve5wva-YcZJ+MHe@*PE;|jXM(%q!&tr&+&fLJpZH4iFGN{iSGQwt2fM%C5&*Gl+Vm3Id@<1o*z+XIof*Q(wiX ztj+Ft0!k|TeVt=RJUr8*-^TzdQwZ;a3~gl{tbT}#c}hJIMgM4J?V`FPun|{oYiken z8zY3jTU$rEBe3oQGDuw`efWWzPuo}<5ppNWV?cp$>l@*6TWoA^wX31gNU?fR_Tg#- zF5xOQSUb4GdWaZh#DvWFb=RjY#oPEOrk)ozS5@tfyj)Cz=3?Z>X-Vh=Vy3dRi^&Z7c-O zQ#VlwB3zthofcvIP5U9s8tbQ=Ni6;r#%P4lnU*?2f?uiusPckTqU?*a%@|w)Ig1gqdBtbXQj!A-p!&n&^(;;ibK#d*FHzvy!+( zuSJ&&45V|uTs55>iV=4954ovhKYMm2E-ii@T{p;?q(9|D^5lub7^8*vc ztSRrJ`}j6#jMYYNfHdsD#LqE&!G`V_YqgWwvHE&VnBFE9OT}x#XLb|eJL9ai6w-tP zk4JE>x1%H+9ru8BHEGYm~GBk9=*)?;L1 ztk4FIKPBEgqebVYC8Z?fFWDK9LjSSd;vr*iMV{^ z@k-xf=PsUBq(07AQ9HY=XGYM;->;}eCl*-4>Er`vLTE!9DvKj0xu9~DQ5STRB>XbS z^k8`}tw*6XL7~lSS>?+LI^+%=@=B5QXL7~3;>vU|UUA1|#et|?X}g!we38*e={362 zJj?p1;Wouk!%gBu4L6KqHT-;RQD$yxVp2k0ZfaUVN@jX`Zf-(Ba#}`FUV45SlqAsM z0~f8S9*Wm-N*r^0x$8hT$UZ4vVjQaDc;L_K806sUhR5A=9hd9sva>a$K&q4*Co1`m z{bvTdSMs>ZKjX+_Tu86_eO3}(7)Nsto>{{X+S0mp7lzQ7Lucl)KU2v@j*27oxQ@kd zff;i6Og{$OfS#NQTh48BtwqElt-?=G=vFzUqw@Nn54{GqLmjl>2ASw(5TEsbP&Y_b z^*`wm$X6dpW4$kp6}4zlOZTM&dn;C0Px|lGxxr7G^?dG7^&mnLQ*jSIvF|u}%8T2#lG~HjbJLz& zZC$PSodX_Q-hO0|dcljwyCv2a$yqNRu0wL~2p*Bf8le-hKDvQ)|2p4Y#18ANMX)5- z990PK$KP(I{j|wC8(x*d;_^;ceGJUK>vl8RWUDpP9hUp#>>Wil>6)$9ZfXl7tk`YV z1MXNJ9`mb_$FK|#=_6F=rvI!ON^NI$v?kfjMK5Xqf2oOqMGisKG1*^G#9<7 zTz6RLMddUXy(oa^6DG!dtL#O!-EW;wwn%9)c>jB%=J9EhU@WLgd#8hzfE7b{~-T$!pe66xD_x=p6N_7IgZuibQoUE@qnMx)B23w&TXZ!-zT3h-K9pv9Z?ov~{?jTE8Xo^f~tO32I|p!mGM|OYQ!1 zY>M3tn6cJ(2;{hq9mA2xJS)8Nef-0E5yo|>K^-PT2LtobE!77XbM{?Z()bUoaqb8n z+=olWGpgmzTWBr*Lu;WDQiOQH3j7Kf`JMd8+D4s;%ITFU=W;qSNY~70Kx~^?4|zHKbsNIZiz6f)LOFb$10VH=u59S;t_hUfWYKUS#RI^b4<1&}lGdsd)lS?3{(-V{w zwWO9yFuQ`~;pqd_lk(N9jOp$53yJaNf_R`k>l)(Hl%6-Ka^e}r7?Et6&hd+{gh z2zOZS4x@gyE>+(#Lg0DXow$4B_JB0s!@_)##^ytA9_!|&uI{C4Eih*s-0aS_0agu_ zOLK2M8Ae;&u&(m8W_9w0^{%S4MxM`mV0Vy~sCwgng&vskH|_ARR(M0EAtuGG_UrG~ zL24{6=0OC2V#|{^#;yjo`_&{*4AQVQHT`Lg@?!Cz+Q$<%gb{T))_6MWH|uzM?JsMn z7j7JFdDA*t9qmbgF}rxvy4f9p#RQt8e@Ip;Hi(#n#U;A=;1{2Ve^fjg$zF?69;5dC z*1X__OaQkb#QF`5mDXYe@%(M;gSC{M3=*yYZ@Oo2ZFgwswl8Td1`+dHi>X*+0r(&y z()e4@&fDvIh&v%pwifeSFSizxL3e{}X5|ycUY=*tyOR!Sf{U%ibZq#XhAe0=dIZ};h_8xrnPXH zGuzCwnqgoMO^8_77;bvzS1Y~W(AGsIm$rj6l3!5yjk)i&Zt%X1xU4=X#z>aBqe%>D8U(2z|%f^6WILxPct+%2o|r6_nh z;fA$=)+gE4P>HE}8SezWGIC!$-IropqxNVEM#4TD(G`^-1KLt;(|ml>;?iu-kdV4IBtt6w{YAZY2b|@;w^BkzgODkcaG*}Rw0FPH=vL5TGi3Vt5 zANjWKHrOM%5##bkrmUweUfqd{c~EU^OIv2y7P%vM^lXwPv$assY+i3QqJj*_#+`IY zFWYtX1q2{Mx~#Wtih2?kbM7y+rIY&D`nw}|a8H%opRJaAV{JuW+gC*W67$LWVQ&j+ z8er?IUc<$l{g-XoZEfLnQe<|$5R4@!I@S%eeWBjQXndmM#X+_w3E<{u+e$o`x%X+( zrRbmCgXr%LwmnPKxOT`}`S$xmLv20Owz!y!9@h?ujb|Nz`W_)mF=7$d#v=gbh)fn3`e`0DUQu7XXSV+yw;952I zA{)T-MOL6eeYh(f-p-@HpS9g3 zDeVm#m%H+UokaM|R-sp)v&~RQUk;3$ltB4jn}nn9nP!C2pVz~U9ba6qEhVEkg4cR< zsE)bt%gf*t?6AdQlpi13 zfSK@_`x20v9gHZ!UpzVL zef_;Hgs3(|l=7=k6MnI!s(W!UbIuS3=xSxI)8X;;Thp(8w0-POz{6RKq`9!7jk)V~qwija-tI5pe5|woBjf263g34S zq0sI>wt6*{AZl-CYr3=Tp25KZ9o@ho8g6tDsR~edH27f3wgy#GN9$?gfn}5=brfOI zsiO!BTOIqiN;VT=DjF?rm0AzzDDraSdiDntWjvRZ-5({NY0}4}u18QM0=-?|eip9d zV48{hrgYG9oi=y&z8!_LgGAifv5LakaY?0tB55YE-&D=aWUk!p(K$HctL~~X)$=T= z%~YNj;pz0&_;|;UgM^gPd@R>EPyb?)s4vZ7mzun<@-H~Jt=9Q_w(P4Szsqr*x z(e5!I&i|9TZ#yo>bu75(hxAX9KVZm1HA%4>HF18$j`-ozEXFrDZdA25I;Av^Q0> zzCG>T74>WsNrz~r!q|@B@ZBdlH!WEptq{3CmM*)eQL>-PAXdf8}56E+P_AFR%jypWm zV`e8&kATBN-B=DWhiLpQh%PK&CnpgXb`lADekYNzPp(~BlRka_>SWPDxqjOgL?=vK ztI`hZmIl!~BkYB6K_Q4IrWny`)lO-s&2-K=TZHzg0br3uVA+9xrzuDzmST&x~g2+Qt z++o3g?@JK=3-HzXudf_+ds783{U=ad zLvdxE{Yf9qmbUw0I~?GxnF!dftj0RnvHqyUoAO`qYFck|UbrEUW}0u`?H3Y_KZ+?u z{^VOLR9<;#YXpf-q;nVBr>Gc>J+u->P34bvP`h9(J`x3lO^-oF_C~1nxV?>-aOPG0)Nu0NHn#^-vEj?wQz%XqXS{|iB;@NATd)%!n5slVPQh6~}G0@ADD0wBa^; zxtfLL;PufRmFSeTcH8Y0O2|Kya~NU=%90A&reKdesoKp8^E znC$Q#QxbKW>~Th%UfOLRuP$>#V*zG0+j}uIzJ!jsd9EcSNb6w@`RG|IDYXw*LdpCOmPPCBvS-ofr;H0VBEuy==0QeEUM3~S+&v{v@+CPP zX|?|r@*$!u1)pcLk5n(Cav^x6-QI(Im_*0gAsJybc9)HG%^MhtyCxubWR?^ofw&`L zT&r2#y$j?to%S*}3%*;qi%gxV7DacRE%r7iR)#{CXY?gmaT54Ka zQBgusN`7W)N@`(3Zbm^$Zhl&7VoG{yLV6NSJn}@CHoIW?Iwd-4bCkT2YBf z8How(j7DN^VM4mwuX$46M1=_NCC9fzkd1+~d8Tlz0`9-<8DQTI>nYk&c`5AE7CnX^tRM!$m zmYh&xtK?ajmqeA{HYdhZ%`lIidUa(29eT;$na-T@UR;Z2k3H5QwpmhQUPf|ya&lf` zQejGNUS@7aVPa8!W^z()dU{^6HhlipIsVbf>G>J?`H3l+X~`+MiAA|7nHi}`2}vm# z$q5M=8T7)Na4XN|k&o>MebUoX^OACti;5BpQu0y~bJNoD(=t*LQqmI=QWG*LXx&hY zwJm;9iLIJ*S}Hwtc57l(m8|LJgUb`?^;h9h%IYayO9XzROFHOz#fUeqldCewtpdUW6H8Q$Nor>s%M;5oFM?Tvc5DiM_B_$W; z736_ar6qySre&rlq-Er1Bow9;&>IKfJwf5Fxp_sI$$9xn>4`-t;0}2OMJbtZ_AH|? zAvviag@W>~$ji@9Nl(tpO-xS*fRyCK%)FF@wB*Fp+@#!s^i1t&x9vYEu~jopNaRr$ zlV1(j3#pqEc-X}hz$v(-^i<%Lo|yvtbJIYDw4z+_-L%a7WNq2dN-rRQhn z<|d{T=A~w)6()cmW)>xlCZr!UyLq18%NQYocOiw9DOUuYi0qK)d z3v!cEA)2YOd3i(adfUhLC^1!YE~0ZFu41d<4EoCGdmt8KjD}3F}h9!@+YBucazaUN`G zsgUuK;?vSlu;t~ZC1$4OrsQT6rKY6i=H?Y7BPkv*kDjXiGB4R3x;o22ti{qd8Z8fxu39OobX(qr#x`D_O3$7;7(z3@ zw-5SnYxm#Q?!T>_XP@l9t=)fHyZ^R!9_PFNzisVyCa(&hv7H=sNoX>gK^CXZ8|q7* zJ>ABMG9Ys>#V;1_$$r6IgG*`@XR)9BZm?eL7ry|eH~YnpiuPf@_&I>S>=)nu+>ia@TWR~V zUwqfa0QQS7(GFz4_`LBT_KQyxX0u;>8fq~6#pVGXF1FOHQG;H3y7{AiP>pobbB*HY zu%B1d*FMc~XhCGM?liIVrz}V9#G=gE`FV3@=5|Vjkuvo1i=a4u zvSCYNLSAwz45|~7VNyHv$tLuR4wu6kvRTP&xl3sR6M@gVO-L4(c;gcI#@D%KCyPtG zeSCvUygyUdVoGd+EOIp}(J9IMyKnVz{1Rfq5Mq{$-`{ORCggp2~KNP_I`(Q$GCg<2}%{ zJ!YOu0#ayEj$^)BGX>OeRk?@m^8SCnlxlU?UL4|Buc*;g5R;elH?Eo(zsOj(l(fEE z{qf7IHVk(R_Y28D{NxN?@F>S@wI?bU9&>t>V>HP~q0L7-%8k%|9qo8r9p!~Kcif{b z={I8>9sGcmn3(n8x$e<;I%CD&n)Jbua5!+&?-y#)U%rU1sTOP9Eed$bn)daPq9 zvG`MEe_#U-IkIy7!fDw!N4Q5hf6)80agImS-=K4osNO;agJZtK%K5R15yXrqxk!Mfjkp&7I)rtEeY1Dqn92n&cSV;W!k# z=70TTYb^FS&&fW!{83h^ZIWYw`T;5zRXTMtEQuaZp)XB#G-dyPI@z&a{mu*Q`CO=Z z_{^qak?;)-gy*{eu!-~thhIFQMAHk~Vc$j5d`F=goT`foSp{~S1fdcgmtN0z6#M!% zyTEZ#ZHDl8vOt1%5`tpV>@M$c`ozDtM`+&`I=)s&LMrP%vcMS?Gm{GKYTAL41B=`ckYR|y?D%i&Z_Zl;4uh}nTkbV~4xSKugdey?hv z2k3=wN_vsQ+^nK^hAcW+SQL{G3(R!`H*_Me7$X%JAn^d~GVjSp)N@E?w(?r2evC_4 zNWyk8uw+wOH&khbgqdPM_h{L1c;eVdzcr}vzEj=mWtFQ=~(4&4V zVl~s4RYQ8W^@?~BoThhW5z<)$B);N-CD5yh&fEy@*Dg)CU+XmVg}YyiG_fb)^d?7d zh4fAn?$;B;arf(xCiWx%Jl~VxgIm`8gT>*<(um#htqv=h0fMlTPsM3;*{6H^)1S9F zepHuZZn%W=Gp}I@RXrqqfCgK&aj{;rT|jBU+(iy9h3Z&6#|y+PE(g*SRP3;(nTZz4&P;HEP^6 zzJrj#xOyXYdf|}6POVQnLfvusA^NX9as2?7#%-$8f^L2W`kZduJS25p!s;d|&w{uF z)zbB6Vc4u@h%8tu1AXD?C=hPj2(!l1Aa zzqvdM(%|cdC>aV8v2-{%LxY2$Hwl@N!IHk*o~74JH|fBI8R86R&dZKDeq;d$9v`N| z4fcTRx1Yu+^vG)tc%5oYD^=V4s$;N1N;sa}9j7CY*OB>_t-K7eWot03sR0b}UfPA59cGtZ=bPu6kMJQ4cCMvazLLp9ID^Mw7%J-4*hyv1OL( z1o*zeGu$$A-ykT++bC>|D$UdQ1IO!XTqYRIHB99DaxZ_lI$mvyi&;SV0U+IZg2uXI zc*MhcDWIDSRmFqy%()TN_U@|YWLTyMiX6t-EvXI46hUz}dSfb?nkj;!2!rvU7?CN0 z0>J-|L9t5&#Ws+L1;yq}?m1fHPaR8|k^`BBkztpb@5>aC(cw=A?D2k?1LMdDkf*3! zaF@c$XEr5gIh)r=fmJnl&zX5mN)c#25(T3|L z(P1HbTGB-u9MOC;xcUfY30{${bQb3?=k+fC&>!9!Ul5|f&oBIy9ZXPMp^ zKB!FBy%TY$HF!Wr;BNf6w7_XuYp+QQob<8)KYnRsfo_r{Sb(P&<4UCi9w>iN?bZeC z=1OsFI3L>?mFRBgvhH+0daB9pyyz-{9%AQ)`_oO0_q0^*7pk*U1L_!t<>trtbrF6% zd}4X00A((NoubahVBCercM&cO;M|3cWfa{pAKy9@mfOhgE+T7{b`iU+^NPxEzzHVc z>Q(6_(umJ=(ct>vhZN3PeJGJ~{<>N}wXv!~9)&0Yy!}IDs(nVw~ zkcc}vmYy|Gv#YkWmD-Ok3e%2GFYlp*_;=Ool8>R9(U_U#@v4f-#Td%JE8RP@ystM# zENwiiyp0-dgt2>8`F~W*L+m`%b#qGH+;mXJmlcE?dJA1Lr(E-u0|!4;e%4ny?liaj zLv=J3k&mQCbfpvLmEWh1z+d!4JQNipH;j9@d|Hh0Hhc-#E)74((XrVt9hHj|xQMRU9jBXECS(pC5~AaZ{;<}du&$G39}fWwDitGzSxKqB2Ojk|zeO;0q z3X-MmS);%Myk}j_Sc7gJhEwX&3!gX!YO_|Cck)w`7^pmuqdQfYT&3wmv)*$=&=%h< z+Nf>bP@cwbSE>B7m!kA$=o9osjGP#E%thB0O<Y#9wss~ByNTMW3xBi5D1_*>gYLTY$k&1Fsz@Ohq z2M1$tZk2t~D)w%|hmFM$rvr??xfB^pPmMHDa;=+4&fj*UajW+qrzgtF7pgV7>xxr8 z?etGKG3^9kyf!dxG3|s)bZi&5QFQpwm0|P?OZgvadq&+=ll-Wk?s)ghs>9U84)8o% zIowW}iE;T=mRY!jjSEO-ciPrbp5zY82NJQPLOQ4;jS%XTmv?YSfT__qdh&%X{&aeI zc`LOLWAV%fY zT=itRqL7O2BJnve9Cwitat`I*Ii`5H=Zib zoJDSQH_U(!ORM}0^0N&1Lw6DKA9oiS5QuOmJA-Xrb^mi_rJ=)~m=m>yyf^>CE)HKJrOSg-y_tURmLy@%+8o{n|K_$ea?d%Nv`fDGM|r{9^cmaYpiir1Xiv* z$8M{lPqcHM^wlL8+ur$sdJs#;M`-(c1ku`mT*{`O_uWxbg}-#^^^U=ls2J7EfR0WJ zdAA4suA_6BdIrJpiA&Uq=15K7?jcr;-$1a49>3Blsgv^|a-|1-vXk>s^(q4NBsxSA z{k(dj+CK@-JVm`#1+}4)+8}e1~J+c>e zi15LYk9Uo~0e9|s1%Y%++jXnRLMhjL%#SCTc|CcOp_9Wd1ZeHMI==}fJ9`>tni!PBK#(G7Sh8Edoa?_nH$h%VB zx4h(iy{E`DYqFi0f#e%5s@Fv3X-V^HPmyZw8{vENUZvbN0Kr(y`>JK*kkcC-nWST%@A9=iq0T{@2DzYL=9fO&MHmr!%zMAHo zrKm69a<28WS@h5h=X&*7{KZ4-a4EzQAw(pmuIB`Fb8QT+Fa#kZxE_t$W{;-_XE{%* zpJTp!=fY)FqT_0pXFEqK>Tl?yxOi{(ANy1~et|iN&VI;Qpx(v+yu0_Cmr)x_eXdJ= zenL1pM>t>m#K=@`>1aLux^S_SblIc(3!;sQNR?x0ZXfeNIyv!hOVYjwop zkKMADn0IOZi1T0&>C;Q((<}_f^JzyIKCrn%fam=+EDNH^H#7M7ws@)2MrMK_Y`S<_ zFFx_2J-y7iTOq4^u~gxee|kxyt$@$$N|rB|JA(-^abTQ(26@2ETjgA?ki8tvYr1%( z4$Qka%X*247m$c|ZLsuWWdN7xx@y--oL3d~BW5aBiuTAQlO-!mKrGRXTknh~>Q#)( zM*}@8?>7Gdf8$Pd74#Wb+Snb-qjR5U#F4p5xS^}i4V#@es)?M2Vq5LeEzT3s##>Rq z0KAo?agXoqL|@wKw5iQ|BdhSBkLgXdZO(CO4F1CVUXxcm8XS&FbraJi+nv)Qni_t4 zeuwjGMeT#Wd9EWbkhZ}1D20|#=M*Jm93mi7XtdcmNzFy&VnP3`**SoW>n-X4qw(1< zlo%IDzM}vZ@@M1-L`v7qIMiLZZZh-k5-!oH(0}iO?h@@Sx=Y&`C%5j>mfj+~yX|%= zDml_yg!e%V$HUv)TXdJU(0Xm0vb*GiBM)&O->y9cA^s^y!$SPy-lB^Ud%*cGLVg8n z7=-v9HsaYr+qGCnFqya9`%?ZD_kH0RWA@K$0o4$r1A;+9o)nR=A!<80z01WO! zvyVHA)WP@*4*sdeWYzjqrjFGk2c4ow0X!wLYR}zULLE zLX;z-R`^QPK@2P0t&eC;w)7FLi4U&K)gq0*1<`B$&GOElPy0xR>m%BfwXZwJDax-* z0F{VEaKskfb-6%y80@6V!e|4j$x?a5Dl zM0@gaAJLv*`9*tzOOO?RKJDD6_UQ{HF2CV(e_5zRhlXF=AK86)%}E2={H*gcbp!(S z%!YnJqQ8g9i7Lk>IsExo-os>6(NV7v% zc2N$~^KcQjiggjSj!Td+&wS~uh%xpEm*xspe(lqMmS1&#?kne*zH**c6Z!#$%XfIr z>Clg!_}bY^?SQ}NIj1cuMk3An#(9I}^rLy-I!~xW5sc^D#9(Q$?0#axV*r9h^w@-l zcK17HZ$&La5aN!VS=XHL>P%eBB`@kn|GMUE=Z?U#7>c|c$v&?ig;CZvvaTO(@uPE! zx&c#TT{46-RN|Bfk;$rlG&kw}Fgolf=S9_71>!J?Xwwm4Pjv!~nLM!r0SWjR2pfPN zjjI@gdhsq}VWW!x#3jgVv#vYm!}|vp9*35YubN(D;<*Lk2mLhr4d(}n@*f5^Mg0Xs z@J#!!el+nZN3_yUgr5&qyiND^xaCM}f& zpV{@WO^X+Hq=Wx*4wsK|{^eXt`f*eoeRDjp5^g%TkkK5>s|)|A4$D(+r~V@4f^@tK zk2T@J7mG`DBf>A9L?4HSwY*+O`orJO_tdrhp%_Pz->UvFdFcO1UV}Cwg~H!DgdR=H zQL)a0{`8OYnCd{^#H%z<;S$!r_X8O5G>IFq7#6%dHeP+n6N5PV@5rd=<4&Bx@7Pz- zU4730Ty$RD=zH`GR!P%hW%!vP4QBJ<$>U%8Q`N5`MZMug{ipuo=}J9Eu9399hia*u zxrp+ws7ch|0my_NA-Yzg)f^z^AN&Wf+Vz@$aDf4J9(&(liTM13t!4!@+ld3{<)Dg8 zH5s$y1FB8~JSAQ)S+^g6B>qpWip50D!RQ_mZ!i?YjD>cA z&8Sl7i}fph@q2Cn>Y!?vEtmQkFR8an_J^_57s4v8DCz}_?jiL~iFQ^>{jRap zF0jKsq}ISeK8Dvg2GDOCRrFAAVvbzk-@ODjNzONPf$M4hO)8%83u!P=_h#8gKT&&M zGqnjS7yB(5zz(gLijGDYFUC|fQ#%@AWW-iPshEf7h_h6RR%f7y7a!Uv1?d28jAEU|Xfug;{!i&x- zF40Y>we3^!x1y#Ff+AN7$toW8avIhWZ6qeZdpR+P9GsI(~an)DT_;7 ztLTzP=TzLSrf;!A_AQEsRJ^6`!N!Q@+K}SAn=J!cLevo zf3g(yD}ZGuldmA&$WVN(b;sz6JklbY-W**~q_)EBnDe3pnIefcqo;m%%C|(TBHVp! z#Y1YhDhQ@Zg0M%rI)WZct}gxDs)Fa95tCT`^42{+Lw(&$84Stmk6n zWAj{iO!aK#OXeAHKYr1|TI4-xl{eWZxdMze7pWPS=$6;U&8=tvdyxi1kt>+^(pDNO z(ZT7z=2c9K@bPW@!(i6Yuo;V;fgQ>4UDcadUXiT~7K!+!M=HVV_d*2;a#j!q|9V{q|5k>5P-B>|E!LG3@3igVEh>D`v3l{8R?;|#B98N_| zJH}`Cu{{7wOx#T$e_BLf_W^v)i2QPH5 zk7tYKL+6bd@eouY^i}P2Q7n&F5fP?{N8;3p}e}Rf1HfAzJjkO+R*R4;^aDG-PL)n05&mB zhTC`whvAkGCrU~v-_k6vXNWmt+3WjwwrG3aX0}TcV+SRVw{pkHJ!DVr%REUMUd2BYF6qon_hXIJv`Ps}QmVzg{7;g}R9t`Y}6d zztza!hKy*HKaTG^1b3K!r%C)Zl^6~8Wt^;jx7f}=cS>H~JjLBRFK@rXO7t@=eC^B1 zk(<&_7QW2?f1!JcYyLI^Iu?ssSF0xesoln1`7^1I{?k zU&WIaY--J~|9Z4F`&pCgN6HUl_g+7_u7BZ`yssGx>Tepb8#H5->n{Vg>-oGmKUN!o zX~1$XxGHbuy~9`wgewxThjd_^Dh2eHyR&}PEC7;WheEZK9SUtBcK+mI-q&h!e`xW9 z6n4vFNDF~(dI`E^AI}OdfiIWzm%dym@D0A4-(U92B}7y4t=?_zw{-* zqc44M!;aab8}DnO z5Ed_|7&Qnip@&n9+)wigSWG1oUG(8zch*f9u7{bAx_|_hmGS)GmAqgc^-bO(U$4l%|0eH!)lH2cYP;XF@&5e# zs-N`sEbha<^;FeM_A$~-zejYFL^;3aQ^Huqn*P4*0twg6wWgi28_|%aPhM2PE&)fyS=Dh|tR3#AQFf{i6o;OIXPn$6` zLKAr0A9=G(5bpi~%L_4P2nYYn+iFA*u|(E}Dr@(VQ4ujJ!fA_cC-{ZVtr;NiujuqJ z?^IavTad2HIB5QN-pe7lOI9noI#G^y0A|1i~9E!NMT z&EM^lHw$h9{I)NzP|7lzebJXsFJ&3W68rK0l(LLsdGS1|v?Yi6$MZ|2Eq&R(cwW;V z#7Rux$^MoBOH#oh*=bwhE*H4v53Xv+PJ0ALzq8Z&!hx;qw66H~FzgG@PTPZjtHKVT z?6e^K+a0!NWT(}KSBKeYq4?JY0hpbZ3!-JG2?4V~F7fvZ{F?~fb#_`F!uaFgeM|5^ zi9!hddcpZ3NYGsi#4o(!C{z5x%SslCUw9CEk@$s2Qx}V0cxZ5m_=TqdvcxYuGq6gn%; z0w50dC*ZYJ?%4sB#tJ){AVxIWja3Ko=9dlFFEC_%;I%r4i;jXyhVZk8;XZ+|UtE=1 z5Aa`KYUZ@rGscbIo+g&rwSBzyC7yk}=Jk;;4zx7&7nuM%gD%1L7}kUT5on1}FBMAo zRst;X6~y(sKw30e)(>w!D?LN}|6g6PxIww(9`mGSoDzLU(EdUExrbcDpP$5^pT(bF z#h>5BpFhQ)hvLtp1b;qu)ck0^F=lvB#m_{Os0E&@8b41EZ#Zi3cVmV(u52QC8es6q zg^^YH8$p&HmERKh=nwpbb`}t?w215E2S41GbA!4n;uqhNQRUl)?7V9Rr(YA^8@G{L<4_$y(~X6~5uoIpQ!Ruzk-B#Rm#{ESy< zg|}Uw^6#yAW9;I}{LDgYNj`S{yeIj0p_X!Lq!0p?iX0%XtE4UP4Aty9Kwekr;~896 z*@}+{x4f(-QgS#(9Z6aUx$=Dq(n5SZ+uWz1hPzH}OCk%LO|iwswc7kxT}v}{5own% z#byt1$JVpVQdEk9@3?Aq6~O5DU^zRbeC5(~LIcaq61xG8AMCUyOx;V#^(304nND4gT%9l*n%vP1?_eC=J{;-@Sf)aNP2jft1y7+_RxWI1Bw zD7w6gy42bwfx93M#47a;LWEcphLF|VyBb?!loB5SgjD1Tft6cj!kb#As-M$ll>Ev7 z_pPQDIM!gm@Dil5G~Wl06{I?Ux4Gpe`+ER?F2d4;k35lAmO*@>B?BWZJ=M|!L2^&n zp#V<|7DFxXlo3OCy|#Z0JCKBf{B79bQD1!2@wK0g2e^z9RN^j3t##AIJy9 zS|+J8DJ5K#)5WMMDNNI3pF%*5(Nmr0w6SbwYXZ7sXhwFD4nH6$WKCCyd;1I@g4 zmgiaSKt8HHbQlLIO&mJD*xr(*T4^&59S;uV+dF`}3piILh;c7quBmZwK=%elY`gY;B`?kuKkZQiDjrHNXNw967&VG!Jr zYw4j<44JdheJz{SCKLgs0|cD=84$dLt7jq{F11l{NgzJe&oWVsr>umhh_+FZU>pTO zqu1zfX|AY=v>ijN$v2k1YAS8U5KA1y!xEq?F(AMj#bE(vpaBCc?|Fe5ozTietb~CU zE87f4^4w2O)QB;G7k84n*9-zR*a5_f;CP8-r@ymn6V!GlsK$azv+$T70P>)N^M@KSyy9())QmEecfDq8$SKD+e!ji5yI`c{EWBD9 zEQil#7EUrFA})NTWQmSb6D_Z*wFg6sr%&?=+L`~5VAxp8EY@+boc6a9ggxUhTrP_p zESKpPCRzSe*s#HJ%0HOG;WAz4!E%`n;Bn6HLwua``*`-$c#9>h_^22pH$GNRwail2 z8jJu_f{@juh3N5jDujiPXOHgNs=IS0h;%+kuzAoAm+JE0CR%E#HrkBA0f2b9vzMg5u*^@@=_ zCa750&Zk>`X6jEA6+Z@jJHryK{z;or%%2AH1=B5Uj0j$0?la*fs&W_=T=y3I!u&ss zm-;F-_(9bY$vdrD(wLMbs|iiqyDRSWRhpRMI8AWm<}h)kZ@VGD*ppE(h8wSTr7hS8 zwHqR@rPc>L$4qF7>wJ}ArXoCJ0*<%&9-U)ZQ$d+1klG4L7Dn$%SaBv1;<-r*Wi&Y_K zh^z{LgH^%Y=i0RyB)oKYC`#BH&x{ZLt~ z+fbe;TI-?mwQn76xm1GTLH|5Vrs`=bTMygG%Z8r z>$2Bgvo!Z-ClPoQQRg==xcL_>152~FHQn(RGo5IlcE=tN#n)wrHQhH2m2nD^q3$b+ z=#KAo&2;}v*Bu9&KK$J5KNg$%Hzn&8xAisAC_WC9D$^D{%KUlwd3d|l>G?zTSoL8t zBB~72pUbyhm4;!m@_L_G8nCEgGFT%i80KlsVN!npe_XKo>PdgQYMITFG(i$62Mo=T z!{lMNjBA!13R^Txgk}++x6^E}03M42)Vn^nJXF|51g1Xk?gdxlh6TQPz8~SVSERbn z6LesFr$3iZ?+9HAZgCi==?&7M->IqP`#svC8`r(zrsa;JUJ`1O6p3T+4C5bsV>zL| zL!aQ>;Ka8u1Gqt(u?q!+&fi(88xe45aI9U4TIx?`2>!QV(p;3o-5H7TYRTayBH>uV zfFL?)QZ&c<3chf2{eg$*rQ=c=PqJh;<t)h3M0B-ckcI=8j9MQ zwtL}DH^ar@N{_piHB9YAanY#VhPxX*uyj_`ZuF7vhLN;c!{D`kveYy|nEVsWVAH)3 z0tIEy>D8tDz&*=SzWBee%2|}-i~qG))g|5pShwMFh-X0Xa?4CJ&CzPfzgW5}DyLLY zJ&b`|+KlS);XLa%%W@-v7qdBL%*13*r7=)kR`6keSn?k;g5M}d@O}QY+*B`9IdNk5 zE@{!Tjqm@<)3^Xv=+^JHk|NvC>ap-&qjhlh#f z@>j!c;F^6_Q8={E3~3)FjbGnr>F2|{|BHEE=1G58g86en`F|82dvUAyje)ji{Lc#c zN7R=LHWahR6QqUsyj*bpWFODmn}YLm6!m?AC>OB?hvW}ZuhM3mK)gSKm#CaS-iY9p zg_ksMP-*0}?&r$+BNX*VO4ZAgm(6f-P(rB@-8xnSS3WsXM!GtZJV95M87U)uU-kTt zSi_Mr((6$$;YlTkzp~L1$^aSz-3Kq6`TKa*sJ*Ku?;M){jM`sN_k=c9wD7R}73xsh zj1{f_Nd71+f3Ok3%a-5xvPZbN9KafTHMlPNM$i1l?)kOyvzfY_@;<)X+D{qj9$h!T zoT4tFPXuo=EPbHy&K!vg`IYApSl!Or4png|_c1a(V7ylR!sJlmenLhQ{8t`1Z|zj} zg67d@1y94=?U?4#H4XDevP+srFHkV_=n3gjfX30FxwYi>R3FbaHOk-29%*v?MHygZ z{XSA&Ki0ovK}mQ0CizGGmFhh5HA@X1-;Rg#16$^Y6I+(i?q;nrO3qj+jS@4Kw#q0m zVF^~?`#<7#(_e^%$<|b}F+0-;o`5PQE_;PtUV`_%zvg#W`;PK9TCY)ZXX@E@yGpp@ zWAdAq5FhM#%`%CII6$K~aTLE{-xuPZ-7$X<+c|UxTp->tKZz*|3$+X5?`_YlO;A&G z)JSztCHJT<`Bh6O>kAP&5!kspEY4rXqb1s~gi)fi2?dLwDY^?CJXr+k(vJI_zVy*e zQB0+9U+I~@QBmLVq8rEF7{$-_&Yz&ZL7#Y~!bXk7YolZ;oF%Zjt@Tu>&fE3PukNGf z^7Otw>oLFEH-E13h&b~v!OD;Uze5b+$2j`sr?V=fWlgIznt)+wjh3A^K>ynem=F&c z&~vn`t=%XC%z!SV^jnY9hkE)G3DTF%rz&CcIZ zjh#neI&0hD1^4Tb{12+Ik2KZ2X6om4V2tzvP4(TNdJTK1qG`UVh~_>cy}w2glD@b| zZ*n&O08@h#jTVh#*Yf{X%hM-bk*<`K>uzeIjPx=DR*x`Gq@T~P(exe!Xdgdq zcg)x8J-cIkRMm;+eaHT-^Z9dGk3<=7T?J!9+;>itao_8W{Bdk-qKx~|6iifp)+1F6NOla@po_*)ZY z-~$mkUnd5BOwF&Lk(4z*h2zD**EKOeDc)VuH`rOXMdrXMIwKtM)UVX8To(R z%s=hV0>=oQXyhOCg6niQKggfeM7SdB6))?+82P_wx__y;1|&n>uN2YUXXr21br+!@ zW*%M;GC2IX$`8gb4Ce3smcLs~7(?;^$74%cjP9fkr_DGXOBlmj{E^?z1Yyq~`CZk? zW(aNm%T*ieYcPDn47ZrX=ed99?@{*|D2i#pZqh=M z%Jv9S(frwtM%Fjg=LnkIRGl$pRIGZ6HlyL58^d2vtPw^8FFX9E=|cHo5euU&x^(ah zJ^42eYU!BDz8WK|!gayiP!&EKBdbEI5>_|+YmBT4zf-UvzhiBcF<2Co&v@sW`Tcxo zEr)~V^0;$LSywW(&RF2@>88Bg6{uaaN(uZgDpuqP4XwTT{ZVV`vQA^Ap6vx6gPv{1 z%7Y`b0<04l8$MPlI)uVu`Rg)PmOp^U@<*j1G{s!zF{Tga$2U7T-yfadk{@_=epQw= zRxW^^E^n=@u)SkV7eMQ4R>*14X@Ej4M0)a;2}x39n}5zJ_}j zt66_g)g&4?A}h;~7F{_0R1NE7U(f6{tmo7^1dpU;W7>>qStm)Rr2)Y!Er)4}QekAw z(iUAj_=RZ+eXEGs@&{JdWdo9A%=Q-&7-F_>lFZF#!XY;&C&`eVNWt&|fg~BR0FAS6 zbIvk3&7Zle*RdW|)UDJ6UdidX1DXb7fdz2a-*?Nc4B&#PMul8Ch4NLqBkd0a6xB))z1M$V z)|8?IeZZT*QUp9`BQ*5PV>(k}1DDBaK6gN2Uc@%^mzP0-wj`&k#kRpmwSGUBbj z3p{)WMcK(qKK1nZTyqnZSKdAxG{E{D3mig7Ydf9m54Ltt6G^+=T{vVMKQq`mOr;od zyI0pC*0pK|MZjVY2u}^Q&h=s;tdW0lD2y|gQ4IVzdd=b1ml&X-Rt7#^eZ&o)T4jx} zPGo`m2x;wdl1ihkscIf+mkxMmw6zc0H;z|Hw6<3%npCZmxO43!#i~^%ub(oG2aK^! z@&$jv1isN&Yd<5rmr6IyRJyU!R*9ELvW|Mp8vHe$kh=~pHczsqsrM*%@%|_5d(xuE zswWA)h2D=X@Ti;dGhXm9+<8NsaQgZTA{D&!47Yj_`&hZckPo|JuLAS0-wdS*c z6x0l zwN2serdWsgtr+aTGiFs&_RerT`&IgRSQ}nHb^@PP?-RJmdmU7y^_}?j&eyt>E(KlW z`a0uy$7lcdE5z=q<41`ry>rGiFU3KcnfS^o$wP=8R7tKXum3 z?P)Dj_>8I6s3mQ|RM~035&pgd@7l7{1h;JDlAR{#X9HdFw=7W0P7^e<0UQ46C#?Dj zd*cSb{^A#I1B@5H@C9Rn_=Ru628drcM;$1B!9cX(6KR9QPwdzRi(gnShlpQTFNTU= z;0%87*{WlB!5vpM9_;7l9ShT1^MGh$y zKTqE1$0JV#HW55_s>_Rz&-(u)uaxA|FU_mtFJc4UH2+5)*XcRa`j$V-O(|S93Fqkx ztz{$s`H3gb8J(u;-a^^;rpS{yv<1wD{om0Pc{0bxGd!6Szu3A_eT$M4XD9~AnmfcUrFKLEw?uH!hi!i;k?TV>mc=k8ODPZ z)@x=Mf2_3DRsF_$LId>2vocpw-1Api17N2aC5BrepIdE>Rx42q(S`T{pxhK{z`)bg zo7Pxk)dr>*2MbD9MO3BXl*)W)wzYv8TRh<9Wo3hT*|pXdYMWdRf#PUW!0Er$ zt7=qFl=+%Rg~DRU(MLP|N_{6MH?)O#Q$wpDc7%*kmr|x;IzcFFCruVp5ZuqvYlHO* zxCN57^AE;#x5fk-B_<1w~kyWHlX6hdV_K0#`#@oBB zi&ei=68M;@PmmVkTmI*TplW>0aLZyfh(M4%^i^pyW&{ArJ@f_)uORCpm7r|p!PBqy zz`RI_Qc5NfHc)_^A{Ohxh|h<=ne>s+@b9bCz>&^Jne@N326x;AUbxZ4h`T+cs3) zMcU;c@azp+ceXi|UtMdfV}j;xw9ZybQC&sw_N=$PF7R-?O4-SCi@I4S{yVcymD{y1 z3wyQY;-VqqD(y%DHG#Zp8MkZSFvXc`A_s2QZtt@0QXfzSal7{Kv;}utJOHok%IQqx z$TXoTwrjJ%38wkI$OInq`-7v_Q#Dyl#4^wCr6#C_yS7>AmNHNwVWQS?*5mo zaeiv|3DATC8|b}o;ik}=aV53Qsg!`6`qCDiBwzo5bv7F}L9R)S6_gE$F?xbrfw}#m z^&w*mC&)#q`4kQ_WBde}832zfFh029I;#0I;EWUBD)O`K77$6?-g0`mQbIV2u&WR;F-`Dzk)@6f7&df)DHmpfqsK)1X2ubdV4Rlptf3#qTt}l?%Be@> z%E9g*tO-orM9HF1oVLiZ#6)hpZ=DrLVQDG0Q4G`@OYx?OvJ@9Zb7%i(ZK9|z7r`s} zU+ZNCcvy-lo?H;o)$;7BH>id0?`Vr2dhiQVre)zt2KL=VnaN)ZDGZtXZ=q(?zr3E{B$EVo+5O1+4?Dy+?`9 ztb3YF$EPXWgCX!HHce(DfMdUEo^hCsVdl?(F&2r*vR};pp+a9LYuthSq8-Yg!>u?JT;oL!Cwo?kTBZ#)+ zL5EvY2q#bFEKd^)GecN(Yug;Ydhw-oAh*9XI9T-JUyv3;X+vGx zhw6Ruj4ZPLMw>CP0Z<0E0Ryw3>|~%?I1qp=2ox}$iZGamEn88E->+-y%*$8b8E9nb z6})>iGf|P{V2-vBB@!CiW{WA5!!y%qCWJA>UE|5_rBB&%6}X2S!EmP2gMwi%&~mbj zyT+4c-1%ULZ`6D|yU@gTfX#xi6T`UalV!ZQ4qq(I%QUmSs%#Mawa;Jak@2FY^4iJb z%T`@@`=L8RdHB8ZD`+Nf$6h+(uvw=Mj_BzvE4`6@e@hX=h^!u?fCn~kZT z(s01a_hKtsGxaOlj3xQg$-GNz+p$23p!E}BF}4os&lCgu3BWiJV;gB?;T1wxe1*_s z6#0x#|8mt7R%42+Usb2*x=M$JOu?7c?xeQ1O$v*iBI{QR3WtFdIz?(cE1s&X%FDa_Q2;0qHt1xkc|+&BFlyI1fK2=xXxF%oUu)q{|SCPUkT7>%oU6 z*e>y%pTfdsKgt~Ee|^&B{10Hw6V`_>_{Rfni`0dJp2rpVK59N`(G`VXnBGnBV2=C7 zAe-u^t|g$})9_}RTPQhMxoL~efNy+sX)enL#l@B8N2r>@7s^2%^sBX*yWI#|4TYW6 zTydI$VY1oMWwISim#*-^3}@ly&peuTl&-ifU7>s{_=oYVVVRBi-9fubyE`Y^S}4qK zs%idp)3kqLs{6qh+Y9hzLWHBK*S8Qvrf9QdTbRP?BAm>>ih4mG6fGv$GMSo2KskQ&L#D|D256jon{$`FrH^NCEwFv` zm^zywkHy`|1R2H%84S@rinQojz%ML;+0vw6EVMmjYB~Xx(c`I^{@v-@Eb71<%iJjHe6c?j!!ZO>*Mgq|@hGtF5ZeO{5>Gnn28_M<5 zqEy|Jm)ralb#D=3FR!q@%0L>iP)rt-)@lByx^vj!u+3LEu3cqYslH6fi*O8iiL~gp zb1z

%;;t(1&vC4KDhBNZQGw|AlFCrKu>Iw&;JW2p%r_1Kzj|w*4x_^ImE4oRFpR z@`QVrQYsOex&r*cM%z+frdYGdmJ?>alIjVX9G-9~IG7LGY&#O-<83nDdV4fQ+xY;m zp2g0GQnfQ+r$P)rJM3B|erTJmUdiua4R$?m_RFWCd`wMeNq%peEs$MH<9~0nHDlE> z`1EhyZBTj$WcvExDLg3llVJa}uf)G%QuvuRpM>(A+ilfL4F@IHcjQ66t~KOeY`0Zq zC#LZ~w%Z!B3K_h?4qJmIf^Bx1;FX?C| zKhw}6t;8=}fo?5+;Vd>r{KC;$toVi9R2%UNYh+vaRV58`yPasnh-@!@fv@=GXX-5R z7Z!wE*eUl1?A~c}`zs0jK|3fuSv9gl#mks*{zKKv{hZ9C3YYmcw>VJxK}U0{nQV?LGBX+KdbEC!rjR*H${=@+O2~^KA$p zYf($O%M{p}DS`hXbToZZj@p)~pObc3Oj;eY4P*bw;G2)xj;IvPTb~LhY*C*x$8CMs zpBY?z#uleOqzr@t%I`d>yDf6tdtV0;9klCE4aR|wY&PSap0%B0m8SDj&%xBD@^lhp zIIubU9E>qSX)|^pm8YYTD(XhkZZ54jUEZ5no}lO<#qsj{=`Yw8vo_QDgBNUZ{8BGl zSq34E+$OtitJJ3nsyI^=$J!O)rd>}O^LTFV3NPB=`+-T6DDv9(i*24di8dpzq$0eu z`$$I@&r94F8CJv`)ZTDWEAGr#PkG|b3>{6oZ8MvKpwDZaww+RU(`HlxH)b57%|Z!3 z0F>)t283sSb+hQYiF_I+VqurTlkPCNaTmY+h&W{oJ+A?+x@c8C- z&nve3j9o)4?aggO#|q&DwY~`|?#wXQQtr(7(VV+>;UYzlvpw2Eq7q&(w&K@bhjcAB zgCqbBAp%GXMOmLygWr0?wot7>0Av*7orZO3vv5kF0Q8KRI`CIUSUT{;w`}E%1ib9t zQyPN`A-8Az`j!p8N7`EfggivBcql*`8v)ITPIOPo(CZv}= zil`>=!7(^O!|#u_h09N2HhR|<;Kydoz(t6F=|<=_ercm;;J}%WO|gZ^t=B%d;@sE# z8AyOV32e0+acMF;sEM}U$gBmwAH1g;e=r&tMToC-cKy&ckg=1RXl^4kh;~?trtINK zDKLA*ec|Q;$Z@@oXT3hQJr`ykPaeU$%bh;GK7m5>y^zDxePdwVA}xi+&TvOuwZVsY z{~!;^$~T)ys9>f8pv-gw24;G&H!%BS25<10ZKsiX(rw#lwLXQ#ZV+IXer`)M!g@vL zVi{so6L-=VwslHi2SSg&#qCbo$=JHXOz!`st*#l`@GoIhFp{FdsGu8f@s({p12orH zwjCqM_Ez+HqHp^CHFEDxpD6b z^^P8AeDe2@?pJ5ZbiX24dZ#=4aHd>Se)9+0N`?J2QzrX;BP?XpwV9ag%7=XEN*jEq zY|e@nAwIa`3kvgRZnz3`fuCA!771~$-ch@8lj6&(SxWqDn*uMHDXQMbN6=!lg14(#??N$;Y#-hwxHqH=q83y$|EFp6~~ZC||V&pSP`#qv3o zoek7ux&RqmEaNIJ{>nXD8@~C~^%W8Oje>r(49W#PbI$I@iv2f5{gfJAAF6yso6#2l zC<~YY0}I&C-oWhBS=?R19v?_ywOorTX-`p0&nCfxs}l+yuG(q0t;!of-(fv^u?4 zI6YO%R+-$~IEjT<=%{gdS=3a3ccVY&ljPR!a@`MhFz5 zcqS-a`GcpEpW@9@?A7@T@0TfOq=Is0>`3jZ*7v5ufNi@e_WC9Wo2J;Cs4?CMB?Mc3 z{O5sTMii8EbGz}i)ZX4G21$GHr789veAxW5UP2;)tk{XQ)KT69gpl{9+To5kYGz%l zsb&aIX4o5=AcUPuj#slx5vJQ`8xiyhxYZ1ypQwNakq`kZ;1M$ftbi0juYhIvt%IrU z`7agiRrp^s?ZN5`lz?6k0b3SC6Eav3-zkD83Sv0{?g^IQr+Cm?$rY;^UjtBr9KTfj z+n&@&^*W{JiR?vl?E}0t7Z<>z_kJ`($ed^IU_?OgeKQY2ti(K%R7jr>PYfaqMmkQz(j zaSjRaxI5DT?-gY)`iipf;-l=0pFAA@S#8_K5c4$={^oZ3UUfVbORR!~C6kuIxGW6c z^ZelP%wYHZ9roplI+K8sHIYo({NT%@{g}s$1_U(Y25(qpJ};ePcN%Hq+kxvjQ0;Rm zJeqOld_Hcs{e%(0%ZzVmW~92w!jQkmK1X#^qPWRbuPJYtq2fCIt9$KJ*xU1Y#6J5p z^@2AEk{Iu3B;K4aSK`kTSlz;MC4TXKdosH*pMSaEo~nLD0P$@OA$mb0`o-gkx*Hs@ z`@;%WG1M+<)P5h_5N!;PR& zV!JJnB^JQ3#QNZe3#aDKfH@Zb8>0BP=3}d7j%BMB$bApX7sw5Jr{A~VQj}aFgm#aL zZs_kc-S_h2ee5Cb*pKW(8GL5~K=F-cCw&|qcb9@za)*3ue@{`)7J`Q2l`15Te)hmG zkYnte1#;UEh;_Nu-X1DdNUk!_mO`s$@Qu%dxqp)8zHhXlHjns0YRXHw?di&symKE- zQ6i0^-AJfr@&|7FZ6#bljV1u4bpYJDn*5@Dpb{aV(J^xf8^} z9dT5j;xu$SUb5#Zful1)X>HvYdIxdH+I7?3NF7hw<=KqUnf$NQ_IWDBkY)1iCCQ2E zT#A6>4nP=j#(vs};FShdHLVO%iz%)9@L79ZMcqcJVsdTD7b?M7HHk*k}DTwLZBoVTx3Kc&2Ieg0$8LIUs2Ek|p* z&%AEGs07}k5c0_UOK-v`^8sl`-yo!CupGe?R!y$R$G&B6>_q{+d*UtVcl;LWUYFjz zmC4(_ZI4wcPq~Xk&)cUo&8g(r@4WDi{Y^!!PKkQ;JB`gy(P)$yF~f9}KbHnLh*OSnt~MR|f9lEEA*> zd)((OB&CjRUuZgv?4l{Y1uh5{m;Yk1V|fTnhmk#XINZZr`D6Pfg*}gOMTU`{n@)i! z)`E=-Wt9Vou*y+2um*(DmO@(=4ujxheHWqk|4uXa*G3y^_3lflF7NZ1{WL4F$W+^r znidK?7CW)`d~UC&uu2F_wM{a@@gCRhhgm%YE28W~9Tt`S8eBJlJunZR zwVF}xYQb~yo_(L9Fn-yhjSEO`xYY~x!2^4BMX68-TV!CcM@PUYy0b_|(G^X9kkCAe z!p*hzc;s*iIW-CU*`5+Yd$B^NWbmAy?K!@tEj@pMHQ@n^0ow5Lwm)gnDY?h~3Zbix zB@a2CD2Vvo9?hE{wBt?}jJdIk`Ptv?15IF;4BZ{AE}$el2p{}m@8yLcR@D3cX>Y2o z_eKa5Qh3rLijV!x9$nS2OVc2wS0C!oyg}8JJ1A(2t~d{RXrHS*E8LqLa7>6&B;Z|( zr@%$2C+%ALjt1td9q;hmKt~teIS^jy z%~_%&%2#^uj#jW1uk_&VZjc5xCa&8Q89?J^>6zWr!iwkqHNU*&Xt4X(la7;2Jt(*o z=7snSoL)k2n}m@2Mg>Q_q8_DaI8jRsb~IGov>C^eN0+#71UumHxdFo~R=+o6loaB) z1)qna6um|~cg@gVsp4p@sGoVG>HE6k?wg>&qU#r-&G`Omj`iwY1FqPEe228?PI2c{ zcdSv=zsN&5SnpTU0V|kU#IPd${Qyv|4H+PD1u%^yDeHn zf3K0_2X+#niVU8@JfK-}q_{0hjub(1EDls%IcTCSg_h6Y_NI;l?6#)&x4;bQ!M4xO zm*G>IJ7T%x1xEw*iKPS{PisBQlBcx*9y?b`8@W}cEjqS8FF2J|gU^a|98nt!sy=E! z3r#yprP#>wZ|Rt;^yFKvz=-1hU-P>Kbkk+l_o1;aOG$LCi-PD<;C5JngdIwv5eXu! z_fm{7r3+WSgk^w^eHJwFk(aosB8&=5)YhV`r;M_7OJ$U;St>i1%r*``ML8k_DYB%} zU$X>!O6od9)apwIn)3K%jw(E`y<?T>M-@VXw%Ylu{Yx>hlr_=c$57HY4R z;nqOMST$goj)Of9^IwKhru-;a_bbZKmnXJ#b$qI}66Ab@*R+2cUZc80;TpJ17Or?* zP!d{k%j7Tx3Rk2bo3c#StVu>#h^WEKWX%Hj$JH!f`sMV6l-&u^h*Gs}nG7N*Rizbn zbeUe4$f$a~rmzzpixCPGrs;705P|6kWvda6Lj|hB?>B#`f)6{NO%3NmKO77dN%ezKO2~5WSgE*NRwO_$ zuShHco0Bbuq51wkLt;xvmET*|VIaKOi;`WJ&+V1|p!Bj(A%^G7+(gqV+{_`=bS z37_6wd zlpc;PUQc#Js`<28j79MGoaWV19DzmxUVJ^D)u4RkoSL@in!_*b)6enF zqZewIwZ9AT1SfI>-VqWN8Fak4T;}fFR7Yz+_U&?+yEl!nkh||Km$?h@n7iiud95SX zv`R$vLY5hP#AFEWpcOK>%dHTpo64J~JBIMMEJtJUE15M~VVc8NH1jur$B@H3eJKns z!lpS=WG}G4MyA#?KwAcDi$rK{f2QLr8IHeLAA~3}@wn*$O3IdNqi;XK}(T5kP zg8%gjnJoi|EoDz*&JakUR8wpG+!zEf~qTJUqG$`W@GX>Er75?3r5i#i zP~l(Cf)LufQn!X2H{`68eZg{IC%!LNgq^RFc|F^ar@kTR`3RT@O)&#SQO?6?i!P7H zJFVn*BaS_{u`as_T8PNGq03Do=kt{^az0w`Xu#ORl`?YvFv3FQe6v!PB7pywrO3J& zva`V|883BL$x?KGhoc`~l zzmAXb1q`+Lf?p$95+W3duOT`X##ftFGQL0y9BWW#{4en}QpVR7X$)l}zuXxr)#vBR z@IP{(QYF0&VV1v2cdHDuBdcVXZ3M2SVHQs1(6K#1k)qu(&h|QzeRcT@_B!&y%{NAP z$kDs!wt_S%nlwp94%*6D;%b?v2W^h#er%B@%>pAVNRz5b1Mrxq z|3aFD1(2xuAdMLAA6bpVecpfE!qR-&YmUnNy`zq4?CfgO^vu!xa2g(q^mLtsF~h`X z9KpQtamRjk8L?d8rK19jJB=HGhT93q+vGrv7AjtQq)Mwgh3RSzpn? zz^u&$-3ol@DKP6Mge@`(d((p;6sy67x+|bt{8lkN=Yl@VpiNDf`fQi?z_6SkLu(v&6T*-#TJn?BB z7LqLu`-Et#!C{G`$v+OIdoq;LHPzF2_-e;R9{#qYGykFsSa^B19)7a>$buU<+>X9* zfgf<~_m3I=CO@eWalvt4Q40k1!m@9y#Sb-&X)4G;E^Q&wmA?el?;TJ?j8fjztN&ZR+Cuil>$|4c4 z7Sq+8{*mLT!WyhKjjc+h<%a*d@EBstee{Z>GGj3aOv9&^7hK#`#}0+{M7SbFubB>v zMX%OcS@b|690^c0{+Bw`hA)lF33mVZnd4nQb@p1{zU-(mHZUlzUp@9E_;M>4O!#t> zpj@P1UB6cLWaV!%}NI?Vl=m_5mn( zPgC%FqtIGceM?g?{3nOIqyl$uI2{uMO0F~50`z;J=?CDC>#4)2{R`<7zG&Mha@baV`AubTPH&og#2gyb&%pb!1ih?=78|x zy}_8XxR@KuTMdDl_l$01c|4FET_=ak0RPXpohSj^u4~*rLxZOB>;BF}qy!iA;7v;1L9q3a{B-YYE!j6Sc!!$KXf|fPyf>*YY=3}zlUUcq{N0+) zQ1-*GXIED7QK8P7tiuML8R~4fM9|7k`v$HI$W9vr+pe?I`odfN z?6j`<_Y0UDW~WVtWvA@4EBL#EfY+}_8ZK;vlhYC67asH-DSqLm|54%>Zk!n{e&KGL zMDYt(x5vP*DrvX~K2|j1R5?lfg4!ytM-pa%wc>;BSHheh`Lo#@M54CATantXPi#Ib zJwyEeUw%GGjlWjDikJlS(OzQD5WH~+HDiOkCW*GdGwe85Zjjd``FMt(Qaabjxl7HZ zhq*sUVbp9l{1dHHt?Fwop)7=Chr1T zDG*RQ?OQ;UIbRy#Ol0qG;5QOIX`$RjShW4mH+KD~N zZsY~6oUK%f#^EmKx;*q*XG^sK#X^Aq;ZSR52P49b)6T(atQqXy7-w4}tawvVQCBBO zs#9vCJV4<`i0B^20~GG(W1Sn6z>yR}Iy|d4ID8yw7nfOeKe*WH`!*|j3!&Nk?-#4jPybPGt|({Pzky3`1T3q z3Gu(Q75{@6&vbImRMclEKXk-N+JX{1vytEE;#_2e^>T!E%TqzIjNP@mI@>DhHOfKk z^&xhwD((1jv2?gNZbE`uivmMXW40XX?wqOqLfPR(#_EO4GOQv(!H#G zI?Ny%UXL|(u(PWlD?luIJ(iBz%7hhOk3}u#zcZs6d;op8^PGB)DujW0fwqW1^#d5W zxy%5pA65L^8-tzO#7mEIuJ)pCG)gZiDV2+(QGPKuN*@z=G)kL9=Wah%YO^qfhgrkjG#9xWN;Om>iC!4_I`y#5Go+$7Odu{l9!ghNzK0n1dUhT43&s>fN zOgfSl9hb+Acjl<^7BNbUNWVYLxn9ktVv1T!Ouy)3^=1x56KPXOJ_J2h86FAxJdGF zP*dJ(rZZW6U@(bzqjQ(E=vuj}&2lbgfsg1zIiff}$2nCky#+u$!&^AS-;J-B>m0-$ zZRS_!!jOrg$*^fZ&sm_>pjg=ZKHBW=KHmxN)r(@hwZJ)1ZDxWYKT%^q@QO3L^exp) zE>Y4JT~}VUy4j#Hiu2J^q z$A5FxhKH*kJA&DDqP*dpI2yuHr(h#lV|s*s#LlP>RL zsd)iB70Z(&H#k=->{WyvMZi8cfbof&oL{r|5lT*!E9i;$wFWBGk#7zZ2R|O_lDo&1 z9a7Ekp)JIqv0I(FjBS>(oz(;37Wr?#7DGj?sO zL53IiSMx%Ep(#;gwl9Gy`w)mv@mmX@X?gxoG<#v2?5ds>oDE&ov2F6eYw!!sY3vd> zN_^4p0tLgK>cloV6ajF2Lt)NR-tOn)S@RRHj{ZBao4K!#vQ6IZ7h21;kY9h%*@b5Z zyBerZZYSd5TXuE3T>1QEn@np;TfW|+Ejl**5`AJEESw5&Jb20ZlG;X4_hhy1jV`nq zz0qbnPdn|LY(&5%fk9@lTV8fHGQx@>2JzfhU!Dsw7oI!LIA<%F{Kg=s_AQ8c)G#=P zoV{K8t;{RVbY;5)#qV%!p`hryMcbwC0OjBM4n7LjN#4ou@^;x1zqDQV;I=bwmf_dV z!TR;JTHwVGsRZc7%bFJf35zpT`+xDGohN)|t;D~6-MP)z_-NxB&K)7v};7C7LK?~!iP0D+Kd$8+zls~L)m{+jnZ*8H|G9{7!$ z&f_c=zUBa`D6RO?bOMNOzA4ZB)_IqW zLxfRexb?Tj%L5yH3wA@y)bz_>3u_VBlG>ew0EO<|ZhwiF#I=z@FOb}CEZTDcO;jpd5Va@FH6=TnR=;##?)aI#!+tz7YcTN!rL zaKWxe5CnHUaygS8pty3`S+36+NyPWkTz(oJi>dSq<_c2SWdx>K)ZYllYm{)UWH%5@ zd+DraCro8>0_fQO{Lv5VYq;afx;7~4072H1=@`3ZRaYl<1Z~FH9k7e% zsjlrt1h2rFq#1FR zAdX1+SviGC@-koQ4@24wlref?ZH~+jfc$%=A z!g@Kt?#ltbf*_)S3+^VkL75@@TeJn)-^k%VH*~c&!g{ekVa6UW6+iKmYcNxl-QL00 zrip8iT81_wGf2H#ODu6!(u#Zr(+ z1n1)2g~7RK+jTh6*0HT?tjehX7@*sC%K!!Ve-xm+QG3@}^;K$7tlX75xCW?i(`Izs ztGoHR4z2_vf|ujIF>?V%$-$1Uj}`SxN)@B=Hf=#ZU+#8CcX5sN0`_9`of)Izd|kcO z(SiK_s5Nz!AU^$X&uqKg9^!OibR~d4_}-~~tL5u%uF*_sB;Y5i4Jar&zTzI~_<%i+ zb-b^N1nc+-(Xi0^$NwnPhSH@-65_~UKl}% zBjL8fA+8tITNDFzcwwk(H-dXMNL1vtE^e=7A|!UHe^UZNNIwvcFD)1zX2kFc;__xD zDK3adjBs7?we-u4MJJ;Opszup2lD7oCd5o4%7>WlAWY2rzBn`X365 zCF#|@Sdx^JJgB5g`+AfQrnrb>{>?dnbIF!wQpDdREj{`V!-f|ts$Fs9@T?dq2JgK%z+jZZ4pPaJ&GS9V%CGRtx zvh~y4F$Nxs#g8frT)(rK2uo*dgS^0YWx8gwl|64zWKET#k2ptrpd{D7#eK}PDv zU`_QEtYPNjdSU~1|BKkb!^RJ^*tko5jCiAlPZzCR-{Y&0(sZfuEQ*DziDiEF0StlkHvI;!5UX(g(V^|4UT1+ zl{7eBWvwflO+~OG!I7=Q;&i^pemR|w-0veW9%JcE{FOK1mht23T@@5{k1(AlP`rBV z?f=r1yZOPzN2jtAU^_U#qdrf)gJYs+gf*M-3Y%S4c3Jb`yA%rZ`{aI^-_HQVMoV0X zdHfWc-&3~2fc$Swjz1{}l;bxk$2;3xM_A=t8B4*r-m&yVu9V}qe=Uc*)=t-dN(Oci zq%~V>T|?cyu7hfK(k^y0USS<_?Ghq4|P}{PKQR z@6d5E5mBvMv}lnW(JCdXby9M2&TRdm=;mdNlCHpgy**XpoACCG&Pm)dD}JUv0RV8v@n8qc*j*ftYu7W>xdRn$>YW) z0iWc^&da#YKf<71**rpCmKPlA*e zA0M_Eybv?K)%e!YDM?Y$<71&S7Du}OUC>)WchJLPP%Dxu?A z#YTX4VpGAXEhD00QzN1yl3GWkwip+c5a8P^3im(*Ugs7ZM3h;cEklT#yNQ&U??mhY7Qzs!O<^p7*^X_f~4qGx|O*(Gt-tSh{+ z(pHJj_}XO;H-ES9=?`mYUvugIjjJHU#|bGs)V6YicBlLv|gq>Fr z{LJClGCb@TS0&!_u1jq!#vilOo+u4F$Lves558!kOF9I9$z9iK^=c6juH@!}2nzd- zGLJZSp;+er5B?$Zjt^X`dHHx(Sq3NLQ1vGc@LE5*K4d}gU$L_ul|GO+zpVPi0V1`R z)_Z?)snP#HYoLU~tTl{Bo(inaH+K!Hz^~qM#j8yO7lSjNI)KjLZ~xcz8f#NTtfzd6 zRqG%5Ve&8Fhrva-574+L|LXdcjVr=^fKTp~cK-hFY*N;bPro#;j=#tp?LU9gy8y#|DUHNv;J`1RW}jBco3oTdeY+Y`?>@EaJ@*obq+|PN7gJCw_{HSszbx3z0v!ZX8{^yj3Kpu*l6HCcZ$!V{RrrPy1%3Pg zhabQFWH9ga(Yyfu=cOmZd9{)SbNpU|_Rfv{sxrp`UQn`Nn@Wkx>3}Ylzf46c7VsAr zHGfm8AWi+8^2hTSpOO~c4DK_f3)VCBK6%LT1^)L3+?KKhWtjRseIynjiEYYBAt-72 zHR(2i1+W)NJ?P1RMG$)txpB<@pu1c7f(cCZr;og-mN%gq`JV$J?wE=NpD1cwii*cC zbgNV_L4}SXgzu|VusFnEEUoUXJHR7D3bw254OGPmhBl;y7%ZxC!3T=pu!H{mmDdX@ zRyK!%g_ClXs=DK<7M$}796<@mh30#q1+~>=(k?%PGU6bAsb)bNGmP4y1&!2MW*D8n zvs5?3Kpv~iFs6hRoH4@~7GBU!-DQH|z879FSusOdUArJkwVR;ukU9mcRjN8hFbSR- z(pS`gGI$!+Eg0w*_$na^-*Eh@WH`4rD5%3O9OM@p6x37SCC@o5a5dof)BM`4D#w znU!~TwYKlg`+Wa=PwsO?j%QArGiT29*~j&5Rmw{~Q-kVpY7?r`z-Cg&C5!yi8`!o9 zPgr?mLHE6ewj}|eCel{w6NxG}vRw#x34f6$d}`C0SX*y3W;0`LH-vJVnU+DA?QCqz zB+N);csI`WDj<4u0W-9$iLJfBnnY<$u@o|ElH=WjG`3@C(M;$Vp%E&YOSDQAkfYMu zw6^*s`Hq`u&#Ac|5s5Ud!lRkmtEoathG4_YwsD2EwC849GQVge>SwX7Xs6Nzq)N3C znA#zndu`gP)Ff=GnGl4=rFNnzi*Q6DDJUkIi$jj#(ZK;g>GY(BwdXK|R%C?Uoq_QN zt|FM$aj8pS3^Q$2eaerpNW`3n;D53)$BXzM6Ru?g{^uQ>(GUL~H3v94R_ zSbAyFP+Oy-h$T+!ZK@5zriKo9oinDD?W-Vu zJ0YNt6rjPc+k&-ZEfYMtRe#--wOqwVg1Oc=d;c9g#tDO^2lh@3D?ZpZBC6W zB#*pMpzmxOEqGXVq#w&+QW$pSy4X@9)$^RoyV#OS2;VY`Zg3Ld?6iJ;!h($iQp zqZjn@!Y@UTinq9Bq@>{;&xC%b%qI)0pq%v!tMVnc(5DQ7wlD@Fonqh?`jmmBj(DS6 z#uHzYMz!9u{me&iL6!U3eidr6oN&u7FL4krTG!Y@Z#-9JP#L4ec+#t)C;eu&p7Q90p&7meG>q zj$aS44G~td3`iAD0(JVYt0E^*SVN4^}d5jrY!@7p==5^OaS1ZU-nH-kRy|i$4*ir^MgM_JJM|L z%5fD&X-73>b)vW6SEw7Mg9<(waeOh(mdo>-lty9fDPFjji6Xb)Gu1`Cr6P*ppH#+SXNC)NRsJtF znN%$x(yQ_^3Pp8|qh(~J()FQzQ*GsWK4L2~;3HS%C7&FxMv5a5%gn!=vygWA$0Ko!ULF3vsMbAJ98v4e zRHpBBYdQGJ|8TpB0L7!?Fl;adoD}K8btH>F!Xz^;Bb{k`JqGsGS`YH7*>umD_ zxtBArjuZIw#E2X#o1PJ~SkM!Bn|)Qpe_DoO<8o0&_u z+C~L(X$1t07~F;uE;-228CmPw^yt~?DM5VvHtMjTBr!xItiI2kh#~N07F9#MEHDH) z_M={*&H=k^gE?U<%a(kO@6jHcQP{&K;{d^L-G-*vY)$0^CvCPw;kX*^47=^D92duu z8j_uS7j0SX==BXYMXEBfmb-N#7cHH=GHnAn;jT);9l5`9i7nQv$k)9+pI`@l$N`JJUKS{%|VPx8oA8% z@COGA5#}6x-nNMof_5-&fCuP|{kQ$EmV9;*ELmpRN)nWOwEZ)TYwv1%eHW@P%N7x!t0$Wq1SCa0*1eR}YX>tNZ z(VwUlodjyu7)+I~`wklQ`3xFf&SIIe@Nz1HgctPN_qKHYUIvXWcUUyirY~k7ZPJz+ z93bFBeuc;)!KIMAHy+z2@?~~XJwkRW^$6NY^~iVvD@yftQax(3Xhe^4J86^y^na?z z+D;iU&Vc855cVeK?+Yx%E4uG=X8mXj;DqjMmgKKVY_dp!M*a-jLNWqHrIit{t+1w{ z{#xaQZ5S_1Ww}bi=CH{`*wmdU?l)UTVFYW`2xk8d-YJuy(9U;9TBaSDLbEASg#kpO zb0ogw*BRyhvZywnC06WVtbxqIoU~%sT%OX7zb4k}WfqIn>v6GO0h^2i)FsntVj+3l zOWSg;B+A_Hn|K85QtI;BE;>J2`N~$JGzVXP+HV`cObhCZ)fBah&W)<=qI095U36{) zob$UU!xi>`el= zcQK~l+$c?CI%XHbQyoJ*$6J7`Ichy%N;G4h1rixK;XG0_Pd~7#eQOQSoLHwDE)vtInj>=iU(GtH zl68s*Va~CY?RHK$$MRK-0@fBVVq_P=5|yoHpUB;(^?<+WD%@i$f=;G)IonjXPvN+~ zDH?fvP3!H39s8+=lAd;q5Qb1Ybl<-A&*AGS#&w!`olG@ia?(V?vtS91$%)8?y0H`X=@5 z+3@xkL1x?5X$9WwhH%xA-%jwvv-A>EmxN3_ZRT!zmL4=BF2+UxI&xxDB>Oo}HntDs zg)7)pK95v*PX7PuIc2m^SNW;e0?|afhxVvbO!hH+Pf?L>EE@3|%O2`AfL@%}M5|jFibnc_UwOPn zm4M1^oLifpDe5(i6-e}&yvKR3sU0@9KiMNq+?g=*ns`j`W6&S3P_5ZRE%w148igmr z-}sr0iI}smR-tz+A`1UrP{}k36Ag1k4YU0;yts$P;1X}x=LhmX5H zc1Cr#S1iH*O^{i~A1cQ~ur5`~`DY({E#CP}AA38V3q>a%Lze|#;SfKlA+>|a5-n*5 z4@FaW#X18;i7C$cnWE5;>$?_JB7-ck6f%-?E_vJDkrUe37!#94su^KxjKUjiG9H(N zVnp9gTrU*UbZRt;d&jOrPY2jTAGSvf&1>aBtA50KVVKK7N+i@H1 zdnydGU*)(vNc+?_Ot{ISksxx;MuP~TlOUolnGD~e)bo5=oxoa|=yMH0cG?k@u+!^) zxv{fKp^BsI8niCdE}*ib?Ctp&yK1-eg=mx-cBf~QJ&@yd1dnZ)t^yQ#L2$qr`zXFG zLG$a7E=#ziAy&214hb|P4UjDp?U2|M#;8Zr>>go^9a4Oei%d@^vMFSwKgN!Fjk6o& zxQfPeN44f7cSSlMzd2RQ2`l}$F0-Tb@%FEUWo(Xu>s>Xj(-O)al%<8K>#pCpO(q5g2rB1R!W8J>G>f+D0+%rC*&zR_syba=rI+J=6cVgHij z8#w5Ype~C?8d11|HX^|PKQ^LYm`2pwfylf9n9s4_DS_ zG=j^v8D9LLi4U#+e0v)IAwlzNGo>Y5(q>W|w9WK%{BLc>nYGZqDNs0!?d5AUim)Fc ziel@Bc5iG7Q!m|@+4mF{_QRIj&k46=(je?d=QAl1CxA#WjR~Y1!|GVh^DFExIpHUU z1zlVFlT9Hl=O+hRw95Xe3T|j7V*nrSqt*5%p)6nVG;^ml_P>NEmVz8tT#4*Eco5NI ztvyyQf*i3iumnC4F(2C#+Np_49WPPG&n2YuFS<&&*8_YqBzFtT~MJ zk@eTkOd4y#w%B2f{#quDHJ4dD5^IiU(pUrdWcpEvG_s&qNM7tV&?I0l)#SCkN=^RG zr0)YP*=|qd`D%NqCY4z{qDhIpR1?4_QLhkbMQO5r7tC5af+l#@+HNl$EbQ5mT?&zIIP6jA*;0MDsXO(&FK(RUp>_u(HZfc8K^j%$J^_cl# zlrs0_#z^D{ncLJqy(T}FaAd<~vc!x;*Jy1(b?k5y=1n?{X(tv6XxsdJ)lh&FSt-*(dL#i+77l zJH|V2pSPO>_(_Cy*_Bp#;x7X)FS!A)#+n5i7zy~Y|>GO8ouutGG?Ne^b|D~o)Q3d?-rhOZ{uD732 zo{VTWp8ilLgtEz4(*Qt3cO%PHlT(mxHcE-im)P&r+=Xe19GTcatAdPvyJvr2j@#zZ zj@oGBSN0AL8$Wdu_Kp4b0Dkp;+EskS;*sz(9de%9YH<6D?J0_hJav$E_bkL8 z2aRx-adbcJGJbe$zr(>PH6A#dZLSRPBI1-DI#X9ohvf743FOjt`_7hW{ z71cfEr|$6sbfFMpf3pDo9#PjX;BOLn-Z?-Q3L)UbgGoOUWY%+bEASxJ#{}^F=hOy@ zFn>@&#;(KNWXgX|tTfP$l>ew-`3sHp>!kAIP*_Zzo<`bhrU>WY@{Uuy5dS%2WfJCE zvMD5b$A6CUBOMZW%U64VGR54b(Bgg zOmRug6h(BdXhU7c>1g(hxD>Sj@=dYBo~M^btLi!C6m|oNya3?bEWQ8$*Oka;ZL2!r zv$pk7lYX}v2E4yD2tA)TxhBtNpqC9DQT#L;ifZKO!C!Nrv5g$slI1aSJc{Xe%Y^PU zas&^>)C*IA4*uogV8p`IX|VpeF!dVD-4~`}bml#PIQTP_l%olT$cbhRhRD$#Er!Ta zw+=&OaYBzFi1hTkv^XfiLOPtmirO9L3~cPM2l1Vp1z|86m5q1&<9lCI-o6#CxcAi_ zODD0hy_4SiVpAZGbku#F^xjt?dF0;L1CwKpkjApZXRj-cW>O?};+JWEGCMK?Luark z^s{0YS~$83^OwDI3tJKFQYQ8t|}c;cmtGi)+$&Y>95w_~ym&Fq`i95rq4 zcwdFVm+c)1!Zihhrf7Z#N3{Upg6{q>uAU0n)OWI43g0ToBapW5BM5~s3KKaG@?kULsSt!FHVtSY?Fw%fb=&*Zpwp z`$n`b!I31a!Sa1Efn3H}$)rdIb&g7O%nJ}cV=}4ll9k`xZ1VF;j_yzw^mAr10ur{4 zDRH?&XznmaUSYg*Rq(@89siNz6V_j;pw=GYSR2Y}AudLIH^OmB_?aajgULTfI=1tl z9YUXta!gc_Q2H=qE?iJhK7X{Mg&dWH+;(Fe4TY*I_~*wsI?M54AXgi;9qVW;G*;qc zLt1Y%sUjy(#DGb(C9^e0PcM#5bClzS4lGlmTa!V9VufyOGU*OF9CjMsbM)ur6bfNe z{e`WWvngVJ#R(4hWx{VS{Pw|bKl~2B?{oM$;dc;zhv0V@en*@YCmhu{0^U7LAN+`9 zm6zNOt+?V!jbv&`$_heDj!v$M%GAr+E=*&KB6WCk*<=z@0g?KpjDk21QX=!y4x>&D zvO3DSE3C1|-x~DhU!{gwWjW4{?v-GWZftixzw<1CH9Qs9r?_Z9M3TvEA!`_3?Tqe8iV$5PPuxep`FaCaR!cXC~OLzAqA z!k;Vwo-PsAzA;mO6jftf1=KP&t36tFJh_aV%O*`$A0hMz)0liZlJSVVJo53#N)@}^ z(`LQR33X)r@TI3=deE~mn@py4b&k+aC&~zj*;=u& z9HD)79*akM$23SiRHy9{QQ9CJzAtPWgDj7bmdGMHxyFv;>_#iMk2 z5wwZ<($zhLDHHPCbd9aSBuIAinf4;uREsZrQ(V)&*b%ld$jzap4ecqsMJPt}^@mmHT>cMBRvEcS?2Qppu|mXRZ2)_< z*xe>_J;Rl8FZ{%ev);h0mYndE!Jx+>9%a#WfJbbO6b86sj8#d|01@RbE*mAtD9A;Z zAws{JAxeTkjE6S-*<359P?SXw%koXpWg$l{{4F4>ShC{4C1i~hnz71|Ms7NW&L?Em z5=?9kR;7l-w2Yd!V5ZKAiCF?C^k!)lo>oqcmMp)sDoT|D5Lpn7q#xVdcyV4We(W*Y zNXJ)XchRjT z>gA4zK;JxdPmW^OJS6qRVsx2^JgauD6pqL&gcmsuGAR<7bI{1FHoS0w$wc5u9Rv@X zLYm-(W2noRtoorWt~lV`I3_Dr_?o4_L(%}iL^JwZ8~U-YjmH1#juBq46h0X*$7ZF< z2^7xZdv1U&5IrFEb6S>52t5v^^Yx|*--s1`gC!-?p)TXH=64x)41UMqcLIJV;dcst zr{Q-7erMtL1^mvz?>zi2!0#gbE;+l5b8V;?Q2#ic8dYR@OLiu2Ayz?}#jaaILsmnn zq3hUWVvUB!(Wxb_SUCY1owirQ-Tk3!lpJ@(p6ubmTWYwZmzOD`u(DRgRCJoUY?*5T zFN|inl0qDc&xjKyu*swlqmQHPk6acxfiwnLpd<*yoKfbB-cfQAA|v_+*HBoeB;i5E zidC-Zasowx^lAknn<(lvhF-09jpt7u7stL>rYsU1IZj6l1CcAAzj0g~`m$(r=zClo z`W~lyzJ&-Q2Yl4?KrjhVZIL!L-NBbSK}QXNC&(9gtEZSX7Na)FYE4Pe8uXR~YqG|a zpwp%3;thK3ngdG~M;D1#N=)~v`%b@qSxJL4e#L|+DU`av( zBLOyo`9%1j(7Ws2;z2u7(9V7ZC7Zu$1??^sv?woYvCVaeKO-99B(2kEgF$OB8sZa7 zCitqd!5nWjYPCsvt1e!bqPOTxDdellQN>`PllPZY=5MQ4>ljhH8*H`aiPZ{fkkTIW zD=pdTS1avsskG$d%AqHTmvX^qQ`ao<8#2G_ay{njp2TiOt5zC^cAG5H*FtH%vLc-m z_PBa+youlrV9;jD&`@`~E1T~`u*BmaQdQ3Pp`N5e+vt1XjP7r z3RhHB!XqBySKp_LrJo{}exK`W9;p}H_py8U=sYg?FZ*3F9KXY_;A=${C>q-ExhtJN zs9x}NAF5dJ6=K1sz~A_=8XINkQAaifj3TyJr{<7r7$ zh9yU@n!9S&D*Uo2d3y$96!gK+Vbw4`bZ`jc*_Xn!*Gw5tz4@)Ye)hO=m-Kk0Ld z_9uW&&JYzMjBGX(k~i(FYa_n~6v3ypR-Qte@?GavR?R7m9{0+ypi+6Rdctm2F8O3) z#wi-|0iQG z_^PMTPi|L7Ie}taaqgEGAKL)c@e(T{PNh0di?0q)SE_N$ue&mcA9$ALa*y4 zKmRoKra3Gc@usn-sW$=oKlP?^SD}70K@sdtw$s>~E~4|-T&+;IJK#y@See9=&cHz@ zJa_aq~PK>=rKBZ#)kM8qR1alJ3(Y=4lO$ho)mJ1u>=tpbcTxiu`qFk+PPck zuyt0@RQG=_V-=Q<@!h>4k`%(uu}K#maQ(QAdT;$5*c$3 zf9N_b$CcE%rADy&8&?lGfubb^iuaOP_Yrs2zI9#Ygr8Ziy}oz#5&mLRNGJ328N@wu zt(4=EV)x|R2col&T(yNVXPGL(RH2x&uSd*4t-o{aMAJh(p>i$?ZA+?YOBPN7p16|G zq1Gv(2%t2fE-Owkp$$@FLKZt%BS=jGATpOIgRFmSi$JrUx`q|9Fo0e?b=ig2WwP-y zLI);A;_Iyb+|`*A-eNN8hV!Z)U0sDiY%($PTW9G}78!xUK#^kESc&x55t}0E;451- z<{_22a1|GSj_(7k0UIE>8OXZN6@~74rj$clU%(V@!&w?6*R!Z3NX|b?f+UdiI_MJb zX{f6}k3STW*YG#jA?^~g?s9eE&z~iew`h}AV=*Ud_4o^D2CKo8kYG(TB$$jEy)N0R zHEPH}zj!P%fx8bj^?fIZ88SB(&3F$>u7-xB%x?lWj{(-9=;ydj7?`n+3ZvU_X zdil32boH0n!6PJ>)z$FuQyhzd_wV zy+p?Azo3Vl8%1XSS%$a!72EgX3*fD&4bOVo>SVuPhCi-e@HrAwQt-86!9gQZa8`RV z#ENE9r1s-$XP@vWt>^Z6{0k@+T;j_NcR!yT z!}#b{QMEGYBjto($@MRY?%q zo>OYv>Kv_|zq@Cj4ubbl0Zn`_NE-OJ6)*P=I!7y~cfV|XX?R=6SGv}Wrw>rzh9+cZ z1aTh};EHclNX#cn1h|sW`b(~60jZtN(P0{>N6OzEEB@d4C{U9rS%L2g*87a4!P=jv{sZV_AEFRpWYSnj-k~X=$O2K3xvT^-@c%$mr1G@v@AyrkA{$sVqR1jq z5kM#NjY5PKrHE}t_D1MNGq1Y3K;N}7-*o{c&B|_r&=MH_-(w|`_et+yOxo4)=g-qf z$4aG>Nj8PCaj)4BxyxRlJ)3X=5B|@iQgcDtd*@*AU*`gYOC}pNFVM*b;F6fi@+Fd@ z*c6ExATln4_*U>Lc?Y+v!EXiLP3Z7iB1tk_xy*V-J{uF4)SuoQ^w#MEPPNqhm^zgK71l;bL5hVKClnabpl z{H`_GYk8p+%T*Dy?~Cz9MoZ=gY>H$-fQTP{kDZ}2dNyD|ZEnD7E?azjygwG@3qWB# z)_379()hD-eYTw&PY}t8iFa8<(((sgq=V?UkmpYr1+?xmxlyFL4s;M*NZylAvk&o` zFOn9?r6bMnE@w1+!8t{nWKJ^RZya09Nic{u=*>D~e3D6TNU8wU>^JEP zJ&$O)_-`-Ly%4x`e}M}`C;Mg(XS4|vui8QoB%|l0RTno#*;}&*qH^UXhoX&Jv)6DH zFi|zsvpI^Q&lO4|j9>+M*0$^nu1*0ybC#rAm=6_}v9rZ{^Dp7#66}a@-!jF1;8*NI zm(pMQihY4j<Y!5S+*av*34P zRnS|TVuf)k_=$U<3Ci$EbDgV#O7=}*-&U zItm$Btgn%g&UM=*w8D}77{4n8SZf+=?<$;Pkw^oxU7`(a8?CHz?dNFzNdwdD19g66 z)OpHEBI^8bi8lJ>`?C*mAxJwF!UJjbK`ut~S*LBypf2z^DeecXlQ?rO#0+EuR6P%v zlAvTnCws3&ywOGbW1S24$LG-QOjt|4{>c^#djA~sj9pkINT>X|i?&o9@=V97CQNB0 zu##xU%%(`i@X2mTWls`iPY`9_!LoOR?y{iQ=Ys5IezKQ{vL_TJyRdp{b_|9eS)$0p zqR3~*VNd_EpP*b((BXd~=*~$H#AQ>vz7z$mJe}PZJz4<8s+cVq1QC-)WK)yA{3p_8 zodszfs5GuEx;H=j{K{qS(x}xr7+hRE4Fccs6WEUm*I|UlSQZ3CM6jSI<3iSw!)&2RR?JrgC^eOjER~3h>I#(tOYG^meajhv6)AvYEa|m zIi+jFn-ew3N!lb`g2rUf7!3)DnnaCRpI}Z*Ofp-McGSWO&gjuo-wBM0*BLCZA)SD2Xv8Imu*A(wbm*Iwjs2Q~jgkTn*T~j!#KUHfxQET0^`x$&z9+CMH=DEP7pv zCCO7Nwn#meVN8VoBB;lj7r3jPZIya)Qom zHNk(32`N^sMwgI;?)6v|;q2LJ`GCM0CVi4Q*$TVtCWAqrqO&F?8xstP7K>G{(WfLj zXT7)ZI2V1tO*F*AC3 zrbOrSrXP(7tWoq)k2PIpM>=y~ezcIAQFQf~O*KK}8$J6E?$)DyhpvN*b4fXNF$Oc# z92kqvRGu9fT}+uQh+FYu`ed`&>G>E+9+i-s zVAflW@ka0|L%c<61|Nlnm2A>Lv$R;9&)wPST$EXFF&Gn)QxbK+OJ~wrQ{qkFk|v8O z(VCQ`1%b08oQ~*e*SY9o#A?urW;xx86N`G)+e{l+bb>B9-fYB8I9YE<0N9$M)ubdC ztolSaEG(r#geqnKtU9V_dOf5%=?QZS^9BqUC#LYf<;>o8Ce# z7Uu*Kc%4)1{qNl7&7<8`{kM5E4RfZ=&U z5>P?-OExD$`$}|zsiARM^a)9Nqb}K$41;%wbLRMXO^VT=v6}Qyxf}O_uqTY}Qjv8+;B&4LEdmm1%;9S0U_D(L!XoYl(8N!G`Z;03Fto^ct-dMinp&)PReE>uFOGEGZU~Fxn9a|Q%P z;RdEjOi9Ag)Cfb%B%M`nG9+1(jfUiSy-93niSg#-6kww_CWA2(!AW%{t0e_!jXHgT z4sl(eFQW~uNXdG!D+50%N-XkBn5so_&2xgHbcs5%35G)&y;W;SG$tlMf#3wH(W28? z|iBl)lTA){k#+I03(HqQg*cASN;v^^Qq0$Wo1f5hR=gf?p9b9$X{-7Mjlq9PG zw_}qg9w?G6&@Ch+qO_SGiH=%~bn2+l#R%4-lQ6VIQ5|wxMrkxq6GpQ(9&|HkV03GV zPfpgEjRvhQ(WFbJ;V&vFF#!UARhMK;PR6TDRtT7u_@wv*EsQndjWlkI{VIDGbj;=i zLlTVjbAf2U~wPSN~NE&e-2`*(^~_8dpT1h z)o;(E6<_5zBgr`pac@xCLPX>l)V@w)F}H=O%i+zKg{cSNTKvM)!z86GoXB37dI3%{E=;`*N01h#?#1cjQ-6VnIWgf? z_%oFh>KcZ~`*L|0B5w^`#}KhjK8DDpfEySh$3VkxVvwBEx`iRwLM88}27n=uqiIkK z>iJ|&xO4KiImd(eXHv~XH(Qe0w6%%RoD4e=mK0bwNr6pJGps$B z^j53J3L7$JSe?`xVTVlvi%s{2Os|M8Id4@(UryZ-Dm=!LiP0Zt(>GJu6v!h-AzsU& zZ>AQKN8U^w_fyVtp-K+Jj=Y&#kx7x*iEpNU_;b!TfuZ$T6#8cBrr&ec3K}MzzL~o4 zkDL*F{T%emA32)@mW;lc`Why{hZTHprn17xdnc&bUpX4SXATqr)W* zWoV1&j@m5F)}oDvuY^T*VbG3`=m=7;8>J%8tDh2ab$IReM^+l;zaoS>l&aR+n_Q<5%ab?&9twpdz@2QLZchJFaLf=YA~M zir^Pc`Ry#8AAaMcx?fGm>T;H5_aOda4!Wn=-9>P*Qt`1tIGKuTZDsC*FosVARY1mv ze4Zz|gnKf7KL>qM!re}I$TB16oP?6@rNU!2nH(N`m_sko$O!OpB&M<>smQOGGJnZ1 zQaF+GaVhsmPAKb!bYGJs8q6#0UMo~&lZggp-Bbe^0oI_rWW0)0gAhQ)FXR*=U14!i zZJDLW6$>_nQND%X9wu~R^}~&cF@0UCMSB*7T(;7Lx<3*6u*nKa@k+Cdl2qE*GVbdE z!`$M#MbAEK8HlQX;BF|4k}>-zy*uYd+6wNvLMod<9$A^erg$joiE{2#71R|fsMo^W z&E%-0vRa0_M+#e1@b9htxD8V?4XI61#F|NDC>Yb?7K<*Gcb^D2?kg*KMf41VPH%Ld z6w7&%%^~Hy#-J{A@IW8&buz!GRs4R>RqwHnotd+xz< zDk9-cHQeV>5I_ATH2vCLUr16T$okr?l@kE-+6dl^iV-F#2|_Vv-$ukmhgs2z<{qaKD9AI|=X0fzDHB*UD){gWc7*d-J@*=(zfP#wXRxKn zXiy;~&tS`f9DN4+iMsT*lm$yb51Xpmz1dl=uwL!_uuOp1gJ5E;t!L?>rW zUoKQ)km$7>`wwgC3(;&c_Wl4sq%UF1C~&vH*zHZKIV+iY3ES+!#?~-Tu}WrpON|m< z!j5ElNu@wPXx#7deLUm}O~{*ATRNh|U1Ar$hldQ4Y|Eih(L0CrI5UhMt3^D7L>uav$8BmMn?zd|i z^l@;|E6!kvgM&Y@(Xd^rX$l8rG)=Wujkal1i^YJ(n%o9~#X}C0`&^t6h`P0HGAZ*( znmDZ)G%yJy79kpvPO-(`Nmz{?)vbd%(X| z@kIomTixpFeuqCrJZb^uEqonBGydZi{?AVJ|49t% z^uM|ngfCOQRjIdOL15sj)JO22evSS$8}vxUMtu{i+|M1#dx;Z@AM}*Mnxi1Bk(=zh zJoE}b^rz(JA=~%Tn}=*l!2lo!ReBqS1|__7Xux|5a_G?Dm509dIsP5@I{|zRFC7|G zm7|G6gHm2PGyocM!?qBCEe!+KTFrK8FHDkm@fWca4aCZz=sigl(ZFPP1r$2kQAS1HRhAgb zBXWGxrU*1M8KzA^W0bUH7PNZ|EEasDWWYn=v}4_^<-!QThOus)@Vgp8qcnGOIe}ud z{T*#EtZ&f!cWjEkw>(3hhYQ>CRW7SeeO{>yN^RL>QmsudqiW;bQE~$CnPl{333o6LOUcAj01ZzmnR&dlGc7cc@DD&I5AGAeRqmre1j zt8NkG{o*yH(`)hDFVl$j88#a`+1YfN-rVao)jfhg0k(N(SIhGjEGA`4A1|%e) zsSBrfb=C8nqo=!LIN_0B-F_RvA*rkPl(ubUT}j3mE{2^szC2iqgx0;*gSpPrritEp@vK6LCpN z;1dyvdY0T-lKkcQAUFaM_P3STnEj&VP)#y@6h2+QP@kT?!aXD451&s*eFRH~ulz*( zbp;*#$h}PXi_K9~i|=jh-^6Np!Qd)AuI?)LTksi{tIB2*a~0*ShUNYkHb)_+kyw=K zSE*+gB1cjEKJ8@HPlCS_x%UfiumbV291{;3tJ#k12(ZkUBEIvnyDNP7KwHl}fMH`+ zV^h#)abuPE&DHSlt#fY`X0poSjz?I)rg*w;>&{)JU&)sIzqJ}W-1~5!C?&U5LnRA~ z^FDR&2!b2qP&6&l+>eMvnpWY_Od&g}krwnj@a+nPQBu_Ki?Z#L?e6jLja;kNoe**z zmzwQku3n|1=B^p;PJ!IdSQxz?9`am{Dt0utuhNbN=>B0xgQ{HKTpcCY-4BGS*BEam z0fg*T)MArK00BfAKx7nTCEKV(=Br*q`I&CBoV%iNFZo}M$n66o4nUqkV4i1xP3jQR zAIoJe`PMb3cE7tf&yB}e!$RJbBZ&4JbdB2Yt!s2qvXJ&b79|VG(;Refgm*0N^>gdc zi6@h)aM$Q7SSg3xZGyOiSi1NMmgLG?#qu7wMqj~dddh7Ng12f&d1h8y*qZ4FPb+Z8 zUUJt7;_?e{#aFN-=3hw!c!J06#k%$7Ke~T}1hVP0SdD;eI>`utxwz@{sT#q$`>+M(Ptf22d@#bUBnZTaDDC6ais;w_x3Ms~ zlS(>V?DU5)9FPejzHwO%H}+fi+X`IyP_L9&)6Mc|hiGQFNDfJdddc6pd0zOP!JtFE z7h>JNU~@=Sgj{Dl82c*^xNCoKj}rWGtE=H=K33u?I`m*s|K~;PujtTyrIz`3Q9Z}S zr*0Hg$f`!c3I+av3EDlAPUFa$#+yu;Bx?eM*EG6CB5nB02xt0pcV2*y$e_|)D)L>5 z5o|KCVB&QY`-{7Y3c-os;6P+QJ)xm6O^qt-SJ-uti6I_MzG$*cjo|sO?nZtD9fVD4 zxaWU!&y?dT`k6{%MX@HKTYhYcWF%z%!#$oqf1S<<&tjQuA9LzDoe{42(>;m5cb(1% z@5r&lj^^TZq)pmVg99Y|0oX#sk$$F-ypw;sZwo>BphCflm3)*J_rDfy=_~g{zD_0=c;b+) zk#@=)#18|#@HSs^KJ8AYmB>BB^Rx2tVv6`}3#rTNC>DKsKJ8C01m(sA@E;N60Zd=o zU4fS-k6r}%1jmT{%e5a(~-TCNgMD9t22>kukyA^U9 z3xBE+42#S)$_a=BsZodCU>uNy0ua-?Vy;V-m>wz&+GD637+`Guhf=4mXOK*fb9m|9{`QW{s61}f8*};=`&=@ zH{>Sr0)LZnAL8z{Hi5ebv&qEW0g<}9KgDBAQB6s~^Ec^nIvIh&K^luEp=D*jU2Zg+ zQs4#!O;#U>?rjNcjCO9xO%+26pXL4`bZ0Q>>xz=$n~BP? z+-T>-rbztJqHW;4BW_af9fmox-kW@rdhhq!b6;@$oSW2pXUWk-?;UlMdN0rr?=3_i z>7EM7Tf8fGBWFXNgYGW;uA9_(Pwvjmtj?c{#%0Q=e$=XWHR?TiF#duxeq8re3#Xo`YxMNV8DWUuYfl7oEm}L(NjvG zNr(D4=th!t*8N0i|z9I;9Xx-!m+Cv_doruZuqU4m|K zEf4n0EXHRoqR$Qt@hlSFVD%$Ib9QK!9G*0Y7i;w>6-K_lX}toFohquG=K6BfAbdC^OrTRa;J8)|NE>iJM;a2tqy?o8aG zE|cQVI0tF3nIfDgnt2+O6if^%eWJA$n?l-x={7pl)&t+GWOGQnDc#QVme7k$773h( z+j+`yatcN3$rbIzDodS?O_9_`hdY4Ny?>iJ-FPgNb-H(N(?z!`ojkpHe#LF-bW7!E zqSH;jO`Q&Ch|?7!kT_i-d6m0>(;We2u+ts9&Gz$GZmT-ocVc-xx7mLF0YPS+?){Q9 zs`&6|KmUT@`8i!ssRCr;bUC-F(}70B=~(S)tYlLPOjzJ_2x%+tjzF4Ao{_~wrX0~d z$(17Y`7E-!JbMJ=9T3C1XQYlvkyJp_vOOy?nA#aO#22RafGO+3)FvdQ9mLv&skOlQ7p7v$g+KxS zN_VD~!Jnz5RLe0$&SR{=5Lw6g2t#BrwGu<5H(P}v60ufeh`3SE8VrIN$(<>@<=i#T zQ=hww#^-qsaUY^hH#{}b*WunO+&&amHWyz8DTT^?=_!S}2;N#K=enl`cS4af{YOtN z)Famjr&HCvmg}Y+!@laEV_H!QxewVS(Xh^ zvzyR0a%k2ktZqZ@1GiDLy>VO_MNa&0kaIXTyoTsfRTcSfzQ7vZ0^RE?a#sEcIo)o1 zVmPBBXTej*ku+?p$ZqrvWS5y8CWss0zl56QPsjw z>sE70ayzB$nU7(lRqZQJMb0TD5|`-p3vg@o@#U)A8F>zD*APb{c^-KlTJ|MS^}KPp zJbclmzzUjDV49%&P`8hyL?Yx+ASg!Ae^cbt#y%AK+vNzp#9bV}HIlP-d*Cth;mXwW zSl{FND;4-CWmYDxH22}WN_;GnbvGEa!m@b_lSP5r&?4H5zZ?SM*jo|_8&Yk{8eSvxUV4V<;sc z5*|SYZVCKTC5;W6;K<->G5lZ3tX-WTK)%eo)7$^B2eEP_{*J|>SY$}d(555M1 zT~9qxd@W^GnI9ml@iR{iUZc#~h3k*FRtsfTz;jO*zOynl@n;}ddi7d3-&dJ6;~r$) z9MCTum78E2d{fQq;Rxll#UHQc#ic3c%j&hJHQSt45w*OV zSCVU^$nFpfYTz<+-4!`A{{q6sv)_#nyOnno`E~DjYOndl6UGfwWGuw(hLm}{BIk`? zA%_V2K#}uFX;7oe-=3P>GAZZTkI-m{AwH23Nie*Rn==uSp~z{5yRVirGfJbGW#5kx zRsURpbm{?+N4@g2=1wbeVsIeo_V%PGG~<)&B{{fHB&)Qk*qftt*Sm8t)|Ta1Aw;eI z)2rvcS7b!uZv9n<>#ez86*;%?P+&*T>)qh%1=bs$R%q#SNEkfudUN;+6iKM{J0x^p zxv&>n775zaps7o6RA>?CZO%2K34h`4_g0`ciZj!MblhkLmGHjJb)X4hxIN5tTyMd> zNfXB4pflk8kK;uP4W`LKxXxQ$xE{uh6ccc-lT*suo0~)v(qBPBMz#Ek+&r4F0qgiO z$UBHzNfOrJ{^)pVZ%1w;Mfer-e5Y-GD{c=>SX&a52@dgg;SSS;rZ~O~8kFCgJ4X|C zl>&^>f;XPKLK0SAhrbVx&TqrP_t~(ecHzEaSE#oW_XH=joH2e$@W?TvhrT!by^+b| z$R~C`41Ddi)O~pHxdKBcFf<24*%(@ap&JHr$A4A(QWCUnNYAy!b;>0Wr^}x_03=P20K@1JY&;<-lz|dw4&BoAv3@yjdCm8w^ zLuWCx6GIm<ZdR7+Q}Z3x?KWs3V4UVW>BTj$mjAhPGg66o&3$XflQt2fjArwbc0-{2V8)!qB%E z+JvF+F=WHgZVVm4PzHw1W9SZsu3~5-hQ7kkQVc!CP#%W07Mwf$B8#F^bkXbG4vCL?qle+uK?PIp->Dh!cY|q*)dcP zL#Huhz)&WJ+FksW9SnMEx=F) zhVEkMa||8F&}j@kz)&uRE@9|4hOT4idklStp4%Fz+epw&c{$A z47o65#?aRo>VTnB7J=o*GLVrUJ9_F!le zh7Nxn6c3FVgXeJKIt*RG&<+gU!;lR_PXHRfB=Eg4iDHOAnKiv8v?km;6h6TobKj#y zxfX9EiY|FM3~5H^mFG*{N3*JIH3=o|1CM90jh@Qi$467DqgQ(>w?_l7Uk-*jY?TP_ zK0f+BYSY%+3@x8gx+D)+Co67k!@v3(C$>aW6Z6e{Ng#dwdOUJp_f&^CEXli@nlH-h z;U}*vkw=JU>Ac-h|BBu^+xI@;^)^N+-+HPd&GDTLWJ=GxaybNzspjp;pZ8;T)}I|w)m7cwjQf*O z^*2Vti|H6;qkA*O-80|H|jNJ1Bn3a^h&I87-$3m`%b{+dRUmrD(fwI?p zptNh$g95vz?eeyTLJ}W%gE&S@^j+<|_`v$9VC|DDyhgfyF%(M_z3xDryxM%y1Es@R zK@se5jtbtY#Dz*tb294+ymJ( z-p1T2#uh7BwqySEf-UBhj6vmMON64a7oqx=`te@u&l?)u1nwlm_87x<%>=M;y54Ky zkNELA=+BFoV9e!!FcjSMT3HytNfq~q;ffqaZ&&_XKaLOlIg*f2+T_)7RZ&cUS8TzR zzG1vzdI0!U(|!4Hbn{j~Db($1UNB$b8>K6Rf1~CK1JTntB}35kYk6h3*BJpF7y&*T zz#-nI-fDbXKh~}MS@)WJtp}QRJueoHu1adZ%Wy^IvcR-8ntNOFWBfRd^ydhM7=&y$ zV1Brn;h4^F^yygxExnmnmH)(#>&O0Fp~9xY>nxIrE`}klrUvi=RzM(f+|G;QFZgl% zLgENvu?-I)hs4Ec510-Uq8v#aL=sz~9Upk%5skm|s^E}E;w4$tg$Z#a4EmQK>oRXG zt|CgS={1K)opS`rjRZIJb!bi7d!xDLm;^#BS0aqFU;-L$xh1QgUaf`}T@R{=mNoH) zaq%>-_3M{wFdX$n1RDEivk>^0n^o*CwfR?jAah4=eONt}xTmn(k=6+8gF1P&96Za8 zr7AcNQRUp`hPMam^t!h?w}#=oQpWk&>(IF@S7rL4D%0n0c*of$!Nge23~<#F>QHH5 z!ns3t@RsV|kwr9Ge^t=E%B1=SEzPTj;(B=B03U!P9hw>AtBqrJPrn0_N|5D);x+<6p8;{`5(?cjkKe zH6y*H(Ym%m4OH$~^B`2_ZLt1tszP2!LO2Zys{mfKyf+ujMPRrsETMp7wL;x~yFx}c zB!-ZUh!$v5tQZ7VKen&eTxVr57u$L3xtyr z@E{ilLs-i5DTQV>xLgXgn@VR9q%6{Y&<3eM=-DiBD#5KUAZALmRw@x0O!k@vf$aE` zurlJ9?*uJY7N(`e!W_dCVHanJ&Kp$_}>@OK~fcA820bXP>~W(7zX!1cS=_YLWZHSiubm3yh zjwlPAUR0G*WT426P?b1LDG_>^-stra-pc$2R?d2*9I0wZ@uK^cD}@G+tXm2-841N( zt14`@QWz;7af6M4;i0Je3fN+}#ELy%xY&&-94>B+24QDag`H9rMr_%23`}i*W97V1 z$XU|>D$jMn8-$|Y^@gF18^a^ekO?5`M^#x*m9kc3!T7Cjnzu4n2U$CU6V*h|Tg&|J zP^R8(Ld}8~$gUHwLfRV&*-R%)zN^tvOXL1hsw- zT1;0}wr?oel99{c@i20kLD^1KvW>n5R%tQ;=GT){Sx!*0B=tLSA_T?Vlx2pJr8^v0 zwt64N=i5|SZc(z_G!LdSGbVX8aN?X4{+g2Ii~yfy%e@{3PSqr=0?Mv=IgEq5+qe!C z=FL?~fJKQOXvY+96TakQ8aeKE7#hw!rc(wI^JX3f5i_QG+w!kHCKClF9R022M~sj& z4Tk=Dksls#@*0+*K~YY+hYlUiso$JkrdAVa6|hd@|>OazFX;c_wM0{REciM!Lc(p}2+K zlCX-_roXRELpj2cumD!c$|GwZI$U6!q8v#iT{<5M`x4@0f%Mj87JBQ#^h3dG=|XQT zO77>iFkJLSa6yZ_HDS!5;8K1uH0So~?*nl||bDEX21s1FDYAc-cQL$>4BnR&o ziDsvM*Dy6t@*Hxg238Xasw-$jUTrwt;Ui(1*SAlw)0qlZ^@_yzb{-<*mba^Ap!? zwKtaQtQ6NtU7UFhh)ZI`0UjfcR4Os~fej~LVAQ%n3=R)GDfuToDb%XFNSNix0>4V@6)5G`HrEy>?k@CZjw z*26B~JtdDjgojl3qh^KI5r?pWC@sy`U_py;H1JcHgL81^QMOd@k{0t%Qa_TxMr?rY zyq=Q9oei+JT3g8?1}C)Tl`L+gd#gfCDzxaa5xVkDN*3+aS#;Y3zBfwA;?gE)=c!5- zL)BU2ZU!x2kw9*X4qLo2sN=g{a(;*}aUZRH*V~0H!HTWkcyx4HdAJ7k8AQK*N(LuB z^ETidN*(t2=>UBC!3AlB_;%ZX`m&Nb*N>X`Zujlw;mE}X(BgL`AJ=y8|6}aE1EVUs z|Nqa9Ku9GCB_WVT2?5dwy@e2@NJ&7DUIj!EBo+ikDHaeB2r4-W2vHwwAOx|Yg294f zp=4VG6%Y%8KoArkq-4=H?de{YGUI(Zd4U{RY~nn;ookFpLKlx-bvf z!@7m&`LweG6>i2l{4NWA-)4k%@ATs}qjdYZ;5l^bo0ZMP3JV}}OJyrqc$>;Tp_T9P zbHOuL$6obP=twyR=Qa!R?X56cTkMFNu0xbl^R9AC%`OY9$2OQF-1%v3i+$IDNpsr& zEhy`v1@_fjDA@%&*tzS#WXYn6>!liXP59H?Rc?73o;t9i;sg^zJ2}~4$s7WLpqsqQi@rp-zADHW(4xa1J>%*!8ef@D|V@HPn zXR*|?0zv4O{4;F=P2&etyc4mgrZkBvll*>0dn(vnSr1D&pXgXB-;LDgfo9P+v1oml z`2fxPq_W&`n*rxQ*G<&sc`OVqGD1It>0hbInEx5(o~O(*mfFY|{5fR2qRCk5lL1jG zz7}FUs$qPK{r|-e8bP+6Ke#$jokwHB)m;3uQHY82T+QSh9<1IUS-$cEczF|gxn3M4 z?S-kSbs?}Qqn;al^Lg=NSFCT<-Vqsf{E1xZX~ytMpw$2^q7z@i+T*@Ad< z)!|H`oUHoMw7*mRFnYsy(HD4X6DFD;tPUbwL$oK^0l3!t%<>PL7=cL7LV-xZocv9AbFGS(z?Q>&TO4 zWXWb1yo_7w*QYWUI_z%&uBIC7olB)33n-m?3L-qU>3|zQOQ3VF$?hRn+i`yx%XisL zXz-EBbSn2CHdya3^FCk9Uxv}vu-N26*w2e8sINgR`E`A)LkAxH8M=PxnB0o@REE*f z+v?Y$lU3*}GhR`hMbk%~AwlM=NzG&7vQzGINSk0%{|v`MtqKq85`9WfqzOMDDn9RU zWvqD6QkgmUiCRIk>gzsUzcH=&zA^$i^#R?ys)Jee)r;yUb8i>_u`pj$3R?e{zq9-F z-qhjMur3`7mG=_|EwFu7m`~dw^ybmZ77qCAZ>dIvr+#d!KHkZv_rBt)1^sUT&GsL< zVEeD@mmI z3sw%(H1-rT+t-{4rI8IHDDqcq(o71VwN5{twrxYFAM zqq`A^j=T+V!4&}sTK8P`H$8TuvcD9;dP8OG^)_y4gGgn}zttpvWs*#5q7lSjcoH7! z7q$XF3uuemV|};iT12OyvWpt_f*G5YR~b$Rs$7W9j%hIW@154jOsB*ko8qOwLvY)xwkW6xRr*)=#0v=aAH~-f zhyPjGR4mbKnf3V3!aq=(MHcdWRhxMigL~PQOO>^##RY7z zyseAbri&^5w=#{&KE<{%t7?k{z9|4_RiPU8s>=AVflpPZb#W(kaY3r8OM|~?P?O%d z-5V=@vk3m#q_5}xfxhDY3ABFc9vExR^5a>;udq^YgLo?WFGfrZIrhK+nP&ee`BYi( za2oP=Wl~^A5GrdfZq$Sz%bpnlInY>t><8JAy9SXD9>B;)EtI+fZr6{-C z1w31M%uB4~LSUaPx2iKdK3QaK)Gz%G z2O{G_D5;4n%&{p@Cr#38EQt%p!@a=aOcsZA2~}nZaKi@REnIvx2$rCg(Z$9)$a3)f5ZD(_N172{MNB#f6htQT#XPj86 z%Xmtc5#el0TlRbxPGw=v7zYvwgJmrKA2N1@JDZD-bn=d1a*^X*GjF>+@8CDCBKjfH z*;@Rr^M2KM(S`6n%cIaij+>##B(&2r=T?PAJ2OOsOM$*2>RvKTKX;CuJ22N5&p>ys z?iyd4^8Yy!PVq6$7!iHRZ2BVsk^3>`mc(I=n$$Jc*-`Y;#pDOX)T6C0Iurb2>Qnh6 zagmh&TTBRTXzvUY-7T`ZTu0U;^&qBLiK+ggZ!A1XPW|P|l#P?S=n>9zS(!w7r9SF0 z-NK%B9rkApp#B&1Dy-4rPsKTJ5oDn~>!(Sp<#>%!ui(!{(+G_|=BY^!G(>Or=mMO& z0AF`65C<$$zEx5-5=&WXNLefgZ8zGp)Z5jcBG%=|!TOH+wC$A7f2=O`MWJKq#WR)| zUmaR>PD>Xnd^A2<`8pjXqyPyR_*E{IJnd~k>@%ml9n*jgbc=}&@7@f_;G7ZOMt(_8 z?Z{$TM(D8hzrnNXo5{|2MDCeB$%dXp>r$Mtj`3#Z7<(o={2!${(;ce}<_e9O_nNaM z~ksCzk( zQwYzJ1z+$3jCj!F_qvT)v!%00^u8>ugWC5wJ6oj#iGs`KIA4#;a_$VIVLMvE8|(g4 zL*Mi{jX}!8oPsaQqHm;+y*fBBy()#Ny@~Pns zh?}qY70Mdi5uVYg-Rh&R7{}wb^hf>&y?Iy68t?1$cQpEc zyE^Z~y|MnfYen8_4|P0()QoxE0sTdX{-i;R@|?3BM{J?r+e29o2YWa>i`c8$Y+dK7 zF^ssaUd?yjFCwm*hfFAbAiJ}sRqoEM3(%c==(KJ+4Q(})7T(qf%cHs~c}jG)z&lvs zi-uy{f87UD`i9=l2r9eLSx3y!#oVEbd7&@F;EPG(HVb_6_2KQs^E$HBguGikW1*E; zX`JKI_$Ftz*rU@v)oEA$bhe`6xJE6haJn;IR9Lt>tz354CJlhca9-zD>)fcdScpD# zzbjex-BvXI6=!{M+5$gmg(LF$kVv@}=mm~MdNIkVk`cKlaG8P4qUBHFQilZjxjz5K z$p_ZK#xbYkMb0cSNXPd#zGh?duC;BfY~BZY z9pBUH2rPEhcc6~tw>aB7-sb9Q+-=Ma*u1^NVe@|0X~)boqZ4gz+>Fl7aV8>Z$)vHv z@_}lQs%yd4Z}!^8X{DW=5mJ^3=4HX`;8cr?ahkeVnr^T}VT>lo2JG z*h2oFJUYlle)%`qgQPz8kH_L|Y5>o%s{EEt6|2$;%|=U1bhblUB^P?NxzGVEm+fn; z*)7M@0lsFxS6-+1(tZuR6)pd{A?Fjb9Hals(jWZ^a&i{IAN|-?#7EZ=AVoe@(1FL{b~SWR&n%~YAhLmj+7vl^>V1f9XS+L`+1Q(7>`fXL2Mli$eJq$> zRt%fU`|fnMMlvO1?$*&d2A z3-ARikd5IVvz%E-$6(+A4M;ne$PWBSVg^OtjdkR=7UEX{BHKS04YqSzc%%pHAB+?~ zUm1AL_OH!Y!`*}Z8z_k}t&IFajJ+XL=jFs?!>`L1 zv}%mAr=vTSb#?ZYzmHj6;%ZIRv+FgdS##>CC3Y9^gB!e~KrXsM-tT-wOjn?30T6AN z`5HU%6=MAl#WZW zAV)M*>Uh7#To8(04^^bGqviODm@$vsO@a{`Xz{r99k%whb2=_~T)$g4Q(+74)u) zoI>0=ce_*H5@=r2Z(R8}!-hGCA@HJkP))^F@uhVVpMtJ7tG5seFU8B~HSbcsS=`;hfuqhJ0t1p;zo7oY^f_k z98vJ^b@={{s;AqO(GF(2;?5tGGW2$MrV2VnkaDHz&YlYl6`$tqC?S(erSK{=;eE*i7R` zO^iqEyUj||4twxjg^vL(t!%dz&Sqi}Q*{S!eu&@3aJjMf-_Wozuc*SmtO^f644rw; zIZTvUO8Wx7OVs z?A+%ZNQsx{gr3t?@M!4@BT`@qlzFF_*0kYAATX zr8W)aD|@Esq@e8s&_IzFMx$bK0qV##gR||yZ0wp>r8c4-H(~ais_3@{=#&@@o0K1y znnc+f5Xiu(O7YT^F-^g(Q3e5}YHX=E-qbe(9#@OGG?xUtU;%7OizPC)-q(BCyEX27wy zM#ZFqfCs|-CY9Urg~QIK zxVj0YD-i3$jL8K*jUn#S#q*l9pq%#+`&b)ho?M>8x0P9CE4J|mSh24S(w91^_(x~4 z_}udQPq=J7#mD&TGpjO{^2`y$7XC3ff9ag}k2+_GKP{ZIRt|^6+W&+VYx8hp-fR-C zRc+x|^!=RU&i*1f++3^1;l`Aym5Tf0lAp2HaVtsL2kBffnvfHe6{0oxfuF zzd&&x(zy%A!}^yz*(99~EN)tpQl>VJr2|tD33$K)zn`D9pyy9uUN@IK<9A5d%n}L^ z4&@LRw=ge*OV&4OXSffqSgB%OMhS69sz!@oOMHpgkz%H;1&T+}H1iVB1Uxb-^#meQj`|B(w z{I&{|qk{tFg^ojLqcA}oCZ;kjYdsg_$0$T7{(=N=fi?q94iT0|PXpjjmM0sx16gS%Fig}OS?{@;*-!x=G{*-bqy z3Ex*XiUX?8TtQD5qF{x7Sn35_fC5-&swiz{tR=+&3#?zH(G7azuO7kMdkxU}3OdgR zUA@qCx0q{z%(g=K%=$HlD@SZnkk@<=ivAqi1trzEgUr9+6B{kim#k34eIF84is$z8 z0yQn$jhY6wFe@$4{Z=S@K@Ze&Wx>T+wI4Hvi1M|^o8hio=uAi>wY<4z!CkiEc-m-w zwizx>?}~k#T!WeIXQI>GFEXOcjoLEG(hk0Y)uod2=p%KeIiujxa1qD)aVX-wVw43p z+y*CaY08RprOUG~vYt!*kd(FPcUL1_L&RbW=}{|*yYSdLuI7#%2I*ZtY1J@vy6An* zWJ;ObEQwttvE9Nfw=&t4Ssdd^gU7<9JML%tO4pgn#x+;=?5KtLgO!PL7SZ;)t`<0; zzWXrNA26POwZ!QM{`ITDzeXx+BiA^`e;A>~ zm|m0*RPcFy9lvSd8SVMT=tEuu=Q87v4Aqiy+|A>t?0v*sawfPM$Wx5LO2r9ATe|d= zzD&YMM6|OSJroVb^CPMmOSp9svF(Vow1CxcU<*B%{I5Nk?PP}~&7*1k&sfW}G4NSB z9(u^9mBaLvpJ*Lz9;WHh#xT`%!rsHTEzzjeKQvd1weg04F}i@VCGK#__y|K|;`!zc zCM8EKJni&YAbk2{-Vd@M8APw4ED_mI0;_G5EwQWoMq8jf&0ZoxicgOxjJt6R7- zkif<&e@Dl17G@2y0( zIgSihQxO|uOq+FLw9es6iH$L|FzWz9ei1R|)(efXv>tPtWx1M*9*Wyd=LQsu?yPnc zJ6pINuEQOW<4O}V6!#9D8`Z`&O5A1vO%8zA(qJS@%Yqwj<$wunB*IAWb0kvvo^vqj z#2hW;&#yyx4>DvhYUf;Br}{SIJ8I*68y)-ycbE8XQ{@0?RC`y7z`a?9C#*`1-^b8L zJFoyg@LO6-itgZw6^Kqr*F?h|kT||^kb6K#M^}cpA(qbVgrl^rhO4hE2Cu@Vh%1)L zUs9F7h`-7e;c?ruv#YhpiRJP*GBpmzH*;=i(Znz_2sTByblcs69JO5qLgR63&+Y2U z72_0dw8oR0Fa#ck(vTL&BJ@Y25poJ953`cxx@Tv1S6lIDN5W z35Y%gLl;@0GO|}AAD#0(1$|qCa)i4&-_=IOn}Sg|uwbe=I}_Ojt}OAhLLJjkSQq!D z{9Z1ZtztsqorWe9dpLLA=*ku`b&W=eqL{WWHN9~QbC8eg8~r5Q+`v|6xbe;W;AS`8*y#quO`?|U#YlX{TBDc3Ea}`eYLly2+ls+wvm<5qhaJoUC5;A$zJQ!-YYWpLo1)wJ-+cZS(U`ifmWR@%$p{ycgRtjy<1 z#wTVOIcu@|1K%!L_H3M=8013aY8Lw6$F_n#x~`xiT2ka{A^uc?&YA^rWd_%2(aN}? z>7PF>qA{f63J54dhcE_H08B z;OaveVfr>k3p;I754Z5cJj!`ZyBCq)Lo~gfVK@iB<8#-hNv^(IIHjHu*D9gghr71J zKa-yu7v9K^q~XSiM){15bB&v|`wDrd;4LNN>ruXI3b&eN;MH7e|+8hM}~czFhUROLg{GdRNKz?GHqbEzTCLHwGboYaP>(xc+4qT%YvU>Xu)k#4&- zJ(F@iKq?z>rM~~H=QrCN3IF9>dJCD#CR*1wrjm5LR#Yzixtz}NShqB< zZ=Ru>)Hh~m9VU(7(21@tVx$7yqJvsZay=k!wt$MR11i7O)lodIK#%AkqpqPXJ8KKb z1s3i@RxT&ly?+NhFn_dOyrm>;)g>SkSZUJ~?$~S*^SV_GkM*(BT%E-c1;-ol0t(H& z-8ENyX90PvAYXYqIwI&?cZ6g@sb{;OP829;AWV;~J^3ZmSi3GU-xwzzu zMRYKWK+fANM_XHFjy;n%7DnIY%EYY?%$#gymQ@(~&7$H1xLR1^IGmf5_085n--HSL(~YK;sPmiD(ZbH!0sIF!u91Al<_CUwlU5CBSfMA@ks?2~q&Fdtxd8pC>;r7ZLIl?Z#*VG#>(Zih z!o8->=Kfo+`2v`t-wrkrQ{#;A-E+pZ*S9jrw2Gb(=U+v0zu9+ls}{y4>k?Jy$GFf) zFAaa#^{8V}pp2TGoFC_3Nb~5sXFjaZHU-$?19V#8T8XVayGp($pQ=i3j0@ODY0_K^ zF_eE)FysV7g(%JQi(D%lRkkpYmLaYK(em`iGRX15IMdKxz!J;e!}&lm|%g7y$)pk zldf*?gc!2Y4}qfZq3B_)^$_1v7Ut6HFq=K^YC=at4@E|&w|w^TXBXkMNXCh^j}18= z`Q?1G+_g&Vuz=sa4*2_30Iz?rbu6u4>8gXwT`uyto%OQKtinS=uw~F(Xk27K& z%JYRS=QDfGg%{uxTv8mIm^bv?aFVMlm6x>YNXd0tM;Ukg;#wCQwV$)c7M8i%BK4u? z3{0`jXwg(|y~r0`PdHNLzbvhnB%fN11@HU0voca?VluMV%8Fc3j$sCMh>z+kYd2&6 zxX_kAz@E=Xc>ev5t38Y$mvz36`q4($GRHhy*4$tgTW?rPw%+sDP6dJ$u*Lj*Y~VTj z!%t4u4!Ox!b|O;~1yJ5>_U*niZhKjl$-wWyITycQ%%=~FVl!jadDSyUMNV-=2qbJW zs!NBEwf93tLpt(?D;94s@Hc~I^nYP8JI5S=^=!hjIG$4Hq8aPcxmUFU#>!)`104u( z$fqXPsE&NviK?5q!jS>&i)irv^vO3}O_8C?$bw*GBCXvl z!M(@e&I;znQpH|y4;;^kr5f8%`5CtGJA&Zctk4HL7(XTW(>FOxwCOEZ3Z^}-#A`Of zvT1Pp%qZHp9l|ySglU?7sgZwr<;C*4w-Kjy8^lU85s|n&DtiZN*&l#utB`NxQ{{>7 z4d@%b&@lS;U96BrW5bYMvmuW}ny+0O!hf=Zvazn3;AXz{I=Cf z$kUn--_=>znwXQ>l)m1DR$Cbmr?uKsjs300j^@x6naQ-{ZR81lthgU(+@xr%i-2rK zDbHkv((71FW7o(|H}A@)hHh}tW}C-doGI+{`ork*ZWR3wCE|Bm5hbf3;`c2O@vE(f zbV@FyaAnC>1#{`YO$_+F*Ae4900ej{K(R*(ekOK=ukNBEZ>9e zr#=R^m&OeQtf8D7%KFF^hRN6t-aP;p+Z!8>GTOl0ygVlV-IkG{Y~TVzCN4Dh*98`! zNM2*^tAW<2_ro1md&)c%FMNfe__~3>E#-a$MqxHZyE5z0frFW~OTR%c!FA<6pf()K z?B{{#QPLF~Td82C(u_l-^LkVvI$y_{K- z7F5E^Yn5d7x?3a}UN^MCLli3awITl-Gn)K2-b^Fi0G>X1nhbkb%ZT#7z8do~>Z#_+ zoW;K6tGO&hPdA;N4ENd8LWsR>&(jtM-4?nzzALh~G6_x6}bhy5;ujr9% zgaIe6#Cd^kboaKP2w-QNvI`u>Dx~$3vm?|6)02{o>1I3)c>~4-zmK6=M_ip8W8?$F zglGeBWU^n6Jd&R}icOehit&WTNcJFK1urDPjRw84>(Z=an1vq?AhjX*h%9Y^Sdbj7 z)GfcdYSBwSx#Gn83jdCVuh@%Q9gfz@4x_C2L*caKIE>y~w)n081Hb8K;D1s0pKS3H z24sg*$uGbkvBiIXU3?-OuGAfZ8U}bYtdQPH=W*F={ zG&a9{jBj&eeMcu}M^M*i@J906Ea=HrG!N#V{{Z@V16``2sqD1tM)8b=Q*s>+_lZ`N z9UiGKjQ1GePjzrW%?Hl98i@*vh@ICF@lUm@F``Y}aMd~yFAvNYr!Ab5*Wq0G6ID(@ zo;4M#s#Uik~1x38^;8~q~K@L+JWX}^W-hp|Hd)4|U=7|+<$|N4$ce~-j=Tr%rFy(C}y zj+|E1TN(Z0_h3;tk7T`+rf*EFO$`_m>D+{0f^+k!QL750R`|7XckGc%u8z3H)J{=& zn~_x1d#Snsfva>GE={#TI~|}IQ%6{4PC8XYc*E$ny{@+A7m@vDA+onozg?R|8hjNl zWMUJ;Y9`R6uhFuyl!Q0C)S+FC4&j*VLvxL{OX59eJ@>ha`26^&uaV-$VMMKhZh2CeC!n(efYK z)TXA}qhhddG8OZsKrzLJCjJ!}TZ8OHeZ$r4Q>E~3KR&iJ#N836B_&UrclHMgcQDj_ zhY(G<0jTHq7&v@}A4TIf2&W%wyW3%*WGc~rwG#c^#NSnzmaS-$zYC%r=!CO>hr`@; zMa!mU3!T=~u+SQcEB9}>J6ViXyt#*ic(}DPjf!Tr#Z6+f+SaChHMWF_;TH1H>ySgE z+>OOjgDe&!m@VfNt~K6gl}6RAa^aCixnsqn7UV)Ja(5l~4Dqg_ZP#eHjufzH$SSvR z-n4QM(-=xgvF>`}xPl$kU~;f^7e81)hpZsh-mW;D#7eG*ju+jG8(2g(GgmaCXKplA zzwHhaVa?2~64K1lDhKPMyL4ByE;!Vy6b2`wzDEJT@I!6c&KQ) z;!e}Kh~dQJ?OvFHuO{I?$vfOJVv2=3$;xFFv`+w+6!%%3i)PLjt1O@uRuDS%P|9x% zHGZZ*yLAv({Ay!2ZjQ3hKD5$c4W^273Unp_@>_yNbm!RIa2oqD+T@glc*08LigrzL z$BU%qh9PZ4lg`7Ca(Bk-__`sIb?#h{;X_R8oNuM34LUym+NFuRp%|c0{d80lcOD{G zCKO^>b|?%9XssDga}{c~hT?@m#Qp9lDxcG~A*DBW$0CMhA|sk*N9OwWO+$S*Dl+V& zUf(oYH!C-SvRdHc;tgi#I(sM=w|_c{TdAP?15k|O0>mjz#oKF7!Wf<=t|a+@x=P5!OK3_mKFWZ-#Om|~Pn(>J#9@$hr zEf880v-U=1xtoeniaFfGlws3&DlW;zy=_nC)}^Qe&?DZ@CiQ!}c;B$;HUtuJGm8$M2H(qXd&w=t4c- zw3YFOMFy*Bc{_Bnqe{jPW*Hb+X>@ygcLT>ETd3Cp#n>N8B^_WHBU=~-Ijn`>AZrHT z%tjc1;*Kx?A=pX?zPF=B3yV?avM%X_ChelI9Rpa7g2&U*+}tRd+1Z^c+F6iotVp(b zWnEzNrYYnU9mzItd{@}KNfz38D-E4umUvcyR_P#g1Kf{hg0It|wh##6<&x%KGm$C$ql9R>133-Wy{5(OMZ-{hmZXB798&P6GEixU>mFIEso z`YQ|26phl25gSi;N4u3RMg$|AUg+iSjy(lDwJcI%>Fzjp&}e0|^v8`bOZ^nDcYw!( z|9~qujK*xkMd}5%%pMjdd*6Tdakmt+74x0|lkiqS%(s2r9UQZ4c{40L?tY=eVaua_ z%B@9PPP*%emlSz}MmA>hzG$M7<1m8J{V^QZ*~)m{B7>6<(g(QH#ePNpMkDjpsi#J| zo6*FyLy`2=X&95ew&Xn)GUu%J8|2OqmlYYWTJpCTBII}*X>8j#$}e;`!TXl%n(e#= znp)(3ShQ?ujB#Yn2E5C&@8J{~7d5)Yp}KV7m0m~z9Eg$Lw555Zr?j*m>1&6$+lt`| zK2(Pz?io%iPvejb7a0Xqs>Z5(Zl&46>0h)cu%vRKXYOa0KCIv8BJr>V z^q>t$raPclG!^BF_NGqb&cLOt2y0u5&i;d;`i6!3>UFq@Bi(7@2gN<4bB~U6_ZMCZ z$Ylj_@=vGH?rag(${4C4v@OFoR5`|5XN>zM97~v#?ba8K4*4||<<=%vn5CgKeJqxr z9Tl&g#$(fj`bN{haqc7>MleCM?4dli=8T6Hrzq$o4a!PP$!Oc$n4`y=p=16BblF6A ziddzfD>P`pH7jo4HkCen12=OlGn1dNC$qU)e=E$@E=B$@KxT6_t9#p6`k|&L3}+8a zDtO19$trkx3T*Q!#XJ#U(!!0{CmTB-#%FLVyqbBzR1AH*r!Tn0e)=Ee7jA1zZ^iQ zmk(gU)EOC${E^8MA19v{h|wATSPUN?nws7vfo9HeM2L1%(j%S2sc7=y zc$!id3D(PP1w3gH0AJ@Gq&6}ZZzv5eFJ2396A~Kjiu#^~#MNIs&)pm^A7|zH97Z`)4mU8$`I{~MXA2!Kc%O`@@Q?w}Ph6%k7o%BX{k9`p)XOwazA>4`F6_i zZ)mJGj`#V+;3Y6kRbsmM+9K;qR9Wr(vE$@j?9Py3VX52GN*(xpEaBkWcyZFAgx{1B ze#T$lai36xNAIfLErh=Ot4k!MEOplsiCKm{M)t`FpFNgX*;^@RUzhq+y%d8bPJXPL z<9hOenwm8c+;WYVA(q%*f%}@kH1l~J|3BKz6G_#}+?^09Hj#VUlYPmtO;iYWj^f{E z=3@^%oHi|SH=+H-6BB5{zAhm&x&kj+zuPS7u3$;N+tauXiMzWrP?G+mB;m%3AQcfi z!z`(~VfQH7{BxJuG_C}`_Ij42g@M;*`5Tkz16H{^ihYWU`!9mHNb*$`0JbhgZ|qi& zqN}^rrl`@V#h1+1BI}>a2dX7L$?`WgcbaFOfw%pyl7ss(g5(emlj?%1uXYQkhP^9e z@FFsNQ*Z4*?PYM@^`6!49Fd-FbRz^~rs~~@aFu&FtuJ-og7?+qBORJd=O&{wYh~tB zR2_1O~nNi5>Fcp_kkF9g(imeK@*^J^Np5tF|4@b6#srtzKP&_tL=pt-Cw86xA zcl|cN1397iznJ;Hb#A0FR`WM>52MWQ(Br$7p&$NamU+aG2^lOCHil(>u58wt3EGa> z+E2RIS0kVW&J5s`W9faqEinXDXS&TBF{wHJPL5T65zTlRe(y~=M#tzQe*u4QRwbBgp0cVvVp^M%#)TyekR-K+8NW`Z}(^HcZQv{rb-94|0m8{KOH6>sx8 z;xFGS&{rCW>zvc>Pzud{1K!aW%+N;hXYzp>#k&J_<}UWkCUYlq=<>U$Ia=2gV63!K*_CYkKGxi|b9vy1nz+CVJ7(N0h>_&b z!eu?`P|^+%MXs56%}NZ^xiB+7JW5YMXs<-%Y9i3`IW%ExUTtdkAw*-7q!95UiM{z_ ztp1i-h>NYnNqf*{^DD41`jH~;(1-{eC5AhgvS20vPU zYzcPa){T`mwguXlA$loregMpRSn~yXc6VD`7keBRcGF{dVKJryAjL|=Ouq=W30wAJ zFJ-!|glYB?SmWNW;9S0-kZb%%HU*{2@@mqTU%O)+WXpZlp35bl^EEVi?HlZ*e5K%D z_~BgMyr*HqdOVAf!SU43Y$fcrmjLH=6h-WJCy9#+e!&kX9@V?n=EWJYrE|96GxlJg zy})YiAk>NL9yh?0r?v~&4Bs5loJPNtSD#WwAwHSZ&TKduwX=-s0D7>GsTv}7*Dw5@pXh8 z1UX()gE%lzYxz{Yv%T{Qhb&{)lMhDH4usl*qc0fv?50o9tt3?&R^bDba z`_PjseuUA;kYBVIjh1xm4QNxF>Y?c(sygCsA#Z+^62=B3_!f1IaGPd9G!?q@qN&@5 zfRD0;54XUB>Qjq$HZQ16uXS-p$r~W0tfc{2f!d^WN4NX;C-_r%L7Pn-9<_+!9hrom z-7S$N&)jzdT)2@pBQ@R*RBi#mX51rhf0SiA?q|SI40If|Mf_kva9Diw353P#c97P+ z1-*5`-4r&w%?_WZ%xl>X|8Zy0>9cu}wEvY}wRsN%7b)ROy3dSD4?hfUF19%vPQvEo zGhV*AAV5Y(?p*peI>Ym)U@p6uaUHEVd3(@~KipYjrov6vaK8PJfp{sgsbo_uC?2vW z&R}n4jY5%zTIhmP%XPlix>qy}E=2jBHA7cfpnQ(&>4Y2WQh9MN-04;1juKxe{AU^- z@2Nv>;W;$*ZZmY31h`y!~t<8kYqeT#=ua!QX{lsFvQgN2GdAV5dc z4{`J}<9b_geEg)&C3kBvPeJAeAiiB2cpqo;QYrdhcO%DaGxHt`lTX8SzU*!Yc8|LBeFBorRTV>ngU@I;BRia9En$xck+T6`<<-u5BJ z&d_jM2}3OsxWE@`d63Ab;ERLd#w&Z*rFa@q#faWWPYdzXbv$ZI$31JN^81!3sp4Hl z-)^Gws$~5n?5|!4#jZuUE%;3fn2TL6+>8X;9N~33Kas5@DPf*~Nrp4~CZwCHMCT*IoqL z(N;n`dkJ|lo~H1%S;91vgsU;00eDF$*ThubN%pkibv-HYu$lI(iN-B8adnT{G?4J0 z#+?wdTxAPi;fJrP?=5iT7@;V{dwlU3){RWMRgv=phD01u3Q~Gb2DY`3*BePCqx;3u z-Uc|>T5!~DBu8senlC#0!&6K~&Sqmu`N_SE2OOF%jq)4ysY9FN0f;#69xQ79OyiHc z2Z%GB{V^#1KJgLgTJJT4=ooUl4<40Fc1^}{`;2b_}{3!EG@Q+w~Cz^U1P@}WzN7yxl&EMXq9(~aau)5Vj>cdN7 z?9|7pZ>O81{cbs@IOxUPel_SonkSWt{xnMP;-A4K;9}p94oR!e>&5;t9mRg;f_t#m zVMcW|)vB)fFugj%C*?Upze+`)r{~IimwbU^WTDt49`aUl=xU?xz zeM9J44vKuo731e0UJ3rWBf~v{GIMdm&HAhA=R8QtzQQ0Gl!c4tmR&P``NOr~Uvls6 z*v`{%^=?mKbd@ga6Gad8@W#?shldB3LwJG)S3pTW3H3u?DtkTJcY~)$j>zO1!9NOU z?rkh&vp;NYI9u{@I_Qu1Uy^}X4|JimG8-G`)`JSn1g z9=mL!03XU@2LNC*T1Cx~7}wyYdN?G9S!3{kvKY|=VuDjZyRn#_xMu0aYAK7DV9@m`o27U~@qD%!e;lDB$Vhz*LmPNNb|GY=Qf zTR5c#M|93J6bcovf)nzLi*mm%(cYbM^}@k=;zy;(7gpijDTggOtTO2^arsRNxUA7r zOZ;CCLy=chu>j!nmJw8VvnNAbvXt$js^bN}=D0sE8R}^+G8L><52IBWmYsnEh7S(H zF{Bz(Dq}>89_F@a)`Pn?wmN)m5oqVpia0_i77q7x5W_5-Ar=m6|LGCX{u0G`Oy`_U z!O^!TU#fxkO3k~e5w+SL6($y0u=6cg+#IxAyse1abRu3l!$btIAGs-+c8>PMh%FZ4 zCW9z0sOClMaPzuV^PXO$UM;?=vOURnnv3&b$lFMFJ>qUAs`=;o5IKzuRrwaN733V} z*)Br!we$t~nM_|e*~92NX}h$ozz-*QQXO4sNIQ>8l*z78JAtB8zIhISlWxfS%$l{MFA{KQPVH+HuOjo(NzQ z>C9G7C>?lb0Q$k^0kM?-4%AR|25R`l!v4vYT|^u1K(~$WX^hVLJq`78nK7%uxaAB? zH;NnE(>$Q+^fcxQt+>3Qzw1siplIuK8vIJUnZAZs>DOKCsVAPd za7zPRo|4cZxNAM5x>l*shS-Pqc$$bG!H`3&Jj$)6qQlJ4$5|B$q959CaGxhv{9l2x zpgn1KmU|>|9IE<0&&}eJrC1kLu`b}R>PU|JJ+noo!N7Z;hV=6dMHD2K5V{Pfq&Zm2 zwlF?2E##WXr|R|=4ayOod*^yui_wZa!c6ACUiiAhNi_IBgA(b11f+)yvz0N#UIyHc zd18seKW4^rfHV3D4_@4Ncu)*2+zT1y^N>rq$X3RDdl?+n-T#oMrFdHj+GZBSE>GFR zp8nYNW#ySPw8@^#7VP4DOj^ej`A0JuW~?C<&lr?R*A^f)ao84L^*`_p76BiHEC~5_ z*>Kuj7}T^reDvz>g$-!JeS>g-|BsRu8nSI|$*P`n>1f)1C!Mb7aS!a;lz z9T4f3Hu#+uJok|G%RF7gd4;bw<8jw9y!EF%qh!*h4fLc1ipV35m6u>ySoCjU?a~#V zIwIvp!+s>*XxMmGb#x(Ill`xG8kO!StV_k~3vtSC3pV%?ZZsSFxEl>)uPMeSBwY+r z?EbcFD%n_=O6z}fg^9iv?u}M1FF5c9*$nZZ!KKCHJ?gYGmwH(o^ntO6O!D<0Kh>rv z6cb=!ZTj{UWZY+wako_lTdpzB!g9T;%Kjg{?02nzGnuv8bCY<{LR)X8`7{wjFAONE zjdV5W+oiY%b*^9ER7{Y)&jSD23P%SSLYtn$7{`fDzV!X7j?BLuE9~Nr3tQ3h-B3aJ z>zMxkwQ&ClaCu;3(D1;X9O&n41fRXFD3R`3i{aVD5a#Ge+onVNoM_M5FFuChiMawf zwCg;b9XL8M-J|a$wUG~0CX$BdY^gafz{{Mb$WzQ@Ts46_yu0AjRHR`T4PNhQh#Q(s z`0>H`pkUv=!$q+w8S7akWR+P6ZcvG!EwPx`^UFM0@MR@mGbhV>`zK#+)}b$Y(#0-C z!x@QSWw0lXk&m$T$3a`%wQwE|PWW~6R&T$FVH+^_WlvLa zN(sWjiC{q$pP-ospFr#6MGX$6KUToR{9?xA^n{M*mPUPiE$!14uR(ukF(i(%U%}d} z8FK67TeVXAXqLfegu9C*T#psJs%?ZXD*uF4gm-AAi$X;ipi_MPy^rW;q4e%!Sd;?% z4P@vQ(K{auPNe)d&;{oy}kQTCoS2xG6)tVdAhw4*Wun zzG%aSyGH&tPojwGYcx}MU#*!^oww(X^k@rYZO3Hq92Y(M{)=K1%Z-I#wLQ^i|^4`uiZzr_We zpLhm}`IbV>GYTc<;%{K_T0{w-VS%|#fwt(Nv%kQkO&oD^ZMyWCrQpuBnN^+kV@g)}fv2^e`PXWzY?P+Vw zav)5ggR3#=nS8@gI#=qO*=pUSSF@11UG&zbd%p6-;e43n;W9FOxi0}`L@G*;+}wzg zf4#X5z2U^8zsSn(@IUxjj}NU)%f9i{$0;%9<0?=;AE|uE#og;^M*F7@jiLv?g$m-< zSOrYB7r;~V^ZT&v_`Ja`)!4kH1aCZ)ChqsNlh?180=zJ_GEtk?O6p+A*i!V9!4kNmp`UO^`%QJUQzMOtGOnEKKr7t{SmgFMM$?LMUe(*OaUWH1L^-3s ze@Jos`;Z3~Xjp$^#1FxTa!3JST=WE&1dG^#!{TT`!LZtt{SRh{LP!aodIzwSo}wTA z21Z#S{ZR#bxk$0+Yi#1}&BMpwu2oOOLBooEw?xo=Pi}}2^DOYWR=5!*IfN+576sp= z!&knDz0;!020Vfm6b%cZjOlpq`fC>WMk}1h;2+;(0za(aRXV)*2s%jl53oaS3$4;h zhm3@q96?P^vzTm>;fW_LWj2kFqCo zNz;G9vSOtoBlXQ+(&}G4eUJoa$6IXA<1u#QZ}2=mQaq%*`FU4=gYW;YEpNMg+KN6p z;Yqdh(?P$ZpZ>0RziPZdH;rB}EV{JMZAK&$xp8(yJ}RH8HHM~KR>94upxg!njV@4^ zw!M#b=G6=L1GHE}y7u_6x|H{aCl-kq_*`GTM9K$Na+`CWTWDH`VUcv#RHVrCQh0=_ zgYkSnCwH@1lW}RlhUu_7-OVz(Tt~)6EZV1?MHH%7;b)rh$mUSJ7*(i61FI1lpKiua zyAJ-Gr&zq8$ZO2xK*5{^u}$!(Uz4nFHU>;1!tt5M;%Z1La}f7_r@gEw^I1kL?flrXu5+ zvB!06pnuJu2AjDf0@$M#><`z$Rz-SKMO_@+l+kbG)%_YYf_-dkj-4A(huO%w<1d-I zRG55f9l=NIcoRjw!Xw8n7>^;`3CYiPJYnr=cN4=7xQr8*)3+736x zf@4qOd|hu-u|_eGQWspjfIBf*+)|tN*Yh?-DzqJb72}cBo4OGuAVdDaa=!4TaK!Za zrMWi@)p7w2j~y9H(T`Qt65kaWe({l&>MVuzw5~RGS7g_9i-RF}OEtT=-P=sNz}ZB7g44 zDC(T(l_!Wz^nw3h^odEJKVr}q*wd3?)*dp0ANU{OnJE~;TMg!Bjp?&ip;Y|D$R;!) z6~|FuH-lfX2eXRjG=Yl0H^AR%V84oKa8u~mV`e&onY_wE$Kc=*@-oq5jB6E+jc|3i zVLGBfyJb?s6X~O(Rq`g%*Z=a3?3CNFr_Y@&o)-P%;nW|^KgQKCc*r~d@){WR1%p4} zF6~x@s21LOxcol=o;ch0qQ74L-)YN({2@mE!yD8i-MgKR{f+#BoCbJ*2%gI*Sa<)A z3}M+J+STw~@Xx)uad?CJ*53AQ+S8Wk?DO9m*DXaz1k0vnHNqya=ghnO*RVYu+C8- zRGfp};bNGk-GlOh8ZG;V_y-`slPINXR2V&x?XBYop<^LP%B?{$!rPZnOWaVXM09mH zR=?=geeSFFNUraaHkf$Z8MHPUjZItE3~v%ugpaO4_vd2lWtq6G@o#HM`I3Orw%#oH z_D5OB@qTO~&1mP%bBr-@M%r`a9^1Z-UhJM9hqk7rSJpw(GI5!oh#cH3_>k*6L9-=8 zN7tsU9pKbFVG{88{}hn!_|U+Q#ibZr%lOlFx-hvyG@{ zw6FQEIuMX4?BQ)jWp9kei3r)b@T#q7$TJ0#@RG!6U%SN)4fL>X-rMNMEu&Qr8(@e) z)XyR!9~)(M-~xLvZ+xxG_qK%3%*CFqF*%cYW=~8-_t-LL*)#bSn{O9*+sb$ANL9R~ zF*#hfvX{3P?mV?C=Q?}lsvErz!5?PaehrsD0-KfHGQ9D$@V(Kv8m0A^+7$m8x*6Wr zWTW1__VjIiK*!5>WMOfMv|p(v`k*|}$A2|CgeKmP)cpV2iogpE^%mqlh%VymgZyup zHa41%^WYC;ZytC~b2K6bj%h#(`+IAN{=*DMqq^MZXdwRH$g4XVHxBc6LhRYk7c+(# zP9f3;lF$qBOBDthFv44hjy^Odo%RhxFT9N=B?sA~$&y?kCJyuWJvK$Z4Dxms&nqYr z3;a;d4Pj{XyJK6?wL)(UJ)Ph+P7rV^T6QC^x&&Q=qTdar=1-!AyN17ph|g+Vr?W@l zkz(M-v*A2D7?!=lT+*HPCGB{#x2-s@P)H~6qw;U_;zZmCT>qY5d?`A6XsW50dl>oy_b{Y)p`#d6^7}`$ z++cZUzj*2vqhn?NgjQpxVyTp-cdW&?_&XLlLJ_?_+S@{GG0H}BTly>}2nh9$@s7X} zn#*gd=|-cbFWnN{tqzX$=8D6rrd3)^nTIoilkn0lJ6@%Q$5UIK37Fby)3Np#$Vlhu zfZ}oZ%fKzcJRg0JH-Yk>7+;%8ModW2uI(4{>-x-m%_>69dVMCr3v6$Q$Tf>F?oS%$ zZ9_=)jIfWJQVU`H42N@FGw#6hi;*Mqq%Nrpf#7wK*nYlDyF*I zp#)!(-OV^@M6^liuHpV>^Jn@xN{vz@`NyvqVBo>u<}Jd8nyLQFwPHRw+~01T67<3} zZ#LfAzHokSBljm*yB`G8xznQ1tc5%Ivw&Hw9;;qz@HFll zTQeOieL;)5`7|;AR-YSr&Hp=16PE#%iMzY$hdaI7G3~bL3=PZoCkXiwv`$S?{(!VD z6~@k*-0&#<`(O-Kfh?@L!qY{*Qv*NO@HdX|E1JiLOhlKL8FoXX-XXu-hVa7{#91{* zXL)ae$>pb}0Ww)Wg((=}S2Ww*4tINVid zC2f)ahxAITqnu9I;)v@cNt7bf9L7B_JX z3o~wcqLKbC!?C8%YgDC*11Q>Y?Cb_4lr8Y~aeQS<`@)`vz3{>G*FwxiS5%2FX*^_g zaEX)Xk3GNFr}Bx6`s`-pZjUL!i|OZWM(RteQIwj2vd0wp%r~p( z$fMpth*smNZlzOc+fa-fO$nH$N6?N#zem#po3ULnVw9onVP@W}e+`u<(E{h;Xgc%V zR2(`%ZVFbkCK-hm8C>jJmUz>}V+y~>j7M>s(8T=74QYJ=RI~gkkmsAp^ZaBUrsyu* z^X9U$0w$^ab!{qGA5v9cd^*bL>3QY8o?anQ`Y_#zy)u=l#GcENW$;{nQN{g9D=rwZ z#(jK|gs6P^ylKfsagUgb`@K=z??(B1+z^>{x^cNT(}7fi(HOb7YIXuTH8XL}eHdQk zjt7|1d@qMX8lZFKa`bV{m|JK+`%3Ue{&f9y~^86 zrVvObu9x*QcP{caF0DEoK}Vj(+&=kq1Cm>+arxxKTF>E*l(HIg z;4`-15_>Q=S&vf8bx0qOU|cTiFEAgvLt_=dE5=icc6Zt{`A)oX&w1lz(tu>*T3J7n zg9?eyd)vVkwqu^OXY!>46V`a!}>^Ln#CNqbyr2w&gY0yMpaBL}~GzVbunBe#9?V5LoFG#gTEAu9;%%H^*cB?wT zS@suKLv9@7AGz!Vy#5jtP^H1#W*EmR9(ozAP#GXAU{pZ7yn# zWh*HJw%uiF1{V=~9$m03_7_nDUbY8vul@2B7@AxK%+`Up^BGBO8{vVMzv_(>8DlNG zMq`cau5ZY3FZ$<3`Nt?Wf(R%_fxN87|L9Tqs2i=l=YE|PBt=JCNbf^Iu8~}09 zh?O?~)4EAGU4z8z#^>Ph4YGwJyTuH@A5+TKcMv{WXuuy1z&RWMcq=M-8y59JTjU%o zQr_}k`5wZXZyLxq0?0St_YQWvY76?0AH)^|eMVXgao<>DTPWmSEn2hx1DMr6Bwd-k z6?1&Sn%^ZxpP7FhXZW96sm4d}KLwpzX85Rv|0zF~{^xQ2one`-K4RoFvcr3NC-&vq zjW;}i4U2sji?;D|G+UB2-fy0;gFcuhZg{Y+N)sPG-tdfu%HQ=RfMSi!;!TBRNmLg4 zfN=!{t{PUc1`RuCynp;)4KSFtbg$WvzFF>FWng$R0Vb7deB!N3pRVxg7dy=1f*P9? z_tB)4UOpYnoodkN2cl>~dSx8_v(mfFfbnnvESaJ|gMV_oBnbAO>%$(-sBB6JPy0C7 z3dWVal9RH>8%H6}c=;s#sAs$bu(b9S1960LRFb;^HVRkhQqO07Kac*>i!Qu6NcdG- z;p`M`$*IhwsinSOa}HMiSKgjfM26fKDM+p{roQ%eq}k8;e#F7GncsN((~#$bY^w~9LQd7Kh81E+`J8FWREdZGR!CNN?E`iFG;4c|#0^b-}Ta6BCRM_lx|h8YbN9 zpxRc%-#ghJHxd72d~TY=kJt#{I)`?w%oX(~8thm~{UC^q@f|^%(W6T{Ri?o`<&RD1 z2>H~i&T(}1v0C9Y-{XxE1&WUsu?F*fszI;nQrQ^3s-1w&HUijne7MS+A!aEyUc?&A z=6wV1vBlrPYTseYzRiXWy^N7HZ!_Vvl2^5t&}ME6^b`XAVj`H8cn4*lnz zT;mu?ms`yZ)sfLXMLYaej+j3x;+Sa=r|U$X6}~y^?I5OEU{eAx_5k8K2` zcw9T;EZ60Z&02j|Eb$%rc->OpSN!$$Uy9+_XO!-1RXY4Ume{dBx#8aWlz;ENQMB-` z`;G9K_|j6?&sAYR3Dlg;G>5xN6Oanun z-B`ImMLNV3X6WAhq{;r#?H@j3sVd-NRX_l+^(xb0QZ9RYh(|4DTd2zR@MLX_1I;~r zJU`5%sy5mfPq=chiTF|#@Ny^L`2O5dz)wJtV`woIU&9#sQI{Y;lVj*(yiFy|dw?$`hk3wBZ37H#mySwGEkK455E-(i)sY zTkBPw_w`4e*IMfQT%gYWp(83(v39CrWsUGA%IYRkasS!+u=&7J!1q)E-wssQKWxNl z#XT9|s!$ojbIu&DXAGX-EZm>3!^PkUr_{)*dLm(};j+Zhwxd29iGsrke-O)L=(9dm zd_E_h!lJ5Te>Ap6bt^;QXYW#~$^aH=P%N#L{;$RY^!DkPvOX zFng-rQ?qGfY*oq)Yo~_N!AHXC(&5;ubnz0aqZ@Up^IeQsJ5|;w$A}=IaIv(xZdEgC zdfeMtE81$KXirb|_f#(0!dt$pL9eu)o2DxHwO+oC^{d+AMIfe1er`|N+XY9uRyIJg z-x-~8wn5bpTuNeMoUkz3wEwOHT`R_2%tt#_)pEqpwo_PWadqB`uj($Muoo13ZYG?c z^b}f^+U&+z!fzW^b#=7Uet&C1RS(g|^7}07?{~|$^ekvp)zE=`8^8QN8&#!_(}NvTyg zLsEc-!;)BK&Y&1zKkZ_nH`D$78N6$C?K=~5bc53VIr z5UnqE@1H*t4?QJW!YFv_|2cFas~Q ztV(t~ZU;n)<^SXBIs>9enzlQVMG?%3ia9IhtYE;La~2iDoH=LE6J?DkLYc*Y%8B{J zd}c9X)}5I(apvp=&rA9}-Lu;}%ijC(V~gtUs;;iCuC5L<^FJ8YqQ)(oy3^P4mVCGb zpGm?o6%aaLkJ7cZN&k~!O&U|tQX9dHGp~e7mWHM)|HbN}Gb`S`=n>YvY_r%_x4sQB zqmSXyPV5yFrO0&{oF2n$JoBK+GF+d1pHaPF%U&sPxM6;0d90>?ookAJ zWw^drw3?;8)ZSJ{_pCNgDYbE_sO4~BNZb)Escyk5pB;n&WZq<{A;~U;!+1)lGz8E# z=YFbT86d?PX^U*J1WQX?XcxND^2!?(iSJEg4njQ#j9jiCw7Apjt(I_UuM4YPuB<}m zz=f5UrdQxDOuA=e6;c;Uy6wW{hAS8D!(!@8ucN4*@(2r_msfjcAOr(|mlho7}RvOjX(oE_u=(D%6^u_*kCi;&5N$=m*5+h9$ zq#123vT1T=(h2`bst=I%ma5V^LH}uvl8gH9u+(Cwg3e7(a4?ZPWqmS(DtTADv~@-I zQHGd!M@LIL>5k5tijKw!=1tDR5L~6p&Q={#OsOmV>LBr_?VT+lIPJ?M%R7fGCOisk z>jrL|=ek&$nDWx5(v}viQhyrI)zZq8i^i34>d2fdp-E=q%2D&eD0mR2D7^boa46s1 z(gj;CnK)GcPYw_2Ev!L7HLiKE$3O*#cRehj_$Wdq4&5_z;8B-vFH1dBq=9&2F9HA)=RH#-H2}BQ^^%wt^CeN(YyL38$MPC z_CpY-a<&O?@7b=`;QQ;)si8OTeCOPo$NIyL{QvLx0`&&a(}9+XrUEpllBEv6p}DAnC4_Di9FfhGiTYhQI=!)j zFm{lo13Qfep&|0YL42i5RbRMQi>_avUyL3OM%9BH92yO=RL0|9nK<-y;eaJr6?*?2 z;{I+Cpon1{5D;lqd}-`!i@y{-lI}!UsxeqhQo?w%1`b7tF*h^s$p44;{9)jII5Y2q zBguWZrLF`hc&{36X=d7=nfIRmhxhpr;QcZa@2t;8dQ)hlm|)w=MuW*z)giu1h6-5wl}#+ z>2cOTY=?_AWBWLBCw<=TJxZTls~o#uigPuXZP!uGX3L$>GzWpr2~Ex{%>-SVv7?*~ zmpLG5ospb-pw*el6aJfAxFG4Ikq7rd$20Rd^4~m!6OuBFJh&IaVT7|%t%8Sr-Nc9d z^eGtf?i3ORKMJk+Q;w;aou$#41CwtC?Xkg=ym3)6+tUf94Ak?dS*l3IU8sxllu#)U z&=#F6Pr??t+xv}ZboU`qp&95XECrRFY7nmCwnyMRc1RzlBk939N<1n(+rZfQ(i zTNpfBBez@iaaV#j^Kl!SYm>|_b<7{_Y9v^8*y#djM`uJHJ6!0JMpLKvI4nSht$p0P zC3VAB%?j4I=8NTqgGb;T!~s`acwGE%9u4PWoPIKppP!2m{k;qM8y9j!N|U7AcnE^O z-=_^6>)3ggFs$;cc5oVRIaopyX>%sw3)NZD!R7{P8<{kjZ|Q@jekLYW1rxh{aShB^ zV5uneHjFJdeOr0GVw-exQwr(~{nqF(K|F^*xXcUD# zCztc6B~W^6WLagWr8wfpOd5FZ5G9n|BMw?-DJ}VqHS}KMGD{_sH~EJ<^_~Yk84Aao zm8aVd=v_r|9&S>7BVWH6mU5;#oZiqQHOD%uX5k8~?)n(%a>rrf@0nSiZn`|34f251 zf2wBpN=pG+IMC9PFeY&@8gIc7dbp*oL5g{qq!|6Hmhw1(%B1VtoTG#;wv&h2H=m?`jO1Qx zEQJvhWg`D9$aRNh>n035e#d^aF5LH{^##w?lKK)K@AK>`g^be;;eAE>K4?SgG|FiR z)f>lm5lUTk%aUcWXT<1<<3~hHSSdewK|+wTILJ# zY_AN+$KD(8iwA!0AW{Am|FvI;*owdcA``0@|BF@GZCIb@#Pev(>7xAsbZ8q^z}d%RygR+q z-iN1z;(O9)MiIBN?7>>cTCKW~L*E^+gkTpAmBu?%D4bpwBO!BoQb!lUc6!xPYe3_4 z#a-28BLn8DqzO6$9*Vb~icp-bi;cwGxl~C((bYy`=2xTym)hf8Yj=#I<3CoE`|kw788%>V3p*v~EXzF!An=+KWIu3z^IadfIojZ&l#4lvE3Shr-Vd4Pd~&7^pgmuD%})R(I<1|G?WAZ0Y?Veq(fC%9S__E;TN z^O-a$bJd&ms`1dItMHxbrAEp?;4&KOB21pyadEo6ObX zOoQp#LCmX7Z?L+AEjsn5PfPS}4xmLRELBW7Xxw6_?#f2~u}&<6H6qG!5ObGaH8XK# zPAqMlU^6|e7T8&7UKZKFXf?M#<6EwnQ(r`?N{+8asGzh7(Y?; z26qk}25+uFOIsjfCP5oO?ax~3;N=mS8n#@QZ7E_T<0yZ=a&?u2uHbOgz~Ps3SO*-+ z%;85D4r1NwcGuf03$;wnSZ_Vt8IRficaGG)!^&{X?Y@oIsG^N zyRb?7A8h*E#s?ri8X3I3ZD~k1_c#S^uU)Bc-m$Eba!nRp7eHt4T1Mc#Fs98;12Q{H zXyVcX-uEq0QY|C-&-X3!P1Q4#2fL7C&upsH%ZXCK#!>golwDjXxygBJma)=IBl&I3 zGTAgOGx=l}@=sRFOlhN$GVOt-9X?@^sl}^ZD0#(=CT|*S>##FMCOww`NIN}^q6)*IoS*EICj0VCQb1s zIdO9XI`taWB~8&?AzF+l58qf?OPgJ)+vupyzLIuSm#v;&-I%u)KgnXKNV+?PuD`Xk zVUT-UUd6(LVY?&AhDXA$ zIDqVLl={f8mIzZHPG*=0@N6LX=!ZFYlKY~4!47u+TkbuLncQWiScAyYlBwkV85#w2 z==k7gOE1&H%(5QStDVJD66Fiy6(siYP6IaUWX|AKx zZD(sp{H=Xb1^VWtc$iFd^QKd8enoFC>5$aT)|+3Ag8TX?qj7yRli*)63I26L(lA?~ zSb=f3_33ZflnGKsPhhgcP>e#$7Rhl|u* zZBqZIiskmYQIwvjcCBJ14%=@^*tAcva4tA@=Qh;`UGFLZ@(NP?La08 zv$B%@2b1g<<~AAyt(Qwlk=D5gx_Y{pRC%1SCb!ZZAIf!fOY1yJUrBYLyKigY9YEuB z`h8xdE!NX>UfR30Tt20<^sfv3Uk-X69Y79yk8&L2$v$xH{Kcq}j&#)h+wK=h-nQPt zx6@u4?Nq8igWeQSIx*L*9R_R&34={XQKuBB68LV!;afmuUq|bVUTOT<5l~H+xg5Qo|)m?>FoT=^g@v7 zM;oT6oXp@#p0I=_rib+Djird=?Qb87;|SkprXDh&)&QDYLTM~{&dfZN-FQl<3xf?M zm2pxfBZCp8lqphq7Y1dF41&aZ?x)h|=Z;SFWt1LLJDuLp06dKQi=~LTWs1F+TIBt0 zJ3dT@Ym;>JJ$9eD{NKtdwW-esr$vmc*DVbLG#b2Hp&jk1iniNBzaJB46eF#?GEj=u z#V}aN5}g&^Ai3{Pn@`4zJMh1&ZWmTm8cAo2Jd0OSnn@>JcpkU$%-lKoTI~p=0hMuc z=b4eq$;wJuDZ_=!qyNF>Tot7T-c>W_FAOpMpfp!g=U}BC4h*0C?KGMso}h0GKAfQs zDHt3#+>-{wZ9Bm5PLGq`x57*zh6>Jy+bSCKfZDS=d7hY|9M89G{8Bp%zLV zIQdL0HvUH|R@707o6cvZ&rw$?YdVve{-i;KKtW-3$&&;EZGY{_5H_oz6C$nrmUdM5E!4#o;(lh@WJZYaMaAEPb z%GQ3xRi+i3tzj51!^@p*&t>zgyhYNI>)N8CA034L^y65ig=t@ADR&#B+&SCH3Z?r- z@@!#B6TIFrld^9*lN&8i`pZb3+5&q1gO@hQ{@ZNl2;29<4?(oM4x*8Q^eMN}g3x4t zYBpV|B;||D?8kHSlu*eZ-469 z2>ld2KE}cV|MRBUS@KiZY#o)-c*UcG<-(3iW$CaB%Y!zSJDEmoESGWZKp@tQc*_!Q z4%l}ieX`wZgO^-zwvW%*Par?7;>6Z<0i&Nj=*@Ixb9?ZePr@K-MZ_j2N47O4w%Gp+WZceE~6N)MA^=cROP?}Ky zivjS}?smnMPV~H#Qk@4Zc%Rs(3eco?lym1)>!oxu%`;T|pqJ7EpMuOJ`fMlB?R~++ zz-)b#a#^=W>4CAETw|RVZQ7qJh(`B;3GZf{F;UrreO_=+-(8jY?J{XQp4DfY&|GO< z`zjr9vY4snO^%vb3v8W;JBZ9KUURc=MCZER;TMl^A+r_@=&y9ftwpZOxNdh!;>{$P z)c86|7&jjog*$%L z`6pbdAysiutj|oeso*L|OwC}B2l01iQ=2d#|7w$>JT-XhnE@azW$+#N78?N-0uG?sfjzGY5)rIzw zD=j|@;}?>DvC&G+umN!M$F0p}uOX`4XT_bbgC=_GAp4-;E3cra+m$xG?zO z%79x^@KnqY`M(#s51`bkN;Oj+S{~-)Q3F^)6Uk6NCl^zwRNu&>`E++md(!lqKOyZ}udq*<9UHBAe(>lyLh?$$kqv)V7*Fw6woiVZJ024L zZ(?#Nk_$E_1}iA+!m(Cy!Lpi_5Zva^#Bzepl0SnG&luSzBzVg`KW3k*o|Ee8B$D+5{Nn+$l$8yPUkFBou>w=xmB-$RXd=v1kVT(5R#Xv53Cj+_VV+^>-TNubLKVcw?yvQvQ&|OYtXl?l= z1D^702264a1KH(d20F+O8E}&m8Ss#oGGLPLGa$(;81R(0G2kVqF_2GQ&49bSjDf83 zRt7xf3&MV9iJvP5uuWl2BQK+;q8^Bg}BuvJRhQ=p3UlN;^$xk$CL za*wOX>xG{PZinFc%Qq8vGK&Lpr>_L$wHt-*suzSe#wRXSg7dImWz0=I-LuG9@e_ew zq>$0!c`LDwV_AW(kyV8K1mP!w_ZCa9X!gh=SH@3-e9Da;Ef}9yn(szc`%lU%J$9q0 zV^hOu!!jj2lJx*9zqTdr-fh571XnIg`k7tFd(M7dv7fi>=L7rsh5h`Fp9rp9R`w0s zNPNeBKCqupd|#3M{LX&{z8J_aL!ctINQPbuL$REY~qh zVm>04>zHB8hPdKmxyD%%a~rW-^$sjxmMIIvnA?bzb30*qjaa0d--yZuov=VBtcVj9 zrz@3IP+^NE!UIAMjHu)~1=GbCoHz&-)3G;Hoe5S*LGih`} zU#H9*PFPMSjExFL$3{skA07^@_-#FpIlWl9q!U)!3Bv%2 zQw(DsF_sT52ln!zp2s|5to+&ud+UU4%jU_sF!vZM?*JCb*y!jFPMLo-(u*>KkCp#* z!m>2h^O%3*BLXULP4aL}@^(pzlzm;&WIxxW0N12Eu1Wb_lM1;e6)_}5+T^coOVgWM z*9oidgf(=+8arX3PFPbXthp1`!iGia6}EE9Y~zHrbHX|}VV#_?E>2iCC#;7P*2|8u z2qu<$U}gx+Bgb-A?7)~SW*BpgaC1%=bIy)D=A|7NbJq@x`E7wsTAY2@$T5QkOdK=# zP(T9WKx~n8A*Hf!(`fH3W#vP&U{>>Ji6ffXMTV21-0@eLPpH?a5OrPq-8Ze_VSD`%nQ>^^vV zxhj&{%hjT(@fxLiu^JqkJb>k}Yvb+Znn*FrweX86wN5m}tx+oFuub9qd1(jD zHjjQ^qjbRzS*x{5v)mU@9h=3fT2O6PB?~6DTeNAd(yuCuSiy=#tNj~~g* zA_ErFqU1X2u^!~-X&VEV>G$su^Mal9EKwO*@*6CT|Ax>>1^gUuDle2eKJTu!0dTTp%Sp*dTWI8zZ8 z=&~mIbw$7a-3>p3d*Nq$A2%>hq-se@>0->;gZ{T^ZlGsDFe8`^|1Ni&!HTV*X-P^2 z(>6*_eC9}iZlpUsn z6uw=lkOx6Bt4oijjTxM!%zkNugpplw$qCk@Nq281YoGqxdO$K@Yk( zgWQ-n!g&DAgjfkoK6wW}!9LQn0CT>q|V6m z`y&5XcKpoF%L>KNK#+4UiLxhk5;=nlX_cK{Z;1F+B?fQ9Y=EOZB8E)0N$ z?f@)u2Uw|ty*gl#I}+K<2EZbBfO`#e$U=9ZEOZA@b+ASUEObZWZVo0*S}e&ExbvtN zO|^F_#Uks$G0a-IIQ#JM2?HX=O$whlV$5j01oIJQzJxXN6>JP&z?%8`)y$W#X1;ng zb5~&Ip1{n*QZx4hW*&i>~qOI5QBYsdd=p=y?+`7ayVX1+=_%WRQq=4(_lU!t1%3f0UPsAjBBSuR_h zn&rrs9I&Bl=4(?kUz(cv%GAskre+?6nfZt`^Hr&tFG|gPO&Y_Oq-MS%jo}MYGhdII z`Et}Ovw>#jELqtYIb1{5OgJGW#}jlQwf(Hp?+Qg-!2f*ezD-WmLxV6S`V~ydf%ox7NjNz7Q=7t)>SC}z;ff>V%G=|%# znXN9%Wr>lQiN{5JAwYY;V+g@!`(`L&$lq$ zvhs53yIbijkb_1f#~!7h$Qi#!87`0~dz2vpX}ec&n@8X6RqESv=FzUbN@Icix>so` zkcRt|RsvbFPYD&s-F-?sft1^?v=zwA{YscXF6}oID||rdC~_tqFcdp|Kxq@8w{#x# zBxel5kNY%=JfKt|yg$>&8#4}9#5@}KqtdRlq3jRSQFaLH;)yHg!1qJ})w37V?H`qz zwi*|c-$A93K)N1OstaW4L8XB}ZXQ%>2*fv4=`N5FsY(ZdoJ>_Z2_)YkrKLcI9x`xC zKBP1hIqwdMF1SFxhlMy7sMBGQbBo3vR%+R3Zqcs8f&o7Eby#%4EvkD&X(EcvH6mAz z7-;;C8jvnWm1crw!%<-bx9IUv1M9NKM0;-0lw-m?ZqbQjq7QFT?&Crsw@5y2;Fe-U z-XB*=+j@+}OmaoGTaqoiy~nQ91giJg395HO2zY{`PYCNdLCOhXizleuPfC|uHX6qA zXpv;&1yb^)(%NQd%wx+v>Vs}UecUBf%Fy1vdGPhV zp?PwO;x|qz%>@#8%D`ycDQ8B@8iLVDb|(~!5|`yEF31X>R_Y3*-)RHG{&rfa zCyLcPBL>F_ntMiRA#!e<5uI^@@}5=Nh@9bP#UMOE$Icpxna&xCbvdWBwRHy9K$$KO z{5XE};WM`@P+hTa==?b)%%&|iv&mh$BXiCOiao&^c{E=xnpHoar zeO`=dPCTO*h`oAK(c?-%iXD)zoP%z}1u>RDXG995DLni&feUs_|GQ(VVZYIbnszPj7a6n$^aY7!?g0U(qABd zURJ8ukV{nMiWtS4sr?l(hBnjsD?&4y>B|*mkd0nQ4~GSrr{j^15W#tUTV zHD#PY9$r%>3#3oFGDRRtx-wNDJ+B)W+`O(#5IJpb7?ATflu;t5?oH)8f$Y3#$SHbD z8C^}c3>L@8LldDoD}HptdAUhwk_9;ObcSP)Q>SN2Fa<55>SaP75E3IN&(_{!omS z<22xrP{eUcee8auF|EfAE?cJVcSmpY8pjJ{A3Oglhk+ zbhCLV7Cy^Wo*}dUH|qFIX+^6eqKD!y74gogMlD<7fvFGa`3Q}$OvoAEU5m9YJI`t(W}YhxQv!(S_tZNkPg z#gG?P`FFkPbXK)0MLoM+!>*Wk>i0&Bvv^Y8DC3QEzxjf0Sq=()hi}lF8crayI;`3@B!kpH=^1{Mk{Y@Fd;KSdP!3;M29gk%I?*3g*&;416VEByB$^ZtfpOxVZhW(+Z@A^aO$8g^- zdj6;{xQYV&`WK~e4qXhkQk1WUNi=($nwN6^sWh;uhi9y40f9pLO8Ck))Du#&Oc@bd zN7Knag#x0f{9mGfqiOA5qJN_)$KS#?aGq~FfM-}o8_(dZWdbRr=^deRwDxZ?+@h(? zKf=vK)3JXHIc5J9Lo}L}{VTK_O}`m)`g~Qws~OsA>4WO4;T%nO*zx_i%Gt7MEmK7q zhO?RI=3BIQZpk)b}h9rsrLDHEnPCH z)9t0GwPeV-D5>@ddo6`zRqbAXEv05PC*QSHz+D|~8#lZe3#XzP zrDxh(Ic=6`U#TDB`7r?br7>*zy>lh}`g3?eXYN3Jy^1E5)6(BtY$A6K5yA z2vF_5euiDzi+kO&U zw$QMAs(op*g|_EY?Q7sI^f{kuUuSNi(EJ8uaelRlt<78LZhp0mK*|&lVr-#_1yuXW zYYUw!V4(3XsM@z7wos>ns(o#=g*FZADd26X;u*f_wz-BDW_7Nq6Y5$iyDe;D{7GSby3y6>5)oR zg47VfdUB9ZcPgC?G8FSFW{|Z@F`=zgT8$i|;Qsj`c#(p1qX+~Ku5{Opf{LrzMHMxQ zt1XPh!waGK%)->TID(L$imUcuDV1&%R~s2iehWg$*Z7hpG~zpA>?Hg4Pb&2)VNgPH z2}8R-l`ts3aY|vs)l;bRu!{z3e~Kp+IJjMXk#^DQYrMYn(!ORCYjdM7KWKjuWF0tCR4pSV$dYh@;ZiM zkL!qjNv4{04YEboHRPyu4dT?OXK4FkBl5JK+R~_qA2ldqqm}uRqBQVuqd@zDCYk2c zH*nPI8`@Nqi9nxbdzahQ-ckhY-;Ezzh;L1?BC2_5Gl=6`~H7& zLUXmPu^Cs3q8X)w+^ARyG$Xcm%Um`OnM~B&!0>r<;l`4wYM8;O=7x!hDw!^Y8D!1d zLTzrWYe6~GG4#l#)&>a*w^8kTlgTurjoPV_t$*3rUfKq23G3`;^R+wK zDY~A`4%X!yUEQe41T5+N+N$;wiigy?t?1T=w6U#-As^D$w!#r5QsH(YW=W)e?S%VJ zq)qMA+BT&m(xY}_mPn+M?Zw=dNKx(8GPYt%X?J_U`aWH2uXeUIgPrHg9dM2>_r{r@ zK4qArL^IfBS9yP=8#Ve_$xA1Ds`!j3Y4-io6||{?(Ax_7tAo(!3hLNVG;9U!=_opD z1^v-c%y=s(q?3?q8x80r#@#kL-$@MVZ4}g5jMZ%v)maSbZSlHPPQKtqojRxmspHEImF<2gjlT92=A1^Idl{O(rI$gJe|rgi zr%}(|s(m*zjV|^UT1}&3eS}X*qcMHd!L|s1i%}bg{PGBF>ga~l2&2F@9#+$rKEh3{ zrj~t$sjQ|AeZ|DOnqC62v1E5hR5$ zRgFL|e;g>{?+kJa7lS^7nuQBTkwL4&g@etY$Kk>jGN|kz;o>rA${^K#Oq@YS1_`f` zLH`a?LySTMmxmBnD$!Ub#F)WqZkw;jpoN1)7iW-Vu!#6FsK^ilGGvGd3^Qo^5aE+D z=-Cj}elnIpr6bfjf^|fMfx*rQVG$YhcZ5OK#zTdR$e@^^2G$pb3R}sboWs-x#wMKz zL6bT*(VH}Tn4w9lhZ*X9G|V7g&~P!SWYBlR)li%9@s4WL0u0BsvUmFC)LrWG z{UD{tYAKsU>{68c7+0cfr^M01@1)ZwAht%OvqsIEf>xNO z+SPm)|JfRKjl#!>L2!*y#|W=_jdG6_Exbm9$BH=d8XX%e+Hs9M$BD|WvC1xO1@|7? z?UhyBAu3a7$~ZC2D0F|E2>cWZ9WUZHg?5Zrd)wq^_hsaVKZ3`4+(gse-uNSe5s%Wn zQ<&jGvd&cP*H;!&-dU>szQ{uAGD{4ag_Jl;^w&cAFiU7)A+?;Xma}P?-9ePI;Rd3? zTy8T|*YH`Q*}@Z?C2h7)#91m4DP%fJV>{SFpNlLz_#VEC%_eNW zc_K`{NDb$y6>O8$DH=0R^sJed&J&ZBnI6s)K?=LoCVS)Vrd;B^y{<3#&sJ9wwTKpG zlti)7VrV7N!)U=JiE(N64P-mAdfHmIi{1UyC4NpV=8M7hoYu@&tJ|8&ZiULxxD#qH zg>&pus7}b9=#umKdg{xNoD0M<v1jf`lHH;qqQ8HbB=OXyvUnlJME zCH#^cV}h&hS%%jhUR&?e+9i>s=kkkX-%1#B`CTzRcQK=#hPz`9+Fk5YxSo4~{kl-(^6MJ2fje^fZ4I6Fye>ViYdEs`od-SpGA&;y zq(4r39LN#62E-;kKiX}cMKUnqC%ZZmelXh~C%uj;_`#^2dzVT7JB~~pxeeJVrJid) z&NSrm6Fxn6Etj4h@i~b3(U_jSismd5((j~=4&)e}0AiDV3zHxpjy4=jltOrbq{}jMf9ONzd0q6R@6gFyYG~T>|@Z$dJq9W<8fj z$E6TQJ7_yE7A+Sct|NCfi*R+?bT0i^Bsj8ptf*&SqfSeO^a_muViWigQ|RxA&m43+ z9hHjU%aO}tFP$rou;LJ!IdXY`rRTCI31klhT#nph4$fKwmi_lDW46y5(H8$al|7D^%2WS8gTXPmNt~G~x80d1to!Yb{f&&Lv9vkRf`82u~v4SI)&!T!R zpE&=-{OZW%^QNAAkv9hury;weqhf49;IR}u-QXa;$DVG`iOp0sRx~GxIsggRbJ$&Q zISVE`2iJ{F_adomXz>J!Mj+sRFLhN0*{g5gCa)q zhY1#Y4T~5(V)T%RsVil?|GwICHNr3dQtvEyl1cu9iB)hZZCkDeTC;kD(=dDi7% zUv4Q$E7X3t{ylJo+R%?ZpMav3K(S!u;$Gz6TPjO;Rv`LY&Nx2uq;Gj{<)IRBYE^HR zg0j_?QolHLtO-v%#i=s@TCY^+1KeDxE(aJKuPy=j6tA|&(@-G^YJER8HG(iyucQer z|CqG^g{)S~WnGC!!LBE$y->0oL8^JQfYiYNZ%FL}&|;N33}DYHbtpjI)#^ZiDXV$n zqt&Vmto0h6xO0sf0nC3b$HuSaMbx!w13ZhBZ=G7so6W!wV$f1*wN7Q9PKsWqb^y4$ zPHhHIaJ||NVEB5qIl%7qpkGXRH-Ot>nzBJ11fXt!po^)-MqYC6Ml^6S-DKbb1tp@L zY#K)uv-Ea0r*SQF6rjW#sz1GdnmrqBOjH9*s#5^O|9fTV#0(;>`N%OC}oQ} z093wP)$Ra;w{ljewnDGBsAQ7b8z3@C{SM$w5>$ALx^Lqpcj>@wyE+74JRGrI4fnpO z%a_dM%fF(s2kqUi<|pqRYEBd>xI-P`#fr!QxlMHQvVRdu-l4YClNtq>X!!!zPL5>g z`6l&GR!0L|OGa1Tq#8e{B|JH4iXV;Hj-Xa<5`c)}CN2I!WglGJ_k%j#w2?~gRD1bt z)TOwf>opkHP8JuSkrM;FXxC2FAFus6xl;}C!>$|C{uRAcRYR#NDNy_iYLbHfdqL|` zpotd=yVUVsm`o6rRX0)4np^p3|8ML*(*ZTeSAPZ%%#@|xwDFXhk0lqQY`Y=ab_(9D zey@{O2{cjTIRVAUx*JBcor>*&uD8?dJ+Q^?^mGr5Xgjsts}9wR$Ck#MKDOQ}KtuN8 zbj@d974z?{;c^0Q%ZaCl08S0c!ln!A=0Z_{v~((1BY;sKr4T$9CF&P>s}c_Ej}ea9r*J z)FKt8x1ADG)oB0)52+IXmL5X!8}$B=THTLbu7^&7mT_NEA?{{$Zi+pOP4;$&VGcK_ z|6#QWz^21$2tdYRwEhIOKBCs~IiXWlUgk}~VOmgJ&Kd3rr_>Vk@tBIu`lD(#ID!-O z{0J=M1a&(KqdY;Uj;a#@Y952VoS=2b)G+|Q$6>c8XzFow62SZ8Jg?gco_GEP&#U?q z&)fc!+S`}aE7xuWyQSavp8kdseNChczFa zRl~g5y>O^)@G`1=4wm7D`17K=2q5~B8VTTjnbXa>43B)6-d|Q5`LReJ70%WBX#f?ws`j7{JN-S} zv8s^|OAS76V|gY#D7}shjE1HMONTTLd6= zDz~be#{qkN0~ov zs5=3++*E%6Xn#xH1Mu~hx))&2ZFL_&_#Iv(`&~5!*ijt}yQgjgmgBy<72v>qj`g;v z+kN>Ggx?q+nn)Y3Vyr%H8knCxYUqpBidqkkyhbZ(NAL5xU_ULRhl;uosUuW%6F@di zO$12M!16qGv8u@c|5|z8#s}(VU`-yXNdPY&a%|Bfbsey>kJUB4jH!I&Agt^Nc1k~~ zRVcP|pbx9OBW=`FcQ<(D^EB{@x*il?pFrK0X-xXJ^`F(sl=!pS8zbQ| z4gDFFTqf_Q5a2THe2NybvhtvlsASMd8uzohklKDxvm^KOGj$8Vn&%MxGKIe2*s~X? z>@t1-5}LY9WnXdZ!Yg$Hu!z@c7muG9JABOYEnMEg->@l_Q!A3qkENpD{?hxcE$vG$ zQl1iDV~DqTqZY!Ok%qm2&HhAB->BP7$7%6fwWs%SoyI+uHvWsIfBd9&&4H(h8UHEQ zAnufFOegc`UlrmWr=0KAwE!vaq449>?gLtQoIZR|;{l>SssvE@le!8Z^^>~Jm-E@A zfX^m{KE6C{KHD~&{TIjf z{G~1i*5Gd#&k;)dn`2%7LBw-}GX8-xxkHWqg;Lm4mQZ96YvuUdUUS;E0q_4INm|u2n3Bda79IKQ=iv{*m4vn(TgAj>V)u4ntTGvBY z{j{|nc;b9`UahSUTcbnDO(;<8x>}mX=F@sWwrFaUPa_n%mrqLo7?odJ2jEjc+W?SU z05wEY-GaQx&4Q36n&d*-S^$qgj%^IoR%GWJ06%p@)9^!y|6(BK%&&E#$d9T!ik>a3 ztpMm=1nrEb*G05GrdSFqs`d1a)ulRPv;3UJwLJ8us1}O%k5vlNy7;hbwU9auQn!D| zxE9w&KzbtxlEuAc@Z37ruPTKL)=Ze}%fPhNcc>qf#?Fzuw%Gxb}DOGrpI>Fi*V1EZ| zX#i)dae^|5+%>dw07?yxt*xmY1JXD7Y?#EgIOl#@bwf79pI=*$__NGL(aBp`1&n zCR$VuCYgTUm0fxz|GHXH3K>z^GyC`n6HAPb7&~VC#Fg?f3TUb|@ME`H(TWDkx##JC zD5(%HOOZ{rDtPhgo~GIefCA05Q2+~?Y4uH8=xj5sjt|=<0%Z%dKR5|7=ib+qbI^z8 zS{bx|3w3P{x-Ilmb1ed(WEckv!?eM`-iK);0s6GihGpk_O}|}+Ipc>yk3o@9&9zDt z*iy@mGUZ!xilr^JLBKw>)P@7}ZpFdbR$7Q@5xKS2DtWU_DF`!UIn`^ewMFWJ)>>x( zwYAn2ph_F9CBW1+T7Oe2-EX5c@?jfQpcn`7{X1!GXz7EhUdWr!79$218QY@XRI1(% z?Zsw%J2WPhly=$>fJW`Lp#VwkwQvB>4m@#W2TpLKgZ3Q~8+7D}n>zAD_fFaXBt~@7 z1_E5@gtnwoxz5^fU%p%RFc&Git4RZqxL;C zkL+W^$A^!Km>4l0K}0Gg_T-xK?4^wd_4Hnx^YdQXIAA?{Ym)%dduvkw!ur6bQ|U|} zZ8kt?UtV%oUyQa?3halWluGgam<$R1dDh7OFo9IM+n-m^U;yvewF8*e69#JGdb7>_ zA*8v#-t39f#zxqhy<;HKcMQ~qkvtpHt&(5mBYl>bC%UHww@0$=puh|e<&*ZR;Qxg(i&976E)4f!QR5mdTjCQmF8Em_Je|^*hX7 zDb!*lRGxw}Xy`7PN{`aQe3JEQ^Q`cuC*!rw6m_FvfP}Z)SVw8oQKrXeSV1zK9*xE( zQ}r>RPo|w?(5uN*WUMw3AZ{$0o=jQC@x;mFc*&RJv}wMKw_NoiR9^KWS2)GJx+So;YI?uk+(1UgyBc z9J@PNn}#ACrf})fbkKMzC)hoe^9-EEizH0r(s@niC8MUpyprip9UC`;xA^T0&NF;x^jj2sJMO#9(WYkS%8B#FE-`-S$z-iB^_`1BoJ^zV@)kdv%LVEEJzOT< zI`lnPZ@qcE;XlmdjVln%8@C`@n}8yJNAn`1=WBy?$(sd%d$SeR)R@JWtL}Iow zq%IPN)TNtdtp|lIfM=YMs3w>ZY5zf&!QG)Md-jgAd7P z1?I(vv}}de$dpLwE3^uJ>|_8V`Sc1t*VUoK6$pWH^xB-0qGq|H5 zwE}n$r*#CVyb|q9q=c1P9lVn8`bw>)H#y6 zVbR;L|A@e38(m(9nzvEddJfL4hpnVhxeW+}()22`#9{L(3C<&Aqm~mDrBTKPP^Qt~ zjR;%P==nx%u`esD-}URUpK|We3M6dN+IbHSA31Ws07mjI5hEpyhHXN3r_r-b+Dx5f z*da(d?2v#JU;dH;uY&LAR&TjVzlXXgddoSP=by~0C_U$IECe2FH zvXO6+7Jza^lVI0r6qlrp)r%j&uBd$Eg1w@86tw@I4~^UgD@>!=+jt#+Zi918BlC7% zv9trjFOA0Tz=%(yzjmN!R?~oFt)(}Pf>{4njibHEm`ztx?jJCiSCjb%jH%W1iw^qi zM5MBecJI_`d9%xPplB3F?{;EJTSjeDz-}4sOVO-Si?~C}c4_sq;@Wz0 zd&Y5dZcTFzXf`mTAQ{0!=`PwS47yZ33GOc@FLQAY-K*$?Gp(6RkmFMvD;wB7(? z4TZA353VA9)eWk6KS8Rz0W<^yOzyYbxV}Wld%BJF3;CZ_!;nsNXO5 zvP-D%%|TwYS*q3z6l+p3a*&v+bpdF6hzUW<5Ah*CjqA4a zrr7yCeV~nl6nI=~;LXm*ps=-Z6n-2{KS;-q!*d;^vL~RHgLsbv2VYJ=9|x)TPdx9! zPg-5mu7s259QIltkf+2^WL)0+H3oHt-d$Ao&_=P z$I+YfV1A8SU4XmBb*>92dX0*tp|#g&VH%v-HF})}tGh-WF2YVMbCWvXf! z07vs$%T7@jGgYPa3#`jGI#H07FB-H#=K%U7LC zAL_I)yd1@*Yi{IyQ_D$-7qxFgRWy% zBHDZ%3m|sNh%&w_`6%j1#p(|(M8RDLd6M4^_CJGu^>j{3$iPgT)EEh6Rr0R(jLpd+67_Glu1t z4k?)W@IE#b4Ld-+RIMIf%eGS0%J?nRDcb4nt4sSdtr(59LhV848stX%7Ltbs9t)|j zrZojf)U+^w7aB(RLTY5iFkVPxg{3W|zpPpV(;lk*K&$J=j#JUhfjZ;Hbo!T3g(&A^ zFy8P0BM29k9%zmI*s&@~Md+o%M5zj>`7HH(2y;G5sShz~&r<$JFyON^^%2bZEIoaM zIOQyLcnr;)rL#Jy{RGB+mexJtMZ7W)uAHSQ89dRNfk5{xh5gL2oj>y;`JTcz?W5sO zwT9mNbXj6n((b2P52SiL!wT^tHF<^=F}wQ&L6@P|{9hruPt^0Q&!Fa0RQS2p(2t$t zqDX??mQY&0ZhRm`KiA5b%(UydR>RM%7g(zo=%N?!eE}zArmz?A9A?`70&XFRq?cMf zza+i*R=s$KxKI1?(e)RaFGbx)i28ctggg{7VL}dQDv8#=gnvsS_g9D(l4$%ZSmblk zUTGnI&vh<)bS?ua)H<;o1;%MU)bBNR0iM&6*HFQHdiYvv=Qm$3oT?Y@M4R3qxbV8E z`O|}lNd+bOHZ6UFam7xL(b8jjF}z?O#S-2k7`si4-y+_;O?%&>cVei}JFSTyyYYn5 z=k(G8==56zBD@WW@3cxNmHrNf97AF6(UmdyY8X`dnErl`E_tkzUSCO}AGE?q9q>V` z1(5JTYwyJ}<+wVYlvrVEX$trVhxnMnKWfo>PTmICJ{&u>Di!?%t9(p-Kfz)j(}7P~ zRe)!ow835{8Hdg-J?Y8yskLbSFIrJ=mIPtn!U%rBm_11!e}N62r1rleYCK7+e$|=- zJp9#8-5S(mT1=}%lYi4fy`C|KKOpJUx0{7X{Y@+9&62<{OFa4h4%J+tS-)#jy|3u0 z?(y{Xcc}jgb@&V?c7@J=#xCg<8uf>^2cYm5EcmWa@)ynQWnruD=3j(kNg{?$_S0)I~Sq?4Z`ThY_6P~R)6{7qY9I!BkjX_NfU=@m56 zE9k^3C{1@8TPvB)#c#4Ec(Q!?)dC91W^F*zP1a$0N=6KQ%w`Rv%96F47cb+t5GGJ> zVK5z&tiAN45lcO3>8W{Dsa;lUI4aze)w%(nf^F|+9qx^2lc}v+Je_p2_C{(!ck2u< zmMV`+fVdOp2htID>vz69DU3X`EUu4l64czChl0kw%tJY&=K0fi9@f?%P4%$O2B_(2 zT?ug6)4Cd9h?g}1;BPPM0n>ik<86)h-mlj=KAsx-SO*|=y^nPrK)r0%Jpiw>S+{$! zGV-fkwzgdIwGKp1`RvwcfW6tRBLNEMuukw=z{X2aPVE)_&GSo}9G8DYE)mr|W$3o<K4)!Ux5Zjq%5_0DCj zuICTFM=Nt#JL&m-?s?K4-(`i#C%3hpo)n^blIi}U0u+(k+CopNgQS~7mX#(ow>4Pj z^4d!NdC>Q~F&S1*-0!fIq!oFr_4TBGA9_;GRrrGLhdkEGI?2>WR5Gu%iT72eI@4p% zEI2Hlnw!4QYc0;xptN)Gv^%eLlGo3y$jDD%acpHrnvu_1+K(ln#3fy=p%h-wT8t`w z){1-b!VNR@aaKIPHAGLD@szH7)=JWn{MN}j!(GojsX>wW?i60Y+Fnm;``nY-*N(41 z83n9u^rRuEc3<=Oved62RK}V2eM3~x8m1%X-_p~9)((2%Pai#LY*A|<9`d(VvK9VB ziwZ&iXILA$d3sT?YYEkRU#M+RX_FhWxra!t_OT;Hy-K8zRvUZH* zMdfT?VD=@dRSs&4=P&T+TK&S-$=NtxE6eFj;W@2Aw6|7#b@D4>?W|YX4psUevQ(qB zMXbSkQj>3rP{eT6^h;>Ot3wTHEPJb5AM}WF6$mUYROS z%twoZtUbLMf);ou(7Pb8;CWTNDWn*5%#jP;_<-IyO9gsW%uYKpA9XHn9pJf_F)CY~ z4i~o;_hSecn;nW$mNq-!4JROIgi2@})EtD{bAN7cN)Ui+cUCu@?oEu`bb* zYL)XM&-<3iRH3Z3qc5*Ns^b5(b>4AN9Pi`zP!Vj{8=xRo#Dcx|ex8cG10qJ&0t(p8 z#S|;Hpp3m?Z%7h7HTEQG>@6y0;W!YaSYu+MvHYHL`{d*A_2m!dnfLQd*}2)B-PxUI zV1v_ULskFBTj7hHI{G@!X>0@4v9A6jC;QOIO?g$^)=qWwhoh%twm>)aJnccS@~#Kx z4xyHf-PDKl2aVLmdU_{DK26+|C4QT~@(9o;yTJ?r_$>}{Q&)@J?xn5;=(XJuLF05! zQ11ia@X2CDGi>Dm^?7~WQjCaC3#elqRc-vPy6R(neGJ>ZYo*3D(6@1_Y*;n$%=mxilV9rfcJ`EG;?>ZIRd z<3(fL)X7?~5zf@kdN0-&3{~ek>+4zn1?Wrrr}S6fchQHizDSrV)m4vVeRi0e>eL{m zlG@T0+Jy>h1T{<#-Q%ykyXg@{?qQ{?MX6=o^vNC=f$Dz8rxiRXb<^vqJ)`xS>UsR$ z5^S6MnVQ^Pk9VVlDVm$IrtJw-t$OH#Szj?qJs$%-?OYGNGaC(@;sy_Fdn+lwp87OK z>3~YNPU)ypd+IYe-H=E%s+YcrBS#_=dc!bDWq3rnsWS`qdMVW#ZVeK!zFn5VS=c$H znW}Gw{*DN0eIr4QHtVB`kVWP+b=IuMvH7T3&RTxc2d+A#@AWy?vXDh@$E4HeYW^s= z9!{{p)tPMc1#aqa@014WsYMTFG~p{ZwXw?nHflv*y#u4WV3j<2zo&ZHSMOAu61G_e zr&i@|YRl&RmDG@a`WUxuSnIF1xT&cFQaY*k{q$-ch@jR_xUJi(m(>qcR$cq+wb?jl zrJK?Rrqodz`a?TXdiOPM>hr-VwN$Yny+0!ppqE2Znkp5fhZP|!-;K&NKu;`Ak-1x- zCT*Iksh19vRd=%v)=~Kb^vEI)u{t5(&2gX}?T!(sNCBl%2g1Nkx~ALQ)Q#X2e-$za zx*efm+tuMgdY$6qw!^L{M3!vD3@j>eFkG$HW0sX{ZYr?%p#XJYuC7-zl2iimheZHr>x;Z7Knrb>+_j5-T)WBD%km35UB4oMjIQERz z>dkPyE0ga|tEe&1(IZFb-I&;}aqrkyRxhsRjL^#}*O9uH8>R2?i<^2DlTuan9H|Gf z`Gt#W>qtF@^$&lAF+1v7b=7{9-j?-A*RX4S>2?TfIx7u&!K>@-RL{|RJ$FP8Puz!7vh$nNO;lTJ?2GYt=DC@5%Za zFvA|A&tm;lDEijbTi{16R4->O4_`LIhrjr3?*j1YjV^g&bs)x8p&Hk=fV!yxNZs6sS+xemN#D{S+64~+tpz+NL!hmIf?fpL z3;0-#Kt}{$W1+ZY1`6$B04lVb5z`LTC3TPG?p9}lhpmY85|fI3377>m?@z!YVAcQv z{RG?`Odv?W)lmcn3g|nAz+eFvtxSdrX%a#v!v*vSB`{I|`k97f8!e#xECRs-(7QBP zgd&hNLIB1YfSO}G#;m0GSVRdX7<#SS3IdvdhHD5+5}?)-m?FTDNFYi;z+M8=1SB6O z5F;S{IP3=o^_ni^>Q7`cQ$X-#0<#4?yiH&(0(c3)E1Vz?s{!cP<{L511vbb4^;Zb! zGiO}#1YiLJaKTLp7KwfrtdRo!5&>7A5Qr1t@r=N70Y5NUDL_3Zi*E(sx7Cp8Y5|i! z5J;eEQ@zT3B(hdaJiwbKq**Uuvx&e)0dETu*esxgD}k*7db$zVEn#^uh0yx5`*7xN3|fnRrPugg=CO9r5dU&h#DRDXay z(X3FfYX%|x4I`%AgpJcceOo|DNC4nB0k0W6K(HILoYjOZem4N+m}d8C3o!c-$Q973I)Nwuftm!K3xH3;v7UbjfN#MO{3YPLKY@RiTaB8h)Fbk* zn84@ZnC623_&6Ma3BKdxgS`$r0str^pm9S2MFd=BP*gypMr2V!fEB(W$4p8Iu>=w* zD*(PFM~eyq$~PuZS->|8yaYsWRjVPmiN6baZ-+dp8-RY78W6LxekJQ`8+z?51AhU3 zFsP5<6lU2MJitSijSN6pHa23~H!VrsR6uX=_73*V1?)gzg`IzdphI{tX)T~nYXWTr zyl2o}0Q!Q5Bpn4P2Au_bWYASWGw}KjNxBoT;-R1)cpyE+RB z0KcY(OvfU~$HN^qh(I_3D-!zYJ`+89jE4jf0y+&NFi}7ngUJHs3@3|70pE@xFjc^% zU;@zs;3WZ+V%1`Wvs6GnY zM}ay4fRza8*NXlN*k}s$>jkWXO{V~C6ky^UHY1?V^j~Zxi){v=921S0HgGAacM7<) zlE7|iD9T~^Dk6Ku=!UIp1?r?7giHU63~7Pfn)&>5(s=RzXNs z4u$p*xg;iU7+e<6V;@;u6;OFUf$IX6A0Tj3z@38xZVR|{h`?O|(bmI6?g_yq4^Yn@K6A{x(5p#0WDy7%D`>_I(ml@(+(da`%D21PZP*OV5J;9mxB5S+%Jdh%7W zcxM1Q*bhcbYr<+1e2>lc;S35Ppmh&FFet*nIRD*6kLxSo(2EIZc9%d20sk`a5OC}_ zvM4Pe_8x(<0?-jZWLjRpng;|bT7`I~5UDHx7id5lPXT_v6Yv&*e)z$nngH~=55N}z zF4oW{f!}=qH4H$lRm+Hh=Y77?)DhC{871%+aFIcPfSJ$9qJe-4F9F(1SmKaR^eeEzq+A zj=!H7gbp^sh-r5#QG$sAaG?t1Fj>I-8U!K*6a+8+U@=tyy7dPTEnq+`0Z#i?0y;Mkhvh0t+Y&5<2=t zqQ4AV06>Bz0yeiI5GP<Ed=%oc*|hF zfc<^R;-G+Du$=(pkt6{37XXkfU`T%g-wP-(z=fVaj|dq%kW6d>$_^rMTmUX9f?R(T zPzd%B0B}mc6b5Gm;7$WzaSp*sY>xC%1b#+fMMCXy0i(FOi1r?U1iu=9)K`p{_IeB@ zzb4@Rcmg*B4F8P4EdfO*5V#{?4};%U;`1jJIzc0o`(m~M;wk;=609Gk* zDce^Pa1oIBEuVjdgv?z{CawbNuOZ+j;6Va`q5`UJBv4$yA_gS|{K23Ug8kT}r#DlQ zva4|XLqcs@Ui2HblD?vV^@#*33-H-Nz*9gX18)IMcalXl0j_%p_zL(O0FHltLbBMT zrhqhtiI|K@CeTd4Jq9fV zw1YKcQ1?~>a1j}RHVAOJnD!;?e*mDp0jP~T8ZpiB1FEfBXCX6TQ(Z{VRRC_I0H8a9 zM9fmZPN0_oC`+>u)BXi#L||_b5ORS)KLL*!1PQQCxkx4hh5W@}uz(7%>f=UQc(n62uO$}@CSlCtVK!K zVghRMmjS32e`5?6DQc0dero_yzcXT5sC70a{~#obK>=8q#5wrQB?}h;yBQP`;Jtz@ zTm@`gOTbM)yY&Q$3V5=CK=E(!{*Nl!bQ6)1V$ymGfl>lKZY5AgK#d&)$|2Z`2Rm^W zfr!wAzJTI9ZH9w1D*D1Y!kPuazJ&Lr7?80<#3vsYqasfcBLM%o8x$ zlYmt~vKN8*0-9GP@Rb1EZUd_N&3|cd0W6S(Vsf$;fyDyMwFxX0@Q}eW0TFe`VugTz z7_1V2TW>%q@dmJJ75s^;F^IO4ff6vW9$Bmtki%eufan0S*d*W{gDnDD)hCN>0=^F< zU`-Sky@h@YtcBcUvR z5xqT_^cMyE6hh!v0lPy9ToF)nDuHVPR>TmvfnYfn>NT6dZ3AGLR_!iE@1q_)ibAFC z8-VJRV#H{R5K#Y);9InZO+nB;%>ZPdZp5^HUy(XPz+W&K1@?~wgfA*Y_kY z90Ao}ttq6*6R;U3Y5_b!unTK}u1o&XB-OK+j|XMFrsIBVbWnz<5|B2cV>YeLoN=CEyC&+<`?I0k}dLKsf_gwIc9V z6i5YwXt)6hfJy>P#|cys-~}H5fQ6R;T)hmSssQy90UrUmu)YN>stdps%mA!4gsizj zq?UlX@MSTW)Ddv?76E?&H|`P$5HS4#fd&F_I}*sF5d!Ea1+;T8K@6aY6Il7oYbN?^ zJLy{p80jF;O2AJU1lkC|{YfCpb_k%m7SNtQCeYCU^xJnfVp^44Qg=mQr3AQ93FOcn z$qvi`UF!nqWdO>-Y{WE|SERNGc={)SeggjZhd_{k;_nCy6!7o^0;@Jy2<~qJg$_jk z$4EPxAQ)i)s>LWHrkyB5_G1L#rY2w?BEVFUz*qqTs}L9`z`Ea?$ao=js}YzW;E)di za6RFy*5T>|CJDGwgTNF4hiVgu5`a6MK+UEJ_`N=X7&`yxU~$bjm`oRw;SCAQ6i}%V zf!P8o1`?Pn;B6BEp9^@}jKCKHMztXDr2(wk$d*LDHi)*YHGu^Jerro$k$?m32rLos zReJ()0>11(V7UO?7X^-PrGSvm1gzf*ncIcPY5{Az5=ap6Lw5pe1>mA~$aOt}BiLim ztuug42B03Z#fWJ>7E*5$P}d5(q(Fj1A#wc)>=ZC9h`??Eody!vE1=9^0{amh#9H)% z9a13ELk6H)9L5-2bqi=7;657E-y^UhA^j1IUPnE;mj?YY1CaWJ5z{V=BK1iDYsV5e zEud)_fwKb6F*q+^=y}|$r2OXq6KR47(oiwA_=x@0gz_^s>Kr{rp4_g^)mtI4iR`E;PQ6_ z{t$p$w&3??eQ(dM_iUHF!$ussdX5Nx(5CUrvrb!!j^6rk!7Xd=McfIu?= zxLFJo+Co5f69U#&LV7hP(ndgZM*{5xq;x0H0Rh~470_OB#XB2-D&EzIX@6PBzPo^u zLkaX0kZc`Aq_>cJp#=IMSb}Asmv^XnKLb!1K}JlQr;&P~fEH5;3>L6`7J;Dx=FKHA z9D$X}2$)Y~q?qjZioj?A0~QbnMv#QnY7GwLp;}`NK-C(DF}U@EcbcsJ%mAd0Fk;%8 zI7&TnHD3QHLHD&pCX314?F1qPyxBous(=Q22}BF1`W=B-0k};KRC0!ZGe-%`5@0QV zoX8v@a~aGNkbZ(JtODNrNMOEz6{iS%CBXACfo}xht~F4Rg$UrbzJP`v_5m!RT#--% z#fcubt^xgW1eY*DbMUGUV3h&LKHi9FE$@?h4Fb3shfVX?eyst>em%w(qk1^F<%jGx zQTa$nzeV&{(@DQg0Pb%C2@(;&vrYkR4(xCPV3z?XgFQw}`}myH`viplP2hk4-0KFf ze}|A{W0trB0A!hL0Lt=vBc{0&CiM{n3()>3YcgKM$Tt|?OIbMdH zasb>ifR(bmV??zdJCOdKfEO(YqzC{v5txH6z_Sejy8v((ffgA8y0jyZC15>+oYgr0 zNcH-j%gslVGgwjZC4redGXT}|g%Q)XcOmsF0cE=rcrC!M2Z1*N#xr;)031%x`>&5k zvanF_H-Uw^z}jvCRA?cL!Lwlj?ZqHc7cl^--Hn*`+)V1?0>b+e@DT7#KLTY09JB@z zDK8|4%cz6^9wy0A1=h*a092^A5z{6NqYQimv6HcNLhVwSbLWL^}lVEDpDItI)!#buHj70>@0>FI*7TQ+;IIlnuBw!5{strN_GZAq7UnY{tP=in{ zh8r=h|7uc?5&(`ZFw0;8=+*+jSOJl134{wsSx;bsfY40@CIYZ>HOg!yGDS>gbG4=- zfN2-_?(`U0#2A3;Io*h9&v%k~mVgd>3CtB>-ABMG032k{_2)|=;atWy0$h($nneOe zv&B*b3$a?@Jp+$^xdEtJD~*^|_(xL53#fONK!O2a{`VY_bq3MCXRuKKc+S8wwg~uw z3*9bY#|^UBDd6rM0(%624-L#?zkslN1gwXIfEx`oNfrQ3G!XnC09+i^m2AEuM5lGfx--M{V{-B);y*nnG`bs)x3le(;B*yx|9I$mw~k?D_|05 zPyqoIR@Q^749uabq1U>367UtU)SEyJ0pKtLlhhV)$B%%&fPZQc zs4oEAW?+&=0-D#g5@{j?eP)13a{*%;5NIU;JZ7LpTLIuN13?D?;4K3|X93_V13@6ft>=t zxdvM75l|$Iz|CB2$B)p!-`jnBJhI&sNzQk9g8_%qY8r)@|eGvh}*#3WgWspU2v{;WhRATEN#TJ*qx*qj;4PpO7vh6p4;G7lGQh%5;q?y*6fB?>* zr+|(+S(pWYcML3|uM?C92N#?sNKB@tsmw&ZsdX7N%xIW$;NWWx;y8e}cc{aa`w-|H z!0S1TZQ%f3f?;eo2RAu@H-`xGIe<5f82goj?Hs^6OoSWp)PV384lZ+WnuC)Zz>7&V zfwzDdz?)$V-~}HBzj5#l2P-+)z`po1r6kbhZ2rp1E$l)N5g99Aw z{LV-FmAcSc{c$^;GF&3j#{Pd9l#7K!FvoM=@4wrAj)c zH!2Qvsgo{Lj=g%-@=Y2A2R4YB^4V%o#ebqw*I=JQOtIoq-1jl#WuM^qKF7#-$tP4@ z+oKnEU;YV8*b8XoCrAZzw%lsyl;eQz8*e{DnZs-_ z6`8;^?H8h({y+K?(aoPw6>ljSoIcmE7|QRizF=B@;hk@ne1_%Ooe=raC3*;7$Da z0m6qq!SQD<5rsK%syi81Q61e5Qf&`^ia#EL+8+Fb#oxS0mIwZq);Brx*=pu|esF5n zt4&GZh3vdDx<>^b*1h9BuTvdh)}89WRCyhSLxV~5|5#mjm}LJi>Jwk`rYrvR=RTpT zWZG52Fh&2Lan*7yf*Tp9Bh18qs*w}*^e3A5t=H(_e)^OKTqSx|=(%KYhL)79ySv-| zmj#;kC{&ecY!rO*f7L!^ni%}dCtS_=PA_3?z7YoeKR3X?GAIS%KQsP&iR>BvyNLgK zBCC)8s^Y)S_|FypRl?{tLr@9q`{BRQ!$qJTa=H_XiKWACBl16GA^P0hjWqBYHjXQ@inq-Vl7tUOl1*f}dE>*Koy=B(9p8 ze|)vCD~={{UMQDU=r9yATdk%X)oZ%q$P!mph5G5Zzs6>jbX2ch2uBumc=$|T7ww*U ze^hT|N>B}KdTm!6UE(UK`3q)Na^uk@u8K+?tb4iQ5CbJl9ie+cK8Msvo8F@WR(~E3 zf)L;!2*J;)@-e+f*+Z80A#TGm+vj=-YbmZbYgI&3k~+=8oF{E8dyy^S*Qrg+}!*tk+t#zsd? zh?p`nct*sy&%$G(SK}CsY58dg8--`Jv3Ysk9-CG>Y`b?tf85RG^2Rl1QUfq}n%WWq zRoj%>tixq!Y0Ej2`y|$%;6E>Fq0Pkxod4tA#KzKL@W94W@qvc)YN#Q-1!rrlod-VEw67OlxSMLba5wE|56n64 zQCgikc)aGH&5vMH>XO0J!pFsig$Elu9Fy*``5EXct8*RQD;I)2GdHR?kJ1`r`ubUE zUKpCQ(&`kacH3pLT!(g3>3_R>qGn?jTi(n{^Tzn|th5doHp)(;7T2=VT4Q`yc3L2Y zDcNZ?AxwCj=F1s&C~R3&7&0uK-Ij}boYvUNKT%;zDro2@stc~#*r{7E_-JFP7dU5Q zDH*)7vGgyvV`Hg1_+ew|3OHb6>Fset$_9^X%w~bBHJ1JaA8RDV+TJ}*8&wgjJK|#+ z_8+zAW13evYOK!YZ>Ub1H@H~SF4&HJO!JR!N2+P&CD4wgx`xJt!cOB2f}ydaXdf8T zE;BC&t;c`b=oqI`Rg1P)!BW~p+o?m1jJ8+9_*`eWDcVkreInXUZS)}8P95&OGhO8v zyAP$0vDdCgZCA#{Qq$#sD+8xbaKx1Hk@)jM_pj|@Y3{O6wQpFurU#RjE|#vC!bf#F znNqzfS#@`@1R*PKR606zI_%8^H8aI>jlE;-wMXLPpqBgs{*lz?UqdpvfRi#}qYD{Q zl&c|42QO``T?_8nSSnV`kj9lj$+jid-hnz&`awH&EZ;-+j(DtLhwM!;TzAOs=|v5^ z-F(QXE42Nj@F}3LXzxtus%zi;SWi6e~hOm+3BKC?6BSQ zGiuecCQAi4h2o0$!R_dwBH>ewYFH|nELBlg+R(x82D=GO76TuX#TN}q8U|w{BWZgg z%G%Flsexzb%KY2qoWE-=lO+HXlu<9EE0n_;T{vv7f#H+G+>1&l+v#NQmdr;GnQW&P z-|LLuNw(K(cM5-FGx*_RH((#Yy%tN8+Z$3UxV~cMVlkw}{ZX>D`Of}V7dqd~t;~a= zHdWQO^Y*HIu^IE)-V^Jy=e2zRhVNe6`(oJVZ+j;USNzQ_eE4s>uRHx5_syv=&|j@s zxgh=mum9#2_Wj3R5AFN@W3P?j42YMcW(hM{#$y`?P44{U1ABe=EM> z3_8EDx8R>>t;w<<640e*@enwKd_4TW#u!rjP(xY|-m6$U72H;_bQJtmvE&basaUd$ zv>#kkY5BJFH}+a|X>qHSP93Fbt@I{XtB6|Zc!g9eYo*ulr^EfjQrW0XkLi#Y=TEc* za7V=w?79MyEv;61L_bW}YkE3eYUet`r0MDOd*)70r>jJ<8R>NOXfz|8dgjO(=`>6& znUPLs)Y%zak-ui7*DJpr%liInD1oFQ;DJipZfiC(y%h~{QR~tJ`FEXWJ_s$`61+Qm zR#9UHWl&MM>(Z%fd9P3Jj8zL=pWeJYe3}n;x@#aKlA0@&YzNk-o9X9!^9xr$;6i$P zOf%_1dRH!DvpEThsHKvBOX1PToNT@U1ab)Xs-lWsOsA`-|3yBIkc;U9xB>sPcp42D z4Njrh_tSQ8f@Gp4n82-P5I6Zi~bDI1&xv9#Tel5K{&qZIYG#Z4S^LA~6>L6?IUO&ru6JexWi zVZN58j%IxHx6E(g=o@|STTVq~r_iZ$xT&KFRmW1rM2)Kg8-coDGe_CFI6bGee+i|L zv<%z;v9u2S|Bw``P0Yq-I_L4wTb-R*y{c_?Ge;s_oT~M9IDhTV=HYOh9n`iZ)hnuw zy&djqMQ@|&Mw&kZU3Il8>yBRujeepC8eaX_9IMH7Uuj+kbr0R*S6MYRJIa*D*+MO- zC~WCUl5Yi+Y$MH%@%^}YE126t)}AVGqobU9J|M##+v3T32lZp04ctcN4GwC<85{I~^H zn{Po2_|B_U)@C~6n9u;rp7_*3=i1t*T>l489dzjpc;=wNb;>gbU7I#O<4*hVnWF_? zN=ut8UU(_3qo!unDyQB&a}-w{o;!+SuIA^CCe?7}RVx<+wI*o}czYo!RvXvT#rVym zPS>qwOL^{yr=B;ZTn2Y0v&FoK^7j3vj+gYclyVt;`B1i)e}hArTF~FSJ^khnEGFZ; z4hV*FaGqBiA7My`G(*}1?oL>{1N@w58*FjqGbYh5^>#o;%VLyShY{wAdfEnOc3fw1@K+!C`U5cIm(x;{y1_po})yG^Yk- zm@zCmIHNl^Ld9RGJ5h+jid9)TWw3M z@6Cg9NJIt=%KIWRYIEa%W&Ro(Kj=vP3f2h&%#$%j^WYzZ?FxgJ50)l@RGh?Et;{y;Q1g$alv68PH7I4< zs%2E713s}hqZS`(uf%Va4I_u15(&%nV3d*T=Zo;6qs1eY2t{R_S{ zw57I(Z!!*3t>WA>D|u4)4K(+F-c+nh-@XmTM^2j&I&B=?{GM^o^zl84)#?IHG}!Hd z?@Ol?t33r*8!^!9SN+z?*XCO^voIZ7oq$YgA4@&Rg!@Z$nLu2Ui0Pd%C^K0h;Rn%Z}+8nIGbZ`a0(n9b7z|wG7`_Ga;Ec$2Z zFs$|`DOURp5<~s`!zS50>Sy*?itRb<7}svzvCL+CE-f)xHsiVEt)^CKS5}oWwWG1r zaV)bT4^n4MmfK*UR>l8TUcLCWZE^18osMVHoza}*nKa}bJf2B6gpZDA(wJTGL?+$k zv_6p;z|W*NTrBzYL=?=M)rL(751YshVR`0a`C$Bt=fGP4ukarTZUR{P2>t10A_2!1prI?wi#0U9feS|<(|l#+5#J4)E}92JF)(cOu9n-{zoQVXezzR z9M*|CL>u!YXp%AmBPK^p3hx^p0}mPzQzBxFCkgX3^Gwi}{!jnE-6r`}CJg}gSDDmT z-@nSNLVeZzr}+aUD~bIq8lEX>Pi^O8lBIx&FM>s=7e>HF?oiV{e`Z#uD=dzMgJ6cP z)2#00>2zH5XQtoCz1TC#?SrEuX(G5HU}*#RAYf^>4{Uo%+ARTw|!bPgk*kJpb zpk#CXE7P+SJ<6I(o7-cx$3;X(O$wd$Kl2}|L*Yj?_$oNuJQi%qDM!Ia?6@D~mZwYGkUY48O6JNG>lvU3|9~I@U)+p%_joTxV z9?>cGdD0`A3)+?Ri0&*NCOvA`gf0eGT`YwQLOqHH$3zBCi3$##HZ63Pvx}7|Xep1n z!t_&8^Y%Xch^|B0;YTz9v)CE#IsC|<=K?krv|NBhbP(r4p~CpeQtL3)koLx)WP5-3 z(R!NmSa<1Bb)M@OXv}p)%mI`8wi}lot!Rb4FT^E_E@g{dvgp#5P$x*Q};lWX}W>R%a70fEvcVyE*M;>lUAS)RAwG~=HpFC!gi29E6o&av zUP*ioCQ4bl1+TDKdIl4lEER@JI!lFi7}8{TF{qN~9Tqu_=OWaH#4Nfb`R?Gb>yE5;Y(B(f8LL8fWK~j;v-=mJ6YRhaZlZf&gcU8n zGmCCl2k*@4g7Nh`vuIw)wlj-5 zH~B0zhdBb4dcuojmInV~NY5`AQa^az%i1;YHkYLkm?dJVN-n(DXK@w0L1t+HywlY# z+V=0tYD&YN<46`=mOdWIsy>BUw6(b#v}n&itd(W43EN%Hs!@$n(}}&F zW#Og47V#|0V;WX=c1X4t-z{`DkHeHya8zvY_&~0grG#^ms#I9yl<~3A5s_1Z!Dd{{Kr-sSW3sS3&vxZclj(WkFe@u4r`ZSRAZ|1=EF8tr(k4{r9Op|#;Lk7(wxu5jlZKE7UBsG&W&6>zx@CfkB?|3|hDA>co*o?& zDt80XE|xi{si0nte@KnGJ}jFq6UW22wBMcK`!KFem2ug0ndmewyE>nRk6kQpjI;1A zEW76Q*$rU5HA|kb(3+*mu)><9Utnc5OI=|}HA|OZEj3G*VG%V;S+IKAsfA_JEcJ%< z(kxkD!%ArukKnG_a6Z5Xy0A2wrN*!(nx#Nk49!xxriN6cxgkx5b>ITJagw@Op@53@?mS)5HWtI|P-7-tx!GdL$Zoo=qmWII+ zWi7+DD?IzH9}n){<_Yj?R92;vhdEzz{JJ=sE~QVLp~n*b9RikQ*X%)^++lv@Jf&O1 z5@ufO+y#~{v$PA=EVC2`i^0EjyxeQ9ie)o0l$BL9IskxpRD(d4mc$nO#Ax95{mJBu1R% z?lS*mb`LyfFQ3e=&js8!r!7=3(?-;!bF0p&Y`W9ve=55X-=n;>jx(fEpBYjjtYBts30SG@Od--GSgg!!Ff2-D zslhZu(qjxM64oQLHf2U36c;9(&bB3-ew-DG$2QL=r#aurN0}_0;gnDvZ;#}OF}qI= z&p=x8Tr4Z#K1VsqjG?o;m2VDB(uDiw(CD_<86Nb_;k$g_oaUIhSM?ma*qN*6(B#OR z>N(EIj-sxXS+3A)yws}qkG=RtF1>nABYx_zxmqrxwt|ZK__zXVTl(eDP03iloQ8Cv zw1gM2BouM>qMu>WG=0sb6^b*Y+OSNT*=blG%~H8-hLpJjCEG*4oJ!6Ki0bC4P-b;i zs&KF|^%Y~jOqDbZ$#GV)Z&(h^@5~9ysl|_&t|rS6xKh%+&n{Rs&C9EQhvm{NJ%V-8 zEdBEXO167pIjLQW(rMrgGm)#+whbXQd?IcnF5T%4^U9?T{e?5!tCr&{cgFk05cS zgYk7(6b!)pswXtcIdH*vvXc)@E98LEm2Izg?(#FHKB{FZ7aEevmG~kxm+m_EJL6YU zxe`xObLr5ErsdKJ)iN!YI@f1uxzq`lI>V$i&gVv2E{)asX}NSUDrwKH(3~ne$YilX zUEnzY-#A5151%$k>iMO~vJ!P}!QruC!SGN+!_o*l=Q-P+OC5igJ-013+#`D~J!4c# zXMM|bXPwgdm{z3c(ur^}J(qgTpXqF0$B|2S`9Y4{Mtt`5ENEGTr&vhU@G5k1+2=I5 z9$+>9)kcycyIxydv_bv3f@2@nmE~UM=qSx6Lo$P;WID??Z=r4h-n#3Ero{ zqb#((`}BzD*w9H4v+4dVLCd4}H_fy>x>p*i<R{ldR%d2}1_R?DLv zQFUS-^?=q8debletBd6!-Z~Tu9ycv?M)26kna+dCpgFN6py_RloC^C$&ird!9dyIhJa0%cl<8^J=Os_B=Q2b$ji6{C0aD^{V3O zc`dmY%`sUrp#9Xj*;+X@EZ`Mi5RjmL+(=QpO|&{D|7(h!?l z`SzXID40fDOJf(yP@^tNgVONpSuF?_*|T&KR@bwnU|Bs&-C;RBOQ&HSJxh~d0X<2v z+O&zT`1lanW3rcReUJP_>q->&GZnx;_yz?Akctlisqf9s$frx@_KbXb zBE6H5Ps7xENP`X7G&8^cn4j_#wms-25IJrX66Q_7Dj2wY33%0W)>DE$rk1o UmPQt)#%5`zCgz*BGR|HM0J`%OTL1t6 delta 64 zcmca`is`~BrVTBOhG~`s$w`HIiTb7%spcl;mT4BICTYe778aHk=H|wUi3W*g7ReTd U21&-I#%V?d#s-_WGR|HM0KtS5Z2$lO diff --git a/master/.doctrees/migrating/migrate_v2.doctree b/master/.doctrees/migrating/migrate_v2.doctree index 258f87aad1a08ae010a4846a6b82d1e520736c37..14d560f2804be5a84c9db4ee1d3baa2c48ea2a86 100644 GIT binary patch delta 63 zcmV~$%ME}q2msJ9k+kLKIHZOX9*iS(0f*t%WqhwT)P`?CW2E=VI}i17HNsFAMYbL@ Slw8bcn%dcohXj+Zg8Tut%oE=L delta 63 zcmV~$(G7qw2nE0}kyMJjjzb&yGDc_W0uIApm+>wa<)Uv=iS~^C-o7bLtJVTqLl|f< S6LG}b^OB3+` diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb index c84eb4e52..116dab358 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/tabular.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:20.808965Z", - "iopub.status.busy": "2024-04-08T19:04:20.808791Z", - "iopub.status.idle": "2024-04-08T19:04:21.997144Z", - "shell.execute_reply": "2024-04-08T19:04:21.996577Z" + "iopub.execute_input": "2024-04-08T21:45:57.068339Z", + "iopub.status.busy": "2024-04-08T21:45:57.067980Z", + "iopub.status.idle": "2024-04-08T21:45:58.278884Z", + "shell.execute_reply": "2024-04-08T21:45:58.278211Z" }, "nbsphinx": "hidden" }, @@ -127,7 +127,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -152,10 +152,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:21.999784Z", - "iopub.status.busy": "2024-04-08T19:04:21.999468Z", - "iopub.status.idle": "2024-04-08T19:04:22.020020Z", - "shell.execute_reply": "2024-04-08T19:04:22.019546Z" + "iopub.execute_input": "2024-04-08T21:45:58.281538Z", + "iopub.status.busy": "2024-04-08T21:45:58.281232Z", + "iopub.status.idle": "2024-04-08T21:45:58.300582Z", + "shell.execute_reply": "2024-04-08T21:45:58.300113Z" } }, "outputs": [], @@ -196,10 +196,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.022733Z", - "iopub.status.busy": "2024-04-08T19:04:22.022190Z", - "iopub.status.idle": "2024-04-08T19:04:22.250382Z", - "shell.execute_reply": "2024-04-08T19:04:22.249811Z" + "iopub.execute_input": "2024-04-08T21:45:58.303240Z", + "iopub.status.busy": "2024-04-08T21:45:58.302768Z", + "iopub.status.idle": "2024-04-08T21:45:58.436390Z", + "shell.execute_reply": "2024-04-08T21:45:58.435821Z" } }, "outputs": [ @@ -306,10 +306,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.288376Z", - "iopub.status.busy": "2024-04-08T19:04:22.287864Z", - "iopub.status.idle": "2024-04-08T19:04:22.292293Z", - "shell.execute_reply": "2024-04-08T19:04:22.291761Z" + "iopub.execute_input": "2024-04-08T21:45:58.468989Z", + "iopub.status.busy": "2024-04-08T21:45:58.468559Z", + "iopub.status.idle": "2024-04-08T21:45:58.472453Z", + "shell.execute_reply": "2024-04-08T21:45:58.471980Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.294486Z", - "iopub.status.busy": "2024-04-08T19:04:22.294124Z", - "iopub.status.idle": "2024-04-08T19:04:22.302832Z", - "shell.execute_reply": "2024-04-08T19:04:22.302384Z" + "iopub.execute_input": "2024-04-08T21:45:58.474540Z", + "iopub.status.busy": "2024-04-08T21:45:58.474221Z", + "iopub.status.idle": "2024-04-08T21:45:58.482919Z", + "shell.execute_reply": "2024-04-08T21:45:58.482477Z" } }, "outputs": [], @@ -385,10 +385,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.305016Z", - "iopub.status.busy": "2024-04-08T19:04:22.304694Z", - "iopub.status.idle": "2024-04-08T19:04:22.307358Z", - "shell.execute_reply": "2024-04-08T19:04:22.306925Z" + "iopub.execute_input": "2024-04-08T21:45:58.485176Z", + "iopub.status.busy": "2024-04-08T21:45:58.484659Z", + "iopub.status.idle": "2024-04-08T21:45:58.487298Z", + "shell.execute_reply": "2024-04-08T21:45:58.486865Z" } }, "outputs": [], @@ -410,10 +410,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.309357Z", - "iopub.status.busy": "2024-04-08T19:04:22.308992Z", - "iopub.status.idle": "2024-04-08T19:04:22.826772Z", - "shell.execute_reply": "2024-04-08T19:04:22.826102Z" + "iopub.execute_input": "2024-04-08T21:45:58.489353Z", + "iopub.status.busy": "2024-04-08T21:45:58.488964Z", + "iopub.status.idle": "2024-04-08T21:45:59.016003Z", + "shell.execute_reply": "2024-04-08T21:45:59.015357Z" } }, "outputs": [], @@ -447,10 +447,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.829195Z", - "iopub.status.busy": "2024-04-08T19:04:22.829001Z", - "iopub.status.idle": "2024-04-08T19:04:24.584334Z", - "shell.execute_reply": "2024-04-08T19:04:24.583696Z" + "iopub.execute_input": "2024-04-08T21:45:59.018616Z", + "iopub.status.busy": "2024-04-08T21:45:59.018418Z", + "iopub.status.idle": "2024-04-08T21:46:00.735533Z", + "shell.execute_reply": "2024-04-08T21:46:00.734843Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.587018Z", - "iopub.status.busy": "2024-04-08T19:04:24.586424Z", - "iopub.status.idle": "2024-04-08T19:04:24.596789Z", - "shell.execute_reply": "2024-04-08T19:04:24.596333Z" + "iopub.execute_input": "2024-04-08T21:46:00.738117Z", + "iopub.status.busy": "2024-04-08T21:46:00.737547Z", + "iopub.status.idle": "2024-04-08T21:46:00.747854Z", + "shell.execute_reply": "2024-04-08T21:46:00.747337Z" } }, "outputs": [ @@ -606,10 +606,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.598784Z", - "iopub.status.busy": "2024-04-08T19:04:24.598605Z", - "iopub.status.idle": "2024-04-08T19:04:24.603028Z", - "shell.execute_reply": "2024-04-08T19:04:24.602574Z" + "iopub.execute_input": "2024-04-08T21:46:00.750041Z", + "iopub.status.busy": "2024-04-08T21:46:00.749718Z", + "iopub.status.idle": "2024-04-08T21:46:00.753816Z", + "shell.execute_reply": "2024-04-08T21:46:00.753366Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.604932Z", - "iopub.status.busy": "2024-04-08T19:04:24.604757Z", - "iopub.status.idle": "2024-04-08T19:04:24.612374Z", - "shell.execute_reply": "2024-04-08T19:04:24.611848Z" + "iopub.execute_input": "2024-04-08T21:46:00.755965Z", + "iopub.status.busy": "2024-04-08T21:46:00.755652Z", + "iopub.status.idle": "2024-04-08T21:46:00.762575Z", + "shell.execute_reply": "2024-04-08T21:46:00.762154Z" } }, "outputs": [], @@ -659,10 +659,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.614464Z", - "iopub.status.busy": "2024-04-08T19:04:24.614057Z", - "iopub.status.idle": "2024-04-08T19:04:24.725724Z", - "shell.execute_reply": "2024-04-08T19:04:24.725123Z" + "iopub.execute_input": "2024-04-08T21:46:00.764644Z", + "iopub.status.busy": "2024-04-08T21:46:00.764330Z", + "iopub.status.idle": "2024-04-08T21:46:00.877346Z", + "shell.execute_reply": "2024-04-08T21:46:00.876840Z" } }, "outputs": [ @@ -692,10 +692,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.728264Z", - "iopub.status.busy": "2024-04-08T19:04:24.727792Z", - "iopub.status.idle": "2024-04-08T19:04:24.730921Z", - "shell.execute_reply": "2024-04-08T19:04:24.730473Z" + "iopub.execute_input": "2024-04-08T21:46:00.879404Z", + "iopub.status.busy": "2024-04-08T21:46:00.879224Z", + "iopub.status.idle": "2024-04-08T21:46:00.882088Z", + "shell.execute_reply": "2024-04-08T21:46:00.881627Z" } }, "outputs": [], @@ -716,10 +716,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.732880Z", - "iopub.status.busy": "2024-04-08T19:04:24.732594Z", - "iopub.status.idle": "2024-04-08T19:04:26.886972Z", - "shell.execute_reply": "2024-04-08T19:04:26.886312Z" + "iopub.execute_input": "2024-04-08T21:46:00.883949Z", + "iopub.status.busy": "2024-04-08T21:46:00.883778Z", + "iopub.status.idle": "2024-04-08T21:46:02.964272Z", + "shell.execute_reply": "2024-04-08T21:46:02.963585Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:26.889971Z", - "iopub.status.busy": "2024-04-08T19:04:26.889228Z", - "iopub.status.idle": "2024-04-08T19:04:26.900494Z", - "shell.execute_reply": "2024-04-08T19:04:26.899943Z" + "iopub.execute_input": "2024-04-08T21:46:02.967481Z", + "iopub.status.busy": "2024-04-08T21:46:02.966608Z", + "iopub.status.idle": "2024-04-08T21:46:02.978827Z", + "shell.execute_reply": "2024-04-08T21:46:02.978236Z" } }, "outputs": [ @@ -772,10 +772,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:26.902458Z", - "iopub.status.busy": "2024-04-08T19:04:26.902143Z", - "iopub.status.idle": "2024-04-08T19:04:27.012965Z", - "shell.execute_reply": "2024-04-08T19:04:27.012399Z" + "iopub.execute_input": "2024-04-08T21:46:02.980899Z", + "iopub.status.busy": "2024-04-08T21:46:02.980580Z", + "iopub.status.idle": "2024-04-08T21:46:03.004548Z", + "shell.execute_reply": "2024-04-08T21:46:03.003965Z" }, "nbsphinx": "hidden" }, @@ -813,7 +813,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb index cf6ae4311..f40f695d1 100644 --- a/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:29.937745Z", - "iopub.status.busy": "2024-04-08T19:04:29.937583Z", - "iopub.status.idle": "2024-04-08T19:04:33.047637Z", - "shell.execute_reply": "2024-04-08T19:04:33.046998Z" + "iopub.execute_input": "2024-04-08T21:46:06.221686Z", + "iopub.status.busy": "2024-04-08T21:46:06.221200Z", + "iopub.status.idle": "2024-04-08T21:46:09.361014Z", + "shell.execute_reply": "2024-04-08T21:46:09.360445Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.050116Z", - "iopub.status.busy": "2024-04-08T19:04:33.049809Z", - "iopub.status.idle": "2024-04-08T19:04:33.053073Z", - "shell.execute_reply": "2024-04-08T19:04:33.052649Z" + "iopub.execute_input": "2024-04-08T21:46:09.363647Z", + "iopub.status.busy": "2024-04-08T21:46:09.363253Z", + "iopub.status.idle": "2024-04-08T21:46:09.366528Z", + "shell.execute_reply": "2024-04-08T21:46:09.366102Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.054962Z", - "iopub.status.busy": "2024-04-08T19:04:33.054682Z", - "iopub.status.idle": "2024-04-08T19:04:33.057634Z", - "shell.execute_reply": "2024-04-08T19:04:33.057206Z" + "iopub.execute_input": "2024-04-08T21:46:09.368543Z", + "iopub.status.busy": "2024-04-08T21:46:09.368227Z", + "iopub.status.idle": "2024-04-08T21:46:09.371141Z", + "shell.execute_reply": "2024-04-08T21:46:09.370705Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.059556Z", - "iopub.status.busy": "2024-04-08T19:04:33.059236Z", - "iopub.status.idle": "2024-04-08T19:04:33.304635Z", - "shell.execute_reply": "2024-04-08T19:04:33.304093Z" + "iopub.execute_input": "2024-04-08T21:46:09.373133Z", + "iopub.status.busy": "2024-04-08T21:46:09.372809Z", + "iopub.status.idle": "2024-04-08T21:46:09.397158Z", + "shell.execute_reply": "2024-04-08T21:46:09.396569Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.306822Z", - "iopub.status.busy": "2024-04-08T19:04:33.306485Z", - "iopub.status.idle": "2024-04-08T19:04:33.309981Z", - "shell.execute_reply": "2024-04-08T19:04:33.309578Z" + "iopub.execute_input": "2024-04-08T21:46:09.399759Z", + "iopub.status.busy": "2024-04-08T21:46:09.399318Z", + "iopub.status.idle": "2024-04-08T21:46:09.403157Z", + "shell.execute_reply": "2024-04-08T21:46:09.402590Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.311977Z", - "iopub.status.busy": "2024-04-08T19:04:33.311602Z", - "iopub.status.idle": "2024-04-08T19:04:33.314907Z", - "shell.execute_reply": "2024-04-08T19:04:33.314372Z" + "iopub.execute_input": "2024-04-08T21:46:09.405236Z", + "iopub.status.busy": "2024-04-08T21:46:09.404845Z", + "iopub.status.idle": "2024-04-08T21:46:09.408315Z", + "shell.execute_reply": "2024-04-08T21:46:09.407775Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay'}\n" + "Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'cancel_transfer', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.316831Z", - "iopub.status.busy": "2024-04-08T19:04:33.316579Z", - "iopub.status.idle": "2024-04-08T19:04:33.319694Z", - "shell.execute_reply": "2024-04-08T19:04:33.319261Z" + "iopub.execute_input": "2024-04-08T21:46:09.410237Z", + "iopub.status.busy": "2024-04-08T21:46:09.409943Z", + "iopub.status.idle": "2024-04-08T21:46:09.413101Z", + "shell.execute_reply": "2024-04-08T21:46:09.412566Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.321534Z", - "iopub.status.busy": "2024-04-08T19:04:33.321217Z", - "iopub.status.idle": "2024-04-08T19:04:33.324298Z", - "shell.execute_reply": "2024-04-08T19:04:33.323874Z" + "iopub.execute_input": "2024-04-08T21:46:09.415077Z", + "iopub.status.busy": "2024-04-08T21:46:09.414751Z", + "iopub.status.idle": "2024-04-08T21:46:09.418069Z", + "shell.execute_reply": "2024-04-08T21:46:09.417520Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.326161Z", - "iopub.status.busy": "2024-04-08T19:04:33.325901Z", - "iopub.status.idle": "2024-04-08T19:04:39.132517Z", - "shell.execute_reply": "2024-04-08T19:04:39.131899Z" + "iopub.execute_input": "2024-04-08T21:46:09.420330Z", + "iopub.status.busy": "2024-04-08T21:46:09.419902Z", + "iopub.status.idle": "2024-04-08T21:46:13.663207Z", + "shell.execute_reply": "2024-04-08T21:46:13.662544Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "414486671bbc4579b154f2d4dd8df463", + "model_id": "ca53515c3b9541058a7101bcce2962c2", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "596554d1fd004a229dc0e9d5610bace9", + "model_id": "3d6a576d0a4c4615bbe32ce97958a77b", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a26fef448554f36a9cb66bea78f484a", + "model_id": "445fc7b3370f419a97d75befa400a7c6", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c18cde9a3b464ad1a69d4fbf65c4287b", + "model_id": "25c18c7965fb48c68a87ef99282a4553", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8839cb132d74eb9a916dda9fdafe1c4", + "model_id": "90210570e43043339f5b21c2dd4bfb80", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5e9e17de388746f4ba1fb4f05e426c4e", + "model_id": "ff91dbb797af4611acdaca215e0d14bd", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3af073a39e45402187f042a3cf90b160", + "model_id": "d3a6c21822af4c58b185e7ed5c38c37c", "version_major": 2, "version_minor": 0 }, @@ -569,7 +569,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", " return self.fget.__get__(instance, owner)()\n" ] } @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:39.135354Z", - "iopub.status.busy": "2024-04-08T19:04:39.134961Z", - "iopub.status.idle": "2024-04-08T19:04:39.137900Z", - "shell.execute_reply": "2024-04-08T19:04:39.137434Z" + "iopub.execute_input": "2024-04-08T21:46:13.666642Z", + "iopub.status.busy": "2024-04-08T21:46:13.666267Z", + "iopub.status.idle": "2024-04-08T21:46:13.669783Z", + "shell.execute_reply": "2024-04-08T21:46:13.669182Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:39.139840Z", - "iopub.status.busy": "2024-04-08T19:04:39.139530Z", - "iopub.status.idle": "2024-04-08T19:04:39.141949Z", - "shell.execute_reply": "2024-04-08T19:04:39.141547Z" + "iopub.execute_input": "2024-04-08T21:46:13.672099Z", + "iopub.status.busy": "2024-04-08T21:46:13.671900Z", + "iopub.status.idle": "2024-04-08T21:46:13.674853Z", + "shell.execute_reply": "2024-04-08T21:46:13.674252Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:39.143931Z", - "iopub.status.busy": "2024-04-08T19:04:39.143626Z", - "iopub.status.idle": "2024-04-08T19:04:41.418071Z", - "shell.execute_reply": "2024-04-08T19:04:41.417473Z" + "iopub.execute_input": "2024-04-08T21:46:13.676970Z", + "iopub.status.busy": "2024-04-08T21:46:13.676793Z", + "iopub.status.idle": "2024-04-08T21:46:16.018875Z", + "shell.execute_reply": "2024-04-08T21:46:16.018225Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.421050Z", - "iopub.status.busy": "2024-04-08T19:04:41.420335Z", - "iopub.status.idle": "2024-04-08T19:04:41.427937Z", - "shell.execute_reply": "2024-04-08T19:04:41.427499Z" + "iopub.execute_input": "2024-04-08T21:46:16.021873Z", + "iopub.status.busy": "2024-04-08T21:46:16.021220Z", + "iopub.status.idle": "2024-04-08T21:46:16.029041Z", + "shell.execute_reply": "2024-04-08T21:46:16.028512Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.429872Z", - "iopub.status.busy": "2024-04-08T19:04:41.429566Z", - "iopub.status.idle": "2024-04-08T19:04:41.433444Z", - "shell.execute_reply": "2024-04-08T19:04:41.433009Z" + "iopub.execute_input": "2024-04-08T21:46:16.031290Z", + "iopub.status.busy": "2024-04-08T21:46:16.031014Z", + "iopub.status.idle": "2024-04-08T21:46:16.034817Z", + "shell.execute_reply": "2024-04-08T21:46:16.034373Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.435332Z", - "iopub.status.busy": "2024-04-08T19:04:41.435016Z", - "iopub.status.idle": "2024-04-08T19:04:41.437872Z", - "shell.execute_reply": "2024-04-08T19:04:41.437382Z" + "iopub.execute_input": "2024-04-08T21:46:16.036878Z", + "iopub.status.busy": "2024-04-08T21:46:16.036452Z", + "iopub.status.idle": "2024-04-08T21:46:16.039842Z", + "shell.execute_reply": "2024-04-08T21:46:16.039385Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.439975Z", - "iopub.status.busy": "2024-04-08T19:04:41.439662Z", - "iopub.status.idle": "2024-04-08T19:04:41.442421Z", - "shell.execute_reply": "2024-04-08T19:04:41.442004Z" + "iopub.execute_input": "2024-04-08T21:46:16.041890Z", + "iopub.status.busy": "2024-04-08T21:46:16.041484Z", + "iopub.status.idle": "2024-04-08T21:46:16.044609Z", + "shell.execute_reply": "2024-04-08T21:46:16.044158Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.444405Z", - "iopub.status.busy": "2024-04-08T19:04:41.444102Z", - "iopub.status.idle": "2024-04-08T19:04:41.450660Z", - "shell.execute_reply": "2024-04-08T19:04:41.450205Z" + "iopub.execute_input": "2024-04-08T21:46:16.046518Z", + "iopub.status.busy": "2024-04-08T21:46:16.046340Z", + "iopub.status.idle": "2024-04-08T21:46:16.053640Z", + "shell.execute_reply": "2024-04-08T21:46:16.053183Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.452688Z", - "iopub.status.busy": "2024-04-08T19:04:41.452371Z", - "iopub.status.idle": "2024-04-08T19:04:41.707871Z", - "shell.execute_reply": "2024-04-08T19:04:41.707294Z" + "iopub.execute_input": "2024-04-08T21:46:16.055839Z", + "iopub.status.busy": "2024-04-08T21:46:16.055437Z", + "iopub.status.idle": "2024-04-08T21:46:16.281522Z", + "shell.execute_reply": "2024-04-08T21:46:16.280918Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.710541Z", - "iopub.status.busy": "2024-04-08T19:04:41.710134Z", - "iopub.status.idle": "2024-04-08T19:04:41.886669Z", - "shell.execute_reply": "2024-04-08T19:04:41.886149Z" + "iopub.execute_input": "2024-04-08T21:46:16.284508Z", + "iopub.status.busy": "2024-04-08T21:46:16.283902Z", + "iopub.status.idle": "2024-04-08T21:46:16.462865Z", + "shell.execute_reply": "2024-04-08T21:46:16.462241Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.889178Z", - "iopub.status.busy": "2024-04-08T19:04:41.888817Z", - "iopub.status.idle": "2024-04-08T19:04:41.892522Z", - "shell.execute_reply": "2024-04-08T19:04:41.892069Z" + "iopub.execute_input": "2024-04-08T21:46:16.465752Z", + "iopub.status.busy": "2024-04-08T21:46:16.465300Z", + "iopub.status.idle": "2024-04-08T21:46:16.469519Z", + "shell.execute_reply": "2024-04-08T21:46:16.468996Z" }, "nbsphinx": "hidden" }, @@ -1108,64 +1108,35 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00882e39d8294fa7bf11a9929411c91d": { + "01a10cb5f09d4fa5b22b5e162e2ac28d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0435bd2a67ae4580b11f72300c8c1b9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "068617b1c6e7410ea8a61aaa3bf35a59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f6d6dadb262429cb1d0a9d56953f5c6", + "placeholder": "​", + "style": "IPY_MODEL_18cdc6e48b0848a0a91a077528a56c7a", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 344kB/s]" } }, - "107f3b6a64fb41898b51c78312996d47": { + "01a41e2ea2de40839044f3cee4a1d9be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1183,7 +1154,7 @@ "text_color": null } }, - "161f5f17377e4e528cc2e973474950ee": { + "01eac64567a24c4395929ce231c1b5b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1198,69 +1169,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_63fe7f89c61d469689356c8afe8f7d0a", + "layout": "IPY_MODEL_31877892c1544f5fb2ed5e7206151493", "placeholder": "​", - "style": "IPY_MODEL_068617b1c6e7410ea8a61aaa3bf35a59", + "style": "IPY_MODEL_c2a732321f2240d29f32c36ec2994c6d", "tabbable": null, "tooltip": null, "value": "README.md: 100%" } }, - "16dad8a9c9074f5ab4ed24858cf4f896": { + "0436616e268442929285c45e5127c471": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b0e68483cbf470db65245930283cce4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2dcd6e4805fb403ba8b6c1ce8e5ff117": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5722a0ad5a9e475e9fd26bd2bab542a4", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_48a6235e724d4da1b21bcb38f774f384", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "3041fa94176846a99ea4c32b7fa1cade": { + "068ec87f53e34cad81151e4e21db4825": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1313,7 +1256,7 @@ "width": null } }, - "30e21853c71148d39d7be87c7c68889a": { + "10006765dc724c0a81b3b705e27cb01f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1366,170 +1309,115 @@ "width": null } }, - "33cce396c4bf413ebe5341fe28d03486": { + "10c18d2fd7534864815fd3171457b8c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7167dd43cb39496d8971354c7dcf8fb3", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a13aee655acd48a2bc16f80efcd736a4", + "layout": "IPY_MODEL_ccce6559adfc4f4aa533874515312556", + "placeholder": "​", + "style": "IPY_MODEL_6e6aca39cd07471b8aa62643ddfbb121", "tabbable": null, "tooltip": null, - "value": 466062.0 - } - }, - "34051f0f4e6242febbd69d5ad6e263e0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "config.json: 100%" } }, - "34f290f5d2fb480c8484034ab6752fca": { + "18cdc6e48b0848a0a91a077528a56c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55ca57fbdbeb4dd09672a18d9e527e1e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e715922dec9a4f518bd83655ec5ece8c", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3912e2b011df41679c1659d40bc9fefb": { + "1c2765d6557e4179bb7177e9eb540165": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a50e9ac92bb47ef8a4dd27183e221e7": { + "1d5c1b9225fc47b1b14a4defb1cb8e36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ec3e37aa59c4b15b552d7dde0fbef04", + "placeholder": "​", + "style": "IPY_MODEL_a5afba044f074bc3b0e22bee5f355889", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 28.8MB/s]" } }, - "3af073a39e45402187f042a3cf90b160": { + "1d697ac563214e1eb65a7408ed0c66b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3a0081d105e4d6193af250cc9cef948", - "IPY_MODEL_3eea5b07c46a4588903f301a31822500", - "IPY_MODEL_5194d575ab3e4498bcd728fe5c7d9a3d" - ], - "layout": "IPY_MODEL_c3f5dd847178422f94661624f9ecf612", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa1280910e174cc394d17a49d0fdb152", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_886c1627035646b1ba0402c6270d8d92", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 231508.0 } }, - "3c2b01854c664a3a834ebb6315a06d7a": { + "1e049cc31ea6429a9c218a0cc7248615": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1582,57 +1470,7 @@ "width": null } }, - "3eea5b07c46a4588903f301a31822500": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82f22504089445d980458c94bb3f0b22", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2f57f17657e430c89e1a52e7f245309", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "414486671bbc4579b154f2d4dd8df463": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3270c93e7874c21a39571fdb1d43780", - "IPY_MODEL_34f290f5d2fb480c8484034ab6752fca", - "IPY_MODEL_9a1995f42694404abb75d6338d1bddc7" - ], - "layout": "IPY_MODEL_acdced823e2a4d6f950e27bd4802b639", - "tabbable": null, - "tooltip": null - } - }, - "41e5eb399b424312bb565497b2f550a6": { + "1ec3e37aa59c4b15b552d7dde0fbef04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1685,7 +1523,23 @@ "width": null } }, - "427f262b918e461c9202e7a81d04c8dc": { + "1f14fbebb09447788b19ee03a9db1672": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1f5f107d41f445b2a63a30439835d215": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1738,30 +1592,49 @@ "width": null } }, - "42a8d833492a48fe958eb757ee25c31c": { + "2043a185143140ffa391bc21475cf9cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "21def0e5765c49dc9672ba0c6bf53170": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30e21853c71148d39d7be87c7c68889a", - "placeholder": "​", - "style": "IPY_MODEL_fdf1adc0e36d4541972658ad13062aac", + "layout": "IPY_MODEL_a0c4020444ad493f9affd56e05d5ae28", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f14fbebb09447788b19ee03a9db1672", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 6.02MB/s]" + "value": 466062.0 } }, - "4a26fef448554f36a9cb66bea78f484a": { + "25c18c7965fb48c68a87ef99282a4553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1776,57 +1649,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c4431e7dcf5a41e1934fd352a0e18cc6", - "IPY_MODEL_a200cf245005465880fbcc7a852362d4", - "IPY_MODEL_5de73fab2f284817999b4f68149d32b9" + "IPY_MODEL_844f4a0cb12d4f6b93d496db633fb85b", + "IPY_MODEL_47c3c8d2f7da4bf686c7e5271ebb77ed", + "IPY_MODEL_4c65aba82c7f4f4db177928d6a8cd799" ], - "layout": "IPY_MODEL_3041fa94176846a99ea4c32b7fa1cade", + "layout": "IPY_MODEL_ef813f8e588a455e995ff2a736d90713", "tabbable": null, "tooltip": null } }, - "4ba657e74f59423f9bed6c70b030fcfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_427f262b918e461c9202e7a81d04c8dc", - "placeholder": "​", - "style": "IPY_MODEL_fad61d9bcd544d64a2896b7a4fafeca3", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 355kB/s]" - } - }, - "4c9a189517774bbe90d04de5fdd9e48f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5194d575ab3e4498bcd728fe5c7d9a3d": { + "2bea500a9979445987385d0178334532": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1837,72 +1669,37 @@ "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab4a32cb43804d52b25207713bc5f0f4", - "placeholder": "​", - "style": "IPY_MODEL_4c9a189517774bbe90d04de5fdd9e48f", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 1.77MB/s]" - } - }, - "5385ad8ba67c426daa3e219dd49f7c1b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f5f107d41f445b2a63a30439835d215", + "placeholder": "​", + "style": "IPY_MODEL_4bfe568beca4436c80aa9a69eb070baa", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 35.2MB/s]" + } + }, + "2d339299784e40e4a23a4e7c96342ddc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "55ca57fbdbeb4dd09672a18d9e527e1e": { + "31877892c1544f5fb2ed5e7206151493": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,70 +1752,77 @@ "width": null } }, - "596554d1fd004a229dc0e9d5610bace9": { + "3869c322f6514e20afdd020bc56fedcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_161f5f17377e4e528cc2e973474950ee", - "IPY_MODEL_a85b90552a3e4665b51fc3b6e7d921f7", - "IPY_MODEL_4ba657e74f59423f9bed6c70b030fcfa" - ], - "layout": "IPY_MODEL_eb1b16cb3c634b0496ccce16fde573eb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_df2663cd0caf461f9b787a45fda00739", + "placeholder": "​", + "style": "IPY_MODEL_c16cc57816c64940bcd03d94013a353b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "5a8a165febd74ab8a0e847c8a208e73f": { + "3ba855217d194266a4ad4d5e0cfb674d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dacf33088c854518ba143e9208a499ad", + "placeholder": "​", + "style": "IPY_MODEL_d5ea6101590e4591b8daa45708ef390c", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "5de73fab2f284817999b4f68149d32b9": { + "3d6a576d0a4c4615bbe32ce97958a77b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cbfa8e31e7cb4fd5b0f2827be2777ef3", - "placeholder": "​", - "style": "IPY_MODEL_16dad8a9c9074f5ab4ed24858cf4f896", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_01eac64567a24c4395929ce231c1b5b2", + "IPY_MODEL_0436616e268442929285c45e5127c471", + "IPY_MODEL_01a10cb5f09d4fa5b22b5e162e2ac28d" + ], + "layout": "IPY_MODEL_7b4db89848474dd38d7725de86fb17d2", "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 127kB/s]" + "tooltip": null } }, - "5e9e17de388746f4ba1fb4f05e426c4e": { + "445fc7b3370f419a97d75befa400a7c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2033,16 +1837,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a8e917adc0db482da10f7259260a52fc", - "IPY_MODEL_6062369e250e403897e6f33990c23d57", - "IPY_MODEL_7b208fafba0244c7a857e15c10805106" + "IPY_MODEL_10c18d2fd7534864815fd3171457b8c0", + "IPY_MODEL_e50cd1c7d6c746b58250cd66ce5e6cb7", + "IPY_MODEL_f18660ee4ca447f98287a50190595742" ], - "layout": "IPY_MODEL_b93f1aea04264f86afd5ca6e5f3deb9a", + "layout": "IPY_MODEL_10006765dc724c0a81b3b705e27cb01f", "tabbable": null, "tooltip": null } }, - "6062369e250e403897e6f33990c23d57": { + "47c3c8d2f7da4bf686c7e5271ebb77ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2058,43 +1862,90 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_859e480b7e01405fb1af9226d6a94736", - "max": 48.0, + "layout": "IPY_MODEL_780d5822c5d34358a96e35c6207d7ff4", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0435bd2a67ae4580b11f72300c8c1b9f", + "style": "IPY_MODEL_506bb5734c2140c7966a72c2a9b4b5ea", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 54245363.0 } }, - "60cb8f29c0a04f8a9b8775d425f7c1d4": { + "48a6235e724d4da1b21bcb38f774f384": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4bfe568beca4436c80aa9a69eb070baa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4c65aba82c7f4f4db177928d6a8cd799": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cfe5b4829a843b499e9d9b1aad10794", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8c3149008147411a9172b8a0627cbbdf", + "layout": "IPY_MODEL_c0141551423c494cbadbe81146e01f9a", + "placeholder": "​", + "style": "IPY_MODEL_1c2765d6557e4179bb7177e9eb540165", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": " 54.2M/54.2M [00:00<00:00, 310MB/s]" + } + }, + "506bb5734c2140c7966a72c2a9b4b5ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "63fe7f89c61d469689356c8afe8f7d0a": { + "5722a0ad5a9e475e9fd26bd2bab542a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2147,30 +1998,60 @@ "width": null } }, - "6b70c1af64654cf0bfc8e515cbe2644e": { - "model_module": "@jupyter-widgets/controls", + "59e05ece73804f1a94f6d0297feaec41": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99f0d4542e8e423b9018be6c83282910", - "placeholder": "​", - "style": "IPY_MODEL_107f3b6a64fb41898b51c78312996d47", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 230MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7167dd43cb39496d8971354c7dcf8fb3": { + "5fbf77d3474144b7a34602f6573a8c5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2223,7 +2104,7 @@ "width": null } }, - "792627ad3d4a4356926466777e5e286b": { + "6031a160e3a841608a08c6fe19ebd376": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2238,15 +2119,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc16653aacb543948c8bcdbebbe18041", + "layout": "IPY_MODEL_a010f02803aa400684b4d473d8cc70fa", "placeholder": "​", - "style": "IPY_MODEL_fdc67e28664e4583ace57f50340b3649", + "style": "IPY_MODEL_6692379f4a904908bf18e7cf27b2add6", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 48.0/48.0 [00:00<00:00, 8.12kB/s]" + } + }, + "6692379f4a904908bf18e7cf27b2add6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "675610f3dc014be1bb1f11ed8a36b950": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b208fafba0244c7a857e15c10805106": { + "6a8eaeeb468a4f7e8069976b7d4854bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2261,15 +2178,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_41e5eb399b424312bb565497b2f550a6", + "layout": "IPY_MODEL_1e049cc31ea6429a9c218a0cc7248615", "placeholder": "​", - "style": "IPY_MODEL_f8c8778791df4709aa10067dd9083588", + "style": "IPY_MODEL_bed24fd894334028b852a36fac1250a4", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.81kB/s]" + "value": "vocab.txt: 100%" + } + }, + "6e6aca39cd07471b8aa62643ddfbb121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7ba8b4d37b90455ea0856a76fd53349f": { + "6f1773d942ab458cb151290a521226f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2322,7 +2257,7 @@ "width": null } }, - "82f22504089445d980458c94bb3f0b22": { + "71935e001c464dcabd6ea39b487acf56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2375,7 +2310,7 @@ "width": null } }, - "859e480b7e01405fb1af9226d6a94736": { + "780d5822c5d34358a96e35c6207d7ff4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2428,7 +2363,25 @@ "width": null } }, - "8c3149008147411a9172b8a0627cbbdf": { + "798f19e6c72e4b4e9c5ffbd0923de45a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7993ece5946a4a4b96b5eaac0741eac9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2444,7 +2397,7 @@ "description_width": "" } }, - "8cfe5b4829a843b499e9d9b1aad10794": { + "7b4db89848474dd38d7725de86fb17d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2497,25 +2450,7 @@ "width": null } }, - "938fb2a8d3a54d448069f0b85d12697d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "99f0d4542e8e423b9018be6c83282910": { + "7e3f04ad19ed4f5ebbe83137d2296db5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2568,30 +2503,7 @@ "width": null } }, - "9a1995f42694404abb75d6338d1bddc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f9d2786f039f4739a73d2d301bf8b745", - "placeholder": "​", - "style": "IPY_MODEL_ae0fb7a982a2436ea7ad32f01526eea2", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 69.6kB/s]" - } - }, - "9f72c96cd44c40618e8826a9fc735324": { + "844f4a0cb12d4f6b93d496db633fb85b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2606,15 +2518,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e93f36ea176647cd9b1069f0297aadef", + "layout": "IPY_MODEL_e800a7a7df7e4a4dbed8f0d4516b5401", "placeholder": "​", - "style": "IPY_MODEL_2dcd6e4805fb403ba8b6c1ce8e5ff117", + "style": "IPY_MODEL_2d339299784e40e4a23a4e7c96342ddc", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin: 100%" } }, - "a13aee655acd48a2bc16f80efcd736a4": { + "886c1627035646b1ba0402c6270d8d92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2630,82 +2542,107 @@ "description_width": "" } }, - "a200cf245005465880fbcc7a852362d4": { + "8fb65f19ab264229bdbd15e5e3ce4856": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ba8b4d37b90455ea0856a76fd53349f", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a8a165febd74ab8a0e847c8a208e73f", + "layout": "IPY_MODEL_dffdd05c4a604bba8b045d14b1eb86ca", + "placeholder": "​", + "style": "IPY_MODEL_675610f3dc014be1bb1f11ed8a36b950", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": " 391/391 [00:00<00:00, 68.7kB/s]" } }, - "a85b90552a3e4665b51fc3b6e7d921f7": { + "90210570e43043339f5b21c2dd4bfb80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dcfe560d74704020ba7189f6b35342ae", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3912e2b011df41679c1659d40bc9fefb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b89a05fcb73e421b91c19356a8f9f378", + "IPY_MODEL_21def0e5765c49dc9672ba0c6bf53170", + "IPY_MODEL_1d5c1b9225fc47b1b14a4defb1cb8e36" + ], + "layout": "IPY_MODEL_6f1773d942ab458cb151290a521226f4", "tabbable": null, - "tooltip": null, - "value": 2211.0 + "tooltip": null } }, - "a8e917adc0db482da10f7259260a52fc": { - "model_module": "@jupyter-widgets/controls", + "9f6d6dadb262429cb1d0a9d56953f5c6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f41c778f7656469892daa08fc3f86248", - "placeholder": "​", - "style": "IPY_MODEL_2b0e68483cbf470db65245930283cce4", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ab4a32cb43804d52b25207713bc5f0f4": { + "a010f02803aa400684b4d473d8cc70fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2758,7 +2695,7 @@ "width": null } }, - "acdced823e2a4d6f950e27bd4802b639": { + "a0c4020444ad493f9affd56e05d5ae28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2811,7 +2748,7 @@ "width": null } }, - "ae0fb7a982a2436ea7ad32f01526eea2": { + "a5afba044f074bc3b0e22bee5f355889": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2829,69 +2766,7 @@ "text_color": null } }, - "b2f57f17657e430c89e1a52e7f245309": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b3270c93e7874c21a39571fdb1d43780": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34051f0f4e6242febbd69d5ad6e263e0", - "placeholder": "​", - "style": "IPY_MODEL_938fb2a8d3a54d448069f0b85d12697d", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "b3a0081d105e4d6193af250cc9cef948": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be33e673f6fe4622ab6bfd3a727d2c04", - "placeholder": "​", - "style": "IPY_MODEL_00882e39d8294fa7bf11a9929411c91d", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "b93f1aea04264f86afd5ca6e5f3deb9a": { + "a7ad808ad2f74b4c9bcd46a832b1d1f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2944,7 +2819,90 @@ "width": null } }, - "be33e673f6fe4622ab6bfd3a727d2c04": { + "ad711a8026be4911aaa3d5a0e2d33614": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59e05ece73804f1a94f6d0297feaec41", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b06819ab1b8746fb87023a870d70f567", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "b06819ab1b8746fb87023a870d70f567": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b89a05fcb73e421b91c19356a8f9f378": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fbf77d3474144b7a34602f6573a8c5f", + "placeholder": "​", + "style": "IPY_MODEL_01a41e2ea2de40839044f3cee4a1d9be", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "bed24fd894334028b852a36fac1250a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c0141551423c494cbadbe81146e01f9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2997,31 +2955,7 @@ "width": null } }, - "c18cde9a3b464ad1a69d4fbf65c4287b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9f72c96cd44c40618e8826a9fc735324", - "IPY_MODEL_60cb8f29c0a04f8a9b8775d425f7c1d4", - "IPY_MODEL_6b70c1af64654cf0bfc8e515cbe2644e" - ], - "layout": "IPY_MODEL_3c2b01854c664a3a834ebb6315a06d7a", - "tabbable": null, - "tooltip": null - } - }, - "c3f5dd847178422f94661624f9ecf612": { + "c01a7a8f8c2b47068c5b088dc77ea1fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3074,30 +3008,67 @@ "width": null } }, - "c4431e7dcf5a41e1934fd352a0e18cc6": { + "c16cc57816c64940bcd03d94013a353b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c2a732321f2240d29f32c36ec2994c6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ca53515c3b9541058a7101bcce2962c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5385ad8ba67c426daa3e219dd49f7c1b", - "placeholder": "​", - "style": "IPY_MODEL_3a50e9ac92bb47ef8a4dd27183e221e7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ba855217d194266a4ad4d5e0cfb674d", + "IPY_MODEL_ad711a8026be4911aaa3d5a0e2d33614", + "IPY_MODEL_8fb65f19ab264229bdbd15e5e3ce4856" + ], + "layout": "IPY_MODEL_71935e001c464dcabd6ea39b487acf56", "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "tooltip": null } }, - "cbfa8e31e7cb4fd5b0f2827be2777ef3": { + "ccce6559adfc4f4aa533874515312556": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3150,7 +3121,7 @@ "width": null } }, - "d27490d630934411bc6291d305749d0a": { + "d3899c159c4946b6bd88e91c4026603c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3203,7 +3174,75 @@ "width": null } }, - "dcfe560d74704020ba7189f6b35342ae": { + "d3a6c21822af4c58b185e7ed5c38c37c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a8eaeeb468a4f7e8069976b7d4854bd", + "IPY_MODEL_1d697ac563214e1eb65a7408ed0c66b9", + "IPY_MODEL_2bea500a9979445987385d0178334532" + ], + "layout": "IPY_MODEL_d3899c159c4946b6bd88e91c4026603c", + "tabbable": null, + "tooltip": null + } + }, + "d5ea6101590e4591b8daa45708ef390c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d6497a113c4446d39aa266e94c035a1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c01a7a8f8c2b47068c5b088dc77ea1fe", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7993ece5946a4a4b96b5eaac0741eac9", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "dacf33088c854518ba143e9208a499ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3256,47 +3295,7 @@ "width": null } }, - "e715922dec9a4f518bd83655ec5ece8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8839cb132d74eb9a916dda9fdafe1c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_792627ad3d4a4356926466777e5e286b", - "IPY_MODEL_33cce396c4bf413ebe5341fe28d03486", - "IPY_MODEL_42a8d833492a48fe958eb757ee25c31c" - ], - "layout": "IPY_MODEL_d27490d630934411bc6291d305749d0a", - "tabbable": null, - "tooltip": null - } - }, - "e93f36ea176647cd9b1069f0297aadef": { + "df2663cd0caf461f9b787a45fda00739": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3349,7 +3348,7 @@ "width": null } }, - "eb1b16cb3c634b0496ccce16fde573eb": { + "dffdd05c4a604bba8b045d14b1eb86ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3402,7 +3401,33 @@ "width": null } }, - "f41c778f7656469892daa08fc3f86248": { + "e50cd1c7d6c746b58250cd66ce5e6cb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_068ec87f53e34cad81151e4e21db4825", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2043a185143140ffa391bc21475cf9cc", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "e800a7a7df7e4a4dbed8f0d4516b5401": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3455,25 +3480,7 @@ "width": null } }, - "f8c8778791df4709aa10067dd9083588": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f9d2786f039f4739a73d2d301bf8b745": { + "ef813f8e588a455e995ff2a736d90713": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3526,25 +3533,30 @@ "width": null } }, - "fad61d9bcd544d64a2896b7a4fafeca3": { + "f18660ee4ca447f98287a50190595742": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e3f04ad19ed4f5ebbe83137d2296db5", + "placeholder": "​", + "style": "IPY_MODEL_798f19e6c72e4b4e9c5ffbd0923de45a", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 120kB/s]" } }, - "fc16653aacb543948c8bcdbebbe18041": { + "fa1280910e174cc394d17a49d0fdb152": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3597,40 +3609,28 @@ "width": null } }, - "fdc67e28664e4583ace57f50340b3649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fdf1adc0e36d4541972658ad13062aac": { + "ff91dbb797af4611acdaca215e0d14bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3869c322f6514e20afdd020bc56fedcc", + "IPY_MODEL_d6497a113c4446d39aa266e94c035a1b", + "IPY_MODEL_6031a160e3a841608a08c6fe19ebd376" + ], + "layout": "IPY_MODEL_a7ad808ad2f74b4c9bcd46a832b1d1f4", + "tabbable": null, + "tooltip": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb index 28ea897d0..dd1feae76 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:46.105517Z", - "iopub.status.busy": "2024-04-08T19:04:46.104987Z", - "iopub.status.idle": "2024-04-08T19:04:51.038814Z", - "shell.execute_reply": "2024-04-08T19:04:51.038258Z" + "iopub.execute_input": "2024-04-08T21:46:19.829009Z", + "iopub.status.busy": "2024-04-08T21:46:19.828844Z", + "iopub.status.idle": "2024-04-08T21:46:24.797090Z", + "shell.execute_reply": "2024-04-08T21:46:24.796528Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:51.041604Z", - "iopub.status.busy": "2024-04-08T19:04:51.041029Z", - "iopub.status.idle": "2024-04-08T19:04:51.044345Z", - "shell.execute_reply": "2024-04-08T19:04:51.043904Z" + "iopub.execute_input": "2024-04-08T21:46:24.799961Z", + "iopub.status.busy": "2024-04-08T21:46:24.799270Z", + "iopub.status.idle": "2024-04-08T21:46:24.802636Z", + "shell.execute_reply": "2024-04-08T21:46:24.802151Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:51.046287Z", - "iopub.status.busy": "2024-04-08T19:04:51.045963Z", - "iopub.status.idle": "2024-04-08T19:04:51.050303Z", - "shell.execute_reply": "2024-04-08T19:04:51.049883Z" + "iopub.execute_input": "2024-04-08T21:46:24.804827Z", + "iopub.status.busy": "2024-04-08T21:46:24.804415Z", + "iopub.status.idle": "2024-04-08T21:46:24.808816Z", + "shell.execute_reply": "2024-04-08T21:46:24.808386Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:51.052312Z", - "iopub.status.busy": "2024-04-08T19:04:51.051991Z", - "iopub.status.idle": "2024-04-08T19:04:52.964225Z", - "shell.execute_reply": "2024-04-08T19:04:52.963597Z" + "iopub.execute_input": "2024-04-08T21:46:24.810880Z", + "iopub.status.busy": "2024-04-08T21:46:24.810647Z", + "iopub.status.idle": "2024-04-08T21:46:26.264645Z", + "shell.execute_reply": "2024-04-08T21:46:26.264022Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:52.967053Z", - "iopub.status.busy": "2024-04-08T19:04:52.966626Z", - "iopub.status.idle": "2024-04-08T19:04:52.977284Z", - "shell.execute_reply": "2024-04-08T19:04:52.976855Z" + "iopub.execute_input": "2024-04-08T21:46:26.267342Z", + "iopub.status.busy": "2024-04-08T21:46:26.266945Z", + "iopub.status.idle": "2024-04-08T21:46:26.277681Z", + "shell.execute_reply": "2024-04-08T21:46:26.277212Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:52.979356Z", - "iopub.status.busy": "2024-04-08T19:04:52.979056Z", - "iopub.status.idle": "2024-04-08T19:04:52.984474Z", - "shell.execute_reply": "2024-04-08T19:04:52.984027Z" + "iopub.execute_input": "2024-04-08T21:46:26.279820Z", + "iopub.status.busy": "2024-04-08T21:46:26.279480Z", + "iopub.status.idle": "2024-04-08T21:46:26.284942Z", + "shell.execute_reply": "2024-04-08T21:46:26.284496Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:52.986467Z", - "iopub.status.busy": "2024-04-08T19:04:52.986184Z", - "iopub.status.idle": "2024-04-08T19:04:53.470988Z", - "shell.execute_reply": "2024-04-08T19:04:53.470375Z" + "iopub.execute_input": "2024-04-08T21:46:26.287110Z", + "iopub.status.busy": "2024-04-08T21:46:26.286758Z", + "iopub.status.idle": "2024-04-08T21:46:26.740692Z", + "shell.execute_reply": "2024-04-08T21:46:26.740122Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:53.473214Z", - "iopub.status.busy": "2024-04-08T19:04:53.472775Z", - "iopub.status.idle": "2024-04-08T19:04:55.493272Z", - "shell.execute_reply": "2024-04-08T19:04:55.492735Z" + "iopub.execute_input": "2024-04-08T21:46:26.742916Z", + "iopub.status.busy": "2024-04-08T21:46:26.742540Z", + "iopub.status.idle": "2024-04-08T21:46:27.401973Z", + "shell.execute_reply": "2024-04-08T21:46:27.401472Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:55.495706Z", - "iopub.status.busy": "2024-04-08T19:04:55.495509Z", - "iopub.status.idle": "2024-04-08T19:04:55.513796Z", - "shell.execute_reply": "2024-04-08T19:04:55.513240Z" + "iopub.execute_input": "2024-04-08T21:46:27.404500Z", + "iopub.status.busy": "2024-04-08T21:46:27.404302Z", + "iopub.status.idle": "2024-04-08T21:46:27.422563Z", + "shell.execute_reply": "2024-04-08T21:46:27.421982Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:55.515946Z", - "iopub.status.busy": "2024-04-08T19:04:55.515624Z", - "iopub.status.idle": "2024-04-08T19:04:55.519151Z", - "shell.execute_reply": "2024-04-08T19:04:55.518745Z" + "iopub.execute_input": "2024-04-08T21:46:27.424814Z", + "iopub.status.busy": "2024-04-08T21:46:27.424470Z", + "iopub.status.idle": "2024-04-08T21:46:27.427574Z", + "shell.execute_reply": "2024-04-08T21:46:27.427128Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:55.521090Z", - "iopub.status.busy": "2024-04-08T19:04:55.520779Z", - "iopub.status.idle": "2024-04-08T19:05:10.361560Z", - "shell.execute_reply": "2024-04-08T19:05:10.361009Z" + "iopub.execute_input": "2024-04-08T21:46:27.429700Z", + "iopub.status.busy": "2024-04-08T21:46:27.429297Z", + "iopub.status.idle": "2024-04-08T21:46:42.372067Z", + "shell.execute_reply": "2024-04-08T21:46:42.371498Z" }, "id": "2FSQ2GR9R_YA" }, @@ -594,7 +594,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\n", "Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\n", " return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n" ] @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:10.364429Z", - "iopub.status.busy": "2024-04-08T19:05:10.364034Z", - "iopub.status.idle": "2024-04-08T19:05:10.367863Z", - "shell.execute_reply": "2024-04-08T19:05:10.367337Z" + "iopub.execute_input": "2024-04-08T21:46:42.374775Z", + "iopub.status.busy": "2024-04-08T21:46:42.374372Z", + "iopub.status.idle": "2024-04-08T21:46:42.378328Z", + "shell.execute_reply": "2024-04-08T21:46:42.377783Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:10.370078Z", - "iopub.status.busy": "2024-04-08T19:05:10.369656Z", - "iopub.status.idle": "2024-04-08T19:05:11.087473Z", - "shell.execute_reply": "2024-04-08T19:05:11.086872Z" + "iopub.execute_input": "2024-04-08T21:46:42.380536Z", + "iopub.status.busy": "2024-04-08T21:46:42.380263Z", + "iopub.status.idle": "2024-04-08T21:46:43.092934Z", + "shell.execute_reply": "2024-04-08T21:46:43.092363Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.090530Z", - "iopub.status.busy": "2024-04-08T19:05:11.089968Z", - "iopub.status.idle": "2024-04-08T19:05:11.095044Z", - "shell.execute_reply": "2024-04-08T19:05:11.094507Z" + "iopub.execute_input": "2024-04-08T21:46:43.096735Z", + "iopub.status.busy": "2024-04-08T21:46:43.095799Z", + "iopub.status.idle": "2024-04-08T21:46:43.102487Z", + "shell.execute_reply": "2024-04-08T21:46:43.101995Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.098295Z", - "iopub.status.busy": "2024-04-08T19:05:11.097250Z", - "iopub.status.idle": "2024-04-08T19:05:11.200881Z", - "shell.execute_reply": "2024-04-08T19:05:11.200284Z" + "iopub.execute_input": "2024-04-08T21:46:43.106104Z", + "iopub.status.busy": "2024-04-08T21:46:43.105172Z", + "iopub.status.idle": "2024-04-08T21:46:43.224734Z", + "shell.execute_reply": "2024-04-08T21:46:43.224179Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.203369Z", - "iopub.status.busy": "2024-04-08T19:05:11.202937Z", - "iopub.status.idle": "2024-04-08T19:05:11.215358Z", - "shell.execute_reply": "2024-04-08T19:05:11.214779Z" + "iopub.execute_input": "2024-04-08T21:46:43.227109Z", + "iopub.status.busy": "2024-04-08T21:46:43.226719Z", + "iopub.status.idle": "2024-04-08T21:46:43.239824Z", + "shell.execute_reply": "2024-04-08T21:46:43.239347Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.217681Z", - "iopub.status.busy": "2024-04-08T19:05:11.217301Z", - "iopub.status.idle": "2024-04-08T19:05:11.225343Z", - "shell.execute_reply": "2024-04-08T19:05:11.224791Z" + "iopub.execute_input": "2024-04-08T21:46:43.241973Z", + "iopub.status.busy": "2024-04-08T21:46:43.241609Z", + "iopub.status.idle": "2024-04-08T21:46:43.249511Z", + "shell.execute_reply": "2024-04-08T21:46:43.248996Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.227551Z", - "iopub.status.busy": "2024-04-08T19:05:11.227260Z", - "iopub.status.idle": "2024-04-08T19:05:11.231569Z", - "shell.execute_reply": "2024-04-08T19:05:11.231018Z" + "iopub.execute_input": "2024-04-08T21:46:43.251729Z", + "iopub.status.busy": "2024-04-08T21:46:43.251401Z", + "iopub.status.idle": "2024-04-08T21:46:43.255450Z", + "shell.execute_reply": "2024-04-08T21:46:43.254930Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.233584Z", - "iopub.status.busy": "2024-04-08T19:05:11.233223Z", - "iopub.status.idle": "2024-04-08T19:05:11.238833Z", - "shell.execute_reply": "2024-04-08T19:05:11.238283Z" + "iopub.execute_input": "2024-04-08T21:46:43.257519Z", + "iopub.status.busy": "2024-04-08T21:46:43.257119Z", + "iopub.status.idle": "2024-04-08T21:46:43.262638Z", + "shell.execute_reply": "2024-04-08T21:46:43.262204Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.240707Z", - "iopub.status.busy": "2024-04-08T19:05:11.240530Z", - "iopub.status.idle": "2024-04-08T19:05:11.595733Z", - "shell.execute_reply": "2024-04-08T19:05:11.595243Z" + "iopub.execute_input": "2024-04-08T21:46:43.264820Z", + "iopub.status.busy": "2024-04-08T21:46:43.264383Z", + "iopub.status.idle": "2024-04-08T21:46:43.617613Z", + "shell.execute_reply": "2024-04-08T21:46:43.617041Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.597887Z", - "iopub.status.busy": "2024-04-08T19:05:11.597533Z", - "iopub.status.idle": "2024-04-08T19:05:11.705498Z", - "shell.execute_reply": "2024-04-08T19:05:11.704961Z" + "iopub.execute_input": "2024-04-08T21:46:43.619986Z", + "iopub.status.busy": "2024-04-08T21:46:43.619555Z", + "iopub.status.idle": "2024-04-08T21:46:43.726639Z", + "shell.execute_reply": "2024-04-08T21:46:43.726089Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.707806Z", - "iopub.status.busy": "2024-04-08T19:05:11.707520Z", - "iopub.status.idle": "2024-04-08T19:05:11.814276Z", - "shell.execute_reply": "2024-04-08T19:05:11.813792Z" + "iopub.execute_input": "2024-04-08T21:46:43.728712Z", + "iopub.status.busy": "2024-04-08T21:46:43.728528Z", + "iopub.status.idle": "2024-04-08T21:46:43.833232Z", + "shell.execute_reply": "2024-04-08T21:46:43.832671Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.816405Z", - "iopub.status.busy": "2024-04-08T19:05:11.816094Z", - "iopub.status.idle": "2024-04-08T19:05:11.920916Z", - "shell.execute_reply": "2024-04-08T19:05:11.920366Z" + "iopub.execute_input": "2024-04-08T21:46:43.835431Z", + "iopub.status.busy": "2024-04-08T21:46:43.835246Z", + "iopub.status.idle": "2024-04-08T21:46:43.940278Z", + "shell.execute_reply": "2024-04-08T21:46:43.939779Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.923123Z", - "iopub.status.busy": "2024-04-08T19:05:11.922809Z", - "iopub.status.idle": "2024-04-08T19:05:11.926110Z", - "shell.execute_reply": "2024-04-08T19:05:11.925596Z" + "iopub.execute_input": "2024-04-08T21:46:43.942501Z", + "iopub.status.busy": "2024-04-08T21:46:43.942304Z", + "iopub.status.idle": "2024-04-08T21:46:43.945537Z", + "shell.execute_reply": "2024-04-08T21:46:43.945097Z" }, "nbsphinx": "hidden" }, @@ -1392,28 +1392,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01548e5746cc4788b0d61577e4b012b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "03e98d7846af44088b8a646b91364594": { + "075334b6408e493583a14d3e74f62432": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1428,15 +1412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6add2113ed1541dfbdb3c42fbbce25fc", + "layout": "IPY_MODEL_73af6f415da94538a728be63788bfbff", "placeholder": "​", - "style": "IPY_MODEL_fc4736ca693444da8e5b28edfdc65bc5", + "style": "IPY_MODEL_e163ef7db3974864868cb657fa0bb704", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 273MB/s]" } }, - "099362e1ce5c4a6b8d8d4c331a960d34": { + "1244fb1e07694bc4a5d9f3762d25d7e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1489,33 +1473,30 @@ "width": null } }, - "10f5629a4670476891a02ba1e61d2b9f": { + "15fb03b8088d44ddbda2fc1ec76c6fa8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ca834c7b06bd4f90ba096fa6f8d7103c", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_01548e5746cc4788b0d61577e4b012b3", + "layout": "IPY_MODEL_63c11a6a387147ca875d1745d8cd37d4", + "placeholder": "​", + "style": "IPY_MODEL_b9c90fdf46b3407991fa437a42ef1178", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": "embedding_model.ckpt: 100%" } }, - "124ddd3253c4476b83146639e17d57b4": { + "17e752b138f24ef699217a8c607a1a35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1530,33 +1511,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_37c6159b215f46748ce591cd48fe49f0", + "layout": "IPY_MODEL_d379fc5de5d54cf89f78b2d363a9ff22", "placeholder": "​", - "style": "IPY_MODEL_af4e6010ee0847468fae428d5bceb881", + "style": "IPY_MODEL_8ce14acdd43e49788f8063ea1cc09530", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": "classifier.ckpt: 100%" } }, - "153a557fc0794ff2b1d801bc73e89764": { - "model_module": "@jupyter-widgets/controls", + "19c4fd2602f14225b68710a08bf108d3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "15e61f73e248421da683941c01a6ba8a": { + "1e0a13c00c7b4735a637a4d02cff3ea4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1609,49 +1625,41 @@ "width": null } }, - "170825b92f484861b53a305933672d63": { + "225019f5967245de9fbc8a665953fdaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a1b19cb87394307a53c97aa5de7ef54", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7c70a56bdf6c4f4e9f2f310fe97caf21", - "tabbable": null, - "tooltip": null, - "value": 3201.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1845bd7583734a468217bf0a33a4a04e": { + "22b5c167594648b0a13c7ba8163845ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1d8d1f51752d4b69aa1135e17d8449e2": { + "2fcdc31a427e4e4e81995b305cc3aba9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1666,59 +1674,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_358c21f56ec2458089c2e7d7e5e7611d", + "layout": "IPY_MODEL_19c4fd2602f14225b68710a08bf108d3", "placeholder": "​", - "style": "IPY_MODEL_b38f5dc0540f47bcb4f22237b8bc10b5", + "style": "IPY_MODEL_53f7634108e341219d63ce6ef49ca3ef", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "label_encoder.txt: 100%" } }, - "1e261881c01a4c82af0950354ddbbf67": { + "32e61e1ee4e948d994f4c9f9ae5a397d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7187ee77d34d4ee58aea3e5ef7ea0d6f", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a84cb458429f4ac9ba17b78d73eb1b9c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2fcdc31a427e4e4e81995b305cc3aba9", + "IPY_MODEL_fffbd405efcf42bca8daf86a7e152ab6", + "IPY_MODEL_d274e31b0792469397067015426d9787" + ], + "layout": "IPY_MODEL_1e0a13c00c7b4735a637a4d02cff3ea4", "tabbable": null, - "tooltip": null, - "value": 128619.0 + "tooltip": null } }, - "2398940ef11744cd931d78b60fe1bf96": { + "35a5c5c8b75b44eea1d17aa40ef6d836": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8872e03905bf4e6fbafe66867b62e61e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a651acdfc2374773b4219c96fdbeeddc", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "344f8176bb9c4df2b5f5c5842359b28c": { + "3f9bfe896e864053ae276eac3fc3dd11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1733,122 +1747,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d7cff1a5c1c84b53a0f820ae0ae64f22", - "IPY_MODEL_10f5629a4670476891a02ba1e61d2b9f", - "IPY_MODEL_8227ef3e4a1d4b60bb8d49436af87b02" + "IPY_MODEL_15fb03b8088d44ddbda2fc1ec76c6fa8", + "IPY_MODEL_35a5c5c8b75b44eea1d17aa40ef6d836", + "IPY_MODEL_075334b6408e493583a14d3e74f62432" ], - "layout": "IPY_MODEL_6b1d25f5e1274b7087e5be1edb44f263", + "layout": "IPY_MODEL_aaea6b337a7848419be2e9c56fafb34c", "tabbable": null, "tooltip": null } }, - "358c21f56ec2458089c2e7d7e5e7611d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3656dfd1293341618ec097a837ccf824": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "37c6159b215f46748ce591cd48fe49f0": { + "4edc2366535f448dbe4023432c3633cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1901,94 +1809,33 @@ "width": null } }, - "3b7f0046c33247249156bee86a8ab344": { + "51ac0e8dccad4edd924bbaf904abfcb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3f10333ce59449f8893619a6a1200e72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15e61f73e248421da683941c01a6ba8a", - "placeholder": "​", - "style": "IPY_MODEL_770aeb28530d4716aeceac624b99192d", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 1.94MB/s]" - } - }, - "47f17e40d80540e8b9cd62de82c60b92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b84bee63e5341e68a70a1df0644c356", - "placeholder": "​", - "style": "IPY_MODEL_702d80d4b5874038a51e0c3fe4e29c9c", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 50.6MB/s]" - } - }, - "4911164b858e49c1b45c2acea166106f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0a147631094428498d5242f0dae3a28", - "placeholder": "​", - "style": "IPY_MODEL_3b7f0046c33247249156bee86a8ab344", + "layout": "IPY_MODEL_8a55cfdc621b43dca46743e02d939b50", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9d566cadf134454b79fc7ebbeb33a20", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 736kB/s]" + "value": 15856877.0 } }, - "49d50cf65e2243fe85ea4efa439383a4": { + "53f7634108e341219d63ce6ef49ca3ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2006,7 +1853,7 @@ "text_color": null } }, - "4a17f13f9daa4bd3a9e0f9a6bdcd54ce": { + "588cd470563744a8a6f189faadf66f72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2021,81 +1868,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bca20dd54024424b908c519dc7c65413", + "layout": "IPY_MODEL_e15cd2da984a447b9901acf000da5696", "placeholder": "​", - "style": "IPY_MODEL_6e856fb0c33a4b509b13af9f0bfa347d", + "style": "IPY_MODEL_b23b7540b02448b2b482342f9560dfd9", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 458kB/s]" + "value": " 15.9M/15.9M [00:00<00:00, 357MB/s]" } }, - "4c8c8519a91e4cf59efc5ee43887ceef": { + "6168b11b46e34cd08bb7daaddb4dbd24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "593320329ae4474ea377016a9d84c521": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03e98d7846af44088b8a646b91364594", - "IPY_MODEL_9dcd19b1766a4f0f9e62b19feae944e0", - "IPY_MODEL_4a17f13f9daa4bd3a9e0f9a6bdcd54ce" - ], - "layout": "IPY_MODEL_6f1084b3c29943cbae5ae582af5573d2", - "tabbable": null, - "tooltip": null - } - }, - "605873f7b6924ba3a2b8d496de6a3f37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_099362e1ce5c4a6b8d8d4c331a960d34", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c8c8519a91e4cf59efc5ee43887ceef", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6232f100dcfc4faea627bbfd5cf8d09e": { + "63c11a6a387147ca875d1745d8cd37d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,7 +1947,33 @@ "width": null } }, - "69f610d6cd3c4ac58e8089ac7c27c111": { + "6bf87a06e0074711be4c07ad294186ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e18c887b081047ef8e89b5693274fb68", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_225019f5967245de9fbc8a665953fdaa", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "6edf9ec332d349d199a268e10bbc57a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2163,16 +1988,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1d8d1f51752d4b69aa1135e17d8449e2", - "IPY_MODEL_605873f7b6924ba3a2b8d496de6a3f37", - "IPY_MODEL_47f17e40d80540e8b9cd62de82c60b92" + "IPY_MODEL_17e752b138f24ef699217a8c607a1a35", + "IPY_MODEL_51ac0e8dccad4edd924bbaf904abfcb3", + "IPY_MODEL_588cd470563744a8a6f189faadf66f72" ], - "layout": "IPY_MODEL_789cb19d03704e0b95b9af8afa82d248", + "layout": "IPY_MODEL_8bdde82a297643e0915d4e0f05872bc9", "tabbable": null, "tooltip": null } }, - "6add2113ed1541dfbdb3c42fbbce25fc": { + "6fdb6b81c8ff49838d7b5a65396e758d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "73af6f415da94538a728be63788bfbff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2225,7 +2066,7 @@ "width": null } }, - "6b1d25f5e1274b7087e5be1edb44f263": { + "7489ee03697647e7bead734f066bdec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2278,7 +2119,54 @@ "width": null } }, - "6b84bee63e5341e68a70a1df0644c356": { + "7b5b3d7f80774c069aeece5b4445cc9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1244fb1e07694bc4a5d9f3762d25d7e6", + "placeholder": "​", + "style": "IPY_MODEL_6168b11b46e34cd08bb7daaddb4dbd24", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "7bddaeb1c8d646cc86ce1814e0b84af7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b5b3d7f80774c069aeece5b4445cc9e", + "IPY_MODEL_6bf87a06e0074711be4c07ad294186ba", + "IPY_MODEL_d0945ec956ca47888e039ac1328a65be" + ], + "layout": "IPY_MODEL_bd8ad09cb8494acebe57ecb387be412f", + "tabbable": null, + "tooltip": null + } + }, + "8872e03905bf4e6fbafe66867b62e61e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2331,7 +2219,7 @@ "width": null } }, - "6d97e6b4b14a4b088f0a5c2c2e610564": { + "8a55cfdc621b43dca46743e02d939b50": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2384,25 +2272,7 @@ "width": null } }, - "6e856fb0c33a4b509b13af9f0bfa347d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6f1084b3c29943cbae5ae582af5573d2": { + "8bdde82a297643e0915d4e0f05872bc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,7 +2325,7 @@ "width": null } }, - "702d80d4b5874038a51e0c3fe4e29c9c": { + "8ce14acdd43e49788f8063ea1cc09530": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2473,7 +2343,30 @@ "text_color": null } }, - "7187ee77d34d4ee58aea3e5ef7ea0d6f": { + "91eedf6f909d486193f547f4d356dec1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6452fcb7dcd438b8c518801f21d00f9", + "placeholder": "​", + "style": "IPY_MODEL_22b5c167594648b0a13c7ba8163845ca", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "97bccf449f9746e2885c6da3c9637630": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2526,25 +2419,23 @@ "width": null } }, - "770aeb28530d4716aeceac624b99192d": { + "a651acdfc2374773b4219c96fdbeeddc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "789cb19d03704e0b95b9af8afa82d248": { + "aaea6b337a7848419be2e9c56fafb34c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2597,7 +2488,79 @@ "width": null } }, - "7a1b19cb87394307a53c97aa5de7ef54": { + "ab57eb9e37934f99b1ec7359bb4ebcb5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b23b7540b02448b2b482342f9560dfd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b8d3f54af27047e4a1eb00ff08ebd390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9c90fdf46b3407991fa437a42ef1178": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bd8ad09cb8494acebe57ecb387be412f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2650,72 +2613,25 @@ "width": null } }, - "7c70a56bdf6c4f4e9f2f310fe97caf21": { + "c2f599c6567c459588cdfbf816c4fe0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8227ef3e4a1d4b60bb8d49436af87b02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa4f7d539024400ead56c0975b429f2c", - "placeholder": "​", - "style": "IPY_MODEL_49d50cf65e2243fe85ea4efa439383a4", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 47.3MB/s]" - } - }, - "9dcd19b1766a4f0f9e62b19feae944e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2ac773a77354c65a9b27aead854f501", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1845bd7583734a468217bf0a33a4a04e", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2ac773a77354c65a9b27aead854f501": { + "ccd7ea66a83c47579621976004eceb5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2768,83 +2684,53 @@ "width": null } }, - "a84cb458429f4ac9ba17b78d73eb1b9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a992a72ca18a4979975cfb11417f3b00": { + "d0945ec956ca47888e039ac1328a65be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_124ddd3253c4476b83146639e17d57b4", - "IPY_MODEL_170825b92f484861b53a305933672d63", - "IPY_MODEL_4911164b858e49c1b45c2acea166106f" - ], - "layout": "IPY_MODEL_6232f100dcfc4faea627bbfd5cf8d09e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97bccf449f9746e2885c6da3c9637630", + "placeholder": "​", + "style": "IPY_MODEL_c2f599c6567c459588cdfbf816c4fe0a", "tabbable": null, - "tooltip": null - } - }, - "af4e6010ee0847468fae428d5bceb881": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 485kB/s]" } }, - "b38f5dc0540f47bcb4f22237b8bc10b5": { + "d274e31b0792469397067015426d9787": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7489ee03697647e7bead734f066bdec9", + "placeholder": "​", + "style": "IPY_MODEL_b8d3f54af27047e4a1eb00ff08ebd390", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 19.5MB/s]" } }, - "bca20dd54024424b908c519dc7c65413": { + "d379fc5de5d54cf89f78b2d363a9ff22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,7 +2783,7 @@ "width": null } }, - "c05dd7bca0b442bbb6c59095a6fdc7da": { + "d6452fcb7dcd438b8c518801f21d00f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2950,7 +2836,7 @@ "width": null } }, - "c0a147631094428498d5242f0dae3a28": { + "d9e7d5bb38104159b058af86874b0dc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3003,7 +2889,33 @@ "width": null } }, - "ca834c7b06bd4f90ba096fa6f8d7103c": { + "e0cf5ae27479482a9a65314726432496": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d9e7d5bb38104159b058af86874b0dc0", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e21bc6b293a9483fbf8542a1cebc1b21", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "e15cd2da984a447b9901acf000da5696": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3056,77 +2968,94 @@ "width": null } }, - "d7cff1a5c1c84b53a0f820ae0ae64f22": { + "e163ef7db3974864868cb657fa0bb704": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c05dd7bca0b442bbb6c59095a6fdc7da", - "placeholder": "​", - "style": "IPY_MODEL_2398940ef11744cd931d78b60fe1bf96", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f91d49b1c62d4d839fff74899d0af511": { - "model_module": "@jupyter-widgets/controls", + "e18c887b081047ef8e89b5693274fb68": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f98ecf4b23e04508a03cf3042be644e5", - "IPY_MODEL_1e261881c01a4c82af0950354ddbbf67", - "IPY_MODEL_3f10333ce59449f8893619a6a1200e72" - ], - "layout": "IPY_MODEL_6d97e6b4b14a4b088f0a5c2c2e610564", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f98ecf4b23e04508a03cf3042be644e5": { + "e21bc6b293a9483fbf8542a1cebc1b21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3656dfd1293341618ec097a837ccf824", - "placeholder": "​", - "style": "IPY_MODEL_153a557fc0794ff2b1d801bc73e89764", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fa4f7d539024400ead56c0975b429f2c": { + "e7cba0272ea442f2a451aa872e63340f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3179,22 +3108,93 @@ "width": null } }, - "fc4736ca693444da8e5b28edfdc65bc5": { + "e9d566cadf134454b79fc7ebbeb33a20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "f436adae9f644a6eae3b0e9f18233771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91eedf6f909d486193f547f4d356dec1", + "IPY_MODEL_e0cf5ae27479482a9a65314726432496", + "IPY_MODEL_ff44bc096e2b4d36879ef4f61660135d" + ], + "layout": "IPY_MODEL_ccd7ea66a83c47579621976004eceb5d", + "tabbable": null, + "tooltip": null + } + }, + "ff44bc096e2b4d36879ef4f61660135d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7cba0272ea442f2a451aa872e63340f", + "placeholder": "​", + "style": "IPY_MODEL_ab57eb9e37934f99b1ec7359bb4ebcb5", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 687kB/s]" + } + }, + "fffbd405efcf42bca8daf86a7e152ab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4edc2366535f448dbe4023432c3633cb", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6fdb6b81c8ff49838d7b5a65396e758d", + "tabbable": null, + "tooltip": null, + "value": 128619.0 } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb index f4ed52c9a..97c3b399b 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/data_monitor.ipynb @@ -66,10 +66,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:16.056480Z", - "iopub.status.busy": "2024-04-08T19:05:16.056305Z", - "iopub.status.idle": "2024-04-08T19:05:17.226995Z", - "shell.execute_reply": "2024-04-08T19:05:17.226456Z" + "iopub.execute_input": "2024-04-08T21:46:47.309811Z", + "iopub.status.busy": "2024-04-08T21:46:47.309301Z", + "iopub.status.idle": "2024-04-08T21:46:48.481457Z", + "shell.execute_reply": "2024-04-08T21:46:48.480910Z" } }, "outputs": [], @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -103,10 +103,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.229650Z", - "iopub.status.busy": "2024-04-08T19:05:17.229169Z", - "iopub.status.idle": "2024-04-08T19:05:17.235852Z", - "shell.execute_reply": "2024-04-08T19:05:17.235318Z" + "iopub.execute_input": "2024-04-08T21:46:48.484191Z", + "iopub.status.busy": "2024-04-08T21:46:48.483673Z", + "iopub.status.idle": "2024-04-08T21:46:48.490491Z", + "shell.execute_reply": "2024-04-08T21:46:48.490050Z" } }, "outputs": [], @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.238153Z", - "iopub.status.busy": "2024-04-08T19:05:17.237822Z", - "iopub.status.idle": "2024-04-08T19:05:17.246365Z", - "shell.execute_reply": "2024-04-08T19:05:17.245924Z" + "iopub.execute_input": "2024-04-08T21:46:48.492816Z", + "iopub.status.busy": "2024-04-08T21:46:48.492448Z", + "iopub.status.idle": "2024-04-08T21:46:48.501255Z", + "shell.execute_reply": "2024-04-08T21:46:48.500686Z" } }, "outputs": [], @@ -334,10 +334,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.248259Z", - "iopub.status.busy": "2024-04-08T19:05:17.247938Z", - "iopub.status.idle": "2024-04-08T19:05:17.252838Z", - "shell.execute_reply": "2024-04-08T19:05:17.252440Z" + "iopub.execute_input": "2024-04-08T21:46:48.503414Z", + "iopub.status.busy": "2024-04-08T21:46:48.502991Z", + "iopub.status.idle": "2024-04-08T21:46:48.508220Z", + "shell.execute_reply": "2024-04-08T21:46:48.507681Z" } }, "outputs": [], @@ -350,10 +350,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.254810Z", - "iopub.status.busy": "2024-04-08T19:05:17.254482Z", - "iopub.status.idle": "2024-04-08T19:05:17.258040Z", - "shell.execute_reply": "2024-04-08T19:05:17.257638Z" + "iopub.execute_input": "2024-04-08T21:46:48.510469Z", + "iopub.status.busy": "2024-04-08T21:46:48.510030Z", + "iopub.status.idle": "2024-04-08T21:46:48.514048Z", + "shell.execute_reply": "2024-04-08T21:46:48.513452Z" } }, "outputs": [], @@ -431,10 +431,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.260050Z", - "iopub.status.busy": "2024-04-08T19:05:17.259858Z", - "iopub.status.idle": "2024-04-08T19:05:17.444599Z", - "shell.execute_reply": "2024-04-08T19:05:17.444055Z" + "iopub.execute_input": "2024-04-08T21:46:48.516428Z", + "iopub.status.busy": "2024-04-08T21:46:48.516073Z", + "iopub.status.idle": "2024-04-08T21:46:48.705964Z", + "shell.execute_reply": "2024-04-08T21:46:48.705408Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.447058Z", - "iopub.status.busy": "2024-04-08T19:05:17.446673Z", - "iopub.status.idle": "2024-04-08T19:05:17.799282Z", - "shell.execute_reply": "2024-04-08T19:05:17.798689Z" + "iopub.execute_input": "2024-04-08T21:46:48.708435Z", + "iopub.status.busy": "2024-04-08T21:46:48.708134Z", + "iopub.status.idle": "2024-04-08T21:46:49.020587Z", + "shell.execute_reply": "2024-04-08T21:46:49.019983Z" } }, "outputs": [ @@ -534,10 +534,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.801743Z", - "iopub.status.busy": "2024-04-08T19:05:17.801312Z", - "iopub.status.idle": "2024-04-08T19:05:17.826322Z", - "shell.execute_reply": "2024-04-08T19:05:17.825758Z" + "iopub.execute_input": "2024-04-08T21:46:49.023175Z", + "iopub.status.busy": "2024-04-08T21:46:49.022724Z", + "iopub.status.idle": "2024-04-08T21:46:49.048986Z", + "shell.execute_reply": "2024-04-08T21:46:49.048484Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.828759Z", - "iopub.status.busy": "2024-04-08T19:05:17.828309Z", - "iopub.status.idle": "2024-04-08T19:05:19.538623Z", - "shell.execute_reply": "2024-04-08T19:05:19.537994Z" + "iopub.execute_input": "2024-04-08T21:46:49.051534Z", + "iopub.status.busy": "2024-04-08T21:46:49.051180Z", + "iopub.status.idle": "2024-04-08T21:46:50.831438Z", + "shell.execute_reply": "2024-04-08T21:46:50.830767Z" } }, "outputs": [ @@ -648,10 +648,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:19.541116Z", - "iopub.status.busy": "2024-04-08T19:05:19.540792Z", - "iopub.status.idle": "2024-04-08T19:05:19.544925Z", - "shell.execute_reply": "2024-04-08T19:05:19.544368Z" + "iopub.execute_input": "2024-04-08T21:46:50.834310Z", + "iopub.status.busy": "2024-04-08T21:46:50.833641Z", + "iopub.status.idle": "2024-04-08T21:46:50.837317Z", + "shell.execute_reply": "2024-04-08T21:46:50.836858Z" } }, "outputs": [], @@ -677,10 +677,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:19.546793Z", - "iopub.status.busy": "2024-04-08T19:05:19.546613Z", - "iopub.status.idle": "2024-04-08T19:05:19.556501Z", - "shell.execute_reply": "2024-04-08T19:05:19.555938Z" + "iopub.execute_input": "2024-04-08T21:46:50.839767Z", + "iopub.status.busy": "2024-04-08T21:46:50.839217Z", + "iopub.status.idle": "2024-04-08T21:46:50.849279Z", + "shell.execute_reply": "2024-04-08T21:46:50.848803Z" } }, "outputs": [], @@ -717,17 +717,17 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:19.558684Z", - "iopub.status.busy": "2024-04-08T19:05:19.558297Z", - "iopub.status.idle": "2024-04-08T19:05:24.640462Z", - "shell.execute_reply": "2024-04-08T19:05:24.639883Z" + "iopub.execute_input": "2024-04-08T21:46:50.851780Z", + "iopub.status.busy": "2024-04-08T21:46:50.851339Z", + "iopub.status.idle": "2024-04-08T21:46:55.941462Z", + "shell.execute_reply": "2024-04-08T21:46:55.940890Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f47e1ed2b654c57ae612b85caf87e33", + "model_id": "dd9bc0b122de4712b0e614f5a179510b", "version_major": 2, "version_minor": 0 }, @@ -787,17 +787,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:24.642651Z", - "iopub.status.busy": "2024-04-08T19:05:24.642467Z", - "iopub.status.idle": "2024-04-08T19:05:29.933144Z", - "shell.execute_reply": "2024-04-08T19:05:29.932579Z" + "iopub.execute_input": "2024-04-08T21:46:55.943566Z", + "iopub.status.busy": "2024-04-08T21:46:55.943382Z", + "iopub.status.idle": "2024-04-08T21:47:01.234847Z", + "shell.execute_reply": "2024-04-08T21:47:01.234195Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f0377a4700449e9a6fbad55e512beac", + "model_id": "6f6822b15a1b41639b45b38ccada0827", "version_major": 2, "version_minor": 0 }, @@ -925,10 +925,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:29.936196Z", - "iopub.status.busy": "2024-04-08T19:05:29.935831Z", - "iopub.status.idle": "2024-04-08T19:05:29.947084Z", - "shell.execute_reply": "2024-04-08T19:05:29.946554Z" + "iopub.execute_input": "2024-04-08T21:47:01.237226Z", + "iopub.status.busy": "2024-04-08T21:47:01.236877Z", + "iopub.status.idle": "2024-04-08T21:47:01.248897Z", + "shell.execute_reply": "2024-04-08T21:47:01.248298Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:29.948874Z", - "iopub.status.busy": "2024-04-08T19:05:29.948698Z", - "iopub.status.idle": "2024-04-08T19:05:29.953956Z", - "shell.execute_reply": "2024-04-08T19:05:29.953551Z" + "iopub.execute_input": "2024-04-08T21:47:01.251238Z", + "iopub.status.busy": "2024-04-08T21:47:01.250901Z", + "iopub.status.idle": "2024-04-08T21:47:01.256954Z", + "shell.execute_reply": "2024-04-08T21:47:01.256421Z" } }, "outputs": [ @@ -1239,88 +1239,54 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07acb035ab04489f9387d9718ae0300d": { - "model_module": "@jupyter-widgets/base", + "0aa6659850fe4e79a26b7978710eeaa1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "128d9f5df2814c66a3994457d9355ec0": { + "0b9b88a256d043a79accdf9d825e6985": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1da7bf46e2e44e11bba14d6dae15180c", - "placeholder": "​", - "style": "IPY_MODEL_b5256e93be0b4752bbb5eb28c7e6b6f3", + "layout": "IPY_MODEL_1eea7f8a61de4034a961a93dad3037b7", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0aa6659850fe4e79a26b7978710eeaa1", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": 7.0 } }, - "12aaf4ab3e33466480a03090a29d35e8": { + "1aabbd2c3af849c08cf70f6590988067": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1338,30 +1304,7 @@ "text_color": null } }, - "16a9cd2938bc424383031abcba4a9aef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e08a5d72b2194307864f4fe35d00d7fd", - "placeholder": "​", - "style": "IPY_MODEL_12aaf4ab3e33466480a03090a29d35e8", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "1da7bf46e2e44e11bba14d6dae15180c": { + "1eea7f8a61de4034a961a93dad3037b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1414,73 +1357,7 @@ "width": null } }, - "2f47e1ed2b654c57ae612b85caf87e33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_128d9f5df2814c66a3994457d9355ec0", - "IPY_MODEL_9f28e0c0d18f40d1ac7a57021a0ec5c4", - "IPY_MODEL_ddda3b38d5674c32b89992a35a8fe972" - ], - "layout": "IPY_MODEL_b8ebaa74de964a48a3838444eb1fd68e", - "tabbable": null, - "tooltip": null - } - }, - "4ecbe2397e5f4e2fad1fea3a2a4dab1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f0377a4700449e9a6fbad55e512beac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16a9cd2938bc424383031abcba4a9aef", - "IPY_MODEL_f5759780d23e477cb1d346cb79ba1321", - "IPY_MODEL_cf3a3cedd097445ba4955da8f0688ad1" - ], - "layout": "IPY_MODEL_b9b22bcc90da434db4010e9e0673f277", - "tabbable": null, - "tooltip": null - } - }, - "6895df27e56b437fb02601057f040882": { + "279da469c42149398c8727ab7f1271e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1533,25 +1410,7 @@ "width": null } }, - "719c4562a8ea4c4fa3a5ad72ded78285": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9a88ec1f13854a04a2b9086e55a17666": { + "4445e16f91ea45b29adf46a84a23437b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1604,51 +1463,88 @@ "width": null } }, - "9f28e0c0d18f40d1ac7a57021a0ec5c4": { + "5d5c2c26c0e941b6a859f64594af2bba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67b1307ec4144ec1951c603d06f96d02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6f6822b15a1b41639b45b38ccada0827": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6895df27e56b437fb02601057f040882", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fdd6323d006e4b4aa97d49eb699a8f62", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a94018857fce4be0971b1be5c6295bd0", + "IPY_MODEL_0b9b88a256d043a79accdf9d825e6985", + "IPY_MODEL_98c25daab3164fb8850a905b3c1a3aa2" + ], + "layout": "IPY_MODEL_a3f25968ad5445fa9d789978efeda319", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "b5256e93be0b4752bbb5eb28c7e6b6f3": { + "80f2ec2d5c484a7d8e31435e56746646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eafbe803f5164a2ab9af557b3bf093d8", + "placeholder": "​", + "style": "IPY_MODEL_aeeabaa8cbf049478bbf67ccb23dd34d", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "b8ebaa74de964a48a3838444eb1fd68e": { + "8581f3f9342445a6b226293974c3d1c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1597,53 @@ "width": null } }, - "b9b22bcc90da434db4010e9e0673f277": { + "8a0f89b88eb446bf809da9d3796c89d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4445e16f91ea45b29adf46a84a23437b", + "placeholder": "​", + "style": "IPY_MODEL_5d5c2c26c0e941b6a859f64594af2bba", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "98c25daab3164fb8850a905b3c1a3aa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ddffffa6f50d434fa99ca024682f5b74", + "placeholder": "​", + "style": "IPY_MODEL_1aabbd2c3af849c08cf70f6590988067", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.33it/s]" + } + }, + "a3f25968ad5445fa9d789978efeda319": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,69 +1696,98 @@ "width": null } }, - "c64971c872874384ad842ab855a0b637": { + "a94018857fce4be0971b1be5c6295bd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_279da469c42149398c8727ab7f1271e5", + "placeholder": "​", + "style": "IPY_MODEL_e3f7267b00ae4de988f45d8d8821ac36", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "aeeabaa8cbf049478bbf67ccb23dd34d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf3a3cedd097445ba4955da8f0688ad1": { + "d29d050eb8c0431db05402ef718d91f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a88ec1f13854a04a2b9086e55a17666", - "placeholder": "​", - "style": "IPY_MODEL_719c4562a8ea4c4fa3a5ad72ded78285", + "layout": "IPY_MODEL_8581f3f9342445a6b226293974c3d1c4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67b1307ec4144ec1951c603d06f96d02", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": 50.0 } }, - "ddda3b38d5674c32b89992a35a8fe972": { + "dd9bc0b122de4712b0e614f5a179510b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07acb035ab04489f9387d9718ae0300d", - "placeholder": "​", - "style": "IPY_MODEL_4ecbe2397e5f4e2fad1fea3a2a4dab1e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a0f89b88eb446bf809da9d3796c89d0", + "IPY_MODEL_d29d050eb8c0431db05402ef718d91f5", + "IPY_MODEL_80f2ec2d5c484a7d8e31435e56746646" + ], + "layout": "IPY_MODEL_f562be6fdfa3467992127de79759d533", "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.89it/s]" + "tooltip": null } }, - "e08a5d72b2194307864f4fe35d00d7fd": { + "ddffffa6f50d434fa99ca024682f5b74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1869,7 +1840,25 @@ "width": null } }, - "e1d064cb9adb4b7fbfd292215390a0d8": { + "e3f7267b00ae4de988f45d8d8821ac36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "eafbe803f5164a2ab9af557b3bf093d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,46 +1911,57 @@ "width": null } }, - "f5759780d23e477cb1d346cb79ba1321": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e1d064cb9adb4b7fbfd292215390a0d8", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c64971c872874384ad842ab855a0b637", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "fdd6323d006e4b4aa97d49eb699a8f62": { - "model_module": "@jupyter-widgets/controls", + "f562be6fdfa3467992127de79759d533": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb index e435a28b7..a36e945c4 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:32.399757Z", - "iopub.status.busy": "2024-04-08T19:05:32.399402Z", - "iopub.status.idle": "2024-04-08T19:05:33.528700Z", - "shell.execute_reply": "2024-04-08T19:05:33.528208Z" + "iopub.execute_input": "2024-04-08T21:47:03.846355Z", + "iopub.status.busy": "2024-04-08T21:47:03.846183Z", + "iopub.status.idle": "2024-04-08T21:47:05.014972Z", + "shell.execute_reply": "2024-04-08T21:47:05.014384Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.531324Z", - "iopub.status.busy": "2024-04-08T19:05:33.530883Z", - "iopub.status.idle": "2024-04-08T19:05:33.533905Z", - "shell.execute_reply": "2024-04-08T19:05:33.533461Z" + "iopub.execute_input": "2024-04-08T21:47:05.017594Z", + "iopub.status.busy": "2024-04-08T21:47:05.017160Z", + "iopub.status.idle": "2024-04-08T21:47:05.020320Z", + "shell.execute_reply": "2024-04-08T21:47:05.019760Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.536089Z", - "iopub.status.busy": "2024-04-08T19:05:33.535766Z", - "iopub.status.idle": "2024-04-08T19:05:33.544759Z", - "shell.execute_reply": "2024-04-08T19:05:33.544339Z" + "iopub.execute_input": "2024-04-08T21:47:05.022528Z", + "iopub.status.busy": "2024-04-08T21:47:05.022111Z", + "iopub.status.idle": "2024-04-08T21:47:05.030785Z", + "shell.execute_reply": "2024-04-08T21:47:05.030251Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.546655Z", - "iopub.status.busy": "2024-04-08T19:05:33.546328Z", - "iopub.status.idle": "2024-04-08T19:05:33.551312Z", - "shell.execute_reply": "2024-04-08T19:05:33.550798Z" + "iopub.execute_input": "2024-04-08T21:47:05.032764Z", + "iopub.status.busy": "2024-04-08T21:47:05.032462Z", + "iopub.status.idle": "2024-04-08T21:47:05.037816Z", + "shell.execute_reply": "2024-04-08T21:47:05.037252Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.553494Z", - "iopub.status.busy": "2024-04-08T19:05:33.553202Z", - "iopub.status.idle": "2024-04-08T19:05:33.734474Z", - "shell.execute_reply": "2024-04-08T19:05:33.733871Z" + "iopub.execute_input": "2024-04-08T21:47:05.040234Z", + "iopub.status.busy": "2024-04-08T21:47:05.039770Z", + "iopub.status.idle": "2024-04-08T21:47:05.223875Z", + "shell.execute_reply": "2024-04-08T21:47:05.223263Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.736929Z", - "iopub.status.busy": "2024-04-08T19:05:33.736685Z", - "iopub.status.idle": "2024-04-08T19:05:34.103381Z", - "shell.execute_reply": "2024-04-08T19:05:34.102792Z" + "iopub.execute_input": "2024-04-08T21:47:05.226517Z", + "iopub.status.busy": "2024-04-08T21:47:05.226061Z", + "iopub.status.idle": "2024-04-08T21:47:05.599132Z", + "shell.execute_reply": "2024-04-08T21:47:05.598663Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:34.105764Z", - "iopub.status.busy": "2024-04-08T19:05:34.105419Z", - "iopub.status.idle": "2024-04-08T19:05:34.129090Z", - "shell.execute_reply": "2024-04-08T19:05:34.128647Z" + "iopub.execute_input": "2024-04-08T21:47:05.601510Z", + "iopub.status.busy": "2024-04-08T21:47:05.601099Z", + "iopub.status.idle": "2024-04-08T21:47:05.624551Z", + "shell.execute_reply": "2024-04-08T21:47:05.623976Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:34.131072Z", - "iopub.status.busy": "2024-04-08T19:05:34.130769Z", - "iopub.status.idle": "2024-04-08T19:05:34.141791Z", - "shell.execute_reply": "2024-04-08T19:05:34.141283Z" + "iopub.execute_input": "2024-04-08T21:47:05.626729Z", + "iopub.status.busy": "2024-04-08T21:47:05.626407Z", + "iopub.status.idle": "2024-04-08T21:47:05.637567Z", + "shell.execute_reply": "2024-04-08T21:47:05.637012Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:34.144081Z", - "iopub.status.busy": "2024-04-08T19:05:34.143717Z", - "iopub.status.idle": "2024-04-08T19:05:35.791854Z", - "shell.execute_reply": "2024-04-08T19:05:35.791186Z" + "iopub.execute_input": "2024-04-08T21:47:05.640008Z", + "iopub.status.busy": "2024-04-08T21:47:05.639591Z", + "iopub.status.idle": "2024-04-08T21:47:07.344313Z", + "shell.execute_reply": "2024-04-08T21:47:07.343747Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.794545Z", - "iopub.status.busy": "2024-04-08T19:05:35.793952Z", - "iopub.status.idle": "2024-04-08T19:05:35.815345Z", - "shell.execute_reply": "2024-04-08T19:05:35.814802Z" + "iopub.execute_input": "2024-04-08T21:47:07.346976Z", + "iopub.status.busy": "2024-04-08T21:47:07.346415Z", + "iopub.status.idle": "2024-04-08T21:47:07.368225Z", + "shell.execute_reply": "2024-04-08T21:47:07.367746Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.817441Z", - "iopub.status.busy": "2024-04-08T19:05:35.817058Z", - "iopub.status.idle": "2024-04-08T19:05:35.836184Z", - "shell.execute_reply": "2024-04-08T19:05:35.835672Z" + "iopub.execute_input": "2024-04-08T21:47:07.370279Z", + "iopub.status.busy": "2024-04-08T21:47:07.369977Z", + "iopub.status.idle": "2024-04-08T21:47:07.389483Z", + "shell.execute_reply": "2024-04-08T21:47:07.388911Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.838193Z", - "iopub.status.busy": "2024-04-08T19:05:35.838020Z", - "iopub.status.idle": "2024-04-08T19:05:35.852488Z", - "shell.execute_reply": "2024-04-08T19:05:35.852042Z" + "iopub.execute_input": "2024-04-08T21:47:07.391593Z", + "iopub.status.busy": "2024-04-08T21:47:07.391381Z", + "iopub.status.idle": "2024-04-08T21:47:07.406810Z", + "shell.execute_reply": "2024-04-08T21:47:07.406258Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.854417Z", - "iopub.status.busy": "2024-04-08T19:05:35.854247Z", - "iopub.status.idle": "2024-04-08T19:05:35.873232Z", - "shell.execute_reply": "2024-04-08T19:05:35.872705Z" + "iopub.execute_input": "2024-04-08T21:47:07.409224Z", + "iopub.status.busy": "2024-04-08T21:47:07.408781Z", + "iopub.status.idle": "2024-04-08T21:47:07.429310Z", + "shell.execute_reply": "2024-04-08T21:47:07.428791Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "97cce15af35f4ce7a71bfd4e784c1928", + "model_id": "b1f6da7561e24947bb89a6bf8eed1b5d", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.875329Z", - "iopub.status.busy": "2024-04-08T19:05:35.874965Z", - "iopub.status.idle": "2024-04-08T19:05:35.889385Z", - "shell.execute_reply": "2024-04-08T19:05:35.888962Z" + "iopub.execute_input": "2024-04-08T21:47:07.431484Z", + "iopub.status.busy": "2024-04-08T21:47:07.431141Z", + "iopub.status.idle": "2024-04-08T21:47:07.446362Z", + "shell.execute_reply": "2024-04-08T21:47:07.445910Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.891511Z", - "iopub.status.busy": "2024-04-08T19:05:35.891109Z", - "iopub.status.idle": "2024-04-08T19:05:35.896831Z", - "shell.execute_reply": "2024-04-08T19:05:35.896325Z" + "iopub.execute_input": "2024-04-08T21:47:07.448684Z", + "iopub.status.busy": "2024-04-08T21:47:07.448249Z", + "iopub.status.idle": "2024-04-08T21:47:07.454227Z", + "shell.execute_reply": "2024-04-08T21:47:07.453665Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.898838Z", - "iopub.status.busy": "2024-04-08T19:05:35.898541Z", - "iopub.status.idle": "2024-04-08T19:05:35.915657Z", - "shell.execute_reply": "2024-04-08T19:05:35.915214Z" + "iopub.execute_input": "2024-04-08T21:47:07.456366Z", + "iopub.status.busy": "2024-04-08T21:47:07.455967Z", + "iopub.status.idle": "2024-04-08T21:47:07.473550Z", + "shell.execute_reply": "2024-04-08T21:47:07.473081Z" } }, "outputs": [ @@ -1421,7 +1421,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "vscode": { "interpreter": { @@ -1431,7 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c239304d29045c1b64914dcd438f404": { + "0ca7d89a08744483aa2512d854a4d03b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,67 +1484,53 @@ "width": null } }, - "128b3b1a069d412baa8c95c1d60454a4": { + "1d9ba12450e5401f96f2bed872610271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1ae88ebb9093404db35f11a77eebf512": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_46bd17b1514d4e52ae0383c64d6489cd", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_228185c613e04c9eac97098f61b94e68", + "layout": "IPY_MODEL_0ca7d89a08744483aa2512d854a4d03b", + "placeholder": "​", + "style": "IPY_MODEL_6a2eac2bd8c3427b831c174aad907c2e", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": "Saving the dataset (1/1 shards): 100%" } }, - "228185c613e04c9eac97098f61b94e68": { + "37c4b0c4f690409b99aa509ad64f8666": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d46d94d436a84b2f95fd49145cafffaf", + "placeholder": "​", + "style": "IPY_MODEL_6665b5b18ca5461285a1cb801000029b", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12034.26 examples/s]" } }, - "46bd17b1514d4e52ae0383c64d6489cd": { + "5ae9c41d8dd8452faae9b9d02aed240c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1597,54 +1583,59 @@ "width": null } }, - "914ce1df641b45febd754b94855f6758": { + "6665b5b18ca5461285a1cb801000029b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c239304d29045c1b64914dcd438f404", - "placeholder": "​", - "style": "IPY_MODEL_d88ce31af6724956a7b3b62d32858b5b", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "97cce15af35f4ce7a71bfd4e784c1928": { + "6a2eac2bd8c3427b831c174aad907c2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_914ce1df641b45febd754b94855f6758", - "IPY_MODEL_1ae88ebb9093404db35f11a77eebf512", - "IPY_MODEL_b964e793dbdf439ab0a15c97a2a25707" - ], - "layout": "IPY_MODEL_a6fe3071a0de43bf8ba390921942df7b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82f57933ecec4eb5a7d4cd8c9b23669e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a6fe3071a0de43bf8ba390921942df7b": { + "97693c0270884eec8d11a6e85f876393": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1697,48 +1688,31 @@ "width": null } }, - "b964e793dbdf439ab0a15c97a2a25707": { + "b1f6da7561e24947bb89a6bf8eed1b5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ece75fa4a34244dc9e9c365738e7868a", - "placeholder": "​", - "style": "IPY_MODEL_128b3b1a069d412baa8c95c1d60454a4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1d9ba12450e5401f96f2bed872610271", + "IPY_MODEL_ee462a99228f44328125bb1bb160caaf", + "IPY_MODEL_37c4b0c4f690409b99aa509ad64f8666" + ], + "layout": "IPY_MODEL_97693c0270884eec8d11a6e85f876393", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12706.22 examples/s]" - } - }, - "d88ce31af6724956a7b3b62d32858b5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "ece75fa4a34244dc9e9c365738e7868a": { + "d46d94d436a84b2f95fd49145cafffaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,6 +1764,32 @@ "visibility": null, "width": null } + }, + "ee462a99228f44328125bb1bb160caaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5ae9c41d8dd8452faae9b9d02aed240c", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_82f57933ecec4eb5a7d4cd8c9b23669e", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb index f898d2d07..cc8684ece 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:38.472111Z", - "iopub.status.busy": "2024-04-08T19:05:38.471945Z", - "iopub.status.idle": "2024-04-08T19:05:39.585652Z", - "shell.execute_reply": "2024-04-08T19:05:39.585065Z" + "iopub.execute_input": "2024-04-08T21:47:10.095704Z", + "iopub.status.busy": "2024-04-08T21:47:10.095344Z", + "iopub.status.idle": "2024-04-08T21:47:11.259014Z", + "shell.execute_reply": "2024-04-08T21:47:11.258367Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.588303Z", - "iopub.status.busy": "2024-04-08T19:05:39.588056Z", - "iopub.status.idle": "2024-04-08T19:05:39.591474Z", - "shell.execute_reply": "2024-04-08T19:05:39.590968Z" + "iopub.execute_input": "2024-04-08T21:47:11.261676Z", + "iopub.status.busy": "2024-04-08T21:47:11.261389Z", + "iopub.status.idle": "2024-04-08T21:47:11.264583Z", + "shell.execute_reply": "2024-04-08T21:47:11.264112Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.593440Z", - "iopub.status.busy": "2024-04-08T19:05:39.593184Z", - "iopub.status.idle": "2024-04-08T19:05:39.602136Z", - "shell.execute_reply": "2024-04-08T19:05:39.601699Z" + "iopub.execute_input": "2024-04-08T21:47:11.266764Z", + "iopub.status.busy": "2024-04-08T21:47:11.266337Z", + "iopub.status.idle": "2024-04-08T21:47:11.275441Z", + "shell.execute_reply": "2024-04-08T21:47:11.274906Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.604078Z", - "iopub.status.busy": "2024-04-08T19:05:39.603759Z", - "iopub.status.idle": "2024-04-08T19:05:39.608027Z", - "shell.execute_reply": "2024-04-08T19:05:39.607640Z" + "iopub.execute_input": "2024-04-08T21:47:11.277319Z", + "iopub.status.busy": "2024-04-08T21:47:11.277011Z", + "iopub.status.idle": "2024-04-08T21:47:11.282210Z", + "shell.execute_reply": "2024-04-08T21:47:11.281648Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.609991Z", - "iopub.status.busy": "2024-04-08T19:05:39.609678Z", - "iopub.status.idle": "2024-04-08T19:05:39.789021Z", - "shell.execute_reply": "2024-04-08T19:05:39.788487Z" + "iopub.execute_input": "2024-04-08T21:47:11.284444Z", + "iopub.status.busy": "2024-04-08T21:47:11.284128Z", + "iopub.status.idle": "2024-04-08T21:47:11.475769Z", + "shell.execute_reply": "2024-04-08T21:47:11.475183Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.791556Z", - "iopub.status.busy": "2024-04-08T19:05:39.791137Z", - "iopub.status.idle": "2024-04-08T19:05:40.161861Z", - "shell.execute_reply": "2024-04-08T19:05:40.161278Z" + "iopub.execute_input": "2024-04-08T21:47:11.478198Z", + "iopub.status.busy": "2024-04-08T21:47:11.477866Z", + "iopub.status.idle": "2024-04-08T21:47:11.841699Z", + "shell.execute_reply": "2024-04-08T21:47:11.841089Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:40.164104Z", - "iopub.status.busy": "2024-04-08T19:05:40.163680Z", - "iopub.status.idle": "2024-04-08T19:05:40.166534Z", - "shell.execute_reply": "2024-04-08T19:05:40.165994Z" + "iopub.execute_input": "2024-04-08T21:47:11.843887Z", + "iopub.status.busy": "2024-04-08T21:47:11.843650Z", + "iopub.status.idle": "2024-04-08T21:47:11.846554Z", + "shell.execute_reply": "2024-04-08T21:47:11.846003Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:40.168465Z", - "iopub.status.busy": "2024-04-08T19:05:40.168160Z", - "iopub.status.idle": "2024-04-08T19:05:40.204106Z", - "shell.execute_reply": "2024-04-08T19:05:40.203573Z" + "iopub.execute_input": "2024-04-08T21:47:11.848818Z", + "iopub.status.busy": "2024-04-08T21:47:11.848482Z", + "iopub.status.idle": "2024-04-08T21:47:11.884903Z", + "shell.execute_reply": "2024-04-08T21:47:11.884311Z" } }, "outputs": [ @@ -613,7 +613,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", " warnings.warn(\n" ] } @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:40.206126Z", - "iopub.status.busy": "2024-04-08T19:05:40.205831Z", - "iopub.status.idle": "2024-04-08T19:05:41.861121Z", - "shell.execute_reply": "2024-04-08T19:05:41.860499Z" + "iopub.execute_input": "2024-04-08T21:47:11.887326Z", + "iopub.status.busy": "2024-04-08T21:47:11.886977Z", + "iopub.status.idle": "2024-04-08T21:47:13.612164Z", + "shell.execute_reply": "2024-04-08T21:47:13.611468Z" } }, "outputs": [ @@ -688,7 +688,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.863740Z", - "iopub.status.busy": "2024-04-08T19:05:41.863237Z", - "iopub.status.idle": "2024-04-08T19:05:41.882767Z", - "shell.execute_reply": "2024-04-08T19:05:41.882319Z" + "iopub.execute_input": "2024-04-08T21:47:13.614733Z", + "iopub.status.busy": "2024-04-08T21:47:13.614125Z", + "iopub.status.idle": "2024-04-08T21:47:13.633970Z", + "shell.execute_reply": "2024-04-08T21:47:13.633488Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.884850Z", - "iopub.status.busy": "2024-04-08T19:05:41.884544Z", - "iopub.status.idle": "2024-04-08T19:05:41.890743Z", - "shell.execute_reply": "2024-04-08T19:05:41.890221Z" + "iopub.execute_input": "2024-04-08T21:47:13.636314Z", + "iopub.status.busy": "2024-04-08T21:47:13.636020Z", + "iopub.status.idle": "2024-04-08T21:47:13.642889Z", + "shell.execute_reply": "2024-04-08T21:47:13.642292Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.892670Z", - "iopub.status.busy": "2024-04-08T19:05:41.892376Z", - "iopub.status.idle": "2024-04-08T19:05:41.897724Z", - "shell.execute_reply": "2024-04-08T19:05:41.897233Z" + "iopub.execute_input": "2024-04-08T21:47:13.645278Z", + "iopub.status.busy": "2024-04-08T21:47:13.645054Z", + "iopub.status.idle": "2024-04-08T21:47:13.651206Z", + "shell.execute_reply": "2024-04-08T21:47:13.650653Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.899726Z", - "iopub.status.busy": "2024-04-08T19:05:41.899419Z", - "iopub.status.idle": "2024-04-08T19:05:41.909317Z", - "shell.execute_reply": "2024-04-08T19:05:41.908907Z" + "iopub.execute_input": "2024-04-08T21:47:13.653923Z", + "iopub.status.busy": "2024-04-08T21:47:13.653395Z", + "iopub.status.idle": "2024-04-08T21:47:13.664569Z", + "shell.execute_reply": "2024-04-08T21:47:13.664034Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.911355Z", - "iopub.status.busy": "2024-04-08T19:05:41.911042Z", - "iopub.status.idle": "2024-04-08T19:05:41.919704Z", - "shell.execute_reply": "2024-04-08T19:05:41.919301Z" + "iopub.execute_input": "2024-04-08T21:47:13.667793Z", + "iopub.status.busy": "2024-04-08T21:47:13.667305Z", + "iopub.status.idle": "2024-04-08T21:47:13.677997Z", + "shell.execute_reply": "2024-04-08T21:47:13.677410Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.921572Z", - "iopub.status.busy": "2024-04-08T19:05:41.921400Z", - "iopub.status.idle": "2024-04-08T19:05:41.928223Z", - "shell.execute_reply": "2024-04-08T19:05:41.927710Z" + "iopub.execute_input": "2024-04-08T21:47:13.680519Z", + "iopub.status.busy": "2024-04-08T21:47:13.680342Z", + "iopub.status.idle": "2024-04-08T21:47:13.687707Z", + "shell.execute_reply": "2024-04-08T21:47:13.687174Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.930139Z", - "iopub.status.busy": "2024-04-08T19:05:41.929966Z", - "iopub.status.idle": "2024-04-08T19:05:41.939155Z", - "shell.execute_reply": "2024-04-08T19:05:41.938682Z" + "iopub.execute_input": "2024-04-08T21:47:13.690113Z", + "iopub.status.busy": "2024-04-08T21:47:13.689806Z", + "iopub.status.idle": "2024-04-08T21:47:13.700432Z", + "shell.execute_reply": "2024-04-08T21:47:13.699847Z" } }, "outputs": [ @@ -1586,7 +1586,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "vscode": { "interpreter": { diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb index e5222c4f6..7bd202343 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:44.455598Z", - "iopub.status.busy": "2024-04-08T19:05:44.455183Z", - "iopub.status.idle": "2024-04-08T19:05:47.311029Z", - "shell.execute_reply": "2024-04-08T19:05:47.310392Z" + "iopub.execute_input": "2024-04-08T21:47:16.566734Z", + "iopub.status.busy": "2024-04-08T21:47:16.566240Z", + "iopub.status.idle": "2024-04-08T21:47:19.469564Z", + "shell.execute_reply": "2024-04-08T21:47:19.469001Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:47.313575Z", - "iopub.status.busy": "2024-04-08T19:05:47.313285Z", - "iopub.status.idle": "2024-04-08T19:05:47.317021Z", - "shell.execute_reply": "2024-04-08T19:05:47.316573Z" + "iopub.execute_input": "2024-04-08T21:47:19.472242Z", + "iopub.status.busy": "2024-04-08T21:47:19.471767Z", + "iopub.status.idle": "2024-04-08T21:47:19.475393Z", + "shell.execute_reply": "2024-04-08T21:47:19.474949Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:47.319045Z", - "iopub.status.busy": "2024-04-08T19:05:47.318749Z", - "iopub.status.idle": "2024-04-08T19:06:52.995269Z", - "shell.execute_reply": "2024-04-08T19:06:52.994727Z" + "iopub.execute_input": "2024-04-08T21:47:19.477575Z", + "iopub.status.busy": "2024-04-08T21:47:19.477256Z", + "iopub.status.idle": "2024-04-08T21:47:34.371529Z", + "shell.execute_reply": "2024-04-08T21:47:34.371021Z" } }, "outputs": [ @@ -163,84 +163,100 @@ "name": "stderr", "output_type": "stream", "text": [ - "\r", - "Downloading data: 0%| | 0.00/30.9M [00:00\n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "" ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2505,10 +2521,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:35.515941Z", - "iopub.status.busy": "2024-04-08T19:11:35.515782Z", - "iopub.status.idle": "2024-04-08T19:11:35.714780Z", - "shell.execute_reply": "2024-04-08T19:11:35.714213Z" + "iopub.execute_input": "2024-04-08T21:52:03.234392Z", + "iopub.status.busy": "2024-04-08T21:52:03.233969Z", + "iopub.status.idle": "2024-04-08T21:52:03.411498Z", + "shell.execute_reply": "2024-04-08T21:52:03.410961Z" } }, "outputs": [ @@ -2548,10 +2564,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:35.716901Z", - "iopub.status.busy": "2024-04-08T19:11:35.716713Z", - "iopub.status.idle": "2024-04-08T19:11:35.721189Z", - "shell.execute_reply": "2024-04-08T19:11:35.720773Z" + "iopub.execute_input": "2024-04-08T21:52:03.413736Z", + "iopub.status.busy": "2024-04-08T21:52:03.413425Z", + "iopub.status.idle": "2024-04-08T21:52:03.417949Z", + "shell.execute_reply": "2024-04-08T21:52:03.417412Z" }, "nbsphinx": "hidden" }, @@ -2583,30 +2599,61 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0211903c89794ee8b6917c76a058c50e": { + "0335b135459448a380a56a4a2f03a803": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e0c9c429462439c875768218d7ca59f", + "placeholder": "​", + "style": "IPY_MODEL_11aad4e58c0c49b7b219a7fbe712b4ce", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 110MB/s]" + } + }, + "03fa6e364e0e4f6bb452b91bedc8a2fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dc246c2851c40f08c572a67e66e7301", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b5749bdf13ef41baa1daf1f02cc73b9d", + "tabbable": null, + "tooltip": null, + "value": 4833.0 } }, - "051beaa23ca4413db29dc6c87c6eb69c": { + "04b92da13b0c4c75a183bd50b0a6c521": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2659,73 +2706,60 @@ "width": null } }, - "08fafba5db2c49c199f47a5f187bd97d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d19bf757fc54a04bea20bd6a7bfe3bd", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ba9b8ac89734f8aa6f7b25158ce1c26", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "0ba9b8ac89734f8aa6f7b25158ce1c26": { - "model_module": "@jupyter-widgets/controls", + "060116cd285f45b396aa0250f869ed37": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0eb8f33ec6a4418f82faef40016d8087": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ce79bcbda6944e0a843326c3542493d", - "IPY_MODEL_e19c6ab20a44441b82013b108be2dfe5", - "IPY_MODEL_f070a30dde5346f9a173c14652288a61" - ], - "layout": "IPY_MODEL_f229cd5bb5604bc2bbb59bbf7c81d777", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1489dff3fa9f4025b92de6f3b08f875e": { + "060b26c4387641f18969f931eda67a58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2740,41 +2774,178 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f250b135ef04e06b65dc22fa2cbe7ea", + "layout": "IPY_MODEL_83a7f5605cd74a39a39f4ac06ad000a5", "placeholder": "​", - "style": "IPY_MODEL_608e038942dc41a99c6a0a85532e4742", + "style": "IPY_MODEL_3c57645c25e846e38584c73cb0254776", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading builder script: 100%" } }, - "1518031392e944988beab26f0ec70ea0": { - "model_module": "@jupyter-widgets/controls", + "0679fd79d81c4038ae4baa274ff41fcc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "069823c8410341e387fab4cdcb7b544f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "084e242823f646118a48f13fc96c989e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08e5a3ca3e5149968a395b4f74479527": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a0a3ab84aac4f058fee654dfd87e91c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_34b68eb2ae824e30b199e73d4a24f9d7", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_934292ec1d1f47d7bfc3a64e97e22164", + "layout": "IPY_MODEL_62fef8ba9afd439d87bdf6141e12e04f", + "placeholder": "​", + "style": "IPY_MODEL_492ff423b97d41089be33686c5f45f69", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:10<00:00, 6392.52 examples/s]" } }, - "1595a1d05b1744eeb8405298fae08359": { + "0b4b6942ccd94d6db3414455189bb279": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2789,59 +2960,78 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb2af0144f1742c1a26396a9b5fe4c73", + "layout": "IPY_MODEL_eec85798b4bb4fd7ba35f169778dd388", "placeholder": "​", - "style": "IPY_MODEL_b809fa6c8639462db220a761b405d58d", + "style": "IPY_MODEL_fde506e16fa7472a918e451309dce944", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Map (num_proc=4): 100%" } }, - "1a475bdd7b6b4cffa0aa39c22e228634": { + "0b8846ffb3154d8fa596963bb1b3430a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_72ef0108d5814322b3ca06bd5220584b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee8869c02a164612932f45b84d319cd2", + "layout": "IPY_MODEL_71dc0680b39d44e9a3fcced776dfd1a1", + "placeholder": "​", + "style": "IPY_MODEL_c37e5818b51843d48af7853c7cc09b8c", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 66.19it/s]" } }, - "1bf8c6f4bc3e4633b0c368f433ba214d": { + "0b936baef62d4b9ea6d5475df12615bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7da5300051464425a0e73ef5b54480fb", + "IPY_MODEL_78479cdd20634d17a3dde521f1088eb2", + "IPY_MODEL_284dd9794afa44c6a9f87f914424ed05" + ], + "layout": "IPY_MODEL_de855a646f7c426a8fde27ab76d99054", + "tabbable": null, + "tooltip": null + } + }, + "0c5b188654734b69aae83e2f434936eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "1bf974982e4e4b2481c1302de4d0bb3b": { + "0e39680e776642d99133ea3c9cb6b549": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2894,7 +3084,7 @@ "width": null } }, - "1d72b73af5474a01bc6184c102001f9f": { + "0f14ea82f33d423898cfb2294c37b2a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2947,25 +3137,23 @@ "width": null } }, - "1feb2d3d69ac43679423195bacfa218a": { + "0f3d168bca9043f199579eb971f1dd5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "2021e36f762d452aa27e529207b4d1fa": { + "11aad4e58c0c49b7b219a7fbe712b4ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2983,33 +3171,30 @@ "text_color": null } }, - "228bd7d078cf45699f3b012c267f6eb0": { + "1466c7a2dd12411f8c7d48a92b5b0cc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eafbc6640e3840d6acb39b13445654da", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7c1f0a8a503e4e499f398654a3f934e5", + "layout": "IPY_MODEL_5635b52f823246d4907609b392a4e7ee", + "placeholder": "​", + "style": "IPY_MODEL_db64502840c7414da075ee43783d9e27", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 4.83k/4.83k [00:00<00:00, 571kB/s]" } }, - "248aafd9fcd240928857d2c42d281abd": { + "161bd482c3a14a8584538e20932a3972": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3062,53 +3247,7 @@ "width": null } }, - "27d17868cbd6451ebcf8d7c7951e2a77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_61971c6d7922459a9b1ed0c9c414cdca", - "placeholder": "​", - "style": "IPY_MODEL_49cb378542644b368738ecd332b0a762", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.64it/s]" - } - }, - "28e8e7e456ea491db9b2409a1bb6ee44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd462dfa7f9949738f0551ce01718b0d", - "placeholder": "​", - "style": "IPY_MODEL_512b4394b0e84a1d9765ebc108a8dbdf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "2c4e61dacdec449ab2e9fa6b6459f6bb": { + "1701ce288cb24a99852c823b536b8cad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3161,10 +3300,103 @@ "width": null } }, - "2d19bf757fc54a04bea20bd6a7bfe3bd": { - "model_module": "@jupyter-widgets/base", + "17bb456dd5184411ab0d0d1f0c5184e8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a03072fef52147009d588789cfdacee7", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_52d04582235d42df801c89e6302f264b", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "17f01d5a37aa4bd195596c2c296ea219": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2e09f123e9dc436b96cae75fc2c420aa", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f3d168bca9043f199579eb971f1dd5d", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "198792c6737e438bb7f0faf3dac545d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a36c6c2c8bf24a01bbeecdf56f927a59", + "placeholder": "​", + "style": "IPY_MODEL_19d85da657774d468fc18f4072ec0dd0", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "19d85da657774d468fc18f4072ec0dd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1d8819d55dd74096aa3de00bdecebf4f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3214,31 +3446,56 @@ "width": null } }, - "2dcb1da8fc8746cb8d2bcbb0b5fbca34": { + "1d9627123cb147dfbfbb157e6bc581e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b1df04f38894cdbb06719a2c258a28e", - "IPY_MODEL_bbab2e26c4fd423dacd41b5823f1e144", - "IPY_MODEL_ed9f2e8995144260afc1a776c3c728c6" - ], - "layout": "IPY_MODEL_1bf974982e4e4b2481c1302de4d0bb3b", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9242853c5f904484b85109473134a791", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0957785f8fa47acb37dcb19c6cdc807", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 + } + }, + "1eb8cede6f2042f5bbbbcbb274451e39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08e5a3ca3e5149968a395b4f74479527", + "placeholder": "​", + "style": "IPY_MODEL_480eaaf1669541a9817ee8def301ea35", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" } }, - "2e43d2f9905b4786bd2429abe71f9c11": { + "1f47b32bd08e40a58085ec1779157701": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3291,7 +3548,7 @@ "width": null } }, - "2f250b135ef04e06b65dc22fa2cbe7ea": { + "22561b75b0c044d4bedc9989c0877145": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3344,7 +3601,7 @@ "width": null } }, - "2f426faf084c41288d432aad9a0cc67b": { + "236fffa058a14fc4bf06c7d9fb578cab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3359,39 +3616,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_56fb1e127c0d4778aa58bf70adf9e292", + "layout": "IPY_MODEL_9295d5949cba40759de3c7e5de8a4119", "placeholder": "​", - "style": "IPY_MODEL_6e2675fc6ccc4cd59366cae5f0c9e353", + "style": "IPY_MODEL_b9dcd080dc9749b1a80ff78acf8d4c8e", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "340e7303a6ad4cd192d14fd90e0362a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c09a89ed151f484cbc846804d8c80a5e", - "IPY_MODEL_f44238836eba40dd8365f2683b775574", - "IPY_MODEL_45ba61488f3e42d9b1983a76067096be" - ], - "layout": "IPY_MODEL_c4823f24e46c4225a1be6685c385e2de", - "tabbable": null, - "tooltip": null + "value": "Downloading data: 100%" } }, - "34b68eb2ae824e30b199e73d4a24f9d7": { + "23ace74aa54e41d4882525bcac8d7e65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3444,48 +3677,7 @@ "width": null } }, - "3b1df04f38894cdbb06719a2c258a28e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ffe5eadabde4ba7bc1bf7d6584058f9", - "placeholder": "​", - "style": "IPY_MODEL_2021e36f762d452aa27e529207b4d1fa", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3d509074899549a5988580659a594acd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3ffe5eadabde4ba7bc1bf7d6584058f9": { + "26160263b70e44dea5cf42a884aef84d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3538,25 +3730,7 @@ "width": null } }, - "4488e3c1bbcf4f18b659b04ab234f3ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "45ba61488f3e42d9b1983a76067096be": { + "284dd9794afa44c6a9f87f914424ed05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3571,57 +3745,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_051beaa23ca4413db29dc6c87c6eb69c", + "layout": "IPY_MODEL_b270464296294481a742f4e504fd4296", "placeholder": "​", - "style": "IPY_MODEL_0211903c89794ee8b6917c76a058c50e", + "style": "IPY_MODEL_d212ce3c87db44029c4fb85cb963f5e9", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 584.25it/s]" - } - }, - "4776167486a64076a84a01784b59af15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1595a1d05b1744eeb8405298fae08359", - "IPY_MODEL_bf0f538039594aa7aba3502ccbb1866a", - "IPY_MODEL_b413bfe75faf4e83809cfbd3e9c0f441" - ], - "layout": "IPY_MODEL_5b71bc4833f84223a9bfc19a48c54d73", - "tabbable": null, - "tooltip": null - } - }, - "49cb378542644b368738ecd332b0a762": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 66.38it/s]" } }, - "4ce7b5e8a49e4daf8752a8cfb2c049a6": { + "290a3b1e2e02424d81e45106816864f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3639,25 +3771,30 @@ "text_color": null } }, - "512b4394b0e84a1d9765ebc108a8dbdf": { + "2d4eb5223b4243d6b39db68b8e814236": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_785486dccb6240f7aa9ff62759d976f9", + "placeholder": "​", + "style": "IPY_MODEL_b7357abae008438aaefdaa9b7ae15c23", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "5299f330a8b6448cbae432e24bc2bbd2": { + "2e09f123e9dc436b96cae75fc2c420aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3710,7 +3847,7 @@ "width": null } }, - "56fb1e127c0d4778aa58bf70adf9e292": { + "2ec1bb41f5f54d62a0ba9fdcfa5897e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3763,12 +3900,30 @@ "width": null } }, - "57413d25cf8b43a59d135e9b7f386c8b": { - "model_module": "@jupyter-widgets/base", + "2fbc3eac8bea4df7a61a221e7c0dd97c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "312e091fb3cd44dea3626ee789b64ecd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -3816,56 +3971,7 @@ "width": null } }, - "57501a6ea66843e69eb94c16fd71dd26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f430353dd08d430fba9b508f111e2cba", - "placeholder": "​", - "style": "IPY_MODEL_3d509074899549a5988580659a594acd", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7101.30 examples/s]" - } - }, - "5b300800d44b4998a13101625e6be790": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8458fd5694574fd397fa3ed659cf9d21", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_822bcec6c7dc47839c1fd0d48be8aafa", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "5b71bc4833f84223a9bfc19a48c54d73": { + "31ec081485c34f1bb3a03ecf63426a42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3918,82 +4024,7 @@ "width": null } }, - "5ce79bcbda6944e0a843326c3542493d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_713a34eee7ad43ca9e8faa69d5fedcd6", - "placeholder": "​", - "style": "IPY_MODEL_4ce7b5e8a49e4daf8752a8cfb2c049a6", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "5df8c0f13e114da5a54feb67563465d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "608e038942dc41a99c6a0a85532e4742": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "60b1f65ee807482daeb5f7b6893651bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "61971c6d7922459a9b1ed0c9c414cdca": { + "326757063db84e38a5e4ed6b751f5430": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4046,7 +4077,25 @@ "width": null } }, - "61ffaf9c2a1245668b4f2c0c3cec4cf7": { + "3723c6b8a944458f942cd0790b753488": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37ab3519499b4198bba9919a4e04e1b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4099,47 +4148,76 @@ "width": null } }, - "655fc2039c2f44018f7440a3d2e07a6e": { + "388b5360872347238afa5f917741c085": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_28e8e7e456ea491db9b2409a1bb6ee44", - "IPY_MODEL_1518031392e944988beab26f0ec70ea0", - "IPY_MODEL_cb4e85dad70c4bb69fa58d8fa9da1fd9" - ], - "layout": "IPY_MODEL_5299f330a8b6448cbae432e24bc2bbd2", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_312e091fb3cd44dea3626ee789b64ecd", + "placeholder": "​", + "style": "IPY_MODEL_290a3b1e2e02424d81e45106816864f4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.52it/s]" } }, - "6718ecc2d5994895aff73d3a70d4daa4": { + "39db24580c264f03be360647b184039b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_905589c593b54b96b368f62d4887836a", + "placeholder": "​", + "style": "IPY_MODEL_a1415b64f22f48f594463c260bc3e5bd", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "3b305774b4b04b9e9582061efae53a1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f76bb85ebac540a593284f31ccd59879", + "placeholder": "​", + "style": "IPY_MODEL_86d2dd19df2c48a3a516d8fd4ede47fa", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "68df804c48394616884c2cfd1f17c6d3": { + "3bf79f8128894980b498bd0edcb77291": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4154,15 +4232,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1d72b73af5474a01bc6184c102001f9f", + "layout": "IPY_MODEL_5f3023d450674965a9ad1c79239480bf", "placeholder": "​", - "style": "IPY_MODEL_bb9b4b065b90414cab93989f1cf870db", + "style": "IPY_MODEL_a4e1809a788d491e8e99aefcb86b512c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.71it/s]" + "value": " 10000/10000 [00:01<00:00, 8710.92 examples/s]" } }, - "6e2675fc6ccc4cd59366cae5f0c9e353": { + "3c57645c25e846e38584c73cb0254776": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4180,60 +4258,30 @@ "text_color": null } }, - "6efaaef2d3fa4de3b05d6ab4ce2b1b80": { - "model_module": "@jupyter-widgets/base", + "3d5b439a3ef3459dae28c7db55d59bb9": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_448e4524e24946d995e137cf12b9a3b9", + "placeholder": "​", + "style": "IPY_MODEL_c406e211c4574a0fa48f67ff7a64626c", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "7134548633584aebb32846399e998599": { + "3e0c9c429462439c875768218d7ca59f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4286,60 +4334,31 @@ "width": null } }, - "713a34eee7ad43ca9e8faa69d5fedcd6": { - "model_module": "@jupyter-widgets/base", + "3f27314c203b466c88dcbeb298e9d58e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_747f70a4ce0e48429c6f7eac878731ab", + "IPY_MODEL_1d9627123cb147dfbfbb157e6bc581e8", + "IPY_MODEL_0b8846ffb3154d8fa596963bb1b3430a" + ], + "layout": "IPY_MODEL_9064def096e04384959a984bd1516273", + "tabbable": null, + "tooltip": null } }, - "72e848187eb646c9ae2eb5c3c13a1b5b": { + "401163bad2f34b8e9634d2f99dbbfd73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4354,68 +4373,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6efaaef2d3fa4de3b05d6ab4ce2b1b80", + "layout": "IPY_MODEL_cbd886cc91784268b3d3cac0d4fe2b33", "placeholder": "​", - "style": "IPY_MODEL_9376be5b85774e909a6da2348e1e3ac7", + "style": "IPY_MODEL_adc9aaada699417c91fa10e70969fa1b", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 63.49it/s]" } }, - "72ef0108d5814322b3ca06bd5220584b": { - "model_module": "@jupyter-widgets/base", + "418f49646c194846a25aa1c621289292": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "420194a5f6914e9391c8ea84bc27e6f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "753491adc5dc4a15b482f01444260ff6": { + "43b103a593a247079a2979761fa890c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4468,7 +4468,7 @@ "width": null } }, - "7692ec62386c4b5ea0e3da9a9d6aaab3": { + "448e4524e24946d995e137cf12b9a3b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4521,7 +4521,33 @@ "width": null } }, - "76fe935e94da4fe49c9fff42053d9f08": { + "45e46d8be10f464c86416ba3c2311102": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_873b8fe085de4bf99fc37fe40ccafacc", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_420194a5f6914e9391c8ea84bc27e6f8", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "464614f94e2d4b01b348f81631efd4ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4574,67 +4600,30 @@ "width": null } }, - "7859aae2967f4d8982962ef94210548f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c1f0a8a503e4e499f398654a3f934e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7cb2476470d344aebe942210b6aee3ab": { + "46881b4a77a84b3db413bdbdcd1341b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cab2229300b043cf885deb986c9d5f5d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a79b0ad4d31c46fab5f329886f96aab7", + "layout": "IPY_MODEL_fda6d2df94ba4533aa4be7e4d9a431e3", + "placeholder": "​", + "style": "IPY_MODEL_727a96ba0f18458292f8700ed74fd83f", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 8.85k/8.85k [00:00<00:00, 1.57MB/s]" } }, - "7df899c21e114a00beea9fabc687baff": { + "480eaaf1669541a9817ee8def301ea35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4652,7 +4641,7 @@ "text_color": null } }, - "7fca1639267a4153bd7fb80d23c652ea": { + "492ff423b97d41089be33686c5f45f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4670,46 +4659,7 @@ "text_color": null } }, - "8040c639d3ba48d7baa187303a949a5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ca9e07ed9664701a1f4fc752659aba7", - "placeholder": "​", - "style": "IPY_MODEL_d5de18c08b9a4f0fb3bae9ffcb6e2608", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 68.31it/s]" - } - }, - "822bcec6c7dc47839c1fd0d48be8aafa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8458fd5694574fd397fa3ed659cf9d21": { + "4a7f33a28e4a405fa0bc13129dc2f8ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4762,7 +4712,7 @@ "width": null } }, - "853c7b5eeb0944a5903419f543447327": { + "4b82647b1d904c49becfec82f51c70f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4815,7 +4765,7 @@ "width": null } }, - "87d3d0fca9104cfab810183eee2ef94c": { + "4bcb413049cb44c995ab36513e4555ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4868,59 +4818,60 @@ "width": null } }, - "934292ec1d1f47d7bfc3a64e97e22164": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9376be5b85774e909a6da2348e1e3ac7": { - "model_module": "@jupyter-widgets/controls", + "4ca7d5ac467b4c579e746a957850be7b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9ad282371d5e4b848fe0fbcf04f86eb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9ca9e07ed9664701a1f4fc752659aba7": { + "4dc246c2851c40f08c572a67e66e7301": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4973,7 +4924,7 @@ "width": null } }, - "9cb7ee51c974488f82e9774c7de42d77": { + "512e464e5c544e1bb991c41ae873b2e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4989,17 +4940,57 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cca4bec16de941d8a1f0eeab09f1309a", + "layout": "IPY_MODEL_931ba5371f9e4cdf9761b9f3dc305579", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6718ecc2d5994895aff73d3a70d4daa4", + "style": "IPY_MODEL_084e242823f646118a48f13fc96c989e", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "9d34e8136fdb41cba0282f20fe3254b5": { + "515b7539220b4bad89a14104261e7b0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb32fe4b49894c34822817d66fce373f", + "IPY_MODEL_17bb456dd5184411ab0d0d1f0c5184e8", + "IPY_MODEL_9c90acab2afc472ab7395172e27a12f7" + ], + "layout": "IPY_MODEL_9a80cd4b50584f74a43171526499b0f7", + "tabbable": null, + "tooltip": null + } + }, + "52d04582235d42df801c89e6302f264b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5635b52f823246d4907609b392a4e7ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5052,7 +5043,7 @@ "width": null } }, - "a30eaea1846c404db6f70144bebe00f7": { + "5b2e7e3e0dd149a8b07c46782b5dfed7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5067,73 +5058,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a7573684d96b4a809e222e1e9c978b20", - "IPY_MODEL_9cb7ee51c974488f82e9774c7de42d77", - "IPY_MODEL_57501a6ea66843e69eb94c16fd71dd26" + "IPY_MODEL_f09c62e7bedd4b0383758b93414aff60", + "IPY_MODEL_b0bd98ab650e426c9576b35e993ad4b3", + "IPY_MODEL_9a3868d1298545ed9cafa1125339b75e" ], - "layout": "IPY_MODEL_87d3d0fca9104cfab810183eee2ef94c", + "layout": "IPY_MODEL_37ab3519499b4198bba9919a4e04e1b7", "tabbable": null, "tooltip": null } }, - "a5fbf7ed0a8945eba908a5b839852cc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a7573684d96b4a809e222e1e9c978b20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_753491adc5dc4a15b482f01444260ff6", - "placeholder": "​", - "style": "IPY_MODEL_7df899c21e114a00beea9fabc687baff", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "a79b0ad4d31c46fab5f329886f96aab7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ae20b62666184b608438ba88eb80b458": { + "5b7f7778fc604c6ba6099f5ecc189218": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5148,73 +5082,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2f426faf084c41288d432aad9a0cc67b", - "IPY_MODEL_08fafba5db2c49c199f47a5f187bd97d", - "IPY_MODEL_cbf43ef383f248dbaf25bd28be2369f3" + "IPY_MODEL_236fffa058a14fc4bf06c7d9fb578cab", + "IPY_MODEL_e95ec31f6bc14324b6af490807b62e52", + "IPY_MODEL_77c69f71d06d49beab802e1d2cdef53d" ], - "layout": "IPY_MODEL_2c4e61dacdec449ab2e9fa6b6459f6bb", + "layout": "IPY_MODEL_64a82444badb4307b60c3270c9a50a36", "tabbable": null, "tooltip": null } }, - "b413bfe75faf4e83809cfbd3e9c0f441": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd125613a65d44acb8f52566b6d32b7b", - "placeholder": "​", - "style": "IPY_MODEL_1feb2d3d69ac43679423195bacfa218a", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:47<00:00, 1395.51it/s]" - } - }, - "b809fa6c8639462db220a761b405d58d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b907020aafd94e9eb016e8a6f09cd29d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb1d38afd1504d6fa78a843fce81e967": { + "5bfb80713d60450bbefffecd0daf3ab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5229,59 +5106,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0e1beb3ae784339ae2d251c3b206de1", + "layout": "IPY_MODEL_e147a21f71924211a0d206fee1c59508", "placeholder": "​", - "style": "IPY_MODEL_7859aae2967f4d8982962ef94210548f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "bb9b4b065b90414cab93989f1cf870db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bbab2e26c4fd423dacd41b5823f1e144": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_853c7b5eeb0944a5903419f543447327", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d25bc5458cd94e56a86b43c849fcf730", + "style": "IPY_MODEL_e11bf901cfe54a599be5ef2012018436", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 26.4M/26.4M [00:00<00:00, 117MB/s]" } }, - "be3b3d55d750477a8208878dd73e24dc": { + "5f3023d450674965a9ad1c79239480bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5334,33 +5167,2613 @@ "width": null } }, - "bf0f538039594aa7aba3502ccbb1866a": { + "625d637a48a14790a056d9d1c1292ee4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e24f52db1e9d4d00904f83f3b85ef467", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60b1f65ee807482daeb5f7b6893651bb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df5e2187022f4f1f82e2a4b325ff3267", + "IPY_MODEL_927a5b4114e9464a83ba0c900627a695", + "IPY_MODEL_388b5360872347238afa5f917741c085" + ], + "layout": "IPY_MODEL_1701ce288cb24a99852c823b536b8cad", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "62fef8ba9afd439d87bdf6141e12e04f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64a82444badb4307b60c3270c9a50a36": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68da137d5da745a8b0737bb42ae61bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_326757063db84e38a5e4ed6b751f5430", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4109e3295614069bc0d4e2725c84bec", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "68da9b92e1a94f3ea960aeaa0c52bef6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a2be3ca3605413481d1f00fe018925f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a3665d47b0a44ba83e32e3700429dd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d4eb5223b4243d6b39db68b8e814236", + "IPY_MODEL_45e46d8be10f464c86416ba3c2311102", + "IPY_MODEL_e11a329c39b6451aacc96b61e26a4bc2" + ], + "layout": "IPY_MODEL_26160263b70e44dea5cf42a884aef84d", + "tabbable": null, + "tooltip": null + } + }, + "6c30578e3bd741e198120a8d5a5bf18f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_161bd482c3a14a8584538e20932a3972", + "placeholder": "​", + "style": "IPY_MODEL_dd9a76f00e1244c8af44c658d2345f96", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 845kB/s]" + } + }, + "6e58ef96078a450fbec54f4ae4a58c1b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71b85a37ee114287a07056caf600c0a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f2a14ba7d7141ada0aad37aac2bc645", + "placeholder": "​", + "style": "IPY_MODEL_7fe76ce1e58f4113bf6284e9b015dac9", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "71c08a73a600466a92a58d3b5faebc68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71dc0680b39d44e9a3fcced776dfd1a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72434dbb000d44dab2e82de14e1b91c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31ec081485c34f1bb3a03ecf63426a42", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ddb81ca00acb4cfeb021605e2178b02e", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "727a96ba0f18458292f8700ed74fd83f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "747f70a4ce0e48429c6f7eac878731ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a2be3ca3605413481d1f00fe018925f", + "placeholder": "​", + "style": "IPY_MODEL_069823c8410341e387fab4cdcb7b544f", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "77c69f71d06d49beab802e1d2cdef53d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a70659c15e6481bb17449acc3efe254", + "placeholder": "​", + "style": "IPY_MODEL_7e349960fe0b4f9bb2fa8e4fb10848c0", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" + } + }, + "78479cdd20634d17a3dde521f1088eb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a7f33a28e4a405fa0bc13129dc2f8ae", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f955f7df09044148f923417f50e17e3", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "785486dccb6240f7aa9ff62759d976f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7909e3dff05e40dabda43320271fcb2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3b305774b4b04b9e9582061efae53a1c", + "IPY_MODEL_512e464e5c544e1bb991c41ae873b2e1", + "IPY_MODEL_b9555ee2b9d44630a68960ea076c7dd2" + ], + "layout": "IPY_MODEL_4bcb413049cb44c995ab36513e4555ad", + "tabbable": null, + "tooltip": null + } + }, + "79d5fc0309024c108f891579f5884cfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "79e727750ce645de84cec3192b9ca437": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7da5300051464425a0e73ef5b54480fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0679fd79d81c4038ae4baa274ff41fcc", + "placeholder": "​", + "style": "IPY_MODEL_71c08a73a600466a92a58d3b5faebc68", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7e349960fe0b4f9bb2fa8e4fb10848c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f955f7df09044148f923417f50e17e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7fe76ce1e58f4113bf6284e9b015dac9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ffa7d49c80a4fa1b01f07e6f5fbbeda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_39db24580c264f03be360647b184039b", + "IPY_MODEL_874ca17b9a474647a7fc2f02a6f270c0", + "IPY_MODEL_46881b4a77a84b3db413bdbdcd1341b9" + ], + "layout": "IPY_MODEL_0f14ea82f33d423898cfb2294c37b2a8", + "tabbable": null, + "tooltip": null + } + }, + "81cdbccb09164693a2809048402013ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_71b85a37ee114287a07056caf600c0a2", + "IPY_MODEL_b27b1789056047eb81a5ebf1737833dd", + "IPY_MODEL_6c30578e3bd741e198120a8d5a5bf18f" + ], + "layout": "IPY_MODEL_cc77f97ae7e64110ae36eed77877cb95", + "tabbable": null, + "tooltip": null + } + }, + "835ba37fc09944d7a04c0c36070a66aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4fce7d0773b4aac990a0ce4f5352636", + "IPY_MODEL_a2339fe2748d4e398b0820d09dcc5939", + "IPY_MODEL_0335b135459448a380a56a4a2f03a803" + ], + "layout": "IPY_MODEL_04b92da13b0c4c75a183bd50b0a6c521", + "tabbable": null, + "tooltip": null + } + }, + "83a7f5605cd74a39a39f4ac06ad000a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8430dbbbf67849a6b0e8dd1757c1bd25": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84c672c71d92499b8c0503a799d8fa43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "859c2738fde04954a28429d3dac2fe86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1ddfa2686c64d7ab721a4fc5c282238", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_79e727750ce645de84cec3192b9ca437", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "86d2dd19df2c48a3a516d8fd4ede47fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "873b8fe085de4bf99fc37fe40ccafacc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "874ca17b9a474647a7fc2f02a6f270c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23ace74aa54e41d4882525bcac8d7e65", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b6f12b0ca91b4833a508b969196dfc72", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "8806a5c89075414f96a9955965c8c691": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f2668c042f34bfea295a521155e2ede": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_060b26c4387641f18969f931eda67a58", + "IPY_MODEL_03fa6e364e0e4f6bb452b91bedc8a2fe", + "IPY_MODEL_1466c7a2dd12411f8c7d48a92b5b0cc1" + ], + "layout": "IPY_MODEL_c17d50f394634a48ac0698e64e110e5e", + "tabbable": null, + "tooltip": null + } + }, + "905589c593b54b96b368f62d4887836a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9064def096e04384959a984bd1516273": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9242853c5f904484b85109473134a791": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "927a5b4114e9464a83ba0c900627a695": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d8819d55dd74096aa3de00bdecebf4f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c5b188654734b69aae83e2f434936eb", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "9295d5949cba40759de3c7e5de8a4119": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "931ba5371f9e4cdf9761b9f3dc305579": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a3868d1298545ed9cafa1125339b75e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b400490168449b88dc9e4de049a9521", + "placeholder": "​", + "style": "IPY_MODEL_3723c6b8a944458f942cd0790b753488", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.72it/s]" + } + }, + "9a70659c15e6481bb17449acc3efe254": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a80cd4b50584f74a43171526499b0f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b23278d427942e7ba250ada7bce2a59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b400490168449b88dc9e4de049a9521": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b98ca7a17034a939d28cfd780ab2578": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_198792c6737e438bb7f0faf3dac545d4", + "IPY_MODEL_72434dbb000d44dab2e82de14e1b91c6", + "IPY_MODEL_e26d0601d99945e7a5354c7cc6a3398c" + ], + "layout": "IPY_MODEL_9e4e0510793c4b8f80ab7c93b14a112e", + "tabbable": null, + "tooltip": null + } + }, + "9c90acab2afc472ab7395172e27a12f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_68da9b92e1a94f3ea960aeaa0c52bef6", + "placeholder": "​", + "style": "IPY_MODEL_fb58761e4f0d4d029d720e32dfa858dd", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.89it/s]" + } + }, + "9d52aa07407b4389bd4d1b8168eb6c52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9e4e0510793c4b8f80ab7c93b14a112e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f2a14ba7d7141ada0aad37aac2bc645": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f4a403cc82d4cbbb16cfd0201c0770f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b4b6942ccd94d6db3414455189bb279", + "IPY_MODEL_ef5877f12c8d4e3ba13b7835aae75a8c", + "IPY_MODEL_0a0a3ab84aac4f058fee654dfd87e91c" + ], + "layout": "IPY_MODEL_9b23278d427942e7ba250ada7bce2a59", + "tabbable": null, + "tooltip": null + } + }, + "a03072fef52147009d588789cfdacee7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a056582d2b684e8e9887d7865ab40825": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1415b64f22f48f594463c260bc3e5bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2339fe2748d4e398b0820d09dcc5939": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf5eaac99bba4d3fba798cafb2590b28", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f530763cde26470fbdf4426036cd384d", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "a36c6c2c8bf24a01bbeecdf56f927a59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4e1809a788d491e8e99aefcb86b512c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a69a15d2b1f74719990ef33174576d1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1eb8cede6f2042f5bbbbcbb274451e39", + "IPY_MODEL_859c2738fde04954a28429d3dac2fe86", + "IPY_MODEL_3bf79f8128894980b498bd0edcb77291" + ], + "layout": "IPY_MODEL_4ca7d5ac467b4c579e746a957850be7b", + "tabbable": null, + "tooltip": null + } + }, + "a78d45cc6d544232aba24d2f4c446e3d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad4b9941342349aa8fc67785b38e03b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "adc9aaada699417c91fa10e70969fa1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b0bd98ab650e426c9576b35e993ad4b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ec1bb41f5f54d62a0ba9fdcfa5897e2", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad4b9941342349aa8fc67785b38e03b1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "b270464296294481a742f4e504fd4296": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b27b1789056047eb81a5ebf1737833dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a056582d2b684e8e9887d7865ab40825", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dea63d387d7c4e79859ccfc0387953da", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "b5749bdf13ef41baa1daf1f02cc73b9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b6f12b0ca91b4833a508b969196dfc72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b7357abae008438aaefdaa9b7ae15c23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9555ee2b9d44630a68960ea076c7dd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b82647b1d904c49becfec82f51c70f0", + "placeholder": "​", + "style": "IPY_MODEL_79d5fc0309024c108f891579f5884cfb", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1753.51it/s]" + } + }, + "b9dcd080dc9749b1a80ff78acf8d4c8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c0957785f8fa47acb37dcb19c6cdc807": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c17d50f394634a48ac0698e64e110e5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1fad039c4a84d4f86c7a458959f798a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c37e5818b51843d48af7853c7cc09b8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c406e211c4574a0fa48f67ff7a64626c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c4fce7d0773b4aac990a0ce4f5352636": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_060116cd285f45b396aa0250f869ed37", + "placeholder": "​", + "style": "IPY_MODEL_e75b88c557eb401e994a8c705a327479", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "c7506ce8a7fc424ab26ccf36a5cbaebc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e39680e776642d99133ea3c9cb6b549", + "placeholder": "​", + "style": "IPY_MODEL_c9ed5a69869b4f579fba6994b4b1276b", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "c7b676d040a74257afc4457faab8948f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9ed5a69869b4f579fba6994b4b1276b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c09a89ed151f484cbc846804d8c80a5e": { + "cb32fe4b49894c34822817d66fce373f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5375,68 +7788,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f26ae4423ac24cafa84c3645e576b7d8", + "layout": "IPY_MODEL_464614f94e2d4b01b348f81631efd4ce", "placeholder": "​", - "style": "IPY_MODEL_5df8c0f13e114da5a54feb67563465d2", + "style": "IPY_MODEL_c1fad039c4a84d4f86c7a458959f798a", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "c0cef619c3e34a9aa9fe3fbde95dd0f4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "100%" } }, - "c0e1beb3ae784339ae2d251c3b206de1": { + "cbd886cc91784268b3d3cac0d4fe2b33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5489,7 +7849,7 @@ "width": null } }, - "c14d4f58688049a48600554f3cec71e9": { + "cc77f97ae7e64110ae36eed77877cb95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5542,7 +7902,7 @@ "width": null } }, - "c4823f24e46c4225a1be6685c385e2de": { + "ce464f32180c466499de34b46f9465c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5595,7 +7955,7 @@ "width": null } }, - "cab2229300b043cf885deb986c9d5f5d": { + "cf5eaac99bba4d3fba798cafb2590b28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5648,130 +8008,25 @@ "width": null } }, - "cb4e85dad70c4bb69fa58d8fa9da1fd9": { + "d212ce3c87db44029c4fb85cb963f5e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2e43d2f9905b4786bd2429abe71f9c11", - "placeholder": "​", - "style": "IPY_MODEL_7fca1639267a4153bd7fb80d23c652ea", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.09it/s]" - } - }, - "cbf43ef383f248dbaf25bd28be2369f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d34e8136fdb41cba0282f20fe3254b5", - "placeholder": "​", - "style": "IPY_MODEL_d962cb9310644741b92e8a219b2e7104", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 246927.12 examples/s]" - } - }, - "cca4bec16de941d8a1f0eeab09f1309a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d17335f81c08473e83f57bcb91f327b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1489dff3fa9f4025b92de6f3b08f875e", - "IPY_MODEL_1a475bdd7b6b4cffa0aa39c22e228634", - "IPY_MODEL_68df804c48394616884c2cfd1f17c6d3" - ], - "layout": "IPY_MODEL_76fe935e94da4fe49c9fff42053d9f08", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d25bc5458cd94e56a86b43c849fcf730": { + "d4109e3295614069bc0d4e2725c84bec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5787,7 +8042,7 @@ "description_width": "" } }, - "d5de18c08b9a4f0fb3bae9ffcb6e2608": { + "db64502840c7414da075ee43783d9e27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5805,7 +8060,7 @@ "text_color": null } }, - "d962cb9310644741b92e8a219b2e7104": { + "dd9a76f00e1244c8af44c658d2345f96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5823,30 +8078,23 @@ "text_color": null } }, - "dcc296059a18404489cb96f85970a3f1": { + "ddb81ca00acb4cfeb021605e2178b02e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3adb5d571d446d89e42b148a0e2e0dc", - "placeholder": "​", - "style": "IPY_MODEL_a5fbf7ed0a8945eba908a5b839852cc3", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dd125613a65d44acb8f52566b6d32b7b": { + "de855a646f7c426a8fde27ab76d99054": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5899,86 +8147,87 @@ "width": null } }, - "dd462dfa7f9949738f0551ce01718b0d": { - "model_module": "@jupyter-widgets/base", + "dea63d387d7c4e79859ccfc0387953da": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df5e2187022f4f1f82e2a4b325ff3267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8806a5c89075414f96a9955965c8c691", + "placeholder": "​", + "style": "IPY_MODEL_84c672c71d92499b8c0503a799d8fa43", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "e19c6ab20a44441b82013b108be2dfe5": { + "e11a329c39b6451aacc96b61e26a4bc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_be3b3d55d750477a8208878dd73e24dc", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4ad6c92501549ec9b25fa93f87e6348", + "layout": "IPY_MODEL_6e58ef96078a450fbec54f4ae4a58c1b", + "placeholder": "​", + "style": "IPY_MODEL_c7b676d040a74257afc4457faab8948f", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 4/4 [00:00<00:00, 1266.68it/s]" + } + }, + "e11bf901cfe54a599be5ef2012018436": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e24f52db1e9d4d00904f83f3b85ef467": { + "e147a21f71924211a0d206fee1c59508": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6031,7 +8280,7 @@ "width": null } }, - "e284f57ce3ea4f358e133be317a427f8": { + "e26d0601d99945e7a5354c7cc6a3398c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6046,39 +8295,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0cef619c3e34a9aa9fe3fbde95dd0f4", + "layout": "IPY_MODEL_ce464f32180c466499de34b46f9465c7", "placeholder": "​", - "style": "IPY_MODEL_4488e3c1bbcf4f18b659b04ab234f3ec", + "style": "IPY_MODEL_2fbc3eac8bea4df7a61a221e7c0dd97c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.22it/s]" + "value": " 60000/60000 [00:07<00:00, 8700.61 examples/s]" } }, - "e3f2da6ea95d4ffea5b61ce1470cc963": { + "e75b88c557eb401e994a8c705a327479": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e95ec31f6bc14324b6af490807b62e52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb1d38afd1504d6fa78a843fce81e967", - "IPY_MODEL_228bd7d078cf45699f3b012c267f6eb0", - "IPY_MODEL_27d17868cbd6451ebcf8d7c7951e2a77" - ], - "layout": "IPY_MODEL_61ffaf9c2a1245668b4f2c0c3cec4cf7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22561b75b0c044d4bedc9989c0877145", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f560f8d8d9894e128dccdde7bbd43e76", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 29515.0 } }, - "e9e0602cde8548a3b201f1e9d8487610": { + "eba277e40aa34b3098943b9ebaa93280": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6093,16 +8362,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_72e848187eb646c9ae2eb5c3c13a1b5b", - "IPY_MODEL_5b300800d44b4998a13101625e6be790", - "IPY_MODEL_8040c639d3ba48d7baa187303a949a5f" + "IPY_MODEL_3d5b439a3ef3459dae28c7db55d59bb9", + "IPY_MODEL_17f01d5a37aa4bd195596c2c296ea219", + "IPY_MODEL_401163bad2f34b8e9634d2f99dbbfd73" ], - "layout": "IPY_MODEL_248aafd9fcd240928857d2c42d281abd", + "layout": "IPY_MODEL_1f47b32bd08e40a58085ec1779157701", "tabbable": null, "tooltip": null } }, - "eafbc6640e3840d6acb39b13445654da": { + "eec85798b4bb4fd7ba35f169778dd388": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6155,70 +8424,33 @@ "width": null } }, - "eb19d31ef8f4468b9f0d6aabf630dc05": { + "ef5877f12c8d4e3ba13b7835aae75a8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dcc296059a18404489cb96f85970a3f1", - "IPY_MODEL_7cb2476470d344aebe942210b6aee3ab", - "IPY_MODEL_e284f57ce3ea4f358e133be317a427f8" - ], - "layout": "IPY_MODEL_c14d4f58688049a48600554f3cec71e9", - "tabbable": null, - "tooltip": null - } - }, - "ed9f2e8995144260afc1a776c3c728c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7692ec62386c4b5ea0e3da9a9d6aaab3", - "placeholder": "​", - "style": "IPY_MODEL_1bf8c6f4bc3e4633b0c368f433ba214d", + "layout": "IPY_MODEL_8430dbbbf67849a6b0e8dd1757c1bd25", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d52aa07407b4389bd4d1b8168eb6c52", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.07it/s]" - } - }, - "ee8869c02a164612932f45b84d319cd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 60000.0 } }, - "f070a30dde5346f9a173c14652288a61": { + "f09c62e7bedd4b0383758b93414aff60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6233,15 +8465,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57413d25cf8b43a59d135e9b7f386c8b", + "layout": "IPY_MODEL_a78d45cc6d544232aba24d2f4c446e3d", "placeholder": "​", - "style": "IPY_MODEL_9ad282371d5e4b848fe0fbcf04f86eb4", + "style": "IPY_MODEL_418f49646c194846a25aa1c621289292", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 300464.24 examples/s]" + "value": "100%" } }, - "f229cd5bb5604bc2bbb59bbf7c81d777": { + "f1ddfa2686c64d7ab721a4fc5c282238": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6294,113 +8526,39 @@ "width": null } }, - "f26ae4423ac24cafa84c3645e576b7d8": { - "model_module": "@jupyter-widgets/base", + "f530763cde26470fbdf4426036cd384d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f3adb5d571d446d89e42b148a0e2e0dc": { - "model_module": "@jupyter-widgets/base", + "f560f8d8d9894e128dccdde7bbd43e76": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f430353dd08d430fba9b508f111e2cba": { + "f76bb85ebac540a593284f31ccd59879": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6453,49 +8611,49 @@ "width": null } }, - "f44238836eba40dd8365f2683b775574": { + "f909fc03436b44269537921f66eba2df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7134548633584aebb32846399e998599", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b907020aafd94e9eb016e8a6f09cd29d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7506ce8a7fc424ab26ccf36a5cbaebc", + "IPY_MODEL_68da137d5da745a8b0737bb42ae61bb3", + "IPY_MODEL_5bfb80713d60450bbefffecd0daf3ab7" + ], + "layout": "IPY_MODEL_43b103a593a247079a2979761fa890c4", "tabbable": null, - "tooltip": null, - "value": 2.0 + "tooltip": null } }, - "f4ad6c92501549ec9b25fa93f87e6348": { + "fb58761e4f0d4d029d720e32dfa858dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fb2af0144f1742c1a26396a9b5fe4c73": { + "fda6d2df94ba4533aa4be7e4d9a431e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6547,6 +8705,24 @@ "visibility": null, "width": null } + }, + "fde506e16fa7472a918e451309dce944": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb index 763870823..9b27268b0 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:39.427663Z", - "iopub.status.busy": "2024-04-08T19:11:39.427246Z", - "iopub.status.idle": "2024-04-08T19:11:40.493201Z", - "shell.execute_reply": "2024-04-08T19:11:40.492649Z" + "iopub.execute_input": "2024-04-08T21:52:07.150619Z", + "iopub.status.busy": "2024-04-08T21:52:07.150453Z", + "iopub.status.idle": "2024-04-08T21:52:08.223701Z", + "shell.execute_reply": "2024-04-08T21:52:08.223074Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.495661Z", - "iopub.status.busy": "2024-04-08T19:11:40.495382Z", - "iopub.status.idle": "2024-04-08T19:11:40.513938Z", - "shell.execute_reply": "2024-04-08T19:11:40.513525Z" + "iopub.execute_input": "2024-04-08T21:52:08.226562Z", + "iopub.status.busy": "2024-04-08T21:52:08.226022Z", + "iopub.status.idle": "2024-04-08T21:52:08.244493Z", + "shell.execute_reply": "2024-04-08T21:52:08.244070Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.515940Z", - "iopub.status.busy": "2024-04-08T19:11:40.515700Z", - "iopub.status.idle": "2024-04-08T19:11:40.560958Z", - "shell.execute_reply": "2024-04-08T19:11:40.560524Z" + "iopub.execute_input": "2024-04-08T21:52:08.246664Z", + "iopub.status.busy": "2024-04-08T21:52:08.246284Z", + "iopub.status.idle": "2024-04-08T21:52:08.274975Z", + "shell.execute_reply": "2024-04-08T21:52:08.274428Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.562932Z", - "iopub.status.busy": "2024-04-08T19:11:40.562610Z", - "iopub.status.idle": "2024-04-08T19:11:40.566002Z", - "shell.execute_reply": "2024-04-08T19:11:40.565577Z" + "iopub.execute_input": "2024-04-08T21:52:08.277126Z", + "iopub.status.busy": "2024-04-08T21:52:08.276731Z", + "iopub.status.idle": "2024-04-08T21:52:08.280143Z", + "shell.execute_reply": "2024-04-08T21:52:08.279662Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.567900Z", - "iopub.status.busy": "2024-04-08T19:11:40.567583Z", - "iopub.status.idle": "2024-04-08T19:11:40.574730Z", - "shell.execute_reply": "2024-04-08T19:11:40.574279Z" + "iopub.execute_input": "2024-04-08T21:52:08.282096Z", + "iopub.status.busy": "2024-04-08T21:52:08.281805Z", + "iopub.status.idle": "2024-04-08T21:52:08.289175Z", + "shell.execute_reply": "2024-04-08T21:52:08.288644Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.576667Z", - "iopub.status.busy": "2024-04-08T19:11:40.576404Z", - "iopub.status.idle": "2024-04-08T19:11:40.578794Z", - "shell.execute_reply": "2024-04-08T19:11:40.578358Z" + "iopub.execute_input": "2024-04-08T21:52:08.291505Z", + "iopub.status.busy": "2024-04-08T21:52:08.291173Z", + "iopub.status.idle": "2024-04-08T21:52:08.294219Z", + "shell.execute_reply": "2024-04-08T21:52:08.293788Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.580843Z", - "iopub.status.busy": "2024-04-08T19:11:40.580536Z", - "iopub.status.idle": "2024-04-08T19:11:43.565419Z", - "shell.execute_reply": "2024-04-08T19:11:43.564907Z" + "iopub.execute_input": "2024-04-08T21:52:08.296328Z", + "iopub.status.busy": "2024-04-08T21:52:08.295995Z", + "iopub.status.idle": "2024-04-08T21:52:11.222567Z", + "shell.execute_reply": "2024-04-08T21:52:11.221929Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:43.568043Z", - "iopub.status.busy": "2024-04-08T19:11:43.567842Z", - "iopub.status.idle": "2024-04-08T19:11:43.577436Z", - "shell.execute_reply": "2024-04-08T19:11:43.577042Z" + "iopub.execute_input": "2024-04-08T21:52:11.225452Z", + "iopub.status.busy": "2024-04-08T21:52:11.224989Z", + "iopub.status.idle": "2024-04-08T21:52:11.234228Z", + "shell.execute_reply": "2024-04-08T21:52:11.233769Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:43.579441Z", - "iopub.status.busy": "2024-04-08T19:11:43.579134Z", - "iopub.status.idle": "2024-04-08T19:11:45.292514Z", - "shell.execute_reply": "2024-04-08T19:11:45.291914Z" + "iopub.execute_input": "2024-04-08T21:52:11.236385Z", + "iopub.status.busy": "2024-04-08T21:52:11.236010Z", + "iopub.status.idle": "2024-04-08T21:52:12.934764Z", + "shell.execute_reply": "2024-04-08T21:52:12.934166Z" } }, "outputs": [ @@ -468,7 +468,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -485,10 +485,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.296728Z", - "iopub.status.busy": "2024-04-08T19:11:45.295425Z", - "iopub.status.idle": "2024-04-08T19:11:45.320295Z", - "shell.execute_reply": "2024-04-08T19:11:45.319812Z" + "iopub.execute_input": "2024-04-08T21:52:12.937827Z", + "iopub.status.busy": "2024-04-08T21:52:12.937063Z", + "iopub.status.idle": "2024-04-08T21:52:12.959960Z", + "shell.execute_reply": "2024-04-08T21:52:12.959474Z" }, "scrolled": true }, @@ -613,10 +613,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.323669Z", - "iopub.status.busy": "2024-04-08T19:11:45.322766Z", - "iopub.status.idle": "2024-04-08T19:11:45.333647Z", - "shell.execute_reply": "2024-04-08T19:11:45.333187Z" + "iopub.execute_input": "2024-04-08T21:52:12.962291Z", + "iopub.status.busy": "2024-04-08T21:52:12.961921Z", + "iopub.status.idle": "2024-04-08T21:52:12.970867Z", + "shell.execute_reply": "2024-04-08T21:52:12.970359Z" } }, "outputs": [ @@ -720,10 +720,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.336997Z", - "iopub.status.busy": "2024-04-08T19:11:45.336094Z", - "iopub.status.idle": "2024-04-08T19:11:45.348729Z", - "shell.execute_reply": "2024-04-08T19:11:45.348256Z" + "iopub.execute_input": "2024-04-08T21:52:12.973159Z", + "iopub.status.busy": "2024-04-08T21:52:12.972786Z", + "iopub.status.idle": "2024-04-08T21:52:12.983332Z", + "shell.execute_reply": "2024-04-08T21:52:12.982832Z" } }, "outputs": [ @@ -852,10 +852,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.352087Z", - "iopub.status.busy": "2024-04-08T19:11:45.351199Z", - "iopub.status.idle": "2024-04-08T19:11:45.362031Z", - "shell.execute_reply": "2024-04-08T19:11:45.361569Z" + "iopub.execute_input": "2024-04-08T21:52:12.985662Z", + "iopub.status.busy": "2024-04-08T21:52:12.985290Z", + "iopub.status.idle": "2024-04-08T21:52:12.994136Z", + "shell.execute_reply": "2024-04-08T21:52:12.993656Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.365401Z", - "iopub.status.busy": "2024-04-08T19:11:45.364508Z", - "iopub.status.idle": "2024-04-08T19:11:45.376129Z", - "shell.execute_reply": "2024-04-08T19:11:45.375592Z" + "iopub.execute_input": "2024-04-08T21:52:12.996453Z", + "iopub.status.busy": "2024-04-08T21:52:12.996091Z", + "iopub.status.idle": "2024-04-08T21:52:13.007173Z", + "shell.execute_reply": "2024-04-08T21:52:13.006680Z" } }, "outputs": [ @@ -1083,10 +1083,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.378395Z", - "iopub.status.busy": "2024-04-08T19:11:45.378081Z", - "iopub.status.idle": "2024-04-08T19:11:45.384257Z", - "shell.execute_reply": "2024-04-08T19:11:45.383732Z" + "iopub.execute_input": "2024-04-08T21:52:13.010554Z", + "iopub.status.busy": "2024-04-08T21:52:13.009652Z", + "iopub.status.idle": "2024-04-08T21:52:13.018412Z", + "shell.execute_reply": "2024-04-08T21:52:13.018001Z" } }, "outputs": [ @@ -1170,10 +1170,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.386145Z", - "iopub.status.busy": "2024-04-08T19:11:45.385969Z", - "iopub.status.idle": "2024-04-08T19:11:45.392100Z", - "shell.execute_reply": "2024-04-08T19:11:45.391633Z" + "iopub.execute_input": "2024-04-08T21:52:13.020519Z", + "iopub.status.busy": "2024-04-08T21:52:13.020174Z", + "iopub.status.idle": "2024-04-08T21:52:13.026633Z", + "shell.execute_reply": "2024-04-08T21:52:13.026214Z" } }, "outputs": [ @@ -1266,10 +1266,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.394135Z", - "iopub.status.busy": "2024-04-08T19:11:45.393818Z", - "iopub.status.idle": "2024-04-08T19:11:45.399861Z", - "shell.execute_reply": "2024-04-08T19:11:45.399452Z" + "iopub.execute_input": "2024-04-08T21:52:13.028931Z", + "iopub.status.busy": "2024-04-08T21:52:13.028762Z", + "iopub.status.idle": "2024-04-08T21:52:13.035902Z", + "shell.execute_reply": "2024-04-08T21:52:13.035334Z" }, "nbsphinx": "hidden" }, @@ -1320,7 +1320,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb index cdfc50478..68772ba11 100644 --- a/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:47.873795Z", - "iopub.status.busy": "2024-04-08T19:11:47.873616Z", - "iopub.status.idle": "2024-04-08T19:11:50.509546Z", - "shell.execute_reply": "2024-04-08T19:11:50.508929Z" + "iopub.execute_input": "2024-04-08T21:52:15.635095Z", + "iopub.status.busy": "2024-04-08T21:52:15.634936Z", + "iopub.status.idle": "2024-04-08T21:52:18.199131Z", + "shell.execute_reply": "2024-04-08T21:52:18.198595Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.512202Z", - "iopub.status.busy": "2024-04-08T19:11:50.511881Z", - "iopub.status.idle": "2024-04-08T19:11:50.515413Z", - "shell.execute_reply": "2024-04-08T19:11:50.514847Z" + "iopub.execute_input": "2024-04-08T21:52:18.201615Z", + "iopub.status.busy": "2024-04-08T21:52:18.201329Z", + "iopub.status.idle": "2024-04-08T21:52:18.204631Z", + "shell.execute_reply": "2024-04-08T21:52:18.204195Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.517389Z", - "iopub.status.busy": "2024-04-08T19:11:50.517121Z", - "iopub.status.idle": "2024-04-08T19:11:50.520136Z", - "shell.execute_reply": "2024-04-08T19:11:50.519721Z" + "iopub.execute_input": "2024-04-08T21:52:18.206585Z", + "iopub.status.busy": "2024-04-08T21:52:18.206242Z", + "iopub.status.idle": "2024-04-08T21:52:18.209410Z", + "shell.execute_reply": "2024-04-08T21:52:18.208877Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.522130Z", - "iopub.status.busy": "2024-04-08T19:11:50.521805Z", - "iopub.status.idle": "2024-04-08T19:11:50.573099Z", - "shell.execute_reply": "2024-04-08T19:11:50.572633Z" + "iopub.execute_input": "2024-04-08T21:52:18.211474Z", + "iopub.status.busy": "2024-04-08T21:52:18.211050Z", + "iopub.status.idle": "2024-04-08T21:52:18.235630Z", + "shell.execute_reply": "2024-04-08T21:52:18.235102Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.575235Z", - "iopub.status.busy": "2024-04-08T19:11:50.574826Z", - "iopub.status.idle": "2024-04-08T19:11:50.578661Z", - "shell.execute_reply": "2024-04-08T19:11:50.578198Z" + "iopub.execute_input": "2024-04-08T21:52:18.237655Z", + "iopub.status.busy": "2024-04-08T21:52:18.237347Z", + "iopub.status.idle": "2024-04-08T21:52:18.241014Z", + "shell.execute_reply": "2024-04-08T21:52:18.240483Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" + "Classes: {'getting_spare_card', 'card_about_to_expire', 'change_pin', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.580716Z", - "iopub.status.busy": "2024-04-08T19:11:50.580386Z", - "iopub.status.idle": "2024-04-08T19:11:50.583329Z", - "shell.execute_reply": "2024-04-08T19:11:50.582809Z" + "iopub.execute_input": "2024-04-08T21:52:18.243010Z", + "iopub.status.busy": "2024-04-08T21:52:18.242645Z", + "iopub.status.idle": "2024-04-08T21:52:18.245817Z", + "shell.execute_reply": "2024-04-08T21:52:18.245289Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.585157Z", - "iopub.status.busy": "2024-04-08T19:11:50.584978Z", - "iopub.status.idle": "2024-04-08T19:11:54.999343Z", - "shell.execute_reply": "2024-04-08T19:11:54.998804Z" + "iopub.execute_input": "2024-04-08T21:52:18.247927Z", + "iopub.status.busy": "2024-04-08T21:52:18.247546Z", + "iopub.status.idle": "2024-04-08T21:52:21.805036Z", + "shell.execute_reply": "2024-04-08T21:52:21.804395Z" } }, "outputs": [ @@ -383,7 +383,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", " return self.fget.__get__(instance, owner)()\n" ] } @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:55.002005Z", - "iopub.status.busy": "2024-04-08T19:11:55.001591Z", - "iopub.status.idle": "2024-04-08T19:11:55.890538Z", - "shell.execute_reply": "2024-04-08T19:11:55.889962Z" + "iopub.execute_input": "2024-04-08T21:52:21.807692Z", + "iopub.status.busy": "2024-04-08T21:52:21.807502Z", + "iopub.status.idle": "2024-04-08T21:52:22.722788Z", + "shell.execute_reply": "2024-04-08T21:52:22.722220Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:55.893249Z", - "iopub.status.busy": "2024-04-08T19:11:55.892862Z", - "iopub.status.idle": "2024-04-08T19:11:55.895882Z", - "shell.execute_reply": "2024-04-08T19:11:55.895415Z" + "iopub.execute_input": "2024-04-08T21:52:22.725502Z", + "iopub.status.busy": "2024-04-08T21:52:22.725131Z", + "iopub.status.idle": "2024-04-08T21:52:22.728139Z", + "shell.execute_reply": "2024-04-08T21:52:22.727657Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:55.898149Z", - "iopub.status.busy": "2024-04-08T19:11:55.897768Z", - "iopub.status.idle": "2024-04-08T19:11:57.484712Z", - "shell.execute_reply": "2024-04-08T19:11:57.482845Z" + "iopub.execute_input": "2024-04-08T21:52:22.730441Z", + "iopub.status.busy": "2024-04-08T21:52:22.730051Z", + "iopub.status.idle": "2024-04-08T21:52:24.235608Z", + "shell.execute_reply": "2024-04-08T21:52:24.235008Z" }, "scrolled": true }, @@ -516,7 +516,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.489057Z", - "iopub.status.busy": "2024-04-08T19:11:57.487744Z", - "iopub.status.idle": "2024-04-08T19:11:57.513599Z", - "shell.execute_reply": "2024-04-08T19:11:57.513105Z" + "iopub.execute_input": "2024-04-08T21:52:24.238579Z", + "iopub.status.busy": "2024-04-08T21:52:24.237797Z", + "iopub.status.idle": "2024-04-08T21:52:24.261361Z", + "shell.execute_reply": "2024-04-08T21:52:24.260879Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.517153Z", - "iopub.status.busy": "2024-04-08T19:11:57.516242Z", - "iopub.status.idle": "2024-04-08T19:11:57.527834Z", - "shell.execute_reply": "2024-04-08T19:11:57.527359Z" + "iopub.execute_input": "2024-04-08T21:52:24.264563Z", + "iopub.status.busy": "2024-04-08T21:52:24.263513Z", + "iopub.status.idle": "2024-04-08T21:52:24.275189Z", + "shell.execute_reply": "2024-04-08T21:52:24.274666Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.531248Z", - "iopub.status.busy": "2024-04-08T19:11:57.530335Z", - "iopub.status.idle": "2024-04-08T19:11:57.536787Z", - "shell.execute_reply": "2024-04-08T19:11:57.536230Z" + "iopub.execute_input": "2024-04-08T21:52:24.278666Z", + "iopub.status.busy": "2024-04-08T21:52:24.277755Z", + "iopub.status.idle": "2024-04-08T21:52:24.284253Z", + "shell.execute_reply": "2024-04-08T21:52:24.283764Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.538876Z", - "iopub.status.busy": "2024-04-08T19:11:57.538699Z", - "iopub.status.idle": "2024-04-08T19:11:57.546063Z", - "shell.execute_reply": "2024-04-08T19:11:57.545305Z" + "iopub.execute_input": "2024-04-08T21:52:24.287468Z", + "iopub.status.busy": "2024-04-08T21:52:24.286748Z", + "iopub.status.idle": "2024-04-08T21:52:24.293548Z", + "shell.execute_reply": "2024-04-08T21:52:24.293108Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.548261Z", - "iopub.status.busy": "2024-04-08T19:11:57.547854Z", - "iopub.status.idle": "2024-04-08T19:11:57.554234Z", - "shell.execute_reply": "2024-04-08T19:11:57.553695Z" + "iopub.execute_input": "2024-04-08T21:52:24.295474Z", + "iopub.status.busy": "2024-04-08T21:52:24.295152Z", + "iopub.status.idle": "2024-04-08T21:52:24.301318Z", + "shell.execute_reply": "2024-04-08T21:52:24.300855Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.556102Z", - "iopub.status.busy": "2024-04-08T19:11:57.555808Z", - "iopub.status.idle": "2024-04-08T19:11:57.561366Z", - "shell.execute_reply": "2024-04-08T19:11:57.560849Z" + "iopub.execute_input": "2024-04-08T21:52:24.303288Z", + "iopub.status.busy": "2024-04-08T21:52:24.302901Z", + "iopub.status.idle": "2024-04-08T21:52:24.308584Z", + "shell.execute_reply": "2024-04-08T21:52:24.308040Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.563375Z", - "iopub.status.busy": "2024-04-08T19:11:57.563066Z", - "iopub.status.idle": "2024-04-08T19:11:57.571545Z", - "shell.execute_reply": "2024-04-08T19:11:57.571096Z" + "iopub.execute_input": "2024-04-08T21:52:24.310530Z", + "iopub.status.busy": "2024-04-08T21:52:24.310234Z", + "iopub.status.idle": "2024-04-08T21:52:24.318523Z", + "shell.execute_reply": "2024-04-08T21:52:24.317991Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.573469Z", - "iopub.status.busy": "2024-04-08T19:11:57.573151Z", - "iopub.status.idle": "2024-04-08T19:11:57.578415Z", - "shell.execute_reply": "2024-04-08T19:11:57.577995Z" + "iopub.execute_input": "2024-04-08T21:52:24.320594Z", + "iopub.status.busy": "2024-04-08T21:52:24.320177Z", + "iopub.status.idle": "2024-04-08T21:52:24.325249Z", + "shell.execute_reply": "2024-04-08T21:52:24.324830Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.580309Z", - "iopub.status.busy": "2024-04-08T19:11:57.579985Z", - "iopub.status.idle": "2024-04-08T19:11:57.585107Z", - "shell.execute_reply": "2024-04-08T19:11:57.584704Z" + "iopub.execute_input": "2024-04-08T21:52:24.327414Z", + "iopub.status.busy": "2024-04-08T21:52:24.326899Z", + "iopub.status.idle": "2024-04-08T21:52:24.332073Z", + "shell.execute_reply": "2024-04-08T21:52:24.331655Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.587089Z", - "iopub.status.busy": "2024-04-08T19:11:57.586774Z", - "iopub.status.idle": "2024-04-08T19:11:57.590241Z", - "shell.execute_reply": "2024-04-08T19:11:57.589704Z" + "iopub.execute_input": "2024-04-08T21:52:24.334102Z", + "iopub.status.busy": "2024-04-08T21:52:24.333715Z", + "iopub.status.idle": "2024-04-08T21:52:24.337300Z", + "shell.execute_reply": "2024-04-08T21:52:24.336756Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.592302Z", - "iopub.status.busy": "2024-04-08T19:11:57.591981Z", - "iopub.status.idle": "2024-04-08T19:11:57.597076Z", - "shell.execute_reply": "2024-04-08T19:11:57.596530Z" + "iopub.execute_input": "2024-04-08T21:52:24.339310Z", + "iopub.status.busy": "2024-04-08T21:52:24.338988Z", + "iopub.status.idle": "2024-04-08T21:52:24.343727Z", + "shell.execute_reply": "2024-04-08T21:52:24.343284Z" }, "nbsphinx": "hidden" }, @@ -1503,7 +1503,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb index 8386c499c..44ea2cb8f 100644 --- a/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:00.906624Z", - "iopub.status.busy": "2024-04-08T19:12:00.906269Z", - "iopub.status.idle": "2024-04-08T19:12:02.013278Z", - "shell.execute_reply": "2024-04-08T19:12:02.012738Z" + "iopub.execute_input": "2024-04-08T21:52:27.396340Z", + "iopub.status.busy": "2024-04-08T21:52:27.395983Z", + "iopub.status.idle": "2024-04-08T21:52:28.459980Z", + "shell.execute_reply": "2024-04-08T21:52:28.459347Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:02.015823Z", - "iopub.status.busy": "2024-04-08T19:12:02.015525Z", - "iopub.status.idle": "2024-04-08T19:12:02.018326Z", - "shell.execute_reply": "2024-04-08T19:12:02.017864Z" + "iopub.execute_input": "2024-04-08T21:52:28.462853Z", + "iopub.status.busy": "2024-04-08T21:52:28.462320Z", + "iopub.status.idle": "2024-04-08T21:52:28.465069Z", + "shell.execute_reply": "2024-04-08T21:52:28.464644Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:02.020260Z", - "iopub.status.busy": "2024-04-08T19:12:02.020087Z", - "iopub.status.idle": "2024-04-08T19:12:02.032329Z", - "shell.execute_reply": "2024-04-08T19:12:02.031881Z" + "iopub.execute_input": "2024-04-08T21:52:28.467215Z", + "iopub.status.busy": "2024-04-08T21:52:28.467023Z", + "iopub.status.idle": "2024-04-08T21:52:28.478907Z", + "shell.execute_reply": "2024-04-08T21:52:28.478417Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:02.034317Z", - "iopub.status.busy": "2024-04-08T19:12:02.034142Z", - "iopub.status.idle": "2024-04-08T19:12:10.633860Z", - "shell.execute_reply": "2024-04-08T19:12:10.633305Z" + "iopub.execute_input": "2024-04-08T21:52:28.481053Z", + "iopub.status.busy": "2024-04-08T21:52:28.480659Z", + "iopub.status.idle": "2024-04-08T21:52:31.721969Z", + "shell.execute_reply": "2024-04-08T21:52:31.721378Z" }, "id": "dhTHOg8Pyv5G" }, @@ -692,13 +692,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -3102,7 +3096,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/faq.ipynb b/master/.doctrees/nbsphinx/tutorials/faq.ipynb index 35b51f794..c75207e1f 100644 --- a/master/.doctrees/nbsphinx/tutorials/faq.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:12.681561Z", - "iopub.status.busy": "2024-04-08T19:12:12.681389Z", - "iopub.status.idle": "2024-04-08T19:12:13.734405Z", - "shell.execute_reply": "2024-04-08T19:12:13.733868Z" + "iopub.execute_input": "2024-04-08T21:52:33.885421Z", + "iopub.status.busy": "2024-04-08T21:52:33.884937Z", + "iopub.status.idle": "2024-04-08T21:52:34.964557Z", + "shell.execute_reply": "2024-04-08T21:52:34.963918Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:13.737231Z", - "iopub.status.busy": "2024-04-08T19:12:13.736791Z", - "iopub.status.idle": "2024-04-08T19:12:13.740148Z", - "shell.execute_reply": "2024-04-08T19:12:13.739710Z" + "iopub.execute_input": "2024-04-08T21:52:34.967491Z", + "iopub.status.busy": "2024-04-08T21:52:34.967024Z", + "iopub.status.idle": "2024-04-08T21:52:34.970255Z", + "shell.execute_reply": "2024-04-08T21:52:34.969814Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:13.742187Z", - "iopub.status.busy": "2024-04-08T19:12:13.741855Z", - "iopub.status.idle": "2024-04-08T19:12:16.687217Z", - "shell.execute_reply": "2024-04-08T19:12:16.686507Z" + "iopub.execute_input": "2024-04-08T21:52:34.972270Z", + "iopub.status.busy": "2024-04-08T21:52:34.971963Z", + "iopub.status.idle": "2024-04-08T21:52:37.922130Z", + "shell.execute_reply": "2024-04-08T21:52:37.921514Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.690229Z", - "iopub.status.busy": "2024-04-08T19:12:16.689558Z", - "iopub.status.idle": "2024-04-08T19:12:16.723065Z", - "shell.execute_reply": "2024-04-08T19:12:16.722493Z" + "iopub.execute_input": "2024-04-08T21:52:37.925130Z", + "iopub.status.busy": "2024-04-08T21:52:37.924469Z", + "iopub.status.idle": "2024-04-08T21:52:37.957928Z", + "shell.execute_reply": "2024-04-08T21:52:37.957355Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.725574Z", - "iopub.status.busy": "2024-04-08T19:12:16.725213Z", - "iopub.status.idle": "2024-04-08T19:12:16.748633Z", - "shell.execute_reply": "2024-04-08T19:12:16.748076Z" + "iopub.execute_input": "2024-04-08T21:52:37.960493Z", + "iopub.status.busy": "2024-04-08T21:52:37.960191Z", + "iopub.status.idle": "2024-04-08T21:52:37.990903Z", + "shell.execute_reply": "2024-04-08T21:52:37.990272Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.751185Z", - "iopub.status.busy": "2024-04-08T19:12:16.750822Z", - "iopub.status.idle": "2024-04-08T19:12:16.753746Z", - "shell.execute_reply": "2024-04-08T19:12:16.753306Z" + "iopub.execute_input": "2024-04-08T21:52:37.993720Z", + "iopub.status.busy": "2024-04-08T21:52:37.993247Z", + "iopub.status.idle": "2024-04-08T21:52:37.996395Z", + "shell.execute_reply": "2024-04-08T21:52:37.995970Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.755833Z", - "iopub.status.busy": "2024-04-08T19:12:16.755526Z", - "iopub.status.idle": "2024-04-08T19:12:16.758525Z", - "shell.execute_reply": "2024-04-08T19:12:16.758102Z" + "iopub.execute_input": "2024-04-08T21:52:37.998486Z", + "iopub.status.busy": "2024-04-08T21:52:37.998101Z", + "iopub.status.idle": "2024-04-08T21:52:38.000692Z", + "shell.execute_reply": "2024-04-08T21:52:38.000253Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.760530Z", - "iopub.status.busy": "2024-04-08T19:12:16.760254Z", - "iopub.status.idle": "2024-04-08T19:12:16.783193Z", - "shell.execute_reply": "2024-04-08T19:12:16.782688Z" + "iopub.execute_input": "2024-04-08T21:52:38.002914Z", + "iopub.status.busy": "2024-04-08T21:52:38.002511Z", + "iopub.status.idle": "2024-04-08T21:52:38.026371Z", + "shell.execute_reply": "2024-04-08T21:52:38.025790Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6a6240bb0ab443d38a48eadee74f3ae2", + "model_id": "ee395a85c9664de6802a8e4fa965580e", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9a5120ba56d4977aa0d368fb7c66d40", + "model_id": "013780a0968343228a8306681189312c", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.789722Z", - "iopub.status.busy": "2024-04-08T19:12:16.789232Z", - "iopub.status.idle": "2024-04-08T19:12:16.795676Z", - "shell.execute_reply": "2024-04-08T19:12:16.795154Z" + "iopub.execute_input": "2024-04-08T21:52:38.032988Z", + "iopub.status.busy": "2024-04-08T21:52:38.032462Z", + "iopub.status.idle": "2024-04-08T21:52:38.039296Z", + "shell.execute_reply": "2024-04-08T21:52:38.038830Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.797734Z", - "iopub.status.busy": "2024-04-08T19:12:16.797436Z", - "iopub.status.idle": "2024-04-08T19:12:16.800819Z", - "shell.execute_reply": "2024-04-08T19:12:16.800306Z" + "iopub.execute_input": "2024-04-08T21:52:38.041278Z", + "iopub.status.busy": "2024-04-08T21:52:38.040959Z", + "iopub.status.idle": "2024-04-08T21:52:38.044453Z", + "shell.execute_reply": "2024-04-08T21:52:38.043888Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.802799Z", - "iopub.status.busy": "2024-04-08T19:12:16.802383Z", - "iopub.status.idle": "2024-04-08T19:12:16.808583Z", - "shell.execute_reply": "2024-04-08T19:12:16.808080Z" + "iopub.execute_input": "2024-04-08T21:52:38.046421Z", + "iopub.status.busy": "2024-04-08T21:52:38.046112Z", + "iopub.status.idle": "2024-04-08T21:52:38.052307Z", + "shell.execute_reply": "2024-04-08T21:52:38.051875Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.810430Z", - "iopub.status.busy": "2024-04-08T19:12:16.810131Z", - "iopub.status.idle": "2024-04-08T19:12:16.843764Z", - "shell.execute_reply": "2024-04-08T19:12:16.843069Z" + "iopub.execute_input": "2024-04-08T21:52:38.054288Z", + "iopub.status.busy": "2024-04-08T21:52:38.053976Z", + "iopub.status.idle": "2024-04-08T21:52:38.087895Z", + "shell.execute_reply": "2024-04-08T21:52:38.087287Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.846251Z", - "iopub.status.busy": "2024-04-08T19:12:16.846029Z", - "iopub.status.idle": "2024-04-08T19:12:16.876055Z", - "shell.execute_reply": "2024-04-08T19:12:16.875395Z" + "iopub.execute_input": "2024-04-08T21:52:38.090513Z", + "iopub.status.busy": "2024-04-08T21:52:38.090158Z", + "iopub.status.idle": "2024-04-08T21:52:38.122158Z", + "shell.execute_reply": "2024-04-08T21:52:38.121588Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.878797Z", - "iopub.status.busy": "2024-04-08T19:12:16.878362Z", - "iopub.status.idle": "2024-04-08T19:12:16.997690Z", - "shell.execute_reply": "2024-04-08T19:12:16.997074Z" + "iopub.execute_input": "2024-04-08T21:52:38.124811Z", + "iopub.status.busy": "2024-04-08T21:52:38.124443Z", + "iopub.status.idle": "2024-04-08T21:52:38.245296Z", + "shell.execute_reply": "2024-04-08T21:52:38.244673Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:17.000317Z", - "iopub.status.busy": "2024-04-08T19:12:16.999797Z", - "iopub.status.idle": "2024-04-08T19:12:20.051499Z", - "shell.execute_reply": "2024-04-08T19:12:20.050857Z" + "iopub.execute_input": "2024-04-08T21:52:38.247939Z", + "iopub.status.busy": "2024-04-08T21:52:38.247357Z", + "iopub.status.idle": "2024-04-08T21:52:41.278115Z", + "shell.execute_reply": "2024-04-08T21:52:41.277445Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.054045Z", - "iopub.status.busy": "2024-04-08T19:12:20.053678Z", - "iopub.status.idle": "2024-04-08T19:12:20.108066Z", - "shell.execute_reply": "2024-04-08T19:12:20.107454Z" + "iopub.execute_input": "2024-04-08T21:52:41.280387Z", + "iopub.status.busy": "2024-04-08T21:52:41.280185Z", + "iopub.status.idle": "2024-04-08T21:52:41.343805Z", + "shell.execute_reply": "2024-04-08T21:52:41.343221Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.110315Z", - "iopub.status.busy": "2024-04-08T19:12:20.109981Z", - "iopub.status.idle": "2024-04-08T19:12:20.147390Z", - "shell.execute_reply": "2024-04-08T19:12:20.146954Z" + "iopub.execute_input": "2024-04-08T21:52:41.346061Z", + "iopub.status.busy": "2024-04-08T21:52:41.345637Z", + "iopub.status.idle": "2024-04-08T21:52:41.383009Z", + "shell.execute_reply": "2024-04-08T21:52:41.382423Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "9da437a7", + "id": "f6b4c4bb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "fce848ae", + "id": "60b5c209", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "0fe990fa", + "id": "e0a5e099", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.149376Z", - "iopub.status.busy": "2024-04-08T19:12:20.149051Z", - "iopub.status.idle": "2024-04-08T19:12:20.266660Z", - "shell.execute_reply": "2024-04-08T19:12:20.266055Z" + "iopub.execute_input": "2024-04-08T21:52:41.385132Z", + "iopub.status.busy": "2024-04-08T21:52:41.384792Z", + "iopub.status.idle": "2024-04-08T21:52:41.491991Z", + "shell.execute_reply": "2024-04-08T21:52:41.491386Z" } }, "outputs": [ @@ -1354,13 +1354,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Finding underperforming_group issues ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1393,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "e1f798da", + "id": "6a768b00", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1402,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "35842b9a", + "id": "cac3765b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.269272Z", - "iopub.status.busy": "2024-04-08T19:12:20.269030Z", - "iopub.status.idle": "2024-04-08T19:12:20.330497Z", - "shell.execute_reply": "2024-04-08T19:12:20.329977Z" + "iopub.execute_input": "2024-04-08T21:52:41.494449Z", + "iopub.status.busy": "2024-04-08T21:52:41.494203Z", + "iopub.status.idle": "2024-04-08T21:52:41.559401Z", + "shell.execute_reply": "2024-04-08T21:52:41.558627Z" } }, "outputs": [ @@ -1444,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "798d7822", + "id": "585df12a", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1455,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "fdfd0a78", + "id": "cbb1aa10", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.332905Z", - "iopub.status.busy": "2024-04-08T19:12:20.332706Z", - "iopub.status.idle": "2024-04-08T19:12:20.340139Z", - "shell.execute_reply": "2024-04-08T19:12:20.339592Z" + "iopub.execute_input": "2024-04-08T21:52:41.562045Z", + "iopub.status.busy": "2024-04-08T21:52:41.561642Z", + "iopub.status.idle": "2024-04-08T21:52:41.569488Z", + "shell.execute_reply": "2024-04-08T21:52:41.568981Z" } }, "outputs": [], @@ -1563,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "623406db", + "id": "6c6b923e", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1578,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "78a115a5", + "id": "bc9dafe6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.342036Z", - "iopub.status.busy": "2024-04-08T19:12:20.341739Z", - "iopub.status.idle": "2024-04-08T19:12:20.360239Z", - "shell.execute_reply": "2024-04-08T19:12:20.359697Z" + "iopub.execute_input": "2024-04-08T21:52:41.571656Z", + "iopub.status.busy": "2024-04-08T21:52:41.571348Z", + "iopub.status.idle": "2024-04-08T21:52:41.590454Z", + "shell.execute_reply": "2024-04-08T21:52:41.589898Z" } }, "outputs": [ @@ -1601,7 +1595,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7838/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7797/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1635,13 +1629,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "40dae4e0", + "id": "52a94d9d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.362253Z", - "iopub.status.busy": "2024-04-08T19:12:20.361948Z", - "iopub.status.idle": "2024-04-08T19:12:20.365026Z", - "shell.execute_reply": "2024-04-08T19:12:20.364516Z" + "iopub.execute_input": "2024-04-08T21:52:41.592635Z", + "iopub.status.busy": "2024-04-08T21:52:41.592232Z", + "iopub.status.idle": "2024-04-08T21:52:41.595664Z", + "shell.execute_reply": "2024-04-08T21:52:41.595126Z" } }, "outputs": [ @@ -1731,12 +1725,150 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "12810a0d31ae4f278489cceb3717deb2": { + "013780a0968343228a8306681189312c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2bc57c8c7fdb4e06aec5a4949d30f761", + "IPY_MODEL_1165f11b03ca4088885d7a97582b05e7", + "IPY_MODEL_69311b3bdcd94fedbde273b71328e325" + ], + "layout": "IPY_MODEL_cdefff66b7d94b92b4c7eb567d8996c4", + "tabbable": null, + "tooltip": null + } + }, + "1165f11b03ca4088885d7a97582b05e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9571b7a449884055a8a5f5d12566d4d4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe61cbc444754ef5a851e3c85a8d6ad5", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "1b922a2413c948449bd6ad3e1b63a562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dc164c60ecf48c68dc8589082dda989", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_39fd87f1bd014ab5b765b579dfeef4f6", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "24450523053c4f4781345901f4590ee3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c8ea3f86034416c9f89fbec6d4697ae", + "placeholder": "​", + "style": "IPY_MODEL_9e1dd7745e054495b4860450daf414ef", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1058846.81it/s]" + } + }, + "2bc57c8c7fdb4e06aec5a4949d30f761": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d89d1461951491588e355ee898b4555", + "placeholder": "​", + "style": "IPY_MODEL_bbaf1dc6744949398e3078caafb2b230", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "39fd87f1bd014ab5b765b579dfeef4f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4dc164c60ecf48c68dc8589082dda989": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1789,7 +1921,30 @@ "width": null } }, - "21b83733b12e4ab9a8e1fc932a77b365": { + "69311b3bdcd94fedbde273b71328e325": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf58085c1db74f2583fcdbfa389ef57a", + "placeholder": "​", + "style": "IPY_MODEL_b9d99057a8614777918bf5ed05ae3044", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1566851.21it/s]" + } + }, + "756095ccd0144ee799bfce748ca9f028": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1842,65 +1997,7 @@ "width": null } }, - "6566ff0f4c9545e0a8d4ac6514750721": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "68c12f7c9aa14eb596e0d4b9f346ded1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a6240bb0ab443d38a48eadee74f3ae2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b66e8c48cfaa46939a45c8b4440cd4a6", - "IPY_MODEL_bf86d89ad3204f18be960f57e96ccf59", - "IPY_MODEL_b765b2a3ff1d4b41a66c68404700508b" - ], - "layout": "IPY_MODEL_cfc2c60ce9954a939a633840b1c6d1f7", - "tabbable": null, - "tooltip": null - } - }, - "995b23ebdb8b4621ae697068c80e4d01": { + "7c8ea3f86034416c9f89fbec6d4697ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,7 +2050,7 @@ "width": null } }, - "9a847008c2cc4912b7568541c8506397": { + "7d89d1461951491588e355ee898b4555": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,48 +2103,7 @@ "width": null } }, - "9cca6ed55b464af5a62dfafe2ab723a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a847008c2cc4912b7568541c8506397", - "placeholder": "​", - "style": "IPY_MODEL_b0998f9686d34540aef7e956282bc228", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1657172.66it/s]" - } - }, - "b0998f9686d34540aef7e956282bc228": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b37c8cc149634a1fa49852024830088d": { + "8a749f91417c480b859f56162ef4e4d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2065,7 +2121,7 @@ "text_color": null } }, - "b66e8c48cfaa46939a45c8b4440cd4a6": { + "94024fda874a45bab218bc5bc754e581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2080,38 +2136,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_12810a0d31ae4f278489cceb3717deb2", + "layout": "IPY_MODEL_756095ccd0144ee799bfce748ca9f028", "placeholder": "​", - "style": "IPY_MODEL_c9626b33f28a41cbb8e7ab7eaa6d20db", + "style": "IPY_MODEL_8a749f91417c480b859f56162ef4e4d6", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "b765b2a3ff1d4b41a66c68404700508b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21b83733b12e4ab9a8e1fc932a77b365", - "placeholder": "​", - "style": "IPY_MODEL_b37c8cc149634a1fa49852024830088d", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1108870.85it/s]" - } - }, - "ba6196a4a8f546aabd03b97f4e409a2f": { + "9571b7a449884055a8a5f5d12566d4d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,33 +2197,61 @@ "width": null } }, - "bf86d89ad3204f18be960f57e96ccf59": { + "9e1dd7745e054495b4860450daf414ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1cb2e0cc26b4999826ac84dc19ced5c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6566ff0f4c9545e0a8d4ac6514750721", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9d99057a8614777918bf5ed05ae3044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbaf1dc6744949398e3078caafb2b230": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c1cb2e0cc26b4999826ac84dc19ced5c": { + "bf58085c1db74f2583fcdbfa389ef57a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2243,90 +2304,7 @@ "width": null } }, - "c5076875c8174d66894ad735da25ceb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d0bb2759b4794473a6c806fa37369c3f", - "placeholder": "​", - "style": "IPY_MODEL_68c12f7c9aa14eb596e0d4b9f346ded1", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "c9626b33f28a41cbb8e7ab7eaa6d20db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cabf93bc271f433bbdf492408e032d42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cc473ba1779244319b406315a2ad79b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_995b23ebdb8b4621ae697068c80e4d01", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cabf93bc271f433bbdf492408e032d42", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "cfc2c60ce9954a939a633840b1c6d1f7": { + "c2ac272d3dfc407fa79c1d7d16ab25a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2379,7 +2357,7 @@ "width": null } }, - "d0bb2759b4794473a6c806fa37369c3f": { + "cdefff66b7d94b92b4c7eb567d8996c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,7 +2410,7 @@ "width": null } }, - "f9a5120ba56d4977aa0d368fb7c66d40": { + "ee395a85c9664de6802a8e4fa965580e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2447,14 +2425,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c5076875c8174d66894ad735da25ceb0", - "IPY_MODEL_cc473ba1779244319b406315a2ad79b3", - "IPY_MODEL_9cca6ed55b464af5a62dfafe2ab723a7" + "IPY_MODEL_94024fda874a45bab218bc5bc754e581", + "IPY_MODEL_1b922a2413c948449bd6ad3e1b63a562", + "IPY_MODEL_24450523053c4f4781345901f4590ee3" ], - "layout": "IPY_MODEL_ba6196a4a8f546aabd03b97f4e409a2f", + "layout": "IPY_MODEL_c2ac272d3dfc407fa79c1d7d16ab25a4", "tabbable": null, "tooltip": null } + }, + "fe61cbc444754ef5a851e3c85a8d6ad5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb index 319d2d3ff..5272b3a79 100644 --- a/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:23.385502Z", - "iopub.status.busy": "2024-04-08T19:12:23.385324Z", - "iopub.status.idle": "2024-04-08T19:12:24.500994Z", - "shell.execute_reply": "2024-04-08T19:12:24.500451Z" + "iopub.execute_input": "2024-04-08T21:52:44.848767Z", + "iopub.status.busy": "2024-04-08T21:52:44.848593Z", + "iopub.status.idle": "2024-04-08T21:52:45.969908Z", + "shell.execute_reply": "2024-04-08T21:52:45.969360Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.503635Z", - "iopub.status.busy": "2024-04-08T19:12:24.503134Z", - "iopub.status.idle": "2024-04-08T19:12:24.674963Z", - "shell.execute_reply": "2024-04-08T19:12:24.674378Z" + "iopub.execute_input": "2024-04-08T21:52:45.972341Z", + "iopub.status.busy": "2024-04-08T21:52:45.972078Z", + "iopub.status.idle": "2024-04-08T21:52:46.149683Z", + "shell.execute_reply": "2024-04-08T21:52:46.149066Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.677405Z", - "iopub.status.busy": "2024-04-08T19:12:24.677010Z", - "iopub.status.idle": "2024-04-08T19:12:24.688933Z", - "shell.execute_reply": "2024-04-08T19:12:24.688406Z" + "iopub.execute_input": "2024-04-08T21:52:46.152170Z", + "iopub.status.busy": "2024-04-08T21:52:46.151975Z", + "iopub.status.idle": "2024-04-08T21:52:46.164411Z", + "shell.execute_reply": "2024-04-08T21:52:46.163825Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.690846Z", - "iopub.status.busy": "2024-04-08T19:12:24.690671Z", - "iopub.status.idle": "2024-04-08T19:12:24.894029Z", - "shell.execute_reply": "2024-04-08T19:12:24.893464Z" + "iopub.execute_input": "2024-04-08T21:52:46.166662Z", + "iopub.status.busy": "2024-04-08T21:52:46.166327Z", + "iopub.status.idle": "2024-04-08T21:52:46.399840Z", + "shell.execute_reply": "2024-04-08T21:52:46.399256Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.896362Z", - "iopub.status.busy": "2024-04-08T19:12:24.896017Z", - "iopub.status.idle": "2024-04-08T19:12:24.922340Z", - "shell.execute_reply": "2024-04-08T19:12:24.921893Z" + "iopub.execute_input": "2024-04-08T21:52:46.402275Z", + "iopub.status.busy": "2024-04-08T21:52:46.401922Z", + "iopub.status.idle": "2024-04-08T21:52:46.427915Z", + "shell.execute_reply": "2024-04-08T21:52:46.427497Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.924554Z", - "iopub.status.busy": "2024-04-08T19:12:24.924219Z", - "iopub.status.idle": "2024-04-08T19:12:26.591119Z", - "shell.execute_reply": "2024-04-08T19:12:26.590421Z" + "iopub.execute_input": "2024-04-08T21:52:46.429793Z", + "iopub.status.busy": "2024-04-08T21:52:46.429619Z", + "iopub.status.idle": "2024-04-08T21:52:48.062475Z", + "shell.execute_reply": "2024-04-08T21:52:48.061777Z" } }, "outputs": [ @@ -461,7 +461,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:26.593843Z", - "iopub.status.busy": "2024-04-08T19:12:26.593202Z", - "iopub.status.idle": "2024-04-08T19:12:26.611348Z", - "shell.execute_reply": "2024-04-08T19:12:26.610866Z" + "iopub.execute_input": "2024-04-08T21:52:48.065164Z", + "iopub.status.busy": "2024-04-08T21:52:48.064507Z", + "iopub.status.idle": "2024-04-08T21:52:48.083024Z", + "shell.execute_reply": "2024-04-08T21:52:48.082575Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:26.613273Z", - "iopub.status.busy": "2024-04-08T19:12:26.613008Z", - "iopub.status.idle": "2024-04-08T19:12:27.994069Z", - "shell.execute_reply": "2024-04-08T19:12:27.993485Z" + "iopub.execute_input": "2024-04-08T21:52:48.085104Z", + "iopub.status.busy": "2024-04-08T21:52:48.084770Z", + "iopub.status.idle": "2024-04-08T21:52:49.485791Z", + "shell.execute_reply": "2024-04-08T21:52:49.485144Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:27.996963Z", - "iopub.status.busy": "2024-04-08T19:12:27.996205Z", - "iopub.status.idle": "2024-04-08T19:12:28.010313Z", - "shell.execute_reply": "2024-04-08T19:12:28.009892Z" + "iopub.execute_input": "2024-04-08T21:52:49.488462Z", + "iopub.status.busy": "2024-04-08T21:52:49.487838Z", + "iopub.status.idle": "2024-04-08T21:52:49.501790Z", + "shell.execute_reply": "2024-04-08T21:52:49.501293Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.012483Z", - "iopub.status.busy": "2024-04-08T19:12:28.012148Z", - "iopub.status.idle": "2024-04-08T19:12:28.092332Z", - "shell.execute_reply": "2024-04-08T19:12:28.091737Z" + "iopub.execute_input": "2024-04-08T21:52:49.503902Z", + "iopub.status.busy": "2024-04-08T21:52:49.503714Z", + "iopub.status.idle": "2024-04-08T21:52:49.582147Z", + "shell.execute_reply": "2024-04-08T21:52:49.581522Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.094848Z", - "iopub.status.busy": "2024-04-08T19:12:28.094388Z", - "iopub.status.idle": "2024-04-08T19:12:28.305015Z", - "shell.execute_reply": "2024-04-08T19:12:28.304459Z" + "iopub.execute_input": "2024-04-08T21:52:49.584402Z", + "iopub.status.busy": "2024-04-08T21:52:49.584169Z", + "iopub.status.idle": "2024-04-08T21:52:49.796625Z", + "shell.execute_reply": "2024-04-08T21:52:49.796059Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.307155Z", - "iopub.status.busy": "2024-04-08T19:12:28.306977Z", - "iopub.status.idle": "2024-04-08T19:12:28.324108Z", - "shell.execute_reply": "2024-04-08T19:12:28.323676Z" + "iopub.execute_input": "2024-04-08T21:52:49.798856Z", + "iopub.status.busy": "2024-04-08T21:52:49.798482Z", + "iopub.status.idle": "2024-04-08T21:52:49.815505Z", + "shell.execute_reply": "2024-04-08T21:52:49.814993Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.326002Z", - "iopub.status.busy": "2024-04-08T19:12:28.325829Z", - "iopub.status.idle": "2024-04-08T19:12:28.335620Z", - "shell.execute_reply": "2024-04-08T19:12:28.335205Z" + "iopub.execute_input": "2024-04-08T21:52:49.817600Z", + "iopub.status.busy": "2024-04-08T21:52:49.817312Z", + "iopub.status.idle": "2024-04-08T21:52:49.827140Z", + "shell.execute_reply": "2024-04-08T21:52:49.826558Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.337624Z", - "iopub.status.busy": "2024-04-08T19:12:28.337213Z", - "iopub.status.idle": "2024-04-08T19:12:28.422599Z", - "shell.execute_reply": "2024-04-08T19:12:28.421980Z" + "iopub.execute_input": "2024-04-08T21:52:49.829179Z", + "iopub.status.busy": "2024-04-08T21:52:49.828992Z", + "iopub.status.idle": "2024-04-08T21:52:49.923999Z", + "shell.execute_reply": "2024-04-08T21:52:49.923356Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.424970Z", - "iopub.status.busy": "2024-04-08T19:12:28.424722Z", - "iopub.status.idle": "2024-04-08T19:12:28.549007Z", - "shell.execute_reply": "2024-04-08T19:12:28.548406Z" + "iopub.execute_input": "2024-04-08T21:52:49.926359Z", + "iopub.status.busy": "2024-04-08T21:52:49.926119Z", + "iopub.status.idle": "2024-04-08T21:52:50.061779Z", + "shell.execute_reply": "2024-04-08T21:52:50.061151Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.551383Z", - "iopub.status.busy": "2024-04-08T19:12:28.551092Z", - "iopub.status.idle": "2024-04-08T19:12:28.554976Z", - "shell.execute_reply": "2024-04-08T19:12:28.554255Z" + "iopub.execute_input": "2024-04-08T21:52:50.064271Z", + "iopub.status.busy": "2024-04-08T21:52:50.063910Z", + "iopub.status.idle": "2024-04-08T21:52:50.068036Z", + "shell.execute_reply": "2024-04-08T21:52:50.067504Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.557035Z", - "iopub.status.busy": "2024-04-08T19:12:28.556717Z", - "iopub.status.idle": "2024-04-08T19:12:28.560298Z", - "shell.execute_reply": "2024-04-08T19:12:28.559774Z" + "iopub.execute_input": "2024-04-08T21:52:50.069987Z", + "iopub.status.busy": "2024-04-08T21:52:50.069810Z", + "iopub.status.idle": "2024-04-08T21:52:50.073803Z", + "shell.execute_reply": "2024-04-08T21:52:50.073310Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.562193Z", - "iopub.status.busy": "2024-04-08T19:12:28.561944Z", - "iopub.status.idle": "2024-04-08T19:12:28.599077Z", - "shell.execute_reply": "2024-04-08T19:12:28.598539Z" + "iopub.execute_input": "2024-04-08T21:52:50.075869Z", + "iopub.status.busy": "2024-04-08T21:52:50.075536Z", + "iopub.status.idle": "2024-04-08T21:52:50.114629Z", + "shell.execute_reply": "2024-04-08T21:52:50.113979Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.601134Z", - "iopub.status.busy": "2024-04-08T19:12:28.600813Z", - "iopub.status.idle": "2024-04-08T19:12:28.642167Z", - "shell.execute_reply": "2024-04-08T19:12:28.641727Z" + "iopub.execute_input": "2024-04-08T21:52:50.116745Z", + "iopub.status.busy": "2024-04-08T21:52:50.116541Z", + "iopub.status.idle": "2024-04-08T21:52:50.161029Z", + "shell.execute_reply": "2024-04-08T21:52:50.160389Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.644151Z", - "iopub.status.busy": "2024-04-08T19:12:28.643835Z", - "iopub.status.idle": "2024-04-08T19:12:28.738961Z", - "shell.execute_reply": "2024-04-08T19:12:28.738341Z" + "iopub.execute_input": "2024-04-08T21:52:50.163139Z", + "iopub.status.busy": "2024-04-08T21:52:50.162940Z", + "iopub.status.idle": "2024-04-08T21:52:50.260654Z", + "shell.execute_reply": "2024-04-08T21:52:50.259955Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.741750Z", - "iopub.status.busy": "2024-04-08T19:12:28.741263Z", - "iopub.status.idle": "2024-04-08T19:12:28.827551Z", - "shell.execute_reply": "2024-04-08T19:12:28.826947Z" + "iopub.execute_input": "2024-04-08T21:52:50.263693Z", + "iopub.status.busy": "2024-04-08T21:52:50.263189Z", + "iopub.status.idle": "2024-04-08T21:52:50.362343Z", + "shell.execute_reply": "2024-04-08T21:52:50.361726Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.829915Z", - "iopub.status.busy": "2024-04-08T19:12:28.829683Z", - "iopub.status.idle": "2024-04-08T19:12:29.038522Z", - "shell.execute_reply": "2024-04-08T19:12:29.037949Z" + "iopub.execute_input": "2024-04-08T21:52:50.364808Z", + "iopub.status.busy": "2024-04-08T21:52:50.364550Z", + "iopub.status.idle": "2024-04-08T21:52:50.577950Z", + "shell.execute_reply": "2024-04-08T21:52:50.577377Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.040910Z", - "iopub.status.busy": "2024-04-08T19:12:29.040732Z", - "iopub.status.idle": "2024-04-08T19:12:29.214576Z", - "shell.execute_reply": "2024-04-08T19:12:29.213963Z" + "iopub.execute_input": "2024-04-08T21:52:50.580188Z", + "iopub.status.busy": "2024-04-08T21:52:50.579982Z", + "iopub.status.idle": "2024-04-08T21:52:50.787401Z", + "shell.execute_reply": "2024-04-08T21:52:50.786718Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.217044Z", - "iopub.status.busy": "2024-04-08T19:12:29.216667Z", - "iopub.status.idle": "2024-04-08T19:12:29.222938Z", - "shell.execute_reply": "2024-04-08T19:12:29.222502Z" + "iopub.execute_input": "2024-04-08T21:52:50.790100Z", + "iopub.status.busy": "2024-04-08T21:52:50.789517Z", + "iopub.status.idle": "2024-04-08T21:52:50.795815Z", + "shell.execute_reply": "2024-04-08T21:52:50.795334Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.224909Z", - "iopub.status.busy": "2024-04-08T19:12:29.224587Z", - "iopub.status.idle": "2024-04-08T19:12:29.437683Z", - "shell.execute_reply": "2024-04-08T19:12:29.437115Z" + "iopub.execute_input": "2024-04-08T21:52:50.797868Z", + "iopub.status.busy": "2024-04-08T21:52:50.797547Z", + "iopub.status.idle": "2024-04-08T21:52:51.023483Z", + "shell.execute_reply": "2024-04-08T21:52:51.022891Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.439974Z", - "iopub.status.busy": "2024-04-08T19:12:29.439567Z", - "iopub.status.idle": "2024-04-08T19:12:30.486127Z", - "shell.execute_reply": "2024-04-08T19:12:30.485508Z" + "iopub.execute_input": "2024-04-08T21:52:51.025986Z", + "iopub.status.busy": "2024-04-08T21:52:51.025556Z", + "iopub.status.idle": "2024-04-08T21:52:52.089183Z", + "shell.execute_reply": "2024-04-08T21:52:52.088531Z" }, "id": "wL3ngCnuLEWd" }, @@ -2408,7 +2408,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb index a709c4ddc..7418b0f5b 100644 --- a/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:33.752421Z", - "iopub.status.busy": "2024-04-08T19:12:33.752248Z", - "iopub.status.idle": "2024-04-08T19:12:34.830539Z", - "shell.execute_reply": "2024-04-08T19:12:34.829972Z" + "iopub.execute_input": "2024-04-08T21:52:55.620820Z", + "iopub.status.busy": "2024-04-08T21:52:55.620652Z", + "iopub.status.idle": "2024-04-08T21:52:56.674841Z", + "shell.execute_reply": "2024-04-08T21:52:56.674213Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.833064Z", - "iopub.status.busy": "2024-04-08T19:12:34.832801Z", - "iopub.status.idle": "2024-04-08T19:12:34.835936Z", - "shell.execute_reply": "2024-04-08T19:12:34.835405Z" + "iopub.execute_input": "2024-04-08T21:52:56.677618Z", + "iopub.status.busy": "2024-04-08T21:52:56.677344Z", + "iopub.status.idle": "2024-04-08T21:52:56.680516Z", + "shell.execute_reply": "2024-04-08T21:52:56.679988Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.837888Z", - "iopub.status.busy": "2024-04-08T19:12:34.837708Z", - "iopub.status.idle": "2024-04-08T19:12:34.845722Z", - "shell.execute_reply": "2024-04-08T19:12:34.845317Z" + "iopub.execute_input": "2024-04-08T21:52:56.682543Z", + "iopub.status.busy": "2024-04-08T21:52:56.682233Z", + "iopub.status.idle": "2024-04-08T21:52:56.690305Z", + "shell.execute_reply": "2024-04-08T21:52:56.689844Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.847573Z", - "iopub.status.busy": "2024-04-08T19:12:34.847397Z", - "iopub.status.idle": "2024-04-08T19:12:34.894104Z", - "shell.execute_reply": "2024-04-08T19:12:34.893588Z" + "iopub.execute_input": "2024-04-08T21:52:56.692135Z", + "iopub.status.busy": "2024-04-08T21:52:56.691966Z", + "iopub.status.idle": "2024-04-08T21:52:56.736891Z", + "shell.execute_reply": "2024-04-08T21:52:56.736460Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.896019Z", - "iopub.status.busy": "2024-04-08T19:12:34.895834Z", - "iopub.status.idle": "2024-04-08T19:12:34.912597Z", - "shell.execute_reply": "2024-04-08T19:12:34.912094Z" + "iopub.execute_input": "2024-04-08T21:52:56.738845Z", + "iopub.status.busy": "2024-04-08T21:52:56.738655Z", + "iopub.status.idle": "2024-04-08T21:52:56.755451Z", + "shell.execute_reply": "2024-04-08T21:52:56.755009Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.914647Z", - "iopub.status.busy": "2024-04-08T19:12:34.914307Z", - "iopub.status.idle": "2024-04-08T19:12:34.917956Z", - "shell.execute_reply": "2024-04-08T19:12:34.917438Z" + "iopub.execute_input": "2024-04-08T21:52:56.757253Z", + "iopub.status.busy": "2024-04-08T21:52:56.757082Z", + "iopub.status.idle": "2024-04-08T21:52:56.760967Z", + "shell.execute_reply": "2024-04-08T21:52:56.760530Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.919974Z", - "iopub.status.busy": "2024-04-08T19:12:34.919671Z", - "iopub.status.idle": "2024-04-08T19:12:34.946169Z", - "shell.execute_reply": "2024-04-08T19:12:34.945655Z" + "iopub.execute_input": "2024-04-08T21:52:56.763008Z", + "iopub.status.busy": "2024-04-08T21:52:56.762678Z", + "iopub.status.idle": "2024-04-08T21:52:56.788272Z", + "shell.execute_reply": "2024-04-08T21:52:56.787865Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.948155Z", - "iopub.status.busy": "2024-04-08T19:12:34.947833Z", - "iopub.status.idle": "2024-04-08T19:12:34.973985Z", - "shell.execute_reply": "2024-04-08T19:12:34.973459Z" + "iopub.execute_input": "2024-04-08T21:52:56.790389Z", + "iopub.status.busy": "2024-04-08T21:52:56.789913Z", + "iopub.status.idle": "2024-04-08T21:52:56.816164Z", + "shell.execute_reply": "2024-04-08T21:52:56.815620Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.976074Z", - "iopub.status.busy": "2024-04-08T19:12:34.975781Z", - "iopub.status.idle": "2024-04-08T19:12:36.687655Z", - "shell.execute_reply": "2024-04-08T19:12:36.687110Z" + "iopub.execute_input": "2024-04-08T21:52:56.818430Z", + "iopub.status.busy": "2024-04-08T21:52:56.818016Z", + "iopub.status.idle": "2024-04-08T21:52:58.500444Z", + "shell.execute_reply": "2024-04-08T21:52:58.499807Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.690165Z", - "iopub.status.busy": "2024-04-08T19:12:36.689693Z", - "iopub.status.idle": "2024-04-08T19:12:36.696336Z", - "shell.execute_reply": "2024-04-08T19:12:36.695815Z" + "iopub.execute_input": "2024-04-08T21:52:58.503086Z", + "iopub.status.busy": "2024-04-08T21:52:58.502790Z", + "iopub.status.idle": "2024-04-08T21:52:58.509423Z", + "shell.execute_reply": "2024-04-08T21:52:58.508895Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.698324Z", - "iopub.status.busy": "2024-04-08T19:12:36.698034Z", - "iopub.status.idle": "2024-04-08T19:12:36.710339Z", - "shell.execute_reply": "2024-04-08T19:12:36.709902Z" + "iopub.execute_input": "2024-04-08T21:52:58.511480Z", + "iopub.status.busy": "2024-04-08T21:52:58.511156Z", + "iopub.status.idle": "2024-04-08T21:52:58.523295Z", + "shell.execute_reply": "2024-04-08T21:52:58.522884Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.712346Z", - "iopub.status.busy": "2024-04-08T19:12:36.711929Z", - "iopub.status.idle": "2024-04-08T19:12:36.718208Z", - "shell.execute_reply": "2024-04-08T19:12:36.717694Z" + "iopub.execute_input": "2024-04-08T21:52:58.525194Z", + "iopub.status.busy": "2024-04-08T21:52:58.524873Z", + "iopub.status.idle": "2024-04-08T21:52:58.530957Z", + "shell.execute_reply": "2024-04-08T21:52:58.530537Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.720257Z", - "iopub.status.busy": "2024-04-08T19:12:36.719972Z", - "iopub.status.idle": "2024-04-08T19:12:36.722551Z", - "shell.execute_reply": "2024-04-08T19:12:36.722114Z" + "iopub.execute_input": "2024-04-08T21:52:58.533065Z", + "iopub.status.busy": "2024-04-08T21:52:58.532751Z", + "iopub.status.idle": "2024-04-08T21:52:58.535247Z", + "shell.execute_reply": "2024-04-08T21:52:58.534834Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.724389Z", - "iopub.status.busy": "2024-04-08T19:12:36.724098Z", - "iopub.status.idle": "2024-04-08T19:12:36.727537Z", - "shell.execute_reply": "2024-04-08T19:12:36.727025Z" + "iopub.execute_input": "2024-04-08T21:52:58.537279Z", + "iopub.status.busy": "2024-04-08T21:52:58.536970Z", + "iopub.status.idle": "2024-04-08T21:52:58.540289Z", + "shell.execute_reply": "2024-04-08T21:52:58.539787Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.729415Z", - "iopub.status.busy": "2024-04-08T19:12:36.729242Z", - "iopub.status.idle": "2024-04-08T19:12:36.731642Z", - "shell.execute_reply": "2024-04-08T19:12:36.731237Z" + "iopub.execute_input": "2024-04-08T21:52:58.542327Z", + "iopub.status.busy": "2024-04-08T21:52:58.542019Z", + "iopub.status.idle": "2024-04-08T21:52:58.544475Z", + "shell.execute_reply": "2024-04-08T21:52:58.544065Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.733573Z", - "iopub.status.busy": "2024-04-08T19:12:36.733257Z", - "iopub.status.idle": "2024-04-08T19:12:36.737118Z", - "shell.execute_reply": "2024-04-08T19:12:36.736613Z" + "iopub.execute_input": "2024-04-08T21:52:58.546373Z", + "iopub.status.busy": "2024-04-08T21:52:58.546075Z", + "iopub.status.idle": "2024-04-08T21:52:58.550092Z", + "shell.execute_reply": "2024-04-08T21:52:58.549576Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.739150Z", - "iopub.status.busy": "2024-04-08T19:12:36.738829Z", - "iopub.status.idle": "2024-04-08T19:12:36.767384Z", - "shell.execute_reply": "2024-04-08T19:12:36.766867Z" + "iopub.execute_input": "2024-04-08T21:52:58.552013Z", + "iopub.status.busy": "2024-04-08T21:52:58.551809Z", + "iopub.status.idle": "2024-04-08T21:52:58.580045Z", + "shell.execute_reply": "2024-04-08T21:52:58.579619Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.769379Z", - "iopub.status.busy": "2024-04-08T19:12:36.769213Z", - "iopub.status.idle": "2024-04-08T19:12:36.773887Z", - "shell.execute_reply": "2024-04-08T19:12:36.773364Z" + "iopub.execute_input": "2024-04-08T21:52:58.582104Z", + "iopub.status.busy": "2024-04-08T21:52:58.581789Z", + "iopub.status.idle": "2024-04-08T21:52:58.586064Z", + "shell.execute_reply": "2024-04-08T21:52:58.585650Z" }, "nbsphinx": "hidden" }, @@ -1572,7 +1572,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "vscode": { "interpreter": { diff --git a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb index 93017979b..ccd84011a 100644 --- a/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:39.372434Z", - "iopub.status.busy": "2024-04-08T19:12:39.372031Z", - "iopub.status.idle": "2024-04-08T19:12:40.491618Z", - "shell.execute_reply": "2024-04-08T19:12:40.491005Z" + "iopub.execute_input": "2024-04-08T21:53:01.165262Z", + "iopub.status.busy": "2024-04-08T21:53:01.165085Z", + "iopub.status.idle": "2024-04-08T21:53:02.293269Z", + "shell.execute_reply": "2024-04-08T21:53:02.292725Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:40.494221Z", - "iopub.status.busy": "2024-04-08T19:12:40.493824Z", - "iopub.status.idle": "2024-04-08T19:12:40.685279Z", - "shell.execute_reply": "2024-04-08T19:12:40.684689Z" + "iopub.execute_input": "2024-04-08T21:53:02.295788Z", + "iopub.status.busy": "2024-04-08T21:53:02.295371Z", + "iopub.status.idle": "2024-04-08T21:53:02.487092Z", + "shell.execute_reply": "2024-04-08T21:53:02.486529Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:40.688253Z", - "iopub.status.busy": "2024-04-08T19:12:40.687653Z", - "iopub.status.idle": "2024-04-08T19:12:40.701124Z", - "shell.execute_reply": "2024-04-08T19:12:40.700676Z" + "iopub.execute_input": "2024-04-08T21:53:02.489584Z", + "iopub.status.busy": "2024-04-08T21:53:02.489313Z", + "iopub.status.idle": "2024-04-08T21:53:02.502093Z", + "shell.execute_reply": "2024-04-08T21:53:02.501639Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:40.703173Z", - "iopub.status.busy": "2024-04-08T19:12:40.702854Z", - "iopub.status.idle": "2024-04-08T19:12:43.329249Z", - "shell.execute_reply": "2024-04-08T19:12:43.328755Z" + "iopub.execute_input": "2024-04-08T21:53:02.504023Z", + "iopub.status.busy": "2024-04-08T21:53:02.503847Z", + "iopub.status.idle": "2024-04-08T21:53:05.143294Z", + "shell.execute_reply": "2024-04-08T21:53:05.142687Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:43.331514Z", - "iopub.status.busy": "2024-04-08T19:12:43.331169Z", - "iopub.status.idle": "2024-04-08T19:12:44.670891Z", - "shell.execute_reply": "2024-04-08T19:12:44.670276Z" + "iopub.execute_input": "2024-04-08T21:53:05.145673Z", + "iopub.status.busy": "2024-04-08T21:53:05.145204Z", + "iopub.status.idle": "2024-04-08T21:53:06.483996Z", + "shell.execute_reply": "2024-04-08T21:53:06.483366Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:44.673413Z", - "iopub.status.busy": "2024-04-08T19:12:44.673216Z", - "iopub.status.idle": "2024-04-08T19:12:44.677262Z", - "shell.execute_reply": "2024-04-08T19:12:44.676816Z" + "iopub.execute_input": "2024-04-08T21:53:06.486837Z", + "iopub.status.busy": "2024-04-08T21:53:06.486363Z", + "iopub.status.idle": "2024-04-08T21:53:06.490496Z", + "shell.execute_reply": "2024-04-08T21:53:06.490020Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:44.679281Z", - "iopub.status.busy": "2024-04-08T19:12:44.678982Z", - "iopub.status.idle": "2024-04-08T19:12:46.437869Z", - "shell.execute_reply": "2024-04-08T19:12:46.437260Z" + "iopub.execute_input": "2024-04-08T21:53:06.492516Z", + "iopub.status.busy": "2024-04-08T21:53:06.492190Z", + "iopub.status.idle": "2024-04-08T21:53:08.207836Z", + "shell.execute_reply": "2024-04-08T21:53:08.207189Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:46.440643Z", - "iopub.status.busy": "2024-04-08T19:12:46.440072Z", - "iopub.status.idle": "2024-04-08T19:12:46.448250Z", - "shell.execute_reply": "2024-04-08T19:12:46.447724Z" + "iopub.execute_input": "2024-04-08T21:53:08.210385Z", + "iopub.status.busy": "2024-04-08T21:53:08.209828Z", + "iopub.status.idle": "2024-04-08T21:53:08.218183Z", + "shell.execute_reply": "2024-04-08T21:53:08.217706Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:46.450615Z", - "iopub.status.busy": "2024-04-08T19:12:46.450220Z", - "iopub.status.idle": "2024-04-08T19:12:49.029942Z", - "shell.execute_reply": "2024-04-08T19:12:49.029325Z" + "iopub.execute_input": "2024-04-08T21:53:08.220241Z", + "iopub.status.busy": "2024-04-08T21:53:08.219969Z", + "iopub.status.idle": "2024-04-08T21:53:10.774214Z", + "shell.execute_reply": "2024-04-08T21:53:10.773690Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:49.032160Z", - "iopub.status.busy": "2024-04-08T19:12:49.031822Z", - "iopub.status.idle": "2024-04-08T19:12:49.035518Z", - "shell.execute_reply": "2024-04-08T19:12:49.035071Z" + "iopub.execute_input": "2024-04-08T21:53:10.776575Z", + "iopub.status.busy": "2024-04-08T21:53:10.776220Z", + "iopub.status.idle": "2024-04-08T21:53:10.779510Z", + "shell.execute_reply": "2024-04-08T21:53:10.779003Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:49.037498Z", - "iopub.status.busy": "2024-04-08T19:12:49.037171Z", - "iopub.status.idle": "2024-04-08T19:12:49.041048Z", - "shell.execute_reply": "2024-04-08T19:12:49.040619Z" + "iopub.execute_input": "2024-04-08T21:53:10.781685Z", + "iopub.status.busy": "2024-04-08T21:53:10.781358Z", + "iopub.status.idle": "2024-04-08T21:53:10.785218Z", + "shell.execute_reply": "2024-04-08T21:53:10.784784Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:49.042924Z", - "iopub.status.busy": "2024-04-08T19:12:49.042604Z", - "iopub.status.idle": "2024-04-08T19:12:49.045672Z", - "shell.execute_reply": "2024-04-08T19:12:49.045228Z" + "iopub.execute_input": "2024-04-08T21:53:10.787312Z", + "iopub.status.busy": "2024-04-08T21:53:10.787001Z", + "iopub.status.idle": "2024-04-08T21:53:10.789982Z", + "shell.execute_reply": "2024-04-08T21:53:10.789540Z" }, "nbsphinx": "hidden" }, @@ -787,7 +787,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb index b290d6163..db57ea3b7 100644 --- a/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:51.506697Z", - "iopub.status.busy": "2024-04-08T19:12:51.506534Z", - "iopub.status.idle": "2024-04-08T19:12:52.637000Z", - "shell.execute_reply": "2024-04-08T19:12:52.636397Z" + "iopub.execute_input": "2024-04-08T21:53:13.174563Z", + "iopub.status.busy": "2024-04-08T21:53:13.174086Z", + "iopub.status.idle": "2024-04-08T21:53:14.296401Z", + "shell.execute_reply": "2024-04-08T21:53:14.295802Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:52.639569Z", - "iopub.status.busy": "2024-04-08T19:12:52.639309Z", - "iopub.status.idle": "2024-04-08T19:12:55.104415Z", - "shell.execute_reply": "2024-04-08T19:12:55.103670Z" + "iopub.execute_input": "2024-04-08T21:53:14.299256Z", + "iopub.status.busy": "2024-04-08T21:53:14.298643Z", + "iopub.status.idle": "2024-04-08T21:53:15.386072Z", + "shell.execute_reply": "2024-04-08T21:53:15.385305Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.107140Z", - "iopub.status.busy": "2024-04-08T19:12:55.106931Z", - "iopub.status.idle": "2024-04-08T19:12:55.110341Z", - "shell.execute_reply": "2024-04-08T19:12:55.109801Z" + "iopub.execute_input": "2024-04-08T21:53:15.388879Z", + "iopub.status.busy": "2024-04-08T21:53:15.388508Z", + "iopub.status.idle": "2024-04-08T21:53:15.391840Z", + "shell.execute_reply": "2024-04-08T21:53:15.391355Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.112430Z", - "iopub.status.busy": "2024-04-08T19:12:55.112060Z", - "iopub.status.idle": "2024-04-08T19:12:55.118161Z", - "shell.execute_reply": "2024-04-08T19:12:55.117642Z" + "iopub.execute_input": "2024-04-08T21:53:15.393861Z", + "iopub.status.busy": "2024-04-08T21:53:15.393683Z", + "iopub.status.idle": "2024-04-08T21:53:15.399966Z", + "shell.execute_reply": "2024-04-08T21:53:15.399554Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.120250Z", - "iopub.status.busy": "2024-04-08T19:12:55.119951Z", - "iopub.status.idle": "2024-04-08T19:12:55.604414Z", - "shell.execute_reply": "2024-04-08T19:12:55.603862Z" + "iopub.execute_input": "2024-04-08T21:53:15.402147Z", + "iopub.status.busy": "2024-04-08T21:53:15.401739Z", + "iopub.status.idle": "2024-04-08T21:53:15.886695Z", + "shell.execute_reply": "2024-04-08T21:53:15.886105Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.607305Z", - "iopub.status.busy": "2024-04-08T19:12:55.606952Z", - "iopub.status.idle": "2024-04-08T19:12:55.612116Z", - "shell.execute_reply": "2024-04-08T19:12:55.611686Z" + "iopub.execute_input": "2024-04-08T21:53:15.889459Z", + "iopub.status.busy": "2024-04-08T21:53:15.889016Z", + "iopub.status.idle": "2024-04-08T21:53:15.894428Z", + "shell.execute_reply": "2024-04-08T21:53:15.893875Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.614134Z", - "iopub.status.busy": "2024-04-08T19:12:55.613824Z", - "iopub.status.idle": "2024-04-08T19:12:55.617419Z", - "shell.execute_reply": "2024-04-08T19:12:55.617014Z" + "iopub.execute_input": "2024-04-08T21:53:15.896540Z", + "iopub.status.busy": "2024-04-08T21:53:15.896227Z", + "iopub.status.idle": "2024-04-08T21:53:15.899892Z", + "shell.execute_reply": "2024-04-08T21:53:15.899405Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.619403Z", - "iopub.status.busy": "2024-04-08T19:12:55.619145Z", - "iopub.status.idle": "2024-04-08T19:12:56.292272Z", - "shell.execute_reply": "2024-04-08T19:12:56.291640Z" + "iopub.execute_input": "2024-04-08T21:53:15.901915Z", + "iopub.status.busy": "2024-04-08T21:53:15.901600Z", + "iopub.status.idle": "2024-04-08T21:53:16.556397Z", + "shell.execute_reply": "2024-04-08T21:53:16.555811Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.294743Z", - "iopub.status.busy": "2024-04-08T19:12:56.294368Z", - "iopub.status.idle": "2024-04-08T19:12:56.451834Z", - "shell.execute_reply": "2024-04-08T19:12:56.451237Z" + "iopub.execute_input": "2024-04-08T21:53:16.558843Z", + "iopub.status.busy": "2024-04-08T21:53:16.558463Z", + "iopub.status.idle": "2024-04-08T21:53:16.718885Z", + "shell.execute_reply": "2024-04-08T21:53:16.718432Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.454163Z", - "iopub.status.busy": "2024-04-08T19:12:56.453784Z", - "iopub.status.idle": "2024-04-08T19:12:56.458257Z", - "shell.execute_reply": "2024-04-08T19:12:56.457717Z" + "iopub.execute_input": "2024-04-08T21:53:16.721035Z", + "iopub.status.busy": "2024-04-08T21:53:16.720690Z", + "iopub.status.idle": "2024-04-08T21:53:16.724952Z", + "shell.execute_reply": "2024-04-08T21:53:16.724509Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.460284Z", - "iopub.status.busy": "2024-04-08T19:12:56.459945Z", - "iopub.status.idle": "2024-04-08T19:12:56.918547Z", - "shell.execute_reply": "2024-04-08T19:12:56.917913Z" + "iopub.execute_input": "2024-04-08T21:53:16.727026Z", + "iopub.status.busy": "2024-04-08T21:53:16.726592Z", + "iopub.status.idle": "2024-04-08T21:53:17.171629Z", + "shell.execute_reply": "2024-04-08T21:53:17.170994Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.921651Z", - "iopub.status.busy": "2024-04-08T19:12:56.921292Z", - "iopub.status.idle": "2024-04-08T19:12:57.253473Z", - "shell.execute_reply": "2024-04-08T19:12:57.252856Z" + "iopub.execute_input": "2024-04-08T21:53:17.174738Z", + "iopub.status.busy": "2024-04-08T21:53:17.174372Z", + "iopub.status.idle": "2024-04-08T21:53:17.507767Z", + "shell.execute_reply": "2024-04-08T21:53:17.507230Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:57.255657Z", - "iopub.status.busy": "2024-04-08T19:12:57.255478Z", - "iopub.status.idle": "2024-04-08T19:12:57.619053Z", - "shell.execute_reply": "2024-04-08T19:12:57.618466Z" + "iopub.execute_input": "2024-04-08T21:53:17.510336Z", + "iopub.status.busy": "2024-04-08T21:53:17.510151Z", + "iopub.status.idle": "2024-04-08T21:53:17.841940Z", + "shell.execute_reply": "2024-04-08T21:53:17.841333Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:57.621976Z", - "iopub.status.busy": "2024-04-08T19:12:57.621623Z", - "iopub.status.idle": "2024-04-08T19:12:58.060261Z", - "shell.execute_reply": "2024-04-08T19:12:58.059741Z" + "iopub.execute_input": "2024-04-08T21:53:17.844745Z", + "iopub.status.busy": "2024-04-08T21:53:17.844322Z", + "iopub.status.idle": "2024-04-08T21:53:18.282711Z", + "shell.execute_reply": "2024-04-08T21:53:18.282153Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.064403Z", - "iopub.status.busy": "2024-04-08T19:12:58.064187Z", - "iopub.status.idle": "2024-04-08T19:12:58.481716Z", - "shell.execute_reply": "2024-04-08T19:12:58.481166Z" + "iopub.execute_input": "2024-04-08T21:53:18.287057Z", + "iopub.status.busy": "2024-04-08T21:53:18.286688Z", + "iopub.status.idle": "2024-04-08T21:53:18.731778Z", + "shell.execute_reply": "2024-04-08T21:53:18.731192Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.484504Z", - "iopub.status.busy": "2024-04-08T19:12:58.484329Z", - "iopub.status.idle": "2024-04-08T19:12:58.698454Z", - "shell.execute_reply": "2024-04-08T19:12:58.697889Z" + "iopub.execute_input": "2024-04-08T21:53:18.734897Z", + "iopub.status.busy": "2024-04-08T21:53:18.734545Z", + "iopub.status.idle": "2024-04-08T21:53:18.946711Z", + "shell.execute_reply": "2024-04-08T21:53:18.946128Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.700764Z", - "iopub.status.busy": "2024-04-08T19:12:58.700331Z", - "iopub.status.idle": "2024-04-08T19:12:58.897447Z", - "shell.execute_reply": "2024-04-08T19:12:58.896906Z" + "iopub.execute_input": "2024-04-08T21:53:18.948919Z", + "iopub.status.busy": "2024-04-08T21:53:18.948578Z", + "iopub.status.idle": "2024-04-08T21:53:19.148315Z", + "shell.execute_reply": "2024-04-08T21:53:19.147722Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.899675Z", - "iopub.status.busy": "2024-04-08T19:12:58.899273Z", - "iopub.status.idle": "2024-04-08T19:12:58.902127Z", - "shell.execute_reply": "2024-04-08T19:12:58.901613Z" + "iopub.execute_input": "2024-04-08T21:53:19.150522Z", + "iopub.status.busy": "2024-04-08T21:53:19.150172Z", + "iopub.status.idle": "2024-04-08T21:53:19.153015Z", + "shell.execute_reply": "2024-04-08T21:53:19.152594Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.904091Z", - "iopub.status.busy": "2024-04-08T19:12:58.903780Z", - "iopub.status.idle": "2024-04-08T19:12:59.779761Z", - "shell.execute_reply": "2024-04-08T19:12:59.779165Z" + "iopub.execute_input": "2024-04-08T21:53:19.155170Z", + "iopub.status.busy": "2024-04-08T21:53:19.154723Z", + "iopub.status.idle": "2024-04-08T21:53:20.021314Z", + "shell.execute_reply": "2024-04-08T21:53:20.020786Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:59.782264Z", - "iopub.status.busy": "2024-04-08T19:12:59.781937Z", - "iopub.status.idle": "2024-04-08T19:12:59.964112Z", - "shell.execute_reply": "2024-04-08T19:12:59.963525Z" + "iopub.execute_input": "2024-04-08T21:53:20.023932Z", + "iopub.status.busy": "2024-04-08T21:53:20.023749Z", + "iopub.status.idle": "2024-04-08T21:53:20.132017Z", + "shell.execute_reply": "2024-04-08T21:53:20.131591Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:59.966448Z", - "iopub.status.busy": "2024-04-08T19:12:59.965968Z", - "iopub.status.idle": "2024-04-08T19:13:00.154653Z", - "shell.execute_reply": "2024-04-08T19:13:00.154036Z" + "iopub.execute_input": "2024-04-08T21:53:20.134136Z", + "iopub.status.busy": "2024-04-08T21:53:20.133814Z", + "iopub.status.idle": "2024-04-08T21:53:20.256463Z", + "shell.execute_reply": "2024-04-08T21:53:20.255994Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:00.156712Z", - "iopub.status.busy": "2024-04-08T19:13:00.156532Z", - "iopub.status.idle": "2024-04-08T19:13:00.829599Z", - "shell.execute_reply": "2024-04-08T19:13:00.829059Z" + "iopub.execute_input": "2024-04-08T21:53:20.258386Z", + "iopub.status.busy": "2024-04-08T21:53:20.258207Z", + "iopub.status.idle": "2024-04-08T21:53:20.993801Z", + "shell.execute_reply": "2024-04-08T21:53:20.993270Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:00.832154Z", - "iopub.status.busy": "2024-04-08T19:13:00.831662Z", - "iopub.status.idle": "2024-04-08T19:13:00.835999Z", - "shell.execute_reply": "2024-04-08T19:13:00.835484Z" + "iopub.execute_input": "2024-04-08T21:53:20.995920Z", + "iopub.status.busy": "2024-04-08T21:53:20.995738Z", + "iopub.status.idle": "2024-04-08T21:53:20.999427Z", + "shell.execute_reply": "2024-04-08T21:53:20.998985Z" }, "nbsphinx": "hidden" }, @@ -1387,7 +1387,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb index c8a250110..8ece31973 100644 --- a/master/.doctrees/nbsphinx/tutorials/outliers.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:03.168340Z", - "iopub.status.busy": "2024-04-08T19:13:03.168171Z", - "iopub.status.idle": "2024-04-08T19:13:05.872246Z", - "shell.execute_reply": "2024-04-08T19:13:05.871721Z" + "iopub.execute_input": "2024-04-08T21:53:23.106537Z", + "iopub.status.busy": "2024-04-08T21:53:23.106008Z", + "iopub.status.idle": "2024-04-08T21:53:25.809147Z", + "shell.execute_reply": "2024-04-08T21:53:25.808588Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:05.874860Z", - "iopub.status.busy": "2024-04-08T19:13:05.874355Z", - "iopub.status.idle": "2024-04-08T19:13:06.204418Z", - "shell.execute_reply": "2024-04-08T19:13:06.203821Z" + "iopub.execute_input": "2024-04-08T21:53:25.811952Z", + "iopub.status.busy": "2024-04-08T21:53:25.811404Z", + "iopub.status.idle": "2024-04-08T21:53:26.130631Z", + "shell.execute_reply": "2024-04-08T21:53:26.130075Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:06.206962Z", - "iopub.status.busy": "2024-04-08T19:13:06.206657Z", - "iopub.status.idle": "2024-04-08T19:13:06.210651Z", - "shell.execute_reply": "2024-04-08T19:13:06.210217Z" + "iopub.execute_input": "2024-04-08T21:53:26.133270Z", + "iopub.status.busy": "2024-04-08T21:53:26.132699Z", + "iopub.status.idle": "2024-04-08T21:53:26.136882Z", + "shell.execute_reply": "2024-04-08T21:53:26.136338Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:06.212643Z", - "iopub.status.busy": "2024-04-08T19:13:06.212236Z", - "iopub.status.idle": "2024-04-08T19:13:14.211316Z", - "shell.execute_reply": "2024-04-08T19:13:14.210735Z" + "iopub.execute_input": "2024-04-08T21:53:26.139086Z", + "iopub.status.busy": "2024-04-08T21:53:26.138768Z", + "iopub.status.idle": "2024-04-08T21:53:30.505958Z", + "shell.execute_reply": "2024-04-08T21:53:30.505359Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<11:46, 241421.69it/s]" + " 1%| | 1769472/170498071 [00:00<00:09, 17453386.37it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<03:01, 939950.18it/s]" + " 7%|▋ | 12222464/170498071 [00:00<00:02, 68271540.42it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<01:03, 2688209.96it/s]" + " 13%|█▎ | 22052864/170498071 [00:00<00:01, 81895567.19it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3538944/170498071 [00:00<00:18, 9239543.74it/s]" + " 19%|█▊ | 31752192/170498071 [00:00<00:01, 87771939.20it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9633792/170498071 [00:00<00:07, 21711409.29it/s]" + " 24%|██▍ | 41648128/170498071 [00:00<00:01, 91729819.79it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15695872/170498071 [00:00<00:04, 32236184.47it/s]" + " 30%|███ | 51216384/170498071 [00:00<00:01, 93048740.90it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 19202048/170498071 [00:00<00:04, 31213118.98it/s]" + " 36%|███▋ | 61833216/170498071 [00:00<00:01, 97261469.47it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25165824/170498071 [00:01<00:03, 36748958.36it/s]" + " 42%|████▏ | 71565312/170498071 [00:00<00:01, 94889041.88it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29196288/170498071 [00:01<00:03, 37692490.20it/s]" + " 49%|████▊ | 82771968/170498071 [00:00<00:00, 100094798.36it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34471936/170498071 [00:01<00:03, 41145514.19it/s]" + " 54%|█████▍ | 92831744/170498071 [00:01<00:00, 98265231.19it/s] " ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 38699008/170498071 [00:01<00:03, 40166399.16it/s]" + " 60%|██████ | 102727680/170498071 [00:01<00:00, 98457269.63it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43909120/170498071 [00:01<00:02, 43337775.10it/s]" + " 66%|██████▌ | 112656384/170498071 [00:01<00:00, 98612911.23it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 48332800/170498071 [00:01<00:02, 41475797.12it/s]" + " 72%|███████▏ | 122552320/170498071 [00:01<00:00, 97679928.31it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52822016/170498071 [00:01<00:02, 42394898.27it/s]" + " 78%|███████▊ | 133300224/170498071 [00:01<00:00, 100524563.95it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 57114624/170498071 [00:01<00:02, 40475978.10it/s]" + " 84%|████████▍ | 143392768/170498071 [00:01<00:00, 99316653.98it/s] " ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61571072/170498071 [00:01<00:02, 41609620.80it/s]" + " 91%|█████████ | 154533888/170498071 [00:01<00:00, 102793983.77it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65863680/170498071 [00:02<00:02, 39729349.49it/s]" + " 97%|█████████▋| 165740544/170498071 [00:01<00:00, 105425982.54it/s]" ] }, { @@ -388,191 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 70418432/170498071 [00:02<00:02, 41333024.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 44%|████▍ | 74809344/170498071 [00:02<00:02, 42035778.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 46%|████▋ | 79069184/170498071 [00:02<00:02, 40305702.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 49%|████▉ | 83427328/170498071 [00:02<00:02, 41196757.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 51%|█████▏ | 87588864/170498071 [00:02<00:02, 39637138.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 54%|█████▍ | 91881472/170498071 [00:02<00:01, 40536471.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 95977472/170498071 [00:02<00:01, 39252273.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 100466688/170498071 [00:02<00:01, 40454041.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 104955904/170498071 [00:02<00:01, 39445045.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 109510656/170498071 [00:03<00:01, 41083281.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 113803264/170498071 [00:03<00:01, 41583370.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 117997568/170498071 [00:03<00:01, 40073702.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 122290176/170498071 [00:03<00:01, 40828624.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126418944/170498071 [00:03<00:01, 39461562.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130744320/170498071 [00:03<00:00, 40509967.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 135266304/170498071 [00:03<00:00, 41845498.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 139493376/170498071 [00:03<00:00, 40939532.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▍ | 144211968/170498071 [00:03<00:00, 42696106.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 148504576/170498071 [00:04<00:00, 41635041.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|████████▉ | 152961024/170498071 [00:04<00:00, 42468713.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 157253632/170498071 [00:04<00:00, 42241843.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161939456/170498071 [00:04<00:00, 43462412.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 166297600/170498071 [00:04<00:00, 43386976.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 37601665.95it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 96344932.23it/s] " ] }, { @@ -690,10 +506,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:14.213408Z", - "iopub.status.busy": "2024-04-08T19:13:14.213222Z", - "iopub.status.idle": "2024-04-08T19:13:14.217828Z", - "shell.execute_reply": "2024-04-08T19:13:14.217410Z" + "iopub.execute_input": "2024-04-08T21:53:30.508269Z", + "iopub.status.busy": "2024-04-08T21:53:30.507916Z", + "iopub.status.idle": "2024-04-08T21:53:30.512599Z", + "shell.execute_reply": "2024-04-08T21:53:30.512173Z" }, "nbsphinx": "hidden" }, @@ -744,10 +560,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:14.219646Z", - "iopub.status.busy": "2024-04-08T19:13:14.219474Z", - "iopub.status.idle": "2024-04-08T19:13:14.735288Z", - "shell.execute_reply": "2024-04-08T19:13:14.734716Z" + "iopub.execute_input": "2024-04-08T21:53:30.514714Z", + "iopub.status.busy": "2024-04-08T21:53:30.514383Z", + "iopub.status.idle": "2024-04-08T21:53:31.051751Z", + "shell.execute_reply": "2024-04-08T21:53:31.051165Z" } }, "outputs": [ @@ -780,10 +596,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:14.737482Z", - "iopub.status.busy": "2024-04-08T19:13:14.737170Z", - "iopub.status.idle": "2024-04-08T19:13:15.227922Z", - "shell.execute_reply": "2024-04-08T19:13:15.227323Z" + "iopub.execute_input": "2024-04-08T21:53:31.054091Z", + "iopub.status.busy": "2024-04-08T21:53:31.053743Z", + "iopub.status.idle": "2024-04-08T21:53:31.558486Z", + "shell.execute_reply": "2024-04-08T21:53:31.557907Z" } }, "outputs": [ @@ -821,10 +637,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:15.229967Z", - "iopub.status.busy": "2024-04-08T19:13:15.229777Z", - "iopub.status.idle": "2024-04-08T19:13:15.233685Z", - "shell.execute_reply": "2024-04-08T19:13:15.233276Z" + "iopub.execute_input": "2024-04-08T21:53:31.560721Z", + "iopub.status.busy": "2024-04-08T21:53:31.560363Z", + "iopub.status.idle": "2024-04-08T21:53:31.563739Z", + "shell.execute_reply": "2024-04-08T21:53:31.563302Z" } }, "outputs": [], @@ -847,17 +663,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:15.235578Z", - "iopub.status.busy": "2024-04-08T19:13:15.235253Z", - "iopub.status.idle": "2024-04-08T19:13:27.791114Z", - "shell.execute_reply": "2024-04-08T19:13:27.790500Z" + "iopub.execute_input": "2024-04-08T21:53:31.565838Z", + "iopub.status.busy": "2024-04-08T21:53:31.565510Z", + "iopub.status.idle": "2024-04-08T21:53:44.051763Z", + "shell.execute_reply": "2024-04-08T21:53:44.051171Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2bb5503dd8b443508a98689b99426ed1", + "model_id": "74fee4353095495d9f226fe332cc1259", "version_major": 2, "version_minor": 0 }, @@ -916,10 +732,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:27.793604Z", - "iopub.status.busy": "2024-04-08T19:13:27.793211Z", - "iopub.status.idle": "2024-04-08T19:13:29.587802Z", - "shell.execute_reply": "2024-04-08T19:13:29.587253Z" + "iopub.execute_input": "2024-04-08T21:53:44.054111Z", + "iopub.status.busy": "2024-04-08T21:53:44.053732Z", + "iopub.status.idle": "2024-04-08T21:53:45.819836Z", + "shell.execute_reply": "2024-04-08T21:53:45.819254Z" } }, "outputs": [ @@ -963,10 +779,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:29.590598Z", - "iopub.status.busy": "2024-04-08T19:13:29.590127Z", - "iopub.status.idle": "2024-04-08T19:13:29.858111Z", - "shell.execute_reply": "2024-04-08T19:13:29.857584Z" + "iopub.execute_input": "2024-04-08T21:53:45.822604Z", + "iopub.status.busy": "2024-04-08T21:53:45.822223Z", + "iopub.status.idle": "2024-04-08T21:53:46.075652Z", + "shell.execute_reply": "2024-04-08T21:53:46.074584Z" } }, "outputs": [ @@ -1002,10 +818,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:29.861034Z", - "iopub.status.busy": "2024-04-08T19:13:29.860632Z", - "iopub.status.idle": "2024-04-08T19:13:30.577484Z", - "shell.execute_reply": "2024-04-08T19:13:30.576958Z" + "iopub.execute_input": "2024-04-08T21:53:46.078335Z", + "iopub.status.busy": "2024-04-08T21:53:46.078108Z", + "iopub.status.idle": "2024-04-08T21:53:46.743524Z", + "shell.execute_reply": "2024-04-08T21:53:46.742932Z" } }, "outputs": [ @@ -1055,10 +871,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:30.580265Z", - "iopub.status.busy": "2024-04-08T19:13:30.579691Z", - "iopub.status.idle": "2024-04-08T19:13:30.924605Z", - "shell.execute_reply": "2024-04-08T19:13:30.924026Z" + "iopub.execute_input": "2024-04-08T21:53:46.746550Z", + "iopub.status.busy": "2024-04-08T21:53:46.746222Z", + "iopub.status.idle": "2024-04-08T21:53:47.081719Z", + "shell.execute_reply": "2024-04-08T21:53:47.081148Z" } }, "outputs": [ @@ -1106,10 +922,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:30.926999Z", - "iopub.status.busy": "2024-04-08T19:13:30.926574Z", - "iopub.status.idle": "2024-04-08T19:13:31.175317Z", - "shell.execute_reply": "2024-04-08T19:13:31.174782Z" + "iopub.execute_input": "2024-04-08T21:53:47.084022Z", + "iopub.status.busy": "2024-04-08T21:53:47.083652Z", + "iopub.status.idle": "2024-04-08T21:53:47.326888Z", + "shell.execute_reply": "2024-04-08T21:53:47.326274Z" } }, "outputs": [ @@ -1165,10 +981,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:31.177937Z", - "iopub.status.busy": "2024-04-08T19:13:31.177576Z", - "iopub.status.idle": "2024-04-08T19:13:31.272978Z", - "shell.execute_reply": "2024-04-08T19:13:31.272473Z" + "iopub.execute_input": "2024-04-08T21:53:47.329510Z", + "iopub.status.busy": "2024-04-08T21:53:47.329278Z", + "iopub.status.idle": "2024-04-08T21:53:47.413482Z", + "shell.execute_reply": "2024-04-08T21:53:47.412987Z" } }, "outputs": [], @@ -1189,10 +1005,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:31.275519Z", - "iopub.status.busy": "2024-04-08T19:13:31.275167Z", - "iopub.status.idle": "2024-04-08T19:13:41.679014Z", - "shell.execute_reply": "2024-04-08T19:13:41.678397Z" + "iopub.execute_input": "2024-04-08T21:53:47.415922Z", + "iopub.status.busy": "2024-04-08T21:53:47.415575Z", + "iopub.status.idle": "2024-04-08T21:53:57.742151Z", + "shell.execute_reply": "2024-04-08T21:53:57.741544Z" } }, "outputs": [ @@ -1229,10 +1045,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:41.681464Z", - "iopub.status.busy": "2024-04-08T19:13:41.681014Z", - "iopub.status.idle": "2024-04-08T19:13:43.393278Z", - "shell.execute_reply": "2024-04-08T19:13:43.392676Z" + "iopub.execute_input": "2024-04-08T21:53:57.744530Z", + "iopub.status.busy": "2024-04-08T21:53:57.744288Z", + "iopub.status.idle": "2024-04-08T21:53:59.488154Z", + "shell.execute_reply": "2024-04-08T21:53:59.487660Z" } }, "outputs": [ @@ -1263,10 +1079,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:43.395878Z", - "iopub.status.busy": "2024-04-08T19:13:43.395510Z", - "iopub.status.idle": "2024-04-08T19:13:43.601564Z", - "shell.execute_reply": "2024-04-08T19:13:43.600964Z" + "iopub.execute_input": "2024-04-08T21:53:59.490552Z", + "iopub.status.busy": "2024-04-08T21:53:59.490160Z", + "iopub.status.idle": "2024-04-08T21:53:59.700075Z", + "shell.execute_reply": "2024-04-08T21:53:59.699559Z" } }, "outputs": [], @@ -1280,10 +1096,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:43.604043Z", - "iopub.status.busy": "2024-04-08T19:13:43.603730Z", - "iopub.status.idle": "2024-04-08T19:13:43.606880Z", - "shell.execute_reply": "2024-04-08T19:13:43.606367Z" + "iopub.execute_input": "2024-04-08T21:53:59.702595Z", + "iopub.status.busy": "2024-04-08T21:53:59.702250Z", + "iopub.status.idle": "2024-04-08T21:53:59.705307Z", + "shell.execute_reply": "2024-04-08T21:53:59.704880Z" } }, "outputs": [], @@ -1305,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:43.609039Z", - "iopub.status.busy": "2024-04-08T19:13:43.608752Z", - "iopub.status.idle": "2024-04-08T19:13:43.617066Z", - "shell.execute_reply": "2024-04-08T19:13:43.616668Z" + "iopub.execute_input": "2024-04-08T21:53:59.707485Z", + "iopub.status.busy": "2024-04-08T21:53:59.707155Z", + "iopub.status.idle": "2024-04-08T21:53:59.715532Z", + "shell.execute_reply": "2024-04-08T21:53:59.715087Z" }, "nbsphinx": "hidden" }, @@ -1348,12 +1164,77 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007c6ddc44eb433e853f88ed09044f49": { + "1b929639cf644575b18de45cd7024f20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_701253a3878e4e80bf70ce2d5107bc4a", + "placeholder": "​", + "style": "IPY_MODEL_cdb8e1ba4c3c4be787dbf71554bbd39a", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 321MB/s]" + } + }, + "23be7ed9ccbd408da27baf5bccd9a8bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_613d8f0ad5b24a2cbbc7eba7165b1268", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44e5092b23194ea1952a474d3d786afd", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "44e5092b23194ea1952a474d3d786afd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "52a04235b3b64c8db21bd301de16b3b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1406,48 +1287,7 @@ "width": null } }, - "086fdb340ddc44499e840c6359ce1479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0c6902059f6d43049f050a70f2c4d5ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_007c6ddc44eb433e853f88ed09044f49", - "placeholder": "​", - "style": "IPY_MODEL_8e6e75da45e94500ac3664d6571c19a5", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 261MB/s]" - } - }, - "0c87bf09ff7545318077176d0bc67dc5": { + "613d8f0ad5b24a2cbbc7eba7165b1268": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,31 +1340,25 @@ "width": null } }, - "2bb5503dd8b443508a98689b99426ed1": { + "6a0cb4fc0ec8441daefaec8c242c5901": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b99b680885934cdfa31bc3a843e20724", - "IPY_MODEL_f15ac1823a7f4e549da71d08245aa9b2", - "IPY_MODEL_0c6902059f6d43049f050a70f2c4d5ed" - ], - "layout": "IPY_MODEL_0c87bf09ff7545318077176d0bc67dc5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3897024bcca245b1bc58655ded2b9bc5": { + "701253a3878e4e80bf70ce2d5107bc4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,25 +1411,31 @@ "width": null } }, - "8e6e75da45e94500ac3664d6571c19a5": { + "74fee4353095495d9f226fe332cc1259": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c49734db5060444fb92ed63c94ad0dcc", + "IPY_MODEL_23be7ed9ccbd408da27baf5bccd9a8bb", + "IPY_MODEL_1b929639cf644575b18de45cd7024f20" + ], + "layout": "IPY_MODEL_52a04235b3b64c8db21bd301de16b3b6", + "tabbable": null, + "tooltip": null } }, - "b99b680885934cdfa31bc3a843e20724": { + "c49734db5060444fb92ed63c94ad0dcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1610,15 +1450,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3897024bcca245b1bc58655ded2b9bc5", + "layout": "IPY_MODEL_d01a98a4674847ee9ceb535a10490498", "placeholder": "​", - "style": "IPY_MODEL_086fdb340ddc44499e840c6359ce1479", + "style": "IPY_MODEL_6a0cb4fc0ec8441daefaec8c242c5901", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "c8047222b06d47abb1cddbdcb8b6aaff": { + "cdb8e1ba4c3c4be787dbf71554bbd39a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d01a98a4674847ee9ceb535a10490498": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1670,48 +1528,6 @@ "visibility": null, "width": null } - }, - "f15ac1823a7f4e549da71d08245aa9b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8047222b06d47abb1cddbdcb8b6aaff", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fb1f241a35b74a80a9334872055927bc", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "fb1f241a35b74a80a9334872055927bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/regression.ipynb b/master/.doctrees/nbsphinx/tutorials/regression.ipynb index 673215d3c..04d8b1fb3 100644 --- a/master/.doctrees/nbsphinx/tutorials/regression.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:47.803397Z", - "iopub.status.busy": "2024-04-08T19:13:47.802938Z", - "iopub.status.idle": "2024-04-08T19:13:48.925278Z", - "shell.execute_reply": "2024-04-08T19:13:48.924752Z" + "iopub.execute_input": "2024-04-08T21:54:04.047172Z", + "iopub.status.busy": "2024-04-08T21:54:04.047009Z", + "iopub.status.idle": "2024-04-08T21:54:05.165055Z", + "shell.execute_reply": "2024-04-08T21:54:05.164503Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:48.927915Z", - "iopub.status.busy": "2024-04-08T19:13:48.927470Z", - "iopub.status.idle": "2024-04-08T19:13:48.945021Z", - "shell.execute_reply": "2024-04-08T19:13:48.944602Z" + "iopub.execute_input": "2024-04-08T21:54:05.167726Z", + "iopub.status.busy": "2024-04-08T21:54:05.167423Z", + "iopub.status.idle": "2024-04-08T21:54:05.184913Z", + "shell.execute_reply": "2024-04-08T21:54:05.184432Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:48.947242Z", - "iopub.status.busy": "2024-04-08T19:13:48.946736Z", - "iopub.status.idle": "2024-04-08T19:13:48.949732Z", - "shell.execute_reply": "2024-04-08T19:13:48.949294Z" + "iopub.execute_input": "2024-04-08T21:54:05.187353Z", + "iopub.status.busy": "2024-04-08T21:54:05.186846Z", + "iopub.status.idle": "2024-04-08T21:54:05.190514Z", + "shell.execute_reply": "2024-04-08T21:54:05.190045Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:48.951557Z", - "iopub.status.busy": "2024-04-08T19:13:48.951388Z", - "iopub.status.idle": "2024-04-08T19:13:49.150115Z", - "shell.execute_reply": "2024-04-08T19:13:49.149617Z" + "iopub.execute_input": "2024-04-08T21:54:05.192550Z", + "iopub.status.busy": "2024-04-08T21:54:05.192225Z", + "iopub.status.idle": "2024-04-08T21:54:05.229509Z", + "shell.execute_reply": "2024-04-08T21:54:05.229066Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.152258Z", - "iopub.status.busy": "2024-04-08T19:13:49.151925Z", - "iopub.status.idle": "2024-04-08T19:13:49.328521Z", - "shell.execute_reply": "2024-04-08T19:13:49.328018Z" + "iopub.execute_input": "2024-04-08T21:54:05.231854Z", + "iopub.status.busy": "2024-04-08T21:54:05.231527Z", + "iopub.status.idle": "2024-04-08T21:54:05.406963Z", + "shell.execute_reply": "2024-04-08T21:54:05.406350Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.330913Z", - "iopub.status.busy": "2024-04-08T19:13:49.330551Z", - "iopub.status.idle": "2024-04-08T19:13:49.538644Z", - "shell.execute_reply": "2024-04-08T19:13:49.538041Z" + "iopub.execute_input": "2024-04-08T21:54:05.409559Z", + "iopub.status.busy": "2024-04-08T21:54:05.409225Z", + "iopub.status.idle": "2024-04-08T21:54:05.616720Z", + "shell.execute_reply": "2024-04-08T21:54:05.616184Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.540725Z", - "iopub.status.busy": "2024-04-08T19:13:49.540437Z", - "iopub.status.idle": "2024-04-08T19:13:49.544691Z", - "shell.execute_reply": "2024-04-08T19:13:49.544278Z" + "iopub.execute_input": "2024-04-08T21:54:05.618983Z", + "iopub.status.busy": "2024-04-08T21:54:05.618661Z", + "iopub.status.idle": "2024-04-08T21:54:05.623080Z", + "shell.execute_reply": "2024-04-08T21:54:05.622607Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.546581Z", - "iopub.status.busy": "2024-04-08T19:13:49.546300Z", - "iopub.status.idle": "2024-04-08T19:13:49.552461Z", - "shell.execute_reply": "2024-04-08T19:13:49.552021Z" + "iopub.execute_input": "2024-04-08T21:54:05.624968Z", + "iopub.status.busy": "2024-04-08T21:54:05.624702Z", + "iopub.status.idle": "2024-04-08T21:54:05.630945Z", + "shell.execute_reply": "2024-04-08T21:54:05.630505Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.554456Z", - "iopub.status.busy": "2024-04-08T19:13:49.554124Z", - "iopub.status.idle": "2024-04-08T19:13:49.556701Z", - "shell.execute_reply": "2024-04-08T19:13:49.556278Z" + "iopub.execute_input": "2024-04-08T21:54:05.632897Z", + "iopub.status.busy": "2024-04-08T21:54:05.632641Z", + "iopub.status.idle": "2024-04-08T21:54:05.635133Z", + "shell.execute_reply": "2024-04-08T21:54:05.634700Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.558519Z", - "iopub.status.busy": "2024-04-08T19:13:49.558220Z", - "iopub.status.idle": "2024-04-08T19:13:57.783852Z", - "shell.execute_reply": "2024-04-08T19:13:57.783248Z" + "iopub.execute_input": "2024-04-08T21:54:05.637020Z", + "iopub.status.busy": "2024-04-08T21:54:05.636771Z", + "iopub.status.idle": "2024-04-08T21:54:13.976160Z", + "shell.execute_reply": "2024-04-08T21:54:13.975518Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.787203Z", - "iopub.status.busy": "2024-04-08T19:13:57.786649Z", - "iopub.status.idle": "2024-04-08T19:13:57.794488Z", - "shell.execute_reply": "2024-04-08T19:13:57.794042Z" + "iopub.execute_input": "2024-04-08T21:54:13.979606Z", + "iopub.status.busy": "2024-04-08T21:54:13.978675Z", + "iopub.status.idle": "2024-04-08T21:54:13.986074Z", + "shell.execute_reply": "2024-04-08T21:54:13.985520Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.796488Z", - "iopub.status.busy": "2024-04-08T19:13:57.796215Z", - "iopub.status.idle": "2024-04-08T19:13:57.799641Z", - "shell.execute_reply": "2024-04-08T19:13:57.799235Z" + "iopub.execute_input": "2024-04-08T21:54:13.988007Z", + "iopub.status.busy": "2024-04-08T21:54:13.987835Z", + "iopub.status.idle": "2024-04-08T21:54:13.991555Z", + "shell.execute_reply": "2024-04-08T21:54:13.990998Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.801520Z", - "iopub.status.busy": "2024-04-08T19:13:57.801263Z", - "iopub.status.idle": "2024-04-08T19:13:57.804571Z", - "shell.execute_reply": "2024-04-08T19:13:57.804133Z" + "iopub.execute_input": "2024-04-08T21:54:13.993650Z", + "iopub.status.busy": "2024-04-08T21:54:13.993339Z", + "iopub.status.idle": "2024-04-08T21:54:13.996783Z", + "shell.execute_reply": "2024-04-08T21:54:13.996326Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.806527Z", - "iopub.status.busy": "2024-04-08T19:13:57.806223Z", - "iopub.status.idle": "2024-04-08T19:13:57.809258Z", - "shell.execute_reply": "2024-04-08T19:13:57.808725Z" + "iopub.execute_input": "2024-04-08T21:54:13.998653Z", + "iopub.status.busy": "2024-04-08T21:54:13.998482Z", + "iopub.status.idle": "2024-04-08T21:54:14.001527Z", + "shell.execute_reply": "2024-04-08T21:54:14.000998Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.811263Z", - "iopub.status.busy": "2024-04-08T19:13:57.810959Z", - "iopub.status.idle": "2024-04-08T19:13:57.818786Z", - "shell.execute_reply": "2024-04-08T19:13:57.818238Z" + "iopub.execute_input": "2024-04-08T21:54:14.003459Z", + "iopub.status.busy": "2024-04-08T21:54:14.003158Z", + "iopub.status.idle": "2024-04-08T21:54:14.011211Z", + "shell.execute_reply": "2024-04-08T21:54:14.010679Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.820889Z", - "iopub.status.busy": "2024-04-08T19:13:57.820509Z", - "iopub.status.idle": "2024-04-08T19:13:57.823238Z", - "shell.execute_reply": "2024-04-08T19:13:57.822711Z" + "iopub.execute_input": "2024-04-08T21:54:14.013463Z", + "iopub.status.busy": "2024-04-08T21:54:14.012963Z", + "iopub.status.idle": "2024-04-08T21:54:14.015569Z", + "shell.execute_reply": "2024-04-08T21:54:14.015153Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.825125Z", - "iopub.status.busy": "2024-04-08T19:13:57.824848Z", - "iopub.status.idle": "2024-04-08T19:13:57.944411Z", - "shell.execute_reply": "2024-04-08T19:13:57.943830Z" + "iopub.execute_input": "2024-04-08T21:54:14.017646Z", + "iopub.status.busy": "2024-04-08T21:54:14.017253Z", + "iopub.status.idle": "2024-04-08T21:54:14.138417Z", + "shell.execute_reply": "2024-04-08T21:54:14.137851Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.946652Z", - "iopub.status.busy": "2024-04-08T19:13:57.946416Z", - "iopub.status.idle": "2024-04-08T19:13:58.050381Z", - "shell.execute_reply": "2024-04-08T19:13:58.049796Z" + "iopub.execute_input": "2024-04-08T21:54:14.140668Z", + "iopub.status.busy": "2024-04-08T21:54:14.140489Z", + "iopub.status.idle": "2024-04-08T21:54:14.247854Z", + "shell.execute_reply": "2024-04-08T21:54:14.247268Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.052902Z", - "iopub.status.busy": "2024-04-08T19:13:58.052525Z", - "iopub.status.idle": "2024-04-08T19:13:58.541282Z", - "shell.execute_reply": "2024-04-08T19:13:58.540644Z" + "iopub.execute_input": "2024-04-08T21:54:14.250059Z", + "iopub.status.busy": "2024-04-08T21:54:14.249882Z", + "iopub.status.idle": "2024-04-08T21:54:14.748368Z", + "shell.execute_reply": "2024-04-08T21:54:14.747830Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.544024Z", - "iopub.status.busy": "2024-04-08T19:13:58.543626Z", - "iopub.status.idle": "2024-04-08T19:13:58.648994Z", - "shell.execute_reply": "2024-04-08T19:13:58.648352Z" + "iopub.execute_input": "2024-04-08T21:54:14.750868Z", + "iopub.status.busy": "2024-04-08T21:54:14.750527Z", + "iopub.status.idle": "2024-04-08T21:54:14.844174Z", + "shell.execute_reply": "2024-04-08T21:54:14.843571Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.651502Z", - "iopub.status.busy": "2024-04-08T19:13:58.651135Z", - "iopub.status.idle": "2024-04-08T19:13:58.659988Z", - "shell.execute_reply": "2024-04-08T19:13:58.659533Z" + "iopub.execute_input": "2024-04-08T21:54:14.846652Z", + "iopub.status.busy": "2024-04-08T21:54:14.846214Z", + "iopub.status.idle": "2024-04-08T21:54:14.855429Z", + "shell.execute_reply": "2024-04-08T21:54:14.854873Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.661959Z", - "iopub.status.busy": "2024-04-08T19:13:58.661702Z", - "iopub.status.idle": "2024-04-08T19:13:58.664433Z", - "shell.execute_reply": "2024-04-08T19:13:58.663997Z" + "iopub.execute_input": "2024-04-08T21:54:14.857732Z", + "iopub.status.busy": "2024-04-08T21:54:14.857317Z", + "iopub.status.idle": "2024-04-08T21:54:14.860277Z", + "shell.execute_reply": "2024-04-08T21:54:14.859716Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.666308Z", - "iopub.status.busy": "2024-04-08T19:13:58.666060Z", - "iopub.status.idle": "2024-04-08T19:14:04.108369Z", - "shell.execute_reply": "2024-04-08T19:14:04.107772Z" + "iopub.execute_input": "2024-04-08T21:54:14.862308Z", + "iopub.status.busy": "2024-04-08T21:54:14.862015Z", + "iopub.status.idle": "2024-04-08T21:54:20.339250Z", + "shell.execute_reply": "2024-04-08T21:54:20.338705Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:04.110851Z", - "iopub.status.busy": "2024-04-08T19:14:04.110406Z", - "iopub.status.idle": "2024-04-08T19:14:04.119270Z", - "shell.execute_reply": "2024-04-08T19:14:04.118848Z" + "iopub.execute_input": "2024-04-08T21:54:20.341510Z", + "iopub.status.busy": "2024-04-08T21:54:20.341326Z", + "iopub.status.idle": "2024-04-08T21:54:20.349878Z", + "shell.execute_reply": "2024-04-08T21:54:20.349436Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:04.121410Z", - "iopub.status.busy": "2024-04-08T19:14:04.120984Z", - "iopub.status.idle": "2024-04-08T19:14:04.185861Z", - "shell.execute_reply": "2024-04-08T19:14:04.185384Z" + "iopub.execute_input": "2024-04-08T21:54:20.351726Z", + "iopub.status.busy": "2024-04-08T21:54:20.351554Z", + "iopub.status.idle": "2024-04-08T21:54:20.415427Z", + "shell.execute_reply": "2024-04-08T21:54:20.414862Z" }, "nbsphinx": "hidden" }, @@ -1437,7 +1437,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb index 7512e088c..25ac7a5b7 100644 --- a/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:07.395028Z", - "iopub.status.busy": "2024-04-08T19:14:07.394566Z", - "iopub.status.idle": "2024-04-08T19:14:11.485319Z", - "shell.execute_reply": "2024-04-08T19:14:11.484630Z" + "iopub.execute_input": "2024-04-08T21:54:23.122415Z", + "iopub.status.busy": "2024-04-08T21:54:23.122061Z", + "iopub.status.idle": "2024-04-08T21:54:24.416189Z", + "shell.execute_reply": "2024-04-08T21:54:24.415590Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:11.488001Z", - "iopub.status.busy": "2024-04-08T19:14:11.487586Z", - "iopub.status.idle": "2024-04-08T19:15:03.035425Z", - "shell.execute_reply": "2024-04-08T19:15:03.034793Z" + "iopub.execute_input": "2024-04-08T21:54:24.418694Z", + "iopub.status.busy": "2024-04-08T21:54:24.418500Z", + "iopub.status.idle": "2024-04-08T21:55:07.109922Z", + "shell.execute_reply": "2024-04-08T21:55:07.109225Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:03.037988Z", - "iopub.status.busy": "2024-04-08T19:15:03.037617Z", - "iopub.status.idle": "2024-04-08T19:15:04.144423Z", - "shell.execute_reply": "2024-04-08T19:15:04.143898Z" + "iopub.execute_input": "2024-04-08T21:55:07.112387Z", + "iopub.status.busy": "2024-04-08T21:55:07.112201Z", + "iopub.status.idle": "2024-04-08T21:55:08.209130Z", + "shell.execute_reply": "2024-04-08T21:55:08.208588Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.146910Z", - "iopub.status.busy": "2024-04-08T19:15:04.146510Z", - "iopub.status.idle": "2024-04-08T19:15:04.149732Z", - "shell.execute_reply": "2024-04-08T19:15:04.149284Z" + "iopub.execute_input": "2024-04-08T21:55:08.212112Z", + "iopub.status.busy": "2024-04-08T21:55:08.211661Z", + "iopub.status.idle": "2024-04-08T21:55:08.215832Z", + "shell.execute_reply": "2024-04-08T21:55:08.215346Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.151905Z", - "iopub.status.busy": "2024-04-08T19:15:04.151503Z", - "iopub.status.idle": "2024-04-08T19:15:04.155404Z", - "shell.execute_reply": "2024-04-08T19:15:04.154966Z" + "iopub.execute_input": "2024-04-08T21:55:08.217925Z", + "iopub.status.busy": "2024-04-08T21:55:08.217749Z", + "iopub.status.idle": "2024-04-08T21:55:08.221647Z", + "shell.execute_reply": "2024-04-08T21:55:08.221188Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.157319Z", - "iopub.status.busy": "2024-04-08T19:15:04.157012Z", - "iopub.status.idle": "2024-04-08T19:15:04.160392Z", - "shell.execute_reply": "2024-04-08T19:15:04.159984Z" + "iopub.execute_input": "2024-04-08T21:55:08.223541Z", + "iopub.status.busy": "2024-04-08T21:55:08.223369Z", + "iopub.status.idle": "2024-04-08T21:55:08.227045Z", + "shell.execute_reply": "2024-04-08T21:55:08.226509Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.162271Z", - "iopub.status.busy": "2024-04-08T19:15:04.161951Z", - "iopub.status.idle": "2024-04-08T19:15:04.164604Z", - "shell.execute_reply": "2024-04-08T19:15:04.164202Z" + "iopub.execute_input": "2024-04-08T21:55:08.229143Z", + "iopub.status.busy": "2024-04-08T21:55:08.228838Z", + "iopub.status.idle": "2024-04-08T21:55:08.231641Z", + "shell.execute_reply": "2024-04-08T21:55:08.231120Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.166521Z", - "iopub.status.busy": "2024-04-08T19:15:04.166174Z", - "iopub.status.idle": "2024-04-08T19:16:20.073084Z", - "shell.execute_reply": "2024-04-08T19:16:20.072471Z" + "iopub.execute_input": "2024-04-08T21:55:08.233469Z", + "iopub.status.busy": "2024-04-08T21:55:08.233291Z", + "iopub.status.idle": "2024-04-08T21:56:23.144455Z", + "shell.execute_reply": "2024-04-08T21:56:23.143839Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f80951daaff1439bae07b22f26431578", + "model_id": "e7391a51221d4e33b893d8334eb51840", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4414546b77b44486a511d3a262f3937f", + "model_id": "27c9ff113d204fb289aff9dcd641e406", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:20.075744Z", - "iopub.status.busy": "2024-04-08T19:16:20.075337Z", - "iopub.status.idle": "2024-04-08T19:16:20.750666Z", - "shell.execute_reply": "2024-04-08T19:16:20.750121Z" + "iopub.execute_input": "2024-04-08T21:56:23.147223Z", + "iopub.status.busy": "2024-04-08T21:56:23.146846Z", + "iopub.status.idle": "2024-04-08T21:56:23.815937Z", + "shell.execute_reply": "2024-04-08T21:56:23.815425Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:20.753014Z", - "iopub.status.busy": "2024-04-08T19:16:20.752584Z", - "iopub.status.idle": "2024-04-08T19:16:23.452100Z", - "shell.execute_reply": "2024-04-08T19:16:23.451576Z" + "iopub.execute_input": "2024-04-08T21:56:23.818306Z", + "iopub.status.busy": "2024-04-08T21:56:23.817820Z", + "iopub.status.idle": "2024-04-08T21:56:26.540170Z", + "shell.execute_reply": "2024-04-08T21:56:26.539694Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:23.454306Z", - "iopub.status.busy": "2024-04-08T19:16:23.454030Z", - "iopub.status.idle": "2024-04-08T19:16:56.036315Z", - "shell.execute_reply": "2024-04-08T19:16:56.035779Z" + "iopub.execute_input": "2024-04-08T21:56:26.542366Z", + "iopub.status.busy": "2024-04-08T21:56:26.542020Z", + "iopub.status.idle": "2024-04-08T21:56:58.765563Z", + "shell.execute_reply": "2024-04-08T21:56:58.765011Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "71098e13b4334a47bbac4b75032ea150", + "model_id": "6b4acaa1a667475cb578e8ed9010c8b4", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:56.038307Z", - "iopub.status.busy": "2024-04-08T19:16:56.038128Z", - "iopub.status.idle": "2024-04-08T19:17:10.772843Z", - "shell.execute_reply": "2024-04-08T19:17:10.772275Z" + "iopub.execute_input": "2024-04-08T21:56:58.767587Z", + "iopub.status.busy": "2024-04-08T21:56:58.767410Z", + "iopub.status.idle": "2024-04-08T21:57:13.429442Z", + "shell.execute_reply": "2024-04-08T21:57:13.428871Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:10.775162Z", - "iopub.status.busy": "2024-04-08T19:17:10.774934Z", - "iopub.status.idle": "2024-04-08T19:17:14.602622Z", - "shell.execute_reply": "2024-04-08T19:17:14.602118Z" + "iopub.execute_input": "2024-04-08T21:57:13.431852Z", + "iopub.status.busy": "2024-04-08T21:57:13.431563Z", + "iopub.status.idle": "2024-04-08T21:57:17.251803Z", + "shell.execute_reply": "2024-04-08T21:57:17.251223Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:14.604704Z", - "iopub.status.busy": "2024-04-08T19:17:14.604405Z", - "iopub.status.idle": "2024-04-08T19:17:16.041428Z", - "shell.execute_reply": "2024-04-08T19:17:16.040893Z" + "iopub.execute_input": "2024-04-08T21:57:17.253863Z", + "iopub.status.busy": "2024-04-08T21:57:17.253688Z", + "iopub.status.idle": "2024-04-08T21:57:18.653570Z", + "shell.execute_reply": "2024-04-08T21:57:18.653016Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abbf1d8d4dc4498dbba438256d734fad", + "model_id": "36e71a092c2a4f218b1efff3e7d3b6b6", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:16.043794Z", - "iopub.status.busy": "2024-04-08T19:17:16.043524Z", - "iopub.status.idle": "2024-04-08T19:17:16.075824Z", - "shell.execute_reply": "2024-04-08T19:17:16.075325Z" + "iopub.execute_input": "2024-04-08T21:57:18.656019Z", + "iopub.status.busy": "2024-04-08T21:57:18.655715Z", + "iopub.status.idle": "2024-04-08T21:57:18.684405Z", + "shell.execute_reply": "2024-04-08T21:57:18.683866Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:16.078301Z", - "iopub.status.busy": "2024-04-08T19:17:16.077923Z", - "iopub.status.idle": "2024-04-08T19:17:22.245581Z", - "shell.execute_reply": "2024-04-08T19:17:22.245090Z" + "iopub.execute_input": "2024-04-08T21:57:18.686810Z", + "iopub.status.busy": "2024-04-08T21:57:18.686431Z", + "iopub.status.idle": "2024-04-08T21:57:24.837201Z", + "shell.execute_reply": "2024-04-08T21:57:24.836601Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:22.247739Z", - "iopub.status.busy": "2024-04-08T19:17:22.247405Z", - "iopub.status.idle": "2024-04-08T19:17:22.303831Z", - "shell.execute_reply": "2024-04-08T19:17:22.303283Z" + "iopub.execute_input": "2024-04-08T21:57:24.839321Z", + "iopub.status.busy": "2024-04-08T21:57:24.839135Z", + "iopub.status.idle": "2024-04-08T21:57:24.895201Z", + "shell.execute_reply": "2024-04-08T21:57:24.894573Z" }, "nbsphinx": "hidden" }, @@ -1033,12 +1033,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "001fb5816a074024996ee285412c72e2": { + "011e636f2648451da265e45984d40108": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,78 +1091,33 @@ "width": null } }, - "010891f081ec41c1aabdc9984ea3e880": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1983a07fcf9348578a07d2aee3240441": { + "01867865dc5f4029b99e265031e77845": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_498994b6b09749d0b505637e583714d1", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f41b9220dd94e9c858ab4017b492944", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "26332d6a8cc44c2e97dbf9c486f38f25": { + "02cc2ce21799413dbe7b55bf263202d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1177,38 +1132,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7388d890f96b440d9df5bb2bcf630681", + "layout": "IPY_MODEL_c5668d6890d047cebf512ce20945534a", "placeholder": "​", - "style": "IPY_MODEL_99f6441d531f4710baa405c0d7109b5f", + "style": "IPY_MODEL_18cb6f21e9e140a08ac3db82b8c74d68", "tabbable": null, "tooltip": null, - "value": " 4997817/4997817 [00:32<00:00, 154803.51it/s]" + "value": " 4997817/4997817 [00:32<00:00, 157227.02it/s]" } }, - "2644b4fc5fda48acb706485e94aabc6a": { + "15faab9c74444e5a86986dee971c8f6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c287de703a14c5cb0941da5922a6c41", - "placeholder": "​", - "style": "IPY_MODEL_1983a07fcf9348578a07d2aee3240441", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2c287de703a14c5cb0941da5922a6c41": { + "184cd82ade504d9d957ef3583513e6de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1261,7 +1211,25 @@ "width": null } }, - "301a3fcd99094c40a1fb9f975619c430": { + "18cb6f21e9e140a08ac3db82b8c74d68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "204564b70f0c4bcbb1045bcbc684abd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1314,7 +1282,7 @@ "width": null } }, - "328b4d1e22fb41b9be4bc667200a34d2": { + "205f1f5899844e089aa6de546fc29f55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1329,57 +1297,194 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_001fb5816a074024996ee285412c72e2", + "layout": "IPY_MODEL_70c380e4add245f2b431950b005613e4", "placeholder": "​", - "style": "IPY_MODEL_dcb3aba2d5ee498da09596d6b1189652", + "style": "IPY_MODEL_ad759138bef54f1991391dbe56080cd1", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.04it/s]" + "value": " 30/30 [00:20<00:00,  1.48it/s]" } }, - "332840cfdb9a451ebd2a374dae54e637": { + "27723755a081454fbfef7e167c2f439d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82cee37834bd4e899eab11ef0c6ec199", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d9f713d5fa04801b2c84af8bf3c9624", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "27c9ff113d204fb289aff9dcd641e406": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2bd881cbafeb4f32b962e14434991322", + "IPY_MODEL_9beead0cd00f4d5c9481520f6369c7d2", + "IPY_MODEL_205f1f5899844e089aa6de546fc29f55" + ], + "layout": "IPY_MODEL_97874e692c96450790eeb013ece2edec", + "tabbable": null, + "tooltip": null + } + }, + "2a830c11a9834155b1850dea81779995": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "365979231dd54217a8aac4a279204067": { + "2bd881cbafeb4f32b962e14434991322": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b85f1eb5f0e64530870f6fbf949cda91", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d7bd991e20f14b0c98dd8d679d84939c", + "layout": "IPY_MODEL_4994745f1d7a46b6b09a477eb9ab37ae", + "placeholder": "​", + "style": "IPY_MODEL_f290b7c52ff24853ab3eebfe3473fc3e", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for checking labels: 100%" + } + }, + "2d1fc918526049ab819636e1f371eba3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf2c5305350947e1a649b4ed34a122c0", + "placeholder": "​", + "style": "IPY_MODEL_e55de78b35f047c59235e23a3293b943", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "30dd84dce5054280a1a65357f5e672b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b2b767fc7564407287c0c9bd8e93b0d6", + "placeholder": "​", + "style": "IPY_MODEL_365700aba25f42e2a11c5d78ca475f95", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 439.26it/s]" } }, - "380290952081433398d72252f55f3512": { + "365700aba25f42e2a11c5d78ca475f95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36e71a092c2a4f218b1efff3e7d3b6b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_977bc1fabc45480aacaf27627ed8fde4", + "IPY_MODEL_01867865dc5f4029b99e265031e77845", + "IPY_MODEL_aa05781dd2e14e5690ca4a371d2eaa5d" + ], + "layout": "IPY_MODEL_6cf4f4d780bb4d37bb00e8adfdeab9a6", + "tabbable": null, + "tooltip": null + } + }, + "3b6ad6f7143a48e1a6a5ba0b4ab5d207": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1432,7 +1537,7 @@ "width": null } }, - "40897686e955404f91514151f240c0d0": { + "498994b6b09749d0b505637e583714d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1485,31 +1590,7 @@ "width": null } }, - "4414546b77b44486a511d3a262f3937f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d2ea6fbb7475458087e30a3aee7c2421", - "IPY_MODEL_83945befc2ec4271af67b93797cadd10", - "IPY_MODEL_93bd352e7edc4aac8660f540a733e80f" - ], - "layout": "IPY_MODEL_e5304a7b2a15495792b3302840dc6164", - "tabbable": null, - "tooltip": null - } - }, - "5abd50f2ff82441194222375826e37c9": { + "4994745f1d7a46b6b09a477eb9ab37ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1562,48 +1643,7 @@ "width": null } }, - "5ac2298939434623ab7427ecd71bb845": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f618acb94c794f1ba33254b732f3da99", - "placeholder": "​", - "style": "IPY_MODEL_bdd0d707ff2c40a783c34c22c644bff2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6249a51dbc1145c985fed7ad172f3f6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "68c0ed1d2b074054bc0c083b8ccd8a71": { + "4cca74c9e5be4a19a843dbe0841c27ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1656,54 +1696,23 @@ "width": null } }, - "6b76fce815c1461d9f75cd9b932f9d87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68c0ed1d2b074054bc0c083b8ccd8a71", - "placeholder": "​", - "style": "IPY_MODEL_6249a51dbc1145c985fed7ad172f3f6f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "71098e13b4334a47bbac4b75032ea150": { + "64cf2900bd6c4cac991a466cde5b4625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ac2298939434623ab7427ecd71bb845", - "IPY_MODEL_e05c95cfe29749928b6771d970a5fc81", - "IPY_MODEL_26332d6a8cc44c2e97dbf9c486f38f25" - ], - "layout": "IPY_MODEL_40897686e955404f91514151f240c0d0", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7388d890f96b440d9df5bb2bcf630681": { + "64ec60eba1624c519353a416c211da43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1756,74 +1765,54 @@ "width": null } }, - "773d8ea77b7443f2ade5b4c99a303fcb": { + "650512de4880455592f1a772ed3c671e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83945befc2ec4271af67b93797cadd10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_010891f081ec41c1aabdc9984ea3e880", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_beb83a56568c469189a5939e700e69a4", + "layout": "IPY_MODEL_3b6ad6f7143a48e1a6a5ba0b4ab5d207", + "placeholder": "​", + "style": "IPY_MODEL_15faab9c74444e5a86986dee971c8f6b", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "93bd352e7edc4aac8660f540a733e80f": { + "6b4acaa1a667475cb578e8ed9010c8b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ffe9b9351b8a4b129d0904a8757b9a46", - "placeholder": "​", - "style": "IPY_MODEL_fc53622cc52741d8bde9b20fe8c9a3c0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d1fc918526049ab819636e1f371eba3", + "IPY_MODEL_cc0587534da94813a45e26631f06d3d7", + "IPY_MODEL_02cc2ce21799413dbe7b55bf263202d5" + ], + "layout": "IPY_MODEL_184cd82ade504d9d957ef3583513e6de", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.44it/s]" + "tooltip": null } }, - "99e35d66f5634eb28a74eb5bfa102bde": { + "6cf4f4d780bb4d37bb00e8adfdeab9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,49 +1865,23 @@ "width": null } }, - "99f6441d531f4710baa405c0d7109b5f": { + "6f41b9220dd94e9c858ab4017b492944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "abbf1d8d4dc4498dbba438256d734fad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2644b4fc5fda48acb706485e94aabc6a", - "IPY_MODEL_c68ef40a35e04fc39427a9f284523b28", - "IPY_MODEL_328b4d1e22fb41b9be4bc667200a34d2" - ], - "layout": "IPY_MODEL_ef987a4e9c5445f2a1965215131e2de0", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b2e6852040e34be68af10fb4a3c2b9a7": { + "70c380e4add245f2b431950b005613e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1971,7 +1934,7 @@ "width": null } }, - "b85f1eb5f0e64530870f6fbf949cda91": { + "82cee37834bd4e899eab11ef0c6ec199": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2024,7 +1987,7 @@ "width": null } }, - "bdd0d707ff2c40a783c34c22c644bff2": { + "874d4b249a9f48169f404ecf30644496": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2042,7 +2005,7 @@ "text_color": null } }, - "beb83a56568c469189a5939e700e69a4": { + "8d9f713d5fa04801b2c84af8bf3c9624": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2058,41 +2021,83 @@ "description_width": "" } }, - "c158f6f873284cbaa7be7bbaebbd7763": { + "977bc1fabc45480aacaf27627ed8fde4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a59cded056ec4111a33e363e26fde083", + "placeholder": "​", + "style": "IPY_MODEL_2a830c11a9834155b1850dea81779995", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "c4adc9fb2d8c49ab9d863ff53317708d": { - "model_module": "@jupyter-widgets/controls", + "97874e692c96450790eeb013ece2edec": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c68ef40a35e04fc39427a9f284523b28": { + "9beead0cd00f4d5c9481520f6369c7d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2108,40 +2113,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_301a3fcd99094c40a1fb9f975619c430", + "layout": "IPY_MODEL_4cca74c9e5be4a19a843dbe0841c27ff", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_332840cfdb9a451ebd2a374dae54e637", + "style": "IPY_MODEL_ad088869a9df4edf992510316237e014", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "ce77d0d3de7c4b089021754738d5ceb4": { - "model_module": "@jupyter-widgets/controls", + "a59cded056ec4111a33e363e26fde083": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99e35d66f5634eb28a74eb5bfa102bde", - "placeholder": "​", - "style": "IPY_MODEL_773d8ea77b7443f2ade5b4c99a303fcb", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 405.54it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d2ea6fbb7475458087e30a3aee7c2421": { + "aa05781dd2e14e5690ca4a371d2eaa5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2156,15 +2191,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2e6852040e34be68af10fb4a3c2b9a7", + "layout": "IPY_MODEL_64ec60eba1624c519353a416c211da43", "placeholder": "​", - "style": "IPY_MODEL_c4adc9fb2d8c49ab9d863ff53317708d", + "style": "IPY_MODEL_874d4b249a9f48169f404ecf30644496", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:01<00:00, 21.81it/s]" } }, - "d7bd991e20f14b0c98dd8d679d84939c": { + "ad088869a9df4edf992510316237e014": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2180,7 +2215,7 @@ "description_width": "" } }, - "dcb3aba2d5ee498da09596d6b1189652": { + "ad759138bef54f1991391dbe56080cd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2198,33 +2233,7 @@ "text_color": null } }, - "e05c95cfe29749928b6771d970a5fc81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_380290952081433398d72252f55f3512", - "max": 4997817.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c158f6f873284cbaa7be7bbaebbd7763", - "tabbable": null, - "tooltip": null, - "value": 4997817.0 - } - }, - "e5304a7b2a15495792b3302840dc6164": { + "b2b767fc7564407287c0c9bd8e93b0d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2277,7 +2286,7 @@ "width": null } }, - "ef987a4e9c5445f2a1965215131e2de0": { + "c5668d6890d047cebf512ce20945534a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2330,7 +2339,33 @@ "width": null } }, - "f618acb94c794f1ba33254b732f3da99": { + "cc0587534da94813a45e26631f06d3d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_204564b70f0c4bcbb1045bcbc684abd8", + "max": 4997817.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_64cf2900bd6c4cac991a466cde5b4625", + "tabbable": null, + "tooltip": null, + "value": 4997817.0 + } + }, + "cf2c5305350947e1a649b4ed34a122c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2383,7 +2418,25 @@ "width": null } }, - "f80951daaff1439bae07b22f26431578": { + "e55de78b35f047c59235e23a3293b943": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e7391a51221d4e33b893d8334eb51840": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2398,16 +2451,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6b76fce815c1461d9f75cd9b932f9d87", - "IPY_MODEL_365979231dd54217a8aac4a279204067", - "IPY_MODEL_ce77d0d3de7c4b089021754738d5ceb4" + "IPY_MODEL_650512de4880455592f1a772ed3c671e", + "IPY_MODEL_27723755a081454fbfef7e167c2f439d", + "IPY_MODEL_30dd84dce5054280a1a65357f5e672b5" ], - "layout": "IPY_MODEL_5abd50f2ff82441194222375826e37c9", + "layout": "IPY_MODEL_011e636f2648451da265e45984d40108", "tabbable": null, "tooltip": null } }, - "fc53622cc52741d8bde9b20fe8c9a3c0": { + "f290b7c52ff24853ab3eebfe3473fc3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2424,59 +2477,6 @@ "font_size": null, "text_color": null } - }, - "ffe9b9351b8a4b129d0904a8757b9a46": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } } }, "version_major": 2, diff --git a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb index 1733ede8c..fb6c01857 100644 --- a/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb +++ b/master/.doctrees/nbsphinx/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:24.524829Z", - "iopub.status.busy": "2024-04-08T19:17:24.524651Z", - "iopub.status.idle": "2024-04-08T19:17:26.451617Z", - "shell.execute_reply": "2024-04-08T19:17:26.450937Z" + "iopub.execute_input": "2024-04-08T21:57:27.121145Z", + "iopub.status.busy": "2024-04-08T21:57:27.120960Z", + "iopub.status.idle": "2024-04-08T21:57:28.306719Z", + "shell.execute_reply": "2024-04-08T21:57:28.306025Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-08 19:17:24-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-04-08 21:57:27-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.49.177, 2400:52e0:1a01::994:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.49.177|:443... connected.\r\n", + "169.150.236.97, 2400:52e0:1a00::718:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -116,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.49MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-04-08 19:17:24 (5.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-04-08 21:57:27 (7.37 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-08 19:17:25-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.130.187, 54.231.165.233, 52.216.62.161, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.130.187|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-04-08 21:57:27-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.229, 54.231.228.217, 52.217.108.68, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.229|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,26 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 211.53K 926KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 22%[===> ] 3.71M 8.12MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 94%[=================> ] 15.37M 22.6MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 23.5MB/s in 0.7s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-04-08 19:17:26 (23.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-08 21:57:28 (210 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -210,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:26.454458Z", - "iopub.status.busy": "2024-04-08T19:17:26.454223Z", - "iopub.status.idle": "2024-04-08T19:17:27.676181Z", - "shell.execute_reply": "2024-04-08T19:17:27.675698Z" + "iopub.execute_input": "2024-04-08T21:57:28.309489Z", + "iopub.status.busy": "2024-04-08T21:57:28.309052Z", + "iopub.status.idle": "2024-04-08T21:57:29.535134Z", + "shell.execute_reply": "2024-04-08T21:57:29.534610Z" }, "nbsphinx": "hidden" }, @@ -224,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -250,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:27.678806Z", - "iopub.status.busy": "2024-04-08T19:17:27.678375Z", - "iopub.status.idle": "2024-04-08T19:17:27.681955Z", - "shell.execute_reply": "2024-04-08T19:17:27.681515Z" + "iopub.execute_input": "2024-04-08T21:57:29.537745Z", + "iopub.status.busy": "2024-04-08T21:57:29.537249Z", + "iopub.status.idle": "2024-04-08T21:57:29.540684Z", + "shell.execute_reply": "2024-04-08T21:57:29.540158Z" } }, "outputs": [], @@ -303,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:27.683962Z", - "iopub.status.busy": "2024-04-08T19:17:27.683699Z", - "iopub.status.idle": "2024-04-08T19:17:27.686524Z", - "shell.execute_reply": "2024-04-08T19:17:27.686095Z" + "iopub.execute_input": "2024-04-08T21:57:29.542659Z", + "iopub.status.busy": "2024-04-08T21:57:29.542362Z", + "iopub.status.idle": "2024-04-08T21:57:29.545192Z", + "shell.execute_reply": "2024-04-08T21:57:29.544763Z" }, "nbsphinx": "hidden" }, @@ -324,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:27.688377Z", - "iopub.status.busy": "2024-04-08T19:17:27.688200Z", - "iopub.status.idle": "2024-04-08T19:17:36.852616Z", - "shell.execute_reply": "2024-04-08T19:17:36.852071Z" + "iopub.execute_input": "2024-04-08T21:57:29.547108Z", + "iopub.status.busy": "2024-04-08T21:57:29.546932Z", + "iopub.status.idle": "2024-04-08T21:57:38.503471Z", + "shell.execute_reply": "2024-04-08T21:57:38.502921Z" } }, "outputs": [], @@ -401,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:36.855120Z", - "iopub.status.busy": "2024-04-08T19:17:36.854821Z", - "iopub.status.idle": "2024-04-08T19:17:36.860286Z", - "shell.execute_reply": "2024-04-08T19:17:36.859865Z" + "iopub.execute_input": "2024-04-08T21:57:38.505745Z", + "iopub.status.busy": "2024-04-08T21:57:38.505533Z", + "iopub.status.idle": "2024-04-08T21:57:38.511025Z", + "shell.execute_reply": "2024-04-08T21:57:38.510480Z" }, "nbsphinx": "hidden" }, @@ -444,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:36.862236Z", - "iopub.status.busy": "2024-04-08T19:17:36.861904Z", - "iopub.status.idle": "2024-04-08T19:17:37.207147Z", - "shell.execute_reply": "2024-04-08T19:17:37.206565Z" + "iopub.execute_input": "2024-04-08T21:57:38.512954Z", + "iopub.status.busy": "2024-04-08T21:57:38.512667Z", + "iopub.status.idle": "2024-04-08T21:57:38.850937Z", + "shell.execute_reply": "2024-04-08T21:57:38.850274Z" } }, "outputs": [], @@ -484,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:37.209618Z", - "iopub.status.busy": "2024-04-08T19:17:37.209283Z", - "iopub.status.idle": "2024-04-08T19:17:37.213376Z", - "shell.execute_reply": "2024-04-08T19:17:37.212864Z" + "iopub.execute_input": "2024-04-08T21:57:38.853325Z", + "iopub.status.busy": "2024-04-08T21:57:38.852997Z", + "iopub.status.idle": "2024-04-08T21:57:38.857421Z", + "shell.execute_reply": "2024-04-08T21:57:38.856864Z" } }, "outputs": [ @@ -559,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:37.215394Z", - "iopub.status.busy": "2024-04-08T19:17:37.215083Z", - "iopub.status.idle": "2024-04-08T19:17:39.552115Z", - "shell.execute_reply": "2024-04-08T19:17:39.551400Z" + "iopub.execute_input": "2024-04-08T21:57:38.859500Z", + "iopub.status.busy": "2024-04-08T21:57:38.859081Z", + "iopub.status.idle": "2024-04-08T21:57:41.179261Z", + "shell.execute_reply": "2024-04-08T21:57:41.178473Z" } }, "outputs": [], @@ -584,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.555424Z", - "iopub.status.busy": "2024-04-08T19:17:39.554614Z", - "iopub.status.idle": "2024-04-08T19:17:39.558938Z", - "shell.execute_reply": "2024-04-08T19:17:39.558474Z" + "iopub.execute_input": "2024-04-08T21:57:41.182273Z", + "iopub.status.busy": "2024-04-08T21:57:41.181736Z", + "iopub.status.idle": "2024-04-08T21:57:41.185821Z", + "shell.execute_reply": "2024-04-08T21:57:41.185317Z" } }, "outputs": [ @@ -623,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.560894Z", - "iopub.status.busy": "2024-04-08T19:17:39.560573Z", - "iopub.status.idle": "2024-04-08T19:17:39.565814Z", - "shell.execute_reply": "2024-04-08T19:17:39.565368Z" + "iopub.execute_input": "2024-04-08T21:57:41.187927Z", + "iopub.status.busy": "2024-04-08T21:57:41.187604Z", + "iopub.status.idle": "2024-04-08T21:57:41.192646Z", + "shell.execute_reply": "2024-04-08T21:57:41.192127Z" } }, "outputs": [ @@ -804,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.567759Z", - "iopub.status.busy": "2024-04-08T19:17:39.567433Z", - "iopub.status.idle": "2024-04-08T19:17:39.593200Z", - "shell.execute_reply": "2024-04-08T19:17:39.592668Z" + "iopub.execute_input": "2024-04-08T21:57:41.194666Z", + "iopub.status.busy": "2024-04-08T21:57:41.194347Z", + "iopub.status.idle": "2024-04-08T21:57:41.220015Z", + "shell.execute_reply": "2024-04-08T21:57:41.219564Z" } }, "outputs": [ @@ -909,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.595168Z", - "iopub.status.busy": "2024-04-08T19:17:39.594990Z", - "iopub.status.idle": "2024-04-08T19:17:39.599302Z", - "shell.execute_reply": "2024-04-08T19:17:39.598861Z" + "iopub.execute_input": "2024-04-08T21:57:41.221917Z", + "iopub.status.busy": "2024-04-08T21:57:41.221744Z", + "iopub.status.idle": "2024-04-08T21:57:41.225821Z", + "shell.execute_reply": "2024-04-08T21:57:41.225266Z" } }, "outputs": [ @@ -986,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.601340Z", - "iopub.status.busy": "2024-04-08T19:17:39.600975Z", - "iopub.status.idle": "2024-04-08T19:17:41.028748Z", - "shell.execute_reply": "2024-04-08T19:17:41.028272Z" + "iopub.execute_input": "2024-04-08T21:57:41.227702Z", + "iopub.status.busy": "2024-04-08T21:57:41.227531Z", + "iopub.status.idle": "2024-04-08T21:57:42.606115Z", + "shell.execute_reply": "2024-04-08T21:57:42.605555Z" } }, "outputs": [ @@ -1161,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:41.030867Z", - "iopub.status.busy": "2024-04-08T19:17:41.030672Z", - "iopub.status.idle": "2024-04-08T19:17:41.034715Z", - "shell.execute_reply": "2024-04-08T19:17:41.034283Z" + "iopub.execute_input": "2024-04-08T21:57:42.608339Z", + "iopub.status.busy": "2024-04-08T21:57:42.608000Z", + "iopub.status.idle": "2024-04-08T21:57:42.612035Z", + "shell.execute_reply": "2024-04-08T21:57:42.611599Z" }, "nbsphinx": "hidden" }, @@ -1197,7 +1173,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/.doctrees/tutorials/clean_learning/index.doctree b/master/.doctrees/tutorials/clean_learning/index.doctree index 30047ba4ca43f7f9df79819cb001b3e26ace9e6c..93b340a5f7d3bc6e97e47e267bde3570b77a230e 100644 GIT binary patch delta 62 zcmX>tep-A(E~BBTfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET=6Q^|TmV=15wZXP delta 62 zcmX>tep-A(E~8elX=-q<_%{!4NVP9iVJgcbM(ylX=-q<_%{!4bvMaP11}FEG#T7%*~Ax6Acp0ERrn@ U4U&vajnj+_j14yb-$`}!hHkKL5 zRhB}}y|K8vr8zNF%lm6@KC1uRj&u59$NBxA@0jg(ZeG^^(2lx)|Blo8XYV+x|LZ-o zSo4wpeDQ&uziIxQtJC@)*j@MkuuGkF<2BpdhK<*6-LUaGx9x_sHMp&D)#`dx_?+AH z*|cHf=4&?fAKNwCpV>XrUwO+J{XM%@bT;g4&Lq{c{$0DT{%<|3*I#w(-r+G8wb7gE z%4+H8)8m_~Q~Gl6sr?J~EIV_wt9DbvJ-SUHUAysyt!~q{oVE_XxbM1ZX@A|GMa|t; zR?EBiRsUCe>i+F}Iq((5!O)Q6CmRV=Xn<4^AG71qqH zJ@Bq$Y95u7T1DbS5Q<9g6K5e=ZQF-x-{11m-ZLhy>ARZ&%@r55o4fkiH;%4zwlsRLt#%pL zMqP+5I7Ve6K%I}n#}yZ~k6ZKHS;y3oI~5o;jNx%X8c&T(Iz?pI1g^vIam7XLSHQ9x8==StN!o)`qKF0+XKs2=7ndgwatU~ zRmaxIOXi#y6O0s+8tfUN*@Y=!ZGmC1aC61AK35d8F!14jY<>MVA&MHsrz1mFJo@`tu)LyX~qKJ9nTE zE{#z191(-_Q6;bA7+e*WQAf0v%s8onZq9tYGt;d5UUlMN-w zS2dxIlHg?~Hj3;(JLi-w{;lSm9iE)0`{XD;kszo>_eIYn2rA2)7{;4eWd4&_k5qF=j9Vqhq9@D5;4oL#T0KlrU80 z$f>4aK5xQc-9r^fuMl@smc@{5DoC^I_3HFmC!PtIliCD0$OO@8IORHmiB$A*)cAVZ z8c-DOQ?n$zNH)lveI%Cg2$DV$WxY&|QY0m0R|uW0VW1O9s3p=$E#~))(hf#QD{bHq z(oSk_`)9RsHJJxAN(fO}$%xI1K%AkTdkkU;&Dax~$44y4;kM_@3{H5lWw*(xA`1aj zs879cb>ZR|;8r(ZI;u0%D;%q#UqSC_$!%5}5&;VqWaNTln6N5w85AQJ3-aLdE#1wF zdXgybr3M~>Fw%;BE$)EKMC9taxn1tCy|`iCy#QM84xIEQ|g&E3npGlR`1 zbnma~REXPLy`e*ACx;yg$%htqSIoAmkVfEA#^-dde|f9BM$7CGD)xqASP`@C2QzY5|js#QccFHvakcw{E>7nuM5G4Y`wO* ziFV#yLq|g2qIGCNh465*gd!{}Gz*lMM5+F?RVvg8npkoSgg^`iH6RNk43I~o_08S0 zol^!+pWL~x>Ou850)xV9o&*%Mg_y(;f?~~(p?ZKj0@anmw!A=llcT0)-TOM1)-(ku z4GosI0fUZ*xF%jH9=x?mFXVo5aThTOnri;+H$LE=3%HZP)tF%5#}nW9FevWk8%qOuo(wY0$qgTv*~T z5HqGmJ-z6(4EAs6ez)3P$cI^ono=1qTumom*5P4o@`19LhcR?c^na60U|wiQyC5O{ z4ftIrM{`?hapkkFM0 zmyWh9uypYBw>rOv0-GE>HOF7ry%>6FV%+BWR)D?w@y_BpW<=r;hhb=6W$QJh60EuC z2+`b*)k&Z#1gQ;vV6TFBe4|Z2q1sl~;O{$zC#Pir4 zDMTL+ZIgrh=HQ0TC(-)gb`WOJ!CIdYvo9tBfg&{_z<(M*K|s_i1CTc%}1b)l-CH?tp?sixK#V!4AG-PUw(6qD72MkwV0=DKa^r8e#0fr@E`& zOW8cxh!Tqifm?}#lLU(^M->^)FpbhN!b-m47-6MsEW}Kq8js+-!c`qc*yIB(Kv;GZ zd9;)ysznIgibzqEHj)f(!cfr8rac4Ahrw9`BMOrjZF?tS(3LP8O|gk7fmQM90Guc!3HzDwRgdi?KoiI zjEuWKWF!+g8VgSv$1qTT3{G8k0TUfO`LWbO1;BGnUcdzxP@sk=h)m^mgjol>c?_&l z&=IgoF-L>i#@(G$LD(<}A=m}Ym{foj1>j>|wT8?_4ohXdxfdLKlS(LzinCQA5Q)KNiP?s{{Gb8 YpYZqh|BwE@?w@yH@!-d|b~hjUFDPOJ-~a#s delta 13307 zcmeHNTZ~;*8P48kpp;7kLMb$5&ZY<@WN6p@A|_tY2QLVCi9t%rx(XUf8&YE^Z7DTT z^nv1uZj2EjM4LdQU}KIU5s*XzJ|P5yqM=0JP$W@X1gQ!o!i|OX_6M&W+O%B#29O|=FSnPOfZyqE_r5z zlOwOM9_$>QcFTFI7Mcsrw(f+;X)LZwo=aTBo(LMXF{Xf?jjyCN-fbGwZ_8b_F z_-$wPr#kYX8~&9;RE^)StV(O}(psJo3naBNq(?6~ZW`srNxhZ9PSP zSQIgun1vcW{?vh{@C-k)uLoH90tMKf2<2CtM)PMa)@aFf*#X61*v)t-3#rBzL!Cd6bN_d*F5sZ%zJ z?6Z5BF!aJJ1$V4W=R1m4Zy3#}4a+_Z~?}UcCOn@zJlaPWiYIG)oIUcelo+>g~ zuJ};5+=YK$IH58}cD}K{8vXXKf13V!$|HVN0C~RWn{Q0LxMp~5H6foTCyD4JD;x47(esf`gc_+ZoB4C z^{Ham_UNK5P8U>Gh$i@tkQAEKeHg4~!ynQUgbxM!~fq;}1Pp{h}%cZVx_Nkz(AJ zo~>wm_e0gN$u=@=R3_YJp}BRMM;1AuJ{zxvoF2p_lD&4;FvkQ}K%k49WkMxWDYQrS!g!85JQTF@x+{nDqBes(>~(znOD5McOF}P?V;-Gxl-R7-@9&bceSsS znT-hgu`90HcG=}0`RFIN6^ha=f4X#88?RYtzjj=G=CE|CN)FC%559kJToXf1QW5kd zO#poKT}_S6sv}o4fJKaPOIc!`P>L2$m9~K@iGE0Yu;{tI$5`Wx^p;48&XI&t(xdDH z_bTaV8O?fJT{?KBDh6%$K3!ejlw$S(+wkk^q@m(D>1=FJsDEXZv0SQP&{<8^k@VQ^ zvq+RtRC^k*DM3kc#wqF?+I;5H$u8lGAft+AnW^SlCxM=0LSV^iF0|;%Buzn92=3a~ zY)$72VUZEqp88z1eqJ!0nPT2jgFB?bGQyH}hDIWSX?GqsSUWAqj0QrZ^&v`u+6A>4 ztAIO^aq!?;6y)0WgFmTG8z1~x^}T8cl2B6P*jZY^c(y)86*TeCP&wr8md+YqJFb3Q zH7jo-hDqaS3LD@Z;8c6|AF2y4mU0Q`lBXb*;CWD7cp|I{Atb7DOj7gYr){Jl54u#X z9pCe4b$hk1l&a-8DwXN-rwiBSI@HZwSg#uvPSw@xdwbMr?+hr7YoJAdsT?sWUDgsD}Q5z#pp#z`cI1u zPP@lY#x6z9Gpr>H)z(@pt_&3xWa!7J-p8u>LgYI@y$yuoN+Q84x2(%iseriZp$uGTT?pK zTPPbMDM>=>G3$(gjK>XFv`cjRNQt&%;Nr%)#srR(5Q4;j5GZuHW*yWNLpAug2r@;2 zH&Bp)ID%9=>oJYWD46W(d@0CEaoelb)SoSe?J@S|n)+1eGfXqdA&&~^?@llghRkZ5 zB<1my&*L1!7$7GhTO{Ny;a!7KfkOW#nKPw}2m>lvK);2&41y?dj4=$wk%I=~v%Xi{ z`b2$y)uck)9%if%w};t-s|On!3pE=tUodP6{Da;Ht)9Ts9B8w2DuWy3CPOngg=tGb zj2Nhhpbe+YS{23gBn_C31nROv%M$@QIR~7T$^h6ZAr{%W6tq7@DP|9`$KEs8w7@vI z>@EGsL#K-1Py{5$ac4M&I|xTAQ9-di*r8`4Jc{$=_|C0^A5{Aa33?lB3RU^`rwdoM z2(tOYsa}4ux?n)s*8hx)zRMrth4+@N$&9lrWb;oC;8whlI?A zq#UBgus*50_NDLCXO6euSM9>Q#-Rx~N>zABPN;$eMM`sGCSq(eU8|kUYaOetybIp` zp43+kOB;Cjfzhwgh>Q4`|z%6$w-V z8n+J$O$5WJ#NU@|{(`O2H@zP|T79$HSIW|I)+*HK+ZeHQaf|R9mX1chflBShx1o`6 zYz*-_5ekzbgWNK_5EaqVF`)M#>H7~s(fP8 z$R$bO5db==%(=BBFdpUN2v-QK+LJ#zxU4C~>`Cs`&(y0MU_59zby`W_!Wzq6_ zh_^!A9&c#!E5@Dlj#F zZg(QQSnaiIpT$nlr zw$iDVfDKX}un@$+tCGDctgFk^v<)ov8 zGnVjN!{LZw;=uT%9M&_IK<*JZden5$Nbi{p&C0>sr*_q!F2)8ekoNko)Ta!6;yft~ zC~(7tVhlE@$Ef8r(~$)-o@nDCRIyhh#Fl3~p;9BG=fi&;dI_na+ey4f5t?cv7{kRWMbZAUO(84VmsruQpTf)Yl~b}D zFr_+N{&eBC;v&47!iiWvuRVT8{q2(NJ~c&VcK^)opV|H0yOBkV&Fub}-9NMYm%f=< z&Q&wJ|9`z_nA!a^yMNi2WM+2%^qpG4SnZ7ld|Tv&YG(H@ea$el`)79lm}V!B39ebnNW&2 zC_W|yVb2tbs8qpr^n;qvhdNL&7R26xXq~jhI0;U~4)pu)Ik!Ex=-uG>+#krtij^{=hwd=w{=aYIgkT?#+6~_1XD(<~CYu0<)Zv$;D>tg3?Y3 zLnY|({pcImz@x}YNee&!RTbnyo3CVg~BnC^4e9R#$lVgx*yi8owYtQr>Caqg z_2u5vt!LZZI#u(x`(r~RwNg(U=s!9DVq$uDrb3~tOYkLYZM6wnWX z3G5gdNN|U`mlSeNX}tZ<{(IdZl~++k8_d*-IeVVC@t#;NI$5cg2y4ZxAAf6hX=sFu z6$oSX^|xks4_Zdfz4j;@ClkFj3W31~=sal>EgLi7#;l}5I!I#1IbJ+T<4NSgxv|T} zY{i@!lhxO5&rZ&b^hFoqDtRD7T5p66 z8PKve06#0e2#(S+7n6bn60OFMjX^6@JOg2{B~8qkQBqRS#B3%fm6e`Tk{JxD1DD7Y%E#gE@Y8iRCvjPGE{WV#(44m z{tNxQxKP0IIwK>dq|d_W?4vAEro?&0yKjt-Y)%MklxQzxT5Y-abmP$k05;S&{?Q*D z8mYwv!jj7-sQ^xaka6V#1lJc-%urw{?y_bUJVYIYlc>Ix6JaV6o`aJj4}#YfCCe-p zH9Zd*oE6>yD-xYAG)X~j7iX==^`*P|3qv#Tq-6EV;r{Rd;!}VEBq=76HrS}RwTu_R z6Jy0KaVA7ik!zzIp)~{ZTt*W-1VCEo)2;wG4(dS1JLVEPm^(RHj)DeNI_1chIBNx6 z;H(w1o_MK$Xr4_Bo(WK%ClWWsMEL@tB0(+5 zqCgKrWN2CeiI%9U%LVY_S~D(HS|-s5TMyu;@;D(=bF@O zQ}_2A-#@L&w`V8oi?8+v2kVuJB}L>NNG5m*ZAfM&l9Mou@4(9?rQtME;Swf^f^j9H zz#)U1ykINvIzCAq%Qi(EC#ahf6rhWakq;%-Yk%yI)}Q`zc5M91`}>!><_+q7r~6Ao zZe0K{yKfG;!o6T*RZ)DBC}DkcFbgE=BH!8wL! zEsU|`VdHoFF3e&O5^jN5U@)slHGt0~pb1;ZQb}%+#eBy^5@r?1AsQGC5v}VAoN>{* zn5B}nVlE}Q5pqgm>x@)pMa3-4Uk1|(U~B3w2bG5NE8ub?Lfm0KxOecG%TY>Hj9lW* zd7*9Q5ap;aYpp6+qbz%2vwueh`JU60p-56h z^rehp;us_kFQ|isKL*I1l{Uc!Pr?LlG|HwGgbk&Xkf8AygD2tryiJoNdV>lIkLhkP zinRjQ>lgY5=aUKDC-B4-tZrTGKQO?uQb|HHQ8;0A4B%4EJf^I|nN4y*md7zVVw@p- zgdvQBPZPXe*5Gv)y{wNv(;pq#Z)ZR528dyblEXooO!&4aIVLlPAx!$<-2|>1-SPdy z*1x_s zWE2w2{t{IQ4kAk);DrTYw04GJAHd-|bONL7j5HOQ_T!PS_CJ7AY(!t;s}X#{m#I1Q zC(pPuY6WB%jwh?Y7~BFuYdyg3DKQaC0kQ4cc)2r}z&ucf`$^7Gp@^B(XXTMXdIx3D zvQ~li0;koMdrvoB&rDkO?C)mBhE`q^%I>WWvfhQP zcOfe~y7wTku|it!Le{&G^)6)3vT?l&`R`kp^)6(+3t8_%*1M2tv)@?4tal;nUC4SD bvfhR4zlmAzLRL0O|Hm#wjkk{-9Pj!M&v@#? delta 9171 zcmeHMO^BUW8TQNlZc9vS5<88$$lNc%SfQQd{JiH+2#BZg2yCfSv{ zyQg<|H?N&&Z2i!==FIdzr<*@F3qSmwT??>NmCN9OqUEoG* zPlXkiwFumm?6V`v_0HRP^!0zYx0~S;y!D6C$!;KauKdOJQ=RrH3C?9sToF$tq#z@S z5<<*EmAIA7!S;MRiDaaXUOP!d$=j@gusM~4Duk$}Nc^|Wgvsn|GM2P2MCf6#UXu=v zOHInvYkS9QmHlzl)_+}TcTe}V;~zA`$9Vfp%O+*{2`WF>@_OdR=+GoYFIY;7m>?1q z9J5hz)Y#yx#4CRq)tvW8XRCAxEcQ(ailGP67gty)UXrQzzJNz@-k&!U^4t_Ii%TAl zCh1*9qr4929cE$H&IeN)Jj%^8E$;>nk?OUVTU|GAk3PAf?AJbX?8OU*FJFG9JFE+5 zme4Zc9LX4bR(M(Ai&91=u`rD5%1H_A2c)32_L zFE`&D=p!9Q_!FnjUVQfCXFvDFiv#1!c0N5&$b9(1Gc{gq4|K!%oozo}KmCh#JYmjB zEi#W;MM6((vWd`C?ww{yPBC{cwCfZ>B$x#6c&1pC%O$FuNm^@SuKRY4pX>p76?3et zk;Me;fp;XQQ`TM3wZ**jW;#0_3%d8~vtgSc9gIt&?+u&l-B4sP0X2ETzF%VbJ z(&)@U%pPkOjwyCjKl?t=3_1ZiPD~m`88KCGzF1$p6-kg?09vPA(VQh66R6ZjXj2GrSKq<2h;(0{{ZnVa6*N zo$+3!Y;sXsP%{x-S0KltBNfW7h$1;F*_r6e6nyieX2K1#0<{!{ELqKil3uc&sKISpb8*X458$twRAnqlnD=2yrC1+JGVxB z@Bn>AtbXZt?NeO@!VnwSkEIAdfR1=AOb8{ZSZrc$3R88dU3X4+BckWllQYg4{5fz=P;eR8%uX$; z-9Qf?P`iPtl@CC0c@4|^YPUSI+_!tKc3t#VQZ#`9UsN0mo;h8-MhOgOa@)7{E_9v2 z+QF=0fFleP3>mnID+59ejEl;iZfBYY6AE-H4TAtkFbtD*+%pk8D4Zt|T;J_&6FPW+ z;~VYiZh7b+=a777quq-ERw+TpJPR1$5Q2`%F{h9dY+LdR47)C*vkpQ~I5&`#xIZL#g}!ij3Hv@hi>5#8S9dkw-`pxP=ufn9q3WUN5)wZ!mU0wcYZlPS4SJOSfHD z;Nby&>3aXk7;XnjM}{E`B*23^+CwfW7K>I{2!ixkl|5y=gLKl$`s!X-l9~VPtPtQ= znPH!LHD_UFNl3zJTa3bXHiN-uYCaJ5I|s&}s5jqh-BB_}<$@CGfLTxlCPEkrpl_Iy zkaG}T6ef76pI^8fL>E7BH-U3ha_ZAy>?cGwM8LJ1MS+0tAS}PJD(mZ-hCk) zNN_f@Tb|Q!WS@;mk`iSYZ?F+ePc9~VfNYMJnO*BVOg6|9$-4qm;D9O<4A3fb;Hb}h zyk~d8j%T4c^d&OxVOZhjfdhu?W=bGBz3n{*qL=#G$@aPbA#ksX=T5bcPo!2F*EudA zzr=Bb+|MkS#zb(dnCtq414g)Al*o*ug08~8FdiZ@vCilP_2`PjTNDaHW=4ux4`#x> z9`FYID64JzxjZh-eA{5$ZP9qFKKsb{aK{x`tKd*@XC!#S3IT3qR#P1ybocq>e7g># zk};4i*v7xDyLkz;y}bky7?{0S3BYLm@S86WVhDm`}fTynP+6dnojb zPH_8L7Ik*#Gxg%$@sW+AjusJ^oXI*+;Mgey+_14xfGXpr07+JQ-X_!@B!SB;@<^1B zdnpA*$HBwmcK8q%I@GM4a2lG?olh?>n-SaKo9N}aRW$kh{_nps{lM&N^U(|6+uVO< zwV7FMW>%Y-?G4)lUUjvZdFVc9wV7FMW>%Y-)n*3wkDZ@ItTr>tRzuq+d$pNa+&Qf_ mGh3f{t~N8P%?v&bTy18S?uAyHnbl_I|7|lfg)?|!&wl|XksjRu diff --git a/master/.doctrees/tutorials/datalab/data_monitor.doctree b/master/.doctrees/tutorials/datalab/data_monitor.doctree index def02f773141edf13cac76cb00677c89d8c6e2be..5e71c8573fc9d3306cca85577818aa8c176592cd 100644 GIT binary patch delta 3862 zcmeHJKZx8_5aul>T#$fZxPSz9b0A#s@aDZY@1KndS_nDR!a_ng=lvNF6GdVh1WRoU zBEL!@g(yZuyoUXa{)V<#XrHZ3VJbBXA%ez(vD_1CoysOAIlY=&WalVfW7?A0OXvjap98vIgs2 zV{b7RDAk}zfm4atT4@b;zdLz+<-b(_GTQxX!;SaV+Vt9<`bu?27=HgiZFeVtTPjUZFf=VQ=|-{>lc+L! zib%$y4S9}c;;JjA7+;_z)L9B#VvjB%vB{ZcBTgUwQC*Sg2sox3W6Ov>bA(hWRU48o zQIO7SZ+x#lRNeN&qt_JlyI+#3;nWZ6zTw@^)I*a-oLdCTPJ01DIT1S-vds+1*0=yg ztx+b5MZU&_A?D0Jl#-3D)nYva3fQz_WDO|02{ksW(Yoe*K=0At26aV^JKg7)y3GaC zbDRG8SGF#kUB7s7bF$9Po7_BCCW}6#WV8vjg%n(>&e{d4o^0lm!l}{g>eU`q>(cg# zr=H!}e)6%$Pw({Z^l)|TY;67P=J4rHYHi%XHJtoI-9Ow~9o;q7LRjEPUW+4uMM_?i z5K7g8-0E=o=;+uKK38W}#z5q~OVI&0lpT@rSvD1e26=>rOMAEF2YLTk$vBZET9VpQ zDyJHaYhGTME$mMDb;bz8JKw6)lg`c%+p6gP=txh7B!EF|mZ z7UVX|!HBg0P{Z0%jEt_v8l%xv?BWdPI;4c4V|0N_!`vVRopo-mh+VmSSckp#^PBB< zKhWVb;>#=_lDvS57MW5i1O~;2+2wHHlA0*zYKkR}mTS&4B~ z>aB>Hg)s+|Ky18dvP4rc)Gx$KJALOsI&H%~H-0#OUEzc*8<%{f>clDqN0lg)Lu%YA zS)Jy@j6316IL(>pdb}K#QSUkrS9g|V_C@#h>S(PCYqGn<4))-vu@{q%(^qvZyp%EboW21?Rjtj delta 3874 zcmeHJKZsvN5N3}n5+ooP6OiCNPml{9-t6w|&aRCLS_nDR!a_obv;RQEsAwAmOKl<+ zuTn@Mii)UL{0Onp%F{v+Yy^|aP9i7>+UVr>UNF~WN&jnJHN0=WZ|0kCFI_uy>Dr;s zzdfv5d?lw>&+(26m5^c!4x5D#Vj!~2z&_-lAz5de0SkM7AO7t4R?b$(+A0GT2Ed{n zVg^TqU=x}E`E&QgfDJ4WBT1haYh>RN7w4*zKUU7mU-gO>C+<}F!r()6r5UQuC$!WO7!O)_ zH$V~1EWW;?&aDrv6mN|!0KQ^E=14`LlaG-@^JbK?yB3drpx#zPY$jC5P;_W0U(Upi zz-We=UB+eYc=bbdY;k#CeWSWPjDLNkb~idLjPSdPgDy;|p|7SQR;^QFjl~zP+UWp! zrjwj;zDAoWBqV22O0FgoGF6{^vlE?1epa8TL7PxwyDn1Dn7wBkBch`ctw^3>s=fN7 z`dDf^@Z)2b6%1YUccf}O`IEY5eE&=J@BqX)fpwf@-XXSVgP@ZRTxEZu%%rg9RE>=? z%ZAl7E?V~4vSBQobiJ8WDTQsap*T;Ntt?`U(Xe2IRwK>xoJjTHCsJK>A@%%reBt$- z*UoI7KfgU}rce_zVX4t0V_+L>Kp9)ot@u!9T0P@TwBY30Tk4J8tTqMq$)}$?yZhAR zPn!|3qK*wcUgO1I)dTlSCsh~lm{a7EFp2kCG0_<9Yy^f9W&yHC z8Fmh20--3xC7@wB9gZP+OOpUg?`eJEY(=7+bg}4jq9{hNX1sW0?dZ+c>$Nbx z_q{qbbUTpQ?rhORu$*g!z^;%;dkn%^jx4Z= z#kv|MTC)c|$1LL5kTMz(!GhJCa$@AjwN16ty7u6wb?u_x@Zhr>a^XVFx@jv>!hmd2 zgy5^_ugUvS|ErEJ;45`{{a(^Bqw|JCWz5*beU3$nQVRt$Uf5T6FP4lpagVi0W^#8`|@VaiiPrGR|v+u;sD)Cl{*UQ^g;>}6EO1$MG ex|=!6NAxQ3hE?L-@^Nr`iFbPO-Ggf{-|-*dm4y@l diff --git a/master/.doctrees/tutorials/datalab/datalab_advanced.doctree b/master/.doctrees/tutorials/datalab/datalab_advanced.doctree index bab2bfd57f1b875faa3e00432dc9b3e05f9a3763..9dd19ac500ca1ff8899e182ee21cfc05acd14163 100644 GIT binary patch delta 2119 zcmeH{IcQZu6o#2m6k|jYF(7I#Q4sVIXF0PWc193f5ep^ZWmX8rMDw(EtF*8SQwSCo z!7g@JEL%$?n@vR!~8pb7u6^ z=uTyMpg@wcQW2q9@=1Y}T7%b08>R)9Nr1YHx@y#gP9M!MjMm~-l}CrrhI;QX`h@be zHoE%9K3cM6{M^~mkvK8f?)dSExUE%f8|e(T7j{QFopX8mB)Xp8M6{}YozO9q-`qsY z^H@Yv|NnJAuIA7F75J0ap2O7z_YURNC((s}s$DZtIhtg!N=OW2H+v#z372 z`SnY5sj;fQ_zFFHUI`nG2O4w;8U#zWygL&JvoSCrzWzLe$Cg&54?-EvqmLe<6IKQA zL3`sEm(s*~`&)biRWX8O))>Zg0^m$jCY+;XN#dmI=y&7GNO|UVoaw<4Y@PS+t(Ha$yckInAl3WvXm2M0pnL>Jh$&DjJNl zlz|{o0HMjq#9RzoF-ZwiG?%iTdiO_s3vK=@)@3q_Nh5Ynz|MT)F&?M_$Y3A)bMmY2{ncvRhp2{d`xG&a`65klT4wPCMwMbe? zZutCgH4b#~eO-O`3%-KRH}$BmRrT#Ve7t?&(4K+)?WTGBy}HS_zM)or`V6mc)HP?v k*1Yj6R(Zz@e57&S7elrfvhurF3|X<@|3X%mklk7N4da7@bpQYW delta 2153 zcmeHHJ4lvM80MTL$&7+5m&gx|g!;*IzaT+F4nbFzhHguPi=0mBa~AZS;}c7h@zXIr35Wt^lZWdVAsxCvA>Jz-jVSumj=UF zz2Qd2$|D2d8%THR;PyXfnm2U~Hu~$UtNr!CMq@m5*NX17FUzl`sUdJLEd;QwoR8of zNDB`@a~cj{a{b$fU@_SE4fq${3i%B85v1)y;M#x9?ieeybS_|SBIS{}AdSQ}dKRQ& z4r`*){CjYta;m)k0nENFn6Ms8i#cZb2~JEvR8c3G7ffmA%dc~AxTzpSVa1)mG$7`5 zFiuOPRTS827KADfEW-Psz$Pdatkp54cp7ZU*JPfft}D2L`4O(T~^VPE=ztlf)z0%lm589oDr)gos?Q*V7_ zR2z#7=Gitw4B-;VH6fFr5_v^R74V9bsU=w3ERi@wNLpNi?HxwMK#|OZePGl^Wev>% zAy_lwqb&3BN17`0x=gpNeEJ>U0#~a%>Z}!=$4;NGpEz~2?|8i`lz&cFovrg?ExnnA qyNe20zl`0N_WXb{9efARREB<|X&X&bW}|6qKdALJt;|h(vh^qUB8+DM diff --git a/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree b/master/.doctrees/tutorials/datalab/datalab_quickstart.doctree index 78ad7e090621f587a0e0ac607d6530a367daba14..b1017a18ae35ad150d6ed189aaae3feaa715aedd 100644 GIT binary patch delta 243 zcmbQ<$2q-^bHf!*LsJ8j;=-KV9DVad;}k;^gEaF*Gjjt|3!}8;G;@YE91UKMG-Oj+_w82o=0O@jslke0suHM$X9_Cs)FC z^i7_>fn)OPDN0BpxyQLSUzn<+0TwcuTyX5~WWD`XC_IkI?RC5z^%QOp9lQd%k3kypNb93XwM1w>#i)0H! zgCt{9<1`}!V}s4CT$Zhj7LyYWYE91UKMG-Oj+_w82o=0O@jslke0suHM$X9_Cs)FC z^i7_>fn)OPDN0BpxyQLSUzn<+0TwcuTyX5~WWD`XC_IkI?X diff --git a/master/.doctrees/tutorials/datalab/image.doctree b/master/.doctrees/tutorials/datalab/image.doctree index 04a0a2f2b7b09d0da0ff512867e50c24a3ee4272..c446a1691ee9f29089b5126ac54b3efb25c3051f 100644 GIT binary patch delta 52397 zcmeHw33yf2wLfRyBo~qZ36Ma@aBspGhUClxiZUpOh{6-Ab%HYrk$G@vRiJ~_Rz*C> z(b`(E^*Pspr`Kn#qOC)#wNka#8Ld>GL#wUUx%_{7?~|LGYrLoZPw#u*7r!sBpab;`8t;$?nzoxf)F`sEu|uRAjvtX`K5?Dfl*uU@re<*McD zH)P$_t2WrnSFO*w8`p1Gy%K+We)jZb%iU$!m1xO2e%3$3cQ)NZb7;X(Zv4;h~DJXx{hOE6IyKKXTHS4E!b}kD#+|`}= zsq{jvvU@oDwAITgq~+_gEB*EB?NfX}*pv;}Ota3J*){h1^_VS#XRkYD<4Ou;>4tT{ zf5|$3BoSFE5DUumxbYINN&^LV;If}uOb-;fQ~ zVZrDMtn$y;fZknL-F5y7A9TsC4zf$T=e0EY$2?*5pk?WkwlAygr{n)@I*ti1GVRoH zb4Vo25IUk0j}Th_Z;9lI|7S9}>CA2>{eK{nF>a-Va?|ov|C~^s7)#}eCB(9?J_&*; zcWa`5K`=j`FLaWAT7E&n{tu<)#PH<>gTnWx&1~4YtiEe{YQTVv&a$fZE!)rDK5<$3 zar=b<1ENK9|L;lc|Czw{8_|Esi0)Y^46llfXg?+YC%Z$SWK;Oafiuc)q*5Agn?5|u zPXAQc71lnqDZJvK_p)Xn>$>TRsvIb)6Zp1lX|^UylBW5x@A;8EMEFKxudsDrUFgo3 zQT{W4xg}gQeR#Bcv5*a)pK-fzM|jc955ga#=da7Ich@an zbII(wh7M8eR69)N)a(hOI87ACuh?+F!Besa&kEn3-|)Zt>Jz^n5zd{xARKmRUHHHe zQ^S^N)q{IM4$nEHzOESbffR1IXWHmXUQUOL7yPTQjS2T0GPCnBti;DfYVm@(rIz4; zKJl2C{LVK$sS=V!uw;r=-bgg-Docx>*AStAH+ z!&5ES6m2!IB}bG3(eM!#1&-r;Hs^z+UW^Ym&zm9a4ey`#y6_xGe{R@0e|5uA2d-J? zA5>X5{dK7-ti(!$j6w#Adey>Hj0%LPn(Qh8MSlrSn39~@04l!v$NQ-#`a%ZbCo zi(hRfL&`(@@VUZ%$`a%xj?wYu;VU2M!h-M~V^o-$J!}eH4_WU}7ZfXjFET>@B}Vi< zU!p`8P6Lj^qrIOA*2o%)o4QR|txnC}x^cR?*&)3F&`D@?aPTerfH3B{dS2QzRKnR7bp;T#)o;Xyf6OPZ5 z=2)~ocNiHYfMpcq`r;d_4!XXq^xc7vq6AtJTRG$pM`KEZhLgmrtYn*TTd@av6 zi`m>~94btyn8gqZ-&?MbsTDoUGZHOau1BC1%+nDw&s@$t7coK!-wR)HuF0B;=Gck> zrDIvD>KQgTNOTolG(=n1?bx;?^GLJVJn!}}&+!z^cS|~fh>(ti;ljZami7s# zPaa^b^M%n8S!WzoIeovDXPsJL^NMg##VHIM#y4*k@Xb?s;_Tskb9Br%D>&cGPcs2O zEX_=nDY>5Gx{hc`x~f}>Et{exs-`N+qNMn-sY>ca8Haf3Xy(1-p!5ccm!0n6nv>I% zYX~5Uhj$8xhHKYDga0W*R&l1;&Jo&{?nC2f9n!z9ar%6TG7Y&o9qu`P{>V)f!yD2i zwN2q5B^ai!Zez&3F~fYjPe5PJFkcw$pJSN5U&}Mhf#eoM#qsbdDTIc_#ektX~RU7>65^ z^iSwurwrWn{n>^fd>!q~VMyP=o5N9u?g}?=o*cgWY+d@cxQ#A}M?uC*f`KXA`7vC+ zBtMLo`2)7FeJ;eL_bgz$xt;z_av8F@1$OANnT=0axX>g z`GO_+178xrqp01NUy{4{k_;KdC{#6wEyhBm5De$U#%JwG2FB8DNYgYxSkRH1c5w0VTkLntWqWwDxH-Ti6sXx?ya%aDF{Gi{r9#(eKEW9G6!qh${x|y5!$L)LUX)-r|kn zpvBjc`(j)^U~PF^E~B_iNOgT{P`LNRk-}N*!RBL57yc1`bj+#b?LpDbUkGYCMKJsw zB-+v zj1HqIa?2{iF(+J4&Z^{O$i{6WPMkn4K-(+A!4+{6SW@uAZ4YG`9*a00^U&u$q5+S^ zWNIM_KRc<3+!v#8PmIEUvbl}jb@s_2A%BP`_jJMJ?&pJ|U*Y7)f*E1WLz{*2aP8A@ zndXjx_}%j4HCZcAZB9P~FR=!WWD$E}$mkV$dlw|Hat^x6x_MP!$^u38}fRvm6> znNl|&-H)msFkso_WvOKom$fgOv|u~gwQKzjfh>*R-a+3!s+x&PZBgGJ6ih6vI<1ME zUCn3qwQ4@I)2r#s#_syfY0VX62mYW_3)w?HwN2G*YNuCsPmKVS{R}yz7}R|vTJtNS zke^p`=i!$zT5tXe!ugxH@e$q_mTfwhyjUHrK9DRX``ApQ-H(zo+SWOcOiDi%zr1uH zIe>f|zx+6F-1YG0rUn68=)W>iwuW@1f7jEwK3e(|87DO0A&<2WN`3j_%t?gJi#y&-Fx2A4&0-@o-T-&c+n-;F4k0Y@|FvvCRIj7jR!Hi<(56)8z@EFC4;H^xB<8J%` zIU>d8|H_R&CeQWE|C!$NU!U6b@J(;0$Qy$>A8(}dcqX1lQQxl@&f|>R8cF#O&U9o5 zpT+)o7S`?MRitGIXSzoAkWV2!giQhcs5&En!|*SHa|?sB0>UmKQ3o>xk96-xi^9#n zn3gguG2Hq2i15n$T2q>$gdS|^8ZezGw9%KbA6Mj1Ke z#3dW-Q~g!bvT6q%aL)q=Uh?wXpq z4`I%r=vc^e*?yqIE;yEN>mCX{G%t{3UD6zfdp=3Mm|b{$2)7F_P~08`AfDtF9>K4Z zqP?k9m2f-5@RlLeGz?tud)ko_Iwfp@FVIcVPeD;5oc{i1VPy1Pr4ajtuhY&WhK98t z{7slh+ho7+F1(xnwJbGIJ%qeTHye0XhT9fX=svM)tA7f#FT>%%G|8P4Ap0T+UESSMbN- z^gpi@uJ1u@Fl&w&YTqb8Z3S)O`GUU5H>`~1oL=BKJv$V%`}Y=GHVj`CZ5uliifEaZ zs(^xy4WAx?AfsFcf0pVMX7|+#A8-Vh?yFCarU?FZXpbxZ7mB4SJllid?}u{gji6m) z>XC6Zbg_iCNT?NZNw2h=c<9kl~SJw2JXL`y4#Q^}GVZr0`QZgAtxnmoNo zTMhMUoszXGyy)Zo7`a&Dg)bRfM z=6~6PN#RAG3?jF1><^*kC3`sAqau$K<%HPEQRg{naf_uT)jf1=NHx+g5`W-D=6 zJo>`D$M+gJMzM`)f-k|pEu^a8iFo;rjz^+V(Den&7xLxno1aeP{FJI?JU*b7>Vk|e zYo4wcwrbjv3T(-=b#A;wTuJpgQ2#>4E1x4$=w_iXaMqij>&oS)hBC!H*1VT?|I2;_vZ(KZ>%6=|RJ4`|PBQmyBBtr?al)dj;C zscxpd&L74|^}}JDRJ(W^C)Lepq@=pLyCYWRTnaNL6^5jMS9SwtF?{;pIq*J6c3(`g z*EmM6P>jBtGGz^tucb6ijJ<&qirQrIImh@RI`k*QAnjY@E|Ytie~b{D|7oAj`0^fy zk|D$Sbf1U^T)4L_eD~vNMR2L5KjsTiaagbbVS2db;Fb$n0enby0<1u_hS6gHJtOy+Z4G|hWGG`H=OYc zAX4P!59f0IC)%x>S-#JaiiYQzW!G@VEFaQdw+?5_^2>PjKId(mS)PiQq^vydh$Xq1 z0*sjjLsF>Q(FD1EmjeZp)D-zZNO8Er06#=#zhB7y%@!|jo?n%B#Pig6jJP!eUJXG5kRB} zt{cHAHkNjaDJIHcc#yXE+gnKJqoCA0pC)}s;>dflyh}C(D z4jQixMy0@iHi8kZgTwBFaC3VICr7P;pp(uzO0;NLy|6HPHG z24SZVz3vD#;VsQo;b)n4va^oHh(j;0W7+B23(B)7+|5QWI6@=(m}D1wUY&nVI{3rr z>;sWEnc5`mBoERqQ&?zRneR6?`m6z3xT6`28v``SGilD3w zJsF?&`Kq$$vsfTbrR#b?G$$MPT1qZ#4*aKu~h0pqZ^b3{Gu zz=O5{^)zS`KH{r&@!52>`i$F7E04b2Dm+Biv%oVtwM|$==GD`gvUJCs`d*RuS>?I? zZNiBHIkujMp6Ad>%&E^^HdgQm@#_(gH$+!X6ef_BbP%!9#{ej>tG!@Mv}dd^Ci>w7 zp{iHEO{^c9qLzt*-|Nw~{G*R23e)+crf6}yFp2y)|LFF1VR`pk`Xpg8xg-DR(n-Sh z?nex#hx3nqG+8(qk9ZznGoJ*fMA3}D!zuB=6roZ0Gh1wy19*$AwME{j=fwEdRN*p` zMp#5sHf5knHzD3-gh0Q10$@%(CqxmTZRNQGJB2hs!Lan8FgiL}LfNT4k}e|Y7#ZC! z3Ezt!F@`>jJ!$M1*^8mK^WBMwAPO6%Ir>o}R_pluFvlrES2u(g6+l>#e>6iCCQ?W= zdlG$96|N%Z&}Te-5*?!n=hCMyYJ%Q907Eg%53o%Kx1tNnt?VeVra$0oy4FDdyGL^F z&apMK$bVoBpC;oY)fB!>o{SgtiGl^aXCzBUpdU*|#H(3Tw3^rC6%+Y|ng-pS_k4u1pl z85JF|NN6Qr%TH?1kn=V!o6vO*f#@Usi?SG)0zSdoqGkRYGnC|MKDpnGVnz}HisdU_ z5QrLrV9$0uTU8WUlnp6x9XZZuC-q`R^3S8Vk^Gcm`&Lx*6tao5NaqcTtV#fo;`ZB7 z+(v#tdr^i!+Jdw+umx{yh!%ZCxQ7@>Ln5PHQGqUM0}T*9CWkd}dRNDdS05*=CC8zW z8lvH>G1^v!G^*5)C%Di^n|MZG6q@1J?B`&q^INn$qbhg+ytN^kISq2tKy71g{RzS$ z0=bSO)Iz~r(~zq=N%*-y{ximCeB4^I1WZDH6{FP2S~*Hr=TWMs4Rz5~Pl1SiQ^}~H zNyX@98`|;XhP-b7dqXeXKD{DpbcDx9dNfz<2UBQ&Z{XR{qP~Z+iLni!n&>7Mx^ZkI z)L>a?ezbKoH&iX7xo%wL2~&jW>^V17(^v;?sK$?G;*7pboB@wz7mMH>88751qq!7~ z=CZss5VnsJHuIrrrBwPDiuBo|bEj_-W;R3@*N{oHswsUvZ@%+#;X9**ozXVhPB$w5 z!P}Wse{FQ0$iy4X80+s1Osb2JSrqO0FYc|9Jsh9MM}zSv=b~N0F~YD9M-LdVo(j;L z_yyR!K012&Su%~hM#onP`cj_ld+6hPh92F>raH2b@yru<3abR7G%_Z((->B4%w2Mq zuumX|G;%IJHEzA{Zs-@X7_F3zPh+i7>sSznZa+?K%+HcK4`WHZ|JXM^n|kp17RP5x zV|3MJWHNbcbo86c$kyoodxaaCKf+AU-rn^I{^`1|vG?@9A4v_^H;5=)RoKEYq3#=p zSX;EX=cS`_cMG$MC22Zm;SYBUQ^}sjJPSV#UzYrD+Bn;mCBl+d5hBIV6We5|%{U#t}Vt!>@(xAS^B*4Ubrn(Tx=IbAZ=V!VL2D zCM^Dh+OAWY;4OeNZ$No39xtJwb>YOQb{gSHgrCIot$kYPiWci+1QY1n<7wT3;iw5! zelHx9681zhC2~aiefCOI?!jk;`%=QI3mp7k-)w-+iZ?ENS6t>$~xju>zTpBCF9#!}cA# zl_}=KS}10zF13Z33XD%T>q$GBVSUfw2=&1iI|uSj&>y$(>Ha(K8L>^!U2)?Labwr7 zi4v_&lgZKE?~s=0s5JQs`9%xg6n(UXDjdEkiZ-?>`qTJ5wki5@JlL(gG56{~(vl{B zX$g0ZZQ*|HrkB=xabWab zExD4kXQFMxpkyT4Q>1@>It+G)H#bE`4=1C^?EJHx!^w2|jOn?TDH5YH+}0Njzi(jA zPH6Pw5u_2SVbM9Utv@BhiSA`MANzIWyTUiwb8hQ5vkqM2t;jF}qA%lRz+<+)2;QF= zycOi;3^RZ?WO^H%u2JNMmO_KG2dhzNZ-0^D_I7uMS{#D+8M}_dd+2L|g8L3`wzvj2yxs_6j#UMZ>3eEC!Rp77UG6bdV;pAj`$?@GPgq z+$^I+PHiK{3nai_RHeA=DJR2GSw;qQWMtSMlc5OCutD7_B?h!31{B7CF3vKQ^3XU^ zn=dfFN{Zi^c)J%Idy{HT@dqiY!gTpyv0>7z^Ij!Yl@EPgxU zjkz19lkW~AkGA&cqbqv4$NK2`_?;KyCrlp|p}en$_byok-utAL^WKN8ocG>uXveYSu;O6;bFPdBA4d)* zm$c=je=Fb@xS*fsE;^1JL&#NavGmjB+}f7Qo5j_-a^WBW`(hL%b6YcXGE2sA{c++Lu0IYN z(@THM7{m3)^f6q2jN;1@G5x_H?&yIS#t<*YnACUOx{f&I!tJ!f5$R?0&0EIg4n2cZ zRYdY*akTigxcRbk$g$S(HHmj zbdUAL+3`DnjGs__QCo!ZTZR0$?o#mI527_sga0lc%N53sv0PzjJIGDs4*WrF)$Qyd z*BDohW$TN6Ok-eX%w;Ho^FD*Kg1kJI>5Lb~cI%8BVpL1$6`!WY_0|_3L@zyy`1G%1 zsk$I9jAhYz8dFE9P7#>TV=!aKF)*#;@?hS%0$_T1C5IJ(nKq8AC1V_e(>ksIPBEb? zqD4Y#C0WkF1U+B||EL(ug+*XC#bD0jV1hz0lrO5DCKlaiBR}PX-`F$w)T@gJ|6S4G zzl;aJpAUXx@!;1!L%vS_#s_}4XW#|b6c0Rdd~X^I8qXJ}VmwH*T(bsZs7}DHu~b! zDOJ(&H;^^O3iO)F==mGSSH5Tp;0zotY@qO`R!|>s?f7WmOQb3H{EY-D{BO_)T3W4Q zPjZ=`5>zW*Jf7+PvRg@~a2b1Z$isMkaW~F(w019a@p-qBqj}$^=;K?-B;f`Qh4;-J zdmBzH;W?j@xDQhTY&s?S?`iuGXdb?cG?G2zxoLiUJeRab$8)!^`acLFtvB%(6}8vd zQ!Z*xj%T8Vj!e`r8WXj(z^}l*%|%%)&qWN4=Iw$HFnR(9G;#t5G-3i%?aOlHnF^v$ z;JRudT?u6ZSL@;gP#KYC(}Z4XeZ&M#_1Xzst^~%g+Z5IdIYQX8<5-c3(_Kx2rzKuD1BMn%XpC7ERbu_O8vy2 z@K&baH!~ztT`MNARq^>?IhBG>TE6DcIF;nBu4{3CHkrs1Xd z?O*f8+?kJ&v(jYd#2yX*cu)6O!!L^8c`JUxJi;QB|3+0+9F83QG}vLyM9vN?CvtY^ zLP_A$3*KkC<@pIr!xzCSug<;j963lJA57%#TV*vT0n-^poolM2 zYhEBLiaFqps;KQnG7Gu*sIDS4H40yZN0({OvqDpQFIK3p&W(JDyep8Y?HuGN3bLs^ zcgSAymOu_@r}5&EWHuc@tULfOGYz+dYKtY&6StBo^kJH1#vkET9>e;fDVM{a?0x1t zj^?BCNTdjbY;}Q~c<(+?@vL@E#WUME6;EsD+GER~5Z;qZ@fW4#CG07uMhb1Exm_yM3?=A z)D09nMBT6qEt>hC#E9NTQ&jgZ85Yg|Pck){@h+0B%kqELyo0Cr*f!! zGPit421ei5K|^PG(?%9sbk6de79Nj0dt-1rc)9pvnjO|VRe5s zAokoBHsx?KAl&)z)abeIl{I8k&y`i(#l4)8i)%YY)71b8-b>an(N^e-^9`M#jJ7N8#wv(nrWoM-7vk5cvBcZ;$Ju54=>w}AJP4!g? zlt5{^tU0djnjXYf%h_AYSC_TuICcf{*pNCZ2(~7g4)|2EbT4oXD2i@j&608J9@c?o*=s;Q9FjBMCg1Y3ln!Ax*| zCNK?AM76ydc%~A>N=d~X%OJIF7`BNsT%My!isLz+>q!cBbb5jsc_&BdWo2aCb1Y7$`1!3l63%E98CFPK$&QP>wm z)yD}o8@IOMG7lMRAlafPi+bSu5_A;QYHrWbl$Mg@;3hZ84SY?tHOq2*%@1%X0{&;> z0yr+F8O;eCQ#2&S!{uI@hztLMAn;ueRi}YsJ2}{07}F$>+;xD#D+Q9d4$*HXr_z=5 zo;QBm8IQ z`Agt$rFZXy6*Rh~HJdOkH8!U*gb#8FTPfnkEQp=wS~vjfil$*mYPV}hy~n`xOpl(8 z^(7g{Xk5?pA%>o+_;3xmsQMP}X;W~+pW{j@d@x7119)MexTDK(PMFzcj&G-&0JuO_ zEu6sPwlo0^N^)@u^of)=ruf5yafDpr(hftjJYR7QU-KYnaOSMoTd-g!fF-6*eSFC_ z#UL=?T4Bn#xSu*oOiZs6T5x?oG&ZjGhdqR#Ist^%@F3T??#H#cLCsnTP@}a?Wm2Xz zP}B`VMi2exWYn^uY&FZ3G&q8=gAVT7!2vZFzChs18fRf{PJKnSED+Pjk;lMtP~L5u z2vQ&dri$BHV>vYp7f!t)c_MYA9p8r3%D&{uuIC4uLW7-AxxN2YcCFBo0DAW`DJhFX zb0wj2iz?H*;yT$+Zc%YrfK*^nbrt4RRq07h2Sx-ug}dFTk7mKWv!P>H7y}(+l)6AL zmwm77N3f_R30Y)N6Zl&0EusmF=RriXQTZ9Ex=g~1C_j&jPCg@5k--IswhhU2z{j2f zGh)!Ir{GX%7NRl4Tr`41FDwiEK+lK0!d)~7SLwx@qN2N=VyXo(YSxw&M1iojDtH{$ z42Ky_S@cA3CG|b60=E}Ry)^V5Sp_s%5@jBzCSb$k)T!|+-G&ueOI)afi?p;r)eySj z);@%vP(C_rsge^OfU(K?P*^5nb~R2y-bsM+8L9Jr31LKhFZQQ#WV z<-747I5lL_eiqMvFGW|4jnMrfnDd98#PRa6l8N{Xh^IKZ?OTtKGjwu)Q> z3>z*mfIAHZc0=mlg=`Y+sMUsUl1hSRx(RVAZZhPz^mUt6u|Qfy1TQl6++bReM$l}@ zghvjWkE#z(0Z&+=HgW0mfld z1aG((PS?)YAO|xN|V*0X(OF@u9i<1azXgVo_xYf`D zgr&$4!DE2egR5&b(~}id3#{(UneJjw$1r`!0kTfMWSMY}Z4)5^ygJE*+%q3P0j|v5 zU#~RGy!%^G#qLGyWIvgpc3>if870>+0?V)wejZ|XaYTpEM)>`d%a~eY5DRpii~W@8AZ1pUp^@VqhP`fGT{uukHa0q2+RW6?&L zZak4uNdU-Q-O}(BCX~_7+fwZr9s0tD#E5Xe5g@|axtfY(wGSGYu9RDJHi**f!uP{< zk|M6`F;v{NX~PxA1(SgdKh?@Dy1D#*Ap?a1Z@_XDizZ!R&|DXJB;4#F!!kN9*DOo_ zl7drT5~LG{)TKZo14rjzkWQ6Jn1nl@^bXxzz9FBtm32u+enN2!>M!m@f9Sz;4OF_HRN&17MDzwBu{VAN#M^Su}oMx zITo~$nbLFes4bk-Ecpl~VLmihQ3J##iY+R>8z6lRN<{Y$Evw5hCE9{yk>uLgkZ|GN z1U|MMuw?i+1Z*FE=b3G`!ICw=k*eo7*uC(um`IlRFt$h=_(=6huAX;ZpGE$@6nIsR zZhO0YVb&`R+mBk`DL)_!;<(r>a!n^dhDO9(eB>?=lm-@3h8nUy)Neyz2c2T;nqe4- zsFA(J&E)~2PZ^ka9t*MV6Iv`7dD+!r#If&SItW_C07($oM!0caZqGQH2}y#;y|n~@ zT)YPVv8*;a{LoZ30}mM4U6X-Hfky#W{b z&IiiZlwo63L~I;LIzBJ~e-us?yh#&z3I&m&t!R`{u@?fr*~MpOu&YBqL4ynV9LGia z10!h?;@|FAup~g4$AU=^^8zPkHDDoQ0|3cgq?X|STQ;r%12bU*&lH`2@8)EnxNzaP zZQyv6FT`~WL$PBjZd-735$gE{H`v*v3!h`} zQA!|EZ^=pG%-+2d7O!U?GGRsz^&Tg;C?f0+f*Qj_qD^;1aGWP0j&~6=AihIB2Ag!A zCL?`eK=&hIWukgO^$_n!y6HQJfw@-*i*|v4%niJ4>{((L6WJJthRq1>G`MDnoK2S- zG&qpYAq80yGP7qeL8T$nO~+{AJLT0`STGY*GqEKBx$+D+tr}#>g8T0wG|gw0JRdCV zOFBN@qoPE@l8`mjBwUv0xxS_5kR-nkr2!a4w^Wowc$Vtvo`bzN$d`s10V-;-kR`(8 z9v2i&DUk5AkRXj#eK$28SLp?Cq8tcUfP6H}p@Ga7HkA-#$A z&P|%cK15Y$(sUFqbRbhgTRI&;1VRf%7KQdDqGz)M#qv@IQL8zXA3ik}~D6Kd`@P**h#?7KCSQFQ+ zxN-Ibmx*I5P{GGVB(Zq znUwVsKt}gBl^xficPNE{8Jr&td$jO=k%U7;LLD7=^A6%mpK^~VH9TdS}Igr|m zw-!)x>Yr4& zwUC8+E(tx_*;2kBn*f~eByjlxL&7kDcVrdO3`nT?C?0TWIS}gJPzb_yO0tkW9g!tu z5M_NRECC^aW3vC}@EbOv@v%W8)}XmGL4k8=ICk60oeUKthm%ZEF;Q86vI9 zv!#L(gBI+RNJv1~9{U0#d`znRWMsbJ$plCvuLJvvi^^{lGNr-uGMP*gMC=O-YQ|yLaj3GJ3WI z5~dYz2}mHR1iwu4ko*O8aM?5>D$((L7s-71D0~Y~bg`2I;-lgcF*&}bV*5w}LBC=L z6?s`o&+f>KB^^-cL=%(H$4C~TOv<%H5eYxA1MacOSFUA~pvQ7n8aS&P;dU%znkXMd zp$=*+5p`iJ8Je33I@+*zT(G^9L2#)XvWwkhRFGf`6B}9@_N5Fko(aLD=|<#3kVk<) zB8;aMZ78fYW%xBH<&w1kxr&^4OF4qLM5rRR>Js3^=|*bGGH@iIfTX~|o+-=9DG+|& z$7TzXhNwW|SveW|hR7Y@Go>O*U{siH>idd1_2iLBiJf0K%Z`TnI@5sLf&XI{0C{7G zFmnB{=2~viSE$V{4bkJiZvsS>TC(G(XmX)&8K}O2dNOfk8$L#a%_Ia9aCU(bRvcx6 zJi(Z7Gd2A9IKfz&9=g$6Sdw_LckiU7%9}8JS*g^dScb7ZgM=coYX|}0!eQGRF^NWt zB`tiH1;wI1PiSQ{83|)-%E<~6tf)OSF|=va67cA%mhvOB39t(V3zCe;1*tfnen$XFMg^t`oQASUxL0i3x4Rt4 zg|7Ed$LT`$k!i#pISQ3AMVtacqQJCcBj!Sgu(3h21+@AQJ6bYwB%ZEgcU&=0LKz#e z(tvphb0z^M-7S=&t+$m|Wl*+|yl#wD3YGxLox}uy z5I`zgW})4}RnH>ygQFoBq`4WDB*ob`CFtUkB*>N2=Wh&IuRc-;4>xGJV%Xec$Oi4PlFZ@HTDP4j8VZB%?4Jn}XQTZ>P1>C}AxP z6_TG(N<*Yk@8BX#r<+nJPEaIPZwaq30VH>+k|6SQBJ&F2sp3=(^6N+? zs&KAt1&JA25rM-ao@5tLC5xH?>{v_i{AigoJs5<-Q4kaxU^sb%?XURE6oeER2Kbp0 z)F>#3h#27)$O7}OhzPQ&nrKOaOTF79h%Cu5Rqv2`SumXXz>WyQ4#*TL0pTHFql5$Hs9%7Z0T*r)Pcw4kg$)_Hf$D46sHOS| zh6iZ`32_=qJ7k}82RB|x!1?AgiZDvSW}D9kW?&(q9S|1-EMjN+Wg@s$5>o9N-JRrB zI?eP{4KglXfb0!6%WRMr?1nuB6uB6=wTsIhpc@EKB=igdtz|=LE9ySsfFZM}q0q^V zPs${K;~5Q0z&Dv`NilZ#5uXG&c!@$)k*7Ud;JMTKH)L>S z)kQKkFllN4pZ|vVxItku1BFQ%j_e_;0}+J}Z|gXRh>bwhzal{sZEi_5#1)T8pt*WL zMz$1a=ArXU{cJ@m-VwvbkAhm|f@lmCCiDmrEHeI8QF)5WKSjre2_i?N8@ZQ(ozT)Z zZ+B-o@KLH#B&0)INjf*(JKxlQ(6)~QzI2KBy>0ym zZCBgg@>QqsV>*3aF(dUKwCz7=Tl$!5|3TaSgSI%^i%mJ|!uB7u?R9v#|DbLELEHFP zQvX5Qf@9#l{nY-0wne9W`w!aoAGH0F)6l&or~jaBA4h!q58C!0wCz7=+keou|Df#` z&-V5ov@JYB+<(xv|DbLELEFL;;Jw|;{)4u~r+f>~1127M?fFDa!ok=6gSG`nd;1UC z(lg2V!xa4oZTk<}(l5p&oFDB!Xxse}q=bd)KWN*3(6;}eZLiOU^&hk?b=0^2pl$y_ zTYSflUR_dfUa0?|ZT~@A`kBoBgSPP(1p5!#_8hdGOTx+ghQaP;+|6=TR#gQKg4 zR%m2)ee}%Gio?mRlcO;;6|L=$HVznYLDgx?{nMwe^Vh6iw_$tNXBjkAudp3|#nk2N z*KhRKZ|{0P6RoVNkjMpX(N#4SBgnVfqC0CUGMQE5(YJ1uZ?Bu`ZCtZrxodCm^DhPC zqxWknCe}6Ji|Q9tdG@+fr!HSevAF2c%9!Bu%8tC`G81& zPG#?2M}KZy)^PUriCq(>;Csi1bxp)ST?01(a92D1^$z;mB>LM?)%Y=){x%IrbWNeZ zJwtz+N`IRJl)5_TZ+~yVk52mA<3O!Tq`!>&upxuPxhHc3-6$Ig5O6@d9_EX@{0!IgxD|k*?UbV_TN)x{8~% zeOpyL-P9vZ(UnafR(?BBSNH!0`Xl~5^mAM14$L*}=F*j43GLcHO)|?RzBp^f}F&S3Uad zHA~lwnpeK^-v5G}az1}w3p$9kGZk3&Z|T5}WvFBBPWkT;{QnK~mlf#se+B>lQ}k<; zahXp1a~DkCFL{e#2wT@e`{zEK{uQ}1S9j2|T)6l4j1qcwr0b!dbqzzcBU_8yFftTH z%?7q&Te;cZPfHGBi~Es*x$*l>A@}AM?E5~sJNNbt=jGm-u`u`4vd43M_n(>E3=ANJVN%B`1aW7?Cr%@+2am}uD{}(sa9WRdP zaP|iBdx7kya~9@i?w87KzuotkqG8JJsn(G9sJhfPU- zBDy#+wcJOCJ&=5>81v8B(7D9QU9UHh0lC@7_0K)8tF*414LzAUWY=8XTr2nR#V-;? z^eMYJ$!{^k`0`EfteQy3RJ4v}8!E}*REmi9+|jFVA+ymuIaMcH1Z+A6GcKW{=%8}8 zwJkB2?pn^<2e8e96GL;$uRMed$?cariTsZWP_aF8#WaUK2xH3y7oXL;$PGZ8rBy%$!&- z@z&0X--;)GT`c|YOe6mieb+B{Qdz#DugY_$U49!#qt1($zI)spT``ihpm}oY2eL&j z{quO~e~uA(y=dulMvTZVS2clj>O9GV1Cx>m`{%X?SYgek=dQ|8(k}Y>5>F8QVu=SQ zB~kZJ7A6xA@i&ZF^;4%I6EeGnuP9U!&`jjPxf4huX<%x;n|uPLh4-v4l%9eOqEi z-ozrU+)Fp!Preij+hUG=z|3v*UOIF$h&_|*ON{6-CaZIJ1M3%CX~9ZsXl$?jh&a6H)`JK zd1Gd7Ae+iJUPkCA1+V{-zrGbnTub*T9)Ewl#$z@$(Y_T-Z6`mVH5GD&mATc+gz%;B zX-?8nqPKr;+wED}CPs)w)>X(wR#tQ_k^yN70?r#G|>RUOj_uAi1GxOYW0b ze?*_d+BvbGt>{MVd34iVe|Uz_Hvz19Z~87rRN?>n?Dd23i!IzY(U9}rSW7?WJ)_ul zr;v)==r`x{A(y}T6dyACL}H}cIWo_JfSf@^Fcwj60Vn0!{@6%{=2owgLfBF%SVS8u z*~WGT%5un-pz&365WD7!zv|zFp?`G7eWe9f^ou zlQPBxIbE7fbV!)H_1h^W#tB9c6_HpC~#q8Neg`?P~N|J4QRe__(nr7r9DRg`- zG7JTAmxW)h9%!Lrx!F)eU8M#IM?sIT5^Dbi$MP7Mba;uQs-%|yNP*zgD&ZhfpYSo@ z@|I!bYIAwP zMmE@%wLK?Nf~@O$QC3$1Uoi#WLa*mR(!rmf+punOD$7wkr&_S>>}tt2z~k7FdAZfM zjb@khC+U>Jhjnl+ALDgTbrI*Dk0~^jkN$17Pg9pbP991JZ*jCep9}LBua+DNQlReNv%mjjXMl7-)`$-G2 zchE7K+XyCT+$ZCa|t@`R?{VEpg~WPc7~L+wK2smt?87s#c3y0vWn&h zAqq>jt9zQFMr!B;wqaXY70HA5({$MLAhxI<8AR`@5f)-O$MNjiui7UJ`mEf?|8pVbICgA1Pe$Np^dS~5PhI&SBp2Ft?Rr%*C3 zb$Q$_sI5GA+;d95vE4%gYLLQEHGh7cU7+uQ%wp)WaOp7k3eid=AKQMgpwR*ZXo? zUXN|Y{d`!=OH$5er%0C4UAt70vod$dR|9gJS4d(t?kYJsF}M1wn3K=(InXXRIa#y| zPQDzsb7GNtK6i$_eKF}TG6Vn-xO~@vOKdwHjS<=rS6`Q0C8tX~Pc6Wc#~5tUZe&uz z%sTAO-MICz9Bw_%`Cf}K8)Own6f)o>|HMJA%pLLVEVkArQ#!_v-L)Xb;FH02Jl0dE zG#%vnF3Nl)X5N)skGUOh#)!pcV*NrPz`h-Y7JbU# zpoXN@-q(lp>C-1ym)(zT&X8vEXGy)cckPtH#c33u14IOYwat zt4ohnVvrQUZv^sO1d|nIpzD_$nk=M{f64`9`jdea;06ERWXqGt4JjYnVN=HSmA+wg z-|m7)_F_{i$N{PTeDJis(sdoyS6b?ZxKX&SsIN4+nYdBt>*T&&`iiLq?MC#K#-t{O zzaz10E0aOTH8EOO7N8}}$$b*7aeR(VePzt?q(qAyKbVwLG>Vwxl^8829x2e;P=FSu z?un&)a+WTmRke~nsoG8!F3MsFR$+yy~qjm$Jg0W~prZ@QNlhgaD_M?#PA8<~0o zTXrN_M-S(HB3-ZQoM$*Y@NhDmEkBA>OL%+J6U7u=L(XE$4<}36%A-jYpHJk)XU7!X zQBHY&8PAIkC6}<-V`0vD;qvEoGAX{WjiThJpouLCN!YDxSZCM% z5!pj_HL;r`GKQL+U1cYb6Fc6z-~=+3?$g=zmlMdEjxK@5k)2)J=aFO4B^hvajJ#k# z(Q0oL44A|Qw39}PuUT!Cs(BpV42+{oehh+@E_I zIgf<0pUb@``US-g>@O*fp`wzq6KZdf=8CLh&+mc7tP~U1vqk-B%YA2%vIMzR&dw{f zPjQTY(LaC0kIB0U@+;mETho{0o^zKW|0PfJp2?|qWg};}MsMifWljM^m{Xu6>{XEf zd=jJdr9|nU1t_sA&LLxoombBz4q@M(OEme9X@vG0AoH@XIMlua*pugz4AlV(DOR#lyvH`q zK*%v`21&AOFD64t4O={e=(z*;s-eKWr;}Wyp)5BW27_r^O)T8`&N^HuS22k z0O@Ay_)u_&yIHcK3&T4Hba~o8L3CK#*?&BVu}Imv$bR~{U9dtL^&^z6GYCC$2c;R$(<74 z^#i0&ZjABeKDo9?q71ffFVtX$4wQjR%fQYhS@10lBSC}zI_MfpMH=`ZJ@&jNtJsdZk_WoIlrFj7|RuENRp3by;JBMS(9B3|%PzKBN$<=^=S zd6&?a;{~4|x7K|@TteTA7ksH`Em-g)T?+<;QaD`|<1}cnTyy`ye9dDL?Mnx-^viS= z>;DZ|-*O?AymU?bO8jb{G`Kq*#toKq7(G}<+nAwCbaz6Do09C+f01c*MOt=bIp0lS zGrlF`sXti8O~(UVLEN-Hng7+dM5DRy{+6VR2lMceZJ3s*OmZ?DKR9m@dI+J*2E*|; zvD+veL(k`f6g06^g5Jk}3+H*4d_nF(6al#hJEqu2VGs19jr1-c!gsoEA1qbi*1^(q zPA{hy&?iNwRDs9E0HFdK21^ydSfK*P;~l=qRRrf@>_FZ{4`9FUN1N#9F`Un0INJp$ z%zSwT%~aC<^`hMMB*(h89_dXz+x9iK$#N-K zM>bMDLC#@QE{4+{DI29tJ4T{MXVgoAVD>J&_C$?^@3U5lH$XC8KrbSZmdgJ%O>ZLf z{(2G1-7*w=I-BbSOYg5|Rju^Nj;@bdsYze#>^gK9{Rz4xx2+gN?Qr@Y{XkAt*G5(P zi5Oq?L46$iO<|LV(<$uXHd@^=PJk?H5FkIOXZwtxN25#5>%{X4Q(A=jWVZ1uX-d;s z5PEEbB=o2TN$9o)DMzD6(Rb){(JAFTXncbp8}gH_*TA+cx~!S*M3iQvq$our zAxcYPP>W+w3mWoJ>K|9qOB#d}&EZ)8yrD~qF2q0_x~M(9p_>#f;9v)eqZjm~1}Q}Q z$1Cm-BC)o|V}M&?fDenc$sjQQk1W*^^z8;INmudr-)zYLcoMxUQMqI^dx%c5NR0K z59wwYzf7?o97M0B4*(KU^luKL&Ga#ju7V~ua~7S{(RITtbiLHs_313S2OlD=;@2FB z^+TjpEP_C=k@l;(d9kLobBLto{eYmFE-v8hO7E=5L2c zVg4tl+yM6WC6H8r5{9t|R8@ua#FHDPSK7U?$SXZ~DDCc*{KoEH>Ci^$mF6@`uY?)8 z3=g1k|6f}KwLi)V^k>Bu2!tJQ1f5>&tJWt4OU^$6Mr2K+U`g$2AW`6}8uDKqK{pb5 zLnD_O8GAKWfWWI8Ws3jxQFJMx8yW@2a&uw6?&m`lH08gUOB1|L@})U`jSB}^&6-Ej z8SLScXcPIPB=z$sX}lpw?a)6o=H27yGD5!SV#7bW*s!%xn&LlzBG@3uY%h#Pk){au z2^HL)%w&(81ZIzFlFV*vlFV*x;_NW<4L+?+(dkV>i7bxd)TS<@vL{A!qcWzcn^9?H z*SFBvsHB^uQBmUMbr_WgPlCZbBZhif4E2;I;hFfZ$Ss$iOetN{Bu&Z^@pe=Gy#@4V zl>VYg8j)pj>&C_OAB4T!4>c}cqE22U+Bp(By;!11&uo&Sc}f9p3!8*@O3s(#-=0P% z6%*;Q3Lyh?PNVzKkAN*d_VGSeTOb2hSLEL~jh;v7S4~|)a4nzm{U)hpMK9b`Ax%?V zv!Lp2@lau!hRU`(z?L0_e6vouXkGoPQECf+1YzHE%g39~d)zPm}b<-a+TUf7Qw z)7)j2^6_YK@@2jp{bk%HY*G=T1ZOVh5{JEWG4yz4vy_k(%~C?nYnJBVmR0mp`U}x1 zo!bp!fUpM_H%p?Q$F3hu6$*L?Q&0q^s#2PQ=bD8nKsHm0n7k`Kz30**OYmuPcT4bY zv$O<%YL=GZ+2#UE0HDGW6anqe&R9c_D`xlA73{BT=)T3dVFR187RS_vv(?k+=u1DS zs2$qUO#~Y9Z?C0?Qlg0gZ1d5iCe>I82^iWU&A_>r(_a%hrG-tslFlXjieb6U=?dQT z!j*I*ehUk6%~fXIS&l#E;lZSI{|Z|JFnme^Hq8W(g)g?iy+n za!LUL=@A7V$SYzH#obhMRIm!i{$Kz7Qxy4hu6`k2)$MGO4j~DjNq(=O_@54 z)>DiX;V%{{SX%@~!=a74aD?d97{p64h!3&=vXOI-Rzq#p19tzIqO7)4X<- z-+DLo%E@#-Ky16E&fybGP3PIYv^oj@&pTw*;j*~rg9qs0<-D54d&GX&ZL)`>q|rSA zg&%Dlla>~^HC=#envsL3*yM~i7MI5Oiuk37at~Ar!}GUC>5=4W{-RoUMY@~NZK-5a z=Mby7`AHmi!m&ECN#ZDWUZ3TFu1GU(Vo(|p$cv8WYeg`hjbT1r024Fx1hX}U`L%$_-kwVaW6QfE z|IZ)yMlsCv(C+K38!Bzu90SAK zJuS|Nft?!z`)L8N>;6;>?6x9cSH-|CkAdOsPP0OH!ooeO@}Is#387C8l@44VG@FY2lqmW>WFQ)_Y=X^->gtoQ{ z2Xxrq=tMe(k5tgae)TuHM0Pc?{XYhf-8;JSw|z_}@Ylqel5^yQ*I!HbtSds`h*+Pm z+6G_a14*7#9N#K^%`vSIOwyJ=b~_zT=vksy`kEh!5h9ETTcu88u+ZrQUgEWuB0xS) z@bQ55>TL*U?}!2276ZDuReGEUKBF%u=~J!3I%v8h{V zMtYPF;^88M{j&s>s+QonK2e}??OW90#jiX1C0Yo+%y|*+|2xo%*S@|PCghDR?w>f1 zAWeD^XQ25J_WI$xUr1Zoa4BsVDx?iFa%tl;KfIOx7$-h9@=tK!GRQQx{Uth%%0lWT z?9@St+qyZ86Nh&-~7Cgj^!eZP7L<&;388|u0ErtMecns(e35d*Qb$_5^*@n+( zb^f}MiMfPjM#J)~3TTr3WLzT6?g;1vwrF%>AWPp&2eaz&iN5Ui(TNH2pU3fketioa z!mb{l=r7wQj^RVbBmVq&ynJmCE1!_4m2HoV>1aEWw|!kphq9J0Xe!@2_J0KW7})MDnEg@%Ro=c2G&{*jRF+p6__&X4f07Jh&)9afkaJVWX z|NHMlrGE!1@_-F!{#cvz6{|QAH@C4dMq+Qa!bmi-1qO~A{9h&wb61dN_Iop7{Wro? z$C5PteVcHCL$8$U7RICVgWMx#fJOiP%!$9J{hxteaIWAT$OI1sZjNOFDyNZ$ghnRX zZ;S076sk)VuWgf|zy+}?@=&0*$P#X3?lwA!?Y4WOiMEW87PoPPw7B&nq|f|z_rywS ziB4&74KY9%+{_4Ra4{AJx4v@iMSXF?6aVGh0|#^8!p(0n&|h<)W7#FOWEydq`c9mP z9Xp~kXOJ6|*fOTp)k=C43T-VuG&K1Gez1MGJncnmsc$aX-CrM3-BA zDkhK!%!|hVXEod92Zt1I!AF5lfm``~b^hBQBo>y@-;Ll| z!ddin4kS(xnr9^T;T_QoL|q*Nwtas<{+|63H;{Nl16zDR;&7aXo|;UI79WnWuMS8| z;=Lk@dYNPXD3*;7sI>^2H>(RjXFp>2k4c~0x>@6yad~+|+ER4`$Mmx}?u~;Zq37uu zJ_6MpCv+U!bn>egB^Q;oIEtlcit9#!W8mn%hmWj7+s#Ib;|CfB)u*l_X?$6t>9(zB zL(esoAi$FuX<1wMEXy=4_QDtC1K6=ICkN#fQuZhrQv$TpIxf>X-#w#s5;FQR$!RTK zk618uUAa0+o1iRRiuVB54LLrpuNl4@;Z%&TXALtnt*mDSc7Aqaa$#9Ih-_bpR6SHx zBXCU@H(`Wc)-toYku?J?zg;hTm}Gp#acw6IR8x%%Oyv0>k&Vw}aZiTgnjyom!THR& z<+qS@3AjwXD4}G`5^&ks7{!kMQF3%zF;y>gT}}7-XYP97X-?p0ecSRuW*jS@`qQ!j z`OM11(PbG$Q&mUNecQ3XrO-yVYWX-3q?opEDq()znA9UAZF+82HEeu59~xTV;F}*? zcde|FwG=1o#f#Z?d*Wu2DFNIUt4WuD%clOMTwxn7N~99nM2)SgNj0gEwF#Pe;u72f z(kl4n!&&1jw-NFWkTuP8vFdErHhtYTLoEpNtM5uIC`;>x5?Z>VyID6d{6KZIKs6wg zN~q{r%@rb+Uvz)@g=ASNrg7<-G3&_VW*#(suLF)NA-hKR(MAaxwjMK%y?b?PP`bpj zIBD8g#w#mNd!g>>foTSoso=DhYiqcX#j=9{UtefOP{`-VaD%MxXr`i?h7-=!NGfd6!^wW^{i~9hv}tkW(@a0IJwta*Cs1`WbUZ84ZD=E#dJLd% zJEv@JS&JKJkY!5^%+T=g%~KRAIPD%OMr1=}g^0=(MKG%PralNl6XqszTzqunt1vv8 zX2ZC$)t@E?tMA8amKJr`>X4^L$Uv-?wuv{}zZOaQBOUx==;uNd= zF_P{XiGaO%PjXgC_(F8gx;I&qF|(1UhN@=yN&uq*R81R;RNNqPLe0@)tC|fp_`C>i z#rI)VO-IjWeK#~C#dkv8WV6pt4!mz&Vm-WDWN29|315Zzh6*u-YHO|=I4(ZQ$y!nk zq{x;4Ek(8zWc4&DvNcRuQl@0^39Av>s-BGk&rp5ORiJ9PqY50-OdNQP*AqBd4d1Hi zs**JfsE+4ourL}Jtc8}UNH3u@mETF4BSR0N!rb-Pf#*h==|O#AA@!^i$%X&8>^4#o zvRqCnz+D=6$&<-J?8=%{U4>?39nG4cvWK2b)~6vRVHTgv;Oj}>fB^)?PUL1igf32$ z^(29%yDxQjOulXpxPfIobIj|mQYGZINL_ueNAl@Vzzo~#>9T>D63c=CYfX+xBgFAS zANTi!j-dv&t42x~x}M@7LPH4FA+45bhrX{tP94K`OgD-wJwONp84uhz29WCK_?{Jp zrs_NRN*xi84Qg7J;adR@eJo+93L?^sUjhT+3)9&W2y}3{dQ3Ne2qW*PZs41NZ@8-I zA>xVn9V^f%CCYDUPc14-TL=std|MBtRbhn`59ptRBHeSuVJ0OV420mY2#^R=G7f0&xJMFH;W!g{wXs z8%&`IsZmumgwA#F2$76}XdUcv5Td|c+O}ycS)52W9mDm7-HY8i;vJQL=7(qxx|l_B z;TVvCD1ZkIVq*%ozMhnXEp@OI=<&wDuDdpt5MQhNXtQTZW;@+s zsfBI1DH#W)I_|B)eN~zp+6c{c1-XKQ_&YFM&4`>J4hJ0FfG>gK21t*r01neffQ~%T zf?TRuX>Nr=W{^SIimvJyjvx+F0XOTxqbQ+o;RYflj!8?vwb;>3shR0ga69#oUH4V8 zG93g)7J;v8MX(!i-FBpyFbyF-mQZa^DfIBBsv*jA3{MG>6sz#mSu^x}#Lh0fL?G2L zt=S=NPz((d(hJoNJopy_c1rcUY#17H-BNT*zz(G7mH;c&aMrKNs?u6$AR5I&6xb2V z&cbPd2d)SA79q^YBXnF?mO(7zs>tQx-CaX9buX|YTs{^cnM9Box-z{@`yQOC8Mpzy ztTli;4323Bh+LciCK##5^++-0I!eG*r8VgpEZZ^@p*7D3*`(R2;o}vjAP+P(gh;xM z=pHW5uwhZKQVki92u6{Si##w>>V}cn_w~%6qNJ{rY zfkZzFbjONZJq*A#pZmEN_DC)+OKbRe9oJ1Fdh}s)aRm~LBVtbYFeFxy8<$;74@zt+ z=rBA3HB?tc9-?M7GemLCayndG&k!|LDxBRjOleBFcgti$R98Y=nV?6m5g=n#OeC)! z>MKw=82vbSc68J~LnxMsI5>3Rt+D}%iw49FX2F-K``gEt-$7cCGZ{7#Rg@V~lyi`7 zgdXZ~KB_CKXUa@O>RBn+(z}%c-C;ax@Uc&MbqlW;DX<7mmRm6up2&!NREKyFi8xbK zA~FH2q>2(QE;NGnARN`-#2eAtk`F#Wy9@l2CauEX#GQb%H%XR|`}OS*9qWM<|;kR6qi4S^<(H4N0f!##M&p zzevn2D|L%be&|EEAaGgFOe)fwQli;iCrc15>hy5wQmaD9Ed$CH3!$@uFe)%@6@Fdw zP#9DYy`bcUA~llGhj3_-oY`NRxdk$RLt|Kk3VIg4$Ly-vi zQG~mzU4Atg0tO9R8X^KK^m09eH$0(q8I;a@ge_{F!oy`yd@vCeqZEkx9p@s3?vZ+YIru>bz!J3GCUOJUE4Gf+MqzuvCjb4=mb#&4Mv$rK`8>|?Jyfb zmyxwrBT|`JY4-9nLq{~4cEUu0%VtlrF|vDR*b?$~xhF5)ltr!YLGSg|c z5dOjaAuzNeY|A+|oGJS~Gj(Ng_vU^$wG3Lc6jDq>vUffYcZ)$gzm5KB+T8c+&C)PT|s zveVEHu)l#&-^#}JA+1@satq-ZHbGDiRFRQJaAv;c;8}BJIV(=oN&yz3V!8y_Eqx1P$2S%`~!y1^-rvNAka&uqyS6*)>t zVR!8-K`^UBpIUle58HBPYHZpzb)WB5LDo^bKp{)f4b_3ogg#li))A4wY-0xjdjWi_ z+{ASZa81~gHJr#tol=q7l=eL20tiujM4Q;9<^^BWsZG8KirSy79Ta-562N6eBm>Rp z5qN=K>9|tM4Bfy*>SB1< z9#;@D*j5bq1{Ze!QM?Oq!xL(x4xFH7qV8^Y+fyz97~bZnGPR{=xH9g&B$29au~0on zP>zEKpe4A2+!EA;ror5y7`)}r<#FQNg7w*cHbNx#YsDLroFLoFO(fe|P;t5L8YkS=kLmMlj}A6ANA-L?a4aCgjU8W?b<{<&h{Gb3=|Y>= zond&8tzcg+YhyPHXDIU6p}h{f-AEEl9W_XY7ouGYsf2FgvP#@arrOyo46@i1?-?vM zy2Pe<36LTvnb>U;0Q=h5JcC#v3Nkc^m4>V&%WLR}P5k`o`?=jjw#N5-d_=Gaov?TW z$M6EG2hBv_EDMzzSn>|iY-0OE4NwHcbl7W0e5^n{QMwBiTW4o~kQ^xeLAqzamXOqv zfJNz?YaME-s%B=92_oKwEyT@k;1c|Rmkr>v;(b85O{L;Q4YJZ8>$tw5XK^$|LkN!p z6ey`{s@+k9#D1QRomOl^x)I8eU=dPpFVL~6q2O>vVOggH@OU@81l+g^iG6@+hE==| zfC9BS!7Pj;P0vDDj9?b0EKo?(!7^9{UL=9B4>JJr6jgU zS9>O7=bm^=&kJIUA4!d3-)&8q18|?b_^;#mWAE{?-s5Av$H&6%YS(*wY$xZ|dXJCw z9v?$q(R+N1pHA#OKGySLB$>_h9v|D;xwVc14gFZ}@v*{FalOaKdXJCw9v?$Nyn9gE zdwgui$JTm}kCiya)q8wQ9-ZzzKGu7DZ0E<e6q27^x1oS zY$r$8x;Ei^kB{{pA1glN*IkKvkB@afvetWitoQg>{09JgkB{{pAN&5fwcg`ny~oG+ z!MNVzW4*`6dXJCcVx#}r<74~KwvpmC*gwbjll}Zpsqg)njo(+ZKm94SgyQdI9`WZC zNzl_r=8t|a^=^XhHW~I&CC7 z_ruiC(Z}E~B(1DI{lxHx<4*|}Ej(q(n)ZwF_c~VAoQzMSPac2bsi&S6p1P*}yhiri zhbgtb1=q^2+;!n;OHMv9Jf*XDPz$U7D3zvtTAA}vs*!#%lpXd_YSfV1adqg*>cBna zr12-tcTeCG-N>6Vr?b985}8E%BO}-YAElb;q>=0om|)p{Bm4AO(f&)yf4+rdbSv7Q zuHZkTO8)aD{ISp#?bE~IxvopE+tP+6RfBeQ+1?iuNyXrSyt+j>HN9cLm__ z=Sh5q)8;iST{EivS9qScZ~L$DtG!|w0JlHDAMfQ)5Avt2Dg1bdKRpXn+8^dmCjy=J zNB9%}Q(f(w`4j)EY3*D16aOnU?T_*&{+CqRALCE_?})TN&Y$?-RA_&KKk@sj+keBK r_@(FVPmToE?fkmo_NRCwztpzX Rg{iSwnyHET=1GiR+yGu+5#9g* delta 62 zcmca3c}H?XBBNoNWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>egHdjt5W`r}P8K>_L fW8|FdI=u$0(ui^Lml-;Ymd%PYw=2$MOtu67D_k&5 delta 143 zcmZo!%HFb+eZxLZ!!*l+RC5z^%QOp9lQd%k3kypNb93XwM1w>#i)0H! zgCt{9<1`}!V}s4_IX|^AT5MLFX~;Oaelo{o=}ATi?omdI$%->gHdjt5W`r}P8K>_L fW8|FdI=u$0(ui^Lml-;Y7R`z?w=2$MOtu67HgYgo diff --git a/master/.doctrees/tutorials/datalab/text.doctree b/master/.doctrees/tutorials/datalab/text.doctree index 697bbba89d8778248a3d2f820b17d11c28c31654..54bf0e7dd57e141439a81c83a8161cb2609ea821 100644 GIT binary patch delta 540 zcmZqN%GtP;bHff!LsJ8j;=-KV9DVad;}k;^gEaF*Gjjt|3!}8;G;@^`|PMPYJKip=C2 zDQ<)nMWmgZJU3lpvPg!+IG0&9XD%87C+7JVxbm zY(CqU!3Y)mIjNcv?3G&+|GD*&~@*irxh delta 530 zcmZqN%GtP;bHff!!!*l+RC5z^%QOp9lQd%k3kypNb93XwM1w>#i)0H! zgCt{9<1`}!V}s2vIk!em=1q~C9Gc=j`A)Lo^OrDyeK3O|OYx16C$;mfT z+z6_PNIN&VCS79s!Zt?9$pM+llOxlWCDKz%N;31(W8#Yo5{pt};*%4LQq*-6)Tdtz zVw9fzF_u_tdk=>d2^Q1p_NQ<9SMw+Ri|HtbN?HInI@AbT=_fM@2nLHk7M$ob9)&r rHaDDK4m2J}`7=%zNN41n+;FJ|uJGSv{VO^UUh{-2+b3LM{MZTr#8cYV diff --git a/master/.doctrees/tutorials/dataset_health.doctree b/master/.doctrees/tutorials/dataset_health.doctree index f163055979c0d7e68ac66e6314a14883d9377c7b..35a172db5205cf18bdebefd5655e01d1234a3daf 100644 GIT binary patch delta 80 zcmdn_N_gih;SGB@4NVP9iVJgcbM(yMaP11}FEG#T7%*~Ax6Acp0ERrn@ h4U&vajnj+_j18LKa<;$aWCUU+AZFhFmXpQjH2_=08yElp diff --git a/master/.doctrees/tutorials/faq.doctree b/master/.doctrees/tutorials/faq.doctree index f87d47c0b218f4c605107174c3f25923f3782eb4..5c29eb6cc1ec16d3eeaffbb90c90b307748c49f9 100644 GIT binary patch delta 4001 zcmeHKJ&0UY6z08Ig27b-t}%r$FN+pJ$ljlG?zz`a(LzW_ERBSCe~Fl=A-Y`{g^L$f$m=9Q6!L}yT2*2p@Wxt*maJ12wJ8X+cJHyHH|`x=z1roh z9eRt=83QRBE0nhxigyOlioEvmmmgG%Zis8YJ=6)Q$qFx=u^O~e)>|!%u~J&6rHa#A zRg1*6CqCR-AGX$;OW%yh(coWi?>D=zerkG`+V#n0&mU|Jht9Wcv-aoL2l}5&`@-D& zs}D}yYWmmSY@gb_$*pEMaj{($9i%7?L?d!6V56}qTC`4Bm6CVX4f1aL)y0pL(FBF5)oh)$gRf! zd;(A;UqC`GvuW)i)+yi;R9c{pP=Kt|fKJFVd1jN$M#iVUVrCT}GiFsB%%H^}mSFRlEmZS1fkxDw12!e_y7iFR(4fh*8>=3P4cLw>;&Gw__{mR_rGJoyM zr(ZpH^3;njoj6z1?|gNwb<1au_3eStlj91lo*VM?Gt&+@BpJx___#X)c|mzBn506( z(@r}b7?*5h3=se(@+*@)CbMP_dpj{)FYdNWbH0=YiB#%97#GI|O0T2hq`p&{Q_##s@#LU5I$2Ef3 zxV{7xSe#RU{T}U(6+4hM8L6ZISs0%qtAuZmG)IB?hbe0)`cF1nRRytY$>;hnj*O0W zp>R-eg2)sIibAVPOrdyf9nXaPM6Pcyj9qe0@TD~ph{*BcD43H#&m;lt+sOf}`Gq4-hE_G?TeH z6L%$9$+!OYXYJB3^JHagdp%jv?z|@}eZvQytgxDTvR{05ME#jx+gGY-HJSB(V(usA jeqzr5;+uEpeq#PtWbY^Deqzr5ZTw#*=D>;h`y+n?9y63% delta 4007 zcmeHJJ&Rpc6y@GG3BrMuR$C2x_H; zAX8jYh=L)7Fff|pPL)ouvPk6zNCrU=9AYyPj79dF`^Go}dVhegdhgwLKGxcMt+ns= z*4*~i-1@ZxviLV+xOjn-wE)F%*Z%c}iLdDAI-OQ50kOBgSId%}?q> z-L1LNchw+-_VzdRsbK`08})K~rrA;}g38(0hNo$q^ zcbv-*SUD7ICc>md3O%Rwzv`Lx)4TP<-I+t9D^(K^vy0$jAp-Q;6PV~&IUpj}1b23I zyz7f<5J>y+M$Ii4!okc$yS`mhqhxT}Y8|A?K*5vCvP7>HSsOH(ZgXMu#>}F&(Zwji zqXv?Nz&oRa0;dH#BK-?7izX=2rN{&UBq2t0AixS?gzL*OAvT1gJ@I2L2VpR;vmhCf z6~~=<_3h=i&MjTKbgWs5C8~%bX3uJ)ag9-Hh7x4NB#WIiaLBlQD-PbMKddefwQY&7 zeg4dg=TDt}_PLYi2h{8Ltsbb{(z#=8Jv(}Aae!9K1$px5P6e2FP&$VcSX!u9$mp#Y zN0`Wvgq&0$QYc=BsH`l&vIwbw=P+|wXq7TZLpXYC4#C*5CK?V*bsX^@)(nKwBLTT$0Et2pI(S5-^a)~ hxxb+Xs>-2J3#wtVL*u{Zxy|i!n;EyyZDx9P9{@;*HL3sr delta 147 zcmZoa&f9*Rcf$cr!!*l+RC5z^%QOp9lQd%k3kypNb93XwM1w>#i)0H! zgCt{9<1`}!V}s2fIjss9EhhKZnru#}GG~M{Ss5o^tl7(GvAMr?IZzZx`7=(>-^a)~ hxxb+Xs>-2J3#wtVL*u{Zxy|i!n;EyyZDx9P9{^LfHMRf% diff --git a/master/.doctrees/tutorials/index.doctree b/master/.doctrees/tutorials/index.doctree index 1bb757a785c1a83204ac7926e557c469744c45d2..f4e890c65bdf7f136b26d4ce770dd9642eeabaaf 100644 GIT binary patch delta 62 zcmX>saadwQAfutFfk|;;PHv9Ad7^QOp@~77d7_!QfvJU2T5_7XNursBg-No7xrL>X Rg{iSwnyHET<|f92TmVlS5&!@I delta 62 zcmX>saadwQAfsWLWkGUMVP2xXsYR-}iMeH(g{euJv4Mq!rG>eI|jtzS_4NVP9iVJgcbM(yI|jtzS_4bvMaP11}FEG#T7%*~Ax6Acp0ERrn@ c4U&vajnj+_j18LKa<;$aWZeFilW8*_09}|C=Kufz diff --git a/master/.doctrees/tutorials/multilabel_classification.doctree b/master/.doctrees/tutorials/multilabel_classification.doctree index 9e2cf801a507183229de657aab96aea1a2d481a9..46783a7d16d25cca07e7b17456a8c8d3698fc135 100644 GIT binary patch delta 80 zcmaFyo%zLg<_(uPZA}eKiVJgcbM(yMaP11}FEG#T7%*~Ax6Acp0ERrn@ k4U&vajnj+_j1BZt@{^18i}Op1l2a!aGHY$NMaP11}FEG#T7%*~Ax6Acp0ERrn@ c4U&vajnj+_j18JUa<+fuWZeFdlWCD80Ascn0{{R3 diff --git a/master/.doctrees/tutorials/outliers.doctree b/master/.doctrees/tutorials/outliers.doctree index c80002f01ddf0500405af9cd3a3a5bd6189ba2d2..1463054f72e3420cd2a14b2ba6fbd3887fbec777 100644 GIT binary patch delta 2172 zcmeHGO-q$Q7-b*?Ng~K}7cZA+ljt)u&wQCdpNqm<5k-iI%sev_!7U2i1ew$>S`^&H z#f6Is7lDZ6;!@P6KT<)PXyY%aMomaE-entM7Q;Mem~-Zwv$)c;xYDz_+RGK-%)Qp_ z)`;;ka)fNWHlVD?lnr`qEs{0X39F>e3eDP=-gh?!`LWjQ34l?6p~`8A=%g4Hvi-(S z{Bza_UkCWu-26~r?+xi^sK~wM#EY7b?wVv>AL|hmvduKgrgBDFnj#5xkc@F5x+96MSpn#bmkwxUu zr|ip?1PW3P_y*;{&Z&#+K==7ow!kVvXC%g;Km#J?;6#dAl0zRM5_QXk53HWUk-H44 z+Sj+04Oa$=$@{D4zi3g7)35zAx!~*9^VF*#WP3#U) zyr?L#ca$}vG9?8zCR7v+2+RV0i>l?YDXRAMZBc!l*Z0}+VJUd?%*f1CV{UG!YLs{Z z3aNq&x>Pj=!3$^LF>$?d_NUIeN^D^JI}herUw8E(n`85J<~0g|3s)wlo0rd>AD^y^ r^G{>P3^c27QHpAY{6dT?yZ delta 2170 zcmeHI&r4Q86lEX+Ng~K}SC5Zqljxn9J2Q98z@ZbG&YmMEP=?9G1573ngVg~Qpqep!p7I0_qPY|)Xe-DfDwSfLK+QRYc*t5=dGLg zXRYPG_2cN@m+sDYey$Xq(J<4uSGn^cyxY6*G>-3C*!Uh_j~2pvr9j3=9#JYFXGxRw z)}qiU^3LkZCyh-TS6_`R6@dVa5W<6wXq@*v#OP!2RIc1%M+!;SfIuIDt0#NzgCea|Oi_4SAO2uh0O=gP zM2ImUqP2+-f|kmL#B2L(^$wI{SJ>g|#SON^ihA8%Q|%{ZC5D)ttlyW8P$mIJU{zoE z$eJ-6pJUKGeTUgl0bqjef=nKzOjO&KC`GV#f!wu?4o+BwniqaQXVgbo<)H yOXJf`cHZ6Hw8PfaV7YmV^%so{>;0@YM`J&t`w`ubXv2^5A0s+hoqf!{9QzG4E??gO diff --git a/master/.doctrees/tutorials/pred_probs_cross_val.doctree b/master/.doctrees/tutorials/pred_probs_cross_val.doctree index 6485d4ffc298547e6fd3a7266835022882676dbc..0706e13d57146197761b64149171aea6639c1d8c 100644 GIT binary patch delta 64 zcmbQ&&N#1~af213p{apMabZqwj=p)Kaf+ddL7I7@nYn?fg;82^nz>1$nT3T(vW2;Y TrICfHv00j_iTUPiMq?)cZwwL= delta 64 zcmbQ&&N#1~af213VVY$@a#CSlqQ0p`s=0}|WtxSlNt&^Ng@vVsxw&y-qCujWMY4sV TL6Whlahj2VvBBnSMq?)cb)6C< diff --git a/master/.doctrees/tutorials/regression.doctree b/master/.doctrees/tutorials/regression.doctree index a307056b427ca6ccf7eaa76e50ba2d99a8a134ff..675bb6de5675f044d87f2e433b0762b4a4d5efb6 100644 GIT binary patch delta 68 zcmaEInC;17whdc24NVP9iVJgcbM(yMaP11}FEG#T7%*~Ax6Acp0ERrn@ Y4U&vajnj+_j18Kfa&CXh$@qUd04^XF%>V!Z diff --git a/master/.doctrees/tutorials/segmentation.doctree b/master/.doctrees/tutorials/segmentation.doctree index 99a3ef48526fb443d831e9ff72b1938500f21db2..69a698f7e33c0a9740137832b8ea6a3f88de76d9 100644 GIT binary patch delta 7617 zcmeHLOOIt$70%UCx&?gE54G!@I$fb5hN5fjz1Mz86k{}o1P~asF+gBH14;YnfH4d@ zL>Ukn*~V}jsWTjyh!d|NQJX(NU}AdG1BYeefW)!!yLHbksya~HA8;#K_a^u5d)8iS zec$@ls=b>p?cIFo&A*%!n)rn)m%o2`*9MgZQ?~`24usdO&hJ6P1S=i@bpNHKAI|VxpI|Dll z`vUBXurI;R&G$}je(f7u#VRj?7E+4LMXBh#%1$XRQ47c8W3O+%GBgg+cG^*j z-hA)GAZ_xs3Zb$ju2DK4YV|o~!=f;m@$uI;f7U!T#}j||;9w$$6oLrGShhMvZC!CC zdlHmf{sl^ljywm;r{NQ9N zMOmjfB7x5P5~9E}DVdUl_w%=Z)cs&%aM@Rjr05!m9f>HD<4|3!DtRM$KKpg|n;G(A zrLtNFa)LGTS4*`;7@K5e<@1QA-8CP6(%qOfJ&#)t^^Y_ikMCXT+!kUF+2Dq(0=t5Q z2OR?;{ZXTk^S3wpA8rf+w-3=L%lIogIOCnkrFbint0s=ue%_s(zxmz%joDx{0adxM zbHrL}FRKWMu4I*r6=jaIf1M2t$9BB_Tt{uk2x519?auyzap&3Yz9GtJjjhRQ!%S8> zn<)91UGXYXHd9fQ(UvI0Aa!L~WDp|hY+VWfTlM-Np5M>5C}+nx6@?)jaW@7j z+%mEzt>2&Zr{?dT>tCC_+$z*Iygu~U_nvv=JKy})!_Tw;di1nvWNrKDo$)`v?9L3W zuofu2`@(((IHh1Y`J!XtAbfDFaxCOnBx!4%Y8x^+2Y?2jE0m^LKK|mJ?({^rmft1aT5k90Hn8_>Syz#5V04{G9+0yo`Vf^3 zWs0FnPthhVYn2S0z?Y?_| zw$*Sv{{6X53{AHywmmyoO3D%Hkh4TQGO`k0QzX(xsKOH*L$(^XaIrw?D!QV8>Y!-a zkVEe0S03%JgJMWX)o7s(-Gv|=0nJ6TsY&{(R}^cxTvDvzQ7r1PJAz_ozAfpV%P&4a z^cA9=r+zGn?DADyWOs;p-a5<0Ksmf&P1X}?K?pJxG_{hZnl<$geecwG{U6;O^PA`T ztFxCIg_B1abv$14EvIE8r7QkzHG&)8z0_S;(hsVRrW!3l;W(xk1wO!gGSD+%a7u&W zw15%CY!auCP;wyMBos8Vk$QgRt?sw8K4BuVT5%2w;z4_Kk;W)d$z%n!+d!LIs$I+P z_{V$tCx({W@%+90S9@G7X+`MY1RgHbj(tRvQ0OO8j(>V}LHb9#CpU(obuQLLr7JO* z=%vC9RZtQ_;#nPH;2^W8$qT2YAqJ71@aQ5%R0X+AjZ*@oeY2warW73TdLAd zX^;?|Vi{q7{4_ZJvvy~W(63Roqx4J11J)ir-Adq!enTs?efhh4DSsXflJ_OUvdh%VNx@dMf6fae?1qUoOU5%K(LX$^t>83NjPJj(K%rNBIzT>R}2)8 z$zm<$i}BF7$;UeuOZ{s(Ug}@a9-ScL<|VNZA}CdqQSe_`TN{(8Atubtn9r~`RB4U0B|AKnC-${GFTvV$ybsntJkeuC;gSr2 z-AOQ0qI)7?UQcYO}!m|dZT;1xo=INU2l5pO%E&Pl6~tz>|?NpVJBeQu#>P;u+y-Q z!#)9fWVV0&%x6A3R42TaIfPmzlaHYY8+vwuE&=G|ih zvt-RCS{s?!nV_Z26qHewJlVRuv2|*O8{axVSSh?Kk|GmvU>jpd9IY0lN|0JCFKeD! zyxy_#%%eXXLX1^rmpLb9?=o&=a!Q+QiEGHq8=I%*H~x0F``e>Kbh^qCbrr?1Mux4Z zrpD^oryRVT-MZGjx;11Qv-h$nfj~!*;2LjXtj~@;`81pSxckXuAfvtYie%23m9)VH zAPx$j2^PkVxb5ND@b&KYWZLjN_80n#O~2#2mpV6qi=t$iRTP$m=9okhj-pE`yI>DN z7{wm>%rQwM85nde*@i4Fk_*)1&F^=oW^aG7|HWhg158cDNu4AcnSHf7Wgk7M3ea|j zvwy&`hUf8}S2{5?9RtPQ_=EfVr^ekY-4j#q3+Zf3)rPo41q}G5V+~TMm}j@P`q#Dw z2r;`7z*Nf&6^2}NdQMfZtM;_I>f9+Rkb<=4N1>RDYDurQ^=;-`?os)YpNQt zKQX@ZUU%Q@&LjPe$v0cc+JWl}&wuIib6@z}=bydYBI)|+R^)bG-W~t`W_NOEVDodT zK6Z8y1|g9FS%s4&u}m@`EXbSV5~w&Q4n!AAbQHAFU>O@P9oP%86)PZCANW9Yjy&sF zYErmOSsALa;HmXCg`A~W5#7-8JWen4&rKVS$G=?a{18x$s2=N%IRTD{Tg&S}FxjTKJxs0la+5 zONdg60l_QtZeC){)*3ocViD*nI@O}QW$%@X##;0aD}t^VmsXY7@UF(+Jl?-JZ8#p~ z&pI(a|H=M=z8dL5ik_48TxASI3Y`#dTq%dy-P_%@t!d0?0#?{sRhqNWQ6f$twPB96 zE+N15r|wsiP6vGM9qJ7e8$|)KRJNpSWsKuP&-5o}cTNAx$#Aq|@0TsG;aM&8_{5GB z;_R|jpf$OSK2^QJBqp-YRmZ4es)mGdhdtf*$j){6)5+AhQgH|Af{-RK zSlQq!9@UC4O|8kW;ds#yhnC+t5;v%%oW+DCC`e8^MPR{lqPqJ!r+o+mz9KvV*G_hmoO`skxPr`Q$j)C?zvXJ)miNM#g4( zmgYJNMkWRZR;EU&23CfNK$excp~d8W2NND-Ws?ua`%Hcl7(RKgn~I*UuAZ*9lYX%R z5M<^l80Z-mb8#6N7@6oA0Fi|P%rXTHb3J48$sc|GA?)vqTc~NQXR2ppp=V@dsiR*k#aLGvdYRB%jw|A%v` cDx(7X)Cy)s1_p-7g6cA@@r+yJnLcd<0H!UrtpET3 delta 1808 zcmZ4ZgzMrHE|vz?sSF!gj&K^LSr#NG73L-Cn_8rro0wasS(uun85>wwSX!8y8z&|j zB$`_~ zChrXhRoBzgQ!q3!)-y6O(KE5sGc-5XQ7|$wFt9Q;N;R-DOf)dGva+-^ncVMS!h@`A z@_C2jdZs`vzE1kZ3P6yVr(mFGRLsSN#U=#}kjlvqeg1JkEjOLq80@*(nOMnECM$&67EyeK+=?(mtsE~;qqH&1?` z20c?0_n2dKkC}o7Naf@YF7BgYq(>->93~fgWiw8jzVR=k{$xIHURV@@(oeh+a+)AE z>C^?Dr!eU(Co$OshQy*Jo4UX-V6rivyvpB;)MT?K)PH)fDSource code for cleanlab.object_detection.summary

Defaults to `MAX_CLASS_TO_SHOW` which is set to 10. kwargs: - Additional keyword arguments to pass to `plt.show()`. + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). """ try: import matplotlib.pyplot as plt @@ -897,7 +897,7 @@

Source code for cleanlab.object_detection.summary

Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format ``{"integer-label": "original-class-name"}``. kwargs: - Additional keyword arguments to pass to `plt.show()` (matplotlib.pyplot.show). + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). """ try: import matplotlib.pyplot as plt @@ -969,7 +969,7 @@

Source code for cleanlab.object_detection.summary

Corresponds to ``matplotlib.figure.figsize``. kwargs: - Additional keyword arguments to pass to `plt.show()` (matplotlib.pyplot.show). + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). """ try: import matplotlib.pyplot as plt diff --git a/master/_modules/cleanlab/segmentation/summary.html b/master/_modules/cleanlab/segmentation/summary.html index 0ea8e10e1..f9d67468d 100644 --- a/master/_modules/cleanlab/segmentation/summary.html +++ b/master/_modules/cleanlab/segmentation/summary.html @@ -669,7 +669,7 @@

Source code for cleanlab.segmentation.summary

Optional list of label classes that can be ignored in the errors, each element must be 0, 1, ..., K-1 kwargs - Additional keyword arguments to pass to `plt.show()` (matplotlib.pyplot.show). + Additional keyword arguments to pass to ``plt.show()`` (matplotlib.pyplot.show). """ class_names, exclude, top = _get_summary_optional_params(class_names, exclude, top) if labels is None and len(exclude) > 0: diff --git a/master/_sources/tutorials/clean_learning/tabular.ipynb b/master/_sources/tutorials/clean_learning/tabular.ipynb index c255f7133..08eedfd98 100644 --- a/master/_sources/tutorials/clean_learning/tabular.ipynb +++ b/master/_sources/tutorials/clean_learning/tabular.ipynb @@ -121,7 +121,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/clean_learning/text.ipynb b/master/_sources/tutorials/clean_learning/text.ipynb index 1d858207b..ecfd85d71 100644 --- a/master/_sources/tutorials/clean_learning/text.ipynb +++ b/master/_sources/tutorials/clean_learning/text.ipynb @@ -129,7 +129,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/audio.ipynb b/master/_sources/tutorials/datalab/audio.ipynb index 013c3246b..9f5305d3c 100644 --- a/master/_sources/tutorials/datalab/audio.ipynb +++ b/master/_sources/tutorials/datalab/audio.ipynb @@ -91,7 +91,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/data_monitor.ipynb b/master/_sources/tutorials/datalab/data_monitor.ipynb index 34eeb7fc9..b8801a830 100644 --- a/master/_sources/tutorials/datalab/data_monitor.ipynb +++ b/master/_sources/tutorials/datalab/data_monitor.ipynb @@ -71,7 +71,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_advanced.ipynb b/master/_sources/tutorials/datalab/datalab_advanced.ipynb index c495a5c38..266b493ef 100644 --- a/master/_sources/tutorials/datalab/datalab_advanced.ipynb +++ b/master/_sources/tutorials/datalab/datalab_advanced.ipynb @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb index 805ad6294..258090b02 100644 --- a/master/_sources/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/_sources/tutorials/datalab/datalab_quickstart.ipynb @@ -85,7 +85,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/tabular.ipynb b/master/_sources/tutorials/datalab/tabular.ipynb index c42d393d2..7068e4dde 100644 --- a/master/_sources/tutorials/datalab/tabular.ipynb +++ b/master/_sources/tutorials/datalab/tabular.ipynb @@ -81,7 +81,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/datalab/text.ipynb b/master/_sources/tutorials/datalab/text.ipynb index 32a6d6409..ca8245e97 100644 --- a/master/_sources/tutorials/datalab/text.ipynb +++ b/master/_sources/tutorials/datalab/text.ipynb @@ -90,7 +90,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/dataset_health.ipynb b/master/_sources/tutorials/dataset_health.ipynb index fadf9b2d9..9059b949a 100644 --- a/master/_sources/tutorials/dataset_health.ipynb +++ b/master/_sources/tutorials/dataset_health.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/indepth_overview.ipynb b/master/_sources/tutorials/indepth_overview.ipynb index e155f282b..85bf3f592 100644 --- a/master/_sources/tutorials/indepth_overview.ipynb +++ b/master/_sources/tutorials/indepth_overview.ipynb @@ -62,7 +62,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multiannotator.ipynb b/master/_sources/tutorials/multiannotator.ipynb index 42cb17a4c..f7a2fa9f4 100644 --- a/master/_sources/tutorials/multiannotator.ipynb +++ b/master/_sources/tutorials/multiannotator.ipynb @@ -96,7 +96,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/multilabel_classification.ipynb b/master/_sources/tutorials/multilabel_classification.ipynb index 3aea75fd6..bfbd240db 100644 --- a/master/_sources/tutorials/multilabel_classification.ipynb +++ b/master/_sources/tutorials/multilabel_classification.ipynb @@ -73,7 +73,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/object_detection.ipynb b/master/_sources/tutorials/object_detection.ipynb index f84474830..041ea0f34 100644 --- a/master/_sources/tutorials/object_detection.ipynb +++ b/master/_sources/tutorials/object_detection.ipynb @@ -77,7 +77,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/outliers.ipynb b/master/_sources/tutorials/outliers.ipynb index 230e275e7..7f518ef14 100644 --- a/master/_sources/tutorials/outliers.ipynb +++ b/master/_sources/tutorials/outliers.ipynb @@ -119,7 +119,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/regression.ipynb b/master/_sources/tutorials/regression.ipynb index b7f58c0c3..1d7d1e951 100644 --- a/master/_sources/tutorials/regression.ipynb +++ b/master/_sources/tutorials/regression.ipynb @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/segmentation.ipynb b/master/_sources/tutorials/segmentation.ipynb index 757e388f8..3cd4d6c68 100644 --- a/master/_sources/tutorials/segmentation.ipynb +++ b/master/_sources/tutorials/segmentation.ipynb @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/_sources/tutorials/token_classification.ipynb b/master/_sources/tutorials/token_classification.ipynb index 564a5b06e..58dc635cf 100644 --- a/master/_sources/tutorials/token_classification.ipynb +++ b/master/_sources/tutorials/token_classification.ipynb @@ -95,7 +95,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", diff --git a/master/cleanlab/object_detection/summary.html b/master/cleanlab/object_detection/summary.html index 96359b8f8..cb04e8552 100644 --- a/master/cleanlab/object_detection/summary.html +++ b/master/cleanlab/object_detection/summary.html @@ -758,7 +758,7 @@

summaryplt.show() (matplotlib.pyplot.show).

@@ -777,7 +777,7 @@

summaryobject_counts_per_image for further details.

  • class_names (optional) – Optional dictionary mapping one-hot-encoded class labels back to their original class names in the format {"integer-label": "original-class-name"}.

  • -
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • +
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • @@ -809,7 +809,7 @@

    summaryOptional[str]) – Path to save figure at. If a path is provided, the figure is saved. To save in a specific image format, add desired file extension to the end of save_path. Allowed file extensions are: ‘png’, ‘pdf’, ‘ps’, ‘eps’, and ‘svg’.

  • figsize (Optional[Tuple[int, int]]) – Optional figure size for plotting the image. Corresponds to matplotlib.figure.figsize.

  • -
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • +
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • Return type:
    diff --git a/master/cleanlab/segmentation/summary.html b/master/cleanlab/segmentation/summary.html index 3957f85d1..2cb8351e1 100644 --- a/master/cleanlab/segmentation/summary.html +++ b/master/cleanlab/segmentation/summary.html @@ -646,7 +646,7 @@

  • top (Optional[int]) – Optional maximum number of issues to be printed. If not provided, a good default is used.

  • exclude (Optional[List[int]]) – Optional list of label classes that can be ignored in the errors, each element must be 0, 1, …, K-1

  • -
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • +
  • kwargs – Additional keyword arguments to pass to plt.show() (matplotlib.pyplot.show).

  • Return type:
    diff --git a/master/searchindex.js b/master/searchindex.js index d67072555..6c5873ad8 100644 --- a/master/searchindex.js +++ b/master/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Audio Classification with SpeechBrain and Cleanlab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Image Classification with PyTorch and Cleanlab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 92, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 65, 66, 67, 69, 74, 75, 79, 83, 84, 85, 86, 87, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 65, 66, 67, 69, 74, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 4, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 4, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 88, 89, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 65, 69, 71, 73, 74, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 82, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 4, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 36, 58, 65, 87, 94, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "valuat": [4, 9, 18], "assess": [4, 98], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 93, 94, 96], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 74, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 84, 88, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": 10, "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": 13, "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "help": [36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 88, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "necessarili": [57, 65, 91, 94], "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "wrong": [57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "plt": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "matplotlib": [65, 74, 85, 86, 87, 88, 94, 97, 98, 99, 101], "pyplot": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "highlight": [74, 78, 85, 86, 87, 90, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 99, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 88, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "u": [82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": [82, 103], "68": [82, 92, 94, 98], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "realli": [83, 91, 96, 102], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "supported_cards_and_curr": [83, 91], "beneficiary_not_allow": [83, 91], "card_payment_fee_charg": [83, 91], "getting_spare_card": [83, 91], "card_about_to_expir": [83, 91], "visa_or_mastercard": [83, 91], "lost_or_stolen_phon": [83, 91], "change_pin": [83, 91], "apple_pay_or_google_pai": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 88, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102, 103], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 88, 92, 94, 96, 98, 101, 103], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101, 103], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "cc319efea07da004d1544c0577402d71f309fa06": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": [85, 103], "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87, 103], "012571": [86, 87], "129": [86, 87], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98, 103], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98, 103], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98, 103], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "9m": 88, "lt": [88, 90, 91, 92, 96, 99], "8mb": 88, "18m": 88, "7mb": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "unsqueez": 88, "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "943": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "606": 88, "493": 88, "060": 88, "715": 88, "330": [88, 98], "505": 88, "438": 88, "476": 88, "340": 88, "569": 88, "328": [88, 98], "310": 88, "479": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98], "187": [90, 92, 103], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": [91, 103], "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "546": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": [91, 95], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98, 103], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7838": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101, 103], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98], "169": 94, "151": [94, 98], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": [97, 103], "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98, 103], "216": [97, 98, 103], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": [98, 103], "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": 98, "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": 98, "217": 98, "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": 98, "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "studi": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "37601665": 99, "95it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783379": 102, "275110": 102, "255792": 102, "78225": 102, "55990": 102, "54427": 102, "33591": 102, "24645": 102, "21308": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a01": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "49mb": 103, "mb": 103, "directori": 103, "inflat": 103, "161": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "5mb": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 84, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 85, 86, 87, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 87, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 82, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": [79, 92], "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "tabular": [82, 90], "scikit": 82, "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "audio": 84, "speechbrain": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "pytorch": [88, 99], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "an": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[82, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Audio Classification with SpeechBrain and Cleanlab": [[84, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Image Classification with PyTorch and Cleanlab": [[88, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[92, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file +Search.setIndex({"docnames": ["cleanlab/benchmarking/index", "cleanlab/benchmarking/noise_generation", "cleanlab/classification", "cleanlab/count", "cleanlab/data_valuation", "cleanlab/datalab/datalab", "cleanlab/datalab/guide/_templates/issue_types_tip", "cleanlab/datalab/guide/custom_issue_manager", "cleanlab/datalab/guide/generating_cluster_ids", "cleanlab/datalab/guide/index", "cleanlab/datalab/guide/issue_type_description", "cleanlab/datalab/index", "cleanlab/datalab/internal/data", "cleanlab/datalab/internal/data_issues", "cleanlab/datalab/internal/factory", "cleanlab/datalab/internal/index", "cleanlab/datalab/internal/issue_finder", "cleanlab/datalab/internal/issue_manager/_notices/not_registered", "cleanlab/datalab/internal/issue_manager/data_valuation", "cleanlab/datalab/internal/issue_manager/duplicate", "cleanlab/datalab/internal/issue_manager/imbalance", "cleanlab/datalab/internal/issue_manager/index", "cleanlab/datalab/internal/issue_manager/issue_manager", "cleanlab/datalab/internal/issue_manager/label", "cleanlab/datalab/internal/issue_manager/multilabel/index", "cleanlab/datalab/internal/issue_manager/multilabel/label", "cleanlab/datalab/internal/issue_manager/noniid", "cleanlab/datalab/internal/issue_manager/null", "cleanlab/datalab/internal/issue_manager/outlier", "cleanlab/datalab/internal/issue_manager/regression/index", "cleanlab/datalab/internal/issue_manager/regression/label", "cleanlab/datalab/internal/issue_manager/underperforming_group", "cleanlab/datalab/internal/model_outputs", "cleanlab/datalab/internal/report", "cleanlab/datalab/internal/task", "cleanlab/datalab/optional_dependencies", "cleanlab/dataset", "cleanlab/experimental/cifar_cnn", "cleanlab/experimental/coteaching", "cleanlab/experimental/index", "cleanlab/experimental/label_issues_batched", "cleanlab/experimental/mnist_pytorch", "cleanlab/experimental/span_classification", "cleanlab/filter", "cleanlab/internal/index", "cleanlab/internal/label_quality_utils", "cleanlab/internal/latent_algebra", "cleanlab/internal/multiannotator_utils", "cleanlab/internal/multilabel_scorer", "cleanlab/internal/multilabel_utils", "cleanlab/internal/outlier", "cleanlab/internal/token_classification_utils", "cleanlab/internal/util", "cleanlab/internal/validation", "cleanlab/models/fasttext", "cleanlab/models/index", "cleanlab/models/keras", "cleanlab/multiannotator", "cleanlab/multilabel_classification/dataset", "cleanlab/multilabel_classification/filter", "cleanlab/multilabel_classification/index", "cleanlab/multilabel_classification/rank", "cleanlab/object_detection/filter", "cleanlab/object_detection/index", "cleanlab/object_detection/rank", "cleanlab/object_detection/summary", "cleanlab/outlier", "cleanlab/rank", "cleanlab/regression/index", "cleanlab/regression/learn", "cleanlab/regression/rank", "cleanlab/segmentation/filter", "cleanlab/segmentation/index", "cleanlab/segmentation/rank", "cleanlab/segmentation/summary", "cleanlab/token_classification/filter", "cleanlab/token_classification/index", "cleanlab/token_classification/rank", "cleanlab/token_classification/summary", "index", "migrating/migrate_v2", "tutorials/clean_learning/index", "tutorials/clean_learning/tabular", "tutorials/clean_learning/text", "tutorials/datalab/audio", "tutorials/datalab/data_monitor", "tutorials/datalab/datalab_advanced", "tutorials/datalab/datalab_quickstart", "tutorials/datalab/image", "tutorials/datalab/index", "tutorials/datalab/tabular", "tutorials/datalab/text", "tutorials/dataset_health", "tutorials/faq", "tutorials/indepth_overview", "tutorials/index", "tutorials/multiannotator", "tutorials/multilabel_classification", "tutorials/object_detection", "tutorials/outliers", "tutorials/pred_probs_cross_val", "tutorials/regression", "tutorials/segmentation", "tutorials/token_classification"], "filenames": ["cleanlab/benchmarking/index.rst", "cleanlab/benchmarking/noise_generation.rst", "cleanlab/classification.rst", "cleanlab/count.rst", "cleanlab/data_valuation.rst", "cleanlab/datalab/datalab.rst", "cleanlab/datalab/guide/_templates/issue_types_tip.rst", "cleanlab/datalab/guide/custom_issue_manager.rst", "cleanlab/datalab/guide/generating_cluster_ids.rst", "cleanlab/datalab/guide/index.rst", "cleanlab/datalab/guide/issue_type_description.rst", "cleanlab/datalab/index.rst", "cleanlab/datalab/internal/data.rst", "cleanlab/datalab/internal/data_issues.rst", "cleanlab/datalab/internal/factory.rst", "cleanlab/datalab/internal/index.rst", "cleanlab/datalab/internal/issue_finder.rst", "cleanlab/datalab/internal/issue_manager/_notices/not_registered.rst", "cleanlab/datalab/internal/issue_manager/data_valuation.rst", "cleanlab/datalab/internal/issue_manager/duplicate.rst", "cleanlab/datalab/internal/issue_manager/imbalance.rst", "cleanlab/datalab/internal/issue_manager/index.rst", "cleanlab/datalab/internal/issue_manager/issue_manager.rst", "cleanlab/datalab/internal/issue_manager/label.rst", "cleanlab/datalab/internal/issue_manager/multilabel/index.rst", "cleanlab/datalab/internal/issue_manager/multilabel/label.rst", "cleanlab/datalab/internal/issue_manager/noniid.rst", "cleanlab/datalab/internal/issue_manager/null.rst", "cleanlab/datalab/internal/issue_manager/outlier.rst", "cleanlab/datalab/internal/issue_manager/regression/index.rst", "cleanlab/datalab/internal/issue_manager/regression/label.rst", "cleanlab/datalab/internal/issue_manager/underperforming_group.rst", "cleanlab/datalab/internal/model_outputs.rst", "cleanlab/datalab/internal/report.rst", "cleanlab/datalab/internal/task.rst", "cleanlab/datalab/optional_dependencies.rst", "cleanlab/dataset.rst", "cleanlab/experimental/cifar_cnn.rst", "cleanlab/experimental/coteaching.rst", "cleanlab/experimental/index.rst", "cleanlab/experimental/label_issues_batched.rst", "cleanlab/experimental/mnist_pytorch.rst", "cleanlab/experimental/span_classification.rst", "cleanlab/filter.rst", "cleanlab/internal/index.rst", "cleanlab/internal/label_quality_utils.rst", "cleanlab/internal/latent_algebra.rst", "cleanlab/internal/multiannotator_utils.rst", "cleanlab/internal/multilabel_scorer.rst", "cleanlab/internal/multilabel_utils.rst", "cleanlab/internal/outlier.rst", "cleanlab/internal/token_classification_utils.rst", "cleanlab/internal/util.rst", "cleanlab/internal/validation.rst", "cleanlab/models/fasttext.rst", "cleanlab/models/index.rst", "cleanlab/models/keras.rst", "cleanlab/multiannotator.rst", "cleanlab/multilabel_classification/dataset.rst", "cleanlab/multilabel_classification/filter.rst", "cleanlab/multilabel_classification/index.rst", "cleanlab/multilabel_classification/rank.rst", "cleanlab/object_detection/filter.rst", "cleanlab/object_detection/index.rst", "cleanlab/object_detection/rank.rst", "cleanlab/object_detection/summary.rst", "cleanlab/outlier.rst", "cleanlab/rank.rst", "cleanlab/regression/index.rst", "cleanlab/regression/learn.rst", "cleanlab/regression/rank.rst", "cleanlab/segmentation/filter.rst", "cleanlab/segmentation/index.rst", "cleanlab/segmentation/rank.rst", "cleanlab/segmentation/summary.rst", "cleanlab/token_classification/filter.rst", "cleanlab/token_classification/index.rst", "cleanlab/token_classification/rank.rst", "cleanlab/token_classification/summary.rst", "index.rst", "migrating/migrate_v2.rst", "tutorials/clean_learning/index.rst", "tutorials/clean_learning/tabular.ipynb", "tutorials/clean_learning/text.ipynb", "tutorials/datalab/audio.ipynb", "tutorials/datalab/data_monitor.ipynb", "tutorials/datalab/datalab_advanced.ipynb", "tutorials/datalab/datalab_quickstart.ipynb", "tutorials/datalab/image.ipynb", "tutorials/datalab/index.rst", "tutorials/datalab/tabular.ipynb", "tutorials/datalab/text.ipynb", "tutorials/dataset_health.ipynb", "tutorials/faq.ipynb", "tutorials/indepth_overview.ipynb", "tutorials/index.rst", "tutorials/multiannotator.ipynb", "tutorials/multilabel_classification.ipynb", "tutorials/object_detection.ipynb", "tutorials/outliers.ipynb", "tutorials/pred_probs_cross_val.rst", "tutorials/regression.ipynb", "tutorials/segmentation.ipynb", "tutorials/token_classification.ipynb"], "titles": ["benchmarking", "noise_generation", "classification", "count", "data_valuation", "datalab", "<no title>", "Creating Your Own Issues Manager", "Generating Cluster IDs", "Datalab guides", "Datalab Issue Types", "datalab", "data", "data_issues", "factory", "internal", "issue_finder", "<no title>", "data_valuation", "duplicate", "imbalance", "issue_manager", "issue_manager", "label", "multilabel", "label", "noniid", "null", "outlier", "regression", "label", "underperforming_group", "model_outputs", "report", "task", "<no title>", "dataset", "cifar_cnn", "coteaching", "experimental", "label_issues_batched", "mnist_pytorch", "span_classification", "filter", "internal", "label_quality_utils", "latent_algebra", "multiannotator_utils", "multilabel_scorer", "multilabel_utils", "outlier", "token_classification_utils", "util", "validation", "fasttext", "models", "keras", "multiannotator", "dataset", "filter", "multilabel_classification", "rank", "filter", "object_detection", "rank", "summary", "outlier", "rank", "regression", "regression.learn", "regression.rank", "filter", "segmentation", "rank", "summary", "filter", "token_classification", "rank", "summary", "cleanlab open-source documentation", "How to migrate to versions >= 2.0.0 from pre 1.0.1", "CleanLearning Tutorials", "Classification with Tabular Data using Scikit-Learn and Cleanlab", "Text Classification with Noisy Labels", "Audio Classification with SpeechBrain and Cleanlab", "DataMonitor: Leverage statistics from Datalab to audit new data", "Datalab: Advanced workflows to audit your data", "Datalab: A unified audit to detect all kinds of issues in data and labels", "Image Classification with PyTorch and Cleanlab", "Datalab Tutorials", "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab", "Detecting Issues in a Text Dataset with Datalab", "Find Dataset-level Issues for Dataset Curation", "FAQ", "The Workflows of Data-centric AI for Classification with Noisy Labels", "Tutorials", "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators", "Find Label Errors in Multi-Label Classification Datasets", "Finding Label Errors in Object Detection Datasets", "Detect Outliers with Cleanlab and PyTorch Image Models (timm)", "Computing Out-of-Sample Predicted Probabilities with Cross-Validation", "Find Noisy Labels in Regression Datasets", "Find Label Errors in Semantic Segmentation Datasets", "Find Label Errors in Token Classification (Text) Datasets"], "terms": {"noise_gener": [0, 80, 85, 86, 87, 94, 96, 97], "noise_matrix_is_valid": [0, 1], "generate_noisy_label": [0, 1, 85, 86, 87, 94, 96, 97], "generate_noise_matrix_from_trac": [0, 1, 85, 86, 87, 94, 96, 97], "generate_n_rand_probabilities_that_sum_to_m": [0, 1], "randomly_distribute_n_balls_into_k_bin": [0, 1], "helper": [1, 16, 40, 45, 47, 48, 49, 50, 51, 52, 64, 88, 92, 103], "method": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "ar": [1, 2, 3, 4, 5, 7, 10, 12, 13, 14, 15, 16, 18, 20, 21, 22, 23, 24, 26, 29, 30, 32, 34, 36, 37, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "us": [1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 79, 80, 86, 92, 100], "benchmark": [1, 37, 79, 80, 85, 86, 87, 94, 96, 97], "cleanlab": [1, 2, 3, 4, 5, 7, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100], "": [1, 2, 3, 4, 10, 18, 32, 36, 37, 41, 45, 48, 50, 52, 57, 58, 62, 64, 65, 66, 67, 69, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "core": [1, 40, 43, 71, 73], "algorithm": [1, 2, 8, 10, 31, 38, 42, 50, 52, 57, 66, 75, 77, 79, 93, 94, 96, 103], "These": [1, 2, 3, 4, 5, 8, 10, 21, 37, 39, 41, 42, 43, 44, 55, 57, 58, 61, 65, 66, 70, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "introduc": [1, 84, 93, 94], "synthet": [1, 96, 97, 102], "nois": [1, 2, 3, 36, 43, 46, 52, 58, 85, 86, 87, 92, 96, 101], "label": [1, 2, 3, 4, 5, 7, 8, 9, 12, 14, 15, 16, 20, 21, 22, 24, 29, 31, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 85, 86, 92, 95, 99, 100], "classif": [1, 3, 4, 5, 7, 10, 12, 14, 16, 32, 34, 36, 40, 42, 43, 46, 48, 49, 52, 57, 58, 59, 60, 61, 66, 67, 75, 76, 77, 78, 79, 80, 81, 85, 86, 87, 95, 96, 99, 100, 101, 102], "dataset": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 39, 40, 41, 42, 43, 46, 48, 52, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 82, 84, 86, 90, 95, 96, 100], "specif": [1, 3, 5, 9, 14, 15, 16, 27, 33, 34, 39, 55, 59, 62, 65, 74, 78, 88, 90, 91, 94, 98, 103], "thi": [1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "modul": [1, 3, 13, 14, 15, 16, 21, 24, 29, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 48, 50, 52, 55, 57, 62, 65, 66, 67, 79, 88, 93, 97], "provid": [1, 2, 3, 4, 5, 7, 8, 9, 10, 14, 16, 18, 23, 30, 34, 36, 37, 38, 40, 41, 43, 46, 50, 52, 56, 57, 58, 59, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 100, 101, 102, 103], "gener": [1, 2, 3, 7, 10, 18, 23, 25, 33, 36, 48, 52, 53, 66, 67, 69, 74, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 100, 102, 103], "valid": [1, 2, 3, 5, 10, 12, 32, 34, 36, 43, 44, 46, 47, 48, 50, 52, 57, 59, 62, 65, 67, 69, 70, 78, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "matric": [1, 3, 46, 93], "which": [1, 2, 3, 5, 7, 10, 12, 13, 14, 16, 18, 22, 26, 32, 33, 34, 36, 37, 41, 42, 43, 46, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "learn": [1, 2, 3, 5, 9, 10, 14, 16, 22, 30, 33, 38, 39, 40, 41, 43, 45, 47, 52, 55, 57, 59, 66, 68, 70, 73, 77, 79, 83, 84, 86, 88, 90, 91, 92, 96, 97, 101], "i": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "possibl": [1, 2, 3, 7, 10, 36, 37, 41, 43, 45, 46, 48, 59, 60, 61, 62, 64, 65, 66, 67, 69, 75, 77, 78, 85, 87, 93, 94, 96, 97, 98, 101, 102, 103], "noisi": [1, 2, 3, 10, 36, 38, 41, 43, 46, 52, 58, 59, 61, 67, 69, 70, 71, 73, 74, 80, 85, 86, 87, 90, 91, 93, 95, 96], "given": [1, 2, 3, 5, 10, 14, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 51, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "matrix": [1, 2, 3, 5, 10, 16, 18, 31, 36, 43, 45, 46, 49, 52, 53, 59, 62, 64, 65, 66, 67, 90, 98, 99], "trace": [1, 85, 86, 87, 94, 96, 97], "valu": [1, 2, 3, 4, 5, 10, 12, 13, 16, 18, 22, 26, 27, 32, 34, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 78, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "more": [1, 2, 3, 5, 7, 9, 10, 13, 14, 16, 18, 26, 36, 37, 40, 41, 42, 45, 48, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 67, 69, 70, 73, 74, 75, 77, 79, 84, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 102, 103], "function": [1, 2, 3, 4, 5, 7, 10, 13, 14, 16, 23, 26, 30, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 102, 103], "noise_matrix": [1, 2, 3, 10, 46, 52, 85, 86, 87, 94, 96, 97], "py": [1, 3, 33, 37, 38, 43, 46, 48, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97], "verbos": [1, 2, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 40, 43, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 86, 94, 96], "fals": [1, 2, 3, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 47, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99, 101, 102], "sourc": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 85], "prior": [1, 2, 3, 36, 43, 46, 48], "repres": [1, 2, 3, 7, 10, 12, 16, 18, 26, 32, 34, 36, 40, 43, 46, 49, 50, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 103], "p": [1, 2, 3, 5, 10, 36, 43, 45, 46, 50, 52, 57, 65, 66, 67, 71, 90, 91, 94, 96, 103], "true_label": [1, 2, 3, 36, 46, 52, 94, 96], "k": [1, 2, 3, 4, 5, 8, 10, 12, 16, 18, 19, 23, 26, 28, 31, 36, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 82, 84, 85, 86, 87, 93, 94, 96, 97, 98, 99, 102, 103], "check": [1, 2, 5, 6, 9, 10, 12, 16, 27, 34, 37, 40, 41, 47, 53, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 93, 94, 96, 97, 101], "learnabl": 1, "mean": [1, 2, 7, 8, 12, 13, 22, 26, 38, 41, 46, 48, 50, 64, 69, 83, 87, 91, 93, 94, 96, 97, 98, 99, 101], "achiev": [1, 2, 37, 38, 41, 69, 93, 96, 103], "better": [1, 5, 43, 57, 59, 67, 69, 70, 79, 83, 84, 87, 90, 91, 93, 94, 97, 98, 99, 103], "than": [1, 2, 3, 4, 7, 9, 10, 26, 28, 31, 36, 43, 52, 56, 57, 62, 64, 66, 67, 69, 73, 77, 82, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "random": [1, 2, 3, 7, 10, 18, 31, 40, 48, 57, 67, 69, 82, 84, 85, 86, 87, 88, 90, 93, 94, 96, 97, 99], "perform": [1, 2, 4, 7, 10, 26, 28, 31, 37, 41, 48, 65, 69, 79, 82, 83, 86, 93, 94, 96, 97, 100, 101], "averag": [1, 3, 5, 10, 22, 28, 36, 37, 41, 48, 50, 57, 58, 65, 66, 67, 93, 96, 99], "amount": [1, 3, 88], "paramet": [1, 2, 3, 4, 5, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 87, 88, 91], "np": [1, 2, 3, 4, 5, 7, 16, 18, 31, 36, 38, 40, 42, 43, 45, 46, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "ndarrai": [1, 2, 3, 4, 5, 16, 23, 25, 26, 30, 31, 32, 36, 38, 40, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 103], "an": [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 50, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 102, 103], "arrai": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 26, 32, 36, 38, 40, 41, 42, 43, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "shape": [1, 2, 3, 4, 5, 16, 18, 36, 38, 40, 42, 43, 45, 46, 47, 48, 50, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 84, 92, 93, 94, 97, 98, 99, 102, 103], "condit": [1, 2, 3, 46, 51, 52, 67, 88, 94, 103], "probabl": [1, 2, 3, 5, 8, 10, 16, 23, 25, 28, 32, 36, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 92, 93, 94, 95, 97, 98, 99, 102, 103], "k_": [1, 2, 3, 46, 52], "k_y": [1, 2, 3, 46, 52], "contain": [1, 2, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 43, 45, 46, 51, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 74, 75, 77, 78, 80, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102], "fraction": [1, 2, 3, 10, 20, 38, 46, 52, 57, 69, 90, 93], "exampl": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 96, 97, 98, 100, 101, 102, 103], "everi": [1, 2, 3, 4, 5, 16, 37, 41, 43, 46, 51, 52, 59, 67, 69, 70, 82, 84, 85, 86, 87, 88, 90, 91, 93, 96, 98, 100, 102, 103], "class": [1, 2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 103], "other": [1, 2, 3, 5, 10, 16, 22, 27, 36, 37, 39, 40, 41, 43, 46, 49, 52, 53, 55, 57, 58, 61, 65, 66, 67, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 102, 103], "assum": [1, 2, 3, 12, 43, 46, 51, 52, 67, 71, 74, 93, 97, 99, 101, 102, 103], "column": [1, 2, 3, 5, 10, 12, 13, 30, 36, 40, 43, 46, 48, 49, 51, 52, 57, 58, 59, 61, 62, 65, 66, 67, 69, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "sum": [1, 2, 3, 26, 31, 32, 36, 46, 48, 52, 58, 59, 61, 64, 69, 85, 86, 87, 88, 93, 94, 96, 97, 102, 103], "1": [1, 2, 3, 4, 5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 92, 93, 100], "each": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 16, 20, 22, 23, 25, 26, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 45, 46, 48, 49, 50, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "true": [1, 2, 3, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 48, 51, 52, 53, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "return": [1, 2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "type": [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 97, 98, 101, 102, 103], "bool": [1, 2, 3, 5, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 48, 51, 52, 57, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 78], "is_valid": 1, "whether": [1, 3, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 37, 40, 41, 43, 52, 57, 58, 59, 61, 62, 78, 83, 84, 87, 88, 90, 91, 92, 93, 94, 101, 103], "from": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 22, 23, 27, 30, 31, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 46, 48, 49, 50, 51, 52, 57, 59, 61, 64, 65, 66, 67, 69, 70, 75, 77, 78, 79, 84, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 102, 103], "perfect": [1, 2, 36, 69, 94, 98], "exactli": [1, 3, 10, 36, 37, 41, 43, 60, 66, 86, 87, 88, 90, 91, 94], "yield": [1, 37, 41, 85], "between": [1, 5, 10, 15, 16, 21, 22, 24, 26, 29, 32, 36, 37, 38, 39, 40, 41, 43, 44, 45, 47, 50, 55, 57, 58, 61, 64, 66, 67, 69, 70, 73, 77, 78, 80, 83, 84, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "below": [1, 3, 4, 5, 10, 36, 37, 40, 41, 43, 45, 48, 50, 57, 58, 59, 64, 65, 73, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "we": [1, 2, 3, 5, 7, 10, 13, 22, 37, 40, 41, 43, 48, 52, 53, 56, 57, 64, 65, 67, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "loop": [1, 3, 46, 52, 88, 98], "implement": [1, 2, 3, 9, 14, 22, 37, 38, 40, 41, 46, 52, 69, 79, 82, 84, 86, 90, 99, 100], "what": [1, 5, 9, 10, 16, 33, 36, 38, 40, 43, 57, 58, 62, 64, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "doe": [1, 2, 3, 7, 10, 40, 41, 43, 48, 50, 53, 64, 65, 69, 71, 73, 77, 83, 84, 86, 87, 88, 90, 91, 97, 101, 102], "do": [1, 2, 5, 9, 10, 36, 40, 41, 52, 53, 66, 67, 71, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "fast": 1, "explain": [1, 10], "python": [1, 2, 41, 56, 69, 83, 84, 86, 87, 88, 90, 91, 92, 94, 99], "pseudocod": [1, 100], "happen": [1, 10, 43, 59, 85, 91, 96, 102], "n": [1, 2, 3, 5, 7, 36, 37, 40, 41, 43, 45, 46, 47, 48, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 82, 83, 84, 85, 88, 91, 92, 93, 96, 97, 98, 101, 102, 103], "without": [1, 2, 5, 9, 10, 12, 14, 20, 37, 41, 61, 69, 79, 83, 84, 85, 91, 93, 94, 98, 99], "ani": [1, 2, 3, 5, 7, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 45, 47, 50, 51, 52, 56, 57, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102], "distinct": [1, 18, 52, 103], "natur": [1, 10, 96, 99], "number": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 80, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 102, 103], "0": [1, 2, 3, 4, 5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "count_joint": 1, "len": [1, 2, 3, 7, 36, 40, 46, 51, 52, 53, 66, 67, 69, 82, 83, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "y": [1, 2, 3, 5, 8, 18, 30, 31, 41, 46, 48, 52, 53, 56, 65, 69, 70, 83, 84, 85, 86, 87, 90, 93, 94, 96, 97, 99, 101], "round": [1, 40, 43, 52, 69, 93, 101], "astyp": [1, 96], "int": [1, 2, 3, 4, 5, 7, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 38, 40, 41, 43, 48, 49, 50, 51, 52, 53, 58, 59, 61, 65, 66, 67, 69, 71, 73, 74, 75, 78, 84, 86, 88, 98, 99], "rang": [1, 3, 5, 7, 12, 46, 48, 50, 52, 65, 69, 70, 85, 88, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "idx_flip": 1, "where": [1, 2, 3, 5, 7, 10, 12, 13, 16, 22, 36, 40, 43, 46, 47, 48, 49, 50, 51, 52, 53, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "pragma": 1, "cover": [1, 3, 80, 92, 93], "choic": [1, 8, 43, 50, 88, 93, 97, 99], "replac": [1, 51, 56, 67, 82, 83, 85, 86, 87, 88, 91, 92, 93, 96, 99], "max_trace_prob": 1, "min_trace_prob": 1, "1e": [1, 3, 67, 84, 85, 86, 87], "05": [1, 10, 26, 30, 51, 65, 69, 75, 77, 90, 92, 93, 94, 98], "max_noise_r": 1, "99999": 1, "min_noise_r": 1, "valid_noise_matrix": [1, 85, 86, 87, 94, 96, 97], "none": [1, 2, 3, 4, 5, 7, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 85, 86, 87, 88, 93, 94, 96, 97, 102], "frac_zero_noise_r": 1, "seed": [1, 2, 3, 10, 26, 39, 41, 48, 69, 82, 84, 85, 86, 87, 90, 92, 94, 96, 97], "max_it": [1, 83, 84, 91, 99], "10000": [1, 40, 92, 93], "x": [1, 2, 3, 5, 10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 37, 38, 41, 43, 45, 46, 48, 51, 52, 53, 56, 57, 59, 65, 66, 67, 69, 71, 82, 83, 84, 85, 86, 87, 88, 90, 92, 93, 94, 96, 97, 99, 101], "diagon": [1, 3, 5, 43, 46, 52], "equal": [1, 3, 10, 12, 59, 64, 74, 100], "creat": [1, 2, 9, 16, 18, 37, 40, 41, 43, 52, 69, 79, 83, 84, 88, 90, 91, 93, 102, 103], "impli": [1, 10, 36, 58, 65], "float": [1, 2, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 39, 40, 41, 43, 45, 47, 48, 50, 51, 52, 57, 58, 59, 61, 64, 65, 69, 73, 77, 84, 85, 86, 87, 94, 96, 97], "entri": [1, 3, 5, 36, 37, 41, 43, 45, 49, 50, 52, 57, 58, 59, 62, 82, 83, 90, 91, 94, 97, 98, 101], "maximum": [1, 10, 66, 74, 78, 102], "minimum": [1, 8, 10, 20, 43, 45, 59, 64, 77], "noise_r": 1, "non": [1, 2, 3, 5, 7, 9, 16, 26, 37, 41, 43, 64, 69, 86, 93, 94, 96, 98, 99], "default": [1, 2, 3, 4, 5, 7, 10, 14, 16, 28, 30, 33, 36, 37, 38, 40, 41, 43, 45, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 86, 88, 93, 101, 102], "If": [1, 2, 3, 4, 5, 10, 12, 13, 16, 26, 28, 34, 36, 37, 40, 41, 43, 45, 46, 48, 51, 52, 56, 57, 58, 59, 62, 64, 65, 66, 69, 70, 71, 73, 74, 77, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "have": [1, 2, 3, 4, 5, 7, 9, 10, 16, 21, 24, 26, 29, 36, 37, 39, 40, 41, 43, 46, 48, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 74, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "all": [1, 2, 3, 5, 7, 8, 9, 10, 13, 14, 16, 22, 33, 36, 37, 40, 41, 42, 43, 46, 48, 49, 51, 52, 56, 57, 58, 59, 60, 61, 64, 65, 66, 67, 69, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "necessari": [1, 2, 3, 4, 7, 10, 12, 51, 85, 86], "In": [1, 2, 3, 5, 10, 36, 37, 40, 41, 56, 57, 58, 60, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 99, 100, 101, 102, 103], "particular": [1, 5, 6, 10, 13, 14, 16, 19, 20, 22, 26, 27, 28, 31, 37, 41, 52, 57, 61, 65, 69, 74, 78, 79, 82, 83, 84, 85, 87, 91, 93, 96, 97, 99, 101], "satisfi": [1, 3, 36], "requir": [1, 2, 5, 7, 8, 9, 10, 11, 12, 30, 35, 37, 38, 39, 40, 41, 43, 46, 52, 55, 56, 59, 66, 67, 69, 71, 79, 80, 84, 92, 93, 94, 100], "argument": [1, 2, 3, 5, 10, 16, 23, 27, 30, 31, 32, 37, 40, 41, 42, 43, 48, 53, 56, 57, 58, 59, 61, 64, 65, 66, 67, 69, 73, 74, 75, 77, 83, 85, 87, 88, 91, 92, 93, 97, 98, 101, 103], "when": [1, 2, 3, 5, 10, 12, 14, 23, 26, 37, 41, 43, 46, 48, 50, 52, 56, 59, 61, 62, 64, 66, 67, 69, 70, 82, 83, 85, 86, 87, 88, 90, 91, 96, 100, 101, 102, 103], "The": [1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 56, 57, 58, 59, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 103], "rate": [1, 2, 3, 10, 38, 52, 84, 103], "set": [1, 2, 3, 5, 9, 10, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 37, 40, 41, 43, 47, 48, 50, 52, 56, 57, 59, 62, 64, 65, 66, 67, 69, 71, 73, 74, 82, 83, 85, 86, 87, 90, 91, 93, 96, 97, 99, 100, 101, 102, 103], "note": [1, 2, 3, 7, 8, 10, 12, 27, 31, 34, 37, 40, 41, 42, 43, 48, 52, 56, 57, 62, 64, 65, 66, 67, 69, 70, 74, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "you": [1, 2, 3, 5, 7, 9, 10, 14, 16, 36, 37, 39, 40, 41, 43, 48, 55, 56, 57, 59, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103], "high": [1, 2, 16, 40, 43, 52, 64, 67, 69, 82, 83, 85, 86, 87, 88, 92, 94, 98, 101, 102, 103], "mai": [1, 2, 3, 4, 5, 10, 13, 21, 22, 24, 29, 32, 36, 37, 39, 40, 41, 43, 46, 48, 52, 57, 58, 62, 64, 65, 66, 67, 69, 71, 74, 78, 80, 83, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "imposs": [1, 10, 94], "also": [1, 2, 3, 5, 7, 9, 10, 22, 34, 36, 37, 40, 41, 43, 48, 51, 56, 57, 66, 69, 74, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "low": [1, 10, 52, 57, 79, 85, 86, 87, 91, 94, 98, 102], "zero": [1, 3, 5, 37, 41, 45, 52, 53, 86, 88, 97, 98, 99], "forc": [1, 2, 3, 5, 41, 86, 103], "instead": [1, 2, 3, 10, 13, 16, 33, 36, 37, 40, 41, 43, 46, 52, 56, 57, 59, 61, 65, 66, 67, 69, 70, 73, 75, 77, 80, 82, 83, 84, 88, 90, 91, 93, 94, 97, 98, 99, 101, 102, 103], "onli": [1, 2, 3, 4, 5, 7, 10, 16, 23, 26, 30, 36, 37, 40, 41, 42, 43, 45, 46, 50, 51, 52, 53, 56, 57, 66, 67, 69, 71, 73, 77, 78, 79, 83, 84, 86, 87, 88, 91, 96, 97, 98, 99, 100, 101, 102, 103], "guarante": [1, 3, 5, 15, 21, 24, 29, 37, 39, 41, 44, 46, 55, 80], "produc": [1, 2, 5, 9, 10, 16, 48, 57, 67, 69, 71, 73, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 102, 103], "higher": [1, 5, 10, 36, 43, 45, 46, 48, 50, 56, 57, 58, 69, 87, 91, 93, 98], "opposit": [1, 103], "occur": [1, 3, 10, 36, 51, 64, 86, 87, 88, 93, 99], "small": [1, 3, 10, 36, 40, 48, 50, 52, 58, 65, 83, 88, 91, 92, 97, 99], "numpi": [1, 3, 4, 5, 7, 10, 12, 18, 31, 32, 40, 41, 42, 48, 50, 51, 53, 56, 61, 64, 69, 70, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "max": [1, 43, 66, 67, 87, 88, 99], "tri": [1, 37, 41, 100], "befor": [1, 2, 3, 37, 41, 50, 52, 66, 69, 74, 82, 83, 85, 91, 93, 94, 96, 99, 101], "option": [1, 2, 3, 4, 5, 7, 8, 9, 12, 13, 16, 23, 26, 30, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 84, 86, 87, 88, 90, 93, 94, 97, 101, 102], "left": [1, 2, 43, 45, 50, 52, 59, 62, 65, 85, 86, 87, 97, 98, 99, 102], "stochast": 1, "exceed": 1, "m": [1, 5, 37, 41, 47, 48, 57, 62, 64, 65, 66, 85, 86, 87, 92, 96, 97, 98, 103], "max_prob": 1, "min_prob": 1, "dirichlet": 1, "ones": [1, 37, 41, 56, 93, 94, 102], "length": [1, 5, 12, 26, 27, 36, 38, 43, 52, 59, 62, 66, 67, 69, 71, 74, 78, 82, 84, 97, 99, 102, 103], "must": [1, 2, 3, 4, 5, 7, 16, 36, 37, 38, 39, 41, 43, 46, 48, 49, 50, 52, 55, 56, 57, 58, 59, 66, 67, 69, 71, 73, 74, 75, 77, 78, 84, 88, 96, 100, 102, 103], "max_balls_per_bin": 1, "min_balls_per_bin": 1, "uniformli": 1, "integ": [1, 2, 3, 10, 12, 36, 40, 43, 49, 52, 53, 57, 59, 65, 71, 73, 74, 75, 77, 78, 82, 83, 84, 93, 96, 97, 98, 102, 103], "ball": [1, 92], "bin": [1, 3, 59, 85, 86, 87, 99], "ensur": [1, 2, 10, 37, 41, 50, 52, 53, 56, 64, 67, 69, 82, 83, 84, 86, 87, 88, 91, 93, 94, 99, 100, 101], "most": [1, 3, 5, 7, 10, 16, 36, 40, 43, 48, 56, 57, 58, 59, 62, 64, 65, 66, 67, 70, 73, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102], "least": [1, 4, 10, 18, 31, 36, 40, 57, 58, 64, 67, 77, 87, 88, 93, 96, 99, 102], "int_arrai": [1, 52], "can": [2, 3, 5, 7, 8, 9, 13, 14, 16, 33, 34, 36, 37, 38, 39, 40, 41, 43, 47, 48, 49, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 74, 75, 78, 79, 80, 82, 83, 84, 86, 88, 90, 91, 97, 98, 99, 100, 101, 102, 103], "model": [2, 3, 4, 5, 9, 10, 16, 18, 30, 32, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 51, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 80, 85, 86, 87, 92, 95, 100, 102, 103], "For": [2, 3, 5, 7, 9, 10, 11, 16, 22, 35, 36, 37, 40, 41, 43, 46, 48, 50, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 82, 83, 84, 85, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 100, 102, 103], "regular": [2, 3, 40, 56], "multi": [2, 3, 4, 10, 32, 36, 37, 40, 41, 43, 47, 48, 49, 52, 53, 58, 59, 60, 61, 66, 67, 79, 93, 94, 95], "task": [2, 5, 7, 10, 11, 12, 14, 15, 16, 25, 30, 33, 36, 40, 46, 48, 49, 50, 52, 57, 59, 67, 69, 79, 83, 84, 85, 91, 92, 93, 94, 97, 99, 101, 102, 103], "cleanlearn": [2, 3, 10, 23, 30, 37, 52, 56, 68, 69, 70, 79, 80, 82, 83, 101], "wrap": [2, 37, 41, 56, 66, 69, 79, 82, 83, 85, 86, 87, 90, 91, 94, 101], "instanc": [2, 3, 5, 6, 7, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56, 65, 66, 69, 74, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 98], "sklearn": [2, 3, 4, 5, 8, 10, 18, 31, 36, 41, 48, 52, 56, 66, 69, 70, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101], "classifi": [2, 3, 41, 48, 52, 57, 60, 66, 67, 79, 80, 82, 83, 84, 90, 91, 93, 96, 97, 99, 100, 102, 103], "adher": [2, 41, 69], "estim": [2, 3, 4, 5, 9, 13, 22, 36, 40, 41, 43, 46, 52, 57, 58, 59, 64, 66, 69, 71, 73, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 93, 95, 98, 99, 100, 101, 102, 103], "api": [2, 3, 14, 56, 62, 65, 66, 69, 80, 93, 101], "defin": [2, 3, 5, 7, 10, 14, 22, 36, 37, 38, 40, 41, 43, 67, 69, 71, 84, 86, 87, 90, 93, 96, 99, 103], "four": [2, 10, 92, 94, 103], "clf": [2, 3, 5, 48, 69, 79, 82, 90, 93, 94, 97], "fit": [2, 3, 5, 8, 10, 18, 39, 41, 55, 56, 66, 68, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103], "sample_weight": [2, 41, 69, 94], "predict_proba": [2, 5, 36, 39, 41, 48, 55, 56, 82, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 99], "predict": [2, 3, 5, 8, 9, 10, 16, 22, 23, 25, 28, 30, 32, 34, 36, 39, 40, 41, 42, 43, 45, 46, 48, 49, 51, 52, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 77, 78, 79, 80, 83, 92, 93, 94, 95, 99, 101, 102, 103], "score": [2, 3, 4, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 42, 43, 45, 48, 50, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 99, 101], "data": [2, 3, 4, 5, 7, 8, 9, 11, 13, 14, 15, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 48, 49, 52, 55, 56, 57, 58, 59, 60, 64, 66, 67, 68, 69, 74, 75, 76, 77, 78, 80, 83, 88, 89, 95, 100], "e": [2, 3, 5, 10, 12, 22, 32, 36, 37, 40, 41, 43, 46, 48, 49, 52, 53, 57, 58, 59, 60, 62, 65, 66, 67, 69, 71, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "featur": [2, 3, 4, 5, 8, 10, 16, 18, 19, 23, 26, 27, 28, 30, 31, 48, 52, 66, 69, 79, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 101], "element": [2, 3, 5, 36, 42, 43, 45, 52, 57, 59, 67, 74, 75, 77, 83, 84, 91, 93, 103], "first": [2, 5, 10, 17, 26, 27, 36, 40, 48, 52, 57, 58, 62, 65, 67, 69, 82, 83, 84, 86, 88, 90, 93, 96, 97, 98, 99, 101, 102, 103], "index": [2, 10, 26, 36, 43, 51, 52, 53, 58, 67, 69, 74, 77, 78, 83, 84, 86, 87, 88, 90, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "should": [2, 3, 5, 7, 10, 14, 22, 26, 31, 32, 36, 37, 40, 41, 43, 45, 46, 48, 50, 51, 52, 56, 57, 58, 61, 62, 64, 65, 66, 67, 69, 70, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 100, 101, 102, 103], "correspond": [2, 3, 5, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 36, 37, 40, 41, 42, 43, 45, 46, 48, 51, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 71, 74, 75, 77, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "differ": [2, 5, 7, 10, 13, 15, 21, 24, 26, 27, 29, 36, 37, 39, 40, 41, 43, 44, 48, 50, 52, 53, 55, 57, 62, 64, 66, 69, 82, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 99, 100, 101], "sampl": [2, 3, 5, 8, 10, 16, 20, 43, 45, 48, 59, 62, 65, 67, 69, 70, 79, 80, 83, 92, 93, 94, 95, 97, 98, 101, 102, 103], "size": [2, 10, 31, 37, 40, 41, 43, 48, 59, 64, 65, 69, 71, 73, 83, 85, 88, 90, 93, 94, 96, 97, 98, 100, 102], "here": [2, 5, 7, 10, 14, 40, 43, 46, 56, 57, 58, 59, 61, 62, 65, 66, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "re": [2, 5, 37, 41, 51, 57, 69, 79, 82, 83, 84, 85, 86, 90, 91, 93, 101, 102, 103], "weight": [2, 10, 37, 38, 41, 48, 57, 64, 67, 69, 83, 84, 85, 86, 87, 91], "loss": [2, 38, 56, 67, 69, 88], "while": [2, 3, 10, 37, 40, 41, 47, 48, 52, 69, 79, 88, 93, 94, 96, 97, 101], "train": [2, 3, 4, 5, 9, 10, 16, 18, 32, 37, 38, 39, 41, 48, 52, 56, 57, 62, 65, 66, 69, 70, 80, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103], "support": [2, 3, 4, 5, 12, 14, 33, 34, 40, 42, 48, 52, 53, 56, 66, 67, 77, 79, 80, 84, 85, 86, 87, 88, 93], "your": [2, 3, 5, 9, 10, 16, 36, 37, 39, 40, 41, 43, 48, 52, 55, 56, 57, 58, 59, 61, 66, 67, 69, 70, 71, 73, 74, 80, 82, 83, 84, 85, 88, 90, 92, 96, 97, 98, 99, 100, 101, 102, 103], "recommend": [2, 5, 7, 10, 13, 16, 40, 43, 57, 86, 87, 88, 93, 100, 101], "furthermor": 2, "correctli": [2, 3, 10, 36, 37, 41, 43, 46, 53, 58, 59, 64, 65, 69, 71, 83, 88, 91, 93, 97, 98, 101, 102], "clonabl": [2, 69], "via": [2, 5, 7, 10, 13, 16, 18, 22, 36, 38, 40, 41, 48, 52, 57, 62, 65, 66, 67, 69, 70, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 97, 98, 99, 100, 101, 102, 103], "base": [2, 3, 4, 5, 7, 10, 12, 13, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 46, 47, 48, 50, 51, 52, 53, 56, 57, 58, 59, 61, 64, 66, 67, 69, 70, 73, 75, 77, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "clone": [2, 69, 97], "intern": [2, 3, 7, 10, 11, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 40, 45, 46, 47, 48, 49, 50, 51, 52, 53, 61, 65, 69, 75, 80, 84, 86, 93, 94, 96, 97, 98, 99, 101, 103], "multipl": [2, 3, 5, 12, 13, 34, 36, 43, 50, 51, 57, 58, 59, 61, 64, 65, 69, 79, 86, 87, 88, 93, 95, 97, 98, 101], "g": [2, 3, 5, 10, 12, 22, 32, 36, 37, 41, 43, 49, 52, 59, 60, 62, 65, 66, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101], "manual": [2, 69, 82, 83, 84, 93, 99, 100, 101, 103], "pytorch": [2, 37, 38, 41, 69, 79, 84, 93, 95, 97, 102], "call": [2, 3, 5, 6, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 48, 52, 56, 66, 69, 83, 84, 85, 86, 87, 91, 93, 94, 97, 99, 100, 101, 102, 103], "__init__": [2, 38, 69, 88], "independ": [2, 3, 10, 58, 69, 91, 100, 101, 103], "compat": [2, 37, 40, 41, 56, 69, 70, 73, 77, 79, 82, 83, 93, 100, 101], "neural": [2, 38, 56, 66, 69, 84, 88, 93, 97, 99, 101], "network": [2, 37, 38, 41, 56, 66, 69, 83, 84, 88, 91, 93, 97, 99, 101], "typic": [2, 37, 41, 66, 69, 82, 83, 84, 87, 88, 90, 91, 99, 100], "initi": [2, 3, 13, 18, 37, 41, 57, 69, 82, 91, 93], "insid": [2, 41, 69, 93, 94], "There": [2, 3, 7, 79, 94, 96], "two": [2, 3, 10, 18, 26, 36, 37, 40, 41, 49, 52, 62, 64, 65, 80, 83, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101, 102, 103], "new": [2, 7, 9, 10, 14, 22, 37, 40, 41, 47, 51, 52, 57, 69, 83, 84, 86, 91, 92, 93, 99, 100, 103], "notion": 2, "confid": [2, 3, 10, 22, 36, 40, 43, 46, 48, 52, 57, 58, 59, 62, 64, 65, 66, 67, 69, 73, 77, 79, 82, 88, 90, 91, 94, 96, 97, 98, 100, 102, 103], "packag": [2, 5, 7, 9, 10, 11, 15, 35, 39, 43, 44, 52, 55, 56, 62, 65, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "prune": [2, 3, 43, 59, 69, 80, 98], "everyth": [2, 65, 94], "els": [2, 65, 85, 86, 88, 92, 93, 96, 97, 98], "mathemat": [2, 3, 10, 46, 97], "keep": [2, 13, 14, 52, 79, 85, 86, 92, 93, 102], "belong": [2, 3, 10, 36, 43, 45, 46, 58, 59, 60, 61, 66, 67, 71, 75, 77, 78, 87, 88, 94, 97, 99, 102, 103], "2": [2, 3, 4, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 49, 50, 51, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 70, 74, 75, 77, 78, 92, 93, 100], "error": [2, 3, 5, 10, 37, 41, 42, 43, 45, 46, 52, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 80, 82, 84, 85, 86, 87, 90, 91, 92, 95], "erron": [2, 3, 36, 43, 46, 52, 58, 59, 67, 69, 70, 71, 99, 101], "import": [2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 40, 42, 48, 50, 51, 57, 61, 64, 69, 70, 75, 77, 78, 79, 82, 83, 90, 91, 93, 97, 98, 99, 101, 102, 103], "linear_model": [2, 5, 36, 52, 69, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logisticregress": [2, 3, 5, 36, 52, 79, 83, 84, 85, 86, 87, 91, 93, 94, 96, 99], "logreg": 2, "cl": [2, 14, 30, 69, 79, 82, 83, 93, 94, 101], "pass": [2, 3, 5, 8, 10, 12, 13, 14, 16, 23, 30, 33, 37, 40, 41, 43, 47, 48, 52, 56, 57, 59, 65, 66, 67, 69, 74, 75, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 98, 99, 101], "x_train": [2, 82, 85, 86, 87, 94, 96, 97, 101], "labels_maybe_with_error": 2, "had": [2, 3, 69, 98], "issu": [2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 39, 40, 41, 42, 43, 55, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 80, 83, 89, 95, 96, 100, 101], "pred": [2, 43, 52, 82, 83, 100, 101], "x_test": [2, 82, 85, 86, 87, 94, 97, 101], "might": [2, 5, 57, 69, 74, 82, 83, 86, 87, 88, 93, 98], "case": [2, 3, 10, 13, 36, 48, 57, 69, 82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 99, 101, 103], "standard": [2, 3, 5, 30, 36, 43, 56, 58, 59, 61, 67, 69, 79, 82, 86, 87, 90, 92, 94, 98], "adapt": [2, 37, 39, 52, 55, 69, 99], "skorch": [2, 69, 79, 93], "kera": [2, 55, 62, 65, 69, 79, 93, 98], "scikera": [2, 56, 69, 93], "open": [2, 40, 92, 98, 103], "doesn": [2, 69, 79], "t": [2, 3, 4, 7, 10, 17, 27, 37, 38, 40, 41, 42, 43, 48, 50, 51, 61, 66, 67, 69, 75, 77, 78, 79, 86, 87, 88, 90, 91, 92, 94, 97, 98, 101, 103], "alreadi": [2, 5, 10, 16, 37, 40, 41, 46, 56, 57, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101], "exist": [2, 5, 10, 12, 18, 37, 40, 41, 51, 56, 62, 64, 66, 69, 79, 80, 82, 83, 86, 87, 91, 96, 103], "made": [2, 5, 16, 37, 41, 69, 82, 83, 88, 91, 93, 96, 98, 100, 101], "easi": [2, 11, 46, 69, 86, 87, 92, 93, 94, 97], "inherit": [2, 7, 38, 69], "baseestim": [2, 41, 69], "yourmodel": [2, 69], "def": [2, 7, 14, 37, 41, 56, 69, 83, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "self": [2, 3, 5, 7, 10, 12, 13, 14, 16, 31, 37, 38, 40, 41, 43, 48, 66, 67, 69, 82, 83, 86, 88, 91, 92, 97, 102, 103], "refer": [2, 10, 16, 37, 41, 42, 58, 59, 61, 62, 64, 65, 69, 73, 74, 86, 87, 88, 90, 91, 93, 94, 97, 100, 101], "origin": [2, 5, 10, 41, 42, 43, 51, 52, 56, 58, 59, 62, 65, 66, 69, 70, 73, 75, 77, 82, 83, 86, 88, 90, 91, 93, 94, 98, 99, 101, 103], "total": [2, 3, 4, 36, 40, 52, 58, 78, 85, 88, 93, 102], "state": [2, 3, 5, 37, 38, 41, 47, 69, 94, 97, 98, 103], "art": [2, 38, 94, 97], "northcutt": [2, 3, 36, 66, 67], "et": [2, 3, 36, 38, 66, 67], "al": [2, 3, 36, 38, 66, 67], "2021": [2, 3, 36, 66, 67], "weak": [2, 65], "supervis": [2, 10, 86, 87, 93, 96], "find": [2, 5, 9, 10, 13, 14, 16, 19, 20, 22, 23, 25, 26, 27, 28, 31, 32, 36, 37, 39, 40, 41, 42, 43, 47, 51, 52, 55, 62, 65, 66, 67, 69, 71, 75, 77, 80, 86, 95, 100], "uncertainti": [2, 10, 45, 66, 69, 93, 99, 101], "It": [2, 3, 5, 7, 10, 12, 13, 16, 22, 27, 30, 32, 33, 34, 37, 41, 43, 46, 48, 50, 57, 64, 65, 69, 79, 83, 86, 87, 88, 91, 93, 94, 97, 100], "work": [2, 3, 7, 10, 12, 30, 36, 37, 40, 41, 43, 46, 51, 52, 53, 56, 57, 67, 69, 79, 80, 83, 85, 86, 87, 92, 99, 101], "includ": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 37, 39, 40, 41, 51, 52, 55, 57, 58, 61, 62, 66, 67, 69, 73, 74, 75, 77, 79, 80, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 103], "deep": [2, 39, 41, 55, 56, 69, 91], "see": [2, 3, 5, 7, 10, 13, 14, 33, 36, 37, 40, 41, 42, 43, 48, 52, 56, 58, 59, 61, 62, 65, 66, 67, 69, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "subfield": 2, "theori": [2, 94], "machin": [2, 5, 9, 10, 14, 16, 33, 39, 50, 55, 69, 82, 83, 86, 87, 92, 96], "across": [2, 3, 5, 7, 10, 13, 22, 36, 40, 48, 58, 65, 66, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 100, 101], "varieti": [2, 82, 83, 93], "like": [2, 3, 5, 6, 7, 10, 14, 32, 36, 37, 40, 41, 43, 46, 52, 56, 57, 58, 61, 62, 64, 67, 69, 70, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "pu": [2, 52], "input": [2, 3, 5, 10, 16, 26, 36, 37, 40, 41, 46, 48, 51, 52, 53, 56, 65, 69, 79, 80, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101, 102, 103], "discret": [2, 34, 43, 46, 52, 66, 67, 71, 73, 74], "vector": [2, 3, 4, 5, 10, 16, 43, 46, 48, 49, 52, 66, 67, 79, 83, 84, 86, 87, 88, 90, 91, 94, 97, 98, 99, 102, 103], "would": [2, 3, 5, 37, 40, 41, 43, 52, 59, 69, 79, 83, 85, 86, 88, 93, 94, 99, 101, 103], "obtain": [2, 5, 8, 10, 16, 43, 57, 59, 62, 65, 67, 70, 84, 87, 91, 93, 96, 98, 100, 102, 103], "been": [2, 4, 36, 43, 46, 51, 52, 57, 58, 62, 64, 66, 67, 69, 84, 86, 90, 93, 94, 96, 97, 98, 99, 102, 103], "dure": [2, 10, 16, 66, 69, 82, 83, 84, 85, 90, 91, 93, 94, 97, 100, 101, 103], "denot": [2, 3, 46, 48, 52, 59, 66, 67, 77], "tild": 2, "paper": [2, 4, 10, 57, 66, 75, 77, 92, 94, 96, 99, 101, 103], "cv_n_fold": [2, 3, 69, 83], "5": [2, 3, 4, 5, 8, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 41, 43, 45, 47, 48, 52, 57, 58, 61, 62, 65, 69, 70, 77, 83, 86, 91, 92, 93, 97, 98, 99, 100, 102, 103], "converge_latent_estim": [2, 3], "pulearn": [2, 52], "find_label_issues_kwarg": [2, 10, 69, 80, 93, 94], "label_quality_scores_kwarg": [2, 10], "low_memori": [2, 59, 75, 93], "clean": [2, 64, 67, 69, 70, 79, 82, 83, 85, 86, 87, 92, 101], "even": [2, 3, 7, 9, 10, 36, 40, 45, 46, 52, 69, 84, 93, 94, 96, 97, 98], "messi": [2, 69, 94], "ridden": [2, 69], "autom": [2, 9, 10, 69, 79, 87, 92, 93], "robust": [2, 46, 69, 87, 93], "prone": [2, 69], "out": [2, 3, 5, 10, 16, 28, 37, 41, 43, 48, 56, 59, 60, 62, 65, 66, 67, 69, 70, 78, 79, 80, 83, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103], "current": [2, 3, 5, 7, 10, 13, 14, 22, 37, 41, 42, 43, 48, 57, 64, 69, 85, 86, 87, 93, 96, 98], "intend": [2, 13, 14, 15, 16, 32, 33, 34, 44, 57, 73, 77, 84, 86, 87, 91, 94], "A": [2, 3, 4, 5, 7, 10, 12, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 36, 37, 38, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 57, 58, 61, 64, 65, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 94, 96, 98, 100, 103], "follow": [2, 3, 10, 14, 30, 34, 36, 37, 40, 41, 48, 50, 57, 58, 62, 64, 65, 66, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "experiment": [2, 37, 38, 40, 41, 42, 59, 80, 85, 93], "wrapper": [2, 56, 82, 83, 84, 101], "around": [2, 64, 85, 86, 87, 98, 99, 103], "fasttext": [2, 55], "store": [2, 4, 5, 10, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 66, 69, 82, 83, 85, 90, 91, 92, 93, 102, 103], "along": [2, 48, 59, 77, 85, 86, 87, 88, 93, 99], "dimens": [2, 52, 71, 74, 88, 93, 99, 102], "select": [2, 9, 10, 26, 57, 67, 88, 93, 96, 99], "split": [2, 3, 5, 10, 12, 40, 48, 51, 52, 69, 82, 84, 85, 86, 87, 88, 90, 91, 92, 94, 97, 100, 103], "cross": [2, 3, 10, 36, 43, 46, 47, 48, 59, 62, 65, 67, 69, 70, 80, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 101, 102, 103], "fold": [2, 3, 36, 43, 46, 69, 82, 84, 90, 92, 93, 98, 102], "By": [2, 36, 58, 59, 69, 86, 93, 102], "need": [2, 3, 10, 36, 37, 40, 41, 43, 58, 59, 61, 66, 69, 79, 83, 84, 86, 87, 91, 93, 94, 96, 97, 98, 102], "holdout": [2, 3, 69], "comput": [2, 3, 4, 5, 7, 8, 10, 19, 20, 22, 23, 26, 27, 28, 31, 36, 37, 38, 40, 41, 43, 45, 46, 47, 48, 52, 57, 58, 59, 61, 64, 65, 66, 67, 69, 70, 71, 73, 79, 80, 83, 86, 87, 92, 94, 95, 98, 99, 101, 102], "them": [2, 3, 5, 7, 9, 10, 11, 12, 27, 32, 35, 37, 39, 40, 41, 43, 55, 57, 66, 69, 80, 82, 83, 85, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 102, 103], "numer": [2, 3, 5, 10, 13, 22, 30, 34, 48, 64, 66, 69, 74, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 94, 96, 97, 99, 101], "consist": [2, 3, 37, 41, 52, 57, 102, 103], "latent": [2, 3, 46], "thei": [2, 3, 5, 15, 21, 24, 26, 29, 37, 38, 39, 41, 43, 44, 50, 52, 56, 59, 64, 67, 69, 70, 73, 77, 79, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101, 103], "relat": [2, 3, 13, 19, 20, 26, 27, 28, 31, 46, 52, 58, 69, 87, 91], "close": [2, 3, 10, 40, 46, 66, 84, 86, 87, 88, 90, 91, 93, 94, 98], "form": [2, 3, 10, 37, 38, 41, 46, 51, 52, 67, 69, 93], "equival": [2, 3, 37, 41, 46, 66, 99, 101], "iter": [2, 3, 36, 37, 41, 43, 52, 58, 59, 69, 85, 93, 96, 102], "enforc": [2, 37, 41, 52], "perfectli": [2, 36, 58, 94], "certain": [2, 3, 5, 37, 41, 56, 65, 69, 85, 86, 87, 92, 98, 99], "dict": [2, 3, 5, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 40, 41, 43, 47, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 77, 85, 86, 87, 88, 93, 103], "keyword": [2, 3, 5, 10, 16, 23, 27, 30, 37, 40, 41, 43, 45, 48, 51, 56, 57, 59, 65, 66, 67, 69, 74, 75, 77, 86], "filter": [2, 3, 10, 40, 42, 51, 58, 60, 61, 63, 65, 72, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 87, 88, 91, 92, 93, 97, 98, 101, 102, 103], "find_label_issu": [2, 3, 10, 30, 39, 40, 42, 43, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 93, 97, 98, 101, 102, 103], "particularli": [2, 79, 96, 99], "filter_bi": [2, 3, 40, 43, 59, 80, 93], "frac_nois": [2, 43, 59, 75, 93], "min_examples_per_class": [2, 43, 59, 87, 93, 94], "impact": [2, 4, 10, 86, 87, 88], "ml": [2, 4, 5, 9, 10, 15, 69, 79, 82, 83, 86, 87, 88, 90, 91, 96, 97, 101], "accuraci": [2, 38, 67, 82, 83, 84, 88, 93, 94, 96, 99, 101, 102], "n_job": [2, 40, 43, 59, 71, 73, 75, 93, 99, 102], "disabl": [2, 37, 41, 43, 99], "process": [2, 3, 7, 13, 16, 32, 37, 40, 41, 43, 51, 57, 59, 65, 71, 73, 75, 83, 84, 85, 86, 93, 96, 100], "caus": [2, 43, 48, 86, 87, 93], "rank": [2, 3, 10, 36, 40, 42, 43, 48, 58, 59, 60, 62, 63, 65, 66, 68, 72, 74, 75, 76, 78, 79, 80, 82, 83, 86, 87, 92, 93, 97, 98, 99, 102, 103], "get_label_quality_scor": [2, 39, 40, 42, 43, 44, 48, 57, 59, 60, 61, 62, 63, 64, 67, 68, 70, 72, 73, 75, 76, 77, 80, 93, 94, 97, 98, 102, 103], "adjust_pred_prob": [2, 10, 61, 66, 67, 94], "control": [2, 5, 9, 10, 16, 40, 43, 57, 65, 66, 69, 75, 77, 86, 87, 92, 93], "how": [2, 3, 5, 10, 12, 13, 14, 16, 22, 36, 37, 38, 40, 41, 46, 52, 57, 58, 61, 62, 64, 66, 67, 69, 73, 77, 79, 82, 83, 85, 86, 87, 88, 90, 91, 92, 98, 99, 100, 101, 102], "much": [2, 10, 36, 40, 43, 69, 85, 93, 94, 96, 99], "output": [2, 3, 5, 10, 16, 32, 37, 38, 41, 46, 52, 56, 57, 58, 62, 64, 65, 66, 69, 73, 74, 77, 78, 79, 80, 83, 84, 86, 88, 91, 92, 93, 98, 99, 100, 101], "print": [2, 5, 7, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 52, 57, 58, 59, 64, 66, 67, 69, 71, 73, 74, 78, 80, 82, 83, 84, 85, 87, 88, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "suppress": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74, 102, 103], "statement": [2, 40, 57, 64, 66, 67, 69, 71, 73, 74], "big": [2, 40, 59, 65, 69, 94], "limit": [2, 5, 16, 40, 59, 85, 98, 102, 103], "memori": [2, 37, 40, 41, 59, 65, 71, 73, 85, 86, 102], "label_issues_batch": [2, 39, 59, 93], "find_label_issues_batch": [2, 39, 40, 59, 93], "pred_prob": [2, 3, 5, 8, 10, 16, 23, 25, 26, 28, 31, 32, 36, 40, 42, 43, 45, 46, 47, 48, 49, 52, 53, 57, 58, 59, 61, 62, 65, 66, 67, 71, 73, 74, 75, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 101], "threshold": [2, 3, 4, 7, 10, 18, 19, 20, 22, 28, 30, 31, 40, 50, 64, 65, 66, 67, 73, 77, 86, 98, 99, 102, 103], "inverse_noise_matrix": [2, 3, 10, 46, 52, 80, 94], "label_issu": [2, 40, 43, 59, 62, 69, 71, 80, 82, 83, 84, 88, 91, 93, 94, 97, 101], "clf_kwarg": [2, 3, 10, 69], "clf_final_kwarg": [2, 69], "validation_func": [2, 3, 10], "correct": [2, 5, 9, 10, 36, 40, 43, 45, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 73, 77, 79, 84, 88, 90, 91, 94, 96, 98, 100, 101], "result": [2, 3, 9, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 40, 41, 43, 45, 50, 52, 59, 61, 62, 65, 67, 69, 70, 71, 73, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 101, 102, 103], "identifi": [2, 3, 5, 7, 9, 10, 12, 16, 27, 33, 36, 40, 42, 43, 59, 62, 65, 67, 69, 70, 71, 74, 75, 77, 78, 79, 82, 83, 84, 86, 87, 88, 90, 91, 92, 94, 97, 99, 101, 102, 103], "final": [2, 10, 69, 82, 90, 98, 100, 101], "remain": [2, 69, 80, 82, 83, 88, 97, 101, 103], "datasetlik": [2, 52, 69], "beyond": [2, 5, 7, 9, 10, 11, 35, 79, 82, 83, 101, 102], "pd": [2, 3, 5, 7, 13, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 47, 56, 57, 58, 69, 77, 82, 83, 84, 86, 87, 90, 91, 93, 94, 96, 101, 103], "datafram": [2, 3, 5, 7, 12, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 40, 47, 52, 53, 56, 57, 58, 69, 74, 78, 80, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101, 102, 103], "scipi": [2, 5, 13, 52], "spars": [2, 4, 5, 10, 13, 16, 18, 31, 52, 53, 87, 88, 90, 91, 94], "csr_matrix": [2, 4, 5, 13, 16, 18, 31], "torch": [2, 37, 38, 41, 83, 84, 88, 91, 92, 99], "util": [2, 5, 10, 16, 33, 37, 38, 41, 44, 56, 57, 62, 65, 69, 79, 80, 84, 86, 87, 88, 93, 94, 99], "tensorflow": [2, 52, 56, 79, 84, 93], "object": [2, 5, 10, 12, 13, 16, 32, 33, 37, 38, 40, 41, 48, 52, 53, 56, 59, 62, 63, 64, 65, 66, 69, 77, 79, 83, 84, 87, 88, 90, 93, 94, 95, 97, 101], "list": [2, 3, 5, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 38, 40, 41, 42, 43, 49, 51, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 73, 74, 75, 77, 78, 80, 83, 84, 85, 86, 87, 88, 92, 93, 94, 97, 98, 101, 103], "index_list": 2, "subset": [2, 3, 5, 16, 36, 40, 43, 52, 67, 74, 78, 82, 83, 84, 88, 90, 91, 93, 97, 98, 99, 100, 101, 103], "wa": [2, 3, 12, 14, 40, 50, 52, 57, 58, 64, 66, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 100, 102, 103], "abl": [2, 3, 10, 69, 84, 93, 94, 96, 97], "format": [2, 3, 5, 10, 12, 32, 37, 40, 41, 43, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 82, 84, 86, 87, 88, 90, 92, 96, 101, 102, 103], "make": [2, 3, 5, 18, 37, 40, 41, 48, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "sure": [2, 5, 40, 43, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101], "shuffl": [2, 10, 52, 84, 88, 91, 97, 99], "ha": [2, 3, 5, 6, 10, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 42, 46, 48, 51, 52, 57, 62, 64, 69, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 90, 91, 94, 96, 97, 98, 99, 100, 101, 103], "batch": [2, 40, 52, 56, 57, 71, 73, 85, 88, 93, 99], "order": [2, 5, 10, 34, 36, 37, 41, 42, 43, 46, 47, 48, 50, 52, 57, 58, 59, 62, 65, 66, 67, 71, 74, 75, 77, 78, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 101, 102, 103], "destroi": [2, 52], "oper": [2, 37, 40, 41, 52, 56, 67, 79, 82, 83, 91, 93, 99], "eg": [2, 5, 10, 52, 62, 65, 86, 87, 93], "repeat": [2, 52, 57, 96, 99], "appli": [2, 34, 37, 39, 41, 43, 48, 49, 51, 52, 61, 66, 75, 82, 83, 84, 85, 86, 87, 88, 90, 93, 96, 97, 99, 100, 101, 102], "array_lik": [2, 3, 36, 43, 52, 59, 66, 70], "some": [2, 3, 5, 10, 14, 22, 36, 37, 39, 41, 43, 46, 51, 52, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103], "seri": [2, 3, 40, 52, 53, 69, 77, 93], "row": [2, 3, 5, 10, 13, 27, 32, 36, 40, 43, 45, 46, 52, 57, 58, 59, 61, 66, 67, 69, 74, 75, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 99, 103], "rather": [2, 3, 5, 26, 36, 52, 56, 57, 64, 73, 77, 83, 96, 100, 101, 102, 103], "leav": [2, 43], "per": [2, 3, 5, 7, 13, 36, 40, 43, 48, 51, 57, 58, 59, 61, 64, 65, 67, 70, 71, 73, 77, 87, 93, 98, 103], "determin": [2, 3, 10, 12, 16, 22, 26, 30, 36, 40, 43, 48, 52, 57, 59, 62, 64, 67, 73, 77, 86, 93, 96, 98, 99, 101], "cutoff": [2, 3, 99], "consid": [2, 3, 4, 5, 10, 13, 16, 23, 26, 28, 31, 36, 37, 41, 43, 52, 57, 64, 66, 67, 70, 73, 77, 82, 83, 84, 88, 90, 91, 93, 94, 98, 99, 100, 101, 102], "section": [2, 3, 7, 10, 80, 88, 90, 93, 98], "3": [2, 3, 4, 5, 7, 10, 34, 36, 37, 41, 43, 46, 47, 48, 49, 50, 51, 52, 56, 59, 66, 67, 69, 70, 75, 77, 92, 93, 100], "equat": [2, 3, 46], "advanc": [2, 3, 5, 9, 10, 16, 64, 66, 77, 80, 87, 89, 93, 94], "user": [2, 3, 5, 9, 10, 14, 16, 27, 32, 33, 34, 37, 41, 43, 56, 64, 66, 67, 69, 73, 77, 85, 94], "specifi": [2, 3, 4, 5, 8, 10, 13, 14, 16, 18, 31, 33, 37, 40, 41, 43, 48, 51, 56, 57, 58, 59, 62, 64, 66, 67, 69, 70, 78, 80, 83, 84, 87, 88, 91, 96, 98, 101], "automat": [2, 3, 5, 26, 36, 79, 82, 83, 88, 90, 91, 92, 93, 96, 97, 98, 101, 102, 103], "greater": [2, 3, 5, 7, 9, 10, 28, 40, 52, 64, 87, 92, 93, 103], "count": [2, 22, 26, 36, 40, 43, 46, 52, 58, 59, 65, 80, 88, 93, 98], "observ": [2, 3, 46, 84, 85, 86, 87, 96, 99, 101], "mislabel": [2, 10, 36, 40, 42, 43, 46, 57, 58, 59, 62, 64, 67, 73, 75, 77, 79, 82, 83, 84, 88, 90, 91, 93, 94, 98, 101], "one": [2, 3, 5, 7, 10, 26, 36, 37, 40, 41, 42, 43, 48, 50, 52, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 96, 99, 100, 101, 103], "get_label_issu": [2, 39, 40, 68, 69, 82, 83, 94, 101], "either": [2, 3, 4, 7, 10, 37, 40, 41, 43, 57, 59, 64, 66, 67, 71, 73, 85, 87, 93, 97, 98], "boolean": [2, 7, 10, 22, 40, 43, 51, 57, 59, 62, 67, 69, 71, 73, 74, 79, 83, 84, 87, 88, 91, 93, 98, 101, 102], "label_issues_mask": [2, 43, 67, 69, 80], "indic": [2, 3, 4, 5, 7, 10, 13, 22, 36, 40, 41, 42, 43, 45, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 73, 75, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "its": [2, 5, 7, 9, 10, 16, 37, 40, 41, 43, 50, 51, 59, 62, 65, 66, 67, 69, 71, 75, 77, 79, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 100, 101, 102, 103], "return_indices_ranked_bi": [2, 40, 43, 59, 75, 80, 82, 83, 93, 94], "significantli": [2, 88, 94, 96, 100], "reduc": [2, 40, 43, 52, 84, 93], "time": [2, 10, 37, 40, 41, 52, 57, 80, 82, 83, 85, 86, 88, 92, 93, 94, 98, 99, 101, 102, 103], "take": [2, 5, 10, 36, 37, 41, 47, 48, 52, 56, 67, 82, 85, 88, 90, 96, 97, 98, 103], "run": [2, 5, 6, 7, 9, 10, 11, 14, 16, 26, 27, 32, 35, 37, 40, 41, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 103], "skip": [2, 10, 37, 41, 69, 84, 93, 97, 103], "slow": [2, 3], "step": [2, 7, 26, 48, 65, 85, 88, 94, 96, 100], "caution": [2, 5, 93], "previous": [2, 5, 13, 52, 66, 69, 80, 82, 84, 86, 90, 91, 96, 100], "assign": [2, 7, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 37, 41, 47, 48, 52, 69, 82, 86, 88, 90, 93, 101, 102, 103], "individu": [2, 4, 7, 10, 13, 26, 37, 41, 42, 57, 61, 64, 67, 69, 75, 77, 80, 82, 87, 90, 93, 96, 97, 98, 103], "still": [2, 40, 41, 52, 66, 82, 84, 88, 93, 99], "extra": [2, 37, 41, 52, 56, 57, 58, 69, 88, 91, 93, 96, 99], "receiv": [2, 10, 37, 41, 42, 58, 61, 62, 69, 71, 75, 87, 98], "overwritten": [2, 69], "callabl": [2, 3, 37, 41, 48, 51, 56, 61, 93], "x_val": 2, "y_val": 2, "map": [2, 3, 12, 40, 41, 44, 47, 51, 52, 65, 67, 69, 74, 84, 85, 86, 87, 88, 93, 94, 97, 103], "appropri": [2, 10, 16, 34, 59, 67, 86, 90, 97, 98], "earli": [2, 88], "stop": [2, 88], "x_valid": 2, "y_valid": 2, "could": [2, 4, 7, 10, 22, 36, 52, 66, 82, 86, 88, 90, 97, 101, 103], "f": [2, 7, 82, 83, 84, 85, 86, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "ignor": [2, 37, 41, 51, 56, 69, 74, 78, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "allow": [2, 4, 36, 37, 40, 41, 45, 52, 57, 65, 66, 69, 71, 73, 83, 84, 85, 88, 93, 100, 102], "access": [2, 10, 13, 37, 41, 69, 83, 87, 88, 91, 97], "hyperparamet": [2, 61, 66, 88], "purpos": [2, 86, 87, 93, 97, 101], "want": [2, 5, 10, 36, 40, 53, 57, 59, 69, 83, 85, 86, 88, 91, 92, 96, 98, 99, 100, 102, 103], "explicitli": [2, 8, 10, 41, 69, 93], "yourself": [2, 5, 40, 87], "altern": [2, 7, 10, 48, 52, 56, 57, 67, 80, 83, 84, 88, 90, 91, 93, 94, 96, 97, 99, 101], "same": [2, 3, 5, 7, 9, 10, 12, 14, 16, 26, 30, 37, 40, 41, 43, 52, 56, 57, 59, 66, 67, 69, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 90, 91, 93, 97, 98, 99, 100, 101, 102], "effect": [2, 10, 27, 37, 41, 57, 66, 69, 88, 90, 91, 93, 99], "offer": [2, 5, 9, 10, 83, 84, 86, 87, 91, 93, 94, 97], "after": [2, 3, 5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 57, 69, 83, 86, 88, 91, 93, 94, 96, 98, 99, 100, 101, 102], "attribut": [2, 5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 40, 41, 48, 66, 69, 82, 86], "label_issues_df": [2, 69, 88], "similar": [2, 10, 36, 37, 41, 52, 57, 61, 62, 64, 66, 69, 73, 77, 85, 86, 87, 88, 90, 91, 93, 94, 98, 99, 102], "document": [2, 3, 5, 14, 16, 36, 37, 40, 41, 42, 43, 48, 51, 56, 58, 59, 61, 64, 65, 66, 69, 73, 74, 75, 77, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "descript": [2, 5, 7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 36, 42, 52, 62, 69, 86, 87], "were": [2, 3, 5, 36, 41, 58, 64, 77, 82, 84, 90, 93, 94, 96, 98, 100, 102], "present": [2, 3, 5, 10, 12, 13, 20, 36, 52, 66, 74, 79, 88, 90, 93, 99], "actual": [2, 3, 5, 36, 57, 58, 67, 87, 93, 94, 103], "num_class": [2, 36, 40, 52, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99], "uniqu": [2, 31, 52, 74, 86, 93, 97, 99], "given_label": [2, 5, 25, 30, 36, 46, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102, 103], "normal": [2, 3, 18, 26, 31, 43, 45, 48, 50, 51, 52, 67, 93, 94, 99], "trick": [2, 93], "distribut": [2, 3, 5, 10, 26, 28, 36, 41, 43, 47, 50, 57, 65, 66, 67, 79, 85, 86, 87, 88, 90, 91, 98, 99], "account": [2, 36, 57, 61, 66, 67, 83, 91, 93, 94, 96, 97, 99, 101], "word": [2, 3, 51, 77, 78, 93], "remov": [2, 10, 31, 36, 37, 41, 43, 69, 79, 82, 83, 87, 88, 90, 91, 92, 93, 94, 97, 99, 101], "so": [2, 3, 5, 6, 7, 10, 14, 26, 34, 36, 37, 40, 41, 43, 52, 57, 58, 64, 67, 69, 73, 77, 84, 86, 87, 88, 91, 94, 97, 99, 102], "proportion": [2, 10, 43], "just": [2, 3, 5, 10, 13, 32, 36, 38, 40, 52, 56, 67, 69, 71, 79, 80, 82, 83, 84, 87, 88, 90, 91, 93, 94, 97, 98, 99, 100, 101, 102], "procedur": 2, "get": [2, 3, 5, 8, 13, 31, 37, 38, 41, 43, 48, 50, 51, 52, 57, 59, 61, 66, 67, 69, 70, 71, 79, 82, 83, 84, 88, 91, 92, 93, 94, 99, 100, 101], "detect": [2, 5, 7, 9, 13, 14, 16, 18, 22, 28, 42, 50, 60, 62, 63, 64, 65, 66, 67, 68, 69, 72, 76, 79, 82, 83, 85, 86, 88, 89, 95, 97, 101, 102, 103], "arg": [2, 12, 22, 27, 31, 37, 38, 41, 48, 52, 67, 69], "kwarg": [2, 7, 10, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 42, 48, 56, 65, 69, 71, 73, 74, 75, 93], "test": [2, 5, 10, 26, 41, 48, 56, 69, 79, 82, 83, 85, 86, 87, 88, 90, 91, 100, 101, 103], "expect": [2, 3, 37, 41, 43, 48, 57, 66, 67, 69, 82, 83, 93, 94, 96, 97, 98, 101, 103], "class_predict": 2, "evalu": [2, 10, 37, 38, 39, 40, 41, 65, 69, 82, 83, 84, 86, 87, 88, 93, 94, 96, 100, 101, 102], "simpli": [2, 10, 36, 67, 83, 86, 87, 90, 91, 93, 94, 97, 101, 102, 103], "quantifi": [2, 5, 7, 10, 13, 43, 61, 66, 69, 79, 87, 88, 90, 91, 94, 98], "save_spac": [2, 10, 68, 69], "potenti": [2, 10, 36, 43, 51, 59, 62, 65, 67, 69, 71, 73, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "cach": [2, 83, 91], "panda": [2, 5, 7, 12, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 52, 53, 56, 57, 58, 80, 82, 83, 84, 86, 87, 90, 91, 92, 93, 94, 96, 101, 102], "unlik": [2, 10, 43, 45, 48, 56, 58, 59, 61, 77, 86, 96, 97, 99, 101], "both": [2, 5, 10, 16, 26, 36, 37, 41, 43, 52, 57, 59, 67, 71, 73, 78, 79, 86, 88, 93, 94, 96, 103], "mask": [2, 40, 43, 51, 52, 59, 62, 67, 69, 71, 73, 74, 79, 85, 92, 93, 96, 98, 102, 103], "prefer": [2, 67, 75, 97], "plan": 2, "subsequ": [2, 3, 37, 41, 83, 91, 93, 94, 98], "invok": [2, 37, 41, 94, 100], "scratch": [2, 69], "To": [2, 5, 7, 9, 10, 11, 13, 16, 26, 35, 37, 40, 41, 42, 43, 56, 57, 59, 61, 65, 66, 67, 69, 70, 71, 73, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 100, 101, 102, 103], "share": [2, 67, 69], "mostli": [2, 52, 64, 69, 97, 101], "longer": [2, 34, 47, 48, 51, 69, 80, 83, 91, 93, 98], "info": [2, 5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 69, 77, 86, 87, 92, 103], "about": [2, 3, 5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 38, 40, 45, 57, 58, 61, 65, 69, 74, 77, 84, 86, 88, 90, 91, 92, 93, 94, 96, 99], "docstr": [2, 36, 37, 41, 52, 69, 92, 94], "unless": [2, 37, 41, 69, 93], "our": [2, 3, 10, 56, 57, 67, 69, 79, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "is_label_issu": [2, 30, 69, 83, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "entir": [2, 10, 26, 40, 43, 46, 58, 59, 64, 67, 69, 71, 73, 74, 79, 85, 86, 87, 93, 98, 99, 100, 102, 103], "accur": [2, 3, 5, 9, 10, 16, 36, 40, 43, 57, 58, 59, 62, 65, 67, 69, 70, 71, 73, 74, 80, 87, 88, 90, 91, 93, 96, 101], "label_qu": [2, 57, 69, 83, 94, 96, 101], "measur": [2, 5, 36, 57, 58, 69, 79, 82, 92, 93, 94, 96, 97, 101, 102, 103], "qualiti": [2, 3, 5, 7, 9, 10, 13, 30, 31, 36, 40, 42, 43, 45, 48, 57, 58, 59, 61, 62, 64, 67, 69, 70, 73, 75, 77, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 101], "lower": [2, 4, 5, 7, 10, 13, 28, 40, 48, 50, 57, 58, 61, 64, 65, 67, 69, 70, 73, 77, 83, 84, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "eas": 2, "comparison": [2, 37, 41, 65, 94, 96], "against": [2, 37, 41, 86, 90, 93, 96, 97], "predicted_label": [2, 5, 25, 30, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 94, 101, 102], "ad": [2, 37, 41, 85, 87, 96, 101], "precis": [2, 50, 59, 62, 65, 93, 94, 102, 103], "definit": [2, 7, 34, 48, 69, 82, 90], "accessor": [2, 69], "describ": [2, 10, 18, 57, 66, 67, 69, 75, 77, 94, 96, 97, 98, 100, 103], "precomput": [2, 4, 5, 46, 69, 87, 88, 90, 91, 92, 94], "clear": [2, 37, 41, 69, 83, 91, 101], "save": [2, 5, 16, 37, 40, 41, 65, 69, 93, 98, 102, 103], "space": [2, 5, 10, 66, 69, 88, 90, 92], "place": [2, 37, 41, 52, 69, 82, 96], "larg": [2, 9, 10, 40, 69, 88, 90, 91, 93, 98, 99, 102, 103], "deploi": [2, 9, 10, 69, 88, 90, 91, 93], "care": [2, 10, 37, 41, 69, 91, 93, 94], "avail": [2, 4, 5, 7, 10, 12, 14, 33, 41, 69, 93, 94, 96, 98, 101], "cannot": [2, 5, 12, 14, 52, 100, 103], "anymor": 2, "classmethod": [2, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 34, 41, 48, 69], "__init_subclass__": [2, 39, 41, 68, 69], "set_": [2, 41, 69], "_request": [2, 41, 69], "pep": [2, 41, 69], "487": [2, 41, 69], "look": [2, 5, 7, 16, 37, 41, 52, 69, 74, 82, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 99, 102, 103], "inform": [2, 5, 7, 10, 13, 16, 33, 37, 41, 52, 57, 58, 62, 65, 69, 74, 77, 78, 79, 84, 85, 86, 90, 91, 94, 96, 99, 102, 103], "__metadata_request__": [2, 41, 69], "infer": [2, 41, 52, 69, 74, 78, 82, 83, 88, 96, 97], "signatur": [2, 37, 41, 69], "accept": [2, 37, 41, 50, 67, 69, 86, 87, 93], "metadata": [2, 41, 69, 88, 90, 91, 103], "through": [2, 5, 7, 41, 69, 83, 84, 85, 87, 91, 92, 93, 96, 98, 99], "develop": [2, 9, 41, 69, 93, 94, 103], "request": [2, 41, 69, 82, 83, 87, 91, 92, 97, 103], "those": [2, 3, 4, 10, 40, 41, 43, 56, 57, 59, 65, 69, 73, 77, 78, 79, 84, 88, 93, 98, 102], "http": [2, 4, 5, 7, 9, 10, 11, 18, 35, 37, 38, 40, 41, 45, 52, 62, 65, 66, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "www": [2, 41, 69, 99], "org": [2, 4, 18, 37, 38, 41, 52, 66, 69, 93, 94, 103], "dev": [2, 41, 69], "0487": [2, 41, 69], "get_metadata_rout": [2, 39, 41, 68, 69], "rout": [2, 41, 69], "pleas": [2, 37, 41, 56, 69, 79, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 96, 97, 99, 101, 103], "guid": [2, 7, 10, 41, 69, 80, 88, 89], "mechan": [2, 37, 41, 69], "metadatarequest": [2, 41, 69], "encapsul": [2, 16, 41, 64, 69], "get_param": [2, 39, 41, 55, 56, 68, 69], "subobject": [2, 41, 69], "param": [2, 10, 37, 41, 56, 66, 69, 93], "name": [2, 5, 6, 7, 10, 12, 13, 32, 34, 36, 37, 41, 47, 48, 52, 56, 57, 58, 65, 69, 74, 78, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101, 102, 103], "set_fit_request": [2, 39, 41, 68, 69], "str": [2, 3, 4, 5, 12, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 40, 41, 43, 46, 48, 50, 51, 52, 56, 57, 58, 62, 64, 65, 67, 69, 74, 78, 84, 85, 86, 93, 96, 97, 98, 103], "unchang": [2, 37, 41, 69, 103], "relev": [2, 16, 26, 41, 69, 88], "enable_metadata_rout": [2, 41, 69], "set_config": [2, 41, 69], "meta": [2, 41, 69], "rais": [2, 4, 5, 12, 13, 34, 37, 41, 45, 48, 50, 69, 84, 93], "alia": [2, 37, 41, 69], "metadata_rout": [2, 41, 69], "retain": [2, 41, 52, 69], "chang": [2, 32, 34, 37, 40, 41, 45, 69, 77, 82, 83, 84, 86, 91, 93, 98, 99, 103], "version": [2, 5, 7, 9, 10, 11, 15, 21, 24, 29, 35, 37, 39, 41, 44, 45, 52, 55, 56, 67, 69, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 103], "sub": [2, 41, 64, 69], "pipelin": [2, 41, 69, 101], "otherwis": [2, 4, 7, 10, 34, 36, 37, 40, 41, 43, 49, 50, 51, 52, 59, 66, 69, 71, 73, 74, 78, 83, 91, 93], "updat": [2, 13, 37, 40, 41, 56, 69, 80, 85, 86, 88], "set_param": [2, 39, 41, 55, 56, 68, 69], "simpl": [2, 37, 41, 43, 57, 67, 69, 82, 83, 85, 86, 87, 88, 90, 91, 96, 99, 101], "well": [2, 3, 9, 10, 37, 41, 45, 46, 57, 59, 65, 67, 69, 74, 77, 78, 80, 86, 87, 88, 90, 91, 93, 94, 96, 98, 99], "nest": [2, 37, 41, 42, 53, 69, 75, 77, 78, 103], "latter": [2, 37, 41, 69, 99], "compon": [2, 41, 69], "__": [2, 41, 69], "set_score_request": [2, 68, 69], "structur": [3, 66, 82, 85, 90, 93], "unobserv": 3, "less": [3, 4, 5, 10, 31, 40, 48, 57, 66, 67, 71, 73, 77, 87, 88, 90, 92, 93, 94, 98, 103], "channel": [3, 84, 94], "character": 3, "flip": 3, "nm": 3, "invers": [3, 10, 36, 46, 52, 58, 83, 87, 92], "inv": 3, "confident_joint": [3, 22, 36, 43, 52, 58, 59, 80, 93, 94], "un": 3, "under": [3, 10, 37, 41, 58, 65, 66, 87, 99], "joint": [3, 36, 43, 46, 52, 58, 59, 92], "num_label_issu": [3, 40, 43, 59, 74, 78, 80], "estimation_method": [3, 40], "off_diagon": 3, "multi_label": [3, 36, 43, 52, 53, 59, 97], "don": [3, 79, 87, 88, 90, 91, 94, 98, 101], "statis": 3, "compute_confident_joint": [3, 36, 43, 52, 59, 94], "off": [3, 43, 52, 64, 88, 94, 98, 99], "j": [3, 5, 36, 37, 41, 42, 43, 59, 62, 65, 66, 75, 77, 78, 85, 86, 87, 94, 102, 103], "confident_learn": [3, 43, 59, 94], "off_diagonal_calibr": 3, "calibr": [3, 4, 43, 52, 57, 96], "cj": [3, 46, 52], "axi": [3, 31, 46, 48, 50, 71, 74, 84, 85, 86, 87, 88, 93, 94, 96, 97, 99, 101, 102], "bincount": [3, 85, 86, 87, 94, 96, 97], "alwai": [3, 10, 37, 41, 52, 82, 83, 84, 94, 101], "estimate_issu": 3, "over": [3, 5, 10, 37, 40, 41, 64, 65, 71, 73, 82, 87, 88, 90, 92, 93, 94, 99, 101], "As": [3, 7, 79, 86, 87, 91, 94, 101, 103], "add": [3, 5, 7, 12, 13, 37, 41, 56, 65, 83, 84, 85, 86, 87, 88, 91, 93, 94, 97], "approach": [3, 4, 36, 40, 43, 56, 82, 85, 90, 94, 97, 99, 101], "custom": [3, 7, 10, 11, 30, 37, 40, 41, 48, 51, 67, 83, 87, 88, 91, 94, 101], "know": [3, 10, 86, 87, 88, 90, 91, 93, 94, 96, 101], "cut": [3, 64, 79, 94], "off_diagonal_custom": 3, "tl": 3, "dr": 3, "sometim": [3, 32, 98, 99, 103], "underestim": 3, "few": [3, 9, 10, 65, 79, 87, 93, 96, 97, 98, 99, 103], "4": [3, 4, 5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 47, 48, 51, 61, 62, 64, 65, 67, 70, 77, 92, 93, 97, 102, 103], "detail": [3, 4, 5, 10, 14, 16, 33, 36, 37, 41, 42, 48, 52, 56, 57, 58, 59, 61, 62, 64, 65, 66, 73, 74, 75, 79, 80, 84, 93, 97, 99, 103], "num_issu": [3, 7, 40, 84, 85, 86, 87, 88, 90, 91, 94], "calibrate_confident_joint": 3, "up": [3, 7, 10, 17, 26, 27, 30, 43, 48, 56, 57, 83, 85, 92, 93, 98, 101, 103], "p_": [3, 36, 43], "pair": [3, 5, 10, 36, 43, 94], "v": [3, 10, 40, 58, 59, 61, 67, 85, 86, 87, 97, 98, 99, 100], "rest": [3, 5, 7, 9, 10, 11, 35, 58, 59, 61, 69, 82, 83, 85, 86, 87, 88, 90, 91, 93, 94, 96, 101], "fashion": [3, 5, 71, 82], "2x2": 3, "incorrectli": [3, 36, 58, 59, 62, 90, 103], "calibrated_cj": 3, "c": [3, 10, 50, 51, 59, 67, 79, 82, 84, 86, 87, 90, 91, 93, 94, 97, 98, 99, 100, 101], "whose": [3, 4, 5, 10, 28, 37, 41, 46, 51, 57, 61, 64, 70, 73, 77, 78, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 99, 102, 103], "truli": [3, 99, 102], "estimate_joint": [3, 36, 94], "joint_estim": 3, "confident_joint_distribut": 3, "recal": [3, 59, 65, 94, 98, 100, 102, 103], "return_indices_of_off_diagon": 3, "frequenc": [3, 26, 57, 58, 65, 74, 98, 99], "done": [3, 10, 56, 69, 86, 93, 94, 97, 99, 100], "overfit": [3, 10, 62, 65, 82, 84, 85, 86, 87, 88, 90, 91, 100], "classifict": 3, "singl": [3, 5, 9, 10, 12, 26, 36, 37, 41, 42, 48, 49, 52, 57, 58, 64, 65, 66, 67, 77, 82, 84, 85, 86, 93, 94, 97, 98], "baselin": [3, 37, 43, 83, 99, 101], "proxi": 3, "union": [3, 5, 12, 48, 52, 53, 59, 65, 69, 77, 93], "tupl": [3, 31, 37, 41, 42, 46, 47, 49, 51, 52, 57, 59, 65, 73, 75, 77, 78, 84, 103], "confident_joint_count": 3, "indices_off_diagon": 3, "simplif": 3, "effici": [3, 5, 10, 40, 46, 57, 71, 73, 79, 83, 85, 88, 93, 102], "practic": [3, 82, 83, 87, 88, 94, 99, 101], "complet": [3, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "gist": 3, "cj_ish": 3, "guess": [3, 46, 94, 96], "8": [3, 5, 7, 8, 47, 48, 49, 51, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "parallel": [3, 43, 65, 75, 92], "again": [3, 56, 82, 93, 99], "simplifi": [3, 14, 93], "understand": [3, 9, 36, 58, 65, 87, 94, 101, 102, 103], "100": [3, 37, 41, 50, 67, 82, 83, 86, 87, 88, 90, 92, 93, 94, 97, 98, 99, 103], "optim": [3, 37, 38, 41, 56, 88, 96], "speed": [3, 43, 83, 92, 93, 101], "dtype": [3, 23, 25, 26, 31, 37, 41, 51, 52, 61, 77, 84, 98], "enumer": [3, 37, 41, 84, 85, 86, 87, 88, 103], "s_label": 3, "confident_bin": 3, "6": [3, 5, 41, 48, 52, 77, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "num_confident_bin": 3, "argmax": [3, 43, 67, 71, 74, 84, 93, 94, 98, 99, 102], "elif": 3, "estimate_lat": 3, "py_method": [3, 46], "cnt": [3, 46], "1d": [3, 5, 12, 16, 32, 40, 43, 48, 49, 52, 53, 61, 70, 82, 84], "eqn": [3, 46], "margin": [3, 43, 46, 48, 67], "marginal_p": [3, 46], "shorthand": [3, 13], "proport": [3, 10, 36, 58, 94, 100], "poorli": [3, 46, 82], "inv_noise_matrix": 3, "estimate_py_and_noise_matrices_from_prob": [3, 94], "variabl": [3, 7, 14, 27, 52, 69, 70, 84, 86, 90, 94, 97, 101], "exact": [3, 46, 82, 85, 86, 87, 88, 90], "within": [3, 4, 5, 10, 15, 32, 37, 38, 41, 42, 44, 59, 64, 73, 75, 77, 86, 87, 88, 93, 98, 102], "percent": 3, "often": [3, 36, 46, 58, 93, 94, 100, 102], "estimate_confident_joint_and_cv_pred_proba": 3, "mani": [3, 9, 10, 52, 53, 65, 82, 83, 84, 85, 86, 88, 90, 91, 93, 97, 98, 99, 101], "wai": [3, 5, 56, 79, 80, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 97, 98, 100], "pro": 3, "con": 3, "pred_proba": [3, 100], "combin": [3, 36, 86, 88, 92, 93, 94, 100, 101], "becaus": [3, 46, 52, 64, 91, 93, 94, 96, 98], "littl": [3, 40, 92, 98, 103], "uniform": [3, 67, 92, 93, 94], "20": [3, 7, 42, 78, 84, 88, 91, 92, 93, 94, 98, 101, 102, 103], "Such": [3, 88, 99], "bound": [3, 23, 25, 37, 41, 51, 61, 62, 64, 65, 98], "reason": [3, 22, 37, 41], "comment": [3, 51, 103], "end": [3, 5, 37, 41, 65], "file": [3, 5, 12, 39, 40, 55, 65, 82, 84, 86, 90, 91, 92, 93, 98, 99, 102, 103], "estimate_py_noise_matrices_and_cv_pred_proba": [3, 94], "handl": [3, 5, 7, 10, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 40, 41, 80, 82, 85, 86, 87, 88, 90, 91, 94, 102, 103], "five": [3, 62, 65, 94, 98], "estimate_cv_predicted_prob": [3, 94], "estimate_noise_matric": 3, "get_confident_threshold": [3, 39, 40], "amongst": [3, 10, 98], "confident_threshold": [3, 10, 22, 23, 40, 66], "valuat": [4, 9, 18], "assess": [4, 98], "point": [4, 5, 7, 9, 10, 18, 26, 37, 41, 85, 86, 87, 88, 90, 91, 93, 94, 96], "contribut": [4, 10, 18, 98], "data_shapley_knn": 4, "knn_graph": [4, 5, 10, 16, 18, 19, 26, 28, 31, 90], "metric": [4, 5, 10, 18, 19, 26, 31, 50, 52, 56, 65, 66, 82, 83, 84, 88, 90, 91, 94, 101], "10": [4, 10, 18, 19, 23, 26, 31, 37, 38, 65, 66, 67, 78, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 100, 101, 102, 103], "shaplei": [4, 10, 18], "nearest": [4, 5, 10, 16, 23, 26, 28, 50, 66, 87, 91, 99], "neighbor": [4, 5, 10, 16, 18, 23, 26, 28, 50, 66, 86, 87, 88, 90, 91, 93, 94, 99], "knn": [4, 10, 13, 18, 26, 31, 50, 66, 90, 99], "graph": [4, 5, 10, 13, 16, 18, 26, 31], "calcul": [4, 10, 18, 26, 40, 48, 50, 57, 61, 62, 64, 65, 66, 69, 73, 88, 92], "directli": [4, 5, 14, 16, 33, 34, 40, 56, 57, 83, 87, 91, 93, 97, 98, 101], "lowest": [4, 10, 57, 65, 87, 88, 93, 96, 97, 98, 102], "fall": [4, 10, 64, 73, 77, 94, 99], "flag": [4, 10, 22, 26, 43, 48, 58, 59, 62, 69, 79, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 99, 101, 102], "approxim": [4, 10, 18, 40, 66, 96], "top": [4, 5, 10, 36, 40, 42, 43, 52, 59, 62, 65, 67, 74, 78, 79, 83, 84, 86, 87, 90, 91, 92, 93, 94, 98, 99, 101, 103], "found": [4, 5, 7, 10, 13, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 97, 99, 101, 103], "arxiv": [4, 18, 94], "ab": [4, 18, 94, 98], "1908": 4, "08619": 4, "1911": [4, 18], "07128": [4, 18], "embed": [4, 5, 10, 16, 66, 79, 83, 84, 86, 87, 90, 91, 94, 97, 101], "represent": [4, 5, 10, 16, 34, 37, 41, 49, 59, 79, 83, 84, 86, 87, 88, 91, 93, 94, 99], "suppli": [4, 97, 98, 101], "2d": [4, 5, 16, 32, 40, 48, 49, 51, 52, 57, 82, 84, 97], "num_exampl": [4, 5, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33, 36, 58, 84, 85, 86, 87, 88, 90, 91, 94], "num_featur": [4, 5, 16, 37, 41, 56], "distanc": [4, 5, 10, 16, 18, 26, 28, 31, 50, 64, 66, 90, 99], "construct": [4, 5, 7, 10, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 37, 41, 48, 56], "nearestneighbor": [4, 5, 10, 18, 66, 90, 99], "cosin": [4, 10, 50, 66, 99], "dim": [4, 66, 88, 102], "euclidean": [4, 5, 10, 50, 64, 66, 90], "dimension": [4, 26, 52, 84, 94, 99], "exce": [4, 85, 88], "transform": [4, 10, 32, 48, 50, 52, 66, 67, 82, 83, 87, 88, 91, 99, 103], "rel": [4, 10, 36, 57, 58, 66, 86, 87, 88, 90, 91, 94, 99], "adjust": [4, 38, 43, 61, 66, 67, 79, 94], "closer": [4, 10, 64, 98], "highli": [4, 87, 88], "influenti": 4, "posit": [4, 5, 37, 41, 50, 52, 65, 92, 99], "convers": 4, "neg": [4, 10, 64, 65, 86, 87, 92], "valueerror": [4, 5, 12, 13, 34, 45, 48, 50, 93], "neither": [4, 5, 10, 14, 98], "nor": [4, 5, 10, 14], "larger": [4, 18, 69, 71, 73, 85, 88, 91, 92, 93], "55": [4, 51, 92, 98, 101], "525": 4, "unifi": 5, "audit": [5, 9, 12, 13, 16, 84, 88, 89, 90, 91, 93, 94, 97, 98, 101], "kind": [5, 6, 7, 10, 84, 85, 86, 88, 90, 91, 92, 94], "addit": [5, 7, 9, 11, 13, 33, 35, 37, 41, 48, 53, 57, 65, 74, 75, 82, 83, 84, 86, 90, 91, 94, 96, 99, 100], "depend": [5, 7, 9, 11, 12, 13, 35, 39, 43, 45, 52, 55, 59, 66, 69, 70, 79], "instal": [5, 7, 9, 11, 35, 37, 39, 40, 41, 43, 55, 56, 71, 73], "pip": [5, 7, 9, 11, 35, 56, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "development": [5, 7, 9, 11, 35], "git": [5, 7, 9, 11, 35, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "github": [5, 7, 9, 11, 35, 37, 38, 52, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101], "com": [5, 7, 9, 11, 35, 37, 38, 40, 45, 52, 66, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "egg": [5, 7, 9, 11, 35, 79, 92], "label_nam": [5, 7, 8, 10, 12, 18, 31, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 98, 101], "image_kei": [5, 10, 88], "interfac": [5, 9, 10, 79, 93, 94], "librari": [5, 10, 41, 62, 65, 66, 79, 83, 86, 91, 92, 93], "goal": [5, 101], "track": [5, 7, 13, 14, 79, 85, 86, 92, 93, 94], "intermedi": [5, 9, 87], "statist": [5, 10, 13, 22, 26, 36, 57, 58, 65, 87, 90, 91, 94], "convert": [5, 10, 12, 34, 37, 41, 49, 50, 53, 57, 64, 73, 77, 80, 83, 84, 88, 91, 92, 93, 96, 97, 98], "hug": [5, 10, 12, 88], "face": [5, 10, 12, 16, 88, 92, 97], "kei": [5, 7, 10, 12, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 48, 57, 58, 64, 66, 85, 86, 87, 88, 91, 93, 94, 96, 98], "string": [5, 10, 12, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 34, 36, 37, 41, 52, 57, 58, 70, 74, 77, 78, 83, 90, 91, 93, 96, 97, 103], "dictionari": [5, 7, 10, 12, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 37, 41, 47, 52, 57, 58, 61, 62, 64, 65, 86, 87, 90, 91, 94, 96, 97, 98], "path": [5, 12, 37, 40, 41, 65, 84, 86, 93, 98], "local": [5, 7, 10, 12, 37, 38, 41, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "text": [5, 7, 10, 12, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 42, 48, 66, 75, 77, 78, 79, 81, 86, 87, 89, 92, 93, 94, 95, 96, 99], "txt": [5, 12, 103], "csv": [5, 12, 82, 83, 90, 91, 101], "json": [5, 12], "hub": [5, 12], "multiclass": [5, 12, 15, 48, 52, 57, 97], "regress": [5, 7, 10, 12, 14, 16, 21, 30, 32, 34, 83, 85, 86, 87, 91, 95, 96, 99], "multilabel": [5, 12, 14, 15, 21, 25, 32, 34, 49, 97], "imag": [5, 9, 36, 41, 62, 64, 65, 66, 71, 73, 74, 79, 86, 87, 89, 92, 93, 95, 96, 97, 98, 100, 102], "field": [5, 10, 37, 41], "themselv": [5, 82, 83, 101], "pil": [5, 88], "cleanvis": [5, 10], "level": [5, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33, 36, 51, 75, 77, 87, 88, 93, 95, 97, 102], "load_dataset": [5, 12, 88], "glue": 5, "sst2": 5, "properti": [5, 12, 13, 34, 37, 41, 85], "has_label": [5, 12], "class_nam": [5, 12, 20, 36, 42, 58, 65, 74, 78, 79, 92, 94, 98, 102, 103], "empti": [5, 12, 46, 57, 87, 93, 97], "find_issu": [5, 6, 7, 8, 10, 14, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "issue_typ": [5, 6, 7, 8, 10, 13, 14, 16, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 101], "sort": [5, 16, 40, 43, 48, 57, 59, 62, 64, 65, 67, 73, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "common": [5, 13, 16, 87, 89, 92, 93, 94, 97, 98, 102], "real": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "world": [5, 16, 79, 86, 87, 93, 94, 96, 101, 102], "interact": [5, 16, 91, 93], "thereof": [5, 16], "insight": [5, 16, 65, 96], "best": [5, 9, 10, 16, 47, 57, 67, 82, 83, 86, 87, 88, 90, 91, 93, 96, 97, 99, 101, 103], "properli": [5, 10, 40, 47, 52, 53, 71, 84, 85, 86, 87, 88, 90, 91, 93, 94, 97, 99, 101, 102], "respect": [5, 37, 41, 62, 65, 84, 85, 86, 87, 88, 90, 91, 94, 97, 98], "lexicograph": [5, 47, 52, 84, 85, 86, 87, 88, 90, 91, 94, 97], "squar": [5, 52, 69, 92, 101], "csr": 5, "evenli": 5, "omit": [5, 64, 65, 88, 98], "itself": [5, 32, 37, 41, 98], "three": [5, 10, 36, 57, 58, 69, 74, 82, 84, 85, 86, 87, 90, 92, 94, 96, 100, 101, 102, 103], "indptr": 5, "wise": 5, "start": [5, 7, 10, 34, 37, 38, 41, 48, 79, 90, 97, 103], "th": [5, 42, 47, 51, 52, 57, 59, 62, 64, 65, 66, 75, 77, 78, 91, 97, 98, 103], "ascend": [5, 36, 58, 88, 94], "segment": [5, 71, 73, 74, 95], "reflect": [5, 82, 83, 90, 91, 96, 98, 99, 101], "maintain": [5, 56], "kneighbors_graph": [5, 18, 90], "illustr": 5, "todens": 5, "second": [5, 48, 52, 65, 67, 86, 93, 94, 103], "duplic": [5, 9, 21, 22, 37, 41, 79, 85, 86, 94, 101], "explicit": 5, "precend": 5, "collect": [5, 10, 13, 16, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 57, 93, 96, 103], "unspecifi": [5, 16, 43, 59], "interest": [5, 16, 22, 74, 78, 82, 83, 91, 94, 101, 102, 103], "constructor": [5, 10, 16, 23, 30], "issuemanag": [5, 9, 13, 14, 16, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 33], "respons": [5, 16, 22, 69, 70, 92, 101, 103], "random_st": [5, 82, 84, 85, 86, 87, 88, 94, 97, 99], "lab": [5, 6, 8, 10, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 40, 79, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 101], "comprehens": [5, 79, 88, 97, 101], "nbr": 5, "n_neighbor": [5, 10, 18, 66], "mode": [5, 11, 18, 37, 40, 41, 99], "4x4": 5, "float64": [5, 26, 37, 41, 77], "compress": [5, 10, 52, 71, 73], "toarrai": 5, "NOT": [5, 40, 91], "23606798": 5, "41421356": 5, "configur": [5, 16, 48, 87], "suppos": [5, 10, 62, 82, 83, 99, 101], "who": [5, 64, 82, 90, 94, 103], "manag": [5, 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 56, 86, 93], "clean_learning_kwarg": [5, 10, 23, 30, 93, 101], "labelissuemanag": [5, 10, 14, 21, 23], "prune_method": [5, 80], "prune_by_noise_r": [5, 43, 59, 94], "report": [5, 7, 11, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 58, 78, 79, 84, 85, 86, 87, 90, 91, 93, 94, 97, 101, 103], "include_descript": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 33], "show_summary_scor": [5, 33], "show_all_issu": [5, 33], "summari": [5, 7, 13, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 36, 42, 55, 56, 58, 63, 72, 73, 75, 76, 77, 80, 84, 85, 86, 87, 88, 90, 91, 92, 94, 98, 101, 102, 103], "show": [5, 7, 26, 37, 41, 47, 52, 65, 74, 78, 82, 85, 87, 88, 90, 91, 92, 93, 94, 96, 99, 101, 102, 103], "suffer": [5, 10, 13, 22, 59, 67, 78, 103], "onc": [5, 22, 36, 37, 41, 82, 85, 86, 93, 94, 97, 98], "familiar": 5, "overal": [5, 7, 10, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 42, 48, 57, 58, 61, 64, 65, 69, 73, 74, 75, 77, 79, 80, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 98, 103], "sever": [5, 7, 10, 12, 13, 22, 37, 40, 41, 43, 61, 64, 66, 67, 73, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 98, 99, 103], "compar": [5, 57, 66, 77, 86, 87, 90, 94, 98], "issue_summari": [5, 7, 10, 13, 85, 86], "With": [5, 9, 10, 40, 83, 91, 93, 94, 96, 101, 102, 103], "usag": [5, 40, 56], "usual": [5, 12, 32, 33, 88, 96, 101], "ti": [5, 57], "exhibit": [5, 7, 10, 13, 74, 87, 88, 90, 91, 94, 98], "ie": [5, 69], "likelihood": [5, 10, 40, 42, 43, 59, 64, 66, 67, 71, 75], "wherea": [5, 52, 59, 100], "outlier": [5, 9, 14, 21, 22, 31, 44, 67, 79, 85, 86, 87, 94, 95, 101], "fundament": [5, 10], "incompar": 5, "quantiti": [5, 94, 101], "global": [5, 7, 22, 37, 41], "non_iid": [5, 10, 14, 26, 87, 88, 90, 91, 94], "hypothesi": 5, "iid": [5, 7, 9, 26, 90, 94], "never": [5, 84, 94, 97, 99, 100], "someth": [5, 7, 37, 41, 67, 98], "123": [5, 85, 86, 87], "456": [5, 82, 83, 84], "nearest_neighbor": 5, "7": [5, 48, 49, 56, 75, 77, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "9": [5, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 42, 48, 49, 61, 75, 77, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "distance_to_nearest_neighbor": [5, 86, 87, 88, 90, 91, 94], "789": 5, "get_issu": [5, 10, 13, 84, 85, 87, 88, 90, 91, 93, 97, 101], "issue_nam": [5, 6, 7, 10, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86, 87], "focu": [5, 13, 91, 102, 103], "full": [5, 10, 13, 40, 56, 65, 85, 88, 103], "summar": [5, 13, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 36, 58, 74, 78, 79, 102], "specific_issu": [5, 13], "lie": [5, 10, 66, 67, 83, 84, 86, 87, 88, 90, 91, 94], "get_issue_summari": [5, 13, 85, 87], "get_info": [5, 13, 87, 91], "yet": [5, 17, 27, 56, 92, 96], "list_possible_issue_typ": [5, 14, 15], "regist": [5, 7, 14, 15, 17, 27, 37, 41, 86], "rtype": [5, 14, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41], "registri": [5, 14, 15], "list_default_issue_typ": [5, 14, 15], "folder": [5, 84, 86, 88], "load": [5, 12, 40, 65, 88, 92, 93, 94, 98, 99, 102, 103], "futur": [5, 10, 22, 37, 41, 57, 79, 83, 84, 86, 88, 91, 93], "overwrit": [5, 86], "separ": [5, 36, 48, 61, 86, 87, 88, 93, 98, 100], "static": 5, "rememb": [5, 91, 93, 94], "part": [5, 10, 37, 41, 43, 62, 64, 65, 84, 86, 92, 102, 103], "ident": [5, 10, 22, 52, 85, 91], "datalab": [6, 8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 79, 82, 83, 84, 88, 93, 96, 101], "walk": 7, "alongsid": [7, 37, 41, 86, 93], "pre": [7, 8, 10, 37, 41, 86, 87, 101], "runtim": [7, 37, 40, 41, 69, 71, 73, 84, 88, 93], "issue_manager_factori": [7, 14, 86], "myissuemanag": [7, 14], "myissuemanagerforregress": 7, "decor": [7, 14], "ll": [7, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 100, 101, 103], "thing": [7, 41, 83, 94, 101], "next": [7, 57, 79, 82, 83, 84, 85, 88, 90, 91, 93, 96, 98, 101, 103], "dummi": 7, "randint": [7, 31, 48, 85, 86, 87, 93], "mark": [7, 10, 80, 98, 99, 101], "regard": [7, 87, 94], "rand": [7, 48, 85, 86, 87], "is_": [7, 10, 86], "_issu": [7, 10, 86], "issue_score_kei": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "whole": [7, 26, 37, 41, 87], "make_summari": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 86], "popul": [7, 87, 91], "verbosity_level": [7, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "std": [7, 98], "raw_scor": 7, "bit": 7, "involv": [7, 40, 74, 78, 85, 93, 97], "intermediate_arg": 7, "min": [7, 48, 64, 77, 86, 93, 99], "sin_filt": 7, "sin": 7, "arang": 7, "kernel": 7, "affect": [7, 10, 37, 41, 71, 77, 91, 93], "easili": [7, 46, 80, 82, 83, 84, 85, 87, 90, 91, 94, 96, 97, 99, 100, 101, 102], "hard": [7, 41, 92, 99], "sai": [7, 10, 37, 41, 97, 102], "anoth": [7, 22, 36, 40, 51, 64, 67, 83, 90, 91, 93, 94, 96, 99], "try": [7, 9, 10, 40, 43, 56, 57, 71, 73, 79, 85, 87, 88, 90, 91, 93, 94, 102], "won": [7, 37, 41, 86, 87, 93, 97], "issue_manag": [7, 10, 11, 13, 15, 18, 19, 20, 23, 25, 26, 27, 28, 30, 31, 86], "instanti": [7, 16, 40, 56, 66, 83, 84, 87, 90], "477762": 7, "286455": 7, "term": [7, 10, 46, 52, 65, 84, 85, 86, 87, 88, 90, 91, 94], "4778": 7, "is_basic_issu": 7, "basic_scor": 7, "13": [7, 19, 28, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 98, 99, 101, 102, 103], "003042": 7, "058117": 7, "11": [7, 56, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "121908": 7, "15": [7, 50, 56, 69, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "169312": 7, "17": [7, 83, 84, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "229044": 7, "2865": 7, "is_intermediate_issu": 7, "intermediate_scor": 7, "000000": [7, 86, 87, 92, 94], "007059": 7, "009967": 7, "010995": 7, "087332": 7, "016296": 7, "03947": 7, "019459": 7, "794251": 7, "underperform": [8, 9, 31], "group": [8, 9, 26, 31, 92, 98, 103], "dbscan": [8, 10, 31, 93], "hdbscan": [8, 93], "etc": [8, 10, 22, 32, 37, 41, 46, 56, 57, 75, 79, 86, 87, 90, 91, 93, 94, 97, 101], "sensit": [8, 10, 50], "ep": [8, 31, 65], "radiu": 8, "min_sampl": [8, 31], "kmean": [8, 93], "your_data": 8, "get_pred_prob": [8, 85], "n_cluster": [8, 31, 93], "cluster_id": [8, 10, 31, 93], "labels_": 8, "underperforming_group": [8, 10, 14, 21, 87, 88, 90, 91, 93, 94], "search": [9, 10, 20, 26, 27, 51, 69, 93, 100], "nondefault": 9, "Near": [9, 93], "imbal": [9, 21, 61, 66, 67, 87], "null": [9, 14, 21, 87, 88, 91, 94], "togeth": [9, 10, 46, 83, 86, 87, 88, 90, 91, 94, 101, 103], "built": [9, 48], "own": [9, 37, 39, 41, 55, 61, 62, 65, 71, 75, 82, 83, 84, 87, 88, 90, 91, 93, 96, 97, 101, 102, 103], "prerequisit": 9, "basic": [9, 41, 56, 90, 91, 99], "fulli": [9, 10, 37, 41, 56, 93], "platform": [9, 10, 79, 88, 90, 91, 93], "write": [9, 10], "code": [9, 10, 37, 41, 46, 52, 56, 79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 96, 97, 98, 99, 101, 102, 103], "being": [9, 10, 13, 36, 37, 41, 43, 48, 51, 52, 67, 82, 90, 93, 94, 101, 102], "100x": [9, 10], "faster": [9, 10, 40, 66, 69, 71, 73, 93, 94], "intellig": [9, 10], "quickli": [9, 10, 38, 82, 84, 88, 90, 91, 93, 97, 99, 102, 103], "fix": [9, 10, 57, 83, 85, 91, 94, 101], "scientist": [9, 10], "million": [9, 10, 103], "thank": [9, 10], "ai": [9, 10, 79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 95, 96, 97, 99, 101, 103], "suggest": [9, 10, 36, 57, 58, 64, 83, 88, 91, 93, 101], "power": [9, 10, 88, 90, 91, 92, 94, 103], "automl": [9, 10, 79, 93], "system": [9, 10, 84, 85, 88, 90, 91, 102], "foundat": [9, 10, 79], "improv": [9, 10, 57, 82, 83, 87, 88, 92, 93, 94, 101, 102], "click": [9, 10, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "tune": [9, 10, 83, 84, 91, 92, 99], "serv": [9, 10, 13, 16, 96], "auto": [9, 10, 82, 83, 85, 87, 92, 93, 101], "free": [9, 10, 79, 84, 87, 88, 90, 91, 93, 94], "page": [10, 87, 93, 94], "variou": [10, 13, 30, 39, 53, 55, 79, 82, 86, 87, 90, 91, 92, 93, 94, 96, 98], "why": [10, 85, 91], "matter": [10, 36, 58, 83, 91], "didn": 10, "plu": [10, 101], "_score": 10, "badli": [10, 64, 82, 83, 103], "issue_scor": 10, "outlier_scor": [10, 28, 86, 87, 88, 90, 91, 94, 99], "atyp": [10, 66, 86, 87, 88, 90, 91, 94, 99], "datapoint": [10, 31, 43, 48, 52, 67, 70, 79, 82, 83, 84, 86, 87, 90, 91, 93, 100, 101], "is_issu": [10, 22], "is_outlier_issu": [10, 86, 87, 88, 90, 91, 94], "annot": [10, 36, 47, 57, 58, 59, 61, 62, 64, 65, 74, 77, 78, 79, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 98, 102], "dissimilar": [10, 90, 91], "preced": 10, "incorrect": [10, 64, 67, 70, 82, 84, 85, 86, 87, 88, 90, 91, 94, 98, 101], "due": [10, 40, 43, 67, 71, 73, 84, 85, 86, 87, 88, 90, 91, 94, 101], "appear": [10, 36, 47, 58, 59, 62, 70, 87, 88, 90, 91, 101, 102], "now": [10, 40, 80, 82, 83, 84, 85, 87, 96, 98, 99, 101, 103], "token": [10, 42, 51, 73, 74, 75, 76, 77, 78, 93, 94, 95], "hamper": [10, 88, 92], "analyt": [10, 79, 93, 96], "lead": [10, 64, 67, 88, 98], "draw": [10, 85, 86, 87], "conclus": [10, 91], "veri": [10, 36, 58, 62, 64, 83, 86, 87, 88, 90, 91, 93, 94, 96, 99, 101], "rare": [10, 43, 65, 86, 87, 88, 90, 91, 93, 94], "anomal": [10, 67, 86, 87, 88, 90, 91, 94], "articl": [10, 40, 93], "blog": 10, "unexpect": [10, 37, 41, 91], "consequ": 10, "inspect": [10, 83, 84, 85, 87, 88, 94, 98, 101], "extrem": [10, 86, 87, 88, 90, 91, 93, 94], "record": [10, 37, 41, 84, 90, 101], "abbrevi": 10, "misspel": 10, "typo": [10, 78], "resolut": 10, "video": [10, 92], "audio": [10, 86, 87, 89, 93], "minor": [10, 51], "variat": 10, "translat": 10, "d": [10, 50, 82, 90, 91, 93, 94, 97, 101, 103], "constant": [10, 31, 69], "median": [10, 30, 50], "question": [10, 22, 79, 94], "nearli": [10, 22, 87, 88, 90, 91], "awar": [10, 80, 94], "presenc": [10, 94], "near_dupl": [10, 14, 19, 85, 86, 87, 88, 90, 91, 93, 94], "signific": [10, 90, 91, 94], "violat": [10, 90, 91, 94], "assumpt": [10, 90, 91, 94], "changepoint": [10, 90, 91, 94], "shift": [10, 90, 91, 94], "drift": [10, 87, 90, 94], "autocorrel": [10, 90, 91, 94], "almost": [10, 90, 91, 94], "adjac": [10, 90, 91, 94], "tend": [10, 36, 46, 90, 91, 94, 102, 103], "sequenti": [10, 37, 41, 56, 88], "gap": 10, "b": [10, 18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 36, 51, 52, 77, 82, 90, 91, 92, 93, 94, 100, 103], "x1": [10, 62, 65, 98], "x2": [10, 62, 65, 98], "10th": 10, "100th": 10, "90": [10, 77, 82, 90, 94, 100, 101], "similarli": [10, 37, 41, 86, 88, 90, 93, 98], "math": [10, 88], "behind": [10, 66, 94], "proper": [10, 52, 57, 62, 65, 82, 88, 91, 93, 96, 98], "scenario": [10, 67, 85, 86, 87], "underli": [10, 42, 66, 75, 77, 103], "stem": [10, 66, 99], "evolv": 10, "influenc": 10, "act": [10, 64, 86], "accordingli": [10, 32], "emploi": [10, 97, 99], "partit": [10, 100], "ahead": 10, "good": [10, 37, 41, 50, 56, 58, 64, 67, 71, 73, 74, 79, 85, 88, 90, 91], "problem": [10, 32, 40, 48, 74, 79, 86, 87, 88, 91, 93], "deploy": [10, 82, 83, 94, 101], "overlook": [10, 64, 98], "fact": 10, "thu": [10, 36, 41, 58, 82, 84, 90, 91, 94, 100, 103], "diagnos": [10, 87, 93], "rarest": [10, 87], "q": [10, 98], "subpar": 10, "special": [10, 51], "techniqu": [10, 98], "smote": 10, "asymmetr": [10, 36], "class_imbal": [10, 14, 20, 87, 88, 90, 91, 94], "excess": [10, 88], "dark": [10, 102], "bright": [10, 103], "blurri": [10, 88], "lack": [10, 56], "unusu": [10, 98, 99], "cluster": [10, 18, 31], "slice": 10, "poor": 10, "subpopul": 10, "faq": [10, 79, 87, 88, 90, 91, 95], "get_self_confidence_for_each_label": [10, 48, 67], "r": [10, 40, 69, 85, 86, 87, 101, 102], "tabular": [10, 79, 81, 86, 87, 89, 93, 96], "categor": [10, 66, 81, 82, 86, 87, 89, 93, 101], "encod": [10, 49, 65, 71, 74, 82, 83, 90, 91, 93, 101, 102], "miss": [10, 27, 37, 41, 52, 62, 64, 85, 90, 93, 98, 101], "pattern": 10, "isn": [10, 17, 27], "scalabl": 10, "sacrific": 10, "One": [10, 52, 66, 93], "quantif": 10, "data_valu": [10, 14, 21], "exert": [10, 87], "possible_issue_typ": 10, "label_kwarg": 10, "outlier_kwarg": 10, "near_duplicate_kwarg": 10, "non_iid_kwarg": 10, "class_imbalance_kwarg": 10, "underperforming_group_kwarg": 10, "null_kwarg": 10, "data_valuation_kwarg": 10, "health_summary_paramet": [10, 21, 23, 30], "health_summari": [10, 23, 36, 79, 92], "health_summary_kwarg": 10, "tandem": [10, 92], "view": [10, 37, 41, 42, 43, 73, 75, 77, 79, 82, 83, 84, 85, 86, 87, 90, 91, 92, 94, 96, 97, 98, 99, 100, 101, 103], "ood_kwarg": 10, "outofdistribut": [10, 28, 66, 99], "outsid": [10, 93, 97], "outlierissuemanag": [10, 14, 21, 28, 86], "nearduplicateissuemanag": [10, 14, 19, 21], "noniidissuemanag": [10, 14, 21, 26], "num_permut": [10, 26], "permut": [10, 26], "significance_threshold": [10, 26], "signic": 10, "noniid": [10, 21], "classimbalanceissuemanag": [10, 14, 20, 21], "underperforminggroupissuemanag": [10, 14, 21, 31], "determinin": 10, "neighbour": 10, "min_cluster_sampl": [10, 31], "filter_cluster_id": [10, 21, 31], "clustering_kwarg": [10, 31], "nullissuemanag": [10, 14, 21, 27], "datavaluationissuemanag": [10, 14, 18, 21], "codeblock": 10, "demonstr": [10, 40, 86, 87, 88, 91, 93, 94, 96, 97, 98, 101, 102], "howev": [10, 37, 41, 52, 82, 83, 84, 88, 90, 91, 96, 100, 102], "mandatori": [10, 88], "image_issue_types_kwarg": 10, "32": [10, 84, 86, 92, 96, 98], "fewer": [10, 43, 52, 98], "vice": [10, 58], "versa": [10, 58], "light": [10, 88, 92, 98, 102], "29": [10, 85, 88, 92, 96, 97, 98, 102, 103], "low_inform": [10, 88], "odd_aspect_ratio": [10, 88], "35": [10, 86, 92, 96, 97, 98], "odd_siz": [10, 88], "doc": [10, 37, 41, 79, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "studio": [11, 79, 87, 88, 90, 91, 93], "data_issu": [11, 15, 16, 33, 86], "issue_find": [11, 15], "factori": [11, 15, 16], "model_output": [11, 15], "except": [12, 37, 41, 56, 67, 85, 86, 87, 88, 96], "dataformaterror": [12, 15], "add_not": 12, "with_traceback": 12, "tb": 12, "__traceback__": 12, "datasetdicterror": [12, 15], "datasetdict": 12, "datasetloaderror": [12, 15], "dataset_typ": 12, "fail": 12, "hold": 12, "associ": [12, 16, 32, 34, 37, 41, 65, 96], "sublist": 12, "map_to_int": 12, "abc": [12, 22, 32], "is_avail": [12, 88], "dataissu": [13, 15, 16, 33], "central": [13, 103], "repositori": [13, 88], "strategi": [13, 48, 93], "_infostrategi": 13, "basi": 13, "collect_statist": 13, "reus": [13, 22], "avoid": [13, 37, 40, 41, 43, 52, 59, 62, 65, 69, 71, 73, 85, 86, 87, 88, 93], "recomput": [13, 83], "weighted_knn_graph": 13, "issue_manager_that_computes_knn_graph": 13, "collect_issues_from_issue_manag": 13, "collect_issues_from_imagelab": 13, "imagelab": 13, "set_health_scor": 13, "health": [13, 23, 36, 58, 79], "get_data_statist": [13, 15], "concret": 14, "subclass": [14, 37, 41, 66, 86], "regressionlabelissuemanag": [14, 21, 29, 30], "multilabelissuemanag": [14, 21, 24, 25], "from_str": [14, 34, 44, 48], "my_issu": 14, "logic": [14, 34, 40, 43, 71, 73], "stabl": [15, 21, 24, 29, 39, 44, 52, 55, 66, 80], "issuefind": [15, 16, 33], "modeloutput": [15, 32], "multiclasspredprob": [15, 32], "regressionpredict": [15, 32], "multilabelpredprob": [15, 32], "instati": 16, "public": [16, 94, 98, 102, 103], "creation": [16, 41], "execut": [16, 37, 41, 86, 88, 93, 98], "coordin": [16, 62, 64, 65, 98, 103], "behavior": [16, 36, 37, 41, 65, 85, 93], "At": [16, 65, 93], "get_available_issue_typ": 16, "direct": [17, 27, 37, 41, 56], "valuabl": 18, "vstack": [18, 52, 88, 92, 93, 94, 96, 97], "25": [18, 26, 37, 48, 50, 85, 87, 88, 92, 94, 96, 97, 98, 103], "classvar": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "short": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 51, 52], "data_valuation_scor": 18, "item": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 37, 41, 52, 85, 86, 87, 88, 93, 94, 96, 97], "some_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "additional_info_kei": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31], "default_threshold": [18, 21, 28], "collect_info": [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31], "info_to_omit": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "compos": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31, 37, 41, 83, 91, 99], "is_x_issu": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "x_score": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_a": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b1": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "val_b2": [18, 19, 20, 22, 23, 25, 26, 28, 30, 31], "report_str": [18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 33], "_": [19, 20, 22, 23, 25, 26, 27, 30, 31, 48, 51, 52, 82, 84, 86, 88, 92, 94, 97], "near_duplicate_set": [19, 21, 86, 87, 88, 90, 91, 93, 94], "occurr": [19, 20, 22, 26, 27, 28, 31, 51], "median_nn_dist": 19, "near_duplicate_scor": [19, 86, 87, 88, 90, 91, 93, 94], "class_imbalance_scor": [20, 87], "bleed": [21, 24, 29, 39], "edg": [21, 24, 29, 39, 64, 79, 94, 103], "sharp": [21, 24, 29, 39], "get_health_summari": [21, 23], "ood": [21, 28, 66, 67, 86, 87, 88, 91, 94, 99], "simplified_kolmogorov_smirnov_test": [21, 26], "outlier_cluster_label": [21, 31], "no_underperforming_cluster_id": [21, 31], "set_knn_graph": [21, 31], "perform_clust": [21, 31], "get_worst_clust": [21, 31], "find_issues_with_predict": [21, 29, 30], "find_issues_with_featur": [21, 29, 30], "believ": [22, 102], "priori": [22, 94], "abstract": [22, 32], "applic": [23, 57, 93, 94, 96, 103], "typevar": [23, 25, 37, 41, 51, 61, 64, 65], "scalartyp": [23, 25], "covari": [23, 25, 69, 101], "summary_dict": 23, "label_scor": [23, 25, 30, 84, 85, 86, 87, 88, 90, 91, 94, 97, 101], "neighbor_histogram": 26, "non_neighbor_histogram": 26, "kolmogorov": 26, "smirnov": 26, "largest": [26, 40, 48, 67, 71, 73, 98, 102], "empir": [26, 47, 57], "cumul": 26, "ecdf": 26, "histogram": [26, 90, 101], "absolut": [26, 30], "trial": 26, "non_iid_scor": [26, 87, 90, 91, 94], "null_track": 27, "extend": [27, 49, 56, 88, 98, 99, 103], "superclass": 27, "arbitrari": [27, 36, 73, 77, 86, 99, 101], "prompt": 27, "address": [27, 83, 86, 87, 91, 93], "enabl": [27, 41], "null_scor": [27, 87], "37037": 28, "q3_avg_dist": 28, "iqr_avg_dist": 28, "median_outlier_scor": 28, "multipli": [30, 50], "deleg": 30, "confus": [31, 32, 36, 37, 41, 43, 52, 65, 83, 103], "50": [31, 41, 85, 93, 94, 96, 98, 99, 101], "keepdim": [31, 93], "signifi": 31, "absenc": 31, "find_issues_kwarg": 31, "int64": [31, 84, 96], "npt": 31, "int_": 31, "id": [31, 57, 86, 88, 93, 96], "unique_cluster_id": 31, "_description_": 31, "performed_clust": 31, "worst_cluster_id": 31, "underperforming_group_scor": [31, 87], "convent": [32, 34], "subject": [32, 34], "meant": [32, 34], "Not": 32, "mainli": [32, 99, 103], "content": [32, 66, 84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "fetch": [32, 40, 84, 87, 93], "datset": 33, "exclud": [33, 42, 74, 78, 86, 93, 103], "get_report": 33, "enum": [34, 48], "qualnam": [34, 48], "boundari": [34, 48, 85, 86, 87], "continu": [34, 56, 82, 83, 88, 91, 93, 96, 98, 101, 103], "binari": [34, 48, 52, 59, 61, 94, 103], "simultan": [34, 101], "task_str": 34, "is_classif": 34, "__contains__": [34, 44, 48], "member": [34, 37, 41, 48, 86, 87], "typeerror": [34, 48], "12": [34, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 101, 102, 103], "__getitem__": [34, 44, 48], "match": [34, 36, 37, 41, 43, 48, 57, 58, 67, 85, 86, 87, 88, 92, 98, 100, 102], "__iter__": [34, 44, 48], "__len__": [34, 44, 48], "alias": [34, 48], "is_regress": 34, "is_multilabel": 34, "overview": [36, 82, 83, 84, 87, 88, 90, 91, 96, 98, 99, 101, 103], "modifi": [36, 37, 40, 41, 52, 93, 94], "help": [36, 37, 41, 65, 79, 80, 82, 83, 84, 86, 88, 90, 91, 92, 93, 96, 97, 101, 102, 103], "rank_classes_by_label_qu": [36, 87], "merg": [36, 51, 79, 92, 93, 103], "find_overlapping_class": [36, 93, 94], "problemat": [36, 58, 74, 78, 84, 98, 103], "unnorm": [36, 58, 94], "abov": [36, 37, 40, 41, 52, 57, 64, 65, 67, 73, 77, 82, 83, 84, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 100, 101, 102, 103], "model_select": [36, 48, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 99, 101], "cross_val_predict": [36, 41, 82, 83, 84, 85, 86, 87, 90, 91, 93, 94, 96, 100, 101], "get_data_labels_from_dataset": 36, "yourfavoritemodel": [36, 94], "cv": [36, 48, 82, 84, 85, 86, 87, 90, 94, 96], "df": [36, 52, 78, 84, 93], "overall_label_qu": [36, 58], "col": 36, "prob": [36, 51, 94, 100], "divid": [36, 58, 67], "label_nois": [36, 58], "human": [36, 92, 102, 103], "clearli": [36, 67, 88, 98, 102], "num": [36, 58, 92, 94], "overlap": [36, 79, 92, 93, 94], "ontolog": 36, "publish": [36, 103], "therefor": [36, 67], "vehicl": [36, 92], "truck": [36, 92, 99, 102], "intuit": [36, 58, 85], "car": [36, 92, 98, 102], "frequent": [36, 57, 90, 93, 101], "characterist": 36, "l": [36, 37, 41, 62, 64, 65], "class1": 36, "class2": 36, "relationship": 36, "dog": [36, 52, 58, 60, 74, 92, 93, 99, 100, 103], "cat": [36, 52, 58, 60, 92, 93, 99, 100], "captur": [36, 84, 98, 99, 102], "co": [36, 37, 38, 88], "noisy_label": [36, 85, 86, 87, 97], "overlapping_class": 36, "descend": [36, 37, 41, 48, 58, 65], "overall_label_health_scor": [36, 58, 94], "half": [36, 37, 39, 41, 58, 92, 103], "health_scor": [36, 58], "classes_by_label_qu": [36, 87], "cnn": [37, 39, 41, 88], "cifar": [37, 38, 92, 99], "teach": [37, 38], "bhanml": 37, "blob": 37, "master": [37, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "call_bn": [37, 39], "bn": 37, "input_channel": 37, "n_output": 37, "dropout_r": 37, "top_bn": 37, "architectur": [37, 41], "shown": [37, 65, 85, 86, 93, 96, 99, 100, 102, 103], "forward": [37, 38, 39, 41, 88, 96], "overridden": [37, 41], "although": [37, 41, 66, 82, 90], "recip": [37, 41], "afterward": [37, 41], "sinc": [37, 41, 45, 53, 58, 65, 73, 77, 93, 96, 97, 98, 100, 103], "former": [37, 41], "hook": [37, 41, 92], "silent": [37, 40, 41], "t_destin": [37, 39, 41], "__call__": [37, 39, 41, 44, 48], "add_modul": [37, 39, 41], "child": [37, 41], "fn": [37, 41, 65], "recurs": [37, 41, 48], "submodul": [37, 41], "children": [37, 39, 41, 103], "nn": [37, 38, 41, 88], "init": [37, 41, 94], "no_grad": [37, 41, 88, 99], "init_weight": [37, 41], "linear": [37, 41, 83, 88, 91], "fill_": [37, 41], "net": [37, 41, 84, 88, 92], "in_featur": [37, 41], "out_featur": [37, 41], "bia": [37, 41, 88], "tensor": [37, 38, 41, 83, 84, 88, 91, 99], "requires_grad": [37, 41], "bfloat16": [37, 39, 41], "cast": [37, 41, 84], "buffer": [37, 39, 41], "datatyp": [37, 41], "xdoctest": [37, 41], "undefin": [37, 41], "var": [37, 41], "buf": [37, 41], "20l": [37, 41], "1l": [37, 41], "5l": [37, 41], "call_super_init": [37, 39, 41], "immedi": [37, 41, 99], "compil": [37, 39, 41, 56], "cpu": [37, 39, 41, 43, 84, 88], "move": [37, 41, 48, 80, 92], "cuda": [37, 39, 41, 84, 88], "devic": [37, 41, 84, 88], "gpu": [37, 41, 83, 84, 91], "live": [37, 41], "copi": [37, 41, 69, 82, 84, 85, 86, 87, 90, 93, 97, 100, 101], "doubl": [37, 39, 41], "dump_patch": [37, 39, 41], "eval": [37, 39, 41, 88, 97, 99], "dropout": [37, 41], "batchnorm": [37, 41], "grad": [37, 41], "extra_repr": [37, 39, 41], "line": [37, 41, 79, 86, 92, 96, 99, 103], "get_buff": [37, 39, 41], "target": [37, 38, 41, 69, 70, 99, 101], "throw": [37, 41], "get_submodul": [37, 39, 41], "explan": [37, 41], "qualifi": [37, 41], "referenc": [37, 41], "attributeerror": [37, 41], "invalid": [37, 41, 91], "resolv": [37, 41, 85, 103], "get_extra_st": [37, 39, 41], "state_dict": [37, 39, 41], "set_extra_st": [37, 39, 41], "build": [37, 41, 88, 102], "picklabl": [37, 41], "serial": [37, 41], "backward": [37, 41, 88], "break": [37, 41, 88, 98], "pickl": [37, 41, 98], "get_paramet": [37, 39, 41], "let": [37, 41, 66, 67, 82, 83, 84, 85, 87, 88, 90, 91, 93, 96, 97, 98, 99, 101, 102, 103], "net_b": [37, 41], "net_c": [37, 41], "conv": [37, 41], "conv2d": [37, 41, 88], "16": [37, 41, 48, 56, 73, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 98, 99, 102, 103], "33": [37, 41, 92, 98], "kernel_s": [37, 41], "stride": [37, 41], "200": [37, 41, 67, 85, 92, 98, 103], "diagram": [37, 41, 100], "degre": [37, 41], "queri": [37, 41, 87, 88, 93, 97], "named_modul": [37, 39, 41], "o": [37, 41, 50, 51, 84, 85, 86, 87, 92, 93, 94, 97, 98, 103], "transit": [37, 41], "ipu": [37, 39, 41], "load_state_dict": [37, 39, 41], "strict": [37, 41, 48], "persist": [37, 41], "strictli": [37, 41], "inplac": [37, 41, 96], "preserv": [37, 41, 52], "namedtupl": [37, 41], "missing_kei": [37, 41], "unexpected_kei": [37, 41], "runtimeerror": [37, 41], "idx": [37, 41, 52, 53, 65, 86, 88, 93, 94, 96, 98, 99], "named_buff": [37, 39, 41], "prefix": [37, 41, 84, 103], "remove_dupl": [37, 41], "prepend": [37, 41], "running_var": [37, 41], "named_children": [37, 39, 41], "conv4": [37, 41], "conv5": [37, 41], "memo": [37, 41], "named_paramet": [37, 39, 41], "register_backward_hook": [37, 39, 41], "deprec": [37, 41, 45, 83, 84, 91, 93], "favor": [37, 41], "register_full_backward_hook": [37, 39, 41], "removablehandl": [37, 41], "register_buff": [37, 39, 41], "running_mean": [37, 41], "register_forward_hook": [37, 39, 41], "with_kwarg": [37, 41], "always_cal": [37, 41], "possibli": [37, 41, 82, 90], "fire": [37, 41, 92], "register_module_forward_hook": [37, 41], "regardless": [37, 41, 86, 87], "register_forward_pre_hook": [37, 39, 41], "And": [37, 41], "forward_pr": [37, 41], "register_module_forward_pre_hook": [37, 41], "gradient": [37, 41, 88, 90, 101], "grad_input": [37, 41], "grad_output": [37, 41], "technic": [37, 41], "caller": [37, 41], "register_module_full_backward_hook": [37, 41], "register_full_backward_pre_hook": [37, 39, 41], "backward_pr": [37, 41], "register_module_full_backward_pre_hook": [37, 41], "register_load_state_dict_post_hook": [37, 39, 41], "post": [37, 41], "incompatible_kei": [37, 41], "modif": [37, 41], "thrown": [37, 41], "register_modul": [37, 39, 41], "register_paramet": [37, 39, 41], "register_state_dict_pre_hook": [37, 39, 41], "keep_var": [37, 41], "requires_grad_": [37, 39, 41], "autograd": [37, 41], "freez": [37, 41, 83, 84, 91], "finetun": [37, 41], "gan": [37, 41], "share_memori": [37, 39, 41], "share_memory_": [37, 41], "destin": [37, 41], "shallow": [37, 41], "releas": [37, 41, 56, 80, 84, 88, 93], "design": [37, 41, 85], "ordereddict": [37, 41], "detach": [37, 41, 88], "non_block": [37, 41], "memory_format": [37, 41], "channels_last": [37, 41], "Its": [37, 41, 48, 58, 64], "complex": [37, 41, 84], "integr": [37, 41, 79, 93], "asynchron": [37, 41], "host": [37, 41], "pin": [37, 41, 83, 91, 92], "desir": [37, 41, 51, 65], "4d": [37, 41], "ignore_w": [37, 41], "determinist": [37, 41, 84], "1913": [37, 41], "3420": [37, 41], "5113": [37, 41], "2325": [37, 41], "env": [37, 41], "torch_doctest_cuda1": [37, 41], "gpu1": [37, 41], "1914": [37, 41], "5112": [37, 41], "2324": [37, 41], "float16": [37, 41], "cdoubl": [37, 41], "3741": [37, 41], "2382": [37, 41], "5593": [37, 41], "4443": [37, 41], "complex128": [37, 41], "6122": [37, 41], "1150": [37, 41], "to_empti": [37, 39, 41], "storag": [37, 41, 83, 91], "dst_type": [37, 41], "xpu": [37, 39, 41], "zero_grad": [37, 39, 41, 88], "set_to_non": [37, 41], "reset": [37, 41], "context": [37, 41, 98], "noisili": [38, 94], "han": 38, "2018": 38, "cifar_cnn": [38, 39], "loss_coteach": [38, 39], "y_1": 38, "y_2": 38, "forget_r": 38, "class_weight": 38, "logit": [38, 56, 88], "decim": [38, 52], "forget": [38, 48, 103], "rate_schedul": 38, "epoch": [38, 39, 41, 88, 93], "initialize_lr_schedul": [38, 39], "lr": [38, 39, 41], "001": [38, 67, 93], "250": [38, 86, 87, 94, 98], "epoch_decay_start": 38, "80": [38, 82, 90, 97, 101], "schedul": 38, "beta": 38, "adam": 38, "adjust_learning_r": [38, 39], "alpha_plan": 38, "beta1_plan": 38, "forget_rate_schedul": [38, 39], "num_gradu": 38, "expon": 38, "tell": [38, 83, 88, 91, 94], "train_load": [38, 41], "model1": [38, 94], "optimizer1": 38, "model2": [38, 94], "optimizer2": 38, "dataload": [38, 88, 99], "parser": 38, "parse_arg": 38, "num_iter_per_epoch": 38, "print_freq": 38, "topk": 38, "top1": 38, "top5": 38, "test_load": 38, "offici": [39, 55, 103], "wish": [39, 55, 99, 102, 103], "adj_confident_thresholds_shar": [39, 40], "labels_shar": [39, 40], "pred_probs_shar": [39, 40], "labelinspector": [39, 40, 93], "get_num_issu": [39, 40], "get_quality_scor": [39, 40], "update_confident_threshold": [39, 40], "score_label_qu": [39, 40], "split_arr": [39, 40], "span_classif": 39, "display_issu": [39, 42, 72, 73, 74, 75, 76, 77, 78, 102, 103], "mnist_pytorch": 39, "get_mnist_dataset": [39, 41], "get_sklearn_digits_dataset": [39, 41], "simplenet": [39, 41], "batch_siz": [39, 40, 41, 71, 73, 85, 88, 93, 99, 102], "log_interv": [39, 41], "momentum": [39, 41], "no_cuda": [39, 41], "test_batch_s": [39, 41, 88], "loader": [39, 41, 88], "set_predict_proba_request": [39, 41], "set_predict_request": [39, 41], "coteach": [39, 80], "mini": [40, 71, 73, 93], "low_self_confid": [40, 43, 59], "self_confid": [40, 43, 44, 48, 59, 61, 67, 75, 77, 82, 83, 93, 94], "conveni": [40, 83, 84, 91], "script": 40, "labels_fil": [40, 93], "pred_probs_fil": [40, 93], "quality_score_kwarg": 40, "num_issue_kwarg": 40, "return_mask": 40, "variant": [40, 57, 102], "read": [40, 45, 87, 93, 94, 99, 103], "zarr": [40, 93], "memmap": [40, 102], "pythonspe": 40, "mmap": [40, 93], "hdf5": 40, "further": [40, 42, 58, 59, 61, 64, 65, 73, 74, 84, 93], "yourfil": 40, "npy": [40, 92, 93, 102], "mmap_mod": [40, 102], "tip": [40, 43, 56, 93], "save_arrai": 40, "your_arrai": 40, "disk": [40, 92, 93], "npz": [40, 103], "maxim": [40, 57, 71, 73, 102], "multiprocess": [40, 43, 59, 71, 73, 88, 93], "linux": [40, 71, 73], "physic": [40, 43, 71, 73, 98], "psutil": [40, 43, 71, 73], "labels_arrai": [40, 53], "predprob": 40, "pred_probs_arrai": 40, "back": [40, 65, 86, 93, 98, 99], "store_result": 40, "becom": [40, 99], "verifi": [40, 93, 96, 99], "long": [40, 57, 66, 96], "enough": [40, 52, 93], "chunk": [40, 100], "ram": [40, 92], "end_index": 40, "labels_batch": 40, "pred_probs_batch": 40, "batch_result": 40, "indices_of_examples_with_issu": [40, 93], "shortcut": 40, "encount": [40, 43, 71], "1000": [40, 84, 91, 93, 99], "aggreg": [40, 44, 48, 57, 61, 64, 67, 77, 93, 94, 96], "seen": [40, 85, 93, 99, 103], "far": [40, 57], "label_quality_scor": [40, 61, 64, 67, 70, 94, 98], "method1": 40, "method2": 40, "normalized_margin": [40, 43, 44, 48, 59, 61, 67, 75, 77], "low_normalized_margin": [40, 43, 59], "issue_indic": [40, 64, 88], "update_num_issu": 40, "arr": [40, 93], "chunksiz": 40, "convnet": 41, "bespok": [41, 56], "download": [41, 84, 93, 99], "mnist": [41, 79, 84, 92], "handwritten": 41, "digit": [41, 84, 92], "last": [41, 48, 62, 65, 85, 86, 87, 93, 96, 98, 103], "sklearn_digits_test_s": 41, "64": [41, 82, 88, 90, 94, 98], "01": [41, 67, 69, 84, 94, 97, 98, 99], "templat": 41, "flexibli": 41, "among": [41, 57, 94], "test_set": 41, "Be": 41, "overrid": 41, "train_idx": [41, 52, 99], "train_label": [41, 83, 99], "scikit": [41, 52, 66, 79, 83, 84, 85, 86, 87, 90, 91, 93, 101], "span": 42, "sentenc": [42, 51, 75, 77, 78, 83, 91], "token_classif": [42, 51, 75, 77, 78, 93], "encourag": [43, 59, 67, 70], "multilabel_classif": [43, 58, 59, 61, 67, 93, 97], "pred_probs_by_class": 43, "prune_count_matrix_col": 43, "rank_by_kwarg": [43, 59, 67, 94], "num_to_remove_per_class": [43, 59], "bad": [43, 59, 64, 67, 91, 93], "seem": [43, 94, 97], "aren": 43, "confidence_weighted_entropi": [43, 44, 48, 59, 61, 67, 75, 77], "label_issues_idx": [43, 67], "entropi": [43, 45, 47, 48, 66, 67], "prune_by_class": [43, 59, 94], "predicted_neq_given": [43, 59, 94], "prune_counts_matrix": 43, "smallest": [43, 67], "unus": 43, "number_of_mislabeled_examples_in_class_k": 43, "delet": [43, 79, 83, 93], "too": [43, 48, 66, 87, 88, 93, 98], "thread": [43, 59], "window": [43, 84, 92], "shorter": [43, 62], "find_predicted_neq_given": 43, "find_label_issues_using_argmax_confusion_matrix": 43, "remove_noise_from_class": [44, 52], "clip_noise_r": [44, 52], "clip_valu": [44, 52], "value_count": [44, 52, 93], "value_counts_fill_missing_class": [44, 52], "get_missing_class": [44, 52], "round_preserving_sum": [44, 52], "round_preserving_row_tot": [44, 52], "estimate_pu_f1": [44, 52], "confusion_matrix": [44, 52], "print_square_matrix": [44, 52], "print_noise_matrix": [44, 52, 94], "print_inverse_noise_matrix": [44, 52], "print_joint_matrix": [44, 52, 94], "compress_int_arrai": [44, 52], "train_val_split": [44, 52], "subset_x_i": [44, 52], "subset_label": [44, 52], "subset_data": [44, 52], "extract_indices_tf": [44, 52], "unshuffle_tensorflow_dataset": [44, 52], "is_torch_dataset": [44, 52], "is_tensorflow_dataset": [44, 52], "csr_vstack": [44, 52], "append_extra_datapoint": [44, 52], "get_num_class": [44, 52], "num_unique_class": [44, 52], "get_unique_class": [44, 52], "format_label": [44, 52], "smart_display_datafram": [44, 52], "force_two_dimens": [44, 52], "latent_algebra": [44, 80], "compute_ps_py_inv_noise_matrix": [44, 46], "compute_py_inv_noise_matrix": [44, 46], "compute_inv_noise_matrix": [44, 46], "compute_noise_matrix_from_invers": [44, 46], "compute_pi": [44, 46], "compute_pyx": [44, 46], "label_quality_util": 44, "get_normalized_entropi": [44, 45], "multilabel_util": [44, 97], "stack_compl": [44, 49], "get_onehot_num_class": [44, 49], "int2onehot": [44, 49, 97], "onehot2int": [44, 49, 97], "multilabel_scor": [44, 61], "classlabelscor": [44, 48], "exponential_moving_averag": [44, 48, 61], "softmin": [44, 48, 61, 64, 73, 77], "possible_method": [44, 48], "multilabelscor": [44, 48], "get_class_label_quality_scor": [44, 48], "multilabel_pi": [44, 48], "get_cross_validated_multilabel_pred_prob": [44, 48], "transform_distances_to_scor": [44, 50], "correct_precision_error": [44, 50], "token_classification_util": [44, 103], "get_sent": [44, 51, 103], "filter_sent": [44, 51, 103], "process_token": [44, 51], "merge_prob": [44, 51], "color_sent": [44, 51], "assert_valid_input": [44, 53], "assert_valid_class_label": [44, 53], "assert_nonempty_input": [44, 53], "assert_indexing_work": [44, 53], "labels_to_arrai": [44, 53], "labels_to_list_multilabel": [44, 53], "min_allowed_prob": 45, "wikipedia": 45, "activ": [45, 47, 56, 57, 79, 96], "towardsdatasci": 45, "cheatsheet": 45, "ec57bc067c0b": 45, "clip": [45, 52, 84], "behav": 45, "unnecessari": [45, 93], "slightli": [45, 82, 83, 85], "interv": [45, 48, 99], "herein": 46, "inexact": 46, "cours": 46, "propag": 46, "throughout": [46, 52, 69, 84, 96, 102, 103], "increas": [46, 50, 64, 66, 67, 84, 86, 93, 96, 97, 103], "dot": [46, 77, 93], "true_labels_class_count": 46, "pyx": 46, "multiannot": 47, "assert_valid_inputs_multiannot": 47, "labels_multiannot": [47, 57], "ensembl": [47, 48, 57, 67, 82, 90, 93, 97, 99, 101], "allow_single_label": 47, "annotator_id": 47, "assert_valid_pred_prob": 47, "pred_probs_unlabel": [47, 57], "format_multiannotator_label": [47, 57, 96], "formatted_label": [47, 52], "old": [47, 52, 80, 84, 92], "check_consensus_label_class": 47, "consensus_label": [47, 57, 96], "consensus_method": [47, 57], "consensu": [47, 57, 79, 95, 103], "establish": [47, 56, 83, 101], "compute_soft_cross_entropi": 47, "soft": [47, 92], "find_best_temp_scal": 47, "coarse_search_rang": [47, 69, 93], "fine_search_s": [47, 69, 93], "temperatur": [47, 48, 64, 73, 77], "scale": [47, 50, 82, 92, 93, 99, 102], "factor": [47, 48, 50, 71, 73], "minim": [47, 64, 99], "temp_scale_pred_prob": 47, "temp": 47, "sharpen": [47, 92], "smoothen": 47, "get_normalized_margin_for_each_label": [48, 67], "get_confidence_weighted_entropy_for_each_label": [48, 67], "75": [48, 85, 86, 87, 92, 96, 97, 98, 101, 103], "scorer": 48, "alpha": [48, 61, 64, 85, 86, 87, 94, 97, 101], "exponenti": 48, "ema": 48, "s_1": 48, "s_k": 48, "ema_k": 48, "accord": [48, 59, 90, 91, 94, 103], "formula": [48, 50], "_t": 48, "cdot": 48, "s_t": 48, "qquad": 48, "leq": 48, "_1": 48, "give": [48, 67, 94, 96, 102], "recent": [48, 103], "success": 48, "previou": [48, 88, 93, 98], "discount": 48, "s_ema": 48, "175": [48, 88, 94, 98], "underflow": 48, "nan": [48, 57, 82, 90, 96, 101], "aggregated_scor": 48, "base_scor": 48, "base_scorer_kwarg": 48, "aggregator_kwarg": [48, 61], "n_sampl": 48, "n_label": 48, "worst": [48, 96], "class_label_quality_scor": 48, "42": [48, 91, 92, 98, 103], "452": 48, "new_scor": 48, "575": 48, "get_label_quality_scores_per_class": [48, 60, 61], "ml_scorer": 48, "binar": [48, 49], "reformat": [48, 84], "wider": 48, "splitter": 48, "kfold": [48, 88], "onevsrestclassifi": [48, 97], "randomforestclassifi": [48, 94, 97], "n_split": [48, 87, 88, 97], "pred_prob_slic": 49, "onehot": 49, "hot": [49, 59, 65, 71, 74, 82, 90, 92, 93, 101, 102], "onehot_matrix": 49, "avg_dist": 50, "scaling_factor": 50, "exp": [50, 66, 67, 86], "dt": 50, "right": [50, 62, 65, 83, 91, 97, 98, 99], "strength": [50, 65], "pronounc": 50, "differenti": 50, "ly": 50, "rule": [50, 51, 92], "thumb": 50, "ood_features_scor": [50, 66, 99], "88988177": 50, "80519832": 50, "toler": 50, "minkowski": 50, "noth": 50, "epsilon": 50, "sensibl": 50, "fixed_scor": 50, "readabl": 51, "lambda": [51, 84, 86, 93, 96], "long_sent": 51, "headlin": 51, "charact": [51, 52], "s1": 51, "s2": 51, "processed_token": 51, "alecnlcb": 51, "entiti": [51, 79, 93, 103], "mapped_ent": 51, "unique_ident": 51, "loc": [51, 85, 86, 87, 88, 103], "nbitbas": [51, 61], "probs_merg": 51, "0125": [51, 77], "0375": 51, "075": 51, "025": 51, "color": [51, 74, 85, 86, 87, 90, 94, 97, 99, 101, 102], "red": [51, 65, 85, 86, 87, 92, 94, 97, 98, 99, 102], "colored_sent": 51, "termcolor": 51, "31msentenc": 51, "0m": 51, "ancillari": 52, "class_without_nois": 52, "any_other_class": 52, "choos": [52, 67, 82, 90, 93, 94, 101], "tradition": 52, "new_sum": 52, "fill": 52, "come": [52, 85, 86, 87, 93, 102], "major": [52, 57, 80, 85, 88, 99], "versu": [52, 94], "obviou": 52, "cgdeboer": 52, "iteround": 52, "reach": 52, "prob_s_eq_1": 52, "claesen": 52, "f1": [52, 65, 91, 94], "BE": 52, "left_nam": 52, "top_nam": 52, "titl": [52, 85, 86, 87, 94, 97, 99], "short_titl": 52, "round_plac": 52, "pretti": [52, 85, 94], "joint_matrix": 52, "num_possible_valu": 52, "holdout_idx": 52, "extract": [52, 66, 83, 84, 91, 96, 99, 102], "allow_shuffl": 52, "turn": [52, 79, 98], "shuffledataset": 52, "histori": 52, "pre_x": 52, "buffer_s": 52, "csr_matric": 52, "append": [52, 84, 85, 88, 92, 93, 94, 96, 97, 98, 99, 103], "bottom": [52, 62, 65, 98], "to_data": 52, "from_data": 52, "taken": 52, "label_matrix": 52, "canon": 52, "displai": [52, 65, 74, 78, 83, 84, 85, 91, 94, 103], "jupyt": [52, 84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "notebook": [52, 57, 84, 85, 87, 92, 93, 94, 96, 97, 98, 102, 103], "consol": 52, "html": [52, 62, 65, 66, 90, 93, 94], "allow_missing_class": 53, "allow_one_class": 53, "length_x": 53, "labellik": 53, "labels_list": [53, 59], "keraswrappermodel": [55, 56, 79], "keraswrappersequenti": [55, 56], "tf": [56, 84], "legaci": 56, "newer": 56, "interim": 56, "advis": [56, 97], "stabil": 56, "until": 56, "accommod": 56, "keraswrapp": 56, "huggingface_keras_imdb": 56, "unit": [56, 103], "model_kwarg": [56, 69], "compile_kwarg": 56, "sparsecategoricalcrossentropi": 56, "layer": [56, 83, 84, 91, 99], "dens": 56, "my_keras_model": 56, "from_logit": 56, "declar": 56, "apply_softmax": 56, "analysi": 57, "analyz": [57, 79, 94, 96, 97], "get_label_quality_multiannot": [57, 96], "vote": 57, "crowdsourc": [57, 79, 96], "dawid": [57, 96], "skene": [57, 96], "analog": [57, 85, 92, 96], "chosen": [57, 67, 93, 96], "crowdlab": [57, 96], "unlabel": [57, 88, 90, 91, 96, 99, 102], "decid": [57, 83, 91, 92, 96, 101, 103], "get_active_learning_scor": [57, 96], "activelab": [57, 96], "priorit": [57, 64, 98, 102, 103], "showcas": 57, "main": [57, 85], "best_qual": 57, "quality_method": 57, "calibrate_prob": 57, "return_detailed_qu": 57, "return_annotator_stat": 57, "return_weight": 57, "label_quality_score_kwarg": 57, "necessarili": [57, 65, 91, 94], "did": [57, 58, 82, 83, 84, 90, 94, 96, 101], "majority_vot": 57, "broken": [57, 65, 92, 101], "highest": [57, 65, 86, 88, 100], "0th": 57, "consensus_quality_scor": [57, 96], "annotator_agr": [57, 96], "reman": 57, "1st": 57, "2nd": [57, 71], "3rd": 57, "consensus_label_suffix": 57, "consensus_quality_score_suffix": 57, "suffix": 57, "emsembl": 57, "weigh": [57, 92], "agreement": [57, 96], "agre": 57, "prevent": [57, 93], "overconfid": [57, 100], "wrong": [57, 62, 64, 80, 83, 85, 86, 87, 91, 93, 94, 98], "detailed_label_qu": [57, 96], "annotator_stat": [57, 96], "model_weight": 57, "annotator_weight": 57, "warn": [57, 86, 87, 88, 90, 91, 93, 94], "labels_info": 57, "num_annot": [57, 96], "deriv": [57, 96], "quality_annotator_1": 57, "quality_annotator_2": 57, "quality_annotator_m": 57, "annotator_qu": [57, 96], "num_examples_label": [57, 96], "agreement_with_consensu": [57, 96], "worst_class": [57, 96], "trustworthi": [57, 96, 101], "get_label_quality_multiannotator_ensembl": 57, "weigtht": 57, "budget": 57, "retrain": [57, 83, 101], "active_learning_scor": 57, "active_learning_scores_unlabel": 57, "get_active_learning_scores_ensembl": 57, "henc": [57, 84, 86, 96], "get_majority_vote_label": [57, 96], "event": 57, "lastli": [57, 90], "convert_long_to_wide_dataset": 57, "labels_multiannotator_long": 57, "wide": [57, 82, 83, 84], "suitabl": [57, 82, 90], "labels_multiannotator_wid": 57, "common_multilabel_issu": [58, 60], "mutual": [58, 97], "exclus": [58, 97], "rank_classes_by_multilabel_qu": [58, 60], "overall_multilabel_health_scor": [58, 60], "multilabel_health_summari": [58, 60], "classes_by_multilabel_qu": 58, "inner": [59, 73], "find_multilabel_issues_per_class": [59, 60], "per_class_label_issu": 59, "label_issues_list": 59, "pred_probs_list": [59, 67, 88, 94], "anim": [60, 99], "rat": 60, "predat": 60, "pet": 60, "reptil": 60, "manner": [61, 82, 83, 96, 101], "box": [62, 64, 65, 92, 98], "object_detect": [62, 64, 65, 98], "return_indices_ranked_by_scor": [62, 98], "overlapping_label_check": [62, 64], "suboptim": [62, 64], "locat": [62, 64, 98, 102, 103], "bbox": [62, 65, 98], "image_nam": [62, 65], "y1": [62, 65, 98], "y2": [62, 65, 98], "later": [62, 65, 66, 83, 103], "corner": [62, 65, 98], "xyxi": [62, 65, 98], "io": [62, 65, 84, 92], "keras_cv": [62, 65], "bounding_box": [62, 65, 98], "detectron": [62, 65, 98], "detectron2": [62, 65, 98], "readthedoc": [62, 65], "en": [62, 65], "latest": [62, 65], "visual": [62, 63, 65, 82, 85, 86, 87, 88, 101, 103], "draw_box": [62, 65], "mmdetect": [62, 65, 98], "swap": [62, 64, 74, 78], "penal": [62, 64], "concern": [62, 64, 79, 87], "issues_from_scor": [63, 64, 72, 73, 74, 76, 77, 78, 98, 102, 103], "compute_overlooked_box_scor": [63, 64], "compute_badloc_box_scor": [63, 64], "compute_swap_box_scor": [63, 64], "pool_box_scores_per_imag": [63, 64], "object_counts_per_imag": [63, 65, 98], "bounding_box_size_distribut": [63, 65, 98], "class_label_distribut": [63, 65, 98], "get_sorted_bbox_count_idx": [63, 65], "plot_class_size_distribut": [63, 65], "plot_class_distribut": [63, 65], "get_average_per_class_confusion_matrix": [63, 65], "calculate_per_class_metr": [63, 65], "aggregation_weight": 64, "imperfect": [64, 93], "chose": [64, 96, 98], "imperfectli": [64, 98], "dirti": [64, 67, 70, 101], "subtyp": 64, "badloc": 64, "nonneg": 64, "high_probability_threshold": 64, "auxiliary_input": [64, 65], "vari": [64, 87], "iou": [64, 65], "heavili": 64, "auxiliarytypesdict": 64, "pred_label": [64, 83], "pred_label_prob": 64, "pred_bbox": 64, "lab_label": 64, "lab_bbox": 64, "similarity_matrix": 64, "min_possible_similar": 64, "scores_overlook": 64, "low_probability_threshold": 64, "scores_badloc": 64, "accident": [64, 83, 90, 91, 93], "scores_swap": 64, "box_scor": 64, "image_scor": [64, 73, 102], "discov": [65, 87, 103], "abnorm": [65, 88, 98], "auxiliari": [65, 99, 102], "_get_valid_inputs_for_compute_scor": 65, "object_count": 65, "down": 65, "bbox_siz": 65, "class_distribut": 65, "plot": [65, 85, 86, 87, 94, 97, 99, 101, 102], "sorted_idx": [65, 99], "class_to_show": 65, "hidden": [65, 85, 99], "max_class_to_show": 65, "plt": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "matplotlib": [65, 74, 85, 86, 87, 88, 94, 97, 98, 99, 101], "pyplot": [65, 74, 85, 86, 87, 88, 94, 97, 99, 101], "prediction_threshold": 65, "overlai": [65, 98], "figsiz": [65, 85, 86, 87, 88, 94, 97, 99], "save_path": [65, 98], "blue": [65, 92, 94, 98], "overlaid": 65, "side": [65, 92, 98], "figur": [65, 94, 97, 99, 101], "extens": [65, 94, 96], "png": [65, 98], "pdf": [65, 66], "svg": 65, "num_proc": [65, 88], "intersect": [65, 93], "tp": 65, "fp": 65, "ground": [65, 92, 94, 96, 101], "truth": [65, 94, 96, 101], "bias": 65, "avg_metr": 65, "distionari": 65, "95": [65, 75, 77, 90, 92, 94, 101], "per_class_metr": 65, "Of": 66, "li": 66, "smaller": [66, 85, 97, 98], "find_top_issu": [66, 67, 99], "reli": [66, 83, 84, 85, 86, 87, 91, 98, 99, 101], "dist_metr": 66, "subtract": [66, 67], "renorm": [66, 67, 93], "least_confid": 66, "sum_": 66, "log": [66, 67, 80], "softmax": [66, 73, 77, 88], "literatur": 66, "gen": 66, "liu": 66, "lochman": 66, "zach": 66, "openaccess": 66, "thecvf": 66, "cvpr2023": 66, "liu_gen_pushing_the_limits_of_softmax": 66, "based_out": 66, "distribution_detection_cvpr_2023_pap": 66, "fit_scor": [66, 99], "ood_predictions_scor": 66, "pretrain": [66, 83, 84, 91, 99], "adjust_confident_threshold": 66, "probabilist": [66, 82, 84, 86, 87, 90, 91, 99, 100], "order_label_issu": [67, 80], "whichev": [67, 100], "argsort": [67, 83, 88, 91, 94, 98, 99, 101], "max_": 67, "get_label_quality_ensemble_scor": [67, 93, 94], "weight_ensemble_members_bi": 67, "custom_weight": 67, "log_loss_search_t_valu": 67, "0001": [67, 92], "scheme": 67, "log_loss_search": 67, "log_loss": [67, 91], "1e0": 67, "1e1": 67, "1e2": 67, "2e2": 67, "quality_scor": [67, 99], "forth": 67, "top_issue_indic": 67, "rank_bi": [67, 80], "weird": [67, 78], "minu": 67, "prob_label": 67, "max_prob_not_label": 67, "idea": [67, 85, 98], "AND": [67, 91], "get_epistemic_uncertainti": [68, 69], "get_aleatoric_uncertainti": [68, 69], "corrupt": [69, 101], "linearregress": [69, 93, 101], "y_with_nois": 69, "n_boot": [69, 93], "include_aleatoric_uncertainti": [69, 93], "sole": [69, 82, 86, 96, 99], "bootstrap": [69, 93, 101], "resampl": [69, 84, 93], "epistem": [69, 93, 99, 101], "aleator": [69, 93, 101], "model_final_kwarg": 69, "coars": 69, "thorough": [69, 93], "fine": [69, 83, 84, 91, 99], "grain": 69, "grid": 69, "varianc": [69, 94], "epistemic_uncertainti": 69, "residu": [69, 70, 93], "deviat": [69, 98, 101], "aleatoric_uncertainti": 69, "outr": 70, "contin": 70, "raw": [70, 79, 80, 87, 88, 92, 93, 96, 98, 99, 101], "aka": [70, 84, 94, 98, 101, 103], "00323821": 70, "33692597": 70, "00191686": 70, "semant": [71, 73, 74, 95], "pixel": [71, 73, 74, 99, 102], "h": [71, 73, 74, 102], "height": [71, 73, 74, 102], "w": [71, 73, 74, 102], "width": [71, 73, 74, 102], "labels_one_hot": [71, 74, 102], "stream": [71, 85, 99, 103], "downsampl": [71, 73, 102], "shrink": [71, 73], "divis": [71, 73, 86], "common_label_issu": [72, 74, 76, 78, 102, 103], "filter_by_class": [72, 74, 102], "segmant": [73, 74], "num_pixel_issu": [73, 102], "product": [73, 88, 93], "pixel_scor": [73, 102], "highlight": [74, 78, 85, 86, 87, 90, 102], "enter": 74, "legend": [74, 85, 86, 87, 97, 98, 101, 102], "colormap": 74, "background": 74, "person": [74, 93, 98, 102, 103], "ambigu": [74, 78, 83, 84, 91, 92, 94, 103], "systemat": [74, 78, 96], "misunderstood": [74, 78], "issues_df": [74, 88], "class_index": 74, "issues_subset": [74, 78], "filter_by_token": [76, 78, 103], "token_score_method": 77, "sentence_score_method": 77, "sentence_score_kwarg": 77, "compris": [77, 78], "token_scor": [77, 103], "converg": 77, "toward": 77, "_softmin_sentence_scor": 77, "sentence_scor": [77, 103], "token_info": 77, "70": [77, 90], "02": [77, 86, 87, 94, 98], "03": [77, 90, 92, 94, 98, 103], "04": [77, 90, 98, 103], "08": [77, 94, 98, 101, 103], "commonli": [78, 80, 86, 87, 97, 103], "But": [78, 91, 94, 101, 103], "restrict": [78, 93], "reliabl": [79, 82, 84, 93, 96, 102], "thousand": 79, "imagenet": [79, 92], "popular": [79, 96, 98], "centric": [79, 88, 90, 91, 95], "capabl": 79, "minut": [79, 82, 83, 84, 90, 91, 92, 96, 97, 98, 101, 102, 103], "conda": 79, "feature_embed": [79, 99], "Then": [79, 82, 83, 88, 93], "your_dataset": [79, 84, 86, 87, 88, 90, 91, 93], "column_name_of_label": [79, 84, 86, 87, 88, 90, 91], "plagu": [79, 87], "untrain": 79, "\u30c4": 79, "label_issues_info": [79, 87], "sklearn_compatible_model": 79, "framework": [79, 97, 98], "complianc": 79, "tag": [79, 97, 103], "sequenc": 79, "recognit": [79, 84, 93, 103], "train_data": [79, 82, 83, 99, 101], "gotten": 79, "test_data": [79, 82, 83, 85, 94, 97, 99, 101], "deal": [79, 87], "tutori": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "feel": [79, 84, 87, 93], "ask": [79, 93], "slack": [79, 93], "project": [79, 101], "welcom": 79, "commun": [79, 93], "guidelin": [79, 98], "piec": 79, "smart": [79, 88, 90, 91, 93], "edit": [79, 93], "easier": [79, 94], "unreli": [79, 82, 84, 90, 91], "link": [79, 84, 92, 98], "older": 80, "outlin": 80, "substitut": 80, "v2": [80, 82, 90], "get_noise_indic": 80, "psx": 80, "sorted_index_method": 80, "order_label_error": 80, "label_errors_bool": 80, "latent_estim": 80, "num_label_error": 80, "learningwithnoisylabel": 80, "neatli": 80, "organ": [80, 82, 90, 92, 103], "reorgan": 80, "baseline_method": 80, "incorpor": [80, 94], "research": [80, 94], "polyplex": 80, "terminologi": 80, "label_error": 80, "quickstart": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 96, 97, 98, 99, 101, 102, 103], "sql": [82, 90], "databas": [82, 90], "excel": [82, 90], "parquet": [82, 90], "student": [82, 90, 101, 103], "grade": [82, 90, 101], "900": [82, 90, 101], "exam": [82, 90, 101], "letter": [82, 90, 103], "hundr": [82, 90], "mistak": [82, 83, 88, 90, 91], "No": [82, 83, 91, 93], "extratreesclassifi": 82, "extratre": 82, "ranked_label_issu": [82, 83], "branch": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101], "preprocess": [82, 83, 87, 90, 99, 101], "standardscal": [82, 90, 99], "labelencod": [82, 83], "train_test_split": [82, 83, 85, 86, 87, 99], "accuracy_scor": [82, 83, 84, 91, 94], "grades_data": [82, 90], "read_csv": [82, 83, 90, 91, 101], "demo": [82, 87, 90, 97], "head": [82, 83, 84, 87, 88, 90, 91, 92, 94, 96, 101], "stud_id": [82, 90], "exam_1": [82, 90, 101], "exam_2": [82, 90, 101], "exam_3": [82, 90, 101], "letter_grad": [82, 90], "f48f73": [82, 90], "53": [82, 85, 86, 87, 90, 92, 97, 98], "00": [82, 86, 87, 90, 92, 99], "77": [82, 86, 87, 90, 98], "0bd4e7": [82, 90], "81": [82, 90, 91, 98, 101, 103], "great": [82, 85, 90, 92], "particip": [82, 90], "cb9d7a": [82, 90], "61": [82, 90, 94, 98, 101], "94": [82, 90, 92, 94, 98, 101], "78": [82, 90, 92, 94, 98, 101], "9acca4": [82, 90], "48": [82, 90, 92, 94, 98], "x_raw": [82, 90], "labels_raw": 82, "interg": [82, 83], "categorical_featur": [82, 101], "x_encod": [82, 90], "get_dummi": [82, 90, 101], "drop_first": [82, 90], "numeric_featur": [82, 90], "scaler": [82, 90, 99], "x_process": [82, 90], "fit_transform": [82, 90], "bring": [82, 83, 88, 90, 91, 96, 101], "byod": [82, 83, 88, 90, 91, 96, 101], "decis": [82, 85, 86, 87], "tress": 82, "held": [82, 84, 90, 91, 92, 98, 99, 100], "straightforward": [82, 84, 90], "benefit": [82, 84, 100, 102], "num_crossval_fold": [82, 84, 90, 96], "u": [82, 83, 84, 86, 88, 90, 93, 94, 96, 97, 100, 101, 102, 103], "tabl": [82, 90, 92, 96], "212": [82, 94], "review": [82, 83, 87, 90, 91, 92, 93, 94, 98, 101, 102, 103], "iloc": [82, 83, 84, 90, 91, 101], "58": [82, 87, 90, 92, 94, 98], "92": [82, 86, 94, 98], "93": [82, 92, 98, 101], "827": 82, "99": [82, 92, 94], "86": [82, 87, 88, 90, 94, 98, 101], "74": [82, 98, 101], "637": [82, 90], "79": [82, 92, 98], "65": [82, 86, 98], "cheat": 82, "0pt": 82, "120": [82, 86, 87], "97": [82, 92, 93, 94, 98, 101, 103], "233": 82, "68": [82, 92, 94, 98, 103], "83": [82, 94, 98, 101, 103], "76": [82, 85, 94, 97, 98, 101], "suspici": [82, 90], "carefulli": [82, 88, 90, 91], "examin": [82, 85, 86, 87, 90, 98], "labels_train": 82, "labels_test": 82, "test_siz": [82, 83, 85, 86, 87], "acc_og": [82, 83], "783068783068783": 82, "robustli": [82, 83, 101], "14": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "acc_cl": [82, 83], "8095238095238095": 82, "especi": [82, 83, 85, 88, 93, 101], "blindli": [82, 83, 84, 93, 101], "trust": [82, 83, 84, 93, 94, 96, 100, 101], "effort": [82, 83, 101], "intent": [83, 91], "servic": [83, 91, 93], "onlin": [83, 91], "bank": [83, 91, 92], "banking77": [83, 91], "oo": [83, 91], "000": [83, 88, 91, 92, 103], "categori": [83, 88, 91], "shortlist": [83, 91, 101], "scope": [83, 91], "logist": [83, 85, 86, 87, 91, 96, 99], "probabilit": [83, 84], "drop": [83, 93, 96, 101], "earlier": [83, 103], "sentence_transform": [83, 91], "sentencetransform": [83, 91], "payment": [83, 91], "cancel_transf": [83, 91], "transfer": [83, 91], "fund": [83, 91], "cancel": [83, 91], "transact": [83, 91], "my": [83, 91], "revert": [83, 91], "morn": [83, 91], "realis": [83, 91], "yesterdai": [83, 91], "rent": [83, 91], "realli": [83, 91, 96, 102], "tomorrow": [83, 91], "raw_text": [83, 91], "raw_label": 83, "raw_train_text": 83, "raw_test_text": 83, "raw_train_label": 83, "raw_test_label": 83, "39": [83, 84, 86, 88, 91, 92, 93, 98, 101, 102, 103], "apple_pay_or_google_pai": [83, 91], "lost_or_stolen_phon": [83, 91], "card_payment_fee_charg": [83, 91], "getting_spare_card": [83, 91], "visa_or_mastercard": [83, 91], "change_pin": [83, 91], "card_about_to_expir": [83, 91], "beneficiary_not_allow": [83, 91], "supported_cards_and_curr": [83, 91], "card": [83, 91, 92], "utter": [83, 91], "encond": 83, "test_label": [83, 94, 97, 99], "suit": [83, 91, 92, 93], "electra": [83, 91], "discrimin": [83, 91], "googl": [83, 85, 91], "train_text": 83, "test_text": 83, "home": [83, 86, 87, 91, 92], "runner": [83, 86, 87, 91], "google_electra": [83, 91], "pool": [83, 91, 93, 99], "opt": [83, 84, 87, 88, 90, 91, 94], "hostedtoolcach": [83, 84, 87, 88, 90, 91, 94], "x64": [83, 84, 87, 88, 90, 91, 94], "lib": [83, 84, 87, 88, 90, 91, 94], "python3": [83, 84, 87, 88, 90, 91, 94], "site": [83, 84, 87, 88, 90, 91, 94], "_util": [83, 91], "831": [83, 91], "userwarn": [83, 84, 86, 87, 91], "typedstorag": [83, 91], "untypedstorag": [83, 91], "untyped_storag": [83, 91], "fget": [83, 91], "__get__": [83, 91], "owner": [83, 91], "leverag": [83, 84, 91, 93, 94, 96], "computation": [83, 84, 91], "intens": [83, 84, 91], "400": [83, 85, 91], "858371": 83, "547274": 83, "826228": 83, "966008": 83, "792449": 83, "identified_issu": [83, 101], "lowest_quality_label": [83, 84, 91, 94, 101], "to_numpi": [83, 91, 93, 101], "44": [83, 92, 97, 98], "646": 83, "390": 83, "628": 83, "121": [83, 85, 94], "702": 83, "863": [83, 84], "135": 83, "337": [83, 98], "735": 83, "print_as_df": 83, "inverse_transform": 83, "charg": [83, 91], "cash": [83, 91], "holidai": [83, 91], "sent": [83, 91, 103], "mine": [83, 91], "expir": [83, 91], "fight": 83, "hors": [83, 92, 99], "duck": [83, 92], "me": [83, 91], "whoever": [83, 91], "consum": [83, 101], "18": [83, 84, 91, 92, 93, 94, 98, 99, 101, 102], "baseline_model": [83, 101], "87": [83, 87, 88, 98, 101], "acceler": [83, 101], "19": [83, 84, 88, 91, 92, 93, 94, 98, 99, 101, 102], "89": [83, 85, 86, 90, 98, 101], "spoken": 84, "500": [84, 99, 103], "english": [84, 92], "pronunci": 84, "wav": 84, "huggingfac": [84, 86, 87, 88, 93], "voxceleb": 84, "speech": [84, 103], "your_pred_prob": [84, 85, 86, 87, 90, 91], "tensorflow_io": 84, "huggingface_hub": 84, "reproduc": [84, 90, 94, 96], "command": 84, "wget": [84, 98, 102, 103], "navig": 84, "browser": 84, "jakobovski": 84, "archiv": [84, 103], "v1": 84, "tar": [84, 99], "gz": [84, 99], "mkdir": [84, 103], "spoken_digit": 84, "xf": 84, "6_nicolas_32": 84, "data_path": 84, "listdir": 84, "nondeterminist": 84, "file_nam": 84, "endswith": 84, "file_path": 84, "join": [84, 85, 88, 93], "7_george_26": 84, "0_nicolas_24": 84, "0_nicolas_6": 84, "listen": 84, "display_exampl": 84, "expand": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "pulldown": [84, 85, 86, 87, 88, 92, 94, 96, 97, 99, 101, 103], "colab": [84, 85, 86, 87, 88, 92, 93, 94, 96, 97, 99, 101, 103], "tfio": 84, "pathlib": 84, "ipython": 84, "load_wav_16k_mono": 84, "filenam": 84, "khz": 84, "file_cont": 84, "read_fil": 84, "sample_r": 84, "decode_wav": 84, "desired_channel": 84, "squeez": 84, "rate_in": 84, "rate_out": 84, "16000": 84, "wav_file_nam": 84, "audio_r": 84, "wav_file_exampl": 84, "plai": [84, 92, 93], "button": 84, "wav_file_name_exampl": 84, "7_jackson_43": 84, "hear": 84, "extractor": 84, "encoderclassifi": 84, "spkrec": 84, "xvect": 84, "feature_extractor": 84, "from_hparam": 84, "run_opt": 84, "uncom": 84, "ffmpeg": 84, "backend": 84, "wav_audio_file_path": 84, "torchaudio": 84, "extract_audio_embed": 84, "emb": [84, 88], "signal": 84, "encode_batch": 84, "embeddings_list": [84, 88], "embeddings_arrai": 84, "650": 84, "stft": 84, "return_complex": 84, "view_as_r": 84, "recov": 84, "trigger": 84, "aten": 84, "src": 84, "nativ": 84, "spectralop": 84, "cpp": 84, "_vf": 84, "n_fft": 84, "hop_length": 84, "win_length": 84, "attr": 84, "512": [84, 88], "196311": 84, "319459": 84, "478975": 84, "2890875": 84, "8170238": 84, "89265": 84, "24": [84, 92, 94, 96, 98, 101], "898056": 84, "256195": 84, "559641": 84, "559721": 84, "62067": 84, "285245": 84, "21": [84, 86, 92, 93, 94, 98, 101, 103], "709627": 84, "5033693": 84, "913803": 84, "819831": 84, "1831515": 84, "208763": 84, "084257": 84, "3210397": 84, "005453": 84, "216152": 84, "478235": 84, "6821785": 84, "053807": 84, "242471": 84, "091424": 84, "78334856": 84, "03954": 84, "23": [84, 88, 92, 94, 98, 101], "569176": 84, "761097": 84, "1258295": 84, "753237": 84, "3508866": 84, "598274": 84, "23712": 84, "2500": 84, "tol": 84, "decreas": [84, 93], "cv_accuraci": 84, "9708": 84, "9976": 84, "986": 84, "002161": 84, "176": [84, 92, 94, 97], "002483": 84, "2318": 84, "004411": 84, "1005": 84, "004857": 84, "1871": 84, "007494": 84, "investig": [84, 85], "040587": 84, "999207": 84, "999377": 84, "975220": 84, "999367": 84, "identified_label_issu": [84, 91], "sort_valu": [84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 101], "516": 84, "1946": 84, "469": 84, "2132": 84, "worth": [84, 94], "6_yweweler_25": 84, "7_nicolas_43": 84, "6_theo_27": 84, "6_yweweler_36": 84, "6_yweweler_14": 84, "6_yweweler_35": 84, "6_nicolas_8": 84, "sound": 84, "quit": [84, 99], "22": [84, 86, 88, 92, 93, 94, 97, 98, 103], "ve": [85, 92, 93, 94, 96, 98], "prove": 85, "monitor": [85, 92], "ran": 85, "data_monitor": 85, "your_datalab": 85, "new_data_batch": 85, "your_label": 85, "get_your_label": 85, "websit": [85, 92], "todo": 85, "get_ipython": 85, "5eaeb983f10365ef634bc0cd24297f9c84eecee4": 85, "cmd": 85, "dep": 85, "dependencies_test": 85, "missing_depend": 85, "__import__": 85, "importerror": 85, "sep": [85, 103], "npleas": 85, "toi": [85, 86, 87, 88, 92, 94, 96], "mid": [85, 86, 87], "workflow": [85, 95, 101], "unseen": 85, "inf": [85, 86, 87], "bins_map": [85, 86, 87], "create_data": [85, 86, 87], "800": 85, "y_bin": [85, 86, 87], "y_i": [85, 86, 87], "y_bin_idx": [85, 86, 87], "y_train": [85, 86, 87, 94, 101], "y_test": [85, 86, 87, 94, 101], "y_train_idx": [85, 86, 87], "y_test_idx": [85, 86, 87], "slide": [85, 86, 87, 92], "frame": [85, 86, 87], "x_out": [85, 86, 87], "tini": [85, 86, 87], "concaten": [85, 86, 87, 93, 100], "y_out": [85, 86, 87], "y_out_bin": [85, 86, 87], "y_out_bin_idx": [85, 86, 87], "exact_duplicate_idx": [85, 86, 87], "x_duplic": [85, 86, 87], "y_duplic": [85, 86, 87], "y_duplicate_idx": [85, 86, 87], "noisy_labels_idx": [85, 86, 87, 97], "train_x": 85, "test_x": 85, "train_y_tru": 85, "test_y_tru": 85, "train_i": 85, "test_i": 85, "train_y_idx": 85, "test_y_idx": 85, "scatter": [85, 86, 87, 94, 97, 101], "black": [85, 86, 87, 92, 101], "cyan": [85, 86, 87], "plot_data": [85, 86, 87, 94, 97, 101], "fig": [85, 86, 87, 88, 92, 99, 101], "ax": [85, 86, 87, 88, 99, 101], "subplot": [85, 86, 87, 88, 99], "set_titl": [85, 86, 87, 88, 99], "set_xlabel": [85, 86, 87], "x_1": [85, 86, 87], "fontsiz": [85, 86, 87, 88, 94, 97], "set_ylabel": [85, 86, 87], "x_2": [85, 86, 87], "set_xlim": [85, 86, 87], "set_ylim": [85, 86, 87], "linestyl": [85, 86, 87], "circl": [85, 86, 87, 94, 97], "misclassifi": [85, 86, 87], "zip": [85, 86, 87, 88, 98, 103], "label_err": [85, 86, 87], "180": [85, 86, 87, 98], "marker": [85, 86, 87], "facecolor": [85, 86, 87], "edgecolor": [85, 86, 87], "linewidth": [85, 86, 87, 99], "title_fontproperti": [85, 86, 87], "semibold": [85, 86, 87], "first_legend": [85, 86, 87], "align": [85, 86, 87], "markerscal": 85, "second_legend": [85, 86, 87], "46": [85, 90, 92, 94, 98], "gca": [85, 86, 87], "add_artist": [85, 86, 87], "tight_layout": [85, 86, 87], "ideal": [85, 86, 87], "simplic": [85, 97], "327": [85, 98], "9297": 85, "000124": 85, "259": 85, "000725": 85, "269": 85, "000794": 85, "002061": 85, "125": [85, 86], "002908": 85, "fly": [85, 92], "feed": [85, 93], "simul": 85, "tqdm": [85, 88], "sleep": [85, 92], "generate_stream": 85, "sleep_tim": 85, "desc": 85, "singleton_stream": 85, "seamless": [85, 93], "singleton": 85, "batched_stream": 85, "processed_singleton": 85, "suggested_label": [85, 91], "250997": 85, "285757": 85, "43": [85, 86, 92, 94, 98], "120906": 85, "principl": 85, "processed_batch": 85, "51": [85, 86, 87, 90, 92, 94, 98], "002748": 85, "189996": 85, "093505": 85, "037250": 85, "149": [85, 98], "076397": 85, "154": 85, "294010": 85, "160": [85, 91, 101], "073622": 85, "166": [85, 88], "140832": 85, "167": [85, 92, 94, 98], "041743": 85, "181": 85, "169429": 85, "127304": 85, "235": [85, 98], "090310": 85, "254": [85, 92, 98], "183343": 85, "256": [85, 92, 93, 98], "048720": 85, "263": [85, 97, 98], "138820": 85, "292": 85, "239609": 85, "295": [85, 98], "022075": 85, "306": 85, "103040": 85, "343": 85, "234755": 85, "354": 85, "001612": 85, "359": 85, "068359": 85, "367": [85, 101], "015793": 85, "368": 85, "029022": 85, "391": 85, "106761": 85, "troublesom": 85, "623844": 85, "812647": 85, "816854": 85, "661968": 85, "632244": 85, "395": 85, "474599": 85, "396": 85, "653901": 85, "397": 85, "584554": 85, "398": 85, "817287": 85, "399": 85, "881545": 85, "183": 85, "937927": 85, "309": 85, "939505": 85, "133": 85, "947290": 85, "177": 85, "952187": 85, "314": [85, 98], "997293": 85, "27": [85, 90, 92, 94, 98, 103], "655501": 85, "underneath": 86, "hood": [86, 93], "alert": 86, "introduct": 86, "mayb": [86, 87, 91], "your_feature_matrix": [86, 87], "dup": [86, 87], "45": [86, 87, 92, 94, 98], "remaind": 86, "modal": [86, 87, 93, 96], "132": [86, 87, 94, 98], "9318": 86, "006940": 86, "007830": 86, "40": [86, 87, 91, 92], "014828": 86, "107": [86, 87, 94, 97], "021241": 86, "026407": 86, "notic": [86, 94, 96, 98], "3558": [86, 87], "126": [86, 87, 94, 98], "006636": [86, 87], "130": [86, 87], "012571": [86, 87], "129": [86, 87], "127": [86, 87], "014909": [86, 87], "128": [86, 87, 88], "017443": [86, 87], "6160": [86, 87], "is_near_duplicate_issu": [86, 87, 88, 90, 91, 93, 94], "131": [86, 87, 102], "000000e": [86, 87], "000002": [86, 87], "463180e": [86, 87], "07": [86, 87, 88, 90, 94, 98, 101], "161148": [86, 87], "859087e": [86, 87], "30": [86, 87, 88, 92, 93, 97, 102, 103], "3453": 86, "029542": 86, "031182": 86, "057961": 86, "058244": 86, "348": 86, "378": 86, "357": 86, "34": [86, 92, 94, 96, 98, 103], "54": [86, 92, 94, 98, 103], "039122": 86, "044598": 86, "105": [86, 98], "105196": 86, "133654": 86, "168033": 86, "101107": 86, "37": [86, 92, 103], "183382": 86, "109": [86, 92, 98], "209259": 86, "211042": 86, "221316": 86, "average_ood_scor": 86, "34530442089193386": 86, "52": [86, 92, 98, 103], "169820": 86, "087324e": 86, "259024": 86, "583757e": 86, "91": [86, 98], "346458": 86, "341292e": 86, "specfi": 86, "new_lab": 86, "scoring_funct": 86, "div": 86, "rem": 86, "inv_scal": 86, "49": [86, 92, 94, 98], "superstitionissuemanag": 86, "unlucki": 86, "superstit": 86, "to_seri": 86, "issues_mask": 86, "summary_scor": 86, "9242": 86, "is_superstition_issu": 86, "superstition_scor": 86, "26": [86, 88, 92, 94, 96, 98], "047581": 86, "090635": 86, "129591": 86, "164840": 86, "lurk": [87, 88, 94], "_split": 87, "737": 87, "thoroughli": 87, "904": 87, "_base": [87, 88, 90, 91, 94], "246": [87, 88, 90, 91, 94, 98], "efficiencywarn": [87, 88, 90, 91, 94], "sort_graph_by_row_valu": [87, 88, 90, 91, 94], "warn_when_not_sort": [87, 88, 90, 91, 94], "8561": 87, "001908": 87, "003564": 87, "007331": 87, "008963": 87, "009664": 87, "0227": 87, "is_class_imbalance_issu": 87, "022727": 87, "conceptu": 87, "856061": 87, "355772": 87, "616034": 87, "821750": 87, "901562": 87, "betweeen": 87, "is_null_issu": 87, "is_non_iid_issu": [87, 90, 91, 94], "is_underperforming_group_issu": 87, "859131": 87, "417707": 87, "664083": 87, "970324": 87, "816953": 87, "375317": 87, "641516": 87, "890575": 87, "531021": 87, "460593": 87, "601188": 87, "826147": 87, "752808": 87, "321635": 87, "562539": 87, "948362": 87, "090243": 87, "472909": 87, "746763": 87, "878267": 87, "examples_w_issu": [87, 93], "013445": 87, "025184": 87, "026376": 87, "inde": [87, 91], "miscellan": [87, 103], "428571": 87, "111111": 87, "571429": 87, "407407": 87, "592593": 87, "337838": 87, "092593": 87, "662162": 87, "333333": [87, 92], "952381": 87, "666667": 87, "portion": 87, "huge": [87, 94], "worri": [87, 91], "critic": 87, "60": [88, 94, 101], "torchvis": [88, 99], "tensordataset": 88, "stratifiedkfold": [88, 97], "autonotebook": 88, "fashion_mnist": 88, "1461": 88, "futurewarn": 88, "hf": 88, "messag": 88, "trust_remote_cod": 88, "num_row": 88, "60000": 88, "transformed_dataset": 88, "with_format": 88, "255": [88, 92], "unsqueez": 88, "cpu_count": 88, "torch_dataset": 88, "quick": [88, 97], "super": [88, 90, 91], "relu": 88, "batchnorm2d": 88, "maxpool2d": 88, "lazylinear": 88, "flatten": 88, "get_test_accuraci": 88, "testload": [88, 99], "energi": 88, "trainload": [88, 99], "n_epoch": 88, "patienc": 88, "criterion": 88, "crossentropyloss": 88, "adamw": 88, "best_test_accuraci": 88, "start_epoch": 88, "running_loss": 88, "best_epoch": 88, "end_epoch": 88, "3f": [88, 101], "acc": [88, 94], "time_taken": 88, "compute_embed": 88, "compute_pred_prob": 88, "train_batch_s": 88, "num_work": 88, "worker": [88, 103], "train_id_list": 88, "test_id_list": 88, "train_id": 88, "test_id": 88, "embeddings_model": 88, "ntrain": 88, "trainset": 88, "testset": 88, "pin_memori": 88, "fold_embed": 88, "fold_pred_prob": 88, "finish": 88, "482": 88, "720": 88, "790": 88, "329": [88, 98], "88": [88, 92, 93, 94, 97, 98, 101], "195": 88, "535": 88, "493": 88, "060": 88, "017": 88, "330": [88, 98], "505": 88, "546": [88, 91], "476": 88, "340": 88, "825": 88, "328": [88, 98], "310": 88, "550": 88, "reorder": 88, "hstack": [88, 93, 94, 96], "vision": 88, "grayscal": 88, "max_preval": 88, "7714": 88, "3772": 88, "3585": 88, "3651": 88, "27080": 88, "873833e": 88, "40378": 88, "915575e": 88, "25316": 88, "390277e": 88, "06": [88, 94, 98, 103], "2090": 88, "751164e": 88, "14999": 88, "881301e": 88, "9569": 88, "11262": 88, "000003": 88, "coat": [88, 92], "shirt": [88, 92], "19228": 88, "000010": 88, "dress": 88, "32657": 88, "000013": 88, "bag": [88, 92, 99, 100], "21282": 88, "000016": 88, "53564": 88, "000018": 88, "pullov": 88, "6321": 88, "30968": 88, "001267": 88, "30659": 88, "000022": [88, 103], "47824": 88, "001454": 88, "3370": 88, "000026": 88, "54565": 88, "001854": 88, "9762": 88, "258": 88, "47139": 88, "000033": 88, "166980": 88, "986195": 88, "997205": 88, "sandal": [88, 92], "948781": 88, "999358": 88, "54078": 88, "17371": 88, "000025": 88, "plot_label_issue_exampl": 88, "ncol": [88, 99], "nrow": [88, 99], "ceil": 88, "axes_list": 88, "label_issue_indic": 88, "gl": 88, "sl": 88, "fontdict": 88, "imshow": [88, 99], "cmap": [88, 101], "grai": 88, "subplots_adjust": 88, "hspace": 88, "outsiz": 88, "outlier_issu": [88, 91], "outlier_issues_df": 88, "depict": [88, 97, 98, 99, 100, 102], "plot_outlier_issues_exampl": 88, "n_comparison_imag": 88, "sample_from_class": 88, "number_of_sampl": 88, "non_outlier_indic": 88, "isnul": 88, "non_outlier_indices_excluding_curr": 88, "sampled_indic": 88, "label_scores_of_sampl": 88, "top_score_indic": 88, "top_label_indic": 88, "sampled_imag": 88, "get_image_given_label_and_sampl": 88, "image_from_dataset": 88, "corresponding_label": 88, "comparison_imag": 88, "images_to_plot": 88, "idlist": 88, "iterrow": 88, "near_duplicate_issu": [88, 93], "closest": 88, "counterpart": 88, "near_duplicate_issues_df": 88, "plot_near_duplicate_issue_exampl": 88, "seen_id_pair": 88, "get_image_and_given_label_and_predicted_label": 88, "duplicate_imag": 88, "nd_set": 88, "challeng": 88, "dark_issu": 88, "reveal": [88, 98, 102], "dark_scor": 88, "dark_issues_df": 88, "is_dark_issu": 88, "34848": 88, "203922": 88, "50270": 88, "204588": 88, "3936": 88, "213098": 88, "733": 88, "217686": 88, "8094": 88, "230118": 88, "plot_image_issue_exampl": 88, "28": [88, 91, 92, 94, 96, 103], "difficult": 88, "disproportion": 88, "lowinfo_issu": 88, "low_information_scor": 88, "lowinfo_issues_df": 88, "is_low_information_issu": 88, "53050": 88, "067975": 88, "40875": 88, "089929": 88, "9594": 88, "092601": 88, "34825": 88, "107744": 88, "37530": 88, "108516": 88, "lot": 88, "histgradientboostingclassifi": 90, "cat_featur": 90, "boost": [90, 93, 96, 101], "xgboost": [90, 93, 101], "think": [90, 91, 93, 97, 102, 103], "nonzero": 90, "358": 90, "294": [90, 98], "941": 90, "7109": 90, "000005": [90, 91], "886": 90, "000059": 90, "709": 90, "000104": 90, "723": 90, "000169": 90, "689": 90, "000181": 90, "3590": 90, "051882e": 90, "683133e": 90, "536582e": 90, "406589e": 90, "324246e": 90, "6165": 90, "582": 90, "185": [90, 92, 98], "187": [90, 92], "898": 90, "0014": [90, 92], "595": 90, "702427": 90, "147": [90, 94, 98], "711186": 90, "157": [90, 94], "721394": 90, "771": 90, "731979": 90, "740335": 90, "0014153602099278074": 90, "issue_result": 90, "000842": 90, "555944": 90, "004374": 90, "sorted_issu": 90, "73": [90, 92, 97, 98, 101], "deserv": 90, "outlier_result": 90, "sorted_outli": 90, "56": [90, 92, 101], "96": [90, 92, 94, 97, 98, 101], "lt": [90, 91, 92, 96, 99], "style": [90, 102], "font": 90, "18px": 90, "ff00ff": 90, "bac": 90, "unintend": [90, 91], "duplicate_result": 90, "690": 90, "perhap": [90, 94, 96], "twice": 90, "67": [90, 92, 98, 101], "wari": [90, 91, 93], "dive": 91, "your_featur": 91, "text_embed": 91, "data_dict": [91, 94, 96], "85": [91, 98], "38": [91, 92, 98], "9710": 91, "981": 91, "974": 91, "000146": 91, "982": [91, 92], "000224": 91, "971": 91, "000507": 91, "980": [91, 92], "000960": 91, "3584": 91, "994": 91, "009642": 91, "999": 91, "013067": 91, "013841": 91, "433": 91, "014722": 91, "989": 91, "018224": 91, "6070": 91, "095724": 91, "148": 91, "006237": 91, "099341": 91, "514": 91, "006485": 91, "481": 91, "123418": 91, "008165": 91, "0000": [91, 92, 94], "313": [91, 98], "564102": 91, "572258": 91, "574915": 91, "31": [91, 92, 94, 96, 98], "575507": 91, "575874": 91, "792090": 91, "257611": 91, "698710": 91, "182121": 91, "771619": 91, "data_with_suggested_label": 91, "withdraw": 91, "monei": 91, "lowest_quality_outli": 91, "OR": 91, "636c65616e6c616220697320617765736f6d6521": 91, "phone": [91, 92], "gone": 91, "gt": [91, 96, 103], "samp": 91, "br": 91, "press": [91, 103], "nonsens": 91, "sens": 91, "detriment": 91, "duplicate_issu": 91, "fee": 91, "pai": 91, "go": [91, 92, 94], "strongli": 91, "p_valu": 91, "benign": 91, "curat": [91, 95], "mnist_test_set": 92, "imagenet_val_set": 92, "tench": 92, "goldfish": 92, "white": [92, 103], "shark": 92, "tiger": 92, "hammerhead": 92, "electr": 92, "rai": 92, "stingrai": 92, "cock": 92, "hen": 92, "ostrich": 92, "brambl": 92, "goldfinch": 92, "hous": 92, "finch": 92, "junco": 92, "indigo": 92, "bunt": 92, "american": [92, 103], "robin": 92, "bulbul": 92, "jai": 92, "magpi": 92, "chickade": 92, "dipper": 92, "kite": 92, "bald": 92, "eagl": 92, "vultur": 92, "grei": 92, "owl": 92, "salamand": 92, "smooth": 92, "newt": 92, "spot": [92, 93, 98], "axolotl": 92, "bullfrog": 92, "tree": 92, "frog": [92, 99], "tail": 92, "loggerhead": 92, "sea": 92, "turtl": 92, "leatherback": 92, "mud": 92, "terrapin": 92, "band": 92, "gecko": 92, "green": [92, 103], "iguana": 92, "carolina": 92, "anol": 92, "desert": 92, "grassland": 92, "whiptail": 92, "lizard": 92, "agama": 92, "frill": 92, "neck": 92, "allig": 92, "gila": 92, "monster": 92, "european": 92, "chameleon": 92, "komodo": 92, "dragon": 92, "nile": 92, "crocodil": 92, "triceratop": 92, "worm": 92, "snake": 92, "ring": 92, "eastern": 92, "hog": 92, "nose": 92, "kingsnak": 92, "garter": 92, "water": 92, "vine": 92, "night": 92, "boa": 92, "constrictor": 92, "african": 92, "rock": 92, "indian": 92, "cobra": 92, "mamba": 92, "saharan": 92, "horn": 92, "viper": 92, "diamondback": 92, "rattlesnak": 92, "sidewind": 92, "trilobit": 92, "harvestman": 92, "scorpion": 92, "yellow": 92, "garden": 92, "spider": 92, "barn": 92, "southern": 92, "widow": 92, "tarantula": 92, "wolf": 92, "tick": 92, "centiped": 92, "grous": 92, "ptarmigan": 92, "ruf": 92, "prairi": 92, "peacock": 92, "quail": 92, "partridg": 92, "parrot": 92, "macaw": 92, "sulphur": 92, "crest": 92, "cockatoo": 92, "lorikeet": 92, "coucal": 92, "bee": 92, "eater": 92, "hornbil": 92, "hummingbird": 92, "jacamar": 92, "toucan": 92, "breast": 92, "mergans": 92, "goos": 92, "swan": 92, "tusker": 92, "echidna": 92, "platypu": 92, "wallabi": 92, "koala": 92, "wombat": 92, "jellyfish": 92, "anemon": 92, "brain": 92, "coral": 92, "flatworm": 92, "nematod": 92, "conch": 92, "snail": 92, "slug": 92, "chiton": 92, "chamber": 92, "nautilu": 92, "dung": 92, "crab": 92, "fiddler": 92, "king": 92, "lobster": 92, "spini": 92, "crayfish": 92, "hermit": 92, "isopod": 92, "stork": 92, "spoonbil": 92, "flamingo": 92, "heron": 92, "egret": 92, "bittern": 92, "crane": 92, "bird": [92, 99], "limpkin": 92, "gallinul": 92, "coot": 92, "bustard": 92, "ruddi": 92, "turnston": 92, "dunlin": 92, "redshank": 92, "dowitch": 92, "oystercatch": 92, "pelican": 92, "penguin": 92, "albatross": 92, "whale": 92, "killer": 92, "dugong": 92, "lion": 92, "chihuahua": 92, "japanes": 92, "chin": 92, "maltes": 92, "pekinges": 92, "shih": 92, "tzu": 92, "charl": 92, "spaniel": 92, "papillon": 92, "terrier": 92, "rhodesian": 92, "ridgeback": 92, "afghan": [92, 103], "hound": 92, "basset": 92, "beagl": 92, "bloodhound": 92, "bluetick": 92, "coonhound": 92, "tan": 92, "walker": 92, "foxhound": 92, "redbon": 92, "borzoi": 92, "irish": 92, "wolfhound": 92, "italian": 92, "greyhound": 92, "whippet": 92, "ibizan": 92, "norwegian": 92, "elkhound": 92, "otterhound": 92, "saluki": 92, "scottish": 92, "deerhound": 92, "weimaran": 92, "staffordshir": 92, "bull": 92, "bedlington": 92, "border": 92, "kerri": 92, "norfolk": 92, "norwich": 92, "yorkshir": 92, "wire": 92, "fox": 92, "lakeland": 92, "sealyham": 92, "airedal": 92, "cairn": 92, "australian": 92, "dandi": 92, "dinmont": 92, "boston": 92, "miniatur": 92, "schnauzer": 92, "giant": 92, "tibetan": 92, "silki": 92, "wheaten": 92, "west": 92, "highland": 92, "lhasa": 92, "apso": 92, "flat": 92, "retriev": 92, "curli": 92, "golden": 92, "labrador": 92, "chesapeak": 92, "bai": 92, "german": [92, 103], "shorthair": 92, "pointer": 92, "vizsla": 92, "setter": 92, "gordon": 92, "brittani": 92, "clumber": 92, "springer": 92, "welsh": 92, "cocker": 92, "sussex": 92, "kuvasz": 92, "schipperk": 92, "groenendael": 92, "malinoi": 92, "briard": 92, "kelpi": 92, "komondor": 92, "sheepdog": 92, "shetland": 92, "colli": 92, "bouvier": 92, "de": 92, "flandr": 92, "rottweil": 92, "shepherd": 92, "dobermann": 92, "pinscher": 92, "swiss": [92, 103], "mountain": 92, "bernes": 92, "appenzel": 92, "sennenhund": 92, "entlebuch": 92, "boxer": 92, "bullmastiff": 92, "mastiff": 92, "french": 92, "bulldog": 92, "dane": 92, "st": 92, "bernard": 92, "huski": 92, "alaskan": 92, "malamut": 92, "siberian": 92, "dalmatian": 92, "affenpinsch": 92, "basenji": 92, "pug": 92, "leonberg": 92, "newfoundland": 92, "pyrenean": 92, "samoi": 92, "pomeranian": 92, "chow": 92, "keeshond": 92, "griffon": 92, "bruxelloi": 92, "pembrok": 92, "corgi": 92, "cardigan": 92, "poodl": 92, "mexican": 92, "hairless": 92, "tundra": 92, "coyot": 92, "dingo": 92, "dhole": 92, "wild": 92, "hyena": 92, "kit": 92, "arctic": 92, "tabbi": 92, "persian": 92, "siames": 92, "egyptian": 92, "mau": 92, "cougar": 92, "lynx": 92, "leopard": 92, "snow": 92, "jaguar": 92, "cheetah": 92, "brown": [92, 102], "bear": 92, "polar": 92, "sloth": 92, "mongoos": 92, "meerkat": 92, "beetl": 92, "ladybug": 92, "longhorn": 92, "leaf": 92, "rhinocero": 92, "weevil": 92, "ant": 92, "grasshopp": 92, "cricket": 92, "stick": 92, "insect": 92, "cockroach": 92, "manti": 92, "cicada": 92, "leafhopp": 92, "lacew": 92, "dragonfli": 92, "damselfli": 92, "admir": 92, "ringlet": 92, "monarch": 92, "butterfli": 92, "gossam": 92, "wing": 92, "starfish": 92, "urchin": 92, "cucumb": 92, "cottontail": 92, "rabbit": 92, "hare": 92, "angora": 92, "hamster": 92, "porcupin": 92, "squirrel": 92, "marmot": 92, "beaver": 92, "guinea": 92, "pig": 92, "sorrel": 92, "zebra": 92, "boar": 92, "warthog": 92, "hippopotamu": 92, "ox": 92, "buffalo": 92, "bison": 92, "bighorn": 92, "sheep": 92, "alpin": 92, "ibex": 92, "hartebeest": 92, "impala": 92, "gazel": 92, "dromedari": 92, "llama": 92, "weasel": 92, "mink": 92, "polecat": 92, "foot": 92, "ferret": 92, "otter": 92, "skunk": 92, "badger": 92, "armadillo": 92, "toed": 92, "orangutan": 92, "gorilla": 92, "chimpanze": 92, "gibbon": 92, "siamang": 92, "guenon": 92, "pata": 92, "monkei": 92, "baboon": 92, "macaqu": 92, "langur": 92, "colobu": 92, "probosci": 92, "marmoset": 92, "capuchin": 92, "howler": 92, "titi": 92, "geoffroi": 92, "lemur": 92, "indri": 92, "asian": 92, "eleph": 92, "bush": 92, "snoek": 92, "eel": 92, "coho": 92, "salmon": 92, "beauti": 92, "clownfish": 92, "sturgeon": 92, "garfish": 92, "lionfish": 92, "pufferfish": 92, "abacu": 92, "abaya": 92, "academ": 92, "gown": 92, "accordion": 92, "acoust": 92, "guitar": 92, "aircraft": 92, "carrier": 92, "airlin": 92, "airship": 92, "altar": 92, "ambul": 92, "amphibi": 92, "clock": [92, 103], "apiari": 92, "apron": 92, "wast": 92, "assault": 92, "rifl": 92, "backpack": 92, "bakeri": 92, "balanc": 92, "beam": 92, "balloon": 92, "ballpoint": 92, "pen": 92, "aid": 92, "banjo": 92, "balust": 92, "barbel": 92, "barber": 92, "chair": [92, 98], "barbershop": 92, "baromet": 92, "barrel": 92, "wheelbarrow": 92, "basebal": 92, "basketbal": 92, "bassinet": 92, "bassoon": 92, "swim": 92, "cap": 92, "bath": 92, "towel": 92, "bathtub": 92, "station": 92, "wagon": 92, "lighthous": 92, "beaker": 92, "militari": 92, "beer": 92, "bottl": 92, "glass": 92, "bell": 92, "cot": 92, "bib": 92, "bicycl": [92, 102], "bikini": 92, "binder": 92, "binocular": 92, "birdhous": 92, "boathous": 92, "bobsleigh": 92, "bolo": 92, "tie": 92, "poke": 92, "bonnet": 92, "bookcas": 92, "bookstor": 92, "bow": 92, "brass": 92, "bra": 92, "breakwat": 92, "breastplat": 92, "broom": 92, "bucket": 92, "buckl": 92, "bulletproof": 92, "vest": 92, "butcher": 92, "shop": 92, "taxicab": 92, "cauldron": 92, "candl": 92, "cannon": 92, "cano": 92, "mirror": [92, 98], "carousel": 92, "tool": [92, 94, 96], "carton": 92, "wheel": 92, "teller": 92, "cassett": 92, "player": 92, "castl": 92, "catamaran": 92, "cd": 92, "cello": 92, "mobil": [92, 103], "chain": 92, "fenc": [92, 102], "mail": 92, "chainsaw": 92, "chest": 92, "chiffoni": 92, "chime": 92, "china": 92, "cabinet": 92, "christma": 92, "stock": 92, "church": 92, "movi": 92, "theater": 92, "cleaver": 92, "cliff": 92, "dwell": 92, "cloak": 92, "clog": 92, "cocktail": 92, "shaker": 92, "coffe": 92, "mug": 92, "coffeemak": 92, "coil": 92, "lock": 92, "keyboard": 92, "confectioneri": 92, "ship": [92, 99], "corkscrew": 92, "cornet": 92, "cowboi": 92, "boot": 92, "hat": 92, "cradl": 92, "crash": 92, "helmet": 92, "crate": 92, "infant": 92, "bed": 92, "crock": 92, "pot": 92, "croquet": 92, "crutch": 92, "cuirass": 92, "dam": 92, "desk": 92, "desktop": 92, "rotari": 92, "dial": 92, "telephon": 92, "diaper": 92, "watch": 92, "dine": 92, "dishcloth": 92, "dishwash": 92, "disc": 92, "brake": 92, "dock": 92, "sled": 92, "dome": 92, "doormat": 92, "drill": 92, "rig": 92, "drum": 92, "drumstick": 92, "dumbbel": 92, "dutch": 92, "oven": 92, "fan": 92, "locomot": 92, "entertain": 92, "center": 92, "envelop": 92, "espresso": 92, "powder": 92, "feather": 92, "fireboat": 92, "engin": [92, 102], "screen": 92, "sheet": 92, "flagpol": 92, "flute": 92, "footbal": 92, "forklift": 92, "fountain": 92, "poster": 92, "freight": 92, "fry": 92, "pan": 92, "fur": 92, "garbag": 92, "ga": 92, "pump": 92, "goblet": 92, "kart": 92, "golf": 92, "cart": 92, "gondola": 92, "gong": 92, "grand": 92, "piano": 92, "greenhous": 92, "grill": 92, "groceri": 92, "guillotin": 92, "barrett": 92, "hair": 92, "sprai": 92, "hammer": 92, "dryer": 92, "hand": [92, 94], "handkerchief": 92, "drive": 92, "harmonica": 92, "harp": 92, "harvest": 92, "hatchet": 92, "holster": 92, "honeycomb": 92, "hoop": 92, "skirt": 92, "horizont": 92, "bar": 92, "drawn": 92, "hourglass": 92, "ipod": 92, "cloth": 92, "iron": 92, "jack": 92, "lantern": 92, "jean": 92, "jeep": 92, "jigsaw": 92, "puzzl": 92, "pull": 92, "rickshaw": 92, "joystick": 92, "kimono": 92, "knee": 92, "pad": 92, "knot": 92, "ladl": 92, "lampshad": 92, "laptop": 92, "lawn": 92, "mower": 92, "knife": 92, "lifeboat": 92, "lighter": 92, "limousin": 92, "ocean": 92, "liner": 92, "lipstick": 92, "slip": 92, "shoe": 92, "lotion": 92, "speaker": 92, "loup": 92, "sawmil": 92, "magnet": 92, "compass": 92, "mailbox": 92, "tight": 92, "tank": 92, "manhol": 92, "maraca": 92, "marimba": 92, "maypol": 92, "maze": 92, "cup": [92, 98], "medicin": 92, "megalith": 92, "microphon": 92, "microwav": 92, "milk": 92, "minibu": 92, "miniskirt": 92, "minivan": 92, "missil": 92, "mitten": [92, 93], "mix": 92, "bowl": 92, "modem": 92, "monasteri": 92, "mope": 92, "mortar": 92, "mosqu": 92, "mosquito": 92, "scooter": 92, "bike": 92, "tent": 92, "mous": [92, 93], "mousetrap": 92, "van": 92, "muzzl": 92, "nail": 92, "brace": 92, "necklac": 92, "nippl": 92, "obelisk": 92, "obo": 92, "ocarina": 92, "odomet": 92, "oil": 92, "oscilloscop": 92, "overskirt": 92, "bullock": 92, "oxygen": 92, "packet": 92, "paddl": 92, "padlock": 92, "paintbrush": 92, "pajama": 92, "palac": [92, 103], "parachut": 92, "park": 92, "bench": 92, "meter": 92, "passeng": 92, "patio": 92, "payphon": 92, "pedest": 92, "pencil": 92, "perfum": 92, "petri": 92, "dish": 92, "photocopi": 92, "plectrum": 92, "pickelhaub": 92, "picket": 92, "pickup": 92, "pier": 92, "piggi": 92, "pill": 92, "pillow": 92, "ping": 92, "pong": 92, "pinwheel": 92, "pirat": 92, "pitcher": 92, "plane": 92, "planetarium": 92, "plastic": 92, "plate": 92, "rack": 92, "plow": 92, "plunger": 92, "polaroid": 92, "camera": 92, "pole": [92, 102], "polic": 92, "poncho": 92, "billiard": 92, "soda": 92, "potter": 92, "prayer": 92, "rug": 92, "printer": 92, "prison": 92, "projectil": 92, "projector": 92, "hockei": 92, "puck": 92, "punch": 92, "purs": 92, "quill": 92, "quilt": 92, "race": 92, "racket": 92, "radiat": 92, "radio": 92, "telescop": 92, "rain": 92, "recreat": 92, "reel": 92, "reflex": 92, "refriger": 92, "remot": 92, "restaur": 92, "revolv": 92, "rotisseri": 92, "eras": 92, "rugbi": 92, "ruler": 92, "safe": 92, "safeti": 92, "salt": 92, "sarong": 92, "saxophon": 92, "scabbard": 92, "school": 92, "bu": [92, 102], "schooner": 92, "scoreboard": 92, "crt": 92, "screw": 92, "screwdriv": 92, "seat": 92, "belt": 92, "sew": 92, "shield": 92, "shoji": 92, "basket": 92, "shovel": 92, "shower": 92, "curtain": 92, "ski": 92, "door": 92, "slot": 92, "snorkel": 92, "snowmobil": 92, "snowplow": 92, "soap": 92, "dispens": 92, "soccer": [92, 103], "sock": [92, 93], "solar": 92, "thermal": 92, "collector": 92, "sombrero": 92, "soup": 92, "heater": 92, "shuttl": 92, "spatula": 92, "motorboat": 92, "web": 92, "spindl": 92, "sport": [92, 103], "spotlight": 92, "stage": 92, "steam": 92, "arch": 92, "bridg": 92, "steel": 92, "stethoscop": 92, "scarf": 92, "stone": 92, "wall": [92, 102], "stopwatch": 92, "stove": 92, "strainer": 92, "tram": 92, "stretcher": 92, "couch": 92, "stupa": 92, "submarin": 92, "sundial": 92, "sunglass": 92, "sunscreen": 92, "suspens": 92, "mop": 92, "sweatshirt": 92, "swimsuit": 92, "swing": 92, "switch": 92, "syring": 92, "lamp": 92, "tape": 92, "teapot": 92, "teddi": 92, "televis": [92, 103], "tenni": 92, "thatch": 92, "roof": 92, "front": 92, "thimbl": 92, "thresh": 92, "throne": 92, "tile": 92, "toaster": 92, "tobacco": 92, "toilet": 92, "totem": 92, "tow": 92, "tractor": 92, "semi": 92, "trailer": 92, "trai": 92, "trench": 92, "tricycl": 92, "trimaran": 92, "tripod": 92, "triumphal": 92, "trolleybu": 92, "trombon": 92, "tub": 92, "turnstil": 92, "typewrit": 92, "umbrella": 92, "unicycl": 92, "upright": 92, "vacuum": 92, "cleaner": 92, "vase": 92, "vault": 92, "velvet": 92, "vend": 92, "vestment": 92, "viaduct": 92, "violin": 92, "volleybal": 92, "waffl": 92, "wallet": 92, "wardrob": 92, "sink": 92, "wash": 92, "jug": 92, "tower": 92, "whiskei": 92, "whistl": 92, "wig": 92, "shade": [92, 102], "windsor": 92, "wine": 92, "wok": 92, "wooden": 92, "spoon": 92, "wool": 92, "rail": 92, "shipwreck": 92, "yawl": 92, "yurt": 92, "comic": 92, "book": 92, "crossword": 92, "traffic": [92, 98, 102], "sign": [92, 102, 103], "dust": 92, "jacket": [92, 98], "menu": 92, "guacamol": 92, "consomm": 92, "trifl": 92, "ic": 92, "cream": 92, "pop": 92, "baguett": 92, "bagel": 92, "pretzel": 92, "cheeseburg": 92, "mash": 92, "potato": 92, "cabbag": 92, "broccoli": 92, "cauliflow": 92, "zucchini": 92, "spaghetti": 92, "squash": 92, "acorn": 92, "butternut": 92, "artichok": 92, "pepper": [92, 93], "cardoon": 92, "mushroom": 92, "granni": 92, "smith": 92, "strawberri": 92, "orang": 92, "lemon": 92, "pineappl": 92, "banana": 92, "jackfruit": 92, "custard": 92, "appl": 92, "pomegran": 92, "hai": 92, "carbonara": 92, "chocol": 92, "syrup": 92, "dough": 92, "meatloaf": 92, "pizza": 92, "pie": 92, "burrito": 92, "eggnog": 92, "alp": 92, "bubbl": 92, "reef": 92, "geyser": 92, "lakeshor": 92, "promontori": 92, "shoal": 92, "seashor": 92, "vallei": 92, "volcano": 92, "bridegroom": 92, "scuba": 92, "diver": 92, "rapese": 92, "daisi": 92, "ladi": 92, "slipper": 92, "corn": 92, "rose": 92, "hip": 92, "chestnut": 92, "fungu": 92, "agar": 92, "gyromitra": 92, "stinkhorn": 92, "earth": 92, "star": 92, "wood": 92, "bolet": 92, "ear": 92, "cifar10_test_set": 92, "airplan": [92, 99], "automobil": [92, 99], "deer": [92, 99], "cifar100_test_set": 92, "aquarium_fish": 92, "babi": 92, "boi": 92, "camel": 92, "caterpillar": 92, "cattl": [92, 103], "cloud": 92, "dinosaur": 92, "dolphin": 92, "flatfish": 92, "forest": 92, "girl": 92, "kangaroo": 92, "lawn_mow": 92, "man": 92, "maple_tre": 92, "motorcycl": [92, 102], "oak_tre": 92, "orchid": 92, "palm_tre": 92, "pear": 92, "pickup_truck": 92, "pine_tre": 92, "plain": 92, "poppi": 92, "possum": 92, "raccoon": 92, "road": [92, 102], "rocket": 92, "seal": 92, "shrew": 92, "skyscrap": 92, "streetcar": 92, "sunflow": 92, "sweet_pepp": 92, "trout": 92, "tulip": 92, "willow_tre": 92, "woman": [92, 98], "caltech256": 92, "ak47": 92, "bat": 92, "glove": 92, "birdbath": 92, "blimp": 92, "bonsai": 92, "boom": 92, "breadmak": 92, "buddha": 92, "bulldoz": 92, "cactu": 92, "cake": 92, "tire": 92, "cartman": 92, "cereal": 92, "chandeli": 92, "chess": 92, "board": 92, "chimp": 92, "chopstick": 92, "coffin": 92, "coin": 92, "comet": 92, "cormor": 92, "globe": 92, "diamond": 92, "dice": 92, "doorknob": 92, "drink": 92, "straw": 92, "dumb": 92, "eiffel": 92, "elk": 92, "ewer": 92, "eyeglass": 92, "fern": 92, "fighter": 92, "jet": [92, 101], "extinguish": 92, "hydrant": 92, "firework": 92, "flashlight": 92, "floppi": 92, "fri": 92, "frisbe": 92, "galaxi": 92, "giraff": 92, "goat": 92, "gate": 92, "grape": 92, "pick": [92, 93], "hamburg": 92, "hammock": 92, "harpsichord": 92, "hawksbil": 92, "helicopt": 92, "hibiscu": 92, "homer": 92, "simpson": 92, "horsesho": 92, "air": 92, "skeleton": 92, "ibi": 92, "cone": 92, "iri": 92, "jesu": 92, "christ": 92, "joi": 92, "kayak": 92, "ketch": 92, "ladder": 92, "lath": 92, "licens": 92, "lightbulb": 92, "lightn": 92, "mandolin": 92, "mar": 92, "mattress": 92, "megaphon": 92, "menorah": 92, "microscop": 92, "minaret": 92, "minotaur": 92, "motorbik": 92, "mussel": 92, "neckti": 92, "octopu": 92, "palm": 92, "pilot": 92, "paperclip": 92, "shredder": 92, "pci": 92, "peopl": [92, 98], "pez": 92, "picnic": 92, "pram": 92, "prai": 92, "pyramid": 92, "rainbow": 92, "roulett": 92, "saddl": 92, "saturn": 92, "segwai": 92, "propel": 92, "sextant": 92, "music": 92, "skateboard": 92, "smokestack": 92, "sneaker": 92, "boat": 92, "stain": 92, "steer": 92, "stirrup": 92, "superman": 92, "sushi": 92, "armi": [92, 103], "sword": 92, "tambourin": 92, "teepe": 92, "court": 92, "theodolit": 92, "tomato": 92, "tombston": 92, "tour": 92, "pisa": 92, "treadmil": 92, "fork": 92, "tweezer": 92, "unicorn": 92, "vcr": 92, "waterfal": 92, "watermelon": 92, "weld": 92, "windmil": 92, "xylophon": 92, "yarmulk": 92, "yo": 92, "toad": 92, "twenty_news_test_set": 92, "alt": 92, "atheism": 92, "comp": 92, "graphic": [92, 102], "misc": [92, 103], "sy": 92, "ibm": 92, "pc": 92, "hardwar": 92, "mac": 92, "forsal": 92, "rec": 92, "sci": 92, "crypt": 92, "electron": 92, "med": 92, "soc": 92, "religion": 92, "christian": [92, 103], "talk": [92, 103], "polit": 92, "gun": 92, "mideast": 92, "amazon": 92, "neutral": 92, "imdb_test_set": 92, "all_class": 92, "20news_test_set": 92, "_load_classes_predprobs_label": 92, "dataset_nam": 92, "labelerror": 92, "url_bas": 92, "5392f6c71473055060be3044becdde1cbc18284d": 92, "url_label": 92, "original_test_label": 92, "_original_label": 92, "url_prob": 92, "cross_validated_predicted_prob": 92, "_pyx": 92, "num_part": 92, "datatset": 92, "bytesio": 92, "allow_pickl": 92, "pred_probs_part": 92, "url": 92, "_of_": 92, "nload": 92, "imdb": 92, "interpret": [92, 93, 94, 97, 101], "capit": 92, "29780": 92, "780": 92, "medic": [92, 103], "doctor": 92, "359223": 92, "640777": 92, "184": [92, 94], "258427": 92, "341176": 92, "263158": 92, "658824": 92, "337349": 92, "246575": 92, "662651": 92, "248": 92, "330000": 92, "355769": 92, "670000": 92, "251": [92, 98], "252": 92, "112": 92, "253": [92, 98], "022989": 92, "049505": 92, "190": [92, 94, 98], "66": 92, "002216": 92, "000974": 92, "59": [92, 98], "000873": 92, "000739": 92, "32635": 92, "32636": 92, "47": [92, 98], "32637": 92, "32638": 92, "32639": 92, "32640": 92, "051": 92, "002242": 92, "997758": 92, "002088": 92, "001045": 92, "997912": 92, "002053": 92, "997947": 92, "001980": 92, "000991": 92, "998020": 92, "001946": 92, "002915": 92, "998054": 92, "001938": 92, "002904": 92, "998062": 92, "001020": 92, "998980": 92, "001018": 92, "002035": 92, "998982": 92, "999009": 92, "0003": 92, "0002": 92, "36": [92, 103], "41": [92, 98, 101], "71": [92, 94, 98, 101], "071": 92, "067269": 92, "929": 92, "046": 92, "058243": 92, "954": 92, "035": 92, "032096": 92, "965": 92, "031": 92, "012232": 92, "969": 92, "022": 92, "025896": 92, "978": 92, "020": [92, 94], "013092": 92, "018": 92, "013065": 92, "016": 92, "030542": 92, "984": 92, "013": 92, "020833": 92, "987": 92, "012": 92, "010020": 92, "988": 92, "0073": 92, "0020": 92, "0016": 92, "0015": 92, "0013": 92, "0012": 92, "0010": 92, "0008": 92, "0007": 92, "0006": 92, "0005": 92, "0004": 92, "244": [92, 98], "98": [92, 93, 101], "452381": 92, "459770": 92, "72": [92, 94, 97, 101], "523364": 92, "460784": 92, "446602": 92, "57": [92, 94, 103], "103774": 92, "030612": 92, "110092": 92, "049020": 92, "0034": 92, "0032": 92, "0026": 92, "0025": 92, "4945": 92, "4946": 92, "4947": 92, "4948": 92, "4949": 92, "4950": 92, "846": 92, "82": [92, 94, 98, 101], "7532": 92, "532": 92, "034483": 92, "009646": 92, "965517": 92, "030457": 92, "020513": 92, "969543": 92, "028061": 92, "035443": 92, "971939": 92, "025316": 92, "005168": 92, "974684": 92, "049751": 92, "979487": 92, "019920": 92, "042802": 92, "980080": 92, "017677": 92, "005115": 92, "982323": 92, "012987": 92, "005236": 92, "987013": 92, "012723": 92, "025126": 92, "987277": 92, "010989": 92, "008264": 92, "989011": 92, "010283": 92, "027778": 92, "989717": 92, "009677": 92, "990323": 92, "007614": 92, "010127": 92, "992386": 92, "005051": 92, "994949": 92, "005025": 92, "994975": 92, "005013": 92, "994987": 92, "001859": 92, "001328": 92, "000929": 92, "000664": 92, "186": [92, 94], "188": [92, 94, 97], "189": [92, 94], "snippet": 93, "nlp": [93, 103], "mind": [93, 94], "alphanumer": 93, "facilit": 93, "classlabel": 93, "guidanc": 93, "labels_str": 93, "datalab_str": 93, "labels_int": 93, "remap": 93, "datalab_int": 93, "my_dict": 93, "pet_nam": 93, "rover": 93, "rocki": 93, "speci": 93, "from_dict": 93, "datalab_dataset": 93, "number_of_class": 93, "total_number_of_data_point": 93, "alphabet": 93, "labels_proper_format": 93, "your_classifi": 93, "issues_datafram": 93, "class_predicted_for_flagged_exampl": 93, "class_predicted_for_all_exampl": 93, "grant": 93, "On": [93, 94, 98], "merged_dataset": 93, "label_column_nam": 93, "datataset": 93, "fair": [93, 94], "game": 93, "speedup": [93, 99], "flexibl": 93, "tempfil": 93, "mkdtemp": 93, "sped": 93, "anywai": 93, "pred_probs_merg": 93, "merge_rare_class": 93, "count_threshold": 93, "class_mapping_orig2new": 93, "heath_summari": 93, "num_examples_per_class": 93, "rare_class": 93, "num_classes_merg": 93, "other_class": 93, "labels_merg": 93, "new_c": 93, "merged_prob": 93, "new_class": 93, "original_class": 93, "num_check": 93, "ones_array_ref": 93, "isclos": 93, "though": [93, 94, 103], "successfulli": 93, "meaning": [93, 99], "virtuou": [93, 96], "cycl": [93, 96], "jointli": 93, "junk": 93, "clutter": 93, "unknown": 93, "caltech": 93, "combined_boolean_mask": 93, "mask1": 93, "mask2": 93, "gradientboostingclassifi": [93, 94], "true_error": [93, 94, 97], "101": [93, 98], "102": [93, 97, 98], "104": [93, 94, 98], "model_to_find_error": 93, "model_to_return": 93, "cl0": 93, "randomizedsearchcv": 93, "expens": 93, "param_distribut": 93, "learning_r": [93, 94], "max_depth": [93, 94], "magnitud": 93, "coeffici": [93, 101], "optin": 93, "environ": [93, 94], "rerun": [93, 94], "cell": [93, 94], "unabl": [93, 94], "render": [93, 94], "nbviewer": [93, 94], "nbsp": [93, 94], "cleanlearninginot": [93, 94], "fittedcleanlearn": [93, 94], "linearregressionlinearregress": 93, "n_init": 93, "fit_predict": 93, "continuous_column": 93, "categorical_column": 93, "data_df": 93, "feature_a": 93, "feature_b": 93, "unexpectedli": 93, "emphas": 93, "crucial": 93, "merge_duplicate_set": 93, "merge_kei": 93, "construct_group_kei": 93, "merged_set": 93, "consolidate_set": 93, "tolist": [93, 97], "issubset": 93, "frozenset": 93, "sets_list": 93, "mutabl": 93, "new_set": 93, "current_set": 93, "intersecting_set": 93, "lowest_score_strategi": 93, "sub_df": 93, "idxmin": 93, "filter_near_dupl": 93, "strategy_fn": 93, "strategy_kwarg": 93, "duplicate_row": 93, "group_kei": 93, "to_keep_indic": 93, "groupbi": 93, "explod": 93, "to_remov": 93, "isin": [93, 99], "kept": 93, "ids_to_remove_seri": 93, "tmp": 93, "ipykernel_7797": 93, "1995098996": 93, "deprecationwarn": 93, "dataframegroupbi": 93, "include_group": 93, "silenc": 93, "assist": 93, "streamlin": 93, "ux": 93, "agpl": 93, "compani": 93, "commerci": 93, "alter": 93, "email": 93, "team": 93, "discuss": 93, "anywher": 93, "profession": 93, "expert": 93, "depth": 94, "survei": [94, 103], "focus": [94, 96, 97, 101], "scienc": 94, "multivariate_norm": [94, 96, 97], "make_data": [94, 96], "cov": [94, 96, 97], "avg_trac": [94, 97], "py_tru": 94, "noise_matrix_tru": 94, "noise_marix": 94, "s_test": 94, "noisy_test_label": 94, "purpl": 94, "val": 94, "namespac": 94, "exec": 94, "markerfacecolor": [94, 97], "markeredgecolor": [94, 97, 101], "markers": [94, 97, 101], "markeredgewidth": [94, 97, 101], "realist": 94, "7560": 94, "637318e": 94, "896262e": 94, "548391e": 94, "923417e": 94, "375075e": 94, "3454": 94, "014051": 94, "020451": 94, "249": [94, 98], "042594": 94, "043859": 94, "045954": 94, "6120": 94, "023714": 94, "007136": 94, "119": [94, 98], "107266": 94, "103": [94, 98], "033738": 94, "238": [94, 98], "119505": 94, "236": [94, 98, 103], "037843": 94, "222": 94, "614915": 94, "122": [94, 98], "624422": 94, "625965": 94, "626079": 94, "118": 94, "627675": 94, "695223": 94, "323529": 94, "523015": 94, "013720": 94, "675727": 94, "646521": 94, "anyth": 94, "enhanc": [94, 96, 98], "magic": 94, "liter": 94, "identif": 94, "x27": 94, "logisticregressionlogisticregress": 94, "ever": 94, "092": 94, "040": 94, "024": 94, "004": 94, "surpris": 94, "1705": 94, "01936": 94, "ton": 94, "yourfavoritemodel1": 94, "merged_label": 94, "merged_test_label": 94, "newli": [94, 96], "yourfavoritemodel2": 94, "yourfavoritemodel3": 94, "cl3": 94, "takeawai": 94, "That": [94, 97], "randomli": 94, "my_test_pred_prob": 94, "my_test_pr": 94, "issues_test": 94, "corrected_test_label": 94, "pretend": 94, "cl_test_pr": 94, "69": [94, 101], "fairli": 94, "label_acc": 94, "percentag": 94, "offset": 94, "nquestion": 94, "overestim": 94, "answer": 94, "experienc": 94, "knowledg": 94, "prioiri": 94, "known": 94, "versatil": 94, "label_issues_indic": 94, "213": [94, 98], "218": [94, 98], "152": 94, "197": [94, 98], "196": [94, 98], "170": 94, "214": 94, "164": [94, 97], "198": [94, 98], "191": [94, 98], "63": [94, 98, 101], "117": [94, 101], "62": [94, 98, 101], "206": [94, 98], "115": [94, 98], "193": 94, "194": 94, "201": [94, 98], "174": 94, "163": 94, "150": [94, 96, 98, 103], "169": [94, 103], "151": [94, 98], "168": 94, "precision_scor": 94, "recall_scor": 94, "f1_score": 94, "true_label_issu": 94, "filter_by_list": 94, "718750": [94, 96], "807018": 94, "912": 94, "733333": 94, "800000": 94, "721311": 94, "792793": 94, "908": 94, "676923": 94, "765217": 94, "892": 94, "567901": 94, "702290": 94, "844": 94, "gaug": 94, "label_issues_count": 94, "155": [94, 98], "156": 94, "172": [94, 97], "easiest": 94, "modular": 94, "penalti": 94, "l2": 94, "model3": 94, "n_estim": 94, "cv_pred_probs_1": 94, "cv_pred_probs_2": 94, "cv_pred_probs_3": 94, "label_quality_scores_best": 94, "cv_pred_probs_ensembl": 94, "label_quality_scores_bett": 94, "superior": [94, 100], "timm": 95, "glad": 96, "multiannotator_label": 96, "300": [96, 103], "noisier": 96, "111": [96, 101], "local_data": [96, 97], "true_labels_train": [96, 97], "noise_matrix_bett": 96, "noise_matrix_wors": 96, "transpos": [96, 99], "dropna": 96, "zfill": 96, "row_na_check": 96, "notna": 96, "reset_index": 96, "a0001": 96, "a0002": 96, "a0003": 96, "a0004": 96, "a0005": 96, "a0006": 96, "a0007": 96, "a0008": 96, "a0009": 96, "a0010": 96, "a0041": 96, "a0042": 96, "a0043": 96, "a0044": 96, "a0045": 96, "a0046": 96, "a0047": 96, "a0048": 96, "a0049": 96, "a0050": 96, "na": 96, "60856743": 96, "41693214": 96, "40908785": 96, "87147629": 96, "64941785": 96, "10774851": 96, "0524466": 96, "71853246": 96, "37169848": 96, "66031048": 96, "multiannotator_util": 96, "crude": 96, "straight": 96, "majority_vote_label": 96, "736118": 96, "757751": 96, "782232": 96, "715565": 96, "824256": 96, "quality_annotator_a0001": 96, "quality_annotator_a0002": 96, "quality_annotator_a0003": 96, "quality_annotator_a0004": 96, "quality_annotator_a0005": 96, "quality_annotator_a0006": 96, "quality_annotator_a0007": 96, "quality_annotator_a0008": 96, "quality_annotator_a0009": 96, "quality_annotator_a0010": 96, "quality_annotator_a0041": 96, "quality_annotator_a0042": 96, "quality_annotator_a0043": 96, "quality_annotator_a0044": 96, "quality_annotator_a0045": 96, "quality_annotator_a0046": 96, "quality_annotator_a0047": 96, "quality_annotator_a0048": 96, "quality_annotator_a0049": 96, "quality_annotator_a0050": 96, "070564": 96, "216078": 96, "119188": 96, "alongisd": 96, "244981": 96, "208333": 96, "295979": 96, "294118": 96, "324197": 96, "310345": 96, "355316": 96, "346154": 96, "439732": 96, "480000": 96, "a0031": 96, "523205": 96, "580645": 96, "a0034": 96, "535313": 96, "607143": 96, "a0021": 96, "606999": 96, "a0015": 96, "609526": 96, "678571": 96, "a0011": 96, "621103": 96, "692308": 96, "wors": 96, "improved_consensus_label": 96, "majority_vote_accuraci": 96, "cleanlab_label_accuraci": 96, "8581081081081081": 96, "9797297297297297": 96, "besid": 96, "sorted_consensus_quality_scor": 96, "worst_qual": 96, "better_qu": 96, "worst_quality_accuraci": 96, "better_quality_accuraci": 96, "9893238434163701": 96, "improved_pred_prob": 96, "treat": [96, 97, 101, 103], "analzi": 96, "copyright": 97, "advertis": 97, "violenc": 97, "nsfw": 97, "celeba": 97, "make_multilabel_data": 97, "boxes_coordin": 97, "box_multilabel": 97, "make_multi": 97, "bx1": 97, "by1": 97, "bx2": 97, "by2": 97, "label_list": 97, "ur": 97, "upper": 97, "inidx": 97, "logical_and": 97, "inv_d": 97, "labels_idx": 97, "true_labels_test": 97, "dict_unique_label": 97, "get_color_arrai": 97, "dcolor": 97, "aa4400": 97, "55227f": 97, "55a100": 97, "00ff00": 97, "007f7f": 97, "386b55": 97, "0000ff": 97, "y_onehot": 97, "single_class_label": 97, "stratifi": [97, 100], "kf": 97, "train_index": 97, "test_index": 97, "clf_cv": 97, "x_train_cv": 97, "x_test_cv": 97, "y_train_cv": 97, "y_test_cv": 97, "y_pred_cv": 97, "saw": 97, "num_to_displai": 97, "09": [97, 98, 101], "275": 97, "267": 97, "225": 97, "171": 97, "234": 97, "165": 97, "227": [97, 98], "262": [97, 98], "266": [97, 98], "139": 97, "143": [97, 98], "216": [97, 98], "265": 97, "159": [97, 98], "despit": [97, 103], "suspect": 97, "888": 97, "8224": 97, "9632": 97, "968": 97, "6512": 97, "0444": 97, "774": 97, "labels_binary_format": 97, "labels_list_format": 97, "surround": 98, "scene": 98, "coco": 98, "everydai": 98, "has_label_issu": 98, "insal": 98, "nc": [98, 102, 103], "s3": [98, 102, 103], "amazonaw": [98, 102, 103], "objectdetectionbenchmark": 98, "tutorial_obj": 98, "pkl": 98, "example_imag": 98, "unzip": [98, 103], "_separate_label": 98, "_separate_predict": 98, "begin": 98, "image_path": 98, "rb": 98, "image_to_visu": 98, "seg_map": 98, "334": 98, "float32": 98, "bboxes_ignor": 98, "290": 98, "286": 98, "285": 98, "224": 98, "231": [98, 103], "293": 98, "289": 98, "282": 98, "281": 98, "271": 98, "280": 98, "277": 98, "279": 98, "287": 98, "299": 98, "276": 98, "307": 98, "321": 98, "326": 98, "333": 98, "261": 98, "319": 98, "257": 98, "283": 98, "243": 98, "303": 98, "316": 98, "247": 98, "323": 98, "226": 98, "228": [98, 103], "232": 98, "219": 98, "239": 98, "240": 98, "209": 98, "242": 98, "202": 98, "230": 98, "215": 98, "220": 98, "229": [98, 103], "217": [98, 103], "237": 98, "207": 98, "204": 98, "84": [98, 101], "205": 98, "223": 98, "153": 98, "140": 98, "124": 98, "268": 98, "273": 98, "108": [98, 103], "284": 98, "110": 98, "136": 98, "145": 98, "173": 98, "297": 98, "317": 98, "192": 98, "332": 98, "324": 98, "203": 98, "320": 98, "199": 98, "291": 98, "000000481413": 98, "jpg": 98, "42398": 98, "44503": 98, "29968": 98, "336": 98, "21005": 98, "9978472": 98, "forgot": 98, "drew": 98, "label_issue_idx": 98, "num_examples_to_show": 98, "138": 98, "candid": 98, "97489622": 98, "70610878": 98, "98764951": 98, "88899237": 98, "99085805": 98, "issue_idx": 98, "95569726e": 98, "03354841e": 98, "57510169e": 98, "58447666e": 98, "39755858e": 98, "issue_to_visu": 98, "000000009483": 98, "95569726168054e": 98, "addition": [98, 102], "visibl": 98, "missmatch": 98, "likelei": 98, "agnost": 98, "vaidat": 98, "inconsist": 98, "000000395701": 98, "033548411774308e": 98, "armchair": 98, "tv": 98, "000000154004": 98, "38300759625496356": 98, "foreground": 98, "000000448410": 98, "0008575101690203273": 98, "crowd": 98, "alon": 98, "explor": [98, 99], "resembl": [98, 99], "000000499768": 98, "9748962231208227": 98, "000000521141": 98, "8889923658893665": 98, "000000143931": 98, "9876495074395956": 98, "bonu": 98, "uncov": 98, "irregular": 98, "anomali": 98, "object_detection_util": 98, "calculate_bounding_box_area": 98, "num_imgs_to_show": 98, "lab_object_count": 98, "pred_object_count": 98, "000000430073": 98, "000000183709": 98, "000000189475": 98, "studi": 98, "label_norm": 98, "pred_norm": 98, "area": [98, 102], "lab_area": 98, "pred_area": 98, "lab_area_mean": 98, "lab_area_std": 98, "max_deviation_valu": 98, "max_deviation_class": 98, "deviation_valu": 98, "deviation_class": 98, "mean_area": 98, "std_area": 98, "class_area": 98, "deviations_awai": 98, "max_deviation_index": 98, "num_imgs_to_show_per_class": 98, "class_num": 98, "sorted_indic": 98, "000000422886": 98, "000000341828": 98, "000000461009": 98, "train_feature_embed": 99, "ood_train_feature_scor": 99, "test_feature_embed": 99, "ood_test_feature_scor": 99, "ood_train_predictions_scor": 99, "train_pred_prob": 99, "ood_test_predictions_scor": 99, "test_pred_prob": 99, "pylab": 99, "rcparam": 99, "baggingclassifi": 99, "therebi": 99, "rescal": 99, "transform_norm": 99, "totensor": 99, "root": 99, "animal_class": 99, "non_animal_class": 99, "animal_idx": 99, "test_idx": 99, "toronto": 99, "edu": 99, "kriz": 99, "170498071": 99, "96344932": 99, "23it": 99, "5000": 99, "plot_imag": 99, "visualize_outli": 99, "txt_class": 99, "img": [99, 101], "npimg": 99, "show_label": 99, "data_subset": 99, "resnet50": 99, "corpu": 99, "2048": 99, "embed_imag": 99, "create_model": 99, "strang": 99, "odd": 99, "train_ood_features_scor": 99, "top_train_ood_features_idx": 99, "fun": 99, "negat": 99, "homogen": 99, "bottom_train_ood_features_idx": 99, "test_ood_features_scor": 99, "top_ood_features_idx": 99, "inevit": 99, "trade": 99, "5th": 99, "percentil": 99, "fifth_percentil": 99, "plt_rang": 99, "hist": 99, "train_outlier_scor": 99, "ylabel": 99, "axvlin": 99, "test_outlier_scor": 99, "ood_features_indic": 99, "revisit": 99, "return_invers": 99, "train_feature_embeddings_sc": 99, "test_feature_embeddings_sc": 99, "train_pred_label": 99, "9702": 99, "train_ood_predictions_scor": 99, "test_ood_predictions_scor": 99, "lost": 99, "unsuit": 100, "ok": [100, 103], "convention": 100, "aforement": 100, "hypothet": 100, "contrast": 100, "tradit": 100, "disjoint": 100, "out_of_sample_pred_probs_for_a": 100, "out_of_sample_pred_probs_for_b": 100, "out_of_sample_pred_probs_for_c": 100, "out_of_sample_pred_prob": 100, "price": 101, "incom": 101, "ag": 101, "sensor": 101, "histgradientboostingregressor": 101, "r2_score": 101, "student_grades_r": 101, "final_scor": 101, "true_final_scor": 101, "homework": 101, "3d": 101, "hue": 101, "mpl_toolkit": 101, "mplot3d": 101, "axes3d": 101, "errors_idx": 101, "add_subplot": 101, "z": 101, "colorbar": 101, "errors_mask": 101, "feature_column": 101, "predicted_column": 101, "x_train_raw": 101, "x_test_raw": 101, "randomforestregressor": 101, "385101": 101, "499503": 101, "698255": 101, "776647": 101, "109373": 101, "170547": 101, "481096": 101, "984759": 101, "645270": 101, "795928": 101, "141": 101, "659": 101, "318": 101, "305": 101, "560": 101, "657": 101, "688": 101, "view_datapoint": 101, "concat": 101, "preds_og": 101, "r2_og": 101, "838": 101, "found_label_issu": 101, "preds_cl": 101, "r2_cl": 101, "926": 101, "favorit": 101, "968627e": 101, "228799": 101, "646674e": 101, "402962": 101, "323818e": 101, "952758": 101, "422144e": 101, "456908": 101, "465815e": 101, "753968": 101, "791186e": 101, "110719": 101, "485156e": 101, "670640": 101, "225300e": 101, "749976": 101, "499679e": 101, "947007": 101, "067882e": 101, "648396": 101, "synthia": 102, "imagesegment": 102, "given_mask": 102, "predicted_mask": 102, "set_printopt": [102, 103], "sky": 102, "sidewalk": 102, "veget": 102, "terrain": 102, "rider": 102, "pred_probs_filepath": 102, "1088": 102, "1920": 102, "label_filepath": 102, "synthia_class": 102, "maunal": 102, "100000": 102, "244800": 102, "leftmost": 102, "middl": [102, 103], "infact": 102, "rightmost": 102, "discrep": 102, "3263230": 102, "783379": 102, "275110": 102, "255792": 102, "78225": 102, "55990": 102, "54427": 102, "33591": 102, "24645": 102, "21308": 102, "15045": 102, "14171": 102, "13832": 102, "13498": 102, "11490": 102, "9164": 102, "8769": 102, "6999": 102, "6031": 102, "5011": 102, "mistakenli": 102, "class_issu": 102, "aim": [102, 103], "domin": 102, "bunch": 103, "conll": 103, "2003": 103, "love": 103, "n_i": 103, "optional_list_of_ordered_class_nam": 103, "deepai": 103, "conll2003": 103, "rm": 103, "tokenclassif": 103, "2024": 103, "2400": 103, "52e0": 103, "1a00": 103, "718": 103, "connect": 103, "443": 103, "await": 103, "982975": 103, "960k": 103, "959": 103, "94k": 103, "kb": 103, "mb": 103, "directori": 103, "inflat": 103, "17045998": 103, "16m": 103, "octet": 103, "26m": 103, "210": 103, "bert": 103, "read_npz": 103, "filepath": 103, "corrsespond": 103, "iob2": 103, "given_ent": 103, "entity_map": 103, "readfil": 103, "startswith": 103, "docstart": 103, "isalpha": 103, "isupp": 103, "indices_to_preview": 103, "nsentenc": 103, "eu": 103, "reject": 103, "boycott": 103, "british": 103, "lamb": 103, "00030412": 103, "00023826": 103, "99936208": 103, "00007009": 103, "00002545": 103, "99998795": 103, "00000401": 103, "00000218": 103, "00000455": 103, "00000131": 103, "00000749": 103, "99996115": 103, "00001371": 103, "0000087": 103, "00000895": 103, "99998936": 103, "00000382": 103, "00000178": 103, "00000366": 103, "00000137": 103, "99999101": 103, "00000266": 103, "00000174": 103, "0000035": 103, "00000109": 103, "99998768": 103, "00000482": 103, "00000202": 103, "00000438": 103, "0000011": 103, "00000465": 103, "99996392": 103, "00001105": 103, "0000116": 103, "00000878": 103, "99998671": 103, "00000364": 103, "00000213": 103, "00000472": 103, "00000281": 103, "99999073": 103, "00000211": 103, "00000159": 103, "00000442": 103, "00000115": 103, "peter": 103, "blackburn": 103, "00000358": 103, "00000529": 103, "99995623": 103, "0000129": 103, "0000024": 103, "00001812": 103, "99994141": 103, "00001645": 103, "00002162": 103, "brussel": 103, "1996": 103, "00001172": 103, "00000821": 103, "00004661": 103, "0000618": 103, "99987167": 103, "99999061": 103, "00000201": 103, "00000195": 103, "00000408": 103, "00000135": 103, "2254": 103, "2907": 103, "19392": 103, "9962": 103, "8904": 103, "19303": 103, "12918": 103, "9256": 103, "11855": 103, "18392": 103, "20426": 103, "19402": 103, "14744": 103, "19371": 103, "4645": 103, "10331": 103, "9430": 103, "6143": 103, "18367": 103, "12914": 103, "todai": 103, "weather": 103, "march": 103, "scalfaro": 103, "northern": 103, "himself": 103, "said": 103, "germani": 103, "nastja": 103, "rysich": 103, "north": 103, "spla": 103, "fought": 103, "khartoum": 103, "govern": 103, "south": 103, "1983": 103, "autonomi": 103, "animist": 103, "region": 103, "moslem": 103, "arabis": 103, "mayor": 103, "antonio": 103, "gonzalez": 103, "garcia": 103, "revolutionari": 103, "parti": 103, "wednesdai": 103, "troop": 103, "raid": 103, "farm": 103, "stole": 103, "rape": 103, "women": 103, "spring": 103, "chg": 103, "hrw": 103, "12pct": 103, "princ": 103, "photo": 103, "moment": 103, "spokeswoman": 103, "rainier": 103, "told": 103, "reuter": 103, "danila": 103, "carib": 103, "w224": 103, "equip": 103, "radiomet": 103, "earn": 103, "19996": 103, "london": 103, "denom": 103, "sale": 103, "uk": 103, "jp": 103, "fr": 103, "maccabi": 103, "hapoel": 103, "haifa": 103, "tel": 103, "aviv": 103, "hospit": 103, "rever": 103, "roman": 103, "cathol": 103, "nun": 103, "admit": 103, "calcutta": 103, "week": 103, "ago": 103, "fever": 103, "vomit": 103, "allianc": 103, "embattl": 103, "kabul": 103, "salang": 103, "highwai": 103, "mondai": 103, "tuesdai": 103, "suprem": 103, "council": 103, "led": 103, "jumbish": 103, "milli": 103, "movement": 103, "warlord": 103, "abdul": 103, "rashid": 103, "dostum": 103, "dollar": 103, "exchang": 103, "3570": 103, "12049": 103, "born": 103, "1937": 103, "provinc": 103, "anhui": 103, "dai": 103, "came": 103, "shanghai": 103, "citi": 103, "prolif": 103, "author": 103, "teacher": 103, "chines": 103, "16764": 103, "1990": 103, "historian": 103, "alan": 103, "john": 103, "percival": 103, "taylor": 103, "di": 103, "20446": 103, "pace": 103, "bowler": 103, "ian": 103, "harvei": 103, "claim": 103, "victoria": 103, "15514": 103, "cotti": 103, "osc": 103, "foreign": 103, "minist": 103, "7525": 103, "sultan": 103, "specter": 103, "met": 103, "crown": 103, "abdullah": 103, "defenc": 103, "aviat": 103, "jeddah": 103, "saudi": 103, "agenc": 103, "2288": 103, "hi": 103, "customari": 103, "outfit": 103, "champion": 103, "damp": 103, "scalp": 103, "canada": 103, "reign": 103, "olymp": 103, "donovan": 103, "bailei": 103, "1992": 103, "linford": 103, "christi": 103, "britain": 103, "1984": 103, "1988": 103, "carl": 103, "lewi": 103, "ambigi": 103, "punctuat": 103, "chicago": 103, "digest": 103, "philadelphia": 103, "usda": 103, "york": 103, "token_issu": 103, "471": 103, "kean": 103, "year": 103, "contract": 103, "manchest": 103, "19072": 103, "societi": 103, "bite": 103, "deliv": 103, "19910": 103, "father": 103, "clarenc": 103, "woolmer": 103, "renam": 103, "uttar": 103, "pradesh": 103, "india": 103, "ranji": 103, "trophi": 103, "nation": 103, "championship": 103, "captain": 103, "1949": 103, "15658": 103, "19879": 103, "iii": 103, "brian": 103, "shimer": 103, "randi": 103, "jone": 103, "19104": 103}, "objects": {"cleanlab": [[0, 0, 0, "-", "benchmarking"], [2, 0, 0, "-", "classification"], [3, 0, 0, "-", "count"], [4, 0, 0, "-", "data_valuation"], [11, 0, 0, "-", "datalab"], [36, 0, 0, "-", "dataset"], [39, 0, 0, "-", "experimental"], [43, 0, 0, "-", "filter"], [44, 0, 0, "-", "internal"], [55, 0, 0, "-", "models"], [57, 0, 0, "-", "multiannotator"], [60, 0, 0, "-", "multilabel_classification"], [63, 0, 0, "-", "object_detection"], [66, 0, 0, "-", "outlier"], [67, 0, 0, "-", "rank"], [68, 0, 0, "-", "regression"], [72, 0, 0, "-", "segmentation"], [76, 0, 0, "-", "token_classification"]], "cleanlab.benchmarking": [[1, 0, 0, "-", "noise_generation"]], "cleanlab.benchmarking.noise_generation": [[1, 1, 1, "", "generate_n_rand_probabilities_that_sum_to_m"], [1, 1, 1, "", "generate_noise_matrix_from_trace"], [1, 1, 1, "", "generate_noisy_labels"], [1, 1, 1, "", "noise_matrix_is_valid"], [1, 1, 1, "", "randomly_distribute_N_balls_into_K_bins"]], "cleanlab.classification": [[2, 2, 1, "", "CleanLearning"]], "cleanlab.classification.CleanLearning": [[2, 3, 1, "", "__init_subclass__"], [2, 3, 1, "", "find_label_issues"], [2, 3, 1, "", "fit"], [2, 3, 1, "", "get_label_issues"], [2, 3, 1, "", "get_metadata_routing"], [2, 3, 1, "", "get_params"], [2, 3, 1, "", "predict"], [2, 3, 1, "", "predict_proba"], [2, 3, 1, "", "save_space"], [2, 3, 1, "", "score"], [2, 3, 1, "", "set_fit_request"], [2, 3, 1, "", "set_params"], [2, 3, 1, "", "set_score_request"]], "cleanlab.count": [[3, 1, 1, "", "calibrate_confident_joint"], [3, 1, 1, "", "compute_confident_joint"], [3, 1, 1, "", "estimate_confident_joint_and_cv_pred_proba"], [3, 1, 1, "", "estimate_cv_predicted_probabilities"], [3, 1, 1, "", "estimate_joint"], [3, 1, 1, "", "estimate_latent"], [3, 1, 1, "", "estimate_noise_matrices"], [3, 1, 1, "", "estimate_py_and_noise_matrices_from_probabilities"], [3, 1, 1, "", "estimate_py_noise_matrices_and_cv_pred_proba"], [3, 1, 1, "", "get_confident_thresholds"], [3, 1, 1, "", "num_label_issues"]], "cleanlab.data_valuation": [[4, 1, 1, "", "data_shapley_knn"]], "cleanlab.datalab": [[5, 0, 0, "-", "datalab"], [15, 0, 0, "-", "internal"]], "cleanlab.datalab.datalab": [[5, 2, 1, "", "Datalab"]], "cleanlab.datalab.datalab.Datalab": [[5, 4, 1, "", "class_names"], [5, 3, 1, "", "find_issues"], [5, 3, 1, "", "get_info"], [5, 3, 1, "", "get_issue_summary"], [5, 3, 1, "", "get_issues"], [5, 4, 1, "", "has_labels"], [5, 4, 1, "", "info"], [5, 4, 1, "", "issue_summary"], [5, 4, 1, "", "issues"], [5, 4, 1, "", "labels"], [5, 3, 1, "", "list_default_issue_types"], [5, 3, 1, "", "list_possible_issue_types"], [5, 3, 1, "", "load"], [5, 3, 1, "", "report"], [5, 3, 1, "", "save"]], "cleanlab.datalab.internal": [[12, 0, 0, "-", "data"], [13, 0, 0, "-", "data_issues"], [16, 0, 0, "-", "issue_finder"], [14, 0, 0, "-", "issue_manager_factory"], [32, 0, 0, "-", "model_outputs"], [33, 0, 0, "-", "report"], [34, 0, 0, "-", "task"]], "cleanlab.datalab.internal.data": [[12, 2, 1, "", "Data"], [12, 5, 1, "", "DataFormatError"], [12, 5, 1, "", "DatasetDictError"], [12, 5, 1, "", "DatasetLoadError"], [12, 2, 1, "", "Label"], [12, 2, 1, "", "MultiClass"], [12, 2, 1, "", "MultiLabel"]], "cleanlab.datalab.internal.data.Data": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "has_labels"]], "cleanlab.datalab.internal.data.DataFormatError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetDictError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.DatasetLoadError": [[12, 3, 1, "", "add_note"], [12, 6, 1, "", "args"], [12, 3, 1, "", "with_traceback"]], "cleanlab.datalab.internal.data.Label": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiClass": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data.MultiLabel": [[12, 4, 1, "", "class_names"], [12, 4, 1, "", "is_available"]], "cleanlab.datalab.internal.data_issues": [[13, 2, 1, "", "DataIssues"], [13, 1, 1, "", "get_data_statistics"]], "cleanlab.datalab.internal.data_issues.DataIssues": [[13, 3, 1, "", "collect_issues_from_imagelab"], [13, 3, 1, "", "collect_issues_from_issue_manager"], [13, 3, 1, "", "collect_statistics"], [13, 3, 1, "", "get_info"], [13, 3, 1, "", "get_issue_summary"], [13, 3, 1, "", "get_issues"], [13, 6, 1, "", "info"], [13, 6, 1, "", "issue_summary"], [13, 6, 1, "", "issues"], [13, 3, 1, "", "set_health_score"], [13, 4, 1, "", "statistics"]], "cleanlab.datalab.internal.issue_finder": [[16, 2, 1, "", "IssueFinder"]], "cleanlab.datalab.internal.issue_finder.IssueFinder": [[16, 3, 1, "", "find_issues"], [16, 3, 1, "", "get_available_issue_types"]], "cleanlab.datalab.internal.issue_manager": [[18, 0, 0, "-", "data_valuation"], [19, 0, 0, "-", "duplicate"], [20, 0, 0, "-", "imbalance"], [22, 0, 0, "-", "issue_manager"], [23, 0, 0, "-", "label"], [26, 0, 0, "-", "noniid"], [27, 0, 0, "-", "null"], [28, 0, 0, "-", "outlier"], [31, 0, 0, "-", "underperforming_group"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, 2, 1, "", "DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager": [[18, 6, 1, "", "DEFAULT_THRESHOLD"], [18, 3, 1, "", "collect_info"], [18, 6, 1, "", "description"], [18, 3, 1, "", "find_issues"], [18, 6, 1, "", "info"], [18, 6, 1, "", "issue_name"], [18, 6, 1, "", "issue_score_key"], [18, 6, 1, "", "issues"], [18, 3, 1, "", "make_summary"], [18, 3, 1, "", "report"], [18, 6, 1, "", "summary"], [18, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, 2, 1, "", "NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager": [[19, 3, 1, "", "collect_info"], [19, 6, 1, "", "description"], [19, 3, 1, "", "find_issues"], [19, 6, 1, "", "info"], [19, 6, 1, "", "issue_name"], [19, 6, 1, "", "issue_score_key"], [19, 6, 1, "", "issues"], [19, 3, 1, "", "make_summary"], [19, 6, 1, "", "near_duplicate_sets"], [19, 3, 1, "", "report"], [19, 6, 1, "", "summary"], [19, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, 2, 1, "", "ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager": [[20, 3, 1, "", "collect_info"], [20, 6, 1, "", "description"], [20, 3, 1, "", "find_issues"], [20, 6, 1, "", "info"], [20, 6, 1, "", "issue_name"], [20, 6, 1, "", "issue_score_key"], [20, 6, 1, "", "issues"], [20, 3, 1, "", "make_summary"], [20, 3, 1, "", "report"], [20, 6, 1, "", "summary"], [20, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, 2, 1, "", "IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager": [[22, 3, 1, "", "collect_info"], [22, 6, 1, "", "description"], [22, 3, 1, "", "find_issues"], [22, 6, 1, "", "info"], [22, 6, 1, "", "issue_name"], [22, 6, 1, "", "issue_score_key"], [22, 6, 1, "", "issues"], [22, 3, 1, "", "make_summary"], [22, 3, 1, "", "report"], [22, 6, 1, "", "summary"], [22, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.label": [[23, 2, 1, "", "LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager": [[23, 3, 1, "", "collect_info"], [23, 6, 1, "", "description"], [23, 3, 1, "", "find_issues"], [23, 3, 1, "", "get_health_summary"], [23, 6, 1, "", "health_summary_parameters"], [23, 6, 1, "", "info"], [23, 6, 1, "", "issue_name"], [23, 6, 1, "", "issue_score_key"], [23, 6, 1, "", "issues"], [23, 3, 1, "", "make_summary"], [23, 3, 1, "", "report"], [23, 6, 1, "", "summary"], [23, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.multilabel": [[25, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, 2, 1, "", "MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager": [[25, 3, 1, "", "collect_info"], [25, 6, 1, "", "description"], [25, 3, 1, "", "find_issues"], [25, 6, 1, "", "info"], [25, 6, 1, "", "issue_name"], [25, 6, 1, "", "issue_score_key"], [25, 6, 1, "", "issues"], [25, 3, 1, "", "make_summary"], [25, 3, 1, "", "report"], [25, 6, 1, "", "summary"], [25, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, 2, 1, "", "NonIIDIssueManager"], [26, 1, 1, "", "simplified_kolmogorov_smirnov_test"]], "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager": [[26, 3, 1, "", "collect_info"], [26, 6, 1, "", "description"], [26, 3, 1, "", "find_issues"], [26, 6, 1, "", "info"], [26, 6, 1, "", "issue_name"], [26, 6, 1, "", "issue_score_key"], [26, 6, 1, "", "issues"], [26, 3, 1, "", "make_summary"], [26, 3, 1, "", "report"], [26, 6, 1, "", "summary"], [26, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.null": [[27, 2, 1, "", "NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null.NullIssueManager": [[27, 3, 1, "", "collect_info"], [27, 6, 1, "", "description"], [27, 3, 1, "", "find_issues"], [27, 6, 1, "", "info"], [27, 6, 1, "", "issue_name"], [27, 6, 1, "", "issue_score_key"], [27, 6, 1, "", "issues"], [27, 3, 1, "", "make_summary"], [27, 3, 1, "", "report"], [27, 6, 1, "", "summary"], [27, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, 2, 1, "", "OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager": [[28, 6, 1, "", "DEFAULT_THRESHOLDS"], [28, 3, 1, "", "collect_info"], [28, 6, 1, "", "description"], [28, 3, 1, "", "find_issues"], [28, 6, 1, "", "info"], [28, 6, 1, "", "issue_name"], [28, 6, 1, "", "issue_score_key"], [28, 6, 1, "", "issues"], [28, 3, 1, "", "make_summary"], [28, 6, 1, "", "ood"], [28, 3, 1, "", "report"], [28, 6, 1, "", "summary"], [28, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.regression": [[30, 0, 0, "-", "label"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, 2, 1, "", "RegressionLabelIssueManager"], [30, 1, 1, "", "find_issues_with_features"], [30, 1, 1, "", "find_issues_with_predictions"]], "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager": [[30, 3, 1, "", "collect_info"], [30, 6, 1, "", "description"], [30, 3, 1, "", "find_issues"], [30, 6, 1, "", "info"], [30, 6, 1, "", "issue_name"], [30, 6, 1, "", "issue_score_key"], [30, 6, 1, "", "issues"], [30, 3, 1, "", "make_summary"], [30, 3, 1, "", "report"], [30, 6, 1, "", "summary"], [30, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, 2, 1, "", "UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager": [[31, 6, 1, "", "NO_UNDERPERFORMING_CLUSTER_ID"], [31, 6, 1, "", "OUTLIER_CLUSTER_LABELS"], [31, 3, 1, "", "collect_info"], [31, 6, 1, "", "description"], [31, 3, 1, "", "filter_cluster_ids"], [31, 3, 1, "", "find_issues"], [31, 3, 1, "", "get_worst_cluster"], [31, 6, 1, "", "info"], [31, 6, 1, "", "issue_name"], [31, 6, 1, "", "issue_score_key"], [31, 6, 1, "", "issues"], [31, 3, 1, "", "make_summary"], [31, 3, 1, "", "perform_clustering"], [31, 3, 1, "", "report"], [31, 3, 1, "", "set_knn_graph"], [31, 6, 1, "", "summary"], [31, 6, 1, "", "verbosity_levels"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, 7, 1, "", "REGISTRY"], [14, 1, 1, "", "list_default_issue_types"], [14, 1, 1, "", "list_possible_issue_types"], [14, 1, 1, "", "register"]], "cleanlab.datalab.internal.model_outputs": [[32, 2, 1, "", "ModelOutput"], [32, 2, 1, "", "MultiClassPredProbs"], [32, 2, 1, "", "MultiLabelPredProbs"], [32, 2, 1, "", "RegressionPredictions"]], "cleanlab.datalab.internal.model_outputs.ModelOutput": [[32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.model_outputs.RegressionPredictions": [[32, 6, 1, "", "argument"], [32, 3, 1, "", "collect"], [32, 6, 1, "", "data"], [32, 3, 1, "", "validate"]], "cleanlab.datalab.internal.report": [[33, 2, 1, "", "Reporter"]], "cleanlab.datalab.internal.report.Reporter": [[33, 3, 1, "", "get_report"], [33, 3, 1, "", "report"]], "cleanlab.datalab.internal.task": [[34, 2, 1, "", "Task"]], "cleanlab.datalab.internal.task.Task": [[34, 6, 1, "", "CLASSIFICATION"], [34, 6, 1, "", "MULTILABEL"], [34, 6, 1, "", "REGRESSION"], [34, 3, 1, "", "__contains__"], [34, 3, 1, "", "__getitem__"], [34, 3, 1, "", "__iter__"], [34, 3, 1, "", "__len__"], [34, 3, 1, "", "from_str"], [34, 4, 1, "", "is_classification"], [34, 4, 1, "", "is_multilabel"], [34, 4, 1, "", "is_regression"]], "cleanlab.dataset": [[36, 1, 1, "", "find_overlapping_classes"], [36, 1, 1, "", "health_summary"], [36, 1, 1, "", "overall_label_health_score"], [36, 1, 1, "", "rank_classes_by_label_quality"]], "cleanlab.experimental": [[37, 0, 0, "-", "cifar_cnn"], [38, 0, 0, "-", "coteaching"], [40, 0, 0, "-", "label_issues_batched"], [41, 0, 0, "-", "mnist_pytorch"], [42, 0, 0, "-", "span_classification"]], "cleanlab.experimental.cifar_cnn": [[37, 2, 1, "", "CNN"], [37, 1, 1, "", "call_bn"]], "cleanlab.experimental.cifar_cnn.CNN": [[37, 6, 1, "", "T_destination"], [37, 3, 1, "", "__call__"], [37, 3, 1, "", "add_module"], [37, 3, 1, "", "apply"], [37, 3, 1, "", "bfloat16"], [37, 3, 1, "", "buffers"], [37, 6, 1, "", "call_super_init"], [37, 3, 1, "", "children"], [37, 3, 1, "", "compile"], [37, 3, 1, "", "cpu"], [37, 3, 1, "", "cuda"], [37, 3, 1, "", "double"], [37, 6, 1, "", "dump_patches"], [37, 3, 1, "", "eval"], [37, 3, 1, "", "extra_repr"], [37, 3, 1, "", "float"], [37, 3, 1, "id0", "forward"], [37, 3, 1, "", "get_buffer"], [37, 3, 1, "", "get_extra_state"], [37, 3, 1, "", "get_parameter"], [37, 3, 1, "", "get_submodule"], [37, 3, 1, "", "half"], [37, 3, 1, "", "ipu"], [37, 3, 1, "", "load_state_dict"], [37, 3, 1, "", "modules"], [37, 3, 1, "", "named_buffers"], [37, 3, 1, "", "named_children"], [37, 3, 1, "", "named_modules"], [37, 3, 1, "", "named_parameters"], [37, 3, 1, "", "parameters"], [37, 3, 1, "", "register_backward_hook"], [37, 3, 1, "", "register_buffer"], [37, 3, 1, "", "register_forward_hook"], [37, 3, 1, "", "register_forward_pre_hook"], [37, 3, 1, "", "register_full_backward_hook"], [37, 3, 1, "", "register_full_backward_pre_hook"], [37, 3, 1, "", "register_load_state_dict_post_hook"], [37, 3, 1, "", "register_module"], [37, 3, 1, "", "register_parameter"], [37, 3, 1, "", "register_state_dict_pre_hook"], [37, 3, 1, "", "requires_grad_"], [37, 3, 1, "", "set_extra_state"], [37, 3, 1, "", "share_memory"], [37, 3, 1, "", "state_dict"], [37, 3, 1, "", "to"], [37, 3, 1, "", "to_empty"], [37, 3, 1, "", "train"], [37, 6, 1, "", "training"], [37, 3, 1, "", "type"], [37, 3, 1, "", "xpu"], [37, 3, 1, "", "zero_grad"]], "cleanlab.experimental.coteaching": [[38, 1, 1, "", "adjust_learning_rate"], [38, 1, 1, "", "evaluate"], [38, 1, 1, "", "forget_rate_scheduler"], [38, 1, 1, "", "initialize_lr_scheduler"], [38, 1, 1, "", "loss_coteaching"], [38, 1, 1, "", "train"]], "cleanlab.experimental.label_issues_batched": [[40, 2, 1, "", "LabelInspector"], [40, 7, 1, "", "adj_confident_thresholds_shared"], [40, 1, 1, "", "find_label_issues_batched"], [40, 7, 1, "", "labels_shared"], [40, 7, 1, "", "pred_probs_shared"], [40, 1, 1, "", "split_arr"]], "cleanlab.experimental.label_issues_batched.LabelInspector": [[40, 3, 1, "", "get_confident_thresholds"], [40, 3, 1, "", "get_label_issues"], [40, 3, 1, "", "get_num_issues"], [40, 3, 1, "", "get_quality_scores"], [40, 3, 1, "", "score_label_quality"], [40, 3, 1, "", "update_confident_thresholds"]], "cleanlab.experimental.mnist_pytorch": [[41, 2, 1, "", "CNN"], [41, 2, 1, "", "SimpleNet"], [41, 1, 1, "", "get_mnist_dataset"], [41, 1, 1, "", "get_sklearn_digits_dataset"]], "cleanlab.experimental.mnist_pytorch.CNN": [[41, 3, 1, "", "__init_subclass__"], [41, 6, 1, "", "batch_size"], [41, 6, 1, "", "dataset"], [41, 6, 1, "", "epochs"], [41, 3, 1, "id0", "fit"], [41, 3, 1, "", "get_metadata_routing"], [41, 3, 1, "", "get_params"], [41, 6, 1, "", "loader"], [41, 6, 1, "", "log_interval"], [41, 6, 1, "", "lr"], [41, 6, 1, "", "momentum"], [41, 6, 1, "", "no_cuda"], [41, 3, 1, "id1", "predict"], [41, 3, 1, "id4", "predict_proba"], [41, 6, 1, "", "seed"], [41, 3, 1, "", "set_fit_request"], [41, 3, 1, "", "set_params"], [41, 3, 1, "", "set_predict_proba_request"], [41, 3, 1, "", "set_predict_request"], [41, 6, 1, "", "test_batch_size"]], "cleanlab.experimental.mnist_pytorch.SimpleNet": [[41, 6, 1, "", "T_destination"], [41, 3, 1, "", "__call__"], [41, 3, 1, "", "add_module"], [41, 3, 1, "", "apply"], [41, 3, 1, "", "bfloat16"], [41, 3, 1, "", "buffers"], [41, 6, 1, "", "call_super_init"], [41, 3, 1, "", "children"], [41, 3, 1, "", "compile"], [41, 3, 1, "", "cpu"], [41, 3, 1, "", "cuda"], [41, 3, 1, "", "double"], [41, 6, 1, "", "dump_patches"], [41, 3, 1, "", "eval"], [41, 3, 1, "", "extra_repr"], [41, 3, 1, "", "float"], [41, 3, 1, "", "forward"], [41, 3, 1, "", "get_buffer"], [41, 3, 1, "", "get_extra_state"], [41, 3, 1, "", "get_parameter"], [41, 3, 1, "", "get_submodule"], [41, 3, 1, "", "half"], [41, 3, 1, "", "ipu"], [41, 3, 1, "", "load_state_dict"], [41, 3, 1, "", "modules"], [41, 3, 1, "", "named_buffers"], [41, 3, 1, "", "named_children"], [41, 3, 1, "", "named_modules"], [41, 3, 1, "", "named_parameters"], [41, 3, 1, "", "parameters"], [41, 3, 1, "", "register_backward_hook"], [41, 3, 1, "", "register_buffer"], [41, 3, 1, "", "register_forward_hook"], [41, 3, 1, "", "register_forward_pre_hook"], [41, 3, 1, "", "register_full_backward_hook"], [41, 3, 1, "", "register_full_backward_pre_hook"], [41, 3, 1, "", "register_load_state_dict_post_hook"], [41, 3, 1, "", "register_module"], [41, 3, 1, "", "register_parameter"], [41, 3, 1, "", "register_state_dict_pre_hook"], [41, 3, 1, "", "requires_grad_"], [41, 3, 1, "", "set_extra_state"], [41, 3, 1, "", "share_memory"], [41, 3, 1, "", "state_dict"], [41, 3, 1, "", "to"], [41, 3, 1, "", "to_empty"], [41, 3, 1, "", "train"], [41, 6, 1, "", "training"], [41, 3, 1, "", "type"], [41, 3, 1, "", "xpu"], [41, 3, 1, "", "zero_grad"]], "cleanlab.experimental.span_classification": [[42, 1, 1, "", "display_issues"], [42, 1, 1, "", "find_label_issues"], [42, 1, 1, "", "get_label_quality_scores"]], "cleanlab.filter": [[43, 1, 1, "", "find_label_issues"], [43, 1, 1, "", "find_label_issues_using_argmax_confusion_matrix"], [43, 1, 1, "", "find_predicted_neq_given"], [43, 7, 1, "", "pred_probs_by_class"], [43, 7, 1, "", "prune_count_matrix_cols"]], "cleanlab.internal": [[45, 0, 0, "-", "label_quality_utils"], [46, 0, 0, "-", "latent_algebra"], [47, 0, 0, "-", "multiannotator_utils"], [48, 0, 0, "-", "multilabel_scorer"], [49, 0, 0, "-", "multilabel_utils"], [50, 0, 0, "-", "outlier"], [51, 0, 0, "-", "token_classification_utils"], [52, 0, 0, "-", "util"], [53, 0, 0, "-", "validation"]], "cleanlab.internal.label_quality_utils": [[45, 1, 1, "", "get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, 1, 1, "", "compute_inv_noise_matrix"], [46, 1, 1, "", "compute_noise_matrix_from_inverse"], [46, 1, 1, "", "compute_ps_py_inv_noise_matrix"], [46, 1, 1, "", "compute_py"], [46, 1, 1, "", "compute_py_inv_noise_matrix"], [46, 1, 1, "", "compute_pyx"]], "cleanlab.internal.multiannotator_utils": [[47, 1, 1, "", "assert_valid_inputs_multiannotator"], [47, 1, 1, "", "assert_valid_pred_probs"], [47, 1, 1, "", "check_consensus_label_classes"], [47, 1, 1, "", "compute_soft_cross_entropy"], [47, 1, 1, "", "find_best_temp_scaler"], [47, 1, 1, "", "format_multiannotator_labels"], [47, 1, 1, "", "temp_scale_pred_probs"]], "cleanlab.internal.multilabel_scorer": [[48, 2, 1, "", "Aggregator"], [48, 2, 1, "", "ClassLabelScorer"], [48, 2, 1, "", "MultilabelScorer"], [48, 1, 1, "", "exponential_moving_average"], [48, 1, 1, "", "get_cross_validated_multilabel_pred_probs"], [48, 1, 1, "", "get_label_quality_scores"], [48, 1, 1, "", "multilabel_py"], [48, 1, 1, "", "softmin"]], "cleanlab.internal.multilabel_scorer.Aggregator": [[48, 3, 1, "", "__call__"], [48, 6, 1, "", "possible_methods"]], "cleanlab.internal.multilabel_scorer.ClassLabelScorer": [[48, 6, 1, "", "CONFIDENCE_WEIGHTED_ENTROPY"], [48, 6, 1, "", "NORMALIZED_MARGIN"], [48, 6, 1, "", "SELF_CONFIDENCE"], [48, 3, 1, "", "__call__"], [48, 3, 1, "", "__contains__"], [48, 3, 1, "", "__getitem__"], [48, 3, 1, "", "__iter__"], [48, 3, 1, "", "__len__"], [48, 3, 1, "", "from_str"]], "cleanlab.internal.multilabel_scorer.MultilabelScorer": [[48, 3, 1, "", "__call__"], [48, 3, 1, "", "aggregate"], [48, 3, 1, "", "get_class_label_quality_scores"]], "cleanlab.internal.multilabel_utils": [[49, 1, 1, "", "get_onehot_num_classes"], [49, 1, 1, "", "int2onehot"], [49, 1, 1, "", "onehot2int"], [49, 1, 1, "", "stack_complement"]], "cleanlab.internal.outlier": [[50, 1, 1, "", "correct_precision_errors"], [50, 1, 1, "", "transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, 1, 1, "", "color_sentence"], [51, 1, 1, "", "filter_sentence"], [51, 1, 1, "", "get_sentence"], [51, 1, 1, "", "mapping"], [51, 1, 1, "", "merge_probs"], [51, 1, 1, "", "process_token"]], "cleanlab.internal.util": [[52, 1, 1, "", "append_extra_datapoint"], [52, 1, 1, "", "clip_noise_rates"], [52, 1, 1, "", "clip_values"], [52, 1, 1, "", "compress_int_array"], [52, 1, 1, "", "confusion_matrix"], [52, 1, 1, "", "csr_vstack"], [52, 1, 1, "", "estimate_pu_f1"], [52, 1, 1, "", "extract_indices_tf"], [52, 1, 1, "", "force_two_dimensions"], [52, 1, 1, "", "format_labels"], [52, 1, 1, "", "get_missing_classes"], [52, 1, 1, "", "get_num_classes"], [52, 1, 1, "", "get_unique_classes"], [52, 1, 1, "", "is_tensorflow_dataset"], [52, 1, 1, "", "is_torch_dataset"], [52, 1, 1, "", "num_unique_classes"], [52, 1, 1, "", "print_inverse_noise_matrix"], [52, 1, 1, "", "print_joint_matrix"], [52, 1, 1, "", "print_noise_matrix"], [52, 1, 1, "", "print_square_matrix"], [52, 1, 1, "", "remove_noise_from_class"], [52, 1, 1, "", "round_preserving_row_totals"], [52, 1, 1, "", "round_preserving_sum"], [52, 1, 1, "", "smart_display_dataframe"], [52, 1, 1, "", "subset_X_y"], [52, 1, 1, "", "subset_data"], [52, 1, 1, "", "subset_labels"], [52, 1, 1, "", "train_val_split"], [52, 1, 1, "", "unshuffle_tensorflow_dataset"], [52, 1, 1, "", "value_counts"], [52, 1, 1, "", "value_counts_fill_missing_classes"]], "cleanlab.internal.validation": [[53, 1, 1, "", "assert_indexing_works"], [53, 1, 1, "", "assert_nonempty_input"], [53, 1, 1, "", "assert_valid_class_labels"], [53, 1, 1, "", "assert_valid_inputs"], [53, 1, 1, "", "labels_to_array"], [53, 1, 1, "", "labels_to_list_multilabel"]], "cleanlab.models": [[56, 0, 0, "-", "keras"]], "cleanlab.models.keras": [[56, 2, 1, "", "KerasWrapperModel"], [56, 2, 1, "", "KerasWrapperSequential"]], "cleanlab.models.keras.KerasWrapperModel": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.models.keras.KerasWrapperSequential": [[56, 3, 1, "", "fit"], [56, 3, 1, "", "get_params"], [56, 3, 1, "", "predict"], [56, 3, 1, "", "predict_proba"], [56, 3, 1, "", "set_params"], [56, 3, 1, "", "summary"]], "cleanlab.multiannotator": [[57, 1, 1, "", "convert_long_to_wide_dataset"], [57, 1, 1, "", "get_active_learning_scores"], [57, 1, 1, "", "get_active_learning_scores_ensemble"], [57, 1, 1, "", "get_label_quality_multiannotator"], [57, 1, 1, "", "get_label_quality_multiannotator_ensemble"], [57, 1, 1, "", "get_majority_vote_label"]], "cleanlab.multilabel_classification": [[58, 0, 0, "-", "dataset"], [59, 0, 0, "-", "filter"], [61, 0, 0, "-", "rank"]], "cleanlab.multilabel_classification.dataset": [[58, 1, 1, "", "common_multilabel_issues"], [58, 1, 1, "", "multilabel_health_summary"], [58, 1, 1, "", "overall_multilabel_health_score"], [58, 1, 1, "", "rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, 1, 1, "", "find_label_issues"], [59, 1, 1, "", "find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification.rank": [[61, 1, 1, "", "get_label_quality_scores"], [61, 1, 1, "", "get_label_quality_scores_per_class"]], "cleanlab.object_detection": [[62, 0, 0, "-", "filter"], [64, 0, 0, "-", "rank"], [65, 0, 0, "-", "summary"]], "cleanlab.object_detection.filter": [[62, 1, 1, "", "find_label_issues"]], "cleanlab.object_detection.rank": [[64, 1, 1, "", "compute_badloc_box_scores"], [64, 1, 1, "", "compute_overlooked_box_scores"], [64, 1, 1, "", "compute_swap_box_scores"], [64, 1, 1, "", "get_label_quality_scores"], [64, 1, 1, "", "issues_from_scores"], [64, 1, 1, "", "pool_box_scores_per_image"]], "cleanlab.object_detection.summary": [[65, 1, 1, "", "bounding_box_size_distribution"], [65, 1, 1, "", "calculate_per_class_metrics"], [65, 1, 1, "", "class_label_distribution"], [65, 1, 1, "", "get_average_per_class_confusion_matrix"], [65, 1, 1, "", "get_sorted_bbox_count_idxs"], [65, 1, 1, "", "object_counts_per_image"], [65, 1, 1, "", "plot_class_distribution"], [65, 1, 1, "", "plot_class_size_distributions"], [65, 1, 1, "", "visualize"]], "cleanlab.outlier": [[66, 2, 1, "", "OutOfDistribution"]], "cleanlab.outlier.OutOfDistribution": [[66, 3, 1, "", "fit"], [66, 3, 1, "", "fit_score"], [66, 3, 1, "", "score"]], "cleanlab.rank": [[67, 1, 1, "", "find_top_issues"], [67, 1, 1, "", "get_confidence_weighted_entropy_for_each_label"], [67, 1, 1, "", "get_label_quality_ensemble_scores"], [67, 1, 1, "", "get_label_quality_scores"], [67, 1, 1, "", "get_normalized_margin_for_each_label"], [67, 1, 1, "", "get_self_confidence_for_each_label"], [67, 1, 1, "", "order_label_issues"]], "cleanlab.regression": [[69, 0, 0, "-", "learn"], [70, 0, 0, "-", "rank"]], "cleanlab.regression.learn": [[69, 2, 1, "", "CleanLearning"]], "cleanlab.regression.learn.CleanLearning": [[69, 3, 1, "", "__init_subclass__"], [69, 3, 1, "", "find_label_issues"], [69, 3, 1, "", "fit"], [69, 3, 1, "", "get_aleatoric_uncertainty"], [69, 3, 1, "", "get_epistemic_uncertainty"], [69, 3, 1, "", "get_label_issues"], [69, 3, 1, "", "get_metadata_routing"], [69, 3, 1, "", "get_params"], [69, 3, 1, "", "predict"], [69, 3, 1, "", "save_space"], [69, 3, 1, "", "score"], [69, 3, 1, "", "set_fit_request"], [69, 3, 1, "", "set_params"], [69, 3, 1, "", "set_score_request"]], "cleanlab.regression.rank": [[70, 1, 1, "", "get_label_quality_scores"]], "cleanlab.segmentation": [[71, 0, 0, "-", "filter"], [73, 0, 0, "-", "rank"], [74, 0, 0, "-", "summary"]], "cleanlab.segmentation.filter": [[71, 1, 1, "", "find_label_issues"]], "cleanlab.segmentation.rank": [[73, 1, 1, "", "get_label_quality_scores"], [73, 1, 1, "", "issues_from_scores"]], "cleanlab.segmentation.summary": [[74, 1, 1, "", "common_label_issues"], [74, 1, 1, "", "display_issues"], [74, 1, 1, "", "filter_by_class"]], "cleanlab.token_classification": [[75, 0, 0, "-", "filter"], [77, 0, 0, "-", "rank"], [78, 0, 0, "-", "summary"]], "cleanlab.token_classification.filter": [[75, 1, 1, "", "find_label_issues"]], "cleanlab.token_classification.rank": [[77, 1, 1, "", "get_label_quality_scores"], [77, 1, 1, "", "issues_from_scores"]], "cleanlab.token_classification.summary": [[78, 1, 1, "", "common_label_issues"], [78, 1, 1, "", "display_issues"], [78, 1, 1, "", "filter_by_token"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:property", "5": "py:exception", "6": "py:attribute", "7": "py:data"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "property", "Python property"], "5": ["py", "exception", "Python exception"], "6": ["py", "attribute", "Python attribute"], "7": ["py", "data", "Python data"]}, "titleterms": {"benchmark": 0, "noise_gener": 1, "classif": [2, 82, 83, 84, 88, 90, 91, 93, 94, 97, 103], "count": [3, 94], "data_valu": [4, 18], "datalab": [5, 7, 9, 10, 11, 85, 86, 87, 89, 90, 91, 94, 97], "creat": [7, 85, 86, 87, 94, 96], "your": [7, 79, 86, 87, 91, 93, 94], "own": 7, "issu": [7, 9, 10, 21, 30, 79, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 97, 98, 102, 103], "manag": [7, 21], "prerequisit": 7, "implement": 7, "issuemanag": [7, 86], "basic": 7, "check": 7, "intermedi": 7, "advanc": [7, 86], "us": [7, 82, 83, 84, 85, 87, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "gener": 8, "cluster": [8, 93], "id": 8, "guid": [9, 11], "type": [9, 10, 94], "custom": [9, 86], "cleanlab": [9, 10, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103], "studio": [9, 10], "easi": [9, 10, 79, 88, 90, 91], "mode": [9, 10, 79, 88, 90, 91], "can": [10, 85, 87, 92, 93, 94, 96], "detect": [10, 87, 90, 91, 93, 94, 98, 99], "estim": [10, 94, 96, 97], "each": 10, "label": [10, 23, 25, 30, 79, 82, 83, 84, 87, 88, 90, 91, 93, 94, 96, 97, 98, 101, 102, 103], "outlier": [10, 28, 50, 66, 88, 90, 91, 97, 99], "Near": [10, 87, 88, 90, 91], "duplic": [10, 19, 87, 88, 90, 91, 93, 97], "non": [10, 91], "iid": [10, 91], "class": [10, 80, 94, 102], "imbal": [10, 20], "imag": [10, 88, 99], "specif": [10, 21, 102], "underperform": [10, 93], "group": [10, 93], "null": [10, 27], "data": [10, 12, 79, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "valuat": 10, "option": 10, "paramet": [10, 94], "get": [11, 85, 86, 87, 96, 97, 98, 102, 103], "start": [11, 92], "api": 11, "refer": 11, "data_issu": 13, "factori": 14, "intern": [15, 44], "issue_find": 16, "issue_manag": [21, 22], "regist": 21, "ml": [21, 93, 94], "task": [21, 34], "multilabel": 24, "noniid": 26, "regress": [29, 68, 69, 70, 93, 101], "prioriti": 30, "order": 30, "find": [30, 79, 82, 83, 84, 85, 87, 88, 90, 91, 92, 93, 94, 96, 97, 98, 99, 101, 102, 103], "underperforming_group": 31, "model_output": 32, "report": [33, 88], "dataset": [36, 58, 79, 83, 85, 87, 88, 91, 92, 93, 94, 97, 98, 99, 101, 102, 103], "cifar_cnn": 37, "coteach": 38, "experiment": 39, "label_issues_batch": 40, "mnist_pytorch": 41, "span_classif": 42, "filter": [43, 59, 62, 71, 75, 94], "label_quality_util": 45, "latent_algebra": 46, "multiannotator_util": 47, "multilabel_scor": 48, "multilabel_util": 49, "token_classification_util": 51, "util": 52, "valid": [53, 88, 100], "fasttext": 54, "model": [55, 79, 82, 83, 84, 88, 90, 91, 93, 94, 96, 97, 98, 99, 101], "kera": 56, "multiannot": [57, 96], "multilabel_classif": 60, "rank": [61, 64, 67, 70, 73, 77, 94], "object_detect": 63, "summari": [65, 74, 78], "learn": [69, 82, 85, 87, 93, 94], "segment": [72, 102], "token_classif": [76, 103], "open": [79, 93], "sourc": [79, 93], "document": 79, "quickstart": 79, "1": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "instal": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "2": [79, 80, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "common": [79, 80, 103], "3": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 97, 98, 99, 101, 102, 103], "handl": [79, 93], "error": [79, 83, 88, 93, 94, 96, 97, 98, 101, 102, 103], "train": [79, 82, 83, 84, 93, 99, 101], "robust": [79, 82, 83, 94, 101], "noisi": [79, 82, 83, 94, 101], "4": [79, 82, 83, 84, 85, 86, 87, 88, 90, 91, 94, 96, 98, 99, 101], "curat": [79, 92], "fix": [79, 93], "level": [79, 92, 94, 103], "5": [79, 82, 84, 85, 87, 88, 90, 94, 96, 101], "improv": [79, 96], "via": [79, 94, 96], "mani": [79, 94], "other": [79, 96, 98, 101], "techniqu": 79, "contribut": 79, "how": [80, 93, 94, 96, 97, 103], "migrat": 80, "version": 80, "0": 80, "from": [80, 82, 83, 85, 86, 87, 94, 101], "pre": [80, 84, 93, 99], "function": [80, 86], "name": 80, "chang": 80, "modul": [80, 94], "new": [80, 85], "remov": 80, "argument": [80, 86], "variabl": 80, "cleanlearn": [81, 93, 94], "tutori": [81, 89, 92, 95], "tabular": [82, 90], "scikit": 82, "requir": [82, 83, 85, 86, 87, 88, 90, 91, 96, 97, 98, 99, 101, 102, 103], "depend": [82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 94, 96, 97, 98, 99, 101, 102, 103], "load": [82, 83, 84, 85, 86, 87, 90, 91, 101], "process": [82, 90, 99, 101], "select": [82, 90], "comput": [82, 84, 88, 90, 91, 93, 96, 100], "out": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "sampl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "predict": [82, 84, 85, 86, 87, 88, 90, 91, 96, 97, 98, 100], "probabl": [82, 84, 85, 86, 87, 88, 90, 91, 96, 100], "more": [82, 83, 85, 87, 94, 101], "text": [83, 91, 103], "format": [83, 91, 93, 97, 98], "defin": [83, 88, 91, 101], "potenti": [83, 96, 101], "audio": 84, "speechbrain": 84, "import": [84, 85, 86, 87, 88, 92, 94, 96], "them": [84, 92, 94], "featur": [84, 88, 99], "fit": 84, "linear": 84, "datamonitor": 85, "leverag": 85, "statist": [85, 96], "audit": [85, 86, 87], "skip": [85, 87, 92, 94, 96], "detail": [85, 87, 92, 94, 96], "classifi": [85, 86, 87], "6": [85, 94], "about": [85, 87], "addit": [85, 87], "workflow": [86, 94], "instanti": 86, "object": [86, 98], "increment": 86, "search": 86, "specifi": [86, 93], "nondefault": 86, "save": 86, "ad": 86, "A": 87, "unifi": 87, "all": [87, 94], "kind": [87, 98], "inform": [87, 88], "pytorch": [88, 99], "fetch": [88, 92], "normal": 88, "fashion": 88, "mnist": 88, "prepar": 88, "k": [88, 90, 100], "fold": [88, 100], "cross": [88, 100], "embed": [88, 99], "7": [88, 94], "view": 88, "most": [88, 103], "like": 88, "exampl": [88, 93, 94, 99], "sever": 88, "set": [88, 94], "dark": 88, "top": [88, 102], "low": 88, "numer": 90, "categor": 90, "column": 90, "construct": 90, "nearest": 90, "neighbour": 90, "graph": 90, "drift": [91, 97], "evalu": 92, "health": [92, 94], "8": [92, 94], "popular": 92, "faq": 93, "what": [93, 94, 100], "do": [93, 94], "i": [93, 94, 100], "infer": 93, "correct": 93, "ha": 93, "flag": 93, "should": 93, "v": 93, "test": [93, 94, 99], "big": 93, "limit": 93, "memori": 93, "why": 93, "isn": 93, "t": 93, "work": [93, 94, 96, 103], "me": 93, "differ": [93, 98], "clean": [93, 94], "final": 93, "hyperparamet": 93, "tune": 93, "onli": 93, "one": [93, 94, 97, 102], "doe": [93, 96, 103], "take": 93, "so": 93, "long": 93, "slice": 93, "when": [93, 94], "identifi": [93, 98], "run": 93, "licens": 93, "under": 93, "an": 93, "answer": 93, "question": 93, "The": 94, "centric": 94, "ai": 94, "machin": 94, "find_label_issu": 94, "line": 94, "code": 94, "visual": [94, 98, 99, 102], "twenti": 94, "lowest": 94, "qualiti": [94, 96, 97, 98, 102, 103], "see": 94, "now": 94, "let": 94, "": 94, "happen": 94, "we": 94, "merg": 94, "seafoam": 94, "green": 94, "yellow": 94, "too": 94, "you": 94, "re": 94, "One": 94, "score": [94, 96, 97, 98, 102, 103], "rule": 94, "overal": [94, 102], "accur": 94, "thi": 94, "directli": 94, "fulli": 94, "character": 94, "nois": 94, "matrix": [94, 97], "joint": 94, "prior": 94, "true": 94, "distribut": 94, "flip": 94, "rate": 94, "ani": 94, "again": 94, "support": 94, "lot": 94, "method": 94, "filter_bi": 94, "automat": 94, "everi": 94, "uniqu": 94, "num_label_issu": 94, "threshold": 94, "found": 94, "Not": 94, "sure": 94, "ensembl": 94, "multipl": [94, 96], "predictor": 94, "consensu": 96, "annot": 96, "initi": 96, "major": 96, "vote": 96, "better": 96, "compar": 96, "inspect": 96, "retrain": 96, "further": 96, "multi": 97, "beyond": 97, "mislabel": [97, 102, 103], "given": 97, "hot": 97, "binari": 97, "without": 97, "applic": 97, "real": 97, "download": [98, 102, 103], "objectlab": 98, "exploratori": 98, "analysi": 98, "timm": 99, "cifar10": 99, "some": 99, "pred_prob": [99, 102, 103], "wai": 101, "semant": 102, "which": 102, "ar": 102, "commonli": 102, "focus": 102, "token": 103, "word": 103, "sentenc": 103, "contain": 103, "particular": 103}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx.ext.viewcode": 1, "sphinx.ext.todo": 2, "sphinx": 58}, "alltitles": {"benchmarking": [[0, "module-cleanlab.benchmarking"]], "noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "classification": [[2, "module-cleanlab.classification"]], "count": [[3, "module-cleanlab.count"]], "data_valuation": [[4, "module-cleanlab.data_valuation"], [18, "data-valuation"]], "datalab": [[5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"]], "Creating Your Own Issues Manager": [[7, "creating-your-own-issues-manager"]], "Prerequisites": [[7, "prerequisites"]], "Implementing IssueManagers": [[7, "implementing-issuemanagers"]], "Basic Issue Check": [[7, "basic-issue-check"]], "Intermediate Issue Check": [[7, "intermediate-issue-check"]], "Advanced Issue Check": [[7, "advanced-issue-check"]], "Use with Datalab": [[7, "use-with-datalab"]], "Generating Cluster IDs": [[8, "generating-cluster-ids"]], "Datalab guides": [[9, "datalab-guides"]], "Types of issues": [[9, "types-of-issues"]], "Customizing issue types": [[9, "customizing-issue-types"]], "Cleanlab Studio (Easy Mode)": [[9, "cleanlab-studio-easy-mode"], [10, "cleanlab-studio-easy-mode"]], "Datalab Issue Types": [[10, "datalab-issue-types"]], "Types of issues Datalab can detect": [[10, "types-of-issues-datalab-can-detect"]], "Estimates for Each Issue Type": [[10, "estimates-for-each-issue-type"]], "Label Issue": [[10, "label-issue"]], "Outlier Issue": [[10, "outlier-issue"]], "(Near) Duplicate Issue": [[10, "near-duplicate-issue"]], "Non-IID Issue": [[10, "non-iid-issue"]], "Class Imbalance Issue": [[10, "class-imbalance-issue"]], "Image-specific Issues": [[10, "image-specific-issues"]], "Underperforming Group Issue": [[10, "underperforming-group-issue"]], "Null Issue": [[10, "null-issue"]], "Data Valuation Issue": [[10, "data-valuation-issue"]], "Optional Issue Parameters": [[10, "optional-issue-parameters"]], "Label Issue Parameters": [[10, "label-issue-parameters"]], "Outlier Issue Parameters": [[10, "outlier-issue-parameters"]], "Duplicate Issue Parameters": [[10, "duplicate-issue-parameters"]], "Non-IID Issue Parameters": [[10, "non-iid-issue-parameters"]], "Imbalance Issue Parameters": [[10, "imbalance-issue-parameters"]], "Underperforming Group Issue Parameters": [[10, "underperforming-group-issue-parameters"]], "Null Issue Parameters": [[10, "null-issue-parameters"]], "Data Valuation Issue Parameters": [[10, "data-valuation-issue-parameters"]], "Image Issue Parameters": [[10, "image-issue-parameters"]], "Getting Started": [[11, "getting-started"]], "Guides": [[11, "guides"]], "API Reference": [[11, "api-reference"]], "data": [[12, "module-cleanlab.datalab.internal.data"]], "data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "internal": [[15, "internal"], [44, "internal"]], "issue_finder": [[16, "issue-finder"]], "duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "issue_manager": [[21, "issue-manager"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "Registered issue managers": [[21, "registered-issue-managers"]], "ML task-specific issue managers": [[21, "ml-task-specific-issue-managers"]], "label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "multilabel": [[24, "multilabel"]], "noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "null": [[27, "null"]], "outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [50, "module-cleanlab.internal.outlier"], [66, "module-cleanlab.outlier"]], "regression": [[29, "regression"], [68, "regression"]], "Priority Order for finding issues:": [[30, null]], "underperforming_group": [[31, "underperforming-group"]], "model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "report": [[33, "report"]], "task": [[34, "task"]], "dataset": [[36, "module-cleanlab.dataset"], [58, "module-cleanlab.multilabel_classification.dataset"]], "cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "experimental": [[39, "experimental"]], "label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "filter": [[43, "module-cleanlab.filter"], [59, "module-cleanlab.multilabel_classification.filter"], [62, "filter"], [71, "filter"], [75, "module-cleanlab.token_classification.filter"]], "label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "util": [[52, "module-cleanlab.internal.util"]], "validation": [[53, "module-cleanlab.internal.validation"]], "fasttext": [[54, "fasttext"]], "models": [[55, "models"]], "keras": [[56, "module-cleanlab.models.keras"]], "multiannotator": [[57, "module-cleanlab.multiannotator"]], "multilabel_classification": [[60, "multilabel-classification"]], "rank": [[61, "module-cleanlab.multilabel_classification.rank"], [64, "module-cleanlab.object_detection.rank"], [67, "module-cleanlab.rank"], [73, "module-cleanlab.segmentation.rank"], [77, "module-cleanlab.token_classification.rank"]], "object_detection": [[63, "object-detection"]], "summary": [[65, "summary"], [74, "module-cleanlab.segmentation.summary"], [78, "module-cleanlab.token_classification.summary"]], "regression.learn": [[69, "module-cleanlab.regression.learn"]], "regression.rank": [[70, "module-cleanlab.regression.rank"]], "segmentation": [[72, "segmentation"]], "token_classification": [[76, "token-classification"]], "cleanlab open-source documentation": [[79, "cleanlab-open-source-documentation"]], "Quickstart": [[79, "quickstart"]], "1. Install cleanlab": [[79, "install-cleanlab"]], "2. Find common issues in your data": [[79, "find-common-issues-in-your-data"]], "3. Handle label errors and train robust models with noisy labels": [[79, "handle-label-errors-and-train-robust-models-with-noisy-labels"]], "4. Dataset curation: fix dataset-level issues": [[79, "dataset-curation-fix-dataset-level-issues"]], "5. Improve your data via many other techniques": [[79, "improve-your-data-via-many-other-techniques"]], "Contributing": [[79, "contributing"]], "Easy Mode": [[79, "easy-mode"], [88, "Easy-Mode"], [90, "Easy-Mode"], [91, "Easy-Mode"]], "How to migrate to versions >= 2.0.0 from pre 1.0.1": [[80, "how-to-migrate-to-versions-2-0-0-from-pre-1-0-1"]], "Function and class name changes": [[80, "function-and-class-name-changes"]], "Module name changes": [[80, "module-name-changes"]], "New modules": [[80, "new-modules"]], "Removed modules": [[80, "removed-modules"]], "Common argument and variable name changes": [[80, "common-argument-and-variable-name-changes"]], "CleanLearning Tutorials": [[81, "cleanlearning-tutorials"]], "Classification with Tabular Data using Scikit-Learn and Cleanlab": [[82, "Classification-with-Tabular-Data-using-Scikit-Learn-and-Cleanlab"]], "1. Install required dependencies": [[82, "1.-Install-required-dependencies"], [83, "1.-Install-required-dependencies"], [90, "1.-Install-required-dependencies"], [91, "1.-Install-required-dependencies"], [101, "1.-Install-required-dependencies"]], "2. Load and process the data": [[82, "2.-Load-and-process-the-data"], [90, "2.-Load-and-process-the-data"], [101, "2.-Load-and-process-the-data"]], "3. Select a classification model and compute out-of-sample predicted probabilities": [[82, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"], [90, "3.-Select-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find label issues": [[82, "4.-Use-cleanlab-to-find-label-issues"]], "5. Train a more robust model from noisy labels": [[82, "5.-Train-a-more-robust-model-from-noisy-labels"]], "Text Classification with Noisy Labels": [[83, "Text-Classification-with-Noisy-Labels"]], "2. Load and format the text dataset": [[83, "2.-Load-and-format-the-text-dataset"], [91, "2.-Load-and-format-the-text-dataset"]], "3. Define a classification model and use cleanlab to find potential label errors": [[83, "3.-Define-a-classification-model-and-use-cleanlab-to-find-potential-label-errors"]], "4. Train a more robust model from noisy labels": [[83, "4.-Train-a-more-robust-model-from-noisy-labels"], [101, "4.-Train-a-more-robust-model-from-noisy-labels"]], "Audio Classification with SpeechBrain and Cleanlab": [[84, "Audio-Classification-with-SpeechBrain-and-Cleanlab"]], "1. Install dependencies and import them": [[84, "1.-Install-dependencies-and-import-them"]], "2. Load the data": [[84, "2.-Load-the-data"]], "3. Use pre-trained SpeechBrain model to featurize audio": [[84, "3.-Use-pre-trained-SpeechBrain-model-to-featurize-audio"]], "4. Fit linear model and compute out-of-sample predicted probabilities": [[84, "4.-Fit-linear-model-and-compute-out-of-sample-predicted-probabilities"]], "5. Use cleanlab to find label issues": [[84, "5.-Use-cleanlab-to-find-label-issues"], [90, "5.-Use-cleanlab-to-find-label-issues"]], "DataMonitor: Leverage statistics from Datalab to audit new data": [[85, "DataMonitor:-Leverage-statistics-from-Datalab-to-audit-new-data"]], "1. Install and import required dependencies": [[85, "1.-Install-and-import-required-dependencies"], [87, "1.-Install-and-import-required-dependencies"], [88, "1.-Install-and-import-required-dependencies"], [96, "1.-Install-and-import-required-dependencies"]], "2. Create and load the data (can skip these details)": [[85, "2.-Create-and-load-the-data-(can-skip-these-details)"], [87, "2.-Create-and-load-the-data-(can-skip-these-details)"]], "3. Get out-of-sample predicted probabilities from a classifier": [[85, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"], [87, "3.-Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "4. Use Datalab to find issues in the dataset": [[85, "4.-Use-Datalab-to-find-issues-in-the-dataset"], [87, "4.-Use-Datalab-to-find-issues-in-the-dataset"]], "5. Use DataMonitor to find issues in new data": [[85, "5.-Use-DataMonitor-to-find-issues-in-new-data"]], "6. Learn more about the issues in the additional data": [[85, "6.-Learn-more-about-the-issues-in-the-additional-data"]], "Datalab: Advanced workflows to audit your data": [[86, "Datalab:-Advanced-workflows-to-audit-your-data"]], "Install and import required dependencies": [[86, "Install-and-import-required-dependencies"]], "Create and load the data": [[86, "Create-and-load-the-data"]], "Get out-of-sample predicted probabilities from a classifier": [[86, "Get-out-of-sample-predicted-probabilities-from-a-classifier"]], "Instantiate Datalab object": [[86, "Instantiate-Datalab-object"]], "Functionality 1: Incremental issue search": [[86, "Functionality-1:-Incremental-issue-search"]], "Functionality 2: Specifying nondefault arguments": [[86, "Functionality-2:-Specifying-nondefault-arguments"]], "Functionality 3: Save and load Datalab objects": [[86, "Functionality-3:-Save-and-load-Datalab-objects"]], "Functionality 4: Adding a custom IssueManager": [[86, "Functionality-4:-Adding-a-custom-IssueManager"]], "Datalab: A unified audit to detect all kinds of issues in data and labels": [[87, "Datalab:-A-unified-audit-to-detect-all-kinds-of-issues-in-data-and-labels"]], "5. Learn more about the issues in your dataset": [[87, "5.-Learn-more-about-the-issues-in-your-dataset"]], "Get additional information": [[87, "Get-additional-information"]], "Near duplicate issues": [[87, "Near-duplicate-issues"], [88, "Near-duplicate-issues"]], "Image Classification with PyTorch and Cleanlab": [[88, "Image-Classification-with-PyTorch-and-Cleanlab"]], "2. Fetch and normalize the Fashion-MNIST dataset": [[88, "2.-Fetch-and-normalize-the-Fashion-MNIST-dataset"]], "3. Define a classification model": [[88, "3.-Define-a-classification-model"]], "4. Prepare the dataset for K-fold cross-validation": [[88, "4.-Prepare-the-dataset-for-K-fold-cross-validation"]], "5. Compute out-of-sample predicted probabilities and feature embeddings": [[88, "5.-Compute-out-of-sample-predicted-probabilities-and-feature-embeddings"]], "7. Use cleanlab to find issues": [[88, "7.-Use-cleanlab-to-find-issues"]], "View report": [[88, "View-report"]], "Label issues": [[88, "Label-issues"], [90, "Label-issues"], [91, "Label-issues"]], "View most likely examples with label errors": [[88, "View-most-likely-examples-with-label-errors"]], "Outlier issues": [[88, "Outlier-issues"], [90, "Outlier-issues"], [91, "Outlier-issues"]], "View most severe outliers": [[88, "View-most-severe-outliers"]], "View sets of near duplicate images": [[88, "View-sets-of-near-duplicate-images"]], "Dark images": [[88, "Dark-images"]], "View top examples of dark images": [[88, "View-top-examples-of-dark-images"]], "Low information images": [[88, "Low-information-images"]], "Datalab Tutorials": [[89, "datalab-tutorials"]], "Detecting Issues in Tabular Data\u00a0(Numeric/Categorical columns) with Datalab": [[90, "Detecting-Issues-in-Tabular-Data\u00a0(Numeric/Categorical-columns)-with-Datalab"]], "4. Construct K nearest neighbours graph": [[90, "4.-Construct-K-nearest-neighbours-graph"]], "Near-duplicate issues": [[90, "Near-duplicate-issues"], [91, "Near-duplicate-issues"]], "Detecting Issues in a Text Dataset with Datalab": [[91, "Detecting-Issues-in-a-Text-Dataset-with-Datalab"]], "3. Define a classification model and compute out-of-sample predicted probabilities": [[91, "3.-Define-a-classification-model-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to find issues in your dataset": [[91, "4.-Use-cleanlab-to-find-issues-in-your-dataset"]], "Non-IID issues (data drift)": [[91, "Non-IID-issues-(data-drift)"]], "Find Dataset-level Issues for Dataset Curation": [[92, "Find-Dataset-level-Issues-for-Dataset-Curation"]], "Install dependencies and import them": [[92, "Install-dependencies-and-import-them"], [94, "Install-dependencies-and-import-them"]], "Fetch the data (can skip these details)": [[92, "Fetch-the-data-(can-skip-these-details)"]], "Start of tutorial: Evaluate the health of 8 popular datasets": [[92, "Start-of-tutorial:-Evaluate-the-health-of-8-popular-datasets"]], "FAQ": [[93, "FAQ"]], "What data can cleanlab detect issues in?": [[93, "What-data-can-cleanlab-detect-issues-in?"]], "How do I format classification labels for cleanlab?": [[93, "How-do-I-format-classification-labels-for-cleanlab?"]], "How do I infer the correct labels for examples cleanlab has flagged?": [[93, "How-do-I-infer-the-correct-labels-for-examples-cleanlab-has-flagged?"]], "How should I handle label errors in train vs. test data?": [[93, "How-should-I-handle-label-errors-in-train-vs.-test-data?"]], "How can I find label issues in big datasets with limited memory?": [[93, "How-can-I-find-label-issues-in-big-datasets-with-limited-memory?"]], "Why isn\u2019t CleanLearning working for me?": [[93, "Why-isn\u2019t-CleanLearning-working-for-me?"]], "How can I use different models for data cleaning vs. final training in CleanLearning?": [[93, "How-can-I-use-different-models-for-data-cleaning-vs.-final-training-in-CleanLearning?"]], "How do I hyperparameter tune only the final model trained (and not the one finding label issues) in CleanLearning?": [[93, "How-do-I-hyperparameter-tune-only-the-final-model-trained-(and-not-the-one-finding-label-issues)-in-CleanLearning?"]], "Why does regression.learn.CleanLearning take so long?": [[93, "Why-does-regression.learn.CleanLearning-take-so-long?"]], "How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?": [[93, "How-do-I-specify-pre-computed-data-slices/clusters-when-detecting-the-Underperforming-Group-Issue?"]], "How to handle near-duplicate data identified by cleanlab?": [[93, "How-to-handle-near-duplicate-data-identified-by-cleanlab?"]], "What ML models should I run cleanlab with? How do I fix the issues cleanlab has identified?": [[93, "What-ML-models-should-I-run-cleanlab-with?-How-do-I-fix-the-issues-cleanlab-has-identified?"]], "What license is cleanlab open-sourced under?": [[93, "What-license-is-cleanlab-open-sourced-under?"]], "Can\u2019t find an answer to your question?": [[93, "Can't-find-an-answer-to-your-question?"]], "The Workflows of Data-centric AI for Classification with Noisy Labels": [[94, "The-Workflows-of-Data-centric-AI-for-Classification-with-Noisy-Labels"]], "Create the data (can skip these details)": [[94, "Create-the-data-(can-skip-these-details)"]], "Workflow 1: Use Datalab to detect many types of issues": [[94, "Workflow-1:-Use-Datalab-to-detect-many-types-of-issues"]], "Workflow 2: Use CleanLearning for more robust Machine Learning": [[94, "Workflow-2:-Use-CleanLearning-for-more-robust-Machine-Learning"]], "Clean Learning = Machine Learning with cleaned data": [[94, "Clean-Learning-=-Machine-Learning-with-cleaned-data"]], "Workflow 3: Use CleanLearning to find_label_issues in one line of code": [[94, "Workflow-3:-Use-CleanLearning-to-find_label_issues-in-one-line-of-code"]], "Visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 4: Use cleanlab to find dataset-level and class-level issues": [[94, "Workflow-4:-Use-cleanlab-to-find-dataset-level-and-class-level-issues"]], "Now, let\u2019s see what happens if we merge classes \u201cseafoam green\u201d and \u201cyellow\u201d": [[94, "Now,-let's-see-what-happens-if-we-merge-classes-%22seafoam-green%22-and-%22yellow%22"]], "Workflow 5: Clean your test set too if you\u2019re doing ML with noisy labels!": [[94, "Workflow-5:-Clean-your-test-set-too-if-you're-doing-ML-with-noisy-labels!"]], "Workflow 6: One score to rule them all \u2013 use cleanlab\u2019s overall dataset health score": [[94, "Workflow-6:-One-score-to-rule-them-all----use-cleanlab's-overall-dataset-health-score"]], "How accurate is this dataset health score?": [[94, "How-accurate-is-this-dataset-health-score?"]], "Workflow(s) 7: Use count, rank, filter modules directly": [[94, "Workflow(s)-7:-Use-count,-rank,-filter-modules-directly"]], "Workflow 7.1 (count): Fully characterize label noise (noise matrix, joint, prior of true labels, \u2026)": [[94, "Workflow-7.1-(count):-Fully-characterize-label-noise-(noise-matrix,-joint,-prior-of-true-labels,-...)"]], "Use cleanlab to estimate and visualize the joint distribution of label noise and noise matrix of label flipping rates:": [[94, "Use-cleanlab-to-estimate-and-visualize-the-joint-distribution-of-label-noise-and-noise-matrix-of-label-flipping-rates:"]], "Workflow 7.2 (filter): Find label issues for any dataset and any model in one line of code": [[94, "Workflow-7.2-(filter):-Find-label-issues-for-any-dataset-and-any-model-in-one-line-of-code"]], "Again, we can visualize the twenty examples with lowest label quality to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-twenty-examples-with-lowest-label-quality-to-see-if-Cleanlab-works."]], "Workflow 7.2 supports lots of methods to find_label_issues() via the filter_by parameter.": [[94, "Workflow-7.2-supports-lots-of-methods-to-find_label_issues()-via-the-filter_by-parameter."]], "Workflow 7.3 (rank): Automatically rank every example by a unique label quality score. Find errors using cleanlab.count.num_label_issues as a threshold.": [[94, "Workflow-7.3-(rank):-Automatically-rank-every-example-by-a-unique-label-quality-score.-Find-errors-using-cleanlab.count.num_label_issues-as-a-threshold."]], "Again, we can visualize the label issues found to see if Cleanlab works.": [[94, "Again,-we-can-visualize-the-label-issues-found-to-see-if-Cleanlab-works."]], "Not sure when to use Workflow 7.2 or 7.3 to find label issues?": [[94, "Not-sure-when-to-use-Workflow-7.2-or-7.3-to-find-label-issues?"]], "Workflow 8: Ensembling label quality scores from multiple predictors": [[94, "Workflow-8:-Ensembling-label-quality-scores-from-multiple-predictors"]], "Tutorials": [[95, "tutorials"]], "Estimate Consensus and Annotator Quality for Data Labeled by Multiple Annotators": [[96, "Estimate-Consensus-and-Annotator-Quality-for-Data-Labeled-by-Multiple-Annotators"]], "2. Create the data (can skip these details)": [[96, "2.-Create-the-data-(can-skip-these-details)"]], "3. Get initial consensus labels via majority vote and compute out-of-sample predicted probabilities": [[96, "3.-Get-initial-consensus-labels-via-majority-vote-and-compute-out-of-sample-predicted-probabilities"]], "4. Use cleanlab to get better consensus labels and other statistics": [[96, "4.-Use-cleanlab-to-get-better-consensus-labels-and-other-statistics"]], "Comparing improved consensus labels": [[96, "Comparing-improved-consensus-labels"]], "Inspecting consensus quality scores to find potential consensus label errors": [[96, "Inspecting-consensus-quality-scores-to-find-potential-consensus-label-errors"]], "5. Retrain model using improved consensus labels": [[96, "5.-Retrain-model-using-improved-consensus-labels"]], "Further improvements": [[96, "Further-improvements"]], "How does cleanlab.multiannotator work?": [[96, "How-does-cleanlab.multiannotator-work?"]], "Find Label Errors in Multi-Label Classification Datasets": [[97, "Find-Label-Errors-in-Multi-Label-Classification-Datasets"]], "1. Install required dependencies and get dataset": [[97, "1.-Install-required-dependencies-and-get-dataset"]], "2. Format data, labels, and model predictions": [[97, "2.-Format-data,-labels,-and-model-predictions"], [98, "2.-Format-data,-labels,-and-model-predictions"]], "3. Use cleanlab to find label issues": [[97, "3.-Use-cleanlab-to-find-label-issues"], [98, "3.-Use-cleanlab-to-find-label-issues"], [102, "3.-Use-cleanlab-to-find-label-issues"], [103, "3.-Use-cleanlab-to-find-label-issues"]], "Label quality scores": [[97, "Label-quality-scores"]], "Data issues beyond mislabeling (outliers, duplicates, drift, \u2026)": [[97, "Data-issues-beyond-mislabeling-(outliers,-duplicates,-drift,-...)"]], "How to format labels given as a one-hot (multi-hot) binary matrix?": [[97, "How-to-format-labels-given-as-a-one-hot-(multi-hot)-binary-matrix?"]], "Estimate label issues without Datalab": [[97, "Estimate-label-issues-without-Datalab"]], "Application to Real Data": [[97, "Application-to-Real-Data"]], "Finding Label Errors in Object Detection Datasets": [[98, "Finding-Label-Errors-in-Object-Detection-Datasets"]], "1. Install required dependencies and download data": [[98, "1.-Install-required-dependencies-and-download-data"], [102, "1.-Install-required-dependencies-and-download-data"], [103, "1.-Install-required-dependencies-and-download-data"]], "Get label quality scores": [[98, "Get-label-quality-scores"], [102, "Get-label-quality-scores"]], "4. Use ObjectLab to visualize label issues": [[98, "4.-Use-ObjectLab-to-visualize-label-issues"]], "Different kinds of label issues identified by ObjectLab": [[98, "Different-kinds-of-label-issues-identified-by-ObjectLab"]], "Other uses of visualize": [[98, "Other-uses-of-visualize"]], "Exploratory data analysis": [[98, "Exploratory-data-analysis"]], "Detect Outliers with Cleanlab and PyTorch Image Models (timm)": [[99, "Detect-Outliers-with-Cleanlab-and-PyTorch-Image-Models-(timm)"]], "1. Install the required dependencies": [[99, "1.-Install-the-required-dependencies"]], "2. Pre-process the Cifar10 dataset": [[99, "2.-Pre-process-the-Cifar10-dataset"]], "Visualize some of the training and test examples": [[99, "Visualize-some-of-the-training-and-test-examples"]], "3. Use cleanlab and feature embeddings to find outliers in the data": [[99, "3.-Use-cleanlab-and-feature-embeddings-to-find-outliers-in-the-data"]], "4. Use cleanlab and pred_probs to find outliers in the data": [[99, "4.-Use-cleanlab-and-pred_probs-to-find-outliers-in-the-data"]], "Computing Out-of-Sample Predicted Probabilities with Cross-Validation": [[100, "computing-out-of-sample-predicted-probabilities-with-cross-validation"]], "Out-of-sample predicted probabilities?": [[100, "out-of-sample-predicted-probabilities"]], "What is K-fold cross-validation?": [[100, "what-is-k-fold-cross-validation"]], "Find Noisy Labels in Regression Datasets": [[101, "Find-Noisy-Labels-in-Regression-Datasets"]], "3. Define a regression model and use cleanlab to find potential label errors": [[101, "3.-Define-a-regression-model-and-use-cleanlab-to-find-potential-label-errors"]], "5. Other ways to find noisy labels in regression datasets": [[101, "5.-Other-ways-to-find-noisy-labels-in-regression-datasets"]], "Find Label Errors in Semantic Segmentation Datasets": [[102, "Find-Label-Errors-in-Semantic-Segmentation-Datasets"]], "2. Get data, labels, and pred_probs": [[102, "2.-Get-data,-labels,-and-pred_probs"], [103, "2.-Get-data,-labels,-and-pred_probs"]], "Visualize top label issues": [[102, "Visualize-top-label-issues"]], "Classes which are commonly mislabeled overall": [[102, "Classes-which-are-commonly-mislabeled-overall"]], "Focusing on one specific class": [[102, "Focusing-on-one-specific-class"]], "Find Label Errors in Token Classification (Text) Datasets": [[103, "Find-Label-Errors-in-Token-Classification-(Text)-Datasets"]], "Most common word-level token mislabels": [[103, "Most-common-word-level-token-mislabels"]], "Find sentences containing a particular mislabeled word": [[103, "Find-sentences-containing-a-particular-mislabeled-word"]], "Sentence label quality score": [[103, "Sentence-label-quality-score"]], "How does cleanlab.token_classification work?": [[103, "How-does-cleanlab.token_classification-work?"]]}, "indexentries": {"cleanlab.benchmarking": [[0, "module-cleanlab.benchmarking"]], "module": [[0, "module-cleanlab.benchmarking"], [1, "module-cleanlab.benchmarking.noise_generation"], [2, "module-cleanlab.classification"], [3, "module-cleanlab.count"], [4, "module-cleanlab.data_valuation"], [5, "module-cleanlab.datalab.datalab"], [11, "module-cleanlab.datalab"], [12, "module-cleanlab.datalab.internal.data"], [13, "module-cleanlab.datalab.internal.data_issues"], [14, "module-cleanlab.datalab.internal.issue_manager_factory"], [15, "module-cleanlab.datalab.internal"], [16, "module-cleanlab.datalab.internal.issue_finder"], [18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"], [19, "module-cleanlab.datalab.internal.issue_manager.duplicate"], [20, "module-cleanlab.datalab.internal.issue_manager.imbalance"], [22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"], [23, "module-cleanlab.datalab.internal.issue_manager.label"], [25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"], [26, "module-cleanlab.datalab.internal.issue_manager.noniid"], [27, "module-cleanlab.datalab.internal.issue_manager.null"], [28, "module-cleanlab.datalab.internal.issue_manager.outlier"], [30, "module-cleanlab.datalab.internal.issue_manager.regression.label"], [31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"], [32, "module-cleanlab.datalab.internal.model_outputs"], [33, "module-cleanlab.datalab.internal.report"], [34, "module-cleanlab.datalab.internal.task"], [36, "module-cleanlab.dataset"], [37, "module-cleanlab.experimental.cifar_cnn"], [38, "module-cleanlab.experimental.coteaching"], [39, "module-cleanlab.experimental"], [40, "module-cleanlab.experimental.label_issues_batched"], [41, "module-cleanlab.experimental.mnist_pytorch"], [42, "module-cleanlab.experimental.span_classification"], [43, "module-cleanlab.filter"], [44, "module-cleanlab.internal"], [45, "module-cleanlab.internal.label_quality_utils"], [46, "module-cleanlab.internal.latent_algebra"], [47, "module-cleanlab.internal.multiannotator_utils"], [48, "module-cleanlab.internal.multilabel_scorer"], [49, "module-cleanlab.internal.multilabel_utils"], [50, "module-cleanlab.internal.outlier"], [51, "module-cleanlab.internal.token_classification_utils"], [52, "module-cleanlab.internal.util"], [53, "module-cleanlab.internal.validation"], [55, "module-cleanlab.models"], [56, "module-cleanlab.models.keras"], [57, "module-cleanlab.multiannotator"], [58, "module-cleanlab.multilabel_classification.dataset"], [59, "module-cleanlab.multilabel_classification.filter"], [60, "module-cleanlab.multilabel_classification"], [61, "module-cleanlab.multilabel_classification.rank"], [62, "module-cleanlab.object_detection.filter"], [63, "module-cleanlab.object_detection"], [64, "module-cleanlab.object_detection.rank"], [65, "module-cleanlab.object_detection.summary"], [66, "module-cleanlab.outlier"], [67, "module-cleanlab.rank"], [68, "module-cleanlab.regression"], [69, "module-cleanlab.regression.learn"], [70, "module-cleanlab.regression.rank"], [71, "module-cleanlab.segmentation.filter"], [72, "module-cleanlab.segmentation"], [73, "module-cleanlab.segmentation.rank"], [74, "module-cleanlab.segmentation.summary"], [75, "module-cleanlab.token_classification.filter"], [76, "module-cleanlab.token_classification"], [77, "module-cleanlab.token_classification.rank"], [78, "module-cleanlab.token_classification.summary"]], "cleanlab.benchmarking.noise_generation": [[1, "module-cleanlab.benchmarking.noise_generation"]], "generate_n_rand_probabilities_that_sum_to_m() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_n_rand_probabilities_that_sum_to_m"]], "generate_noise_matrix_from_trace() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noise_matrix_from_trace"]], "generate_noisy_labels() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.generate_noisy_labels"]], "noise_matrix_is_valid() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.noise_matrix_is_valid"]], "randomly_distribute_n_balls_into_k_bins() (in module cleanlab.benchmarking.noise_generation)": [[1, "cleanlab.benchmarking.noise_generation.randomly_distribute_N_balls_into_K_bins"]], "cleanlearning (class in cleanlab.classification)": [[2, "cleanlab.classification.CleanLearning"]], "__init_subclass__() (cleanlab.classification.cleanlearning class method)": [[2, "cleanlab.classification.CleanLearning.__init_subclass__"]], "cleanlab.classification": [[2, "module-cleanlab.classification"]], "find_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.find_label_issues"]], "fit() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.fit"]], "get_label_issues() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.get_params"]], "predict() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict"]], "predict_proba() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.predict_proba"]], "save_space() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.save_space"]], "score() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.score"]], "set_fit_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_fit_request"]], "set_params() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_params"]], "set_score_request() (cleanlab.classification.cleanlearning method)": [[2, "cleanlab.classification.CleanLearning.set_score_request"]], "calibrate_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.calibrate_confident_joint"]], "cleanlab.count": [[3, "module-cleanlab.count"]], "compute_confident_joint() (in module cleanlab.count)": [[3, "cleanlab.count.compute_confident_joint"]], "estimate_confident_joint_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_confident_joint_and_cv_pred_proba"]], "estimate_cv_predicted_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_cv_predicted_probabilities"]], "estimate_joint() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_joint"]], "estimate_latent() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_latent"]], "estimate_noise_matrices() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_noise_matrices"]], "estimate_py_and_noise_matrices_from_probabilities() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_and_noise_matrices_from_probabilities"]], "estimate_py_noise_matrices_and_cv_pred_proba() (in module cleanlab.count)": [[3, "cleanlab.count.estimate_py_noise_matrices_and_cv_pred_proba"]], "get_confident_thresholds() (in module cleanlab.count)": [[3, "cleanlab.count.get_confident_thresholds"]], "num_label_issues() (in module cleanlab.count)": [[3, "cleanlab.count.num_label_issues"]], "cleanlab.data_valuation": [[4, "module-cleanlab.data_valuation"]], "data_shapley_knn() (in module cleanlab.data_valuation)": [[4, "cleanlab.data_valuation.data_shapley_knn"]], "datalab (class in cleanlab.datalab.datalab)": [[5, "cleanlab.datalab.datalab.Datalab"]], "class_names (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.class_names"]], "cleanlab.datalab.datalab": [[5, "module-cleanlab.datalab.datalab"]], "find_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.find_issues"]], "get_info() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_info"]], "get_issue_summary() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issue_summary"]], "get_issues() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.get_issues"]], "has_labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.has_labels"]], "info (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.info"]], "issue_summary (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issue_summary"]], "issues (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.issues"]], "labels (cleanlab.datalab.datalab.datalab property)": [[5, "cleanlab.datalab.datalab.Datalab.labels"]], "list_default_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_default_issue_types"]], "list_possible_issue_types() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.list_possible_issue_types"]], "load() (cleanlab.datalab.datalab.datalab static method)": [[5, "cleanlab.datalab.datalab.Datalab.load"]], "report() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.report"]], "save() (cleanlab.datalab.datalab.datalab method)": [[5, "cleanlab.datalab.datalab.Datalab.save"]], "cleanlab.datalab": [[11, "module-cleanlab.datalab"]], "data (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Data"]], "dataformaterror": [[12, "cleanlab.datalab.internal.data.DataFormatError"]], "datasetdicterror": [[12, "cleanlab.datalab.internal.data.DatasetDictError"]], "datasetloaderror": [[12, "cleanlab.datalab.internal.data.DatasetLoadError"]], "label (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.Label"]], "multiclass (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiClass"]], "multilabel (class in cleanlab.datalab.internal.data)": [[12, "cleanlab.datalab.internal.data.MultiLabel"]], "add_note() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.add_note"]], "add_note() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.add_note"]], "args (cleanlab.datalab.internal.data.dataformaterror attribute)": [[12, "cleanlab.datalab.internal.data.DataFormatError.args"]], "args (cleanlab.datalab.internal.data.datasetdicterror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.args"]], "args (cleanlab.datalab.internal.data.datasetloaderror attribute)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.args"]], "class_names (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.class_names"]], "class_names (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.class_names"]], "class_names (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.class_names"]], "class_names (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.class_names"]], "cleanlab.datalab.internal.data": [[12, "module-cleanlab.datalab.internal.data"]], "has_labels (cleanlab.datalab.internal.data.data property)": [[12, "cleanlab.datalab.internal.data.Data.has_labels"]], "is_available (cleanlab.datalab.internal.data.label property)": [[12, "cleanlab.datalab.internal.data.Label.is_available"]], "is_available (cleanlab.datalab.internal.data.multiclass property)": [[12, "cleanlab.datalab.internal.data.MultiClass.is_available"]], "is_available (cleanlab.datalab.internal.data.multilabel property)": [[12, "cleanlab.datalab.internal.data.MultiLabel.is_available"]], "with_traceback() (cleanlab.datalab.internal.data.dataformaterror method)": [[12, "cleanlab.datalab.internal.data.DataFormatError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetdicterror method)": [[12, "cleanlab.datalab.internal.data.DatasetDictError.with_traceback"]], "with_traceback() (cleanlab.datalab.internal.data.datasetloaderror method)": [[12, "cleanlab.datalab.internal.data.DatasetLoadError.with_traceback"]], "dataissues (class in cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues"]], "cleanlab.datalab.internal.data_issues": [[13, "module-cleanlab.datalab.internal.data_issues"]], "collect_issues_from_imagelab() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_imagelab"]], "collect_issues_from_issue_manager() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_issues_from_issue_manager"]], "collect_statistics() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.collect_statistics"]], "get_data_statistics() (in module cleanlab.datalab.internal.data_issues)": [[13, "cleanlab.datalab.internal.data_issues.get_data_statistics"]], "get_info() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_info"]], "get_issue_summary() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issue_summary"]], "get_issues() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.get_issues"]], "info (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.info"]], "issue_summary (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issue_summary"]], "issues (cleanlab.datalab.internal.data_issues.dataissues attribute)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.issues"]], "set_health_score() (cleanlab.datalab.internal.data_issues.dataissues method)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.set_health_score"]], "statistics (cleanlab.datalab.internal.data_issues.dataissues property)": [[13, "cleanlab.datalab.internal.data_issues.DataIssues.statistics"]], "registry (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.REGISTRY"]], "cleanlab.datalab.internal.issue_manager_factory": [[14, "module-cleanlab.datalab.internal.issue_manager_factory"]], "list_default_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_default_issue_types"]], "list_possible_issue_types() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.list_possible_issue_types"]], "register() (in module cleanlab.datalab.internal.issue_manager_factory)": [[14, "cleanlab.datalab.internal.issue_manager_factory.register"]], "cleanlab.datalab.internal": [[15, "module-cleanlab.datalab.internal"]], "issuefinder (class in cleanlab.datalab.internal.issue_finder)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder"]], "cleanlab.datalab.internal.issue_finder": [[16, "module-cleanlab.datalab.internal.issue_finder"]], "find_issues() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.find_issues"]], "get_available_issue_types() (cleanlab.datalab.internal.issue_finder.issuefinder method)": [[16, "cleanlab.datalab.internal.issue_finder.IssueFinder.get_available_issue_types"]], "default_threshold (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.DEFAULT_THRESHOLD"]], "datavaluationissuemanager (class in cleanlab.datalab.internal.issue_manager.data_valuation)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager"]], "cleanlab.datalab.internal.issue_manager.data_valuation": [[18, "module-cleanlab.datalab.internal.issue_manager.data_valuation"]], "collect_info() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager class method)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.data_valuation.datavaluationissuemanager attribute)": [[18, "cleanlab.datalab.internal.issue_manager.data_valuation.DataValuationIssueManager.verbosity_levels"]], "nearduplicateissuemanager (class in cleanlab.datalab.internal.issue_manager.duplicate)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager"]], "cleanlab.datalab.internal.issue_manager.duplicate": [[19, "module-cleanlab.datalab.internal.issue_manager.duplicate"]], "collect_info() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.make_summary"]], "near_duplicate_sets (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.near_duplicate_sets"]], "report() (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager class method)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.duplicate.nearduplicateissuemanager attribute)": [[19, "cleanlab.datalab.internal.issue_manager.duplicate.NearDuplicateIssueManager.verbosity_levels"]], "classimbalanceissuemanager (class in cleanlab.datalab.internal.issue_manager.imbalance)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager"]], "cleanlab.datalab.internal.issue_manager.imbalance": [[20, "module-cleanlab.datalab.internal.issue_manager.imbalance"]], "collect_info() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager class method)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.imbalance.classimbalanceissuemanager attribute)": [[20, "cleanlab.datalab.internal.issue_manager.imbalance.ClassImbalanceIssueManager.verbosity_levels"]], "issuemanager (class in cleanlab.datalab.internal.issue_manager.issue_manager)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager"]], "cleanlab.datalab.internal.issue_manager.issue_manager": [[22, "module-cleanlab.datalab.internal.issue_manager.issue_manager"]], "collect_info() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager class method)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.issue_manager.issuemanager attribute)": [[22, "cleanlab.datalab.internal.issue_manager.issue_manager.IssueManager.verbosity_levels"]], "labelissuemanager (class in cleanlab.datalab.internal.issue_manager.label)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.label": [[23, "module-cleanlab.datalab.internal.issue_manager.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.find_issues"]], "get_health_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.get_health_summary"]], "health_summary_parameters (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.health_summary_parameters"]], "info (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.label.labelissuemanager class method)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.label.labelissuemanager attribute)": [[23, "cleanlab.datalab.internal.issue_manager.label.LabelIssueManager.verbosity_levels"]], "multilabelissuemanager (class in cleanlab.datalab.internal.issue_manager.multilabel.label)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.multilabel.label": [[25, "module-cleanlab.datalab.internal.issue_manager.multilabel.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager class method)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.multilabel.label.multilabelissuemanager attribute)": [[25, "cleanlab.datalab.internal.issue_manager.multilabel.label.MultilabelIssueManager.verbosity_levels"]], "noniidissuemanager (class in cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager"]], "cleanlab.datalab.internal.issue_manager.noniid": [[26, "module-cleanlab.datalab.internal.issue_manager.noniid"]], "collect_info() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager class method)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.report"]], "simplified_kolmogorov_smirnov_test() (in module cleanlab.datalab.internal.issue_manager.noniid)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.simplified_kolmogorov_smirnov_test"]], "summary (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.noniid.noniidissuemanager attribute)": [[26, "cleanlab.datalab.internal.issue_manager.noniid.NonIIDIssueManager.verbosity_levels"]], "nullissuemanager (class in cleanlab.datalab.internal.issue_manager.null)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager"]], "cleanlab.datalab.internal.issue_manager.null": [[27, "module-cleanlab.datalab.internal.issue_manager.null"]], "collect_info() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.null.nullissuemanager class method)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.null.nullissuemanager attribute)": [[27, "cleanlab.datalab.internal.issue_manager.null.NullIssueManager.verbosity_levels"]], "default_thresholds (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.DEFAULT_THRESHOLDS"]], "outlierissuemanager (class in cleanlab.datalab.internal.issue_manager.outlier)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager"]], "cleanlab.datalab.internal.issue_manager.outlier": [[28, "module-cleanlab.datalab.internal.issue_manager.outlier"]], "collect_info() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.find_issues"]], "info (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.make_summary"]], "ood (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.ood"]], "report() (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager class method)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.outlier.outlierissuemanager attribute)": [[28, "cleanlab.datalab.internal.issue_manager.outlier.OutlierIssueManager.verbosity_levels"]], "regressionlabelissuemanager (class in cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager"]], "cleanlab.datalab.internal.issue_manager.regression.label": [[30, "module-cleanlab.datalab.internal.issue_manager.regression.label"]], "collect_info() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.description"]], "find_issues() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.find_issues"]], "find_issues_with_features() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_features"]], "find_issues_with_predictions() (in module cleanlab.datalab.internal.issue_manager.regression.label)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.find_issues_with_predictions"]], "info (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.make_summary"]], "report() (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager class method)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.report"]], "summary (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.regression.label.regressionlabelissuemanager attribute)": [[30, "cleanlab.datalab.internal.issue_manager.regression.label.RegressionLabelIssueManager.verbosity_levels"]], "no_underperforming_cluster_id (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.NO_UNDERPERFORMING_CLUSTER_ID"]], "outlier_cluster_labels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.OUTLIER_CLUSTER_LABELS"]], "underperforminggroupissuemanager (class in cleanlab.datalab.internal.issue_manager.underperforming_group)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager"]], "cleanlab.datalab.internal.issue_manager.underperforming_group": [[31, "module-cleanlab.datalab.internal.issue_manager.underperforming_group"]], "collect_info() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.collect_info"]], "description (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.description"]], "filter_cluster_ids() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.filter_cluster_ids"]], "find_issues() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.find_issues"]], "get_worst_cluster() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.get_worst_cluster"]], "info (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.info"]], "issue_name (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_name"]], "issue_score_key (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issue_score_key"]], "issues (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.issues"]], "make_summary() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.make_summary"]], "perform_clustering() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.perform_clustering"]], "report() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager class method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.report"]], "set_knn_graph() (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager method)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.set_knn_graph"]], "summary (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.summary"]], "verbosity_levels (cleanlab.datalab.internal.issue_manager.underperforming_group.underperforminggroupissuemanager attribute)": [[31, "cleanlab.datalab.internal.issue_manager.underperforming_group.UnderperformingGroupIssueManager.verbosity_levels"]], "modeloutput (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput"]], "multiclasspredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs"]], "multilabelpredprobs (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs"]], "regressionpredictions (class in cleanlab.datalab.internal.model_outputs)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions"]], "argument (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.argument"]], "argument (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.argument"]], "cleanlab.datalab.internal.model_outputs": [[32, "module-cleanlab.datalab.internal.model_outputs"]], "collect() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.collect"]], "collect() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.collect"]], "data (cleanlab.datalab.internal.model_outputs.modeloutput attribute)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.data"]], "data (cleanlab.datalab.internal.model_outputs.multiclasspredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.multilabelpredprobs attribute)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.data"]], "data (cleanlab.datalab.internal.model_outputs.regressionpredictions attribute)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.data"]], "validate() (cleanlab.datalab.internal.model_outputs.modeloutput method)": [[32, "cleanlab.datalab.internal.model_outputs.ModelOutput.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multiclasspredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiClassPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.multilabelpredprobs method)": [[32, "cleanlab.datalab.internal.model_outputs.MultiLabelPredProbs.validate"]], "validate() (cleanlab.datalab.internal.model_outputs.regressionpredictions method)": [[32, "cleanlab.datalab.internal.model_outputs.RegressionPredictions.validate"]], "reporter (class in cleanlab.datalab.internal.report)": [[33, "cleanlab.datalab.internal.report.Reporter"]], "cleanlab.datalab.internal.report": [[33, "module-cleanlab.datalab.internal.report"]], "get_report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.get_report"]], "report() (cleanlab.datalab.internal.report.reporter method)": [[33, "cleanlab.datalab.internal.report.Reporter.report"]], "classification (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.CLASSIFICATION"]], "multilabel (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.MULTILABEL"]], "regression (cleanlab.datalab.internal.task.task attribute)": [[34, "cleanlab.datalab.internal.task.Task.REGRESSION"]], "task (class in cleanlab.datalab.internal.task)": [[34, "cleanlab.datalab.internal.task.Task"]], "__contains__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__contains__"]], "__getitem__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__getitem__"]], "__iter__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__iter__"]], "__len__() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.__len__"]], "cleanlab.datalab.internal.task": [[34, "module-cleanlab.datalab.internal.task"]], "from_str() (cleanlab.datalab.internal.task.task class method)": [[34, "cleanlab.datalab.internal.task.Task.from_str"]], "is_classification (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_classification"]], "is_multilabel (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_multilabel"]], "is_regression (cleanlab.datalab.internal.task.task property)": [[34, "cleanlab.datalab.internal.task.Task.is_regression"]], "cleanlab.dataset": [[36, "module-cleanlab.dataset"]], "find_overlapping_classes() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.find_overlapping_classes"]], "health_summary() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.health_summary"]], "overall_label_health_score() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.overall_label_health_score"]], "rank_classes_by_label_quality() (in module cleanlab.dataset)": [[36, "cleanlab.dataset.rank_classes_by_label_quality"]], "cnn (class in cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.CNN"]], "t_destination (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.T_destination"]], "__call__() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.__call__"]], "add_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.add_module"]], "apply() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.apply"]], "bfloat16() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.bfloat16"]], "buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.buffers"]], "call_bn() (in module cleanlab.experimental.cifar_cnn)": [[37, "cleanlab.experimental.cifar_cnn.call_bn"]], "call_super_init (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.call_super_init"]], "children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.children"]], "cleanlab.experimental.cifar_cnn": [[37, "module-cleanlab.experimental.cifar_cnn"]], "compile() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.compile"]], "cpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cpu"]], "cuda() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.cuda"]], "double() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.double"]], "dump_patches (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.dump_patches"]], "eval() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.eval"]], "extra_repr() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.extra_repr"]], "float() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.float"]], "forward() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.forward"], [37, "id0"]], "get_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_buffer"]], "get_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_extra_state"]], "get_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_parameter"]], "get_submodule() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.get_submodule"]], "half() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.half"]], "ipu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.ipu"]], "load_state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.load_state_dict"]], "modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.modules"]], "named_buffers() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_buffers"]], "named_children() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_children"]], "named_modules() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_modules"]], "named_parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.named_parameters"]], "parameters() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.parameters"]], "register_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_backward_hook"]], "register_buffer() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_buffer"]], "register_forward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_module"]], "register_parameter() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.requires_grad_"]], "set_extra_state() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.set_extra_state"]], "share_memory() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.share_memory"]], "state_dict() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.state_dict"]], "to() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to"]], "to_empty() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.to_empty"]], "train() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.train"]], "training (cleanlab.experimental.cifar_cnn.cnn attribute)": [[37, "cleanlab.experimental.cifar_cnn.CNN.training"]], "type() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.type"]], "xpu() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.xpu"]], "zero_grad() (cleanlab.experimental.cifar_cnn.cnn method)": [[37, "cleanlab.experimental.cifar_cnn.CNN.zero_grad"]], "adjust_learning_rate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.adjust_learning_rate"]], "cleanlab.experimental.coteaching": [[38, "module-cleanlab.experimental.coteaching"]], "evaluate() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.evaluate"]], "forget_rate_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.forget_rate_scheduler"]], "initialize_lr_scheduler() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.initialize_lr_scheduler"]], "loss_coteaching() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.loss_coteaching"]], "train() (in module cleanlab.experimental.coteaching)": [[38, "cleanlab.experimental.coteaching.train"]], "cleanlab.experimental": [[39, "module-cleanlab.experimental"]], "labelinspector (class in cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector"]], "adj_confident_thresholds_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.adj_confident_thresholds_shared"]], "cleanlab.experimental.label_issues_batched": [[40, "module-cleanlab.experimental.label_issues_batched"]], "find_label_issues_batched() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.find_label_issues_batched"]], "get_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_confident_thresholds"]], "get_label_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_label_issues"]], "get_num_issues() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_num_issues"]], "get_quality_scores() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.get_quality_scores"]], "labels_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.labels_shared"]], "pred_probs_shared (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.pred_probs_shared"]], "score_label_quality() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.score_label_quality"]], "split_arr() (in module cleanlab.experimental.label_issues_batched)": [[40, "cleanlab.experimental.label_issues_batched.split_arr"]], "update_confident_thresholds() (cleanlab.experimental.label_issues_batched.labelinspector method)": [[40, "cleanlab.experimental.label_issues_batched.LabelInspector.update_confident_thresholds"]], "cnn (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.CNN"]], "simplenet (class in cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet"]], "t_destination (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.T_destination"]], "__call__() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.__call__"]], "__init_subclass__() (cleanlab.experimental.mnist_pytorch.cnn class method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.__init_subclass__"]], "add_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.add_module"]], "apply() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.apply"]], "batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.batch_size"]], "bfloat16() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.bfloat16"]], "buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.buffers"]], "call_super_init (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.call_super_init"]], "children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.children"]], "cleanlab.experimental.mnist_pytorch": [[41, "module-cleanlab.experimental.mnist_pytorch"]], "compile() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.compile"]], "cpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cpu"]], "cuda() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.cuda"]], "dataset (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.dataset"]], "double() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.double"]], "dump_patches (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.dump_patches"]], "epochs (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.epochs"]], "eval() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.eval"]], "extra_repr() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.extra_repr"]], "fit() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.fit"], [41, "id0"]], "float() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.float"]], "forward() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.forward"]], "get_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_buffer"]], "get_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_extra_state"]], "get_metadata_routing() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_metadata_routing"]], "get_mnist_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_mnist_dataset"]], "get_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_parameter"]], "get_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.get_params"]], "get_sklearn_digits_dataset() (in module cleanlab.experimental.mnist_pytorch)": [[41, "cleanlab.experimental.mnist_pytorch.get_sklearn_digits_dataset"]], "get_submodule() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.get_submodule"]], "half() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.half"]], "ipu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.ipu"]], "load_state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.load_state_dict"]], "loader (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.loader"]], "log_interval (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.log_interval"]], "lr (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.lr"]], "modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.modules"]], "momentum (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.momentum"]], "named_buffers() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_buffers"]], "named_children() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_children"]], "named_modules() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_modules"]], "named_parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.named_parameters"]], "no_cuda (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.no_cuda"]], "parameters() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.parameters"]], "predict() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict"], [41, "id1"]], "predict_proba() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.predict_proba"], [41, "id4"]], "register_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_backward_hook"]], "register_buffer() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_buffer"]], "register_forward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_hook"]], "register_forward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_forward_pre_hook"]], "register_full_backward_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_hook"]], "register_full_backward_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_full_backward_pre_hook"]], "register_load_state_dict_post_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_load_state_dict_post_hook"]], "register_module() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_module"]], "register_parameter() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_parameter"]], "register_state_dict_pre_hook() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.register_state_dict_pre_hook"]], "requires_grad_() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.requires_grad_"]], "seed (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.seed"]], "set_extra_state() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.set_extra_state"]], "set_fit_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_fit_request"]], "set_params() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_params"]], "set_predict_proba_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_proba_request"]], "set_predict_request() (cleanlab.experimental.mnist_pytorch.cnn method)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.set_predict_request"]], "share_memory() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.share_memory"]], "state_dict() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.state_dict"]], "test_batch_size (cleanlab.experimental.mnist_pytorch.cnn attribute)": [[41, "cleanlab.experimental.mnist_pytorch.CNN.test_batch_size"]], "to() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to"]], "to_empty() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.to_empty"]], "train() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.train"]], "training (cleanlab.experimental.mnist_pytorch.simplenet attribute)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.training"]], "type() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.type"]], "xpu() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.xpu"]], "zero_grad() (cleanlab.experimental.mnist_pytorch.simplenet method)": [[41, "cleanlab.experimental.mnist_pytorch.SimpleNet.zero_grad"]], "cleanlab.experimental.span_classification": [[42, "module-cleanlab.experimental.span_classification"]], "display_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.display_issues"]], "find_label_issues() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.find_label_issues"]], "get_label_quality_scores() (in module cleanlab.experimental.span_classification)": [[42, "cleanlab.experimental.span_classification.get_label_quality_scores"]], "cleanlab.filter": [[43, "module-cleanlab.filter"]], "find_label_issues() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues"]], "find_label_issues_using_argmax_confusion_matrix() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_label_issues_using_argmax_confusion_matrix"]], "find_predicted_neq_given() (in module cleanlab.filter)": [[43, "cleanlab.filter.find_predicted_neq_given"]], "pred_probs_by_class (in module cleanlab.filter)": [[43, "cleanlab.filter.pred_probs_by_class"]], "prune_count_matrix_cols (in module cleanlab.filter)": [[43, "cleanlab.filter.prune_count_matrix_cols"]], "cleanlab.internal": [[44, "module-cleanlab.internal"]], "cleanlab.internal.label_quality_utils": [[45, "module-cleanlab.internal.label_quality_utils"]], "get_normalized_entropy() (in module cleanlab.internal.label_quality_utils)": [[45, "cleanlab.internal.label_quality_utils.get_normalized_entropy"]], "cleanlab.internal.latent_algebra": [[46, "module-cleanlab.internal.latent_algebra"]], "compute_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_inv_noise_matrix"]], "compute_noise_matrix_from_inverse() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_noise_matrix_from_inverse"]], "compute_ps_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_ps_py_inv_noise_matrix"]], "compute_py() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py"]], "compute_py_inv_noise_matrix() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_py_inv_noise_matrix"]], "compute_pyx() (in module cleanlab.internal.latent_algebra)": [[46, "cleanlab.internal.latent_algebra.compute_pyx"]], "assert_valid_inputs_multiannotator() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_inputs_multiannotator"]], "assert_valid_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.assert_valid_pred_probs"]], "check_consensus_label_classes() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.check_consensus_label_classes"]], "cleanlab.internal.multiannotator_utils": [[47, "module-cleanlab.internal.multiannotator_utils"]], "compute_soft_cross_entropy() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.compute_soft_cross_entropy"]], "find_best_temp_scaler() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.find_best_temp_scaler"]], "format_multiannotator_labels() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.format_multiannotator_labels"]], "temp_scale_pred_probs() (in module cleanlab.internal.multiannotator_utils)": [[47, "cleanlab.internal.multiannotator_utils.temp_scale_pred_probs"]], "aggregator (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator"]], "confidence_weighted_entropy (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.CONFIDENCE_WEIGHTED_ENTROPY"]], "classlabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer"]], "multilabelscorer (class in cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer"]], "normalized_margin (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.NORMALIZED_MARGIN"]], "self_confidence (cleanlab.internal.multilabel_scorer.classlabelscorer attribute)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.SELF_CONFIDENCE"]], "__call__() (cleanlab.internal.multilabel_scorer.aggregator method)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.classlabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__call__"]], "__call__() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.__call__"]], "__contains__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__contains__"]], "__getitem__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__getitem__"]], "__iter__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__iter__"]], "__len__() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.__len__"]], "aggregate() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.aggregate"]], "cleanlab.internal.multilabel_scorer": [[48, "module-cleanlab.internal.multilabel_scorer"]], "exponential_moving_average() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.exponential_moving_average"]], "from_str() (cleanlab.internal.multilabel_scorer.classlabelscorer class method)": [[48, "cleanlab.internal.multilabel_scorer.ClassLabelScorer.from_str"]], "get_class_label_quality_scores() (cleanlab.internal.multilabel_scorer.multilabelscorer method)": [[48, "cleanlab.internal.multilabel_scorer.MultilabelScorer.get_class_label_quality_scores"]], "get_cross_validated_multilabel_pred_probs() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_cross_validated_multilabel_pred_probs"]], "get_label_quality_scores() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.get_label_quality_scores"]], "multilabel_py() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.multilabel_py"]], "possible_methods (cleanlab.internal.multilabel_scorer.aggregator attribute)": [[48, "cleanlab.internal.multilabel_scorer.Aggregator.possible_methods"]], "softmin() (in module cleanlab.internal.multilabel_scorer)": [[48, "cleanlab.internal.multilabel_scorer.softmin"]], "cleanlab.internal.multilabel_utils": [[49, "module-cleanlab.internal.multilabel_utils"]], "get_onehot_num_classes() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.get_onehot_num_classes"]], "int2onehot() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.int2onehot"]], "onehot2int() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.onehot2int"]], "stack_complement() (in module cleanlab.internal.multilabel_utils)": [[49, "cleanlab.internal.multilabel_utils.stack_complement"]], "cleanlab.internal.outlier": [[50, "module-cleanlab.internal.outlier"]], "correct_precision_errors() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.correct_precision_errors"]], "transform_distances_to_scores() (in module cleanlab.internal.outlier)": [[50, "cleanlab.internal.outlier.transform_distances_to_scores"]], "cleanlab.internal.token_classification_utils": [[51, "module-cleanlab.internal.token_classification_utils"]], "color_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.color_sentence"]], "filter_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.filter_sentence"]], "get_sentence() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.get_sentence"]], "mapping() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.mapping"]], "merge_probs() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.merge_probs"]], "process_token() (in module cleanlab.internal.token_classification_utils)": [[51, "cleanlab.internal.token_classification_utils.process_token"]], "append_extra_datapoint() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.append_extra_datapoint"]], "cleanlab.internal.util": [[52, "module-cleanlab.internal.util"]], "clip_noise_rates() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_noise_rates"]], "clip_values() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.clip_values"]], "compress_int_array() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.compress_int_array"]], "confusion_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.confusion_matrix"]], "csr_vstack() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.csr_vstack"]], "estimate_pu_f1() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.estimate_pu_f1"]], "extract_indices_tf() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.extract_indices_tf"]], "force_two_dimensions() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.force_two_dimensions"]], "format_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.format_labels"]], "get_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_missing_classes"]], "get_num_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_num_classes"]], "get_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.get_unique_classes"]], "is_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_tensorflow_dataset"]], "is_torch_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.is_torch_dataset"]], "num_unique_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.num_unique_classes"]], "print_inverse_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_inverse_noise_matrix"]], "print_joint_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_joint_matrix"]], "print_noise_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_noise_matrix"]], "print_square_matrix() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.print_square_matrix"]], "remove_noise_from_class() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.remove_noise_from_class"]], "round_preserving_row_totals() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_row_totals"]], "round_preserving_sum() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.round_preserving_sum"]], "smart_display_dataframe() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.smart_display_dataframe"]], "subset_x_y() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_X_y"]], "subset_data() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_data"]], "subset_labels() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.subset_labels"]], "train_val_split() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.train_val_split"]], "unshuffle_tensorflow_dataset() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.unshuffle_tensorflow_dataset"]], "value_counts() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts"]], "value_counts_fill_missing_classes() (in module cleanlab.internal.util)": [[52, "cleanlab.internal.util.value_counts_fill_missing_classes"]], "assert_indexing_works() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_indexing_works"]], "assert_nonempty_input() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_nonempty_input"]], "assert_valid_class_labels() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_class_labels"]], "assert_valid_inputs() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.assert_valid_inputs"]], "cleanlab.internal.validation": [[53, "module-cleanlab.internal.validation"]], "labels_to_array() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_array"]], "labels_to_list_multilabel() (in module cleanlab.internal.validation)": [[53, "cleanlab.internal.validation.labels_to_list_multilabel"]], "cleanlab.models": [[55, "module-cleanlab.models"]], "keraswrappermodel (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperModel"]], "keraswrappersequential (class in cleanlab.models.keras)": [[56, "cleanlab.models.keras.KerasWrapperSequential"]], "cleanlab.models.keras": [[56, "module-cleanlab.models.keras"]], "fit() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.fit"]], "fit() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.fit"]], "get_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.get_params"]], "get_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.get_params"]], "predict() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict"]], "predict() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict"]], "predict_proba() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.predict_proba"]], "predict_proba() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.predict_proba"]], "set_params() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.set_params"]], "set_params() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.set_params"]], "summary() (cleanlab.models.keras.keraswrappermodel method)": [[56, "cleanlab.models.keras.KerasWrapperModel.summary"]], "summary() (cleanlab.models.keras.keraswrappersequential method)": [[56, "cleanlab.models.keras.KerasWrapperSequential.summary"]], "cleanlab.multiannotator": [[57, "module-cleanlab.multiannotator"]], "convert_long_to_wide_dataset() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.convert_long_to_wide_dataset"]], "get_active_learning_scores() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores"]], "get_active_learning_scores_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_active_learning_scores_ensemble"]], "get_label_quality_multiannotator() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator"]], "get_label_quality_multiannotator_ensemble() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_label_quality_multiannotator_ensemble"]], "get_majority_vote_label() (in module cleanlab.multiannotator)": [[57, "cleanlab.multiannotator.get_majority_vote_label"]], "cleanlab.multilabel_classification.dataset": [[58, "module-cleanlab.multilabel_classification.dataset"]], "common_multilabel_issues() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.common_multilabel_issues"]], "multilabel_health_summary() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.multilabel_health_summary"]], "overall_multilabel_health_score() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.overall_multilabel_health_score"]], "rank_classes_by_multilabel_quality() (in module cleanlab.multilabel_classification.dataset)": [[58, "cleanlab.multilabel_classification.dataset.rank_classes_by_multilabel_quality"]], "cleanlab.multilabel_classification.filter": [[59, "module-cleanlab.multilabel_classification.filter"]], "find_label_issues() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_label_issues"]], "find_multilabel_issues_per_class() (in module cleanlab.multilabel_classification.filter)": [[59, "cleanlab.multilabel_classification.filter.find_multilabel_issues_per_class"]], "cleanlab.multilabel_classification": [[60, "module-cleanlab.multilabel_classification"]], "cleanlab.multilabel_classification.rank": [[61, "module-cleanlab.multilabel_classification.rank"]], "get_label_quality_scores() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores"]], "get_label_quality_scores_per_class() (in module cleanlab.multilabel_classification.rank)": [[61, "cleanlab.multilabel_classification.rank.get_label_quality_scores_per_class"]], "cleanlab.object_detection.filter": [[62, "module-cleanlab.object_detection.filter"]], "find_label_issues() (in module cleanlab.object_detection.filter)": [[62, "cleanlab.object_detection.filter.find_label_issues"]], "cleanlab.object_detection": [[63, "module-cleanlab.object_detection"]], "cleanlab.object_detection.rank": [[64, "module-cleanlab.object_detection.rank"]], "compute_badloc_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_badloc_box_scores"]], "compute_overlooked_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_overlooked_box_scores"]], "compute_swap_box_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.compute_swap_box_scores"]], "get_label_quality_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.issues_from_scores"]], "pool_box_scores_per_image() (in module cleanlab.object_detection.rank)": [[64, "cleanlab.object_detection.rank.pool_box_scores_per_image"]], "bounding_box_size_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.bounding_box_size_distribution"]], "calculate_per_class_metrics() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.calculate_per_class_metrics"]], "class_label_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.class_label_distribution"]], "cleanlab.object_detection.summary": [[65, "module-cleanlab.object_detection.summary"]], "get_average_per_class_confusion_matrix() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_average_per_class_confusion_matrix"]], "get_sorted_bbox_count_idxs() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.get_sorted_bbox_count_idxs"]], "object_counts_per_image() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.object_counts_per_image"]], "plot_class_distribution() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_distribution"]], "plot_class_size_distributions() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.plot_class_size_distributions"]], "visualize() (in module cleanlab.object_detection.summary)": [[65, "cleanlab.object_detection.summary.visualize"]], "outofdistribution (class in cleanlab.outlier)": [[66, "cleanlab.outlier.OutOfDistribution"]], "cleanlab.outlier": [[66, "module-cleanlab.outlier"]], "fit() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit"]], "fit_score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.fit_score"]], "score() (cleanlab.outlier.outofdistribution method)": [[66, "cleanlab.outlier.OutOfDistribution.score"]], "cleanlab.rank": [[67, "module-cleanlab.rank"]], "find_top_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.find_top_issues"]], "get_confidence_weighted_entropy_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_confidence_weighted_entropy_for_each_label"]], "get_label_quality_ensemble_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_ensemble_scores"]], "get_label_quality_scores() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_label_quality_scores"]], "get_normalized_margin_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_normalized_margin_for_each_label"]], "get_self_confidence_for_each_label() (in module cleanlab.rank)": [[67, "cleanlab.rank.get_self_confidence_for_each_label"]], "order_label_issues() (in module cleanlab.rank)": [[67, "cleanlab.rank.order_label_issues"]], "cleanlab.regression": [[68, "module-cleanlab.regression"]], "cleanlearning (class in cleanlab.regression.learn)": [[69, "cleanlab.regression.learn.CleanLearning"]], "__init_subclass__() (cleanlab.regression.learn.cleanlearning class method)": [[69, "cleanlab.regression.learn.CleanLearning.__init_subclass__"]], "cleanlab.regression.learn": [[69, "module-cleanlab.regression.learn"]], "find_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.find_label_issues"]], "fit() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.fit"]], "get_aleatoric_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_aleatoric_uncertainty"]], "get_epistemic_uncertainty() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_epistemic_uncertainty"]], "get_label_issues() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_label_issues"]], "get_metadata_routing() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_metadata_routing"]], "get_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.get_params"]], "predict() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.predict"]], "save_space() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.save_space"]], "score() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.score"]], "set_fit_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_fit_request"]], "set_params() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_params"]], "set_score_request() (cleanlab.regression.learn.cleanlearning method)": [[69, "cleanlab.regression.learn.CleanLearning.set_score_request"]], "cleanlab.regression.rank": [[70, "module-cleanlab.regression.rank"]], "get_label_quality_scores() (in module cleanlab.regression.rank)": [[70, "cleanlab.regression.rank.get_label_quality_scores"]], "cleanlab.segmentation.filter": [[71, "module-cleanlab.segmentation.filter"]], "find_label_issues() (in module cleanlab.segmentation.filter)": [[71, "cleanlab.segmentation.filter.find_label_issues"]], "cleanlab.segmentation": [[72, "module-cleanlab.segmentation"]], "cleanlab.segmentation.rank": [[73, "module-cleanlab.segmentation.rank"]], "get_label_quality_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.segmentation.rank)": [[73, "cleanlab.segmentation.rank.issues_from_scores"]], "cleanlab.segmentation.summary": [[74, "module-cleanlab.segmentation.summary"]], "common_label_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.common_label_issues"]], "display_issues() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.display_issues"]], "filter_by_class() (in module cleanlab.segmentation.summary)": [[74, "cleanlab.segmentation.summary.filter_by_class"]], "cleanlab.token_classification.filter": [[75, "module-cleanlab.token_classification.filter"]], "find_label_issues() (in module cleanlab.token_classification.filter)": [[75, "cleanlab.token_classification.filter.find_label_issues"]], "cleanlab.token_classification": [[76, "module-cleanlab.token_classification"]], "cleanlab.token_classification.rank": [[77, "module-cleanlab.token_classification.rank"]], "get_label_quality_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.get_label_quality_scores"]], "issues_from_scores() (in module cleanlab.token_classification.rank)": [[77, "cleanlab.token_classification.rank.issues_from_scores"]], "cleanlab.token_classification.summary": [[78, "module-cleanlab.token_classification.summary"]], "common_label_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.common_label_issues"]], "display_issues() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.display_issues"]], "filter_by_token() (in module cleanlab.token_classification.summary)": [[78, "cleanlab.token_classification.summary.filter_by_token"]]}}) \ No newline at end of file diff --git a/master/tutorials/clean_learning/tabular.ipynb b/master/tutorials/clean_learning/tabular.ipynb index c84eb4e52..116dab358 100644 --- a/master/tutorials/clean_learning/tabular.ipynb +++ b/master/tutorials/clean_learning/tabular.ipynb @@ -114,10 +114,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:20.808965Z", - "iopub.status.busy": "2024-04-08T19:04:20.808791Z", - "iopub.status.idle": "2024-04-08T19:04:21.997144Z", - "shell.execute_reply": "2024-04-08T19:04:21.996577Z" + "iopub.execute_input": "2024-04-08T21:45:57.068339Z", + "iopub.status.busy": "2024-04-08T21:45:57.067980Z", + "iopub.status.idle": "2024-04-08T21:45:58.278884Z", + "shell.execute_reply": "2024-04-08T21:45:58.278211Z" }, "nbsphinx": "hidden" }, @@ -127,7 +127,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -152,10 +152,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:21.999784Z", - "iopub.status.busy": "2024-04-08T19:04:21.999468Z", - "iopub.status.idle": "2024-04-08T19:04:22.020020Z", - "shell.execute_reply": "2024-04-08T19:04:22.019546Z" + "iopub.execute_input": "2024-04-08T21:45:58.281538Z", + "iopub.status.busy": "2024-04-08T21:45:58.281232Z", + "iopub.status.idle": "2024-04-08T21:45:58.300582Z", + "shell.execute_reply": "2024-04-08T21:45:58.300113Z" } }, "outputs": [], @@ -196,10 +196,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.022733Z", - "iopub.status.busy": "2024-04-08T19:04:22.022190Z", - "iopub.status.idle": "2024-04-08T19:04:22.250382Z", - "shell.execute_reply": "2024-04-08T19:04:22.249811Z" + "iopub.execute_input": "2024-04-08T21:45:58.303240Z", + "iopub.status.busy": "2024-04-08T21:45:58.302768Z", + "iopub.status.idle": "2024-04-08T21:45:58.436390Z", + "shell.execute_reply": "2024-04-08T21:45:58.435821Z" } }, "outputs": [ @@ -306,10 +306,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.288376Z", - "iopub.status.busy": "2024-04-08T19:04:22.287864Z", - "iopub.status.idle": "2024-04-08T19:04:22.292293Z", - "shell.execute_reply": "2024-04-08T19:04:22.291761Z" + "iopub.execute_input": "2024-04-08T21:45:58.468989Z", + "iopub.status.busy": "2024-04-08T21:45:58.468559Z", + "iopub.status.idle": "2024-04-08T21:45:58.472453Z", + "shell.execute_reply": "2024-04-08T21:45:58.471980Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.294486Z", - "iopub.status.busy": "2024-04-08T19:04:22.294124Z", - "iopub.status.idle": "2024-04-08T19:04:22.302832Z", - "shell.execute_reply": "2024-04-08T19:04:22.302384Z" + "iopub.execute_input": "2024-04-08T21:45:58.474540Z", + "iopub.status.busy": "2024-04-08T21:45:58.474221Z", + "iopub.status.idle": "2024-04-08T21:45:58.482919Z", + "shell.execute_reply": "2024-04-08T21:45:58.482477Z" } }, "outputs": [], @@ -385,10 +385,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.305016Z", - "iopub.status.busy": "2024-04-08T19:04:22.304694Z", - "iopub.status.idle": "2024-04-08T19:04:22.307358Z", - "shell.execute_reply": "2024-04-08T19:04:22.306925Z" + "iopub.execute_input": "2024-04-08T21:45:58.485176Z", + "iopub.status.busy": "2024-04-08T21:45:58.484659Z", + "iopub.status.idle": "2024-04-08T21:45:58.487298Z", + "shell.execute_reply": "2024-04-08T21:45:58.486865Z" } }, "outputs": [], @@ -410,10 +410,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.309357Z", - "iopub.status.busy": "2024-04-08T19:04:22.308992Z", - "iopub.status.idle": "2024-04-08T19:04:22.826772Z", - "shell.execute_reply": "2024-04-08T19:04:22.826102Z" + "iopub.execute_input": "2024-04-08T21:45:58.489353Z", + "iopub.status.busy": "2024-04-08T21:45:58.488964Z", + "iopub.status.idle": "2024-04-08T21:45:59.016003Z", + "shell.execute_reply": "2024-04-08T21:45:59.015357Z" } }, "outputs": [], @@ -447,10 +447,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:22.829195Z", - "iopub.status.busy": "2024-04-08T19:04:22.829001Z", - "iopub.status.idle": "2024-04-08T19:04:24.584334Z", - "shell.execute_reply": "2024-04-08T19:04:24.583696Z" + "iopub.execute_input": "2024-04-08T21:45:59.018616Z", + "iopub.status.busy": "2024-04-08T21:45:59.018418Z", + "iopub.status.idle": "2024-04-08T21:46:00.735533Z", + "shell.execute_reply": "2024-04-08T21:46:00.734843Z" } }, "outputs": [ @@ -482,10 +482,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.587018Z", - "iopub.status.busy": "2024-04-08T19:04:24.586424Z", - "iopub.status.idle": "2024-04-08T19:04:24.596789Z", - "shell.execute_reply": "2024-04-08T19:04:24.596333Z" + "iopub.execute_input": "2024-04-08T21:46:00.738117Z", + "iopub.status.busy": "2024-04-08T21:46:00.737547Z", + "iopub.status.idle": "2024-04-08T21:46:00.747854Z", + "shell.execute_reply": "2024-04-08T21:46:00.747337Z" } }, "outputs": [ @@ -606,10 +606,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.598784Z", - "iopub.status.busy": "2024-04-08T19:04:24.598605Z", - "iopub.status.idle": "2024-04-08T19:04:24.603028Z", - "shell.execute_reply": "2024-04-08T19:04:24.602574Z" + "iopub.execute_input": "2024-04-08T21:46:00.750041Z", + "iopub.status.busy": "2024-04-08T21:46:00.749718Z", + "iopub.status.idle": "2024-04-08T21:46:00.753816Z", + "shell.execute_reply": "2024-04-08T21:46:00.753366Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.604932Z", - "iopub.status.busy": "2024-04-08T19:04:24.604757Z", - "iopub.status.idle": "2024-04-08T19:04:24.612374Z", - "shell.execute_reply": "2024-04-08T19:04:24.611848Z" + "iopub.execute_input": "2024-04-08T21:46:00.755965Z", + "iopub.status.busy": "2024-04-08T21:46:00.755652Z", + "iopub.status.idle": "2024-04-08T21:46:00.762575Z", + "shell.execute_reply": "2024-04-08T21:46:00.762154Z" } }, "outputs": [], @@ -659,10 +659,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.614464Z", - "iopub.status.busy": "2024-04-08T19:04:24.614057Z", - "iopub.status.idle": "2024-04-08T19:04:24.725724Z", - "shell.execute_reply": "2024-04-08T19:04:24.725123Z" + "iopub.execute_input": "2024-04-08T21:46:00.764644Z", + "iopub.status.busy": "2024-04-08T21:46:00.764330Z", + "iopub.status.idle": "2024-04-08T21:46:00.877346Z", + "shell.execute_reply": "2024-04-08T21:46:00.876840Z" } }, "outputs": [ @@ -692,10 +692,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.728264Z", - "iopub.status.busy": "2024-04-08T19:04:24.727792Z", - "iopub.status.idle": "2024-04-08T19:04:24.730921Z", - "shell.execute_reply": "2024-04-08T19:04:24.730473Z" + "iopub.execute_input": "2024-04-08T21:46:00.879404Z", + "iopub.status.busy": "2024-04-08T21:46:00.879224Z", + "iopub.status.idle": "2024-04-08T21:46:00.882088Z", + "shell.execute_reply": "2024-04-08T21:46:00.881627Z" } }, "outputs": [], @@ -716,10 +716,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:24.732880Z", - "iopub.status.busy": "2024-04-08T19:04:24.732594Z", - "iopub.status.idle": "2024-04-08T19:04:26.886972Z", - "shell.execute_reply": "2024-04-08T19:04:26.886312Z" + "iopub.execute_input": "2024-04-08T21:46:00.883949Z", + "iopub.status.busy": "2024-04-08T21:46:00.883778Z", + "iopub.status.idle": "2024-04-08T21:46:02.964272Z", + "shell.execute_reply": "2024-04-08T21:46:02.963585Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:26.889971Z", - "iopub.status.busy": "2024-04-08T19:04:26.889228Z", - "iopub.status.idle": "2024-04-08T19:04:26.900494Z", - "shell.execute_reply": "2024-04-08T19:04:26.899943Z" + "iopub.execute_input": "2024-04-08T21:46:02.967481Z", + "iopub.status.busy": "2024-04-08T21:46:02.966608Z", + "iopub.status.idle": "2024-04-08T21:46:02.978827Z", + "shell.execute_reply": "2024-04-08T21:46:02.978236Z" } }, "outputs": [ @@ -772,10 +772,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:26.902458Z", - "iopub.status.busy": "2024-04-08T19:04:26.902143Z", - "iopub.status.idle": "2024-04-08T19:04:27.012965Z", - "shell.execute_reply": "2024-04-08T19:04:27.012399Z" + "iopub.execute_input": "2024-04-08T21:46:02.980899Z", + "iopub.status.busy": "2024-04-08T21:46:02.980580Z", + "iopub.status.idle": "2024-04-08T21:46:03.004548Z", + "shell.execute_reply": "2024-04-08T21:46:03.003965Z" }, "nbsphinx": "hidden" }, @@ -813,7 +813,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/clean_learning/text.html b/master/tutorials/clean_learning/text.html index 19d19deae..228788d32 100644 --- a/master/tutorials/clean_learning/text.html +++ b/master/tutorials/clean_learning/text.html @@ -783,7 +783,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay'}
    +Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'cancel_transfer', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies'}
     

    Let’s print the first example in the train set.

    @@ -846,43 +846,43 @@

    2. Load and format the text dataset

    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    -
    +
    @@ -1181,7 +1181,7 @@

    4. Train a more robust model from noisy labels -{"state": {"55ca57fbdbeb4dd09672a18d9e527e1e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e715922dec9a4f518bd83655ec5ece8c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "34f290f5d2fb480c8484034ab6752fca": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_55ca57fbdbeb4dd09672a18d9e527e1e", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e715922dec9a4f518bd83655ec5ece8c", "tabbable": null, "tooltip": null, "value": 391.0}}, "34051f0f4e6242febbd69d5ad6e263e0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "938fb2a8d3a54d448069f0b85d12697d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3270c93e7874c21a39571fdb1d43780": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_34051f0f4e6242febbd69d5ad6e263e0", "placeholder": "\u200b", "style": "IPY_MODEL_938fb2a8d3a54d448069f0b85d12697d", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "f9d2786f039f4739a73d2d301bf8b745": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ae0fb7a982a2436ea7ad32f01526eea2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9a1995f42694404abb75d6338d1bddc7": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9d2786f039f4739a73d2d301bf8b745", "placeholder": "\u200b", "style": "IPY_MODEL_ae0fb7a982a2436ea7ad32f01526eea2", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200769.6kB/s]"}}, "acdced823e2a4d6f950e27bd4802b639": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "414486671bbc4579b154f2d4dd8df463": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b3270c93e7874c21a39571fdb1d43780", "IPY_MODEL_34f290f5d2fb480c8484034ab6752fca", "IPY_MODEL_9a1995f42694404abb75d6338d1bddc7"], "layout": "IPY_MODEL_acdced823e2a4d6f950e27bd4802b639", "tabbable": null, "tooltip": null}}, "dcfe560d74704020ba7189f6b35342ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3912e2b011df41679c1659d40bc9fefb": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a85b90552a3e4665b51fc3b6e7d921f7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dcfe560d74704020ba7189f6b35342ae", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_3912e2b011df41679c1659d40bc9fefb", "tabbable": null, "tooltip": null, "value": 2211.0}}, "63fe7f89c61d469689356c8afe8f7d0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "068617b1c6e7410ea8a61aaa3bf35a59": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "161f5f17377e4e528cc2e973474950ee": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63fe7f89c61d469689356c8afe8f7d0a", "placeholder": "\u200b", "style": "IPY_MODEL_068617b1c6e7410ea8a61aaa3bf35a59", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "427f262b918e461c9202e7a81d04c8dc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fad61d9bcd544d64a2896b7a4fafeca3": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4ba657e74f59423f9bed6c70b030fcfa": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_427f262b918e461c9202e7a81d04c8dc", "placeholder": "\u200b", "style": "IPY_MODEL_fad61d9bcd544d64a2896b7a4fafeca3", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007355kB/s]"}}, "eb1b16cb3c634b0496ccce16fde573eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "596554d1fd004a229dc0e9d5610bace9": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_161f5f17377e4e528cc2e973474950ee", "IPY_MODEL_a85b90552a3e4665b51fc3b6e7d921f7", "IPY_MODEL_4ba657e74f59423f9bed6c70b030fcfa"], "layout": "IPY_MODEL_eb1b16cb3c634b0496ccce16fde573eb", "tabbable": null, "tooltip": null}}, "7ba8b4d37b90455ea0856a76fd53349f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5a8a165febd74ab8a0e847c8a208e73f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "a200cf245005465880fbcc7a852362d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7ba8b4d37b90455ea0856a76fd53349f", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_5a8a165febd74ab8a0e847c8a208e73f", "tabbable": null, "tooltip": null, "value": 665.0}}, "5385ad8ba67c426daa3e219dd49f7c1b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3a50e9ac92bb47ef8a4dd27183e221e7": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "c4431e7dcf5a41e1934fd352a0e18cc6": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5385ad8ba67c426daa3e219dd49f7c1b", "placeholder": "\u200b", "style": "IPY_MODEL_3a50e9ac92bb47ef8a4dd27183e221e7", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "cbfa8e31e7cb4fd5b0f2827be2777ef3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "16dad8a9c9074f5ab4ed24858cf4f896": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5de73fab2f284817999b4f68149d32b9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cbfa8e31e7cb4fd5b0f2827be2777ef3", "placeholder": "\u200b", "style": "IPY_MODEL_16dad8a9c9074f5ab4ed24858cf4f896", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007127kB/s]"}}, "3041fa94176846a99ea4c32b7fa1cade": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4a26fef448554f36a9cb66bea78f484a": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_c4431e7dcf5a41e1934fd352a0e18cc6", "IPY_MODEL_a200cf245005465880fbcc7a852362d4", "IPY_MODEL_5de73fab2f284817999b4f68149d32b9"], "layout": "IPY_MODEL_3041fa94176846a99ea4c32b7fa1cade", "tabbable": null, "tooltip": null}}, "8cfe5b4829a843b499e9d9b1aad10794": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8c3149008147411a9172b8a0627cbbdf": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "60cb8f29c0a04f8a9b8775d425f7c1d4": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8cfe5b4829a843b499e9d9b1aad10794", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8c3149008147411a9172b8a0627cbbdf", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "e93f36ea176647cd9b1069f0297aadef": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2dcd6e4805fb403ba8b6c1ce8e5ff117": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "9f72c96cd44c40618e8826a9fc735324": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e93f36ea176647cd9b1069f0297aadef", "placeholder": "\u200b", "style": "IPY_MODEL_2dcd6e4805fb403ba8b6c1ce8e5ff117", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "99f0d4542e8e423b9018be6c83282910": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "107f3b6a64fb41898b51c78312996d47": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b70c1af64654cf0bfc8e515cbe2644e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99f0d4542e8e423b9018be6c83282910", "placeholder": "\u200b", "style": "IPY_MODEL_107f3b6a64fb41898b51c78312996d47", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007230MB/s]"}}, "3c2b01854c664a3a834ebb6315a06d7a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c18cde9a3b464ad1a69d4fbf65c4287b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_9f72c96cd44c40618e8826a9fc735324", "IPY_MODEL_60cb8f29c0a04f8a9b8775d425f7c1d4", "IPY_MODEL_6b70c1af64654cf0bfc8e515cbe2644e"], "layout": "IPY_MODEL_3c2b01854c664a3a834ebb6315a06d7a", "tabbable": null, "tooltip": null}}, "7167dd43cb39496d8971354c7dcf8fb3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a13aee655acd48a2bc16f80efcd736a4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "33cce396c4bf413ebe5341fe28d03486": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7167dd43cb39496d8971354c7dcf8fb3", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a13aee655acd48a2bc16f80efcd736a4", "tabbable": null, "tooltip": null, "value": 466062.0}}, "fc16653aacb543948c8bcdbebbe18041": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdc67e28664e4583ace57f50340b3649": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "792627ad3d4a4356926466777e5e286b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc16653aacb543948c8bcdbebbe18041", "placeholder": "\u200b", "style": "IPY_MODEL_fdc67e28664e4583ace57f50340b3649", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "30e21853c71148d39d7be87c7c68889a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fdf1adc0e36d4541972658ad13062aac": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "42a8d833492a48fe958eb757ee25c31c": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_30e21853c71148d39d7be87c7c68889a", "placeholder": "\u200b", "style": "IPY_MODEL_fdf1adc0e36d4541972658ad13062aac", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u20076.02MB/s]"}}, "d27490d630934411bc6291d305749d0a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e8839cb132d74eb9a916dda9fdafe1c4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_792627ad3d4a4356926466777e5e286b", "IPY_MODEL_33cce396c4bf413ebe5341fe28d03486", "IPY_MODEL_42a8d833492a48fe958eb757ee25c31c"], "layout": "IPY_MODEL_d27490d630934411bc6291d305749d0a", "tabbable": null, "tooltip": null}}, "859e480b7e01405fb1af9226d6a94736": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0435bd2a67ae4580b11f72300c8c1b9f": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6062369e250e403897e6f33990c23d57": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_859e480b7e01405fb1af9226d6a94736", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_0435bd2a67ae4580b11f72300c8c1b9f", "tabbable": null, "tooltip": null, "value": 48.0}}, "f41c778f7656469892daa08fc3f86248": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2b0e68483cbf470db65245930283cce4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "a8e917adc0db482da10f7259260a52fc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f41c778f7656469892daa08fc3f86248", "placeholder": "\u200b", "style": "IPY_MODEL_2b0e68483cbf470db65245930283cce4", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "41e5eb399b424312bb565497b2f550a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f8c8778791df4709aa10067dd9083588": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b208fafba0244c7a857e15c10805106": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_41e5eb399b424312bb565497b2f550a6", "placeholder": "\u200b", "style": "IPY_MODEL_f8c8778791df4709aa10067dd9083588", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.81kB/s]"}}, "b93f1aea04264f86afd5ca6e5f3deb9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "5e9e17de388746f4ba1fb4f05e426c4e": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_a8e917adc0db482da10f7259260a52fc", "IPY_MODEL_6062369e250e403897e6f33990c23d57", "IPY_MODEL_7b208fafba0244c7a857e15c10805106"], "layout": "IPY_MODEL_b93f1aea04264f86afd5ca6e5f3deb9a", "tabbable": null, "tooltip": null}}, "82f22504089445d980458c94bb3f0b22": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b2f57f17657e430c89e1a52e7f245309": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "3eea5b07c46a4588903f301a31822500": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82f22504089445d980458c94bb3f0b22", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b2f57f17657e430c89e1a52e7f245309", "tabbable": null, "tooltip": null, "value": 231508.0}}, "be33e673f6fe4622ab6bfd3a727d2c04": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "00882e39d8294fa7bf11a9929411c91d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b3a0081d105e4d6193af250cc9cef948": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_be33e673f6fe4622ab6bfd3a727d2c04", "placeholder": "\u200b", "style": "IPY_MODEL_00882e39d8294fa7bf11a9929411c91d", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "ab4a32cb43804d52b25207713bc5f0f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c9a189517774bbe90d04de5fdd9e48f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5194d575ab3e4498bcd728fe5c7d9a3d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ab4a32cb43804d52b25207713bc5f0f4", "placeholder": "\u200b", "style": "IPY_MODEL_4c9a189517774bbe90d04de5fdd9e48f", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u20071.77MB/s]"}}, "c3f5dd847178422f94661624f9ecf612": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3af073a39e45402187f042a3cf90b160": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b3a0081d105e4d6193af250cc9cef948", "IPY_MODEL_3eea5b07c46a4588903f301a31822500", "IPY_MODEL_5194d575ab3e4498bcd728fe5c7d9a3d"], "layout": "IPY_MODEL_c3f5dd847178422f94661624f9ecf612", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"59e05ece73804f1a94f6d0297feaec41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b06819ab1b8746fb87023a870d70f567": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ad711a8026be4911aaa3d5a0e2d33614": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_59e05ece73804f1a94f6d0297feaec41", "max": 391.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b06819ab1b8746fb87023a870d70f567", "tabbable": null, "tooltip": null, "value": 391.0}}, "dacf33088c854518ba143e9208a499ad": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d5ea6101590e4591b8daa45708ef390c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3ba855217d194266a4ad4d5e0cfb674d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dacf33088c854518ba143e9208a499ad", "placeholder": "\u200b", "style": "IPY_MODEL_d5ea6101590e4591b8daa45708ef390c", "tabbable": null, "tooltip": null, "value": ".gitattributes:\u2007100%"}}, "dffdd05c4a604bba8b045d14b1eb86ca": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "675610f3dc014be1bb1f11ed8a36b950": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8fb65f19ab264229bdbd15e5e3ce4856": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dffdd05c4a604bba8b045d14b1eb86ca", "placeholder": "\u200b", "style": "IPY_MODEL_675610f3dc014be1bb1f11ed8a36b950", "tabbable": null, "tooltip": null, "value": "\u2007391/391\u2007[00:00<00:00,\u200768.7kB/s]"}}, "71935e001c464dcabd6ea39b487acf56": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ca53515c3b9541058a7101bcce2962c2": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3ba855217d194266a4ad4d5e0cfb674d", "IPY_MODEL_ad711a8026be4911aaa3d5a0e2d33614", "IPY_MODEL_8fb65f19ab264229bdbd15e5e3ce4856"], "layout": "IPY_MODEL_71935e001c464dcabd6ea39b487acf56", "tabbable": null, "tooltip": null}}, "5722a0ad5a9e475e9fd26bd2bab542a4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "48a6235e724d4da1b21bcb38f774f384": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "0436616e268442929285c45e5127c471": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5722a0ad5a9e475e9fd26bd2bab542a4", "max": 2211.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_48a6235e724d4da1b21bcb38f774f384", "tabbable": null, "tooltip": null, "value": 2211.0}}, "31877892c1544f5fb2ed5e7206151493": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2a732321f2240d29f32c36ec2994c6d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "01eac64567a24c4395929ce231c1b5b2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_31877892c1544f5fb2ed5e7206151493", "placeholder": "\u200b", "style": "IPY_MODEL_c2a732321f2240d29f32c36ec2994c6d", "tabbable": null, "tooltip": null, "value": "README.md:\u2007100%"}}, "9f6d6dadb262429cb1d0a9d56953f5c6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18cdc6e48b0848a0a91a077528a56c7a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "01a10cb5f09d4fa5b22b5e162e2ac28d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9f6d6dadb262429cb1d0a9d56953f5c6", "placeholder": "\u200b", "style": "IPY_MODEL_18cdc6e48b0848a0a91a077528a56c7a", "tabbable": null, "tooltip": null, "value": "\u20072.21k/2.21k\u2007[00:00<00:00,\u2007344kB/s]"}}, "7b4db89848474dd38d7725de86fb17d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3d6a576d0a4c4615bbe32ce97958a77b": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_01eac64567a24c4395929ce231c1b5b2", "IPY_MODEL_0436616e268442929285c45e5127c471", "IPY_MODEL_01a10cb5f09d4fa5b22b5e162e2ac28d"], "layout": "IPY_MODEL_7b4db89848474dd38d7725de86fb17d2", "tabbable": null, "tooltip": null}}, "068ec87f53e34cad81151e4e21db4825": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2043a185143140ffa391bc21475cf9cc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e50cd1c7d6c746b58250cd66ce5e6cb7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_068ec87f53e34cad81151e4e21db4825", "max": 665.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2043a185143140ffa391bc21475cf9cc", "tabbable": null, "tooltip": null, "value": 665.0}}, "ccce6559adfc4f4aa533874515312556": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e6aca39cd07471b8aa62643ddfbb121": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "10c18d2fd7534864815fd3171457b8c0": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ccce6559adfc4f4aa533874515312556", "placeholder": "\u200b", "style": "IPY_MODEL_6e6aca39cd07471b8aa62643ddfbb121", "tabbable": null, "tooltip": null, "value": "config.json:\u2007100%"}}, "7e3f04ad19ed4f5ebbe83137d2296db5": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "798f19e6c72e4b4e9c5ffbd0923de45a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f18660ee4ca447f98287a50190595742": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7e3f04ad19ed4f5ebbe83137d2296db5", "placeholder": "\u200b", "style": "IPY_MODEL_798f19e6c72e4b4e9c5ffbd0923de45a", "tabbable": null, "tooltip": null, "value": "\u2007665/665\u2007[00:00<00:00,\u2007120kB/s]"}}, "10006765dc724c0a81b3b705e27cb01f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "445fc7b3370f419a97d75befa400a7c6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_10c18d2fd7534864815fd3171457b8c0", "IPY_MODEL_e50cd1c7d6c746b58250cd66ce5e6cb7", "IPY_MODEL_f18660ee4ca447f98287a50190595742"], "layout": "IPY_MODEL_10006765dc724c0a81b3b705e27cb01f", "tabbable": null, "tooltip": null}}, "780d5822c5d34358a96e35c6207d7ff4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "506bb5734c2140c7966a72c2a9b4b5ea": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "47c3c8d2f7da4bf686c7e5271ebb77ed": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_780d5822c5d34358a96e35c6207d7ff4", "max": 54245363.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_506bb5734c2140c7966a72c2a9b4b5ea", "tabbable": null, "tooltip": null, "value": 54245363.0}}, "e800a7a7df7e4a4dbed8f0d4516b5401": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2d339299784e40e4a23a4e7c96342ddc": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "844f4a0cb12d4f6b93d496db633fb85b": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e800a7a7df7e4a4dbed8f0d4516b5401", "placeholder": "\u200b", "style": "IPY_MODEL_2d339299784e40e4a23a4e7c96342ddc", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin:\u2007100%"}}, "c0141551423c494cbadbe81146e01f9a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1c2765d6557e4179bb7177e9eb540165": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4c65aba82c7f4f4db177928d6a8cd799": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c0141551423c494cbadbe81146e01f9a", "placeholder": "\u200b", "style": "IPY_MODEL_1c2765d6557e4179bb7177e9eb540165", "tabbable": null, "tooltip": null, "value": "\u200754.2M/54.2M\u2007[00:00<00:00,\u2007310MB/s]"}}, "ef813f8e588a455e995ff2a736d90713": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "25c18c7965fb48c68a87ef99282a4553": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_844f4a0cb12d4f6b93d496db633fb85b", "IPY_MODEL_47c3c8d2f7da4bf686c7e5271ebb77ed", "IPY_MODEL_4c65aba82c7f4f4db177928d6a8cd799"], "layout": "IPY_MODEL_ef813f8e588a455e995ff2a736d90713", "tabbable": null, "tooltip": null}}, "a0c4020444ad493f9affd56e05d5ae28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1f14fbebb09447788b19ee03a9db1672": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "21def0e5765c49dc9672ba0c6bf53170": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a0c4020444ad493f9affd56e05d5ae28", "max": 466062.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1f14fbebb09447788b19ee03a9db1672", "tabbable": null, "tooltip": null, "value": 466062.0}}, "5fbf77d3474144b7a34602f6573a8c5f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01a41e2ea2de40839044f3cee4a1d9be": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b89a05fcb73e421b91c19356a8f9f378": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5fbf77d3474144b7a34602f6573a8c5f", "placeholder": "\u200b", "style": "IPY_MODEL_01a41e2ea2de40839044f3cee4a1d9be", "tabbable": null, "tooltip": null, "value": "tokenizer.json:\u2007100%"}}, "1ec3e37aa59c4b15b552d7dde0fbef04": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a5afba044f074bc3b0e22bee5f355889": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1d5c1b9225fc47b1b14a4defb1cb8e36": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1ec3e37aa59c4b15b552d7dde0fbef04", "placeholder": "\u200b", "style": "IPY_MODEL_a5afba044f074bc3b0e22bee5f355889", "tabbable": null, "tooltip": null, "value": "\u2007466k/466k\u2007[00:00<00:00,\u200728.8MB/s]"}}, "6f1773d942ab458cb151290a521226f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "90210570e43043339f5b21c2dd4bfb80": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_b89a05fcb73e421b91c19356a8f9f378", "IPY_MODEL_21def0e5765c49dc9672ba0c6bf53170", "IPY_MODEL_1d5c1b9225fc47b1b14a4defb1cb8e36"], "layout": "IPY_MODEL_6f1773d942ab458cb151290a521226f4", "tabbable": null, "tooltip": null}}, "c01a7a8f8c2b47068c5b088dc77ea1fe": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7993ece5946a4a4b96b5eaac0741eac9": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "d6497a113c4446d39aa266e94c035a1b": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c01a7a8f8c2b47068c5b088dc77ea1fe", "max": 48.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7993ece5946a4a4b96b5eaac0741eac9", "tabbable": null, "tooltip": null, "value": 48.0}}, "df2663cd0caf461f9b787a45fda00739": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c16cc57816c64940bcd03d94013a353b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3869c322f6514e20afdd020bc56fedcc": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_df2663cd0caf461f9b787a45fda00739", "placeholder": "\u200b", "style": "IPY_MODEL_c16cc57816c64940bcd03d94013a353b", "tabbable": null, "tooltip": null, "value": "tokenizer_config.json:\u2007100%"}}, "a010f02803aa400684b4d473d8cc70fa": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6692379f4a904908bf18e7cf27b2add6": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6031a160e3a841608a08c6fe19ebd376": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a010f02803aa400684b4d473d8cc70fa", "placeholder": "\u200b", "style": "IPY_MODEL_6692379f4a904908bf18e7cf27b2add6", "tabbable": null, "tooltip": null, "value": "\u200748.0/48.0\u2007[00:00<00:00,\u20078.12kB/s]"}}, "a7ad808ad2f74b4c9bcd46a832b1d1f4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ff91dbb797af4611acdaca215e0d14bd": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_3869c322f6514e20afdd020bc56fedcc", "IPY_MODEL_d6497a113c4446d39aa266e94c035a1b", "IPY_MODEL_6031a160e3a841608a08c6fe19ebd376"], "layout": "IPY_MODEL_a7ad808ad2f74b4c9bcd46a832b1d1f4", "tabbable": null, "tooltip": null}}, "fa1280910e174cc394d17a49d0fdb152": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "886c1627035646b1ba0402c6270d8d92": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1d697ac563214e1eb65a7408ed0c66b9": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa1280910e174cc394d17a49d0fdb152", "max": 231508.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_886c1627035646b1ba0402c6270d8d92", "tabbable": null, "tooltip": null, "value": 231508.0}}, "1e049cc31ea6429a9c218a0cc7248615": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bed24fd894334028b852a36fac1250a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6a8eaeeb468a4f7e8069976b7d4854bd": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1e049cc31ea6429a9c218a0cc7248615", "placeholder": "\u200b", "style": "IPY_MODEL_bed24fd894334028b852a36fac1250a4", "tabbable": null, "tooltip": null, "value": "vocab.txt:\u2007100%"}}, "1f5f107d41f445b2a63a30439835d215": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4bfe568beca4436c80aa9a69eb070baa": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2bea500a9979445987385d0178334532": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1f5f107d41f445b2a63a30439835d215", "placeholder": "\u200b", "style": "IPY_MODEL_4bfe568beca4436c80aa9a69eb070baa", "tabbable": null, "tooltip": null, "value": "\u2007232k/232k\u2007[00:00<00:00,\u200735.2MB/s]"}}, "d3899c159c4946b6bd88e91c4026603c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d3a6c21822af4c58b185e7ed5c38c37c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6a8eaeeb468a4f7e8069976b7d4854bd", "IPY_MODEL_1d697ac563214e1eb65a7408ed0c66b9", "IPY_MODEL_2bea500a9979445987385d0178334532"], "layout": "IPY_MODEL_d3899c159c4946b6bd88e91c4026603c", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/clean_learning/text.ipynb b/master/tutorials/clean_learning/text.ipynb index cf6ae4311..f40f695d1 100644 --- a/master/tutorials/clean_learning/text.ipynb +++ b/master/tutorials/clean_learning/text.ipynb @@ -115,10 +115,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:29.937745Z", - "iopub.status.busy": "2024-04-08T19:04:29.937583Z", - "iopub.status.idle": "2024-04-08T19:04:33.047637Z", - "shell.execute_reply": "2024-04-08T19:04:33.046998Z" + "iopub.execute_input": "2024-04-08T21:46:06.221686Z", + "iopub.status.busy": "2024-04-08T21:46:06.221200Z", + "iopub.status.idle": "2024-04-08T21:46:09.361014Z", + "shell.execute_reply": "2024-04-08T21:46:09.360445Z" }, "nbsphinx": "hidden" }, @@ -135,7 +135,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -160,10 +160,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.050116Z", - "iopub.status.busy": "2024-04-08T19:04:33.049809Z", - "iopub.status.idle": "2024-04-08T19:04:33.053073Z", - "shell.execute_reply": "2024-04-08T19:04:33.052649Z" + "iopub.execute_input": "2024-04-08T21:46:09.363647Z", + "iopub.status.busy": "2024-04-08T21:46:09.363253Z", + "iopub.status.idle": "2024-04-08T21:46:09.366528Z", + "shell.execute_reply": "2024-04-08T21:46:09.366102Z" } }, "outputs": [], @@ -185,10 +185,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.054962Z", - "iopub.status.busy": "2024-04-08T19:04:33.054682Z", - "iopub.status.idle": "2024-04-08T19:04:33.057634Z", - "shell.execute_reply": "2024-04-08T19:04:33.057206Z" + "iopub.execute_input": "2024-04-08T21:46:09.368543Z", + "iopub.status.busy": "2024-04-08T21:46:09.368227Z", + "iopub.status.idle": "2024-04-08T21:46:09.371141Z", + "shell.execute_reply": "2024-04-08T21:46:09.370705Z" }, "nbsphinx": "hidden" }, @@ -219,10 +219,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.059556Z", - "iopub.status.busy": "2024-04-08T19:04:33.059236Z", - "iopub.status.idle": "2024-04-08T19:04:33.304635Z", - "shell.execute_reply": "2024-04-08T19:04:33.304093Z" + "iopub.execute_input": "2024-04-08T21:46:09.373133Z", + "iopub.status.busy": "2024-04-08T21:46:09.372809Z", + "iopub.status.idle": "2024-04-08T21:46:09.397158Z", + "shell.execute_reply": "2024-04-08T21:46:09.396569Z" } }, "outputs": [ @@ -312,10 +312,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.306822Z", - "iopub.status.busy": "2024-04-08T19:04:33.306485Z", - "iopub.status.idle": "2024-04-08T19:04:33.309981Z", - "shell.execute_reply": "2024-04-08T19:04:33.309578Z" + "iopub.execute_input": "2024-04-08T21:46:09.399759Z", + "iopub.status.busy": "2024-04-08T21:46:09.399318Z", + "iopub.status.idle": "2024-04-08T21:46:09.403157Z", + "shell.execute_reply": "2024-04-08T21:46:09.402590Z" } }, "outputs": [], @@ -330,10 +330,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.311977Z", - "iopub.status.busy": "2024-04-08T19:04:33.311602Z", - "iopub.status.idle": "2024-04-08T19:04:33.314907Z", - "shell.execute_reply": "2024-04-08T19:04:33.314372Z" + "iopub.execute_input": "2024-04-08T21:46:09.405236Z", + "iopub.status.busy": "2024-04-08T21:46:09.404845Z", + "iopub.status.idle": "2024-04-08T21:46:09.408315Z", + "shell.execute_reply": "2024-04-08T21:46:09.407775Z" } }, "outputs": [ @@ -342,7 +342,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'supported_cards_and_currencies', 'beneficiary_not_allowed', 'cancel_transfer', 'card_payment_fee_charged', 'getting_spare_card', 'card_about_to_expire', 'visa_or_mastercard', 'lost_or_stolen_phone', 'change_pin', 'apple_pay_or_google_pay'}\n" + "Classes: {'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'card_payment_fee_charged', 'getting_spare_card', 'visa_or_mastercard', 'change_pin', 'cancel_transfer', 'card_about_to_expire', 'beneficiary_not_allowed', 'supported_cards_and_currencies'}\n" ] } ], @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.316831Z", - "iopub.status.busy": "2024-04-08T19:04:33.316579Z", - "iopub.status.idle": "2024-04-08T19:04:33.319694Z", - "shell.execute_reply": "2024-04-08T19:04:33.319261Z" + "iopub.execute_input": "2024-04-08T21:46:09.410237Z", + "iopub.status.busy": "2024-04-08T21:46:09.409943Z", + "iopub.status.idle": "2024-04-08T21:46:09.413101Z", + "shell.execute_reply": "2024-04-08T21:46:09.412566Z" } }, "outputs": [ @@ -409,10 +409,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.321534Z", - "iopub.status.busy": "2024-04-08T19:04:33.321217Z", - "iopub.status.idle": "2024-04-08T19:04:33.324298Z", - "shell.execute_reply": "2024-04-08T19:04:33.323874Z" + "iopub.execute_input": "2024-04-08T21:46:09.415077Z", + "iopub.status.busy": "2024-04-08T21:46:09.414751Z", + "iopub.status.idle": "2024-04-08T21:46:09.418069Z", + "shell.execute_reply": "2024-04-08T21:46:09.417520Z" } }, "outputs": [], @@ -453,17 +453,17 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:33.326161Z", - "iopub.status.busy": "2024-04-08T19:04:33.325901Z", - "iopub.status.idle": "2024-04-08T19:04:39.132517Z", - "shell.execute_reply": "2024-04-08T19:04:39.131899Z" + "iopub.execute_input": "2024-04-08T21:46:09.420330Z", + "iopub.status.busy": "2024-04-08T21:46:09.419902Z", + "iopub.status.idle": "2024-04-08T21:46:13.663207Z", + "shell.execute_reply": "2024-04-08T21:46:13.662544Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "414486671bbc4579b154f2d4dd8df463", + "model_id": "ca53515c3b9541058a7101bcce2962c2", "version_major": 2, "version_minor": 0 }, @@ -477,7 +477,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "596554d1fd004a229dc0e9d5610bace9", + "model_id": "3d6a576d0a4c4615bbe32ce97958a77b", "version_major": 2, "version_minor": 0 }, @@ -491,7 +491,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4a26fef448554f36a9cb66bea78f484a", + "model_id": "445fc7b3370f419a97d75befa400a7c6", "version_major": 2, "version_minor": 0 }, @@ -505,7 +505,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "c18cde9a3b464ad1a69d4fbf65c4287b", + "model_id": "25c18c7965fb48c68a87ef99282a4553", "version_major": 2, "version_minor": 0 }, @@ -519,7 +519,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e8839cb132d74eb9a916dda9fdafe1c4", + "model_id": "90210570e43043339f5b21c2dd4bfb80", "version_major": 2, "version_minor": 0 }, @@ -533,7 +533,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5e9e17de388746f4ba1fb4f05e426c4e", + "model_id": "ff91dbb797af4611acdaca215e0d14bd", "version_major": 2, "version_minor": 0 }, @@ -547,7 +547,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3af073a39e45402187f042a3cf90b160", + "model_id": "d3a6c21822af4c58b185e7ed5c38c37c", "version_major": 2, "version_minor": 0 }, @@ -569,7 +569,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", " return self.fget.__get__(instance, owner)()\n" ] } @@ -609,10 +609,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:39.135354Z", - "iopub.status.busy": "2024-04-08T19:04:39.134961Z", - "iopub.status.idle": "2024-04-08T19:04:39.137900Z", - "shell.execute_reply": "2024-04-08T19:04:39.137434Z" + "iopub.execute_input": "2024-04-08T21:46:13.666642Z", + "iopub.status.busy": "2024-04-08T21:46:13.666267Z", + "iopub.status.idle": "2024-04-08T21:46:13.669783Z", + "shell.execute_reply": "2024-04-08T21:46:13.669182Z" } }, "outputs": [], @@ -634,10 +634,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:39.139840Z", - "iopub.status.busy": "2024-04-08T19:04:39.139530Z", - "iopub.status.idle": "2024-04-08T19:04:39.141949Z", - "shell.execute_reply": "2024-04-08T19:04:39.141547Z" + "iopub.execute_input": "2024-04-08T21:46:13.672099Z", + "iopub.status.busy": "2024-04-08T21:46:13.671900Z", + "iopub.status.idle": "2024-04-08T21:46:13.674853Z", + "shell.execute_reply": "2024-04-08T21:46:13.674252Z" } }, "outputs": [], @@ -652,10 +652,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:39.143931Z", - "iopub.status.busy": "2024-04-08T19:04:39.143626Z", - "iopub.status.idle": "2024-04-08T19:04:41.418071Z", - "shell.execute_reply": "2024-04-08T19:04:41.417473Z" + "iopub.execute_input": "2024-04-08T21:46:13.676970Z", + "iopub.status.busy": "2024-04-08T21:46:13.676793Z", + "iopub.status.idle": "2024-04-08T21:46:16.018875Z", + "shell.execute_reply": "2024-04-08T21:46:16.018225Z" }, "scrolled": true }, @@ -678,10 +678,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.421050Z", - "iopub.status.busy": "2024-04-08T19:04:41.420335Z", - "iopub.status.idle": "2024-04-08T19:04:41.427937Z", - "shell.execute_reply": "2024-04-08T19:04:41.427499Z" + "iopub.execute_input": "2024-04-08T21:46:16.021873Z", + "iopub.status.busy": "2024-04-08T21:46:16.021220Z", + "iopub.status.idle": "2024-04-08T21:46:16.029041Z", + "shell.execute_reply": "2024-04-08T21:46:16.028512Z" } }, "outputs": [ @@ -782,10 +782,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.429872Z", - "iopub.status.busy": "2024-04-08T19:04:41.429566Z", - "iopub.status.idle": "2024-04-08T19:04:41.433444Z", - "shell.execute_reply": "2024-04-08T19:04:41.433009Z" + "iopub.execute_input": "2024-04-08T21:46:16.031290Z", + "iopub.status.busy": "2024-04-08T21:46:16.031014Z", + "iopub.status.idle": "2024-04-08T21:46:16.034817Z", + "shell.execute_reply": "2024-04-08T21:46:16.034373Z" } }, "outputs": [], @@ -799,10 +799,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.435332Z", - "iopub.status.busy": "2024-04-08T19:04:41.435016Z", - "iopub.status.idle": "2024-04-08T19:04:41.437872Z", - "shell.execute_reply": "2024-04-08T19:04:41.437382Z" + "iopub.execute_input": "2024-04-08T21:46:16.036878Z", + "iopub.status.busy": "2024-04-08T21:46:16.036452Z", + "iopub.status.idle": "2024-04-08T21:46:16.039842Z", + "shell.execute_reply": "2024-04-08T21:46:16.039385Z" } }, "outputs": [ @@ -837,10 +837,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.439975Z", - "iopub.status.busy": "2024-04-08T19:04:41.439662Z", - "iopub.status.idle": "2024-04-08T19:04:41.442421Z", - "shell.execute_reply": "2024-04-08T19:04:41.442004Z" + "iopub.execute_input": "2024-04-08T21:46:16.041890Z", + "iopub.status.busy": "2024-04-08T21:46:16.041484Z", + "iopub.status.idle": "2024-04-08T21:46:16.044609Z", + "shell.execute_reply": "2024-04-08T21:46:16.044158Z" } }, "outputs": [], @@ -860,10 +860,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.444405Z", - "iopub.status.busy": "2024-04-08T19:04:41.444102Z", - "iopub.status.idle": "2024-04-08T19:04:41.450660Z", - "shell.execute_reply": "2024-04-08T19:04:41.450205Z" + "iopub.execute_input": "2024-04-08T21:46:16.046518Z", + "iopub.status.busy": "2024-04-08T21:46:16.046340Z", + "iopub.status.idle": "2024-04-08T21:46:16.053640Z", + "shell.execute_reply": "2024-04-08T21:46:16.053183Z" } }, "outputs": [ @@ -988,10 +988,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.452688Z", - "iopub.status.busy": "2024-04-08T19:04:41.452371Z", - "iopub.status.idle": "2024-04-08T19:04:41.707871Z", - "shell.execute_reply": "2024-04-08T19:04:41.707294Z" + "iopub.execute_input": "2024-04-08T21:46:16.055839Z", + "iopub.status.busy": "2024-04-08T21:46:16.055437Z", + "iopub.status.idle": "2024-04-08T21:46:16.281522Z", + "shell.execute_reply": "2024-04-08T21:46:16.280918Z" }, "scrolled": true }, @@ -1030,10 +1030,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.710541Z", - "iopub.status.busy": "2024-04-08T19:04:41.710134Z", - "iopub.status.idle": "2024-04-08T19:04:41.886669Z", - "shell.execute_reply": "2024-04-08T19:04:41.886149Z" + "iopub.execute_input": "2024-04-08T21:46:16.284508Z", + "iopub.status.busy": "2024-04-08T21:46:16.283902Z", + "iopub.status.idle": "2024-04-08T21:46:16.462865Z", + "shell.execute_reply": "2024-04-08T21:46:16.462241Z" }, "scrolled": true }, @@ -1066,10 +1066,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:41.889178Z", - "iopub.status.busy": "2024-04-08T19:04:41.888817Z", - "iopub.status.idle": "2024-04-08T19:04:41.892522Z", - "shell.execute_reply": "2024-04-08T19:04:41.892069Z" + "iopub.execute_input": "2024-04-08T21:46:16.465752Z", + "iopub.status.busy": "2024-04-08T21:46:16.465300Z", + "iopub.status.idle": "2024-04-08T21:46:16.469519Z", + "shell.execute_reply": "2024-04-08T21:46:16.468996Z" }, "nbsphinx": "hidden" }, @@ -1108,64 +1108,35 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "00882e39d8294fa7bf11a9929411c91d": { + "01a10cb5f09d4fa5b22b5e162e2ac28d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0435bd2a67ae4580b11f72300c8c1b9f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "068617b1c6e7410ea8a61aaa3bf35a59": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f6d6dadb262429cb1d0a9d56953f5c6", + "placeholder": "​", + "style": "IPY_MODEL_18cdc6e48b0848a0a91a077528a56c7a", + "tabbable": null, + "tooltip": null, + "value": " 2.21k/2.21k [00:00<00:00, 344kB/s]" } }, - "107f3b6a64fb41898b51c78312996d47": { + "01a41e2ea2de40839044f3cee4a1d9be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1183,7 +1154,7 @@ "text_color": null } }, - "161f5f17377e4e528cc2e973474950ee": { + "01eac64567a24c4395929ce231c1b5b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1198,69 +1169,41 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_63fe7f89c61d469689356c8afe8f7d0a", + "layout": "IPY_MODEL_31877892c1544f5fb2ed5e7206151493", "placeholder": "​", - "style": "IPY_MODEL_068617b1c6e7410ea8a61aaa3bf35a59", + "style": "IPY_MODEL_c2a732321f2240d29f32c36ec2994c6d", "tabbable": null, "tooltip": null, "value": "README.md: 100%" } }, - "16dad8a9c9074f5ab4ed24858cf4f896": { + "0436616e268442929285c45e5127c471": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2b0e68483cbf470db65245930283cce4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "2dcd6e4805fb403ba8b6c1ce8e5ff117": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5722a0ad5a9e475e9fd26bd2bab542a4", + "max": 2211.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_48a6235e724d4da1b21bcb38f774f384", + "tabbable": null, + "tooltip": null, + "value": 2211.0 } }, - "3041fa94176846a99ea4c32b7fa1cade": { + "068ec87f53e34cad81151e4e21db4825": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1313,7 +1256,7 @@ "width": null } }, - "30e21853c71148d39d7be87c7c68889a": { + "10006765dc724c0a81b3b705e27cb01f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1366,170 +1309,115 @@ "width": null } }, - "33cce396c4bf413ebe5341fe28d03486": { + "10c18d2fd7534864815fd3171457b8c0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7167dd43cb39496d8971354c7dcf8fb3", - "max": 466062.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a13aee655acd48a2bc16f80efcd736a4", + "layout": "IPY_MODEL_ccce6559adfc4f4aa533874515312556", + "placeholder": "​", + "style": "IPY_MODEL_6e6aca39cd07471b8aa62643ddfbb121", "tabbable": null, "tooltip": null, - "value": 466062.0 - } - }, - "34051f0f4e6242febbd69d5ad6e263e0": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "config.json: 100%" } }, - "34f290f5d2fb480c8484034ab6752fca": { + "18cdc6e48b0848a0a91a077528a56c7a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_55ca57fbdbeb4dd09672a18d9e527e1e", - "max": 391.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_e715922dec9a4f518bd83655ec5ece8c", - "tabbable": null, - "tooltip": null, - "value": 391.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3912e2b011df41679c1659d40bc9fefb": { + "1c2765d6557e4179bb7177e9eb540165": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3a50e9ac92bb47ef8a4dd27183e221e7": { + "1d5c1b9225fc47b1b14a4defb1cb8e36": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1ec3e37aa59c4b15b552d7dde0fbef04", + "placeholder": "​", + "style": "IPY_MODEL_a5afba044f074bc3b0e22bee5f355889", + "tabbable": null, + "tooltip": null, + "value": " 466k/466k [00:00<00:00, 28.8MB/s]" } }, - "3af073a39e45402187f042a3cf90b160": { + "1d697ac563214e1eb65a7408ed0c66b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3a0081d105e4d6193af250cc9cef948", - "IPY_MODEL_3eea5b07c46a4588903f301a31822500", - "IPY_MODEL_5194d575ab3e4498bcd728fe5c7d9a3d" - ], - "layout": "IPY_MODEL_c3f5dd847178422f94661624f9ecf612", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_fa1280910e174cc394d17a49d0fdb152", + "max": 231508.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_886c1627035646b1ba0402c6270d8d92", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 231508.0 } }, - "3c2b01854c664a3a834ebb6315a06d7a": { + "1e049cc31ea6429a9c218a0cc7248615": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1582,57 +1470,7 @@ "width": null } }, - "3eea5b07c46a4588903f301a31822500": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_82f22504089445d980458c94bb3f0b22", - "max": 231508.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b2f57f17657e430c89e1a52e7f245309", - "tabbable": null, - "tooltip": null, - "value": 231508.0 - } - }, - "414486671bbc4579b154f2d4dd8df463": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b3270c93e7874c21a39571fdb1d43780", - "IPY_MODEL_34f290f5d2fb480c8484034ab6752fca", - "IPY_MODEL_9a1995f42694404abb75d6338d1bddc7" - ], - "layout": "IPY_MODEL_acdced823e2a4d6f950e27bd4802b639", - "tabbable": null, - "tooltip": null - } - }, - "41e5eb399b424312bb565497b2f550a6": { + "1ec3e37aa59c4b15b552d7dde0fbef04": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1685,7 +1523,23 @@ "width": null } }, - "427f262b918e461c9202e7a81d04c8dc": { + "1f14fbebb09447788b19ee03a9db1672": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1f5f107d41f445b2a63a30439835d215": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1738,30 +1592,49 @@ "width": null } }, - "42a8d833492a48fe958eb757ee25c31c": { + "2043a185143140ffa391bc21475cf9cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "21def0e5765c49dc9672ba0c6bf53170": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_30e21853c71148d39d7be87c7c68889a", - "placeholder": "​", - "style": "IPY_MODEL_fdf1adc0e36d4541972658ad13062aac", + "layout": "IPY_MODEL_a0c4020444ad493f9affd56e05d5ae28", + "max": 466062.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_1f14fbebb09447788b19ee03a9db1672", "tabbable": null, "tooltip": null, - "value": " 466k/466k [00:00<00:00, 6.02MB/s]" + "value": 466062.0 } }, - "4a26fef448554f36a9cb66bea78f484a": { + "25c18c7965fb48c68a87ef99282a4553": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1776,57 +1649,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c4431e7dcf5a41e1934fd352a0e18cc6", - "IPY_MODEL_a200cf245005465880fbcc7a852362d4", - "IPY_MODEL_5de73fab2f284817999b4f68149d32b9" + "IPY_MODEL_844f4a0cb12d4f6b93d496db633fb85b", + "IPY_MODEL_47c3c8d2f7da4bf686c7e5271ebb77ed", + "IPY_MODEL_4c65aba82c7f4f4db177928d6a8cd799" ], - "layout": "IPY_MODEL_3041fa94176846a99ea4c32b7fa1cade", + "layout": "IPY_MODEL_ef813f8e588a455e995ff2a736d90713", "tabbable": null, "tooltip": null } }, - "4ba657e74f59423f9bed6c70b030fcfa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_427f262b918e461c9202e7a81d04c8dc", - "placeholder": "​", - "style": "IPY_MODEL_fad61d9bcd544d64a2896b7a4fafeca3", - "tabbable": null, - "tooltip": null, - "value": " 2.21k/2.21k [00:00<00:00, 355kB/s]" - } - }, - "4c9a189517774bbe90d04de5fdd9e48f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "5194d575ab3e4498bcd728fe5c7d9a3d": { + "2bea500a9979445987385d0178334532": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1837,72 +1669,37 @@ "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ab4a32cb43804d52b25207713bc5f0f4", - "placeholder": "​", - "style": "IPY_MODEL_4c9a189517774bbe90d04de5fdd9e48f", - "tabbable": null, - "tooltip": null, - "value": " 232k/232k [00:00<00:00, 1.77MB/s]" - } - }, - "5385ad8ba67c426daa3e219dd49f7c1b": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1f5f107d41f445b2a63a30439835d215", + "placeholder": "​", + "style": "IPY_MODEL_4bfe568beca4436c80aa9a69eb070baa", + "tabbable": null, + "tooltip": null, + "value": " 232k/232k [00:00<00:00, 35.2MB/s]" + } + }, + "2d339299784e40e4a23a4e7c96342ddc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "55ca57fbdbeb4dd09672a18d9e527e1e": { + "31877892c1544f5fb2ed5e7206151493": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1955,70 +1752,77 @@ "width": null } }, - "596554d1fd004a229dc0e9d5610bace9": { + "3869c322f6514e20afdd020bc56fedcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_161f5f17377e4e528cc2e973474950ee", - "IPY_MODEL_a85b90552a3e4665b51fc3b6e7d921f7", - "IPY_MODEL_4ba657e74f59423f9bed6c70b030fcfa" - ], - "layout": "IPY_MODEL_eb1b16cb3c634b0496ccce16fde573eb", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_df2663cd0caf461f9b787a45fda00739", + "placeholder": "​", + "style": "IPY_MODEL_c16cc57816c64940bcd03d94013a353b", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": "tokenizer_config.json: 100%" } }, - "5a8a165febd74ab8a0e847c8a208e73f": { + "3ba855217d194266a4ad4d5e0cfb674d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_dacf33088c854518ba143e9208a499ad", + "placeholder": "​", + "style": "IPY_MODEL_d5ea6101590e4591b8daa45708ef390c", + "tabbable": null, + "tooltip": null, + "value": ".gitattributes: 100%" } }, - "5de73fab2f284817999b4f68149d32b9": { + "3d6a576d0a4c4615bbe32ce97958a77b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_cbfa8e31e7cb4fd5b0f2827be2777ef3", - "placeholder": "​", - "style": "IPY_MODEL_16dad8a9c9074f5ab4ed24858cf4f896", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_01eac64567a24c4395929ce231c1b5b2", + "IPY_MODEL_0436616e268442929285c45e5127c471", + "IPY_MODEL_01a10cb5f09d4fa5b22b5e162e2ac28d" + ], + "layout": "IPY_MODEL_7b4db89848474dd38d7725de86fb17d2", "tabbable": null, - "tooltip": null, - "value": " 665/665 [00:00<00:00, 127kB/s]" + "tooltip": null } }, - "5e9e17de388746f4ba1fb4f05e426c4e": { + "445fc7b3370f419a97d75befa400a7c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2033,16 +1837,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a8e917adc0db482da10f7259260a52fc", - "IPY_MODEL_6062369e250e403897e6f33990c23d57", - "IPY_MODEL_7b208fafba0244c7a857e15c10805106" + "IPY_MODEL_10c18d2fd7534864815fd3171457b8c0", + "IPY_MODEL_e50cd1c7d6c746b58250cd66ce5e6cb7", + "IPY_MODEL_f18660ee4ca447f98287a50190595742" ], - "layout": "IPY_MODEL_b93f1aea04264f86afd5ca6e5f3deb9a", + "layout": "IPY_MODEL_10006765dc724c0a81b3b705e27cb01f", "tabbable": null, "tooltip": null } }, - "6062369e250e403897e6f33990c23d57": { + "47c3c8d2f7da4bf686c7e5271ebb77ed": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2058,43 +1862,90 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_859e480b7e01405fb1af9226d6a94736", - "max": 48.0, + "layout": "IPY_MODEL_780d5822c5d34358a96e35c6207d7ff4", + "max": 54245363.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_0435bd2a67ae4580b11f72300c8c1b9f", + "style": "IPY_MODEL_506bb5734c2140c7966a72c2a9b4b5ea", "tabbable": null, "tooltip": null, - "value": 48.0 + "value": 54245363.0 } }, - "60cb8f29c0a04f8a9b8775d425f7c1d4": { + "48a6235e724d4da1b21bcb38f774f384": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4bfe568beca4436c80aa9a69eb070baa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "4c65aba82c7f4f4db177928d6a8cd799": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_8cfe5b4829a843b499e9d9b1aad10794", - "max": 54245363.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_8c3149008147411a9172b8a0627cbbdf", + "layout": "IPY_MODEL_c0141551423c494cbadbe81146e01f9a", + "placeholder": "​", + "style": "IPY_MODEL_1c2765d6557e4179bb7177e9eb540165", "tabbable": null, "tooltip": null, - "value": 54245363.0 + "value": " 54.2M/54.2M [00:00<00:00, 310MB/s]" + } + }, + "506bb5734c2140c7966a72c2a9b4b5ea": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "63fe7f89c61d469689356c8afe8f7d0a": { + "5722a0ad5a9e475e9fd26bd2bab542a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2147,30 +1998,60 @@ "width": null } }, - "6b70c1af64654cf0bfc8e515cbe2644e": { - "model_module": "@jupyter-widgets/controls", + "59e05ece73804f1a94f6d0297feaec41": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99f0d4542e8e423b9018be6c83282910", - "placeholder": "​", - "style": "IPY_MODEL_107f3b6a64fb41898b51c78312996d47", - "tabbable": null, - "tooltip": null, - "value": " 54.2M/54.2M [00:00<00:00, 230MB/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "7167dd43cb39496d8971354c7dcf8fb3": { + "5fbf77d3474144b7a34602f6573a8c5f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2223,7 +2104,7 @@ "width": null } }, - "792627ad3d4a4356926466777e5e286b": { + "6031a160e3a841608a08c6fe19ebd376": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2238,15 +2119,51 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fc16653aacb543948c8bcdbebbe18041", + "layout": "IPY_MODEL_a010f02803aa400684b4d473d8cc70fa", "placeholder": "​", - "style": "IPY_MODEL_fdc67e28664e4583ace57f50340b3649", + "style": "IPY_MODEL_6692379f4a904908bf18e7cf27b2add6", "tabbable": null, "tooltip": null, - "value": "tokenizer.json: 100%" + "value": " 48.0/48.0 [00:00<00:00, 8.12kB/s]" + } + }, + "6692379f4a904908bf18e7cf27b2add6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "675610f3dc014be1bb1f11ed8a36b950": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7b208fafba0244c7a857e15c10805106": { + "6a8eaeeb468a4f7e8069976b7d4854bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2261,15 +2178,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_41e5eb399b424312bb565497b2f550a6", + "layout": "IPY_MODEL_1e049cc31ea6429a9c218a0cc7248615", "placeholder": "​", - "style": "IPY_MODEL_f8c8778791df4709aa10067dd9083588", + "style": "IPY_MODEL_bed24fd894334028b852a36fac1250a4", "tabbable": null, "tooltip": null, - "value": " 48.0/48.0 [00:00<00:00, 8.81kB/s]" + "value": "vocab.txt: 100%" + } + }, + "6e6aca39cd07471b8aa62643ddfbb121": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "7ba8b4d37b90455ea0856a76fd53349f": { + "6f1773d942ab458cb151290a521226f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2322,7 +2257,7 @@ "width": null } }, - "82f22504089445d980458c94bb3f0b22": { + "71935e001c464dcabd6ea39b487acf56": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2375,7 +2310,7 @@ "width": null } }, - "859e480b7e01405fb1af9226d6a94736": { + "780d5822c5d34358a96e35c6207d7ff4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2428,7 +2363,25 @@ "width": null } }, - "8c3149008147411a9172b8a0627cbbdf": { + "798f19e6c72e4b4e9c5ffbd0923de45a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7993ece5946a4a4b96b5eaac0741eac9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2444,7 +2397,7 @@ "description_width": "" } }, - "8cfe5b4829a843b499e9d9b1aad10794": { + "7b4db89848474dd38d7725de86fb17d2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2497,25 +2450,7 @@ "width": null } }, - "938fb2a8d3a54d448069f0b85d12697d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "99f0d4542e8e423b9018be6c83282910": { + "7e3f04ad19ed4f5ebbe83137d2296db5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2568,30 +2503,7 @@ "width": null } }, - "9a1995f42694404abb75d6338d1bddc7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f9d2786f039f4739a73d2d301bf8b745", - "placeholder": "​", - "style": "IPY_MODEL_ae0fb7a982a2436ea7ad32f01526eea2", - "tabbable": null, - "tooltip": null, - "value": " 391/391 [00:00<00:00, 69.6kB/s]" - } - }, - "9f72c96cd44c40618e8826a9fc735324": { + "844f4a0cb12d4f6b93d496db633fb85b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2606,15 +2518,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_e93f36ea176647cd9b1069f0297aadef", + "layout": "IPY_MODEL_e800a7a7df7e4a4dbed8f0d4516b5401", "placeholder": "​", - "style": "IPY_MODEL_2dcd6e4805fb403ba8b6c1ce8e5ff117", + "style": "IPY_MODEL_2d339299784e40e4a23a4e7c96342ddc", "tabbable": null, "tooltip": null, "value": "pytorch_model.bin: 100%" } }, - "a13aee655acd48a2bc16f80efcd736a4": { + "886c1627035646b1ba0402c6270d8d92": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2630,82 +2542,107 @@ "description_width": "" } }, - "a200cf245005465880fbcc7a852362d4": { + "8fb65f19ab264229bdbd15e5e3ce4856": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7ba8b4d37b90455ea0856a76fd53349f", - "max": 665.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_5a8a165febd74ab8a0e847c8a208e73f", + "layout": "IPY_MODEL_dffdd05c4a604bba8b045d14b1eb86ca", + "placeholder": "​", + "style": "IPY_MODEL_675610f3dc014be1bb1f11ed8a36b950", "tabbable": null, "tooltip": null, - "value": 665.0 + "value": " 391/391 [00:00<00:00, 68.7kB/s]" } }, - "a85b90552a3e4665b51fc3b6e7d921f7": { + "90210570e43043339f5b21c2dd4bfb80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dcfe560d74704020ba7189f6b35342ae", - "max": 2211.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_3912e2b011df41679c1659d40bc9fefb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_b89a05fcb73e421b91c19356a8f9f378", + "IPY_MODEL_21def0e5765c49dc9672ba0c6bf53170", + "IPY_MODEL_1d5c1b9225fc47b1b14a4defb1cb8e36" + ], + "layout": "IPY_MODEL_6f1773d942ab458cb151290a521226f4", "tabbable": null, - "tooltip": null, - "value": 2211.0 + "tooltip": null } }, - "a8e917adc0db482da10f7259260a52fc": { - "model_module": "@jupyter-widgets/controls", + "9f6d6dadb262429cb1d0a9d56953f5c6": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f41c778f7656469892daa08fc3f86248", - "placeholder": "​", - "style": "IPY_MODEL_2b0e68483cbf470db65245930283cce4", - "tabbable": null, - "tooltip": null, - "value": "tokenizer_config.json: 100%" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "ab4a32cb43804d52b25207713bc5f0f4": { + "a010f02803aa400684b4d473d8cc70fa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2758,7 +2695,7 @@ "width": null } }, - "acdced823e2a4d6f950e27bd4802b639": { + "a0c4020444ad493f9affd56e05d5ae28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2811,7 +2748,7 @@ "width": null } }, - "ae0fb7a982a2436ea7ad32f01526eea2": { + "a5afba044f074bc3b0e22bee5f355889": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2829,69 +2766,7 @@ "text_color": null } }, - "b2f57f17657e430c89e1a52e7f245309": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b3270c93e7874c21a39571fdb1d43780": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_34051f0f4e6242febbd69d5ad6e263e0", - "placeholder": "​", - "style": "IPY_MODEL_938fb2a8d3a54d448069f0b85d12697d", - "tabbable": null, - "tooltip": null, - "value": ".gitattributes: 100%" - } - }, - "b3a0081d105e4d6193af250cc9cef948": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_be33e673f6fe4622ab6bfd3a727d2c04", - "placeholder": "​", - "style": "IPY_MODEL_00882e39d8294fa7bf11a9929411c91d", - "tabbable": null, - "tooltip": null, - "value": "vocab.txt: 100%" - } - }, - "b93f1aea04264f86afd5ca6e5f3deb9a": { + "a7ad808ad2f74b4c9bcd46a832b1d1f4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2944,7 +2819,90 @@ "width": null } }, - "be33e673f6fe4622ab6bfd3a727d2c04": { + "ad711a8026be4911aaa3d5a0e2d33614": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_59e05ece73804f1a94f6d0297feaec41", + "max": 391.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b06819ab1b8746fb87023a870d70f567", + "tabbable": null, + "tooltip": null, + "value": 391.0 + } + }, + "b06819ab1b8746fb87023a870d70f567": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b89a05fcb73e421b91c19356a8f9f378": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5fbf77d3474144b7a34602f6573a8c5f", + "placeholder": "​", + "style": "IPY_MODEL_01a41e2ea2de40839044f3cee4a1d9be", + "tabbable": null, + "tooltip": null, + "value": "tokenizer.json: 100%" + } + }, + "bed24fd894334028b852a36fac1250a4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c0141551423c494cbadbe81146e01f9a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2997,31 +2955,7 @@ "width": null } }, - "c18cde9a3b464ad1a69d4fbf65c4287b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_9f72c96cd44c40618e8826a9fc735324", - "IPY_MODEL_60cb8f29c0a04f8a9b8775d425f7c1d4", - "IPY_MODEL_6b70c1af64654cf0bfc8e515cbe2644e" - ], - "layout": "IPY_MODEL_3c2b01854c664a3a834ebb6315a06d7a", - "tabbable": null, - "tooltip": null - } - }, - "c3f5dd847178422f94661624f9ecf612": { + "c01a7a8f8c2b47068c5b088dc77ea1fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3074,30 +3008,67 @@ "width": null } }, - "c4431e7dcf5a41e1934fd352a0e18cc6": { + "c16cc57816c64940bcd03d94013a353b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c2a732321f2240d29f32c36ec2994c6d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "ca53515c3b9541058a7101bcce2962c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_5385ad8ba67c426daa3e219dd49f7c1b", - "placeholder": "​", - "style": "IPY_MODEL_3a50e9ac92bb47ef8a4dd27183e221e7", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3ba855217d194266a4ad4d5e0cfb674d", + "IPY_MODEL_ad711a8026be4911aaa3d5a0e2d33614", + "IPY_MODEL_8fb65f19ab264229bdbd15e5e3ce4856" + ], + "layout": "IPY_MODEL_71935e001c464dcabd6ea39b487acf56", "tabbable": null, - "tooltip": null, - "value": "config.json: 100%" + "tooltip": null } }, - "cbfa8e31e7cb4fd5b0f2827be2777ef3": { + "ccce6559adfc4f4aa533874515312556": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3150,7 +3121,7 @@ "width": null } }, - "d27490d630934411bc6291d305749d0a": { + "d3899c159c4946b6bd88e91c4026603c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3203,7 +3174,75 @@ "width": null } }, - "dcfe560d74704020ba7189f6b35342ae": { + "d3a6c21822af4c58b185e7ed5c38c37c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_6a8eaeeb468a4f7e8069976b7d4854bd", + "IPY_MODEL_1d697ac563214e1eb65a7408ed0c66b9", + "IPY_MODEL_2bea500a9979445987385d0178334532" + ], + "layout": "IPY_MODEL_d3899c159c4946b6bd88e91c4026603c", + "tabbable": null, + "tooltip": null + } + }, + "d5ea6101590e4591b8daa45708ef390c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d6497a113c4446d39aa266e94c035a1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_c01a7a8f8c2b47068c5b088dc77ea1fe", + "max": 48.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7993ece5946a4a4b96b5eaac0741eac9", + "tabbable": null, + "tooltip": null, + "value": 48.0 + } + }, + "dacf33088c854518ba143e9208a499ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3256,47 +3295,7 @@ "width": null } }, - "e715922dec9a4f518bd83655ec5ece8c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "e8839cb132d74eb9a916dda9fdafe1c4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_792627ad3d4a4356926466777e5e286b", - "IPY_MODEL_33cce396c4bf413ebe5341fe28d03486", - "IPY_MODEL_42a8d833492a48fe958eb757ee25c31c" - ], - "layout": "IPY_MODEL_d27490d630934411bc6291d305749d0a", - "tabbable": null, - "tooltip": null - } - }, - "e93f36ea176647cd9b1069f0297aadef": { + "df2663cd0caf461f9b787a45fda00739": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3349,7 +3348,7 @@ "width": null } }, - "eb1b16cb3c634b0496ccce16fde573eb": { + "dffdd05c4a604bba8b045d14b1eb86ca": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3402,7 +3401,33 @@ "width": null } }, - "f41c778f7656469892daa08fc3f86248": { + "e50cd1c7d6c746b58250cd66ce5e6cb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_068ec87f53e34cad81151e4e21db4825", + "max": 665.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_2043a185143140ffa391bc21475cf9cc", + "tabbable": null, + "tooltip": null, + "value": 665.0 + } + }, + "e800a7a7df7e4a4dbed8f0d4516b5401": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3455,25 +3480,7 @@ "width": null } }, - "f8c8778791df4709aa10067dd9083588": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "f9d2786f039f4739a73d2d301bf8b745": { + "ef813f8e588a455e995ff2a736d90713": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3526,25 +3533,30 @@ "width": null } }, - "fad61d9bcd544d64a2896b7a4fafeca3": { + "f18660ee4ca447f98287a50190595742": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7e3f04ad19ed4f5ebbe83137d2296db5", + "placeholder": "​", + "style": "IPY_MODEL_798f19e6c72e4b4e9c5ffbd0923de45a", + "tabbable": null, + "tooltip": null, + "value": " 665/665 [00:00<00:00, 120kB/s]" } }, - "fc16653aacb543948c8bcdbebbe18041": { + "fa1280910e174cc394d17a49d0fdb152": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3597,40 +3609,28 @@ "width": null } }, - "fdc67e28664e4583ace57f50340b3649": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "fdf1adc0e36d4541972658ad13062aac": { + "ff91dbb797af4611acdaca215e0d14bd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3869c322f6514e20afdd020bc56fedcc", + "IPY_MODEL_d6497a113c4446d39aa266e94c035a1b", + "IPY_MODEL_6031a160e3a841608a08c6fe19ebd376" + ], + "layout": "IPY_MODEL_a7ad808ad2f74b4c9bcd46a832b1d1f4", + "tabbable": null, + "tooltip": null } } }, diff --git a/master/tutorials/datalab/audio.html b/master/tutorials/datalab/audio.html index ffde9c051..8f5e06a25 100644 --- a/master/tutorials/datalab/audio.html +++ b/master/tutorials/datalab/audio.html @@ -886,7 +886,7 @@

    3. Use pre-trained SpeechBrain model to featurize audio
    -/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.
     Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)
       return _VF.stft(input, n_fft, hop_length, win_length, window,  # type: ignore[attr-defined]
     
    @@ -1318,7 +1318,7 @@

    5. Use cleanlab to find label issues -{"state": {"a2ac773a77354c65a9b27aead854f501": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1845bd7583734a468217bf0a33a4a04e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9dcd19b1766a4f0f9e62b19feae944e0": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2ac773a77354c65a9b27aead854f501", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1845bd7583734a468217bf0a33a4a04e", "tabbable": null, "tooltip": null, "value": 2041.0}}, "6add2113ed1541dfbdb3c42fbbce25fc": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc4736ca693444da8e5b28edfdc65bc5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "03e98d7846af44088b8a646b91364594": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6add2113ed1541dfbdb3c42fbbce25fc", "placeholder": "\u200b", "style": "IPY_MODEL_fc4736ca693444da8e5b28edfdc65bc5", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "bca20dd54024424b908c519dc7c65413": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6e856fb0c33a4b509b13af9f0bfa347d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4a17f13f9daa4bd3a9e0f9a6bdcd54ce": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bca20dd54024424b908c519dc7c65413", "placeholder": "\u200b", "style": "IPY_MODEL_6e856fb0c33a4b509b13af9f0bfa347d", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007458kB/s]"}}, "6f1084b3c29943cbae5ae582af5573d2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "593320329ae4474ea377016a9d84c521": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_03e98d7846af44088b8a646b91364594", "IPY_MODEL_9dcd19b1766a4f0f9e62b19feae944e0", "IPY_MODEL_4a17f13f9daa4bd3a9e0f9a6bdcd54ce"], "layout": "IPY_MODEL_6f1084b3c29943cbae5ae582af5573d2", "tabbable": null, "tooltip": null}}, "099362e1ce5c4a6b8d8d4c331a960d34": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4c8c8519a91e4cf59efc5ee43887ceef": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "605873f7b6924ba3a2b8d496de6a3f37": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_099362e1ce5c4a6b8d8d4c331a960d34", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4c8c8519a91e4cf59efc5ee43887ceef", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "358c21f56ec2458089c2e7d7e5e7611d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b38f5dc0540f47bcb4f22237b8bc10b5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1d8d1f51752d4b69aa1135e17d8449e2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_358c21f56ec2458089c2e7d7e5e7611d", "placeholder": "\u200b", "style": "IPY_MODEL_b38f5dc0540f47bcb4f22237b8bc10b5", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "6b84bee63e5341e68a70a1df0644c356": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "702d80d4b5874038a51e0c3fe4e29c9c": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "47f17e40d80540e8b9cd62de82c60b92": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6b84bee63e5341e68a70a1df0644c356", "placeholder": "\u200b", "style": "IPY_MODEL_702d80d4b5874038a51e0c3fe4e29c9c", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u200750.6MB/s]"}}, "789cb19d03704e0b95b9af8afa82d248": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "69f610d6cd3c4ac58e8089ac7c27c111": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1d8d1f51752d4b69aa1135e17d8449e2", "IPY_MODEL_605873f7b6924ba3a2b8d496de6a3f37", "IPY_MODEL_47f17e40d80540e8b9cd62de82c60b92"], "layout": "IPY_MODEL_789cb19d03704e0b95b9af8afa82d248", "tabbable": null, "tooltip": null}}, "7a1b19cb87394307a53c97aa5de7ef54": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7c70a56bdf6c4f4e9f2f310fe97caf21": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "170825b92f484861b53a305933672d63": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7a1b19cb87394307a53c97aa5de7ef54", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_7c70a56bdf6c4f4e9f2f310fe97caf21", "tabbable": null, "tooltip": null, "value": 3201.0}}, "37c6159b215f46748ce591cd48fe49f0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "af4e6010ee0847468fae428d5bceb881": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "124ddd3253c4476b83146639e17d57b4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_37c6159b215f46748ce591cd48fe49f0", "placeholder": "\u200b", "style": "IPY_MODEL_af4e6010ee0847468fae428d5bceb881", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "c0a147631094428498d5242f0dae3a28": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3b7f0046c33247249156bee86a8ab344": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "4911164b858e49c1b45c2acea166106f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c0a147631094428498d5242f0dae3a28", "placeholder": "\u200b", "style": "IPY_MODEL_3b7f0046c33247249156bee86a8ab344", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007736kB/s]"}}, "6232f100dcfc4faea627bbfd5cf8d09e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a992a72ca18a4979975cfb11417f3b00": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_124ddd3253c4476b83146639e17d57b4", "IPY_MODEL_170825b92f484861b53a305933672d63", "IPY_MODEL_4911164b858e49c1b45c2acea166106f"], "layout": "IPY_MODEL_6232f100dcfc4faea627bbfd5cf8d09e", "tabbable": null, "tooltip": null}}, "ca834c7b06bd4f90ba096fa6f8d7103c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "01548e5746cc4788b0d61577e4b012b3": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "10f5629a4670476891a02ba1e61d2b9f": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ca834c7b06bd4f90ba096fa6f8d7103c", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_01548e5746cc4788b0d61577e4b012b3", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "c05dd7bca0b442bbb6c59095a6fdc7da": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2398940ef11744cd931d78b60fe1bf96": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d7cff1a5c1c84b53a0f820ae0ae64f22": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c05dd7bca0b442bbb6c59095a6fdc7da", "placeholder": "\u200b", "style": "IPY_MODEL_2398940ef11744cd931d78b60fe1bf96", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "fa4f7d539024400ead56c0975b429f2c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "49d50cf65e2243fe85ea4efa439383a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "8227ef3e4a1d4b60bb8d49436af87b02": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fa4f7d539024400ead56c0975b429f2c", "placeholder": "\u200b", "style": "IPY_MODEL_49d50cf65e2243fe85ea4efa439383a4", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u200747.3MB/s]"}}, "6b1d25f5e1274b7087e5be1edb44f263": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "344f8176bb9c4df2b5f5c5842359b28c": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d7cff1a5c1c84b53a0f820ae0ae64f22", "IPY_MODEL_10f5629a4670476891a02ba1e61d2b9f", "IPY_MODEL_8227ef3e4a1d4b60bb8d49436af87b02"], "layout": "IPY_MODEL_6b1d25f5e1274b7087e5be1edb44f263", "tabbable": null, "tooltip": null}}, "7187ee77d34d4ee58aea3e5ef7ea0d6f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a84cb458429f4ac9ba17b78d73eb1b9c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1e261881c01a4c82af0950354ddbbf67": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7187ee77d34d4ee58aea3e5ef7ea0d6f", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a84cb458429f4ac9ba17b78d73eb1b9c", "tabbable": null, "tooltip": null, "value": 128619.0}}, "3656dfd1293341618ec097a837ccf824": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "153a557fc0794ff2b1d801bc73e89764": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "f98ecf4b23e04508a03cf3042be644e5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3656dfd1293341618ec097a837ccf824", "placeholder": "\u200b", "style": "IPY_MODEL_153a557fc0794ff2b1d801bc73e89764", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "15e61f73e248421da683941c01a6ba8a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "770aeb28530d4716aeceac624b99192d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "3f10333ce59449f8893619a6a1200e72": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15e61f73e248421da683941c01a6ba8a", "placeholder": "\u200b", "style": "IPY_MODEL_770aeb28530d4716aeceac624b99192d", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u20071.94MB/s]"}}, "6d97e6b4b14a4b088f0a5c2c2e610564": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f91d49b1c62d4d839fff74899d0af511": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_f98ecf4b23e04508a03cf3042be644e5", "IPY_MODEL_1e261881c01a4c82af0950354ddbbf67", "IPY_MODEL_3f10333ce59449f8893619a6a1200e72"], "layout": "IPY_MODEL_6d97e6b4b14a4b088f0a5c2c2e610564", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"e18c887b081047ef8e89b5693274fb68": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "225019f5967245de9fbc8a665953fdaa": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "6bf87a06e0074711be4c07ad294186ba": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e18c887b081047ef8e89b5693274fb68", "max": 2041.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_225019f5967245de9fbc8a665953fdaa", "tabbable": null, "tooltip": null, "value": 2041.0}}, "1244fb1e07694bc4a5d9f3762d25d7e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6168b11b46e34cd08bb7daaddb4dbd24": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "7b5b3d7f80774c069aeece5b4445cc9e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_1244fb1e07694bc4a5d9f3762d25d7e6", "placeholder": "\u200b", "style": "IPY_MODEL_6168b11b46e34cd08bb7daaddb4dbd24", "tabbable": null, "tooltip": null, "value": "hyperparams.yaml:\u2007100%"}}, "97bccf449f9746e2885c6da3c9637630": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c2f599c6567c459588cdfbf816c4fe0a": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d0945ec956ca47888e039ac1328a65be": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_97bccf449f9746e2885c6da3c9637630", "placeholder": "\u200b", "style": "IPY_MODEL_c2f599c6567c459588cdfbf816c4fe0a", "tabbable": null, "tooltip": null, "value": "\u20072.04k/2.04k\u2007[00:00<00:00,\u2007485kB/s]"}}, "bd8ad09cb8494acebe57ecb387be412f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "7bddaeb1c8d646cc86ce1814e0b84af7": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_7b5b3d7f80774c069aeece5b4445cc9e", "IPY_MODEL_6bf87a06e0074711be4c07ad294186ba", "IPY_MODEL_d0945ec956ca47888e039ac1328a65be"], "layout": "IPY_MODEL_bd8ad09cb8494acebe57ecb387be412f", "tabbable": null, "tooltip": null}}, "8872e03905bf4e6fbafe66867b62e61e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "a651acdfc2374773b4219c96fdbeeddc": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "35a5c5c8b75b44eea1d17aa40ef6d836": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8872e03905bf4e6fbafe66867b62e61e", "max": 16887676.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_a651acdfc2374773b4219c96fdbeeddc", "tabbable": null, "tooltip": null, "value": 16887676.0}}, "63c11a6a387147ca875d1745d8cd37d4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b9c90fdf46b3407991fa437a42ef1178": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "15fb03b8088d44ddbda2fc1ec76c6fa8": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_63c11a6a387147ca875d1745d8cd37d4", "placeholder": "\u200b", "style": "IPY_MODEL_b9c90fdf46b3407991fa437a42ef1178", "tabbable": null, "tooltip": null, "value": "embedding_model.ckpt:\u2007100%"}}, "73af6f415da94538a728be63788bfbff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e163ef7db3974864868cb657fa0bb704": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "075334b6408e493583a14d3e74f62432": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_73af6f415da94538a728be63788bfbff", "placeholder": "\u200b", "style": "IPY_MODEL_e163ef7db3974864868cb657fa0bb704", "tabbable": null, "tooltip": null, "value": "\u200716.9M/16.9M\u2007[00:00<00:00,\u2007273MB/s]"}}, "aaea6b337a7848419be2e9c56fafb34c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3f9bfe896e864053ae276eac3fc3dd11": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_15fb03b8088d44ddbda2fc1ec76c6fa8", "IPY_MODEL_35a5c5c8b75b44eea1d17aa40ef6d836", "IPY_MODEL_075334b6408e493583a14d3e74f62432"], "layout": "IPY_MODEL_aaea6b337a7848419be2e9c56fafb34c", "tabbable": null, "tooltip": null}}, "d9e7d5bb38104159b058af86874b0dc0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e21bc6b293a9483fbf8542a1cebc1b21": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e0cf5ae27479482a9a65314726432496": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d9e7d5bb38104159b058af86874b0dc0", "max": 3201.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e21bc6b293a9483fbf8542a1cebc1b21", "tabbable": null, "tooltip": null, "value": 3201.0}}, "d6452fcb7dcd438b8c518801f21d00f9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "22b5c167594648b0a13c7ba8163845ca": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "91eedf6f909d486193f547f4d356dec1": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d6452fcb7dcd438b8c518801f21d00f9", "placeholder": "\u200b", "style": "IPY_MODEL_22b5c167594648b0a13c7ba8163845ca", "tabbable": null, "tooltip": null, "value": "mean_var_norm_emb.ckpt:\u2007100%"}}, "e7cba0272ea442f2a451aa872e63340f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ab57eb9e37934f99b1ec7359bb4ebcb5": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ff44bc096e2b4d36879ef4f61660135d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e7cba0272ea442f2a451aa872e63340f", "placeholder": "\u200b", "style": "IPY_MODEL_ab57eb9e37934f99b1ec7359bb4ebcb5", "tabbable": null, "tooltip": null, "value": "\u20073.20k/3.20k\u2007[00:00<00:00,\u2007687kB/s]"}}, "ccd7ea66a83c47579621976004eceb5d": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f436adae9f644a6eae3b0e9f18233771": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_91eedf6f909d486193f547f4d356dec1", "IPY_MODEL_e0cf5ae27479482a9a65314726432496", "IPY_MODEL_ff44bc096e2b4d36879ef4f61660135d"], "layout": "IPY_MODEL_ccd7ea66a83c47579621976004eceb5d", "tabbable": null, "tooltip": null}}, "8a55cfdc621b43dca46743e02d939b50": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e9d566cadf134454b79fc7ebbeb33a20": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "51ac0e8dccad4edd924bbaf904abfcb3": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8a55cfdc621b43dca46743e02d939b50", "max": 15856877.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e9d566cadf134454b79fc7ebbeb33a20", "tabbable": null, "tooltip": null, "value": 15856877.0}}, "d379fc5de5d54cf89f78b2d363a9ff22": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8ce14acdd43e49788f8063ea1cc09530": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "17e752b138f24ef699217a8c607a1a35": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d379fc5de5d54cf89f78b2d363a9ff22", "placeholder": "\u200b", "style": "IPY_MODEL_8ce14acdd43e49788f8063ea1cc09530", "tabbable": null, "tooltip": null, "value": "classifier.ckpt:\u2007100%"}}, "e15cd2da984a447b9901acf000da5696": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b23b7540b02448b2b482342f9560dfd9": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "588cd470563744a8a6f189faadf66f72": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e15cd2da984a447b9901acf000da5696", "placeholder": "\u200b", "style": "IPY_MODEL_b23b7540b02448b2b482342f9560dfd9", "tabbable": null, "tooltip": null, "value": "\u200715.9M/15.9M\u2007[00:00<00:00,\u2007357MB/s]"}}, "8bdde82a297643e0915d4e0f05872bc9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6edf9ec332d349d199a268e10bbc57a6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_17e752b138f24ef699217a8c607a1a35", "IPY_MODEL_51ac0e8dccad4edd924bbaf904abfcb3", "IPY_MODEL_588cd470563744a8a6f189faadf66f72"], "layout": "IPY_MODEL_8bdde82a297643e0915d4e0f05872bc9", "tabbable": null, "tooltip": null}}, "4edc2366535f448dbe4023432c3633cb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6fdb6b81c8ff49838d7b5a65396e758d": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "fffbd405efcf42bca8daf86a7e152ab6": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4edc2366535f448dbe4023432c3633cb", "max": 128619.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6fdb6b81c8ff49838d7b5a65396e758d", "tabbable": null, "tooltip": null, "value": 128619.0}}, "19c4fd2602f14225b68710a08bf108d3": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "53f7634108e341219d63ce6ef49ca3ef": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2fcdc31a427e4e4e81995b305cc3aba9": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_19c4fd2602f14225b68710a08bf108d3", "placeholder": "\u200b", "style": "IPY_MODEL_53f7634108e341219d63ce6ef49ca3ef", "tabbable": null, "tooltip": null, "value": "label_encoder.txt:\u2007100%"}}, "7489ee03697647e7bead734f066bdec9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b8d3f54af27047e4a1eb00ff08ebd390": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d274e31b0792469397067015426d9787": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7489ee03697647e7bead734f066bdec9", "placeholder": "\u200b", "style": "IPY_MODEL_b8d3f54af27047e4a1eb00ff08ebd390", "tabbable": null, "tooltip": null, "value": "\u2007129k/129k\u2007[00:00<00:00,\u200719.5MB/s]"}}, "1e0a13c00c7b4735a637a4d02cff3ea4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "32e61e1ee4e948d994f4c9f9ae5a397d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2fcdc31a427e4e4e81995b305cc3aba9", "IPY_MODEL_fffbd405efcf42bca8daf86a7e152ab6", "IPY_MODEL_d274e31b0792469397067015426d9787"], "layout": "IPY_MODEL_1e0a13c00c7b4735a637a4d02cff3ea4", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/audio.ipynb b/master/tutorials/datalab/audio.ipynb index 28ea897d0..dd1feae76 100644 --- a/master/tutorials/datalab/audio.ipynb +++ b/master/tutorials/datalab/audio.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:46.105517Z", - "iopub.status.busy": "2024-04-08T19:04:46.104987Z", - "iopub.status.idle": "2024-04-08T19:04:51.038814Z", - "shell.execute_reply": "2024-04-08T19:04:51.038258Z" + "iopub.execute_input": "2024-04-08T21:46:19.829009Z", + "iopub.status.busy": "2024-04-08T21:46:19.828844Z", + "iopub.status.idle": "2024-04-08T21:46:24.797090Z", + "shell.execute_reply": "2024-04-08T21:46:24.796528Z" }, "nbsphinx": "hidden" }, @@ -97,7 +97,7 @@ "os.environ[\"TF_CPP_MIN_LOG_LEVEL\"] = \"3\" \n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -131,10 +131,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:51.041604Z", - "iopub.status.busy": "2024-04-08T19:04:51.041029Z", - "iopub.status.idle": "2024-04-08T19:04:51.044345Z", - "shell.execute_reply": "2024-04-08T19:04:51.043904Z" + "iopub.execute_input": "2024-04-08T21:46:24.799961Z", + "iopub.status.busy": "2024-04-08T21:46:24.799270Z", + "iopub.status.idle": "2024-04-08T21:46:24.802636Z", + "shell.execute_reply": "2024-04-08T21:46:24.802151Z" }, "id": "LaEiwXUiVHCS" }, @@ -157,10 +157,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:51.046287Z", - "iopub.status.busy": "2024-04-08T19:04:51.045963Z", - "iopub.status.idle": "2024-04-08T19:04:51.050303Z", - "shell.execute_reply": "2024-04-08T19:04:51.049883Z" + "iopub.execute_input": "2024-04-08T21:46:24.804827Z", + "iopub.status.busy": "2024-04-08T21:46:24.804415Z", + "iopub.status.idle": "2024-04-08T21:46:24.808816Z", + "shell.execute_reply": "2024-04-08T21:46:24.808386Z" }, "nbsphinx": "hidden" }, @@ -208,10 +208,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:51.052312Z", - "iopub.status.busy": "2024-04-08T19:04:51.051991Z", - "iopub.status.idle": "2024-04-08T19:04:52.964225Z", - "shell.execute_reply": "2024-04-08T19:04:52.963597Z" + "iopub.execute_input": "2024-04-08T21:46:24.810880Z", + "iopub.status.busy": "2024-04-08T21:46:24.810647Z", + "iopub.status.idle": "2024-04-08T21:46:26.264645Z", + "shell.execute_reply": "2024-04-08T21:46:26.264022Z" }, "id": "GRDPEg7-VOQe", "outputId": "cb886220-e86e-4a77-9f3a-d7844c37c3a6" @@ -242,10 +242,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:52.967053Z", - "iopub.status.busy": "2024-04-08T19:04:52.966626Z", - "iopub.status.idle": "2024-04-08T19:04:52.977284Z", - "shell.execute_reply": "2024-04-08T19:04:52.976855Z" + "iopub.execute_input": "2024-04-08T21:46:26.267342Z", + "iopub.status.busy": "2024-04-08T21:46:26.266945Z", + "iopub.status.idle": "2024-04-08T21:46:26.277681Z", + "shell.execute_reply": "2024-04-08T21:46:26.277212Z" }, "id": "FDA5sGZwUSur", "outputId": "0cedc509-63fd-4dc3-d32f-4b537dfe3895" @@ -329,10 +329,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:52.979356Z", - "iopub.status.busy": "2024-04-08T19:04:52.979056Z", - "iopub.status.idle": "2024-04-08T19:04:52.984474Z", - "shell.execute_reply": "2024-04-08T19:04:52.984027Z" + "iopub.execute_input": "2024-04-08T21:46:26.279820Z", + "iopub.status.busy": "2024-04-08T21:46:26.279480Z", + "iopub.status.idle": "2024-04-08T21:46:26.284942Z", + "shell.execute_reply": "2024-04-08T21:46:26.284496Z" }, "nbsphinx": "hidden" }, @@ -380,10 +380,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:52.986467Z", - "iopub.status.busy": "2024-04-08T19:04:52.986184Z", - "iopub.status.idle": "2024-04-08T19:04:53.470988Z", - "shell.execute_reply": "2024-04-08T19:04:53.470375Z" + "iopub.execute_input": "2024-04-08T21:46:26.287110Z", + "iopub.status.busy": "2024-04-08T21:46:26.286758Z", + "iopub.status.idle": "2024-04-08T21:46:26.740692Z", + "shell.execute_reply": "2024-04-08T21:46:26.740122Z" }, "id": "dLBvUZLlII5w", "outputId": "c6a4917f-4a82-4a89-9193-415072e45550" @@ -435,10 +435,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:53.473214Z", - "iopub.status.busy": "2024-04-08T19:04:53.472775Z", - "iopub.status.idle": "2024-04-08T19:04:55.493272Z", - "shell.execute_reply": "2024-04-08T19:04:55.492735Z" + "iopub.execute_input": "2024-04-08T21:46:26.742916Z", + "iopub.status.busy": "2024-04-08T21:46:26.742540Z", + "iopub.status.idle": "2024-04-08T21:46:27.401973Z", + "shell.execute_reply": "2024-04-08T21:46:27.401472Z" }, "id": "vL9lkiKsHvKr" }, @@ -474,10 +474,10 @@ "height": 143 }, "execution": { - "iopub.execute_input": "2024-04-08T19:04:55.495706Z", - "iopub.status.busy": "2024-04-08T19:04:55.495509Z", - "iopub.status.idle": "2024-04-08T19:04:55.513796Z", - "shell.execute_reply": "2024-04-08T19:04:55.513240Z" + "iopub.execute_input": "2024-04-08T21:46:27.404500Z", + "iopub.status.busy": "2024-04-08T21:46:27.404302Z", + "iopub.status.idle": "2024-04-08T21:46:27.422563Z", + "shell.execute_reply": "2024-04-08T21:46:27.421982Z" }, "id": "obQYDKdLiUU6", "outputId": "4e923d5c-2cf4-4a5c-827b-0a4fea9d87e4" @@ -557,10 +557,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:55.515946Z", - "iopub.status.busy": "2024-04-08T19:04:55.515624Z", - "iopub.status.idle": "2024-04-08T19:04:55.519151Z", - "shell.execute_reply": "2024-04-08T19:04:55.518745Z" + "iopub.execute_input": "2024-04-08T21:46:27.424814Z", + "iopub.status.busy": "2024-04-08T21:46:27.424470Z", + "iopub.status.idle": "2024-04-08T21:46:27.427574Z", + "shell.execute_reply": "2024-04-08T21:46:27.427128Z" }, "id": "I8JqhOZgi94g" }, @@ -582,10 +582,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:04:55.521090Z", - "iopub.status.busy": "2024-04-08T19:04:55.520779Z", - "iopub.status.idle": "2024-04-08T19:05:10.361560Z", - "shell.execute_reply": "2024-04-08T19:05:10.361009Z" + "iopub.execute_input": "2024-04-08T21:46:27.429700Z", + "iopub.status.busy": "2024-04-08T21:46:27.429297Z", + "iopub.status.idle": "2024-04-08T21:46:42.372067Z", + "shell.execute_reply": "2024-04-08T21:46:42.371498Z" }, "id": "2FSQ2GR9R_YA" }, @@ -594,7 +594,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/functional.py:650: UserWarning: stft with return_complex=False is deprecated. In a future pytorch release, stft will return complex tensors for all inputs, and return_complex=False will raise an error.\n", "Note: you can still call torch.view_as_real on the complex output to recover the old return format. (Triggered internally at ../aten/src/ATen/native/SpectralOps.cpp:863.)\n", " return _VF.stft(input, n_fft, hop_length, win_length, window, # type: ignore[attr-defined]\n" ] @@ -627,10 +627,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:10.364429Z", - "iopub.status.busy": "2024-04-08T19:05:10.364034Z", - "iopub.status.idle": "2024-04-08T19:05:10.367863Z", - "shell.execute_reply": "2024-04-08T19:05:10.367337Z" + "iopub.execute_input": "2024-04-08T21:46:42.374775Z", + "iopub.status.busy": "2024-04-08T21:46:42.374372Z", + "iopub.status.idle": "2024-04-08T21:46:42.378328Z", + "shell.execute_reply": "2024-04-08T21:46:42.377783Z" }, "id": "kAkY31IVXyr8", "outputId": "fd70d8d6-2f11-48d5-ae9c-a8c97d453632" @@ -690,10 +690,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:10.370078Z", - "iopub.status.busy": "2024-04-08T19:05:10.369656Z", - "iopub.status.idle": "2024-04-08T19:05:11.087473Z", - "shell.execute_reply": "2024-04-08T19:05:11.086872Z" + "iopub.execute_input": "2024-04-08T21:46:42.380536Z", + "iopub.status.busy": "2024-04-08T21:46:42.380263Z", + "iopub.status.idle": "2024-04-08T21:46:43.092934Z", + "shell.execute_reply": "2024-04-08T21:46:43.092363Z" }, "id": "i_drkY9YOcw4" }, @@ -727,10 +727,10 @@ "base_uri": "https://localhost:8080/" }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.090530Z", - "iopub.status.busy": "2024-04-08T19:05:11.089968Z", - "iopub.status.idle": "2024-04-08T19:05:11.095044Z", - "shell.execute_reply": "2024-04-08T19:05:11.094507Z" + "iopub.execute_input": "2024-04-08T21:46:43.096735Z", + "iopub.status.busy": "2024-04-08T21:46:43.095799Z", + "iopub.status.idle": "2024-04-08T21:46:43.102487Z", + "shell.execute_reply": "2024-04-08T21:46:43.101995Z" }, "id": "_b-AQeoXOc7q", "outputId": "15ae534a-f517-4906-b177-ca91931a8954" @@ -777,10 +777,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.098295Z", - "iopub.status.busy": "2024-04-08T19:05:11.097250Z", - "iopub.status.idle": "2024-04-08T19:05:11.200881Z", - "shell.execute_reply": "2024-04-08T19:05:11.200284Z" + "iopub.execute_input": "2024-04-08T21:46:43.106104Z", + "iopub.status.busy": "2024-04-08T21:46:43.105172Z", + "iopub.status.idle": "2024-04-08T21:46:43.224734Z", + "shell.execute_reply": "2024-04-08T21:46:43.224179Z" } }, "outputs": [ @@ -817,10 +817,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.203369Z", - "iopub.status.busy": "2024-04-08T19:05:11.202937Z", - "iopub.status.idle": "2024-04-08T19:05:11.215358Z", - "shell.execute_reply": "2024-04-08T19:05:11.214779Z" + "iopub.execute_input": "2024-04-08T21:46:43.227109Z", + "iopub.status.busy": "2024-04-08T21:46:43.226719Z", + "iopub.status.idle": "2024-04-08T21:46:43.239824Z", + "shell.execute_reply": "2024-04-08T21:46:43.239347Z" }, "scrolled": true }, @@ -875,10 +875,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.217681Z", - "iopub.status.busy": "2024-04-08T19:05:11.217301Z", - "iopub.status.idle": "2024-04-08T19:05:11.225343Z", - "shell.execute_reply": "2024-04-08T19:05:11.224791Z" + "iopub.execute_input": "2024-04-08T21:46:43.241973Z", + "iopub.status.busy": "2024-04-08T21:46:43.241609Z", + "iopub.status.idle": "2024-04-08T21:46:43.249511Z", + "shell.execute_reply": "2024-04-08T21:46:43.248996Z" } }, "outputs": [ @@ -982,10 +982,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.227551Z", - "iopub.status.busy": "2024-04-08T19:05:11.227260Z", - "iopub.status.idle": "2024-04-08T19:05:11.231569Z", - "shell.execute_reply": "2024-04-08T19:05:11.231018Z" + "iopub.execute_input": "2024-04-08T21:46:43.251729Z", + "iopub.status.busy": "2024-04-08T21:46:43.251401Z", + "iopub.status.idle": "2024-04-08T21:46:43.255450Z", + "shell.execute_reply": "2024-04-08T21:46:43.254930Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "height": 237 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.233584Z", - "iopub.status.busy": "2024-04-08T19:05:11.233223Z", - "iopub.status.idle": "2024-04-08T19:05:11.238833Z", - "shell.execute_reply": "2024-04-08T19:05:11.238283Z" + "iopub.execute_input": "2024-04-08T21:46:43.257519Z", + "iopub.status.busy": "2024-04-08T21:46:43.257119Z", + "iopub.status.idle": "2024-04-08T21:46:43.262638Z", + "shell.execute_reply": "2024-04-08T21:46:43.262204Z" }, "id": "FQwRHgbclpsO", "outputId": "fee5c335-c00e-4fcc-f22b-718705e93182" @@ -1153,10 +1153,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.240707Z", - "iopub.status.busy": "2024-04-08T19:05:11.240530Z", - "iopub.status.idle": "2024-04-08T19:05:11.595733Z", - "shell.execute_reply": "2024-04-08T19:05:11.595243Z" + "iopub.execute_input": "2024-04-08T21:46:43.264820Z", + "iopub.status.busy": "2024-04-08T21:46:43.264383Z", + "iopub.status.idle": "2024-04-08T21:46:43.617613Z", + "shell.execute_reply": "2024-04-08T21:46:43.617041Z" }, "id": "ff1NFVlDoysO", "outputId": "8141a036-44c1-4349-c338-880432513e37" @@ -1210,10 +1210,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.597887Z", - "iopub.status.busy": "2024-04-08T19:05:11.597533Z", - "iopub.status.idle": "2024-04-08T19:05:11.705498Z", - "shell.execute_reply": "2024-04-08T19:05:11.704961Z" + "iopub.execute_input": "2024-04-08T21:46:43.619986Z", + "iopub.status.busy": "2024-04-08T21:46:43.619555Z", + "iopub.status.idle": "2024-04-08T21:46:43.726639Z", + "shell.execute_reply": "2024-04-08T21:46:43.726089Z" }, "id": "GZgovGkdiaiP", "outputId": "d76b2ccf-8be2-4f3a-df4c-2c5c99150db7" @@ -1258,10 +1258,10 @@ "height": 92 }, "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.707806Z", - "iopub.status.busy": "2024-04-08T19:05:11.707520Z", - "iopub.status.idle": "2024-04-08T19:05:11.814276Z", - "shell.execute_reply": "2024-04-08T19:05:11.813792Z" + "iopub.execute_input": "2024-04-08T21:46:43.728712Z", + "iopub.status.busy": "2024-04-08T21:46:43.728528Z", + "iopub.status.idle": "2024-04-08T21:46:43.833232Z", + "shell.execute_reply": "2024-04-08T21:46:43.832671Z" }, "id": "lfa2eHbMwG8R", "outputId": "6627ebe2-d439-4bf5-e2cb-44f6278ae86c" @@ -1302,10 +1302,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.816405Z", - "iopub.status.busy": "2024-04-08T19:05:11.816094Z", - "iopub.status.idle": "2024-04-08T19:05:11.920916Z", - "shell.execute_reply": "2024-04-08T19:05:11.920366Z" + "iopub.execute_input": "2024-04-08T21:46:43.835431Z", + "iopub.status.busy": "2024-04-08T21:46:43.835246Z", + "iopub.status.idle": "2024-04-08T21:46:43.940278Z", + "shell.execute_reply": "2024-04-08T21:46:43.939779Z" } }, "outputs": [ @@ -1353,10 +1353,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:11.923123Z", - "iopub.status.busy": "2024-04-08T19:05:11.922809Z", - "iopub.status.idle": "2024-04-08T19:05:11.926110Z", - "shell.execute_reply": "2024-04-08T19:05:11.925596Z" + "iopub.execute_input": "2024-04-08T21:46:43.942501Z", + "iopub.status.busy": "2024-04-08T21:46:43.942304Z", + "iopub.status.idle": "2024-04-08T21:46:43.945537Z", + "shell.execute_reply": "2024-04-08T21:46:43.945097Z" }, "nbsphinx": "hidden" }, @@ -1392,28 +1392,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "01548e5746cc4788b0d61577e4b012b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "03e98d7846af44088b8a646b91364594": { + "075334b6408e493583a14d3e74f62432": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1428,15 +1412,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6add2113ed1541dfbdb3c42fbbce25fc", + "layout": "IPY_MODEL_73af6f415da94538a728be63788bfbff", "placeholder": "​", - "style": "IPY_MODEL_fc4736ca693444da8e5b28edfdc65bc5", + "style": "IPY_MODEL_e163ef7db3974864868cb657fa0bb704", "tabbable": null, "tooltip": null, - "value": "hyperparams.yaml: 100%" + "value": " 16.9M/16.9M [00:00<00:00, 273MB/s]" } }, - "099362e1ce5c4a6b8d8d4c331a960d34": { + "1244fb1e07694bc4a5d9f3762d25d7e6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1489,33 +1473,30 @@ "width": null } }, - "10f5629a4670476891a02ba1e61d2b9f": { + "15fb03b8088d44ddbda2fc1ec76c6fa8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_ca834c7b06bd4f90ba096fa6f8d7103c", - "max": 15856877.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_01548e5746cc4788b0d61577e4b012b3", + "layout": "IPY_MODEL_63c11a6a387147ca875d1745d8cd37d4", + "placeholder": "​", + "style": "IPY_MODEL_b9c90fdf46b3407991fa437a42ef1178", "tabbable": null, "tooltip": null, - "value": 15856877.0 + "value": "embedding_model.ckpt: 100%" } }, - "124ddd3253c4476b83146639e17d57b4": { + "17e752b138f24ef699217a8c607a1a35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1530,33 +1511,68 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_37c6159b215f46748ce591cd48fe49f0", + "layout": "IPY_MODEL_d379fc5de5d54cf89f78b2d363a9ff22", "placeholder": "​", - "style": "IPY_MODEL_af4e6010ee0847468fae428d5bceb881", + "style": "IPY_MODEL_8ce14acdd43e49788f8063ea1cc09530", "tabbable": null, "tooltip": null, - "value": "mean_var_norm_emb.ckpt: 100%" + "value": "classifier.ckpt: 100%" } }, - "153a557fc0794ff2b1d801bc73e89764": { - "model_module": "@jupyter-widgets/controls", + "19c4fd2602f14225b68710a08bf108d3": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "15e61f73e248421da683941c01a6ba8a": { + "1e0a13c00c7b4735a637a4d02cff3ea4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1609,49 +1625,41 @@ "width": null } }, - "170825b92f484861b53a305933672d63": { + "225019f5967245de9fbc8a665953fdaa": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7a1b19cb87394307a53c97aa5de7ef54", - "max": 3201.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7c70a56bdf6c4f4e9f2f310fe97caf21", - "tabbable": null, - "tooltip": null, - "value": 3201.0 + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "1845bd7583734a468217bf0a33a4a04e": { + "22b5c167594648b0a13c7ba8163845ca": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "1d8d1f51752d4b69aa1135e17d8449e2": { + "2fcdc31a427e4e4e81995b305cc3aba9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1666,59 +1674,65 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_358c21f56ec2458089c2e7d7e5e7611d", + "layout": "IPY_MODEL_19c4fd2602f14225b68710a08bf108d3", "placeholder": "​", - "style": "IPY_MODEL_b38f5dc0540f47bcb4f22237b8bc10b5", + "style": "IPY_MODEL_53f7634108e341219d63ce6ef49ca3ef", "tabbable": null, "tooltip": null, - "value": "embedding_model.ckpt: 100%" + "value": "label_encoder.txt: 100%" } }, - "1e261881c01a4c82af0950354ddbbf67": { + "32e61e1ee4e948d994f4c9f9ae5a397d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7187ee77d34d4ee58aea3e5ef7ea0d6f", - "max": 128619.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a84cb458429f4ac9ba17b78d73eb1b9c", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2fcdc31a427e4e4e81995b305cc3aba9", + "IPY_MODEL_fffbd405efcf42bca8daf86a7e152ab6", + "IPY_MODEL_d274e31b0792469397067015426d9787" + ], + "layout": "IPY_MODEL_1e0a13c00c7b4735a637a4d02cff3ea4", "tabbable": null, - "tooltip": null, - "value": 128619.0 + "tooltip": null } }, - "2398940ef11744cd931d78b60fe1bf96": { + "35a5c5c8b75b44eea1d17aa40ef6d836": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8872e03905bf4e6fbafe66867b62e61e", + "max": 16887676.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_a651acdfc2374773b4219c96fdbeeddc", + "tabbable": null, + "tooltip": null, + "value": 16887676.0 } }, - "344f8176bb9c4df2b5f5c5842359b28c": { + "3f9bfe896e864053ae276eac3fc3dd11": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -1733,122 +1747,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d7cff1a5c1c84b53a0f820ae0ae64f22", - "IPY_MODEL_10f5629a4670476891a02ba1e61d2b9f", - "IPY_MODEL_8227ef3e4a1d4b60bb8d49436af87b02" + "IPY_MODEL_15fb03b8088d44ddbda2fc1ec76c6fa8", + "IPY_MODEL_35a5c5c8b75b44eea1d17aa40ef6d836", + "IPY_MODEL_075334b6408e493583a14d3e74f62432" ], - "layout": "IPY_MODEL_6b1d25f5e1274b7087e5be1edb44f263", + "layout": "IPY_MODEL_aaea6b337a7848419be2e9c56fafb34c", "tabbable": null, "tooltip": null } }, - "358c21f56ec2458089c2e7d7e5e7611d": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "3656dfd1293341618ec097a837ccf824": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "37c6159b215f46748ce591cd48fe49f0": { + "4edc2366535f448dbe4023432c3633cb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1901,94 +1809,33 @@ "width": null } }, - "3b7f0046c33247249156bee86a8ab344": { + "51ac0e8dccad4edd924bbaf904abfcb3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3f10333ce59449f8893619a6a1200e72": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_15e61f73e248421da683941c01a6ba8a", - "placeholder": "​", - "style": "IPY_MODEL_770aeb28530d4716aeceac624b99192d", - "tabbable": null, - "tooltip": null, - "value": " 129k/129k [00:00<00:00, 1.94MB/s]" - } - }, - "47f17e40d80540e8b9cd62de82c60b92": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6b84bee63e5341e68a70a1df0644c356", - "placeholder": "​", - "style": "IPY_MODEL_702d80d4b5874038a51e0c3fe4e29c9c", - "tabbable": null, - "tooltip": null, - "value": " 16.9M/16.9M [00:00<00:00, 50.6MB/s]" - } - }, - "4911164b858e49c1b45c2acea166106f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0a147631094428498d5242f0dae3a28", - "placeholder": "​", - "style": "IPY_MODEL_3b7f0046c33247249156bee86a8ab344", + "layout": "IPY_MODEL_8a55cfdc621b43dca46743e02d939b50", + "max": 15856877.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e9d566cadf134454b79fc7ebbeb33a20", "tabbable": null, "tooltip": null, - "value": " 3.20k/3.20k [00:00<00:00, 736kB/s]" + "value": 15856877.0 } }, - "49d50cf65e2243fe85ea4efa439383a4": { + "53f7634108e341219d63ce6ef49ca3ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2006,7 +1853,7 @@ "text_color": null } }, - "4a17f13f9daa4bd3a9e0f9a6bdcd54ce": { + "588cd470563744a8a6f189faadf66f72": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2021,81 +1868,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_bca20dd54024424b908c519dc7c65413", + "layout": "IPY_MODEL_e15cd2da984a447b9901acf000da5696", "placeholder": "​", - "style": "IPY_MODEL_6e856fb0c33a4b509b13af9f0bfa347d", + "style": "IPY_MODEL_b23b7540b02448b2b482342f9560dfd9", "tabbable": null, "tooltip": null, - "value": " 2.04k/2.04k [00:00<00:00, 458kB/s]" + "value": " 15.9M/15.9M [00:00<00:00, 357MB/s]" } }, - "4c8c8519a91e4cf59efc5ee43887ceef": { + "6168b11b46e34cd08bb7daaddb4dbd24": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "593320329ae4474ea377016a9d84c521": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_03e98d7846af44088b8a646b91364594", - "IPY_MODEL_9dcd19b1766a4f0f9e62b19feae944e0", - "IPY_MODEL_4a17f13f9daa4bd3a9e0f9a6bdcd54ce" - ], - "layout": "IPY_MODEL_6f1084b3c29943cbae5ae582af5573d2", - "tabbable": null, - "tooltip": null - } - }, - "605873f7b6924ba3a2b8d496de6a3f37": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_099362e1ce5c4a6b8d8d4c331a960d34", - "max": 16887676.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_4c8c8519a91e4cf59efc5ee43887ceef", - "tabbable": null, - "tooltip": null, - "value": 16887676.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "6232f100dcfc4faea627bbfd5cf8d09e": { + "63c11a6a387147ca875d1745d8cd37d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2148,7 +1947,33 @@ "width": null } }, - "69f610d6cd3c4ac58e8089ac7c27c111": { + "6bf87a06e0074711be4c07ad294186ba": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e18c887b081047ef8e89b5693274fb68", + "max": 2041.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_225019f5967245de9fbc8a665953fdaa", + "tabbable": null, + "tooltip": null, + "value": 2041.0 + } + }, + "6edf9ec332d349d199a268e10bbc57a6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2163,16 +1988,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1d8d1f51752d4b69aa1135e17d8449e2", - "IPY_MODEL_605873f7b6924ba3a2b8d496de6a3f37", - "IPY_MODEL_47f17e40d80540e8b9cd62de82c60b92" + "IPY_MODEL_17e752b138f24ef699217a8c607a1a35", + "IPY_MODEL_51ac0e8dccad4edd924bbaf904abfcb3", + "IPY_MODEL_588cd470563744a8a6f189faadf66f72" ], - "layout": "IPY_MODEL_789cb19d03704e0b95b9af8afa82d248", + "layout": "IPY_MODEL_8bdde82a297643e0915d4e0f05872bc9", "tabbable": null, "tooltip": null } }, - "6add2113ed1541dfbdb3c42fbbce25fc": { + "6fdb6b81c8ff49838d7b5a65396e758d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "73af6f415da94538a728be63788bfbff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2225,7 +2066,7 @@ "width": null } }, - "6b1d25f5e1274b7087e5be1edb44f263": { + "7489ee03697647e7bead734f066bdec9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2278,7 +2119,54 @@ "width": null } }, - "6b84bee63e5341e68a70a1df0644c356": { + "7b5b3d7f80774c069aeece5b4445cc9e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1244fb1e07694bc4a5d9f3762d25d7e6", + "placeholder": "​", + "style": "IPY_MODEL_6168b11b46e34cd08bb7daaddb4dbd24", + "tabbable": null, + "tooltip": null, + "value": "hyperparams.yaml: 100%" + } + }, + "7bddaeb1c8d646cc86ce1814e0b84af7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7b5b3d7f80774c069aeece5b4445cc9e", + "IPY_MODEL_6bf87a06e0074711be4c07ad294186ba", + "IPY_MODEL_d0945ec956ca47888e039ac1328a65be" + ], + "layout": "IPY_MODEL_bd8ad09cb8494acebe57ecb387be412f", + "tabbable": null, + "tooltip": null + } + }, + "8872e03905bf4e6fbafe66867b62e61e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2331,7 +2219,7 @@ "width": null } }, - "6d97e6b4b14a4b088f0a5c2c2e610564": { + "8a55cfdc621b43dca46743e02d939b50": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2384,25 +2272,7 @@ "width": null } }, - "6e856fb0c33a4b509b13af9f0bfa347d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6f1084b3c29943cbae5ae582af5573d2": { + "8bdde82a297643e0915d4e0f05872bc9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2455,7 +2325,7 @@ "width": null } }, - "702d80d4b5874038a51e0c3fe4e29c9c": { + "8ce14acdd43e49788f8063ea1cc09530": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2473,7 +2343,30 @@ "text_color": null } }, - "7187ee77d34d4ee58aea3e5ef7ea0d6f": { + "91eedf6f909d486193f547f4d356dec1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d6452fcb7dcd438b8c518801f21d00f9", + "placeholder": "​", + "style": "IPY_MODEL_22b5c167594648b0a13c7ba8163845ca", + "tabbable": null, + "tooltip": null, + "value": "mean_var_norm_emb.ckpt: 100%" + } + }, + "97bccf449f9746e2885c6da3c9637630": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2526,25 +2419,23 @@ "width": null } }, - "770aeb28530d4716aeceac624b99192d": { + "a651acdfc2374773b4219c96fdbeeddc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "789cb19d03704e0b95b9af8afa82d248": { + "aaea6b337a7848419be2e9c56fafb34c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2597,7 +2488,79 @@ "width": null } }, - "7a1b19cb87394307a53c97aa5de7ef54": { + "ab57eb9e37934f99b1ec7359bb4ebcb5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b23b7540b02448b2b482342f9560dfd9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b8d3f54af27047e4a1eb00ff08ebd390": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9c90fdf46b3407991fa437a42ef1178": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bd8ad09cb8494acebe57ecb387be412f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2650,72 +2613,25 @@ "width": null } }, - "7c70a56bdf6c4f4e9f2f310fe97caf21": { + "c2f599c6567c459588cdfbf816c4fe0a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8227ef3e4a1d4b60bb8d49436af87b02": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_fa4f7d539024400ead56c0975b429f2c", - "placeholder": "​", - "style": "IPY_MODEL_49d50cf65e2243fe85ea4efa439383a4", - "tabbable": null, - "tooltip": null, - "value": " 15.9M/15.9M [00:00<00:00, 47.3MB/s]" - } - }, - "9dcd19b1766a4f0f9e62b19feae944e0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_a2ac773a77354c65a9b27aead854f501", - "max": 2041.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_1845bd7583734a468217bf0a33a4a04e", - "tabbable": null, - "tooltip": null, - "value": 2041.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "a2ac773a77354c65a9b27aead854f501": { + "ccd7ea66a83c47579621976004eceb5d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2768,83 +2684,53 @@ "width": null } }, - "a84cb458429f4ac9ba17b78d73eb1b9c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "a992a72ca18a4979975cfb11417f3b00": { + "d0945ec956ca47888e039ac1328a65be": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_124ddd3253c4476b83146639e17d57b4", - "IPY_MODEL_170825b92f484861b53a305933672d63", - "IPY_MODEL_4911164b858e49c1b45c2acea166106f" - ], - "layout": "IPY_MODEL_6232f100dcfc4faea627bbfd5cf8d09e", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_97bccf449f9746e2885c6da3c9637630", + "placeholder": "​", + "style": "IPY_MODEL_c2f599c6567c459588cdfbf816c4fe0a", "tabbable": null, - "tooltip": null - } - }, - "af4e6010ee0847468fae428d5bceb881": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null, + "value": " 2.04k/2.04k [00:00<00:00, 485kB/s]" } }, - "b38f5dc0540f47bcb4f22237b8bc10b5": { + "d274e31b0792469397067015426d9787": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7489ee03697647e7bead734f066bdec9", + "placeholder": "​", + "style": "IPY_MODEL_b8d3f54af27047e4a1eb00ff08ebd390", + "tabbable": null, + "tooltip": null, + "value": " 129k/129k [00:00<00:00, 19.5MB/s]" } }, - "bca20dd54024424b908c519dc7c65413": { + "d379fc5de5d54cf89f78b2d363a9ff22": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2897,7 +2783,7 @@ "width": null } }, - "c05dd7bca0b442bbb6c59095a6fdc7da": { + "d6452fcb7dcd438b8c518801f21d00f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2950,7 +2836,7 @@ "width": null } }, - "c0a147631094428498d5242f0dae3a28": { + "d9e7d5bb38104159b058af86874b0dc0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3003,7 +2889,33 @@ "width": null } }, - "ca834c7b06bd4f90ba096fa6f8d7103c": { + "e0cf5ae27479482a9a65314726432496": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d9e7d5bb38104159b058af86874b0dc0", + "max": 3201.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_e21bc6b293a9483fbf8542a1cebc1b21", + "tabbable": null, + "tooltip": null, + "value": 3201.0 + } + }, + "e15cd2da984a447b9901acf000da5696": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3056,77 +2968,94 @@ "width": null } }, - "d7cff1a5c1c84b53a0f820ae0ae64f22": { + "e163ef7db3974864868cb657fa0bb704": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c05dd7bca0b442bbb6c59095a6fdc7da", - "placeholder": "​", - "style": "IPY_MODEL_2398940ef11744cd931d78b60fe1bf96", - "tabbable": null, - "tooltip": null, - "value": "classifier.ckpt: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "f91d49b1c62d4d839fff74899d0af511": { - "model_module": "@jupyter-widgets/controls", + "e18c887b081047ef8e89b5693274fb68": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_f98ecf4b23e04508a03cf3042be644e5", - "IPY_MODEL_1e261881c01a4c82af0950354ddbbf67", - "IPY_MODEL_3f10333ce59449f8893619a6a1200e72" - ], - "layout": "IPY_MODEL_6d97e6b4b14a4b088f0a5c2c2e610564", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "f98ecf4b23e04508a03cf3042be644e5": { + "e21bc6b293a9483fbf8542a1cebc1b21": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3656dfd1293341618ec097a837ccf824", - "placeholder": "​", - "style": "IPY_MODEL_153a557fc0794ff2b1d801bc73e89764", - "tabbable": null, - "tooltip": null, - "value": "label_encoder.txt: 100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "fa4f7d539024400ead56c0975b429f2c": { + "e7cba0272ea442f2a451aa872e63340f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3179,22 +3108,93 @@ "width": null } }, - "fc4736ca693444da8e5b28edfdc65bc5": { + "e9d566cadf134454b79fc7ebbeb33a20": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" + } + }, + "f436adae9f644a6eae3b0e9f18233771": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_91eedf6f909d486193f547f4d356dec1", + "IPY_MODEL_e0cf5ae27479482a9a65314726432496", + "IPY_MODEL_ff44bc096e2b4d36879ef4f61660135d" + ], + "layout": "IPY_MODEL_ccd7ea66a83c47579621976004eceb5d", + "tabbable": null, + "tooltip": null + } + }, + "ff44bc096e2b4d36879ef4f61660135d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_e7cba0272ea442f2a451aa872e63340f", + "placeholder": "​", + "style": "IPY_MODEL_ab57eb9e37934f99b1ec7359bb4ebcb5", + "tabbable": null, + "tooltip": null, + "value": " 3.20k/3.20k [00:00<00:00, 687kB/s]" + } + }, + "fffbd405efcf42bca8daf86a7e152ab6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4edc2366535f448dbe4023432c3633cb", + "max": 128619.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6fdb6b81c8ff49838d7b5a65396e758d", + "tabbable": null, + "tooltip": null, + "value": 128619.0 } } }, diff --git a/master/tutorials/datalab/data_monitor.html b/master/tutorials/datalab/data_monitor.html index 2d2aa7411..3a4a2f76d 100644 --- a/master/tutorials/datalab/data_monitor.html +++ b/master/tutorials/datalab/data_monitor.html @@ -661,7 +661,7 @@

    1. Install and import required dependenciesdependencies = ["cleanlab", "matplotlib", "datasets"] # TODO: make sure this list is updated if "google.colab" in str(get_ipython()): # Check if it's running in Google Colab - %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06 + %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4 cmd = ' '.join([dep for dep in dependencies if dep != "cleanlab"]) %pip install $cmd else: @@ -1144,7 +1144,7 @@

    5. Use DataMonitor to find issues in new data
    -
    +
    diff --git a/master/tutorials/datalab/data_monitor.ipynb b/master/tutorials/datalab/data_monitor.ipynb index f4ed52c9a..97c3b399b 100644 --- a/master/tutorials/datalab/data_monitor.ipynb +++ b/master/tutorials/datalab/data_monitor.ipynb @@ -66,10 +66,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:16.056480Z", - "iopub.status.busy": "2024-04-08T19:05:16.056305Z", - "iopub.status.idle": "2024-04-08T19:05:17.226995Z", - "shell.execute_reply": "2024-04-08T19:05:17.226456Z" + "iopub.execute_input": "2024-04-08T21:46:47.309811Z", + "iopub.status.busy": "2024-04-08T21:46:47.309301Z", + "iopub.status.idle": "2024-04-08T21:46:48.481457Z", + "shell.execute_reply": "2024-04-08T21:46:48.480910Z" } }, "outputs": [], @@ -78,7 +78,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -103,10 +103,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.229650Z", - "iopub.status.busy": "2024-04-08T19:05:17.229169Z", - "iopub.status.idle": "2024-04-08T19:05:17.235852Z", - "shell.execute_reply": "2024-04-08T19:05:17.235318Z" + "iopub.execute_input": "2024-04-08T21:46:48.484191Z", + "iopub.status.busy": "2024-04-08T21:46:48.483673Z", + "iopub.status.idle": "2024-04-08T21:46:48.490491Z", + "shell.execute_reply": "2024-04-08T21:46:48.490050Z" } }, "outputs": [], @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.238153Z", - "iopub.status.busy": "2024-04-08T19:05:17.237822Z", - "iopub.status.idle": "2024-04-08T19:05:17.246365Z", - "shell.execute_reply": "2024-04-08T19:05:17.245924Z" + "iopub.execute_input": "2024-04-08T21:46:48.492816Z", + "iopub.status.busy": "2024-04-08T21:46:48.492448Z", + "iopub.status.idle": "2024-04-08T21:46:48.501255Z", + "shell.execute_reply": "2024-04-08T21:46:48.500686Z" } }, "outputs": [], @@ -334,10 +334,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.248259Z", - "iopub.status.busy": "2024-04-08T19:05:17.247938Z", - "iopub.status.idle": "2024-04-08T19:05:17.252838Z", - "shell.execute_reply": "2024-04-08T19:05:17.252440Z" + "iopub.execute_input": "2024-04-08T21:46:48.503414Z", + "iopub.status.busy": "2024-04-08T21:46:48.502991Z", + "iopub.status.idle": "2024-04-08T21:46:48.508220Z", + "shell.execute_reply": "2024-04-08T21:46:48.507681Z" } }, "outputs": [], @@ -350,10 +350,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.254810Z", - "iopub.status.busy": "2024-04-08T19:05:17.254482Z", - "iopub.status.idle": "2024-04-08T19:05:17.258040Z", - "shell.execute_reply": "2024-04-08T19:05:17.257638Z" + "iopub.execute_input": "2024-04-08T21:46:48.510469Z", + "iopub.status.busy": "2024-04-08T21:46:48.510030Z", + "iopub.status.idle": "2024-04-08T21:46:48.514048Z", + "shell.execute_reply": "2024-04-08T21:46:48.513452Z" } }, "outputs": [], @@ -431,10 +431,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.260050Z", - "iopub.status.busy": "2024-04-08T19:05:17.259858Z", - "iopub.status.idle": "2024-04-08T19:05:17.444599Z", - "shell.execute_reply": "2024-04-08T19:05:17.444055Z" + "iopub.execute_input": "2024-04-08T21:46:48.516428Z", + "iopub.status.busy": "2024-04-08T21:46:48.516073Z", + "iopub.status.idle": "2024-04-08T21:46:48.705964Z", + "shell.execute_reply": "2024-04-08T21:46:48.705408Z" } }, "outputs": [], @@ -488,10 +488,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.447058Z", - "iopub.status.busy": "2024-04-08T19:05:17.446673Z", - "iopub.status.idle": "2024-04-08T19:05:17.799282Z", - "shell.execute_reply": "2024-04-08T19:05:17.798689Z" + "iopub.execute_input": "2024-04-08T21:46:48.708435Z", + "iopub.status.busy": "2024-04-08T21:46:48.708134Z", + "iopub.status.idle": "2024-04-08T21:46:49.020587Z", + "shell.execute_reply": "2024-04-08T21:46:49.019983Z" } }, "outputs": [ @@ -534,10 +534,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.801743Z", - "iopub.status.busy": "2024-04-08T19:05:17.801312Z", - "iopub.status.idle": "2024-04-08T19:05:17.826322Z", - "shell.execute_reply": "2024-04-08T19:05:17.825758Z" + "iopub.execute_input": "2024-04-08T21:46:49.023175Z", + "iopub.status.busy": "2024-04-08T21:46:49.022724Z", + "iopub.status.idle": "2024-04-08T21:46:49.048986Z", + "shell.execute_reply": "2024-04-08T21:46:49.048484Z" } }, "outputs": [], @@ -562,10 +562,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:17.828759Z", - "iopub.status.busy": "2024-04-08T19:05:17.828309Z", - "iopub.status.idle": "2024-04-08T19:05:19.538623Z", - "shell.execute_reply": "2024-04-08T19:05:19.537994Z" + "iopub.execute_input": "2024-04-08T21:46:49.051534Z", + "iopub.status.busy": "2024-04-08T21:46:49.051180Z", + "iopub.status.idle": "2024-04-08T21:46:50.831438Z", + "shell.execute_reply": "2024-04-08T21:46:50.830767Z" } }, "outputs": [ @@ -648,10 +648,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:19.541116Z", - "iopub.status.busy": "2024-04-08T19:05:19.540792Z", - "iopub.status.idle": "2024-04-08T19:05:19.544925Z", - "shell.execute_reply": "2024-04-08T19:05:19.544368Z" + "iopub.execute_input": "2024-04-08T21:46:50.834310Z", + "iopub.status.busy": "2024-04-08T21:46:50.833641Z", + "iopub.status.idle": "2024-04-08T21:46:50.837317Z", + "shell.execute_reply": "2024-04-08T21:46:50.836858Z" } }, "outputs": [], @@ -677,10 +677,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:19.546793Z", - "iopub.status.busy": "2024-04-08T19:05:19.546613Z", - "iopub.status.idle": "2024-04-08T19:05:19.556501Z", - "shell.execute_reply": "2024-04-08T19:05:19.555938Z" + "iopub.execute_input": "2024-04-08T21:46:50.839767Z", + "iopub.status.busy": "2024-04-08T21:46:50.839217Z", + "iopub.status.idle": "2024-04-08T21:46:50.849279Z", + "shell.execute_reply": "2024-04-08T21:46:50.848803Z" } }, "outputs": [], @@ -717,17 +717,17 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:19.558684Z", - "iopub.status.busy": "2024-04-08T19:05:19.558297Z", - "iopub.status.idle": "2024-04-08T19:05:24.640462Z", - "shell.execute_reply": "2024-04-08T19:05:24.639883Z" + "iopub.execute_input": "2024-04-08T21:46:50.851780Z", + "iopub.status.busy": "2024-04-08T21:46:50.851339Z", + "iopub.status.idle": "2024-04-08T21:46:55.941462Z", + "shell.execute_reply": "2024-04-08T21:46:55.940890Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2f47e1ed2b654c57ae612b85caf87e33", + "model_id": "dd9bc0b122de4712b0e614f5a179510b", "version_major": 2, "version_minor": 0 }, @@ -787,17 +787,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:24.642651Z", - "iopub.status.busy": "2024-04-08T19:05:24.642467Z", - "iopub.status.idle": "2024-04-08T19:05:29.933144Z", - "shell.execute_reply": "2024-04-08T19:05:29.932579Z" + "iopub.execute_input": "2024-04-08T21:46:55.943566Z", + "iopub.status.busy": "2024-04-08T21:46:55.943382Z", + "iopub.status.idle": "2024-04-08T21:47:01.234847Z", + "shell.execute_reply": "2024-04-08T21:47:01.234195Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4f0377a4700449e9a6fbad55e512beac", + "model_id": "6f6822b15a1b41639b45b38ccada0827", "version_major": 2, "version_minor": 0 }, @@ -925,10 +925,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:29.936196Z", - "iopub.status.busy": "2024-04-08T19:05:29.935831Z", - "iopub.status.idle": "2024-04-08T19:05:29.947084Z", - "shell.execute_reply": "2024-04-08T19:05:29.946554Z" + "iopub.execute_input": "2024-04-08T21:47:01.237226Z", + "iopub.status.busy": "2024-04-08T21:47:01.236877Z", + "iopub.status.idle": "2024-04-08T21:47:01.248897Z", + "shell.execute_reply": "2024-04-08T21:47:01.248298Z" } }, "outputs": [ @@ -1161,10 +1161,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:29.948874Z", - "iopub.status.busy": "2024-04-08T19:05:29.948698Z", - "iopub.status.idle": "2024-04-08T19:05:29.953956Z", - "shell.execute_reply": "2024-04-08T19:05:29.953551Z" + "iopub.execute_input": "2024-04-08T21:47:01.251238Z", + "iopub.status.busy": "2024-04-08T21:47:01.250901Z", + "iopub.status.idle": "2024-04-08T21:47:01.256954Z", + "shell.execute_reply": "2024-04-08T21:47:01.256421Z" } }, "outputs": [ @@ -1239,88 +1239,54 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "07acb035ab04489f9387d9718ae0300d": { - "model_module": "@jupyter-widgets/base", + "0aa6659850fe4e79a26b7978710eeaa1": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "128d9f5df2814c66a3994457d9355ec0": { + "0b9b88a256d043a79accdf9d825e6985": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1da7bf46e2e44e11bba14d6dae15180c", - "placeholder": "​", - "style": "IPY_MODEL_b5256e93be0b4752bbb5eb28c7e6b6f3", + "layout": "IPY_MODEL_1eea7f8a61de4034a961a93dad3037b7", + "max": 7.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0aa6659850fe4e79a26b7978710eeaa1", "tabbable": null, "tooltip": null, - "value": "Streaming data, 1 sample(s) at a time: 100%" + "value": 7.0 } }, - "12aaf4ab3e33466480a03090a29d35e8": { + "1aabbd2c3af849c08cf70f6590988067": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -1338,30 +1304,7 @@ "text_color": null } }, - "16a9cd2938bc424383031abcba4a9aef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e08a5d72b2194307864f4fe35d00d7fd", - "placeholder": "​", - "style": "IPY_MODEL_12aaf4ab3e33466480a03090a29d35e8", - "tabbable": null, - "tooltip": null, - "value": "Streaming data, 50 sample(s) at a time: 100%" - } - }, - "1da7bf46e2e44e11bba14d6dae15180c": { + "1eea7f8a61de4034a961a93dad3037b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1414,73 +1357,7 @@ "width": null } }, - "2f47e1ed2b654c57ae612b85caf87e33": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_128d9f5df2814c66a3994457d9355ec0", - "IPY_MODEL_9f28e0c0d18f40d1ac7a57021a0ec5c4", - "IPY_MODEL_ddda3b38d5674c32b89992a35a8fe972" - ], - "layout": "IPY_MODEL_b8ebaa74de964a48a3838444eb1fd68e", - "tabbable": null, - "tooltip": null - } - }, - "4ecbe2397e5f4e2fad1fea3a2a4dab1e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "4f0377a4700449e9a6fbad55e512beac": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_16a9cd2938bc424383031abcba4a9aef", - "IPY_MODEL_f5759780d23e477cb1d346cb79ba1321", - "IPY_MODEL_cf3a3cedd097445ba4955da8f0688ad1" - ], - "layout": "IPY_MODEL_b9b22bcc90da434db4010e9e0673f277", - "tabbable": null, - "tooltip": null - } - }, - "6895df27e56b437fb02601057f040882": { + "279da469c42149398c8727ab7f1271e5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1533,25 +1410,7 @@ "width": null } }, - "719c4562a8ea4c4fa3a5ad72ded78285": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9a88ec1f13854a04a2b9086e55a17666": { + "4445e16f91ea45b29adf46a84a23437b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1604,51 +1463,88 @@ "width": null } }, - "9f28e0c0d18f40d1ac7a57021a0ec5c4": { + "5d5c2c26c0e941b6a859f64594af2bba": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "67b1307ec4144ec1951c603d06f96d02": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "6f6822b15a1b41639b45b38ccada0827": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_6895df27e56b437fb02601057f040882", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fdd6323d006e4b4aa97d49eb699a8f62", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a94018857fce4be0971b1be5c6295bd0", + "IPY_MODEL_0b9b88a256d043a79accdf9d825e6985", + "IPY_MODEL_98c25daab3164fb8850a905b3c1a3aa2" + ], + "layout": "IPY_MODEL_a3f25968ad5445fa9d789978efeda319", "tabbable": null, - "tooltip": null, - "value": 50.0 + "tooltip": null } }, - "b5256e93be0b4752bbb5eb28c7e6b6f3": { + "80f2ec2d5c484a7d8e31435e56746646": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_eafbe803f5164a2ab9af557b3bf093d8", + "placeholder": "​", + "style": "IPY_MODEL_aeeabaa8cbf049478bbf67ccb23dd34d", + "tabbable": null, + "tooltip": null, + "value": " 50/50 [00:05<00:00,  9.86it/s]" } }, - "b8ebaa74de964a48a3838444eb1fd68e": { + "8581f3f9342445a6b226293974c3d1c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1701,7 +1597,53 @@ "width": null } }, - "b9b22bcc90da434db4010e9e0673f277": { + "8a0f89b88eb446bf809da9d3796c89d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4445e16f91ea45b29adf46a84a23437b", + "placeholder": "​", + "style": "IPY_MODEL_5d5c2c26c0e941b6a859f64594af2bba", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 1 sample(s) at a time: 100%" + } + }, + "98c25daab3164fb8850a905b3c1a3aa2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_ddffffa6f50d434fa99ca024682f5b74", + "placeholder": "​", + "style": "IPY_MODEL_1aabbd2c3af849c08cf70f6590988067", + "tabbable": null, + "tooltip": null, + "value": " 7/7 [00:05<00:00,  1.33it/s]" + } + }, + "a3f25968ad5445fa9d789978efeda319": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1754,69 +1696,98 @@ "width": null } }, - "c64971c872874384ad842ab855a0b637": { + "a94018857fce4be0971b1be5c6295bd0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_279da469c42149398c8727ab7f1271e5", + "placeholder": "​", + "style": "IPY_MODEL_e3f7267b00ae4de988f45d8d8821ac36", + "tabbable": null, + "tooltip": null, + "value": "Streaming data, 50 sample(s) at a time: 100%" + } + }, + "aeeabaa8cbf049478bbf67ccb23dd34d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "cf3a3cedd097445ba4955da8f0688ad1": { + "d29d050eb8c0431db05402ef718d91f5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_9a88ec1f13854a04a2b9086e55a17666", - "placeholder": "​", - "style": "IPY_MODEL_719c4562a8ea4c4fa3a5ad72ded78285", + "layout": "IPY_MODEL_8581f3f9342445a6b226293974c3d1c4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_67b1307ec4144ec1951c603d06f96d02", "tabbable": null, "tooltip": null, - "value": " 7/7 [00:05<00:00,  1.33it/s]" + "value": 50.0 } }, - "ddda3b38d5674c32b89992a35a8fe972": { + "dd9bc0b122de4712b0e614f5a179510b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_07acb035ab04489f9387d9718ae0300d", - "placeholder": "​", - "style": "IPY_MODEL_4ecbe2397e5f4e2fad1fea3a2a4dab1e", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_8a0f89b88eb446bf809da9d3796c89d0", + "IPY_MODEL_d29d050eb8c0431db05402ef718d91f5", + "IPY_MODEL_80f2ec2d5c484a7d8e31435e56746646" + ], + "layout": "IPY_MODEL_f562be6fdfa3467992127de79759d533", "tabbable": null, - "tooltip": null, - "value": " 50/50 [00:05<00:00,  9.89it/s]" + "tooltip": null } }, - "e08a5d72b2194307864f4fe35d00d7fd": { + "ddffffa6f50d434fa99ca024682f5b74": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1869,7 +1840,25 @@ "width": null } }, - "e1d064cb9adb4b7fbfd292215390a0d8": { + "e3f7267b00ae4de988f45d8d8821ac36": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "eafbe803f5164a2ab9af557b3bf093d8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1922,46 +1911,57 @@ "width": null } }, - "f5759780d23e477cb1d346cb79ba1321": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e1d064cb9adb4b7fbfd292215390a0d8", - "max": 7.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c64971c872874384ad842ab855a0b637", - "tabbable": null, - "tooltip": null, - "value": 7.0 - } - }, - "fdd6323d006e4b4aa97d49eb699a8f62": { - "model_module": "@jupyter-widgets/controls", + "f562be6fdfa3467992127de79759d533": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } }, diff --git a/master/tutorials/datalab/datalab_advanced.html b/master/tutorials/datalab/datalab_advanced.html index aad672423..21f757856 100644 --- a/master/tutorials/datalab/datalab_advanced.html +++ b/master/tutorials/datalab/datalab_advanced.html @@ -1121,7 +1121,7 @@

    Functionality 2: Specifying nondefault arguments
    -
    +
    @@ -1517,7 +1517,7 @@

    Functionality 4: Adding a custom IssueManager -{"state": {"46bd17b1514d4e52ae0383c64d6489cd": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "228185c613e04c9eac97098f61b94e68": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "1ae88ebb9093404db35f11a77eebf512": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_46bd17b1514d4e52ae0383c64d6489cd", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_228185c613e04c9eac97098f61b94e68", "tabbable": null, "tooltip": null, "value": 132.0}}, "0c239304d29045c1b64914dcd438f404": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d88ce31af6724956a7b3b62d32858b5b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "914ce1df641b45febd754b94855f6758": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0c239304d29045c1b64914dcd438f404", "placeholder": "\u200b", "style": "IPY_MODEL_d88ce31af6724956a7b3b62d32858b5b", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "ece75fa4a34244dc9e9c365738e7868a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "128b3b1a069d412baa8c95c1d60454a4": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "b964e793dbdf439ab0a15c97a2a25707": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ece75fa4a34244dc9e9c365738e7868a", "placeholder": "\u200b", "style": "IPY_MODEL_128b3b1a069d412baa8c95c1d60454a4", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712706.22\u2007examples/s]"}}, "a6fe3071a0de43bf8ba390921942df7b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "97cce15af35f4ce7a71bfd4e784c1928": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_914ce1df641b45febd754b94855f6758", "IPY_MODEL_1ae88ebb9093404db35f11a77eebf512", "IPY_MODEL_b964e793dbdf439ab0a15c97a2a25707"], "layout": "IPY_MODEL_a6fe3071a0de43bf8ba390921942df7b", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"5ae9c41d8dd8452faae9b9d02aed240c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "82f57933ecec4eb5a7d4cd8c9b23669e": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "ee462a99228f44328125bb1bb160caaf": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5ae9c41d8dd8452faae9b9d02aed240c", "max": 132.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_82f57933ecec4eb5a7d4cd8c9b23669e", "tabbable": null, "tooltip": null, "value": 132.0}}, "0ca7d89a08744483aa2512d854a4d03b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6a2eac2bd8c3427b831c174aad907c2e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "1d9ba12450e5401f96f2bed872610271": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0ca7d89a08744483aa2512d854a4d03b", "placeholder": "\u200b", "style": "IPY_MODEL_6a2eac2bd8c3427b831c174aad907c2e", "tabbable": null, "tooltip": null, "value": "Saving\u2007the\u2007dataset\u2007(1/1\u2007shards):\u2007100%"}}, "d46d94d436a84b2f95fd49145cafffaf": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6665b5b18ca5461285a1cb801000029b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "37c4b0c4f690409b99aa509ad64f8666": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_d46d94d436a84b2f95fd49145cafffaf", "placeholder": "\u200b", "style": "IPY_MODEL_6665b5b18ca5461285a1cb801000029b", "tabbable": null, "tooltip": null, "value": "\u2007132/132\u2007[00:00<00:00,\u200712034.26\u2007examples/s]"}}, "97693c0270884eec8d11a6e85f876393": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "b1f6da7561e24947bb89a6bf8eed1b5d": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_1d9ba12450e5401f96f2bed872610271", "IPY_MODEL_ee462a99228f44328125bb1bb160caaf", "IPY_MODEL_37c4b0c4f690409b99aa509ad64f8666"], "layout": "IPY_MODEL_97693c0270884eec8d11a6e85f876393", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/datalab/datalab_advanced.ipynb b/master/tutorials/datalab/datalab_advanced.ipynb index e435a28b7..a36e945c4 100644 --- a/master/tutorials/datalab/datalab_advanced.ipynb +++ b/master/tutorials/datalab/datalab_advanced.ipynb @@ -80,10 +80,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:32.399757Z", - "iopub.status.busy": "2024-04-08T19:05:32.399402Z", - "iopub.status.idle": "2024-04-08T19:05:33.528700Z", - "shell.execute_reply": "2024-04-08T19:05:33.528208Z" + "iopub.execute_input": "2024-04-08T21:47:03.846355Z", + "iopub.status.busy": "2024-04-08T21:47:03.846183Z", + "iopub.status.idle": "2024-04-08T21:47:05.014972Z", + "shell.execute_reply": "2024-04-08T21:47:05.014384Z" }, "nbsphinx": "hidden" }, @@ -93,7 +93,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -118,10 +118,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.531324Z", - "iopub.status.busy": "2024-04-08T19:05:33.530883Z", - "iopub.status.idle": "2024-04-08T19:05:33.533905Z", - "shell.execute_reply": "2024-04-08T19:05:33.533461Z" + "iopub.execute_input": "2024-04-08T21:47:05.017594Z", + "iopub.status.busy": "2024-04-08T21:47:05.017160Z", + "iopub.status.idle": "2024-04-08T21:47:05.020320Z", + "shell.execute_reply": "2024-04-08T21:47:05.019760Z" } }, "outputs": [], @@ -252,10 +252,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.536089Z", - "iopub.status.busy": "2024-04-08T19:05:33.535766Z", - "iopub.status.idle": "2024-04-08T19:05:33.544759Z", - "shell.execute_reply": "2024-04-08T19:05:33.544339Z" + "iopub.execute_input": "2024-04-08T21:47:05.022528Z", + "iopub.status.busy": "2024-04-08T21:47:05.022111Z", + "iopub.status.idle": "2024-04-08T21:47:05.030785Z", + "shell.execute_reply": "2024-04-08T21:47:05.030251Z" }, "nbsphinx": "hidden" }, @@ -353,10 +353,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.546655Z", - "iopub.status.busy": "2024-04-08T19:05:33.546328Z", - "iopub.status.idle": "2024-04-08T19:05:33.551312Z", - "shell.execute_reply": "2024-04-08T19:05:33.550798Z" + "iopub.execute_input": "2024-04-08T21:47:05.032764Z", + "iopub.status.busy": "2024-04-08T21:47:05.032462Z", + "iopub.status.idle": "2024-04-08T21:47:05.037816Z", + "shell.execute_reply": "2024-04-08T21:47:05.037252Z" } }, "outputs": [], @@ -445,10 +445,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.553494Z", - "iopub.status.busy": "2024-04-08T19:05:33.553202Z", - "iopub.status.idle": "2024-04-08T19:05:33.734474Z", - "shell.execute_reply": "2024-04-08T19:05:33.733871Z" + "iopub.execute_input": "2024-04-08T21:47:05.040234Z", + "iopub.status.busy": "2024-04-08T21:47:05.039770Z", + "iopub.status.idle": "2024-04-08T21:47:05.223875Z", + "shell.execute_reply": "2024-04-08T21:47:05.223263Z" }, "nbsphinx": "hidden" }, @@ -517,10 +517,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:33.736929Z", - "iopub.status.busy": "2024-04-08T19:05:33.736685Z", - "iopub.status.idle": "2024-04-08T19:05:34.103381Z", - "shell.execute_reply": "2024-04-08T19:05:34.102792Z" + "iopub.execute_input": "2024-04-08T21:47:05.226517Z", + "iopub.status.busy": "2024-04-08T21:47:05.226061Z", + "iopub.status.idle": "2024-04-08T21:47:05.599132Z", + "shell.execute_reply": "2024-04-08T21:47:05.598663Z" } }, "outputs": [ @@ -569,10 +569,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:34.105764Z", - "iopub.status.busy": "2024-04-08T19:05:34.105419Z", - "iopub.status.idle": "2024-04-08T19:05:34.129090Z", - "shell.execute_reply": "2024-04-08T19:05:34.128647Z" + "iopub.execute_input": "2024-04-08T21:47:05.601510Z", + "iopub.status.busy": "2024-04-08T21:47:05.601099Z", + "iopub.status.idle": "2024-04-08T21:47:05.624551Z", + "shell.execute_reply": "2024-04-08T21:47:05.623976Z" } }, "outputs": [], @@ -608,10 +608,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:34.131072Z", - "iopub.status.busy": "2024-04-08T19:05:34.130769Z", - "iopub.status.idle": "2024-04-08T19:05:34.141791Z", - "shell.execute_reply": "2024-04-08T19:05:34.141283Z" + "iopub.execute_input": "2024-04-08T21:47:05.626729Z", + "iopub.status.busy": "2024-04-08T21:47:05.626407Z", + "iopub.status.idle": "2024-04-08T21:47:05.637567Z", + "shell.execute_reply": "2024-04-08T21:47:05.637012Z" } }, "outputs": [], @@ -642,10 +642,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:34.144081Z", - "iopub.status.busy": "2024-04-08T19:05:34.143717Z", - "iopub.status.idle": "2024-04-08T19:05:35.791854Z", - "shell.execute_reply": "2024-04-08T19:05:35.791186Z" + "iopub.execute_input": "2024-04-08T21:47:05.640008Z", + "iopub.status.busy": "2024-04-08T21:47:05.639591Z", + "iopub.status.idle": "2024-04-08T21:47:07.344313Z", + "shell.execute_reply": "2024-04-08T21:47:07.343747Z" } }, "outputs": [ @@ -709,10 +709,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.794545Z", - "iopub.status.busy": "2024-04-08T19:05:35.793952Z", - "iopub.status.idle": "2024-04-08T19:05:35.815345Z", - "shell.execute_reply": "2024-04-08T19:05:35.814802Z" + "iopub.execute_input": "2024-04-08T21:47:07.346976Z", + "iopub.status.busy": "2024-04-08T21:47:07.346415Z", + "iopub.status.idle": "2024-04-08T21:47:07.368225Z", + "shell.execute_reply": "2024-04-08T21:47:07.367746Z" } }, "outputs": [ @@ -821,10 +821,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.817441Z", - "iopub.status.busy": "2024-04-08T19:05:35.817058Z", - "iopub.status.idle": "2024-04-08T19:05:35.836184Z", - "shell.execute_reply": "2024-04-08T19:05:35.835672Z" + "iopub.execute_input": "2024-04-08T21:47:07.370279Z", + "iopub.status.busy": "2024-04-08T21:47:07.369977Z", + "iopub.status.idle": "2024-04-08T21:47:07.389483Z", + "shell.execute_reply": "2024-04-08T21:47:07.388911Z" } }, "outputs": [ @@ -910,7 +910,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['is_outlier_issue', 'outlier_score'] in self.issues with columns from issue manager OutlierIssueManager.\n", + "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:348: UserWarning: Overwriting columns ['outlier_score', 'is_outlier_issue'] in self.issues with columns from issue manager OutlierIssueManager.\n", " warnings.warn(\n", "/home/runner/work/cleanlab/cleanlab/cleanlab/datalab/internal/data_issues.py:378: UserWarning: Overwriting row in self.issue_summary with row from issue manager OutlierIssueManager.\n", " warnings.warn(\n", @@ -936,10 +936,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.838193Z", - "iopub.status.busy": "2024-04-08T19:05:35.838020Z", - "iopub.status.idle": "2024-04-08T19:05:35.852488Z", - "shell.execute_reply": "2024-04-08T19:05:35.852042Z" + "iopub.execute_input": "2024-04-08T21:47:07.391593Z", + "iopub.status.busy": "2024-04-08T21:47:07.391381Z", + "iopub.status.idle": "2024-04-08T21:47:07.406810Z", + "shell.execute_reply": "2024-04-08T21:47:07.406258Z" } }, "outputs": [ @@ -1069,17 +1069,17 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.854417Z", - "iopub.status.busy": "2024-04-08T19:05:35.854247Z", - "iopub.status.idle": "2024-04-08T19:05:35.873232Z", - "shell.execute_reply": "2024-04-08T19:05:35.872705Z" + "iopub.execute_input": "2024-04-08T21:47:07.409224Z", + "iopub.status.busy": "2024-04-08T21:47:07.408781Z", + "iopub.status.idle": "2024-04-08T21:47:07.429310Z", + "shell.execute_reply": "2024-04-08T21:47:07.428791Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "97cce15af35f4ce7a71bfd4e784c1928", + "model_id": "b1f6da7561e24947bb89a6bf8eed1b5d", "version_major": 2, "version_minor": 0 }, @@ -1115,10 +1115,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.875329Z", - "iopub.status.busy": "2024-04-08T19:05:35.874965Z", - "iopub.status.idle": "2024-04-08T19:05:35.889385Z", - "shell.execute_reply": "2024-04-08T19:05:35.888962Z" + "iopub.execute_input": "2024-04-08T21:47:07.431484Z", + "iopub.status.busy": "2024-04-08T21:47:07.431141Z", + "iopub.status.idle": "2024-04-08T21:47:07.446362Z", + "shell.execute_reply": "2024-04-08T21:47:07.445910Z" } }, "outputs": [ @@ -1236,10 +1236,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.891511Z", - "iopub.status.busy": "2024-04-08T19:05:35.891109Z", - "iopub.status.idle": "2024-04-08T19:05:35.896831Z", - "shell.execute_reply": "2024-04-08T19:05:35.896325Z" + "iopub.execute_input": "2024-04-08T21:47:07.448684Z", + "iopub.status.busy": "2024-04-08T21:47:07.448249Z", + "iopub.status.idle": "2024-04-08T21:47:07.454227Z", + "shell.execute_reply": "2024-04-08T21:47:07.453665Z" } }, "outputs": [], @@ -1296,10 +1296,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:35.898838Z", - "iopub.status.busy": "2024-04-08T19:05:35.898541Z", - "iopub.status.idle": "2024-04-08T19:05:35.915657Z", - "shell.execute_reply": "2024-04-08T19:05:35.915214Z" + "iopub.execute_input": "2024-04-08T21:47:07.456366Z", + "iopub.status.busy": "2024-04-08T21:47:07.455967Z", + "iopub.status.idle": "2024-04-08T21:47:07.473550Z", + "shell.execute_reply": "2024-04-08T21:47:07.473081Z" } }, "outputs": [ @@ -1421,7 +1421,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "vscode": { "interpreter": { @@ -1431,7 +1431,7 @@ "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0c239304d29045c1b64914dcd438f404": { + "0ca7d89a08744483aa2512d854a4d03b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1484,67 +1484,53 @@ "width": null } }, - "128b3b1a069d412baa8c95c1d60454a4": { + "1d9ba12450e5401f96f2bed872610271": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "1ae88ebb9093404db35f11a77eebf512": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_46bd17b1514d4e52ae0383c64d6489cd", - "max": 132.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_228185c613e04c9eac97098f61b94e68", + "layout": "IPY_MODEL_0ca7d89a08744483aa2512d854a4d03b", + "placeholder": "​", + "style": "IPY_MODEL_6a2eac2bd8c3427b831c174aad907c2e", "tabbable": null, "tooltip": null, - "value": 132.0 + "value": "Saving the dataset (1/1 shards): 100%" } }, - "228185c613e04c9eac97098f61b94e68": { + "37c4b0c4f690409b99aa509ad64f8666": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_d46d94d436a84b2f95fd49145cafffaf", + "placeholder": "​", + "style": "IPY_MODEL_6665b5b18ca5461285a1cb801000029b", + "tabbable": null, + "tooltip": null, + "value": " 132/132 [00:00<00:00, 12034.26 examples/s]" } }, - "46bd17b1514d4e52ae0383c64d6489cd": { + "5ae9c41d8dd8452faae9b9d02aed240c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1597,54 +1583,59 @@ "width": null } }, - "914ce1df641b45febd754b94855f6758": { + "6665b5b18ca5461285a1cb801000029b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_0c239304d29045c1b64914dcd438f404", - "placeholder": "​", - "style": "IPY_MODEL_d88ce31af6724956a7b3b62d32858b5b", - "tabbable": null, - "tooltip": null, - "value": "Saving the dataset (1/1 shards): 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "97cce15af35f4ce7a71bfd4e784c1928": { + "6a2eac2bd8c3427b831c174aad907c2e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_914ce1df641b45febd754b94855f6758", - "IPY_MODEL_1ae88ebb9093404db35f11a77eebf512", - "IPY_MODEL_b964e793dbdf439ab0a15c97a2a25707" - ], - "layout": "IPY_MODEL_a6fe3071a0de43bf8ba390921942df7b", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "82f57933ecec4eb5a7d4cd8c9b23669e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "a6fe3071a0de43bf8ba390921942df7b": { + "97693c0270884eec8d11a6e85f876393": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1697,48 +1688,31 @@ "width": null } }, - "b964e793dbdf439ab0a15c97a2a25707": { + "b1f6da7561e24947bb89a6bf8eed1b5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ece75fa4a34244dc9e9c365738e7868a", - "placeholder": "​", - "style": "IPY_MODEL_128b3b1a069d412baa8c95c1d60454a4", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1d9ba12450e5401f96f2bed872610271", + "IPY_MODEL_ee462a99228f44328125bb1bb160caaf", + "IPY_MODEL_37c4b0c4f690409b99aa509ad64f8666" + ], + "layout": "IPY_MODEL_97693c0270884eec8d11a6e85f876393", "tabbable": null, - "tooltip": null, - "value": " 132/132 [00:00<00:00, 12706.22 examples/s]" - } - }, - "d88ce31af6724956a7b3b62d32858b5b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "tooltip": null } }, - "ece75fa4a34244dc9e9c365738e7868a": { + "d46d94d436a84b2f95fd49145cafffaf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1790,6 +1764,32 @@ "visibility": null, "width": null } + }, + "ee462a99228f44328125bb1bb160caaf": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_5ae9c41d8dd8452faae9b9d02aed240c", + "max": 132.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_82f57933ecec4eb5a7d4cd8c9b23669e", + "tabbable": null, + "tooltip": null, + "value": 132.0 + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/datalab_quickstart.html b/master/tutorials/datalab/datalab_quickstart.html index 27e4100ad..47ebe938a 100644 --- a/master/tutorials/datalab/datalab_quickstart.html +++ b/master/tutorials/datalab/datalab_quickstart.html @@ -881,7 +881,7 @@

    3. Get out-of-sample predicted probabilities from a classifier
    -/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.
       warnings.warn(
     

    @@ -938,7 +938,7 @@

    4. Use Datalab to find issues in the dataset
    -/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
       warnings.warn(
     
    diff --git a/master/tutorials/datalab/datalab_quickstart.ipynb b/master/tutorials/datalab/datalab_quickstart.ipynb index f898d2d07..cc8684ece 100644 --- a/master/tutorials/datalab/datalab_quickstart.ipynb +++ b/master/tutorials/datalab/datalab_quickstart.ipynb @@ -78,10 +78,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:38.472111Z", - "iopub.status.busy": "2024-04-08T19:05:38.471945Z", - "iopub.status.idle": "2024-04-08T19:05:39.585652Z", - "shell.execute_reply": "2024-04-08T19:05:39.585065Z" + "iopub.execute_input": "2024-04-08T21:47:10.095704Z", + "iopub.status.busy": "2024-04-08T21:47:10.095344Z", + "iopub.status.idle": "2024-04-08T21:47:11.259014Z", + "shell.execute_reply": "2024-04-08T21:47:11.258367Z" }, "nbsphinx": "hidden" }, @@ -91,7 +91,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"] # TODO: make sure this list is updated\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -116,10 +116,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.588303Z", - "iopub.status.busy": "2024-04-08T19:05:39.588056Z", - "iopub.status.idle": "2024-04-08T19:05:39.591474Z", - "shell.execute_reply": "2024-04-08T19:05:39.590968Z" + "iopub.execute_input": "2024-04-08T21:47:11.261676Z", + "iopub.status.busy": "2024-04-08T21:47:11.261389Z", + "iopub.status.idle": "2024-04-08T21:47:11.264583Z", + "shell.execute_reply": "2024-04-08T21:47:11.264112Z" } }, "outputs": [], @@ -250,10 +250,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.593440Z", - "iopub.status.busy": "2024-04-08T19:05:39.593184Z", - "iopub.status.idle": "2024-04-08T19:05:39.602136Z", - "shell.execute_reply": "2024-04-08T19:05:39.601699Z" + "iopub.execute_input": "2024-04-08T21:47:11.266764Z", + "iopub.status.busy": "2024-04-08T21:47:11.266337Z", + "iopub.status.idle": "2024-04-08T21:47:11.275441Z", + "shell.execute_reply": "2024-04-08T21:47:11.274906Z" }, "nbsphinx": "hidden" }, @@ -356,10 +356,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.604078Z", - "iopub.status.busy": "2024-04-08T19:05:39.603759Z", - "iopub.status.idle": "2024-04-08T19:05:39.608027Z", - "shell.execute_reply": "2024-04-08T19:05:39.607640Z" + "iopub.execute_input": "2024-04-08T21:47:11.277319Z", + "iopub.status.busy": "2024-04-08T21:47:11.277011Z", + "iopub.status.idle": "2024-04-08T21:47:11.282210Z", + "shell.execute_reply": "2024-04-08T21:47:11.281648Z" } }, "outputs": [], @@ -448,10 +448,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.609991Z", - "iopub.status.busy": "2024-04-08T19:05:39.609678Z", - "iopub.status.idle": "2024-04-08T19:05:39.789021Z", - "shell.execute_reply": "2024-04-08T19:05:39.788487Z" + "iopub.execute_input": "2024-04-08T21:47:11.284444Z", + "iopub.status.busy": "2024-04-08T21:47:11.284128Z", + "iopub.status.idle": "2024-04-08T21:47:11.475769Z", + "shell.execute_reply": "2024-04-08T21:47:11.475183Z" }, "nbsphinx": "hidden" }, @@ -520,10 +520,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:39.791556Z", - "iopub.status.busy": "2024-04-08T19:05:39.791137Z", - "iopub.status.idle": "2024-04-08T19:05:40.161861Z", - "shell.execute_reply": "2024-04-08T19:05:40.161278Z" + "iopub.execute_input": "2024-04-08T21:47:11.478198Z", + "iopub.status.busy": "2024-04-08T21:47:11.477866Z", + "iopub.status.idle": "2024-04-08T21:47:11.841699Z", + "shell.execute_reply": "2024-04-08T21:47:11.841089Z" } }, "outputs": [ @@ -559,10 +559,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:40.164104Z", - "iopub.status.busy": "2024-04-08T19:05:40.163680Z", - "iopub.status.idle": "2024-04-08T19:05:40.166534Z", - "shell.execute_reply": "2024-04-08T19:05:40.165994Z" + "iopub.execute_input": "2024-04-08T21:47:11.843887Z", + "iopub.status.busy": "2024-04-08T21:47:11.843650Z", + "iopub.status.idle": "2024-04-08T21:47:11.846554Z", + "shell.execute_reply": "2024-04-08T21:47:11.846003Z" } }, "outputs": [], @@ -602,10 +602,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:40.168465Z", - "iopub.status.busy": "2024-04-08T19:05:40.168160Z", - "iopub.status.idle": "2024-04-08T19:05:40.204106Z", - "shell.execute_reply": "2024-04-08T19:05:40.203573Z" + "iopub.execute_input": "2024-04-08T21:47:11.848818Z", + "iopub.status.busy": "2024-04-08T21:47:11.848482Z", + "iopub.status.idle": "2024-04-08T21:47:11.884903Z", + "shell.execute_reply": "2024-04-08T21:47:11.884311Z" } }, "outputs": [ @@ -613,7 +613,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/model_selection/_split.py:737: UserWarning: The least populated class in y has only 3 members, which is less than n_splits=5.\n", " warnings.warn(\n" ] } @@ -647,10 +647,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:40.206126Z", - "iopub.status.busy": "2024-04-08T19:05:40.205831Z", - "iopub.status.idle": "2024-04-08T19:05:41.861121Z", - "shell.execute_reply": "2024-04-08T19:05:41.860499Z" + "iopub.execute_input": "2024-04-08T21:47:11.887326Z", + "iopub.status.busy": "2024-04-08T21:47:11.886977Z", + "iopub.status.idle": "2024-04-08T21:47:13.612164Z", + "shell.execute_reply": "2024-04-08T21:47:13.611468Z" } }, "outputs": [ @@ -688,7 +688,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -711,10 +711,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.863740Z", - "iopub.status.busy": "2024-04-08T19:05:41.863237Z", - "iopub.status.idle": "2024-04-08T19:05:41.882767Z", - "shell.execute_reply": "2024-04-08T19:05:41.882319Z" + "iopub.execute_input": "2024-04-08T21:47:13.614733Z", + "iopub.status.busy": "2024-04-08T21:47:13.614125Z", + "iopub.status.idle": "2024-04-08T21:47:13.633970Z", + "shell.execute_reply": "2024-04-08T21:47:13.633488Z" } }, "outputs": [ @@ -842,10 +842,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.884850Z", - "iopub.status.busy": "2024-04-08T19:05:41.884544Z", - "iopub.status.idle": "2024-04-08T19:05:41.890743Z", - "shell.execute_reply": "2024-04-08T19:05:41.890221Z" + "iopub.execute_input": "2024-04-08T21:47:13.636314Z", + "iopub.status.busy": "2024-04-08T21:47:13.636020Z", + "iopub.status.idle": "2024-04-08T21:47:13.642889Z", + "shell.execute_reply": "2024-04-08T21:47:13.642292Z" } }, "outputs": [ @@ -956,10 +956,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.892670Z", - "iopub.status.busy": "2024-04-08T19:05:41.892376Z", - "iopub.status.idle": "2024-04-08T19:05:41.897724Z", - "shell.execute_reply": "2024-04-08T19:05:41.897233Z" + "iopub.execute_input": "2024-04-08T21:47:13.645278Z", + "iopub.status.busy": "2024-04-08T21:47:13.645054Z", + "iopub.status.idle": "2024-04-08T21:47:13.651206Z", + "shell.execute_reply": "2024-04-08T21:47:13.650653Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.899726Z", - "iopub.status.busy": "2024-04-08T19:05:41.899419Z", - "iopub.status.idle": "2024-04-08T19:05:41.909317Z", - "shell.execute_reply": "2024-04-08T19:05:41.908907Z" + "iopub.execute_input": "2024-04-08T21:47:13.653923Z", + "iopub.status.busy": "2024-04-08T21:47:13.653395Z", + "iopub.status.idle": "2024-04-08T21:47:13.664569Z", + "shell.execute_reply": "2024-04-08T21:47:13.664034Z" } }, "outputs": [ @@ -1221,10 +1221,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.911355Z", - "iopub.status.busy": "2024-04-08T19:05:41.911042Z", - "iopub.status.idle": "2024-04-08T19:05:41.919704Z", - "shell.execute_reply": "2024-04-08T19:05:41.919301Z" + "iopub.execute_input": "2024-04-08T21:47:13.667793Z", + "iopub.status.busy": "2024-04-08T21:47:13.667305Z", + "iopub.status.idle": "2024-04-08T21:47:13.677997Z", + "shell.execute_reply": "2024-04-08T21:47:13.677410Z" } }, "outputs": [ @@ -1340,10 +1340,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.921572Z", - "iopub.status.busy": "2024-04-08T19:05:41.921400Z", - "iopub.status.idle": "2024-04-08T19:05:41.928223Z", - "shell.execute_reply": "2024-04-08T19:05:41.927710Z" + "iopub.execute_input": "2024-04-08T21:47:13.680519Z", + "iopub.status.busy": "2024-04-08T21:47:13.680342Z", + "iopub.status.idle": "2024-04-08T21:47:13.687707Z", + "shell.execute_reply": "2024-04-08T21:47:13.687174Z" }, "scrolled": true }, @@ -1468,10 +1468,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:41.930139Z", - "iopub.status.busy": "2024-04-08T19:05:41.929966Z", - "iopub.status.idle": "2024-04-08T19:05:41.939155Z", - "shell.execute_reply": "2024-04-08T19:05:41.938682Z" + "iopub.execute_input": "2024-04-08T21:47:13.690113Z", + "iopub.status.busy": "2024-04-08T21:47:13.689806Z", + "iopub.status.idle": "2024-04-08T21:47:13.700432Z", + "shell.execute_reply": "2024-04-08T21:47:13.699847Z" } }, "outputs": [ @@ -1586,7 +1586,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "vscode": { "interpreter": { diff --git a/master/tutorials/datalab/image.html b/master/tutorials/datalab/image.html index d990358da..365f604a6 100644 --- a/master/tutorials/datalab/image.html +++ b/master/tutorials/datalab/image.html @@ -694,21 +694,59 @@

    2. Fetch and normalize the Fashion-MNIST dataset
    -Downloading data: 100%|██████████| 30.9M/30.9M [00:00<00:00, 44.8MB/s]
    -Downloading data: 100%|██████████| 5.18M/5.18M [00:00<00:00, 24.7MB/s]
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/datasets/load.py:1461: FutureWarning: The repository for fashion_mnist contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/fashion_mnist
    +You can avoid this message in future by passing the argument `trust_remote_code=True`.
    +Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
    +  warnings.warn(
     
    -
    +
    + +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    -
    +
    + +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +
    +

    Convert the transformed dataset to a torch dataset. Torch datasets are more efficient with dataloading in practice.

    @@ -1021,7 +1059,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1053,7 +1091,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1085,7 +1123,7 @@

    5. Compute out-of-sample predicted probabilities and feature embeddings
    -
    +
    @@ -1171,7 +1209,7 @@

    7. Use cleanlab to find issues
    -
    +
    @@ -2003,35 +2041,35 @@

    Low information images - is_low_information_issue low_information_score + is_low_information_issue 53050 - True 0.067975 + True 40875 - True 0.089929 + True 9594 - True 0.092601 + True 34825 - True 0.107744 + True 37530 - True 0.108516 + True @@ -2059,7 +2097,7 @@

    Easy ModeCleanlab Studio which will automatically produce one for you. Super easy to use, Cleanlab Studio is no-code platform for data-centric AI that automatically: detects data issues (more types of issues than this cleanlab package), helps you quickly correct these data issues, confidently labels large subsets of an unlabeled dataset, and provides other smart metadata about each of your data points – all powered by a system that automatically trains/deploys the best ML model for your data. Try it for free!

    diff --git a/master/tutorials/datalab/image.ipynb b/master/tutorials/datalab/image.ipynb index e5222c4f6..7bd202343 100644 --- a/master/tutorials/datalab/image.ipynb +++ b/master/tutorials/datalab/image.ipynb @@ -71,10 +71,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:44.455598Z", - "iopub.status.busy": "2024-04-08T19:05:44.455183Z", - "iopub.status.idle": "2024-04-08T19:05:47.311029Z", - "shell.execute_reply": "2024-04-08T19:05:47.310392Z" + "iopub.execute_input": "2024-04-08T21:47:16.566734Z", + "iopub.status.busy": "2024-04-08T21:47:16.566240Z", + "iopub.status.idle": "2024-04-08T21:47:19.469564Z", + "shell.execute_reply": "2024-04-08T21:47:19.469001Z" }, "nbsphinx": "hidden" }, @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:47.313575Z", - "iopub.status.busy": "2024-04-08T19:05:47.313285Z", - "iopub.status.idle": "2024-04-08T19:05:47.317021Z", - "shell.execute_reply": "2024-04-08T19:05:47.316573Z" + "iopub.execute_input": "2024-04-08T21:47:19.472242Z", + "iopub.status.busy": "2024-04-08T21:47:19.471767Z", + "iopub.status.idle": "2024-04-08T21:47:19.475393Z", + "shell.execute_reply": "2024-04-08T21:47:19.474949Z" } }, "outputs": [], @@ -152,10 +152,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:05:47.319045Z", - "iopub.status.busy": "2024-04-08T19:05:47.318749Z", - "iopub.status.idle": "2024-04-08T19:06:52.995269Z", - "shell.execute_reply": "2024-04-08T19:06:52.994727Z" + "iopub.execute_input": "2024-04-08T21:47:19.477575Z", + "iopub.status.busy": "2024-04-08T21:47:19.477256Z", + "iopub.status.idle": "2024-04-08T21:47:34.371529Z", + "shell.execute_reply": "2024-04-08T21:47:34.371021Z" } }, "outputs": [ @@ -163,84 +163,100 @@ "name": "stderr", "output_type": "stream", "text": [ - "\r", - "Downloading data: 0%| | 0.00/30.9M [00:00\n", " \n", " \n", - " is_low_information_issue\n", " low_information_score\n", + " is_low_information_issue\n", " \n", " \n", " \n", " \n", " 53050\n", - " True\n", " 0.067975\n", + " True\n", " \n", " \n", " 40875\n", - " True\n", " 0.089929\n", + " True\n", " \n", " \n", " 9594\n", - " True\n", " 0.092601\n", + " True\n", " \n", " \n", " 34825\n", - " True\n", " 0.107744\n", + " True\n", " \n", " \n", " 37530\n", - " True\n", " 0.108516\n", + " True\n", " \n", " \n", "\n", "

    " ], "text/plain": [ - " is_low_information_issue low_information_score\n", - "53050 True 0.067975\n", - "40875 True 0.089929\n", - "9594 True 0.092601\n", - "34825 True 0.107744\n", - "37530 True 0.108516" + " low_information_score is_low_information_issue\n", + "53050 0.067975 True\n", + "40875 0.089929 True\n", + "9594 0.092601 True\n", + "34825 0.107744 True\n", + "37530 0.108516 True" ] }, "execution_count": 29, @@ -2505,10 +2521,10 @@ "execution_count": 30, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:35.515941Z", - "iopub.status.busy": "2024-04-08T19:11:35.515782Z", - "iopub.status.idle": "2024-04-08T19:11:35.714780Z", - "shell.execute_reply": "2024-04-08T19:11:35.714213Z" + "iopub.execute_input": "2024-04-08T21:52:03.234392Z", + "iopub.status.busy": "2024-04-08T21:52:03.233969Z", + "iopub.status.idle": "2024-04-08T21:52:03.411498Z", + "shell.execute_reply": "2024-04-08T21:52:03.410961Z" } }, "outputs": [ @@ -2548,10 +2564,10 @@ "execution_count": 31, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:35.716901Z", - "iopub.status.busy": "2024-04-08T19:11:35.716713Z", - "iopub.status.idle": "2024-04-08T19:11:35.721189Z", - "shell.execute_reply": "2024-04-08T19:11:35.720773Z" + "iopub.execute_input": "2024-04-08T21:52:03.413736Z", + "iopub.status.busy": "2024-04-08T21:52:03.413425Z", + "iopub.status.idle": "2024-04-08T21:52:03.417949Z", + "shell.execute_reply": "2024-04-08T21:52:03.417412Z" }, "nbsphinx": "hidden" }, @@ -2583,30 +2599,61 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "0211903c89794ee8b6917c76a058c50e": { + "0335b135459448a380a56a4a2f03a803": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_3e0c9c429462439c875768218d7ca59f", + "placeholder": "​", + "style": "IPY_MODEL_11aad4e58c0c49b7b219a7fbe712b4ce", + "tabbable": null, + "tooltip": null, + "value": " 4.42M/4.42M [00:00<00:00, 110MB/s]" + } + }, + "03fa6e364e0e4f6bb452b91bedc8a2fe": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dc246c2851c40f08c572a67e66e7301", + "max": 4833.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b5749bdf13ef41baa1daf1f02cc73b9d", + "tabbable": null, + "tooltip": null, + "value": 4833.0 } }, - "051beaa23ca4413db29dc6c87c6eb69c": { + "04b92da13b0c4c75a183bd50b0a6c521": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2659,73 +2706,60 @@ "width": null } }, - "08fafba5db2c49c199f47a5f187bd97d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2d19bf757fc54a04bea20bd6a7bfe3bd", - "max": 10000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_0ba9b8ac89734f8aa6f7b25158ce1c26", - "tabbable": null, - "tooltip": null, - "value": 10000.0 - } - }, - "0ba9b8ac89734f8aa6f7b25158ce1c26": { - "model_module": "@jupyter-widgets/controls", + "060116cd285f45b396aa0250f869ed37": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0eb8f33ec6a4418f82faef40016d8087": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ce79bcbda6944e0a843326c3542493d", - "IPY_MODEL_e19c6ab20a44441b82013b108be2dfe5", - "IPY_MODEL_f070a30dde5346f9a173c14652288a61" - ], - "layout": "IPY_MODEL_f229cd5bb5604bc2bbb59bbf7c81d777", - "tabbable": null, - "tooltip": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "1489dff3fa9f4025b92de6f3b08f875e": { + "060b26c4387641f18969f931eda67a58": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2740,41 +2774,178 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_2f250b135ef04e06b65dc22fa2cbe7ea", + "layout": "IPY_MODEL_83a7f5605cd74a39a39f4ac06ad000a5", "placeholder": "​", - "style": "IPY_MODEL_608e038942dc41a99c6a0a85532e4742", + "style": "IPY_MODEL_3c57645c25e846e38584c73cb0254776", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Downloading builder script: 100%" } }, - "1518031392e944988beab26f0ec70ea0": { - "model_module": "@jupyter-widgets/controls", + "0679fd79d81c4038ae4baa274ff41fcc": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "069823c8410341e387fab4cdcb7b544f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "084e242823f646118a48f13fc96c989e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "08e5a3ca3e5149968a395b4f74479527": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0a0a3ab84aac4f058fee654dfd87e91c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_34b68eb2ae824e30b199e73d4a24f9d7", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_934292ec1d1f47d7bfc3a64e97e22164", + "layout": "IPY_MODEL_62fef8ba9afd439d87bdf6141e12e04f", + "placeholder": "​", + "style": "IPY_MODEL_492ff423b97d41089be33686c5f45f69", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 60000/60000 [00:10<00:00, 6392.52 examples/s]" } }, - "1595a1d05b1744eeb8405298fae08359": { + "0b4b6942ccd94d6db3414455189bb279": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2789,59 +2960,78 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_fb2af0144f1742c1a26396a9b5fe4c73", + "layout": "IPY_MODEL_eec85798b4bb4fd7ba35f169778dd388", "placeholder": "​", - "style": "IPY_MODEL_b809fa6c8639462db220a761b405d58d", + "style": "IPY_MODEL_fde506e16fa7472a918e451309dce944", "tabbable": null, "tooltip": null, - "value": "100%" + "value": "Map (num_proc=4): 100%" } }, - "1a475bdd7b6b4cffa0aa39c22e228634": { + "0b8846ffb3154d8fa596963bb1b3430a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_72ef0108d5814322b3ca06bd5220584b", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_ee8869c02a164612932f45b84d319cd2", + "layout": "IPY_MODEL_71dc0680b39d44e9a3fcced776dfd1a1", + "placeholder": "​", + "style": "IPY_MODEL_c37e5818b51843d48af7853c7cc09b8c", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 40/40 [00:00<00:00, 66.19it/s]" } }, - "1bf8c6f4bc3e4633b0c368f433ba214d": { + "0b936baef62d4b9ea6d5475df12615bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7da5300051464425a0e73ef5b54480fb", + "IPY_MODEL_78479cdd20634d17a3dde521f1088eb2", + "IPY_MODEL_284dd9794afa44c6a9f87f914424ed05" + ], + "layout": "IPY_MODEL_de855a646f7c426a8fde27ab76d99054", + "tabbable": null, + "tooltip": null + } + }, + "0c5b188654734b69aae83e2f434936eb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "1bf974982e4e4b2481c1302de4d0bb3b": { + "0e39680e776642d99133ea3c9cb6b549": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2894,7 +3084,7 @@ "width": null } }, - "1d72b73af5474a01bc6184c102001f9f": { + "0f14ea82f33d423898cfb2294c37b2a8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2947,25 +3137,23 @@ "width": null } }, - "1feb2d3d69ac43679423195bacfa218a": { + "0f3d168bca9043f199579eb971f1dd5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "bar_color": null, + "description_width": "" } }, - "2021e36f762d452aa27e529207b4d1fa": { + "11aad4e58c0c49b7b219a7fbe712b4ce": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2983,33 +3171,30 @@ "text_color": null } }, - "228bd7d078cf45699f3b012c267f6eb0": { + "1466c7a2dd12411f8c7d48a92b5b0cc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_eafbc6640e3840d6acb39b13445654da", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_7c1f0a8a503e4e499f398654a3f934e5", + "layout": "IPY_MODEL_5635b52f823246d4907609b392a4e7ee", + "placeholder": "​", + "style": "IPY_MODEL_db64502840c7414da075ee43783d9e27", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 4.83k/4.83k [00:00<00:00, 571kB/s]" } }, - "248aafd9fcd240928857d2c42d281abd": { + "161bd482c3a14a8584538e20932a3972": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3062,53 +3247,7 @@ "width": null } }, - "27d17868cbd6451ebcf8d7c7951e2a77": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_61971c6d7922459a9b1ed0c9c414cdca", - "placeholder": "​", - "style": "IPY_MODEL_49cb378542644b368738ecd332b0a762", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 69.64it/s]" - } - }, - "28e8e7e456ea491db9b2409a1bb6ee44": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd462dfa7f9949738f0551ce01718b0d", - "placeholder": "​", - "style": "IPY_MODEL_512b4394b0e84a1d9765ebc108a8dbdf", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "2c4e61dacdec449ab2e9fa6b6459f6bb": { + "1701ce288cb24a99852c823b536b8cad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3161,10 +3300,103 @@ "width": null } }, - "2d19bf757fc54a04bea20bd6a7bfe3bd": { - "model_module": "@jupyter-widgets/base", + "17bb456dd5184411ab0d0d1f0c5184e8": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a03072fef52147009d588789cfdacee7", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_52d04582235d42df801c89e6302f264b", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "17f01d5a37aa4bd195596c2c296ea219": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2e09f123e9dc436b96cae75fc2c420aa", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0f3d168bca9043f199579eb971f1dd5d", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "198792c6737e438bb7f0faf3dac545d4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a36c6c2c8bf24a01bbeecdf56f927a59", + "placeholder": "​", + "style": "IPY_MODEL_19d85da657774d468fc18f4072ec0dd0", + "tabbable": null, + "tooltip": null, + "value": "Generating train split: 100%" + } + }, + "19d85da657774d468fc18f4072ec0dd0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "1d8819d55dd74096aa3de00bdecebf4f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", @@ -3214,31 +3446,56 @@ "width": null } }, - "2dcb1da8fc8746cb8d2bcbb0b5fbca34": { + "1d9627123cb147dfbfbb157e6bc581e8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_3b1df04f38894cdbb06719a2c258a28e", - "IPY_MODEL_bbab2e26c4fd423dacd41b5823f1e144", - "IPY_MODEL_ed9f2e8995144260afc1a776c3c728c6" - ], - "layout": "IPY_MODEL_1bf974982e4e4b2481c1302de4d0bb3b", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9242853c5f904484b85109473134a791", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_c0957785f8fa47acb37dcb19c6cdc807", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 40.0 + } + }, + "1eb8cede6f2042f5bbbbcbb274451e39": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_08e5a3ca3e5149968a395b4f74479527", + "placeholder": "​", + "style": "IPY_MODEL_480eaaf1669541a9817ee8def301ea35", + "tabbable": null, + "tooltip": null, + "value": "Generating test split: 100%" } }, - "2e43d2f9905b4786bd2429abe71f9c11": { + "1f47b32bd08e40a58085ec1779157701": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3291,7 +3548,7 @@ "width": null } }, - "2f250b135ef04e06b65dc22fa2cbe7ea": { + "22561b75b0c044d4bedc9989c0877145": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3344,7 +3601,7 @@ "width": null } }, - "2f426faf084c41288d432aad9a0cc67b": { + "236fffa058a14fc4bf06c7d9fb578cab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3359,39 +3616,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_56fb1e127c0d4778aa58bf70adf9e292", + "layout": "IPY_MODEL_9295d5949cba40759de3c7e5de8a4119", "placeholder": "​", - "style": "IPY_MODEL_6e2675fc6ccc4cd59366cae5f0c9e353", + "style": "IPY_MODEL_b9dcd080dc9749b1a80ff78acf8d4c8e", "tabbable": null, "tooltip": null, - "value": "Generating test split: 100%" - } - }, - "340e7303a6ad4cd192d14fd90e0362a4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c09a89ed151f484cbc846804d8c80a5e", - "IPY_MODEL_f44238836eba40dd8365f2683b775574", - "IPY_MODEL_45ba61488f3e42d9b1983a76067096be" - ], - "layout": "IPY_MODEL_c4823f24e46c4225a1be6685c385e2de", - "tabbable": null, - "tooltip": null + "value": "Downloading data: 100%" } }, - "34b68eb2ae824e30b199e73d4a24f9d7": { + "23ace74aa54e41d4882525bcac8d7e65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3444,48 +3677,7 @@ "width": null } }, - "3b1df04f38894cdbb06719a2c258a28e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_3ffe5eadabde4ba7bc1bf7d6584058f9", - "placeholder": "​", - "style": "IPY_MODEL_2021e36f762d452aa27e529207b4d1fa", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "3d509074899549a5988580659a594acd": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "3ffe5eadabde4ba7bc1bf7d6584058f9": { + "26160263b70e44dea5cf42a884aef84d": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3538,25 +3730,7 @@ "width": null } }, - "4488e3c1bbcf4f18b659b04ab234f3ec": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "45ba61488f3e42d9b1983a76067096be": { + "284dd9794afa44c6a9f87f914424ed05": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -3571,57 +3745,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_051beaa23ca4413db29dc6c87c6eb69c", + "layout": "IPY_MODEL_b270464296294481a742f4e504fd4296", "placeholder": "​", - "style": "IPY_MODEL_0211903c89794ee8b6917c76a058c50e", + "style": "IPY_MODEL_d212ce3c87db44029c4fb85cb963f5e9", "tabbable": null, "tooltip": null, - "value": " 2/2 [00:00<00:00, 584.25it/s]" - } - }, - "4776167486a64076a84a01784b59af15": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1595a1d05b1744eeb8405298fae08359", - "IPY_MODEL_bf0f538039594aa7aba3502ccbb1866a", - "IPY_MODEL_b413bfe75faf4e83809cfbd3e9c0f441" - ], - "layout": "IPY_MODEL_5b71bc4833f84223a9bfc19a48c54d73", - "tabbable": null, - "tooltip": null - } - }, - "49cb378542644b368738ecd332b0a762": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "value": " 40/40 [00:00<00:00, 66.38it/s]" } }, - "4ce7b5e8a49e4daf8752a8cfb2c049a6": { + "290a3b1e2e02424d81e45106816864f4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -3639,25 +3771,30 @@ "text_color": null } }, - "512b4394b0e84a1d9765ebc108a8dbdf": { + "2d4eb5223b4243d6b39db68b8e814236": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_785486dccb6240f7aa9ff62759d976f9", + "placeholder": "​", + "style": "IPY_MODEL_b7357abae008438aaefdaa9b7ae15c23", + "tabbable": null, + "tooltip": null, + "value": "Computing checksums: 100%" } }, - "5299f330a8b6448cbae432e24bc2bbd2": { + "2e09f123e9dc436b96cae75fc2c420aa": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3710,7 +3847,7 @@ "width": null } }, - "56fb1e127c0d4778aa58bf70adf9e292": { + "2ec1bb41f5f54d62a0ba9fdcfa5897e2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3763,12 +3900,30 @@ "width": null } }, - "57413d25cf8b43a59d135e9b7f386c8b": { - "model_module": "@jupyter-widgets/base", + "2fbc3eac8bea4df7a61a221e7c0dd97c": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "312e091fb3cd44dea3626ee789b64ecd": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, @@ -3816,56 +3971,7 @@ "width": null } }, - "57501a6ea66843e69eb94c16fd71dd26": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f430353dd08d430fba9b508f111e2cba", - "placeholder": "​", - "style": "IPY_MODEL_3d509074899549a5988580659a594acd", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:11<00:00, 7101.30 examples/s]" - } - }, - "5b300800d44b4998a13101625e6be790": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_8458fd5694574fd397fa3ed659cf9d21", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_822bcec6c7dc47839c1fd0d48be8aafa", - "tabbable": null, - "tooltip": null, - "value": 40.0 - } - }, - "5b71bc4833f84223a9bfc19a48c54d73": { + "31ec081485c34f1bb3a03ecf63426a42": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -3918,82 +4024,7 @@ "width": null } }, - "5ce79bcbda6944e0a843326c3542493d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_713a34eee7ad43ca9e8faa69d5fedcd6", - "placeholder": "​", - "style": "IPY_MODEL_4ce7b5e8a49e4daf8752a8cfb2c049a6", - "tabbable": null, - "tooltip": null, - "value": "Generating train split: 100%" - } - }, - "5df8c0f13e114da5a54feb67563465d2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "608e038942dc41a99c6a0a85532e4742": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "60b1f65ee807482daeb5f7b6893651bb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "61971c6d7922459a9b1ed0c9c414cdca": { + "326757063db84e38a5e4ed6b751f5430": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4046,7 +4077,25 @@ "width": null } }, - "61ffaf9c2a1245668b4f2c0c3cec4cf7": { + "3723c6b8a944458f942cd0790b753488": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "37ab3519499b4198bba9919a4e04e1b7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4099,47 +4148,76 @@ "width": null } }, - "655fc2039c2f44018f7440a3d2e07a6e": { + "388b5360872347238afa5f917741c085": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_28e8e7e456ea491db9b2409a1bb6ee44", - "IPY_MODEL_1518031392e944988beab26f0ec70ea0", - "IPY_MODEL_cb4e85dad70c4bb69fa58d8fa9da1fd9" - ], - "layout": "IPY_MODEL_5299f330a8b6448cbae432e24bc2bbd2", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_312e091fb3cd44dea3626ee789b64ecd", + "placeholder": "​", + "style": "IPY_MODEL_290a3b1e2e02424d81e45106816864f4", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.52it/s]" } }, - "6718ecc2d5994895aff73d3a70d4daa4": { + "39db24580c264f03be360647b184039b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_905589c593b54b96b368f62d4887836a", + "placeholder": "​", + "style": "IPY_MODEL_a1415b64f22f48f594463c260bc3e5bd", + "tabbable": null, + "tooltip": null, + "value": "Downloading readme: 100%" + } + }, + "3b305774b4b04b9e9582061efae53a1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f76bb85ebac540a593284f31ccd59879", + "placeholder": "​", + "style": "IPY_MODEL_86d2dd19df2c48a3a516d8fd4ede47fa", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "68df804c48394616884c2cfd1f17c6d3": { + "3bf79f8128894980b498bd0edcb77291": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4154,15 +4232,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_1d72b73af5474a01bc6184c102001f9f", + "layout": "IPY_MODEL_5f3023d450674965a9ad1c79239480bf", "placeholder": "​", - "style": "IPY_MODEL_bb9b4b065b90414cab93989f1cf870db", + "style": "IPY_MODEL_a4e1809a788d491e8e99aefcb86b512c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.71it/s]" + "value": " 10000/10000 [00:01<00:00, 8710.92 examples/s]" } }, - "6e2675fc6ccc4cd59366cae5f0c9e353": { + "3c57645c25e846e38584c73cb0254776": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4180,60 +4258,30 @@ "text_color": null } }, - "6efaaef2d3fa4de3b05d6ab4ce2b1b80": { - "model_module": "@jupyter-widgets/base", + "3d5b439a3ef3459dae28c7db55d59bb9": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_448e4524e24946d995e137cf12b9a3b9", + "placeholder": "​", + "style": "IPY_MODEL_c406e211c4574a0fa48f67ff7a64626c", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "7134548633584aebb32846399e998599": { + "3e0c9c429462439c875768218d7ca59f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4286,60 +4334,31 @@ "width": null } }, - "713a34eee7ad43ca9e8faa69d5fedcd6": { - "model_module": "@jupyter-widgets/base", + "3f27314c203b466c88dcbeb298e9d58e": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HBoxModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_747f70a4ce0e48429c6f7eac878731ab", + "IPY_MODEL_1d9627123cb147dfbfbb157e6bc581e8", + "IPY_MODEL_0b8846ffb3154d8fa596963bb1b3430a" + ], + "layout": "IPY_MODEL_9064def096e04384959a984bd1516273", + "tabbable": null, + "tooltip": null } }, - "72e848187eb646c9ae2eb5c3c13a1b5b": { + "401163bad2f34b8e9634d2f99dbbfd73": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -4354,68 +4373,49 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_6efaaef2d3fa4de3b05d6ab4ce2b1b80", + "layout": "IPY_MODEL_cbd886cc91784268b3d3cac0d4fe2b33", "placeholder": "​", - "style": "IPY_MODEL_9376be5b85774e909a6da2348e1e3ac7", + "style": "IPY_MODEL_adc9aaada699417c91fa10e70969fa1b", "tabbable": null, "tooltip": null, - "value": "100%" + "value": " 40/40 [00:00<00:00, 63.49it/s]" } }, - "72ef0108d5814322b3ca06bd5220584b": { - "model_module": "@jupyter-widgets/base", + "418f49646c194846a25aa1c621289292": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "HTMLStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "420194a5f6914e9391c8ea84bc27e6f8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "753491adc5dc4a15b482f01444260ff6": { + "43b103a593a247079a2979761fa890c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4468,7 +4468,7 @@ "width": null } }, - "7692ec62386c4b5ea0e3da9a9d6aaab3": { + "448e4524e24946d995e137cf12b9a3b9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4521,7 +4521,33 @@ "width": null } }, - "76fe935e94da4fe49c9fff42053d9f08": { + "45e46d8be10f464c86416ba3c2311102": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_873b8fe085de4bf99fc37fe40ccafacc", + "max": 4.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_420194a5f6914e9391c8ea84bc27e6f8", + "tabbable": null, + "tooltip": null, + "value": 4.0 + } + }, + "464614f94e2d4b01b348f81631efd4ce": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4574,67 +4600,30 @@ "width": null } }, - "7859aae2967f4d8982962ef94210548f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "7c1f0a8a503e4e499f398654a3f934e5": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7cb2476470d344aebe942210b6aee3ab": { + "46881b4a77a84b3db413bdbdcd1341b9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cab2229300b043cf885deb986c9d5f5d", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_a79b0ad4d31c46fab5f329886f96aab7", + "layout": "IPY_MODEL_fda6d2df94ba4533aa4be7e4d9a431e3", + "placeholder": "​", + "style": "IPY_MODEL_727a96ba0f18458292f8700ed74fd83f", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 8.85k/8.85k [00:00<00:00, 1.57MB/s]" } }, - "7df899c21e114a00beea9fabc687baff": { + "480eaaf1669541a9817ee8def301ea35": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4652,7 +4641,7 @@ "text_color": null } }, - "7fca1639267a4153bd7fb80d23c652ea": { + "492ff423b97d41089be33686c5f45f69": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -4670,46 +4659,7 @@ "text_color": null } }, - "8040c639d3ba48d7baa187303a949a5f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9ca9e07ed9664701a1f4fc752659aba7", - "placeholder": "​", - "style": "IPY_MODEL_d5de18c08b9a4f0fb3bae9ffcb6e2608", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 68.31it/s]" - } - }, - "822bcec6c7dc47839c1fd0d48be8aafa": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8458fd5694574fd397fa3ed659cf9d21": { + "4a7f33a28e4a405fa0bc13129dc2f8ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4762,7 +4712,7 @@ "width": null } }, - "853c7b5eeb0944a5903419f543447327": { + "4b82647b1d904c49becfec82f51c70f0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4815,7 +4765,7 @@ "width": null } }, - "87d3d0fca9104cfab810183eee2ef94c": { + "4bcb413049cb44c995ab36513e4555ad": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4868,59 +4818,60 @@ "width": null } }, - "934292ec1d1f47d7bfc3a64e97e22164": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "9376be5b85774e909a6da2348e1e3ac7": { - "model_module": "@jupyter-widgets/controls", + "4ca7d5ac467b4c579e746a957850be7b": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "9ad282371d5e4b848fe0fbcf04f86eb4": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "9ca9e07ed9664701a1f4fc752659aba7": { + "4dc246c2851c40f08c572a67e66e7301": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -4973,7 +4924,7 @@ "width": null } }, - "9cb7ee51c974488f82e9774c7de42d77": { + "512e464e5c544e1bb991c41ae873b2e1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -4989,17 +4940,57 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_cca4bec16de941d8a1f0eeab09f1309a", + "layout": "IPY_MODEL_931ba5371f9e4cdf9761b9f3dc305579", "max": 60000.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_6718ecc2d5994895aff73d3a70d4daa4", + "style": "IPY_MODEL_084e242823f646118a48f13fc96c989e", "tabbable": null, "tooltip": null, "value": 60000.0 } }, - "9d34e8136fdb41cba0282f20fe3254b5": { + "515b7539220b4bad89a14104261e7b0b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_cb32fe4b49894c34822817d66fce373f", + "IPY_MODEL_17bb456dd5184411ab0d0d1f0c5184e8", + "IPY_MODEL_9c90acab2afc472ab7395172e27a12f7" + ], + "layout": "IPY_MODEL_9a80cd4b50584f74a43171526499b0f7", + "tabbable": null, + "tooltip": null + } + }, + "52d04582235d42df801c89e6302f264b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "5635b52f823246d4907609b392a4e7ee": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5052,7 +5043,7 @@ "width": null } }, - "a30eaea1846c404db6f70144bebe00f7": { + "5b2e7e3e0dd149a8b07c46782b5dfed7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5067,73 +5058,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a7573684d96b4a809e222e1e9c978b20", - "IPY_MODEL_9cb7ee51c974488f82e9774c7de42d77", - "IPY_MODEL_57501a6ea66843e69eb94c16fd71dd26" + "IPY_MODEL_f09c62e7bedd4b0383758b93414aff60", + "IPY_MODEL_b0bd98ab650e426c9576b35e993ad4b3", + "IPY_MODEL_9a3868d1298545ed9cafa1125339b75e" ], - "layout": "IPY_MODEL_87d3d0fca9104cfab810183eee2ef94c", + "layout": "IPY_MODEL_37ab3519499b4198bba9919a4e04e1b7", "tabbable": null, "tooltip": null } }, - "a5fbf7ed0a8945eba908a5b839852cc3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "a7573684d96b4a809e222e1e9c978b20": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_753491adc5dc4a15b482f01444260ff6", - "placeholder": "​", - "style": "IPY_MODEL_7df899c21e114a00beea9fabc687baff", - "tabbable": null, - "tooltip": null, - "value": "Map (num_proc=4): 100%" - } - }, - "a79b0ad4d31c46fab5f329886f96aab7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ae20b62666184b608438ba88eb80b458": { + "5b7f7778fc604c6ba6099f5ecc189218": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -5148,73 +5082,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2f426faf084c41288d432aad9a0cc67b", - "IPY_MODEL_08fafba5db2c49c199f47a5f187bd97d", - "IPY_MODEL_cbf43ef383f248dbaf25bd28be2369f3" + "IPY_MODEL_236fffa058a14fc4bf06c7d9fb578cab", + "IPY_MODEL_e95ec31f6bc14324b6af490807b62e52", + "IPY_MODEL_77c69f71d06d49beab802e1d2cdef53d" ], - "layout": "IPY_MODEL_2c4e61dacdec449ab2e9fa6b6459f6bb", + "layout": "IPY_MODEL_64a82444badb4307b60c3270c9a50a36", "tabbable": null, "tooltip": null } }, - "b413bfe75faf4e83809cfbd3e9c0f441": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_dd125613a65d44acb8f52566b6d32b7b", - "placeholder": "​", - "style": "IPY_MODEL_1feb2d3d69ac43679423195bacfa218a", - "tabbable": null, - "tooltip": null, - "value": " 60000/60000 [00:47<00:00, 1395.51it/s]" - } - }, - "b809fa6c8639462db220a761b405d58d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b907020aafd94e9eb016e8a6f09cd29d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "bb1d38afd1504d6fa78a843fce81e967": { + "5bfb80713d60450bbefffecd0daf3ab7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5229,59 +5106,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0e1beb3ae784339ae2d251c3b206de1", + "layout": "IPY_MODEL_e147a21f71924211a0d206fee1c59508", "placeholder": "​", - "style": "IPY_MODEL_7859aae2967f4d8982962ef94210548f", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "bb9b4b065b90414cab93989f1cf870db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "bbab2e26c4fd423dacd41b5823f1e144": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_853c7b5eeb0944a5903419f543447327", - "max": 40.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d25bc5458cd94e56a86b43c849fcf730", + "style": "IPY_MODEL_e11bf901cfe54a599be5ef2012018436", "tabbable": null, "tooltip": null, - "value": 40.0 + "value": " 26.4M/26.4M [00:00<00:00, 117MB/s]" } }, - "be3b3d55d750477a8208878dd73e24dc": { + "5f3023d450674965a9ad1c79239480bf": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5334,33 +5167,2613 @@ "width": null } }, - "bf0f538039594aa7aba3502ccbb1866a": { + "625d637a48a14790a056d9d1c1292ee4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_e24f52db1e9d4d00904f83f3b85ef467", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_60b1f65ee807482daeb5f7b6893651bb", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_df5e2187022f4f1f82e2a4b325ff3267", + "IPY_MODEL_927a5b4114e9464a83ba0c900627a695", + "IPY_MODEL_388b5360872347238afa5f917741c085" + ], + "layout": "IPY_MODEL_1701ce288cb24a99852c823b536b8cad", "tabbable": null, - "tooltip": null, - "value": 60000.0 + "tooltip": null + } + }, + "62fef8ba9afd439d87bdf6141e12e04f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "64a82444badb4307b60c3270c9a50a36": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "68da137d5da745a8b0737bb42ae61bb3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_326757063db84e38a5e4ed6b751f5430", + "max": 26421880.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_d4109e3295614069bc0d4e2725c84bec", + "tabbable": null, + "tooltip": null, + "value": 26421880.0 + } + }, + "68da9b92e1a94f3ea960aeaa0c52bef6": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a2be3ca3605413481d1f00fe018925f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6a3665d47b0a44ba83e32e3700429dd3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d4eb5223b4243d6b39db68b8e814236", + "IPY_MODEL_45e46d8be10f464c86416ba3c2311102", + "IPY_MODEL_e11a329c39b6451aacc96b61e26a4bc2" + ], + "layout": "IPY_MODEL_26160263b70e44dea5cf42a884aef84d", + "tabbable": null, + "tooltip": null + } + }, + "6c30578e3bd741e198120a8d5a5bf18f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_161bd482c3a14a8584538e20932a3972", + "placeholder": "​", + "style": "IPY_MODEL_dd9a76f00e1244c8af44c658d2345f96", + "tabbable": null, + "tooltip": null, + "value": " 5.15k/5.15k [00:00<00:00, 845kB/s]" + } + }, + "6e58ef96078a450fbec54f4ae4a58c1b": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "71b85a37ee114287a07056caf600c0a2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9f2a14ba7d7141ada0aad37aac2bc645", + "placeholder": "​", + "style": "IPY_MODEL_7fe76ce1e58f4113bf6284e9b015dac9", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "71c08a73a600466a92a58d3b5faebc68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "71dc0680b39d44e9a3fcced776dfd1a1": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "72434dbb000d44dab2e82de14e1b91c6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_31ec081485c34f1bb3a03ecf63426a42", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ddb81ca00acb4cfeb021605e2178b02e", + "tabbable": null, + "tooltip": null, + "value": 60000.0 + } + }, + "727a96ba0f18458292f8700ed74fd83f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "747f70a4ce0e48429c6f7eac878731ab": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_6a2be3ca3605413481d1f00fe018925f", + "placeholder": "​", + "style": "IPY_MODEL_069823c8410341e387fab4cdcb7b544f", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "77c69f71d06d49beab802e1d2cdef53d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9a70659c15e6481bb17449acc3efe254", + "placeholder": "​", + "style": "IPY_MODEL_7e349960fe0b4f9bb2fa8e4fb10848c0", + "tabbable": null, + "tooltip": null, + "value": " 29.5k/29.5k [00:00<00:00, 4.51MB/s]" + } + }, + "78479cdd20634d17a3dde521f1088eb2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4a7f33a28e4a405fa0bc13129dc2f8ae", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_7f955f7df09044148f923417f50e17e3", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "785486dccb6240f7aa9ff62759d976f9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7909e3dff05e40dabda43320271fcb2f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_3b305774b4b04b9e9582061efae53a1c", + "IPY_MODEL_512e464e5c544e1bb991c41ae873b2e1", + "IPY_MODEL_b9555ee2b9d44630a68960ea076c7dd2" + ], + "layout": "IPY_MODEL_4bcb413049cb44c995ab36513e4555ad", + "tabbable": null, + "tooltip": null + } + }, + "79d5fc0309024c108f891579f5884cfb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "79e727750ce645de84cec3192b9ca437": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7da5300051464425a0e73ef5b54480fb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0679fd79d81c4038ae4baa274ff41fcc", + "placeholder": "​", + "style": "IPY_MODEL_71c08a73a600466a92a58d3b5faebc68", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "7e349960fe0b4f9bb2fa8e4fb10848c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7f955f7df09044148f923417f50e17e3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7fe76ce1e58f4113bf6284e9b015dac9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "7ffa7d49c80a4fa1b01f07e6f5fbbeda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_39db24580c264f03be360647b184039b", + "IPY_MODEL_874ca17b9a474647a7fc2f02a6f270c0", + "IPY_MODEL_46881b4a77a84b3db413bdbdcd1341b9" + ], + "layout": "IPY_MODEL_0f14ea82f33d423898cfb2294c37b2a8", + "tabbable": null, + "tooltip": null + } + }, + "81cdbccb09164693a2809048402013ef": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_71b85a37ee114287a07056caf600c0a2", + "IPY_MODEL_b27b1789056047eb81a5ebf1737833dd", + "IPY_MODEL_6c30578e3bd741e198120a8d5a5bf18f" + ], + "layout": "IPY_MODEL_cc77f97ae7e64110ae36eed77877cb95", + "tabbable": null, + "tooltip": null + } + }, + "835ba37fc09944d7a04c0c36070a66aa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c4fce7d0773b4aac990a0ce4f5352636", + "IPY_MODEL_a2339fe2748d4e398b0820d09dcc5939", + "IPY_MODEL_0335b135459448a380a56a4a2f03a803" + ], + "layout": "IPY_MODEL_04b92da13b0c4c75a183bd50b0a6c521", + "tabbable": null, + "tooltip": null + } + }, + "83a7f5605cd74a39a39f4ac06ad000a5": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8430dbbbf67849a6b0e8dd1757c1bd25": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "84c672c71d92499b8c0503a799d8fa43": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "859c2738fde04954a28429d3dac2fe86": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_f1ddfa2686c64d7ab721a4fc5c282238", + "max": 10000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_79e727750ce645de84cec3192b9ca437", + "tabbable": null, + "tooltip": null, + "value": 10000.0 + } + }, + "86d2dd19df2c48a3a516d8fd4ede47fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "873b8fe085de4bf99fc37fe40ccafacc": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "874ca17b9a474647a7fc2f02a6f270c0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_23ace74aa54e41d4882525bcac8d7e65", + "max": 8845.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_b6f12b0ca91b4833a508b969196dfc72", + "tabbable": null, + "tooltip": null, + "value": 8845.0 + } + }, + "8806a5c89075414f96a9955965c8c691": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8f2668c042f34bfea295a521155e2ede": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_060b26c4387641f18969f931eda67a58", + "IPY_MODEL_03fa6e364e0e4f6bb452b91bedc8a2fe", + "IPY_MODEL_1466c7a2dd12411f8c7d48a92b5b0cc1" + ], + "layout": "IPY_MODEL_c17d50f394634a48ac0698e64e110e5e", + "tabbable": null, + "tooltip": null + } + }, + "905589c593b54b96b368f62d4887836a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9064def096e04384959a984bd1516273": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9242853c5f904484b85109473134a791": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "927a5b4114e9464a83ba0c900627a695": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_1d8819d55dd74096aa3de00bdecebf4f", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_0c5b188654734b69aae83e2f434936eb", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "9295d5949cba40759de3c7e5de8a4119": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "931ba5371f9e4cdf9761b9f3dc305579": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a3868d1298545ed9cafa1125339b75e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9b400490168449b88dc9e4de049a9521", + "placeholder": "​", + "style": "IPY_MODEL_3723c6b8a944458f942cd0790b753488", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 64.72it/s]" + } + }, + "9a70659c15e6481bb17449acc3efe254": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9a80cd4b50584f74a43171526499b0f7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b23278d427942e7ba250ada7bce2a59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b400490168449b88dc9e4de049a9521": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9b98ca7a17034a939d28cfd780ab2578": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_198792c6737e438bb7f0faf3dac545d4", + "IPY_MODEL_72434dbb000d44dab2e82de14e1b91c6", + "IPY_MODEL_e26d0601d99945e7a5354c7cc6a3398c" + ], + "layout": "IPY_MODEL_9e4e0510793c4b8f80ab7c93b14a112e", + "tabbable": null, + "tooltip": null + } + }, + "9c90acab2afc472ab7395172e27a12f7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_68da9b92e1a94f3ea960aeaa0c52bef6", + "placeholder": "​", + "style": "IPY_MODEL_fb58761e4f0d4d029d720e32dfa858dd", + "tabbable": null, + "tooltip": null, + "value": " 40/40 [00:00<00:00, 63.89it/s]" + } + }, + "9d52aa07407b4389bd4d1b8168eb6c52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "9e4e0510793c4b8f80ab7c93b14a112e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f2a14ba7d7141ada0aad37aac2bc645": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9f4a403cc82d4cbbb16cfd0201c0770f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_0b4b6942ccd94d6db3414455189bb279", + "IPY_MODEL_ef5877f12c8d4e3ba13b7835aae75a8c", + "IPY_MODEL_0a0a3ab84aac4f058fee654dfd87e91c" + ], + "layout": "IPY_MODEL_9b23278d427942e7ba250ada7bce2a59", + "tabbable": null, + "tooltip": null + } + }, + "a03072fef52147009d588789cfdacee7": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a056582d2b684e8e9887d7865ab40825": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a1415b64f22f48f594463c260bc3e5bd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a2339fe2748d4e398b0820d09dcc5939": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf5eaac99bba4d3fba798cafb2590b28", + "max": 4422102.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f530763cde26470fbdf4426036cd384d", + "tabbable": null, + "tooltip": null, + "value": 4422102.0 + } + }, + "a36c6c2c8bf24a01bbeecdf56f927a59": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "a4e1809a788d491e8e99aefcb86b512c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "a69a15d2b1f74719990ef33174576d1c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_1eb8cede6f2042f5bbbbcbb274451e39", + "IPY_MODEL_859c2738fde04954a28429d3dac2fe86", + "IPY_MODEL_3bf79f8128894980b498bd0edcb77291" + ], + "layout": "IPY_MODEL_4ca7d5ac467b4c579e746a957850be7b", + "tabbable": null, + "tooltip": null + } + }, + "a78d45cc6d544232aba24d2f4c446e3d": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "ad4b9941342349aa8fc67785b38e03b1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "adc9aaada699417c91fa10e70969fa1b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b0bd98ab650e426c9576b35e993ad4b3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_2ec1bb41f5f54d62a0ba9fdcfa5897e2", + "max": 40.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_ad4b9941342349aa8fc67785b38e03b1", + "tabbable": null, + "tooltip": null, + "value": 40.0 + } + }, + "b270464296294481a742f4e504fd4296": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "b27b1789056047eb81a5ebf1737833dd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a056582d2b684e8e9887d7865ab40825", + "max": 5148.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_dea63d387d7c4e79859ccfc0387953da", + "tabbable": null, + "tooltip": null, + "value": 5148.0 + } + }, + "b5749bdf13ef41baa1daf1f02cc73b9d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b6f12b0ca91b4833a508b969196dfc72": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "b7357abae008438aaefdaa9b7ae15c23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9555ee2b9d44630a68960ea076c7dd2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4b82647b1d904c49becfec82f51c70f0", + "placeholder": "​", + "style": "IPY_MODEL_79d5fc0309024c108f891579f5884cfb", + "tabbable": null, + "tooltip": null, + "value": " 60000/60000 [00:35<00:00, 1753.51it/s]" + } + }, + "b9dcd080dc9749b1a80ff78acf8d4c8e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c0957785f8fa47acb37dcb19c6cdc807": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c17d50f394634a48ac0698e64e110e5e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "2.0.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "2.0.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c1fad039c4a84d4f86c7a458959f798a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c37e5818b51843d48af7853c7cc09b8c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c406e211c4574a0fa48f67ff7a64626c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c4fce7d0773b4aac990a0ce4f5352636": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_060116cd285f45b396aa0250f869ed37", + "placeholder": "​", + "style": "IPY_MODEL_e75b88c557eb401e994a8c705a327479", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "c7506ce8a7fc424ab26ccf36a5cbaebc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_0e39680e776642d99133ea3c9cb6b549", + "placeholder": "​", + "style": "IPY_MODEL_c9ed5a69869b4f579fba6994b4b1276b", + "tabbable": null, + "tooltip": null, + "value": "Downloading data: 100%" + } + }, + "c7b676d040a74257afc4457faab8948f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "c9ed5a69869b4f579fba6994b4b1276b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c09a89ed151f484cbc846804d8c80a5e": { + "cb32fe4b49894c34822817d66fce373f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -5375,68 +7788,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_f26ae4423ac24cafa84c3645e576b7d8", + "layout": "IPY_MODEL_464614f94e2d4b01b348f81631efd4ce", "placeholder": "​", - "style": "IPY_MODEL_5df8c0f13e114da5a54feb67563465d2", + "style": "IPY_MODEL_c1fad039c4a84d4f86c7a458959f798a", "tabbable": null, "tooltip": null, - "value": "Computing checksums: 100%" - } - }, - "c0cef619c3e34a9aa9fe3fbde95dd0f4": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "value": "100%" } }, - "c0e1beb3ae784339ae2d251c3b206de1": { + "cbd886cc91784268b3d3cac0d4fe2b33": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5489,7 +7849,7 @@ "width": null } }, - "c14d4f58688049a48600554f3cec71e9": { + "cc77f97ae7e64110ae36eed77877cb95": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5542,7 +7902,7 @@ "width": null } }, - "c4823f24e46c4225a1be6685c385e2de": { + "ce464f32180c466499de34b46f9465c7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5595,7 +7955,7 @@ "width": null } }, - "cab2229300b043cf885deb986c9d5f5d": { + "cf5eaac99bba4d3fba798cafb2590b28": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5648,130 +8008,25 @@ "width": null } }, - "cb4e85dad70c4bb69fa58d8fa9da1fd9": { + "d212ce3c87db44029c4fb85cb963f5e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2e43d2f9905b4786bd2429abe71f9c11", - "placeholder": "​", - "style": "IPY_MODEL_7fca1639267a4153bd7fb80d23c652ea", - "tabbable": null, - "tooltip": null, - "value": " 40/40 [00:00<00:00, 63.09it/s]" - } - }, - "cbf43ef383f248dbaf25bd28be2369f3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9d34e8136fdb41cba0282f20fe3254b5", - "placeholder": "​", - "style": "IPY_MODEL_d962cb9310644741b92e8a219b2e7104", - "tabbable": null, - "tooltip": null, - "value": " 10000/10000 [00:00<00:00, 246927.12 examples/s]" - } - }, - "cca4bec16de941d8a1f0eeab09f1309a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "d17335f81c08473e83f57bcb91f327b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_1489dff3fa9f4025b92de6f3b08f875e", - "IPY_MODEL_1a475bdd7b6b4cffa0aa39c22e228634", - "IPY_MODEL_68df804c48394616884c2cfd1f17c6d3" - ], - "layout": "IPY_MODEL_76fe935e94da4fe49c9fff42053d9f08", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "d25bc5458cd94e56a86b43c849fcf730": { + "d4109e3295614069bc0d4e2725c84bec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -5787,7 +8042,7 @@ "description_width": "" } }, - "d5de18c08b9a4f0fb3bae9ffcb6e2608": { + "db64502840c7414da075ee43783d9e27": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5805,7 +8060,7 @@ "text_color": null } }, - "d962cb9310644741b92e8a219b2e7104": { + "dd9a76f00e1244c8af44c658d2345f96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -5823,30 +8078,23 @@ "text_color": null } }, - "dcc296059a18404489cb96f85970a3f1": { + "ddb81ca00acb4cfeb021605e2178b02e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f3adb5d571d446d89e42b148a0e2e0dc", - "placeholder": "​", - "style": "IPY_MODEL_a5fbf7ed0a8945eba908a5b839852cc3", - "tabbable": null, - "tooltip": null, - "value": "100%" + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "dd125613a65d44acb8f52566b6d32b7b": { + "de855a646f7c426a8fde27ab76d99054": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -5899,86 +8147,87 @@ "width": null } }, - "dd462dfa7f9949738f0551ce01718b0d": { - "model_module": "@jupyter-widgets/base", + "dea63d387d7c4e79859ccfc0387953da": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "df5e2187022f4f1f82e2a4b325ff3267": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_8806a5c89075414f96a9955965c8c691", + "placeholder": "​", + "style": "IPY_MODEL_84c672c71d92499b8c0503a799d8fa43", + "tabbable": null, + "tooltip": null, + "value": "100%" } }, - "e19c6ab20a44441b82013b108be2dfe5": { + "e11a329c39b6451aacc96b61e26a4bc2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_be3b3d55d750477a8208878dd73e24dc", - "max": 60000.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_f4ad6c92501549ec9b25fa93f87e6348", + "layout": "IPY_MODEL_6e58ef96078a450fbec54f4ae4a58c1b", + "placeholder": "​", + "style": "IPY_MODEL_c7b676d040a74257afc4457faab8948f", "tabbable": null, "tooltip": null, - "value": 60000.0 + "value": " 4/4 [00:00<00:00, 1266.68it/s]" + } + }, + "e11bf901cfe54a599be5ef2012018436": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "e24f52db1e9d4d00904f83f3b85ef467": { + "e147a21f71924211a0d206fee1c59508": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6031,7 +8280,7 @@ "width": null } }, - "e284f57ce3ea4f358e133be317a427f8": { + "e26d0601d99945e7a5354c7cc6a3398c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6046,39 +8295,59 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_c0cef619c3e34a9aa9fe3fbde95dd0f4", + "layout": "IPY_MODEL_ce464f32180c466499de34b46f9465c7", "placeholder": "​", - "style": "IPY_MODEL_4488e3c1bbcf4f18b659b04ab234f3ec", + "style": "IPY_MODEL_2fbc3eac8bea4df7a61a221e7c0dd97c", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 55.22it/s]" + "value": " 60000/60000 [00:07<00:00, 8700.61 examples/s]" } }, - "e3f2da6ea95d4ffea5b61ce1470cc963": { + "e75b88c557eb401e994a8c705a327479": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e95ec31f6bc14324b6af490807b62e52": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_bb1d38afd1504d6fa78a843fce81e967", - "IPY_MODEL_228bd7d078cf45699f3b012c267f6eb0", - "IPY_MODEL_27d17868cbd6451ebcf8d7c7951e2a77" - ], - "layout": "IPY_MODEL_61ffaf9c2a1245668b4f2c0c3cec4cf7", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_22561b75b0c044d4bedc9989c0877145", + "max": 29515.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_f560f8d8d9894e128dccdde7bbd43e76", "tabbable": null, - "tooltip": null + "tooltip": null, + "value": 29515.0 } }, - "e9e0602cde8548a3b201f1e9d8487610": { + "eba277e40aa34b3098943b9ebaa93280": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -6093,16 +8362,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_72e848187eb646c9ae2eb5c3c13a1b5b", - "IPY_MODEL_5b300800d44b4998a13101625e6be790", - "IPY_MODEL_8040c639d3ba48d7baa187303a949a5f" + "IPY_MODEL_3d5b439a3ef3459dae28c7db55d59bb9", + "IPY_MODEL_17f01d5a37aa4bd195596c2c296ea219", + "IPY_MODEL_401163bad2f34b8e9634d2f99dbbfd73" ], - "layout": "IPY_MODEL_248aafd9fcd240928857d2c42d281abd", + "layout": "IPY_MODEL_1f47b32bd08e40a58085ec1779157701", "tabbable": null, "tooltip": null } }, - "eafbc6640e3840d6acb39b13445654da": { + "eec85798b4bb4fd7ba35f169778dd388": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6155,70 +8424,33 @@ "width": null } }, - "eb19d31ef8f4468b9f0d6aabf630dc05": { + "ef5877f12c8d4e3ba13b7835aae75a8c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_dcc296059a18404489cb96f85970a3f1", - "IPY_MODEL_7cb2476470d344aebe942210b6aee3ab", - "IPY_MODEL_e284f57ce3ea4f358e133be317a427f8" - ], - "layout": "IPY_MODEL_c14d4f58688049a48600554f3cec71e9", - "tabbable": null, - "tooltip": null - } - }, - "ed9f2e8995144260afc1a776c3c728c6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", + "_view_name": "ProgressView", + "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7692ec62386c4b5ea0e3da9a9d6aaab3", - "placeholder": "​", - "style": "IPY_MODEL_1bf8c6f4bc3e4633b0c368f433ba214d", + "layout": "IPY_MODEL_8430dbbbf67849a6b0e8dd1757c1bd25", + "max": 60000.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_9d52aa07407b4389bd4d1b8168eb6c52", "tabbable": null, "tooltip": null, - "value": " 40/40 [00:00<00:00, 67.07it/s]" - } - }, - "ee8869c02a164612932f45b84d319cd2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "value": 60000.0 } }, - "f070a30dde5346f9a173c14652288a61": { + "f09c62e7bedd4b0383758b93414aff60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -6233,15 +8465,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_57413d25cf8b43a59d135e9b7f386c8b", + "layout": "IPY_MODEL_a78d45cc6d544232aba24d2f4c446e3d", "placeholder": "​", - "style": "IPY_MODEL_9ad282371d5e4b848fe0fbcf04f86eb4", + "style": "IPY_MODEL_418f49646c194846a25aa1c621289292", "tabbable": null, "tooltip": null, - "value": " 60000/60000 [00:00<00:00, 300464.24 examples/s]" + "value": "100%" } }, - "f229cd5bb5604bc2bbb59bbf7c81d777": { + "f1ddfa2686c64d7ab721a4fc5c282238": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6294,113 +8526,39 @@ "width": null } }, - "f26ae4423ac24cafa84c3645e576b7d8": { - "model_module": "@jupyter-widgets/base", + "f530763cde26470fbdf4426036cd384d": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f3adb5d571d446d89e42b148a0e2e0dc": { - "model_module": "@jupyter-widgets/base", + "f560f8d8d9894e128dccdde7bbd43e76": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "LayoutModel", + "model_name": "ProgressStyleModel", "state": { - "_model_module": "@jupyter-widgets/base", + "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "f430353dd08d430fba9b508f111e2cba": { + "f76bb85ebac540a593284f31ccd59879": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6453,49 +8611,49 @@ "width": null } }, - "f44238836eba40dd8365f2683b775574": { + "f909fc03436b44269537921f66eba2df": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_7134548633584aebb32846399e998599", - "max": 2.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_b907020aafd94e9eb016e8a6f09cd29d", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c7506ce8a7fc424ab26ccf36a5cbaebc", + "IPY_MODEL_68da137d5da745a8b0737bb42ae61bb3", + "IPY_MODEL_5bfb80713d60450bbefffecd0daf3ab7" + ], + "layout": "IPY_MODEL_43b103a593a247079a2979761fa890c4", "tabbable": null, - "tooltip": null, - "value": 2.0 + "tooltip": null } }, - "f4ad6c92501549ec9b25fa93f87e6348": { + "fb58761e4f0d4d029d720e32dfa858dd": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "fb2af0144f1742c1a26396a9b5fe4c73": { + "fda6d2df94ba4533aa4be7e4d9a431e3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -6547,6 +8705,24 @@ "visibility": null, "width": null } + }, + "fde506e16fa7472a918e451309dce944": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } } }, "version_major": 2, diff --git a/master/tutorials/datalab/tabular.html b/master/tutorials/datalab/tabular.html index 443c99eb7..bdedff043 100644 --- a/master/tutorials/datalab/tabular.html +++ b/master/tutorials/datalab/tabular.html @@ -878,7 +878,7 @@

    5. Use cleanlab to find label issues
    -/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
       warnings.warn(
     

    diff --git a/master/tutorials/datalab/tabular.ipynb b/master/tutorials/datalab/tabular.ipynb index 763870823..9b27268b0 100644 --- a/master/tutorials/datalab/tabular.ipynb +++ b/master/tutorials/datalab/tabular.ipynb @@ -74,10 +74,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:39.427663Z", - "iopub.status.busy": "2024-04-08T19:11:39.427246Z", - "iopub.status.idle": "2024-04-08T19:11:40.493201Z", - "shell.execute_reply": "2024-04-08T19:11:40.492649Z" + "iopub.execute_input": "2024-04-08T21:52:07.150619Z", + "iopub.status.busy": "2024-04-08T21:52:07.150453Z", + "iopub.status.idle": "2024-04-08T21:52:08.223701Z", + "shell.execute_reply": "2024-04-08T21:52:08.223074Z" }, "nbsphinx": "hidden" }, @@ -87,7 +87,7 @@ "dependencies = [\"cleanlab\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -112,10 +112,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.495661Z", - "iopub.status.busy": "2024-04-08T19:11:40.495382Z", - "iopub.status.idle": "2024-04-08T19:11:40.513938Z", - "shell.execute_reply": "2024-04-08T19:11:40.513525Z" + "iopub.execute_input": "2024-04-08T21:52:08.226562Z", + "iopub.status.busy": "2024-04-08T21:52:08.226022Z", + "iopub.status.idle": "2024-04-08T21:52:08.244493Z", + "shell.execute_reply": "2024-04-08T21:52:08.244070Z" } }, "outputs": [], @@ -155,10 +155,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.515940Z", - "iopub.status.busy": "2024-04-08T19:11:40.515700Z", - "iopub.status.idle": "2024-04-08T19:11:40.560958Z", - "shell.execute_reply": "2024-04-08T19:11:40.560524Z" + "iopub.execute_input": "2024-04-08T21:52:08.246664Z", + "iopub.status.busy": "2024-04-08T21:52:08.246284Z", + "iopub.status.idle": "2024-04-08T21:52:08.274975Z", + "shell.execute_reply": "2024-04-08T21:52:08.274428Z" } }, "outputs": [ @@ -265,10 +265,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.562932Z", - "iopub.status.busy": "2024-04-08T19:11:40.562610Z", - "iopub.status.idle": "2024-04-08T19:11:40.566002Z", - "shell.execute_reply": "2024-04-08T19:11:40.565577Z" + "iopub.execute_input": "2024-04-08T21:52:08.277126Z", + "iopub.status.busy": "2024-04-08T21:52:08.276731Z", + "iopub.status.idle": "2024-04-08T21:52:08.280143Z", + "shell.execute_reply": "2024-04-08T21:52:08.279662Z" } }, "outputs": [], @@ -289,10 +289,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.567900Z", - "iopub.status.busy": "2024-04-08T19:11:40.567583Z", - "iopub.status.idle": "2024-04-08T19:11:40.574730Z", - "shell.execute_reply": "2024-04-08T19:11:40.574279Z" + "iopub.execute_input": "2024-04-08T21:52:08.282096Z", + "iopub.status.busy": "2024-04-08T21:52:08.281805Z", + "iopub.status.idle": "2024-04-08T21:52:08.289175Z", + "shell.execute_reply": "2024-04-08T21:52:08.288644Z" } }, "outputs": [], @@ -337,10 +337,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.576667Z", - "iopub.status.busy": "2024-04-08T19:11:40.576404Z", - "iopub.status.idle": "2024-04-08T19:11:40.578794Z", - "shell.execute_reply": "2024-04-08T19:11:40.578358Z" + "iopub.execute_input": "2024-04-08T21:52:08.291505Z", + "iopub.status.busy": "2024-04-08T21:52:08.291173Z", + "iopub.status.idle": "2024-04-08T21:52:08.294219Z", + "shell.execute_reply": "2024-04-08T21:52:08.293788Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:40.580843Z", - "iopub.status.busy": "2024-04-08T19:11:40.580536Z", - "iopub.status.idle": "2024-04-08T19:11:43.565419Z", - "shell.execute_reply": "2024-04-08T19:11:43.564907Z" + "iopub.execute_input": "2024-04-08T21:52:08.296328Z", + "iopub.status.busy": "2024-04-08T21:52:08.295995Z", + "iopub.status.idle": "2024-04-08T21:52:11.222567Z", + "shell.execute_reply": "2024-04-08T21:52:11.221929Z" } }, "outputs": [], @@ -402,10 +402,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:43.568043Z", - "iopub.status.busy": "2024-04-08T19:11:43.567842Z", - "iopub.status.idle": "2024-04-08T19:11:43.577436Z", - "shell.execute_reply": "2024-04-08T19:11:43.577042Z" + "iopub.execute_input": "2024-04-08T21:52:11.225452Z", + "iopub.status.busy": "2024-04-08T21:52:11.224989Z", + "iopub.status.idle": "2024-04-08T21:52:11.234228Z", + "shell.execute_reply": "2024-04-08T21:52:11.233769Z" } }, "outputs": [], @@ -437,10 +437,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:43.579441Z", - "iopub.status.busy": "2024-04-08T19:11:43.579134Z", - "iopub.status.idle": "2024-04-08T19:11:45.292514Z", - "shell.execute_reply": "2024-04-08T19:11:45.291914Z" + "iopub.execute_input": "2024-04-08T21:52:11.236385Z", + "iopub.status.busy": "2024-04-08T21:52:11.236010Z", + "iopub.status.idle": "2024-04-08T21:52:12.934764Z", + "shell.execute_reply": "2024-04-08T21:52:12.934166Z" } }, "outputs": [ @@ -468,7 +468,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -485,10 +485,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.296728Z", - "iopub.status.busy": "2024-04-08T19:11:45.295425Z", - "iopub.status.idle": "2024-04-08T19:11:45.320295Z", - "shell.execute_reply": "2024-04-08T19:11:45.319812Z" + "iopub.execute_input": "2024-04-08T21:52:12.937827Z", + "iopub.status.busy": "2024-04-08T21:52:12.937063Z", + "iopub.status.idle": "2024-04-08T21:52:12.959960Z", + "shell.execute_reply": "2024-04-08T21:52:12.959474Z" }, "scrolled": true }, @@ -613,10 +613,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.323669Z", - "iopub.status.busy": "2024-04-08T19:11:45.322766Z", - "iopub.status.idle": "2024-04-08T19:11:45.333647Z", - "shell.execute_reply": "2024-04-08T19:11:45.333187Z" + "iopub.execute_input": "2024-04-08T21:52:12.962291Z", + "iopub.status.busy": "2024-04-08T21:52:12.961921Z", + "iopub.status.idle": "2024-04-08T21:52:12.970867Z", + "shell.execute_reply": "2024-04-08T21:52:12.970359Z" } }, "outputs": [ @@ -720,10 +720,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.336997Z", - "iopub.status.busy": "2024-04-08T19:11:45.336094Z", - "iopub.status.idle": "2024-04-08T19:11:45.348729Z", - "shell.execute_reply": "2024-04-08T19:11:45.348256Z" + "iopub.execute_input": "2024-04-08T21:52:12.973159Z", + "iopub.status.busy": "2024-04-08T21:52:12.972786Z", + "iopub.status.idle": "2024-04-08T21:52:12.983332Z", + "shell.execute_reply": "2024-04-08T21:52:12.982832Z" } }, "outputs": [ @@ -852,10 +852,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.352087Z", - "iopub.status.busy": "2024-04-08T19:11:45.351199Z", - "iopub.status.idle": "2024-04-08T19:11:45.362031Z", - "shell.execute_reply": "2024-04-08T19:11:45.361569Z" + "iopub.execute_input": "2024-04-08T21:52:12.985662Z", + "iopub.status.busy": "2024-04-08T21:52:12.985290Z", + "iopub.status.idle": "2024-04-08T21:52:12.994136Z", + "shell.execute_reply": "2024-04-08T21:52:12.993656Z" } }, "outputs": [ @@ -969,10 +969,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.365401Z", - "iopub.status.busy": "2024-04-08T19:11:45.364508Z", - "iopub.status.idle": "2024-04-08T19:11:45.376129Z", - "shell.execute_reply": "2024-04-08T19:11:45.375592Z" + "iopub.execute_input": "2024-04-08T21:52:12.996453Z", + "iopub.status.busy": "2024-04-08T21:52:12.996091Z", + "iopub.status.idle": "2024-04-08T21:52:13.007173Z", + "shell.execute_reply": "2024-04-08T21:52:13.006680Z" } }, "outputs": [ @@ -1083,10 +1083,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.378395Z", - "iopub.status.busy": "2024-04-08T19:11:45.378081Z", - "iopub.status.idle": "2024-04-08T19:11:45.384257Z", - "shell.execute_reply": "2024-04-08T19:11:45.383732Z" + "iopub.execute_input": "2024-04-08T21:52:13.010554Z", + "iopub.status.busy": "2024-04-08T21:52:13.009652Z", + "iopub.status.idle": "2024-04-08T21:52:13.018412Z", + "shell.execute_reply": "2024-04-08T21:52:13.018001Z" } }, "outputs": [ @@ -1170,10 +1170,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.386145Z", - "iopub.status.busy": "2024-04-08T19:11:45.385969Z", - "iopub.status.idle": "2024-04-08T19:11:45.392100Z", - "shell.execute_reply": "2024-04-08T19:11:45.391633Z" + "iopub.execute_input": "2024-04-08T21:52:13.020519Z", + "iopub.status.busy": "2024-04-08T21:52:13.020174Z", + "iopub.status.idle": "2024-04-08T21:52:13.026633Z", + "shell.execute_reply": "2024-04-08T21:52:13.026214Z" } }, "outputs": [ @@ -1266,10 +1266,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:45.394135Z", - "iopub.status.busy": "2024-04-08T19:11:45.393818Z", - "iopub.status.idle": "2024-04-08T19:11:45.399861Z", - "shell.execute_reply": "2024-04-08T19:11:45.399452Z" + "iopub.execute_input": "2024-04-08T21:52:13.028931Z", + "iopub.status.busy": "2024-04-08T21:52:13.028762Z", + "iopub.status.idle": "2024-04-08T21:52:13.035902Z", + "shell.execute_reply": "2024-04-08T21:52:13.035334Z" }, "nbsphinx": "hidden" }, @@ -1320,7 +1320,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/datalab/text.html b/master/tutorials/datalab/text.html index ebf450e28..ed81ae4a6 100644 --- a/master/tutorials/datalab/text.html +++ b/master/tutorials/datalab/text.html @@ -757,7 +757,7 @@

    2. Load and format the text dataset
     This dataset has 10 classes.
    -Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire'}
    +Classes: {'getting_spare_card', 'card_about_to_expire', 'change_pin', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}
     

    Let’s view the i-th example in the dataset:

    @@ -806,7 +806,7 @@

    2. Load and format the text dataset
     No sentence-transformers model found with name /home/runner/.cache/torch/sentence_transformers/google_electra-small-discriminator. Creating a new one with MEAN pooling.
    -/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.  To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
       return self.fget.__get__(instance, owner)()
     
    @@ -872,7 +872,7 @@

    4. Use cleanlab to find issues in your dataset
    -/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
       warnings.warn(
     
    diff --git a/master/tutorials/datalab/text.ipynb b/master/tutorials/datalab/text.ipynb index cdfc50478..68772ba11 100644 --- a/master/tutorials/datalab/text.ipynb +++ b/master/tutorials/datalab/text.ipynb @@ -75,10 +75,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:47.873795Z", - "iopub.status.busy": "2024-04-08T19:11:47.873616Z", - "iopub.status.idle": "2024-04-08T19:11:50.509546Z", - "shell.execute_reply": "2024-04-08T19:11:50.508929Z" + "iopub.execute_input": "2024-04-08T21:52:15.635095Z", + "iopub.status.busy": "2024-04-08T21:52:15.634936Z", + "iopub.status.idle": "2024-04-08T21:52:18.199131Z", + "shell.execute_reply": "2024-04-08T21:52:18.198595Z" }, "nbsphinx": "hidden" }, @@ -96,7 +96,7 @@ "os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\" # disable parallelism to avoid deadlocks with huggingface\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -121,10 +121,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.512202Z", - "iopub.status.busy": "2024-04-08T19:11:50.511881Z", - "iopub.status.idle": "2024-04-08T19:11:50.515413Z", - "shell.execute_reply": "2024-04-08T19:11:50.514847Z" + "iopub.execute_input": "2024-04-08T21:52:18.201615Z", + "iopub.status.busy": "2024-04-08T21:52:18.201329Z", + "iopub.status.idle": "2024-04-08T21:52:18.204631Z", + "shell.execute_reply": "2024-04-08T21:52:18.204195Z" } }, "outputs": [], @@ -145,10 +145,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.517389Z", - "iopub.status.busy": "2024-04-08T19:11:50.517121Z", - "iopub.status.idle": "2024-04-08T19:11:50.520136Z", - "shell.execute_reply": "2024-04-08T19:11:50.519721Z" + "iopub.execute_input": "2024-04-08T21:52:18.206585Z", + "iopub.status.busy": "2024-04-08T21:52:18.206242Z", + "iopub.status.idle": "2024-04-08T21:52:18.209410Z", + "shell.execute_reply": "2024-04-08T21:52:18.208877Z" }, "nbsphinx": "hidden" }, @@ -178,10 +178,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.522130Z", - "iopub.status.busy": "2024-04-08T19:11:50.521805Z", - "iopub.status.idle": "2024-04-08T19:11:50.573099Z", - "shell.execute_reply": "2024-04-08T19:11:50.572633Z" + "iopub.execute_input": "2024-04-08T21:52:18.211474Z", + "iopub.status.busy": "2024-04-08T21:52:18.211050Z", + "iopub.status.idle": "2024-04-08T21:52:18.235630Z", + "shell.execute_reply": "2024-04-08T21:52:18.235102Z" } }, "outputs": [ @@ -271,10 +271,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.575235Z", - "iopub.status.busy": "2024-04-08T19:11:50.574826Z", - "iopub.status.idle": "2024-04-08T19:11:50.578661Z", - "shell.execute_reply": "2024-04-08T19:11:50.578198Z" + "iopub.execute_input": "2024-04-08T21:52:18.237655Z", + "iopub.status.busy": "2024-04-08T21:52:18.237347Z", + "iopub.status.idle": "2024-04-08T21:52:18.241014Z", + "shell.execute_reply": "2024-04-08T21:52:18.240483Z" } }, "outputs": [ @@ -283,7 +283,7 @@ "output_type": "stream", "text": [ "This dataset has 10 classes.\n", - "Classes: {'visa_or_mastercard', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'change_pin', 'cancel_transfer', 'getting_spare_card', 'apple_pay_or_google_pay', 'lost_or_stolen_phone', 'supported_cards_and_currencies', 'card_about_to_expire'}\n" + "Classes: {'getting_spare_card', 'card_about_to_expire', 'change_pin', 'cancel_transfer', 'visa_or_mastercard', 'supported_cards_and_currencies', 'beneficiary_not_allowed', 'card_payment_fee_charged', 'lost_or_stolen_phone', 'apple_pay_or_google_pay'}\n" ] } ], @@ -307,10 +307,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.580716Z", - "iopub.status.busy": "2024-04-08T19:11:50.580386Z", - "iopub.status.idle": "2024-04-08T19:11:50.583329Z", - "shell.execute_reply": "2024-04-08T19:11:50.582809Z" + "iopub.execute_input": "2024-04-08T21:52:18.243010Z", + "iopub.status.busy": "2024-04-08T21:52:18.242645Z", + "iopub.status.idle": "2024-04-08T21:52:18.245817Z", + "shell.execute_reply": "2024-04-08T21:52:18.245289Z" } }, "outputs": [ @@ -365,10 +365,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:50.585157Z", - "iopub.status.busy": "2024-04-08T19:11:50.584978Z", - "iopub.status.idle": "2024-04-08T19:11:54.999343Z", - "shell.execute_reply": "2024-04-08T19:11:54.998804Z" + "iopub.execute_input": "2024-04-08T21:52:18.247927Z", + "iopub.status.busy": "2024-04-08T21:52:18.247546Z", + "iopub.status.idle": "2024-04-08T21:52:21.805036Z", + "shell.execute_reply": "2024-04-08T21:52:21.804395Z" } }, "outputs": [ @@ -383,7 +383,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/torch/_utils.py:831: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\n", " return self.fget.__get__(instance, owner)()\n" ] } @@ -424,10 +424,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:55.002005Z", - "iopub.status.busy": "2024-04-08T19:11:55.001591Z", - "iopub.status.idle": "2024-04-08T19:11:55.890538Z", - "shell.execute_reply": "2024-04-08T19:11:55.889962Z" + "iopub.execute_input": "2024-04-08T21:52:21.807692Z", + "iopub.status.busy": "2024-04-08T21:52:21.807502Z", + "iopub.status.idle": "2024-04-08T21:52:22.722788Z", + "shell.execute_reply": "2024-04-08T21:52:22.722220Z" }, "scrolled": true }, @@ -459,10 +459,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:55.893249Z", - "iopub.status.busy": "2024-04-08T19:11:55.892862Z", - "iopub.status.idle": "2024-04-08T19:11:55.895882Z", - "shell.execute_reply": "2024-04-08T19:11:55.895415Z" + "iopub.execute_input": "2024-04-08T21:52:22.725502Z", + "iopub.status.busy": "2024-04-08T21:52:22.725131Z", + "iopub.status.idle": "2024-04-08T21:52:22.728139Z", + "shell.execute_reply": "2024-04-08T21:52:22.727657Z" } }, "outputs": [], @@ -482,10 +482,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:55.898149Z", - "iopub.status.busy": "2024-04-08T19:11:55.897768Z", - "iopub.status.idle": "2024-04-08T19:11:57.484712Z", - "shell.execute_reply": "2024-04-08T19:11:57.482845Z" + "iopub.execute_input": "2024-04-08T21:52:22.730441Z", + "iopub.status.busy": "2024-04-08T21:52:22.730051Z", + "iopub.status.idle": "2024-04-08T21:52:24.235608Z", + "shell.execute_reply": "2024-04-08T21:52:24.235008Z" }, "scrolled": true }, @@ -516,7 +516,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -538,10 +538,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.489057Z", - "iopub.status.busy": "2024-04-08T19:11:57.487744Z", - "iopub.status.idle": "2024-04-08T19:11:57.513599Z", - "shell.execute_reply": "2024-04-08T19:11:57.513105Z" + "iopub.execute_input": "2024-04-08T21:52:24.238579Z", + "iopub.status.busy": "2024-04-08T21:52:24.237797Z", + "iopub.status.idle": "2024-04-08T21:52:24.261361Z", + "shell.execute_reply": "2024-04-08T21:52:24.260879Z" }, "scrolled": true }, @@ -666,10 +666,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.517153Z", - "iopub.status.busy": "2024-04-08T19:11:57.516242Z", - "iopub.status.idle": "2024-04-08T19:11:57.527834Z", - "shell.execute_reply": "2024-04-08T19:11:57.527359Z" + "iopub.execute_input": "2024-04-08T21:52:24.264563Z", + "iopub.status.busy": "2024-04-08T21:52:24.263513Z", + "iopub.status.idle": "2024-04-08T21:52:24.275189Z", + "shell.execute_reply": "2024-04-08T21:52:24.274666Z" }, "scrolled": true }, @@ -779,10 +779,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.531248Z", - "iopub.status.busy": "2024-04-08T19:11:57.530335Z", - "iopub.status.idle": "2024-04-08T19:11:57.536787Z", - "shell.execute_reply": "2024-04-08T19:11:57.536230Z" + "iopub.execute_input": "2024-04-08T21:52:24.278666Z", + "iopub.status.busy": "2024-04-08T21:52:24.277755Z", + "iopub.status.idle": "2024-04-08T21:52:24.284253Z", + "shell.execute_reply": "2024-04-08T21:52:24.283764Z" } }, "outputs": [ @@ -820,10 +820,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.538876Z", - "iopub.status.busy": "2024-04-08T19:11:57.538699Z", - "iopub.status.idle": "2024-04-08T19:11:57.546063Z", - "shell.execute_reply": "2024-04-08T19:11:57.545305Z" + "iopub.execute_input": "2024-04-08T21:52:24.287468Z", + "iopub.status.busy": "2024-04-08T21:52:24.286748Z", + "iopub.status.idle": "2024-04-08T21:52:24.293548Z", + "shell.execute_reply": "2024-04-08T21:52:24.293108Z" } }, "outputs": [ @@ -940,10 +940,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.548261Z", - "iopub.status.busy": "2024-04-08T19:11:57.547854Z", - "iopub.status.idle": "2024-04-08T19:11:57.554234Z", - "shell.execute_reply": "2024-04-08T19:11:57.553695Z" + "iopub.execute_input": "2024-04-08T21:52:24.295474Z", + "iopub.status.busy": "2024-04-08T21:52:24.295152Z", + "iopub.status.idle": "2024-04-08T21:52:24.301318Z", + "shell.execute_reply": "2024-04-08T21:52:24.300855Z" } }, "outputs": [ @@ -1026,10 +1026,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.556102Z", - "iopub.status.busy": "2024-04-08T19:11:57.555808Z", - "iopub.status.idle": "2024-04-08T19:11:57.561366Z", - "shell.execute_reply": "2024-04-08T19:11:57.560849Z" + "iopub.execute_input": "2024-04-08T21:52:24.303288Z", + "iopub.status.busy": "2024-04-08T21:52:24.302901Z", + "iopub.status.idle": "2024-04-08T21:52:24.308584Z", + "shell.execute_reply": "2024-04-08T21:52:24.308040Z" } }, "outputs": [ @@ -1137,10 +1137,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.563375Z", - "iopub.status.busy": "2024-04-08T19:11:57.563066Z", - "iopub.status.idle": "2024-04-08T19:11:57.571545Z", - "shell.execute_reply": "2024-04-08T19:11:57.571096Z" + "iopub.execute_input": "2024-04-08T21:52:24.310530Z", + "iopub.status.busy": "2024-04-08T21:52:24.310234Z", + "iopub.status.idle": "2024-04-08T21:52:24.318523Z", + "shell.execute_reply": "2024-04-08T21:52:24.317991Z" } }, "outputs": [ @@ -1251,10 +1251,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.573469Z", - "iopub.status.busy": "2024-04-08T19:11:57.573151Z", - "iopub.status.idle": "2024-04-08T19:11:57.578415Z", - "shell.execute_reply": "2024-04-08T19:11:57.577995Z" + "iopub.execute_input": "2024-04-08T21:52:24.320594Z", + "iopub.status.busy": "2024-04-08T21:52:24.320177Z", + "iopub.status.idle": "2024-04-08T21:52:24.325249Z", + "shell.execute_reply": "2024-04-08T21:52:24.324830Z" } }, "outputs": [ @@ -1322,10 +1322,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.580309Z", - "iopub.status.busy": "2024-04-08T19:11:57.579985Z", - "iopub.status.idle": "2024-04-08T19:11:57.585107Z", - "shell.execute_reply": "2024-04-08T19:11:57.584704Z" + "iopub.execute_input": "2024-04-08T21:52:24.327414Z", + "iopub.status.busy": "2024-04-08T21:52:24.326899Z", + "iopub.status.idle": "2024-04-08T21:52:24.332073Z", + "shell.execute_reply": "2024-04-08T21:52:24.331655Z" } }, "outputs": [ @@ -1404,10 +1404,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.587089Z", - "iopub.status.busy": "2024-04-08T19:11:57.586774Z", - "iopub.status.idle": "2024-04-08T19:11:57.590241Z", - "shell.execute_reply": "2024-04-08T19:11:57.589704Z" + "iopub.execute_input": "2024-04-08T21:52:24.334102Z", + "iopub.status.busy": "2024-04-08T21:52:24.333715Z", + "iopub.status.idle": "2024-04-08T21:52:24.337300Z", + "shell.execute_reply": "2024-04-08T21:52:24.336756Z" } }, "outputs": [ @@ -1455,10 +1455,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:11:57.592302Z", - "iopub.status.busy": "2024-04-08T19:11:57.591981Z", - "iopub.status.idle": "2024-04-08T19:11:57.597076Z", - "shell.execute_reply": "2024-04-08T19:11:57.596530Z" + "iopub.execute_input": "2024-04-08T21:52:24.339310Z", + "iopub.status.busy": "2024-04-08T21:52:24.338988Z", + "iopub.status.idle": "2024-04-08T21:52:24.343727Z", + "shell.execute_reply": "2024-04-08T21:52:24.343284Z" }, "nbsphinx": "hidden" }, @@ -1503,7 +1503,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/dataset_health.ipynb b/master/tutorials/dataset_health.ipynb index 8386c499c..44ea2cb8f 100644 --- a/master/tutorials/dataset_health.ipynb +++ b/master/tutorials/dataset_health.ipynb @@ -68,10 +68,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:00.906624Z", - "iopub.status.busy": "2024-04-08T19:12:00.906269Z", - "iopub.status.idle": "2024-04-08T19:12:02.013278Z", - "shell.execute_reply": "2024-04-08T19:12:02.012738Z" + "iopub.execute_input": "2024-04-08T21:52:27.396340Z", + "iopub.status.busy": "2024-04-08T21:52:27.395983Z", + "iopub.status.idle": "2024-04-08T21:52:28.459980Z", + "shell.execute_reply": "2024-04-08T21:52:28.459347Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"requests\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -108,10 +108,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:02.015823Z", - "iopub.status.busy": "2024-04-08T19:12:02.015525Z", - "iopub.status.idle": "2024-04-08T19:12:02.018326Z", - "shell.execute_reply": "2024-04-08T19:12:02.017864Z" + "iopub.execute_input": "2024-04-08T21:52:28.462853Z", + "iopub.status.busy": "2024-04-08T21:52:28.462320Z", + "iopub.status.idle": "2024-04-08T21:52:28.465069Z", + "shell.execute_reply": "2024-04-08T21:52:28.464644Z" }, "id": "_UvI80l42iyi" }, @@ -201,10 +201,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:02.020260Z", - "iopub.status.busy": "2024-04-08T19:12:02.020087Z", - "iopub.status.idle": "2024-04-08T19:12:02.032329Z", - "shell.execute_reply": "2024-04-08T19:12:02.031881Z" + "iopub.execute_input": "2024-04-08T21:52:28.467215Z", + "iopub.status.busy": "2024-04-08T21:52:28.467023Z", + "iopub.status.idle": "2024-04-08T21:52:28.478907Z", + "shell.execute_reply": "2024-04-08T21:52:28.478417Z" }, "nbsphinx": "hidden" }, @@ -283,10 +283,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:02.034317Z", - "iopub.status.busy": "2024-04-08T19:12:02.034142Z", - "iopub.status.idle": "2024-04-08T19:12:10.633860Z", - "shell.execute_reply": "2024-04-08T19:12:10.633305Z" + "iopub.execute_input": "2024-04-08T21:52:28.481053Z", + "iopub.status.busy": "2024-04-08T21:52:28.480659Z", + "iopub.status.idle": "2024-04-08T21:52:31.721969Z", + "shell.execute_reply": "2024-04-08T21:52:31.721378Z" }, "id": "dhTHOg8Pyv5G" }, @@ -692,13 +692,7 @@ "\n", "\n", "🎯 Mnist_test_set 🎯\n", - "\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "\n", "\n", "Loaded the 'mnist_test_set' dataset with predicted probabilities of shape (10000, 10)\n", "\n", @@ -3102,7 +3096,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/faq.html b/master/tutorials/faq.html index 1383c5dd4..cdd77a829 100644 --- a/master/tutorials/faq.html +++ b/master/tutorials/faq.html @@ -797,13 +797,13 @@

    How can I find label issues in big datasets with limited memory?
    -
    +
    -
    +
    @@ -1748,7 +1748,7 @@

    Can’t find an answer to your question?new Github issue. Our developers may also provide personalized assistance in our Slack Community.

    Professional support and services are also available from our ML experts, learn more by emailing: team@cleanlab.ai

    diff --git a/master/tutorials/faq.ipynb b/master/tutorials/faq.ipynb index 35b51f794..c75207e1f 100644 --- a/master/tutorials/faq.ipynb +++ b/master/tutorials/faq.ipynb @@ -18,10 +18,10 @@ "id": "2a4efdde", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:12.681561Z", - "iopub.status.busy": "2024-04-08T19:12:12.681389Z", - "iopub.status.idle": "2024-04-08T19:12:13.734405Z", - "shell.execute_reply": "2024-04-08T19:12:13.733868Z" + "iopub.execute_input": "2024-04-08T21:52:33.885421Z", + "iopub.status.busy": "2024-04-08T21:52:33.884937Z", + "iopub.status.idle": "2024-04-08T21:52:34.964557Z", + "shell.execute_reply": "2024-04-08T21:52:34.963918Z" }, "nbsphinx": "hidden" }, @@ -137,10 +137,10 @@ "id": "239d5ee7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:13.737231Z", - "iopub.status.busy": "2024-04-08T19:12:13.736791Z", - "iopub.status.idle": "2024-04-08T19:12:13.740148Z", - "shell.execute_reply": "2024-04-08T19:12:13.739710Z" + "iopub.execute_input": "2024-04-08T21:52:34.967491Z", + "iopub.status.busy": "2024-04-08T21:52:34.967024Z", + "iopub.status.idle": "2024-04-08T21:52:34.970255Z", + "shell.execute_reply": "2024-04-08T21:52:34.969814Z" } }, "outputs": [], @@ -176,10 +176,10 @@ "id": "28b324aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:13.742187Z", - "iopub.status.busy": "2024-04-08T19:12:13.741855Z", - "iopub.status.idle": "2024-04-08T19:12:16.687217Z", - "shell.execute_reply": "2024-04-08T19:12:16.686507Z" + "iopub.execute_input": "2024-04-08T21:52:34.972270Z", + "iopub.status.busy": "2024-04-08T21:52:34.971963Z", + "iopub.status.idle": "2024-04-08T21:52:37.922130Z", + "shell.execute_reply": "2024-04-08T21:52:37.921514Z" } }, "outputs": [], @@ -202,10 +202,10 @@ "id": "28b324ab", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.690229Z", - "iopub.status.busy": "2024-04-08T19:12:16.689558Z", - "iopub.status.idle": "2024-04-08T19:12:16.723065Z", - "shell.execute_reply": "2024-04-08T19:12:16.722493Z" + "iopub.execute_input": "2024-04-08T21:52:37.925130Z", + "iopub.status.busy": "2024-04-08T21:52:37.924469Z", + "iopub.status.idle": "2024-04-08T21:52:37.957928Z", + "shell.execute_reply": "2024-04-08T21:52:37.957355Z" } }, "outputs": [], @@ -228,10 +228,10 @@ "id": "90c10e18", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.725574Z", - "iopub.status.busy": "2024-04-08T19:12:16.725213Z", - "iopub.status.idle": "2024-04-08T19:12:16.748633Z", - "shell.execute_reply": "2024-04-08T19:12:16.748076Z" + "iopub.execute_input": "2024-04-08T21:52:37.960493Z", + "iopub.status.busy": "2024-04-08T21:52:37.960191Z", + "iopub.status.idle": "2024-04-08T21:52:37.990903Z", + "shell.execute_reply": "2024-04-08T21:52:37.990272Z" } }, "outputs": [], @@ -253,10 +253,10 @@ "id": "88839519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.751185Z", - "iopub.status.busy": "2024-04-08T19:12:16.750822Z", - "iopub.status.idle": "2024-04-08T19:12:16.753746Z", - "shell.execute_reply": "2024-04-08T19:12:16.753306Z" + "iopub.execute_input": "2024-04-08T21:52:37.993720Z", + "iopub.status.busy": "2024-04-08T21:52:37.993247Z", + "iopub.status.idle": "2024-04-08T21:52:37.996395Z", + "shell.execute_reply": "2024-04-08T21:52:37.995970Z" } }, "outputs": [], @@ -278,10 +278,10 @@ "id": "558490c2", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.755833Z", - "iopub.status.busy": "2024-04-08T19:12:16.755526Z", - "iopub.status.idle": "2024-04-08T19:12:16.758525Z", - "shell.execute_reply": "2024-04-08T19:12:16.758102Z" + "iopub.execute_input": "2024-04-08T21:52:37.998486Z", + "iopub.status.busy": "2024-04-08T21:52:37.998101Z", + "iopub.status.idle": "2024-04-08T21:52:38.000692Z", + "shell.execute_reply": "2024-04-08T21:52:38.000253Z" } }, "outputs": [], @@ -363,10 +363,10 @@ "id": "41714b51", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.760530Z", - "iopub.status.busy": "2024-04-08T19:12:16.760254Z", - "iopub.status.idle": "2024-04-08T19:12:16.783193Z", - "shell.execute_reply": "2024-04-08T19:12:16.782688Z" + "iopub.execute_input": "2024-04-08T21:52:38.002914Z", + "iopub.status.busy": "2024-04-08T21:52:38.002511Z", + "iopub.status.idle": "2024-04-08T21:52:38.026371Z", + "shell.execute_reply": "2024-04-08T21:52:38.025790Z" } }, "outputs": [ @@ -380,7 +380,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6a6240bb0ab443d38a48eadee74f3ae2", + "model_id": "ee395a85c9664de6802a8e4fa965580e", "version_major": 2, "version_minor": 0 }, @@ -394,7 +394,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f9a5120ba56d4977aa0d368fb7c66d40", + "model_id": "013780a0968343228a8306681189312c", "version_major": 2, "version_minor": 0 }, @@ -452,10 +452,10 @@ "id": "20476c70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.789722Z", - "iopub.status.busy": "2024-04-08T19:12:16.789232Z", - "iopub.status.idle": "2024-04-08T19:12:16.795676Z", - "shell.execute_reply": "2024-04-08T19:12:16.795154Z" + "iopub.execute_input": "2024-04-08T21:52:38.032988Z", + "iopub.status.busy": "2024-04-08T21:52:38.032462Z", + "iopub.status.idle": "2024-04-08T21:52:38.039296Z", + "shell.execute_reply": "2024-04-08T21:52:38.038830Z" }, "nbsphinx": "hidden" }, @@ -486,10 +486,10 @@ "id": "6983cdad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.797734Z", - "iopub.status.busy": "2024-04-08T19:12:16.797436Z", - "iopub.status.idle": "2024-04-08T19:12:16.800819Z", - "shell.execute_reply": "2024-04-08T19:12:16.800306Z" + "iopub.execute_input": "2024-04-08T21:52:38.041278Z", + "iopub.status.busy": "2024-04-08T21:52:38.040959Z", + "iopub.status.idle": "2024-04-08T21:52:38.044453Z", + "shell.execute_reply": "2024-04-08T21:52:38.043888Z" }, "nbsphinx": "hidden" }, @@ -512,10 +512,10 @@ "id": "9092b8a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.802799Z", - "iopub.status.busy": "2024-04-08T19:12:16.802383Z", - "iopub.status.idle": "2024-04-08T19:12:16.808583Z", - "shell.execute_reply": "2024-04-08T19:12:16.808080Z" + "iopub.execute_input": "2024-04-08T21:52:38.046421Z", + "iopub.status.busy": "2024-04-08T21:52:38.046112Z", + "iopub.status.idle": "2024-04-08T21:52:38.052307Z", + "shell.execute_reply": "2024-04-08T21:52:38.051875Z" } }, "outputs": [], @@ -565,10 +565,10 @@ "id": "b0a01109", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.810430Z", - "iopub.status.busy": "2024-04-08T19:12:16.810131Z", - "iopub.status.idle": "2024-04-08T19:12:16.843764Z", - "shell.execute_reply": "2024-04-08T19:12:16.843069Z" + "iopub.execute_input": "2024-04-08T21:52:38.054288Z", + "iopub.status.busy": "2024-04-08T21:52:38.053976Z", + "iopub.status.idle": "2024-04-08T21:52:38.087895Z", + "shell.execute_reply": "2024-04-08T21:52:38.087287Z" } }, "outputs": [], @@ -585,10 +585,10 @@ "id": "8b1da032", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.846251Z", - "iopub.status.busy": "2024-04-08T19:12:16.846029Z", - "iopub.status.idle": "2024-04-08T19:12:16.876055Z", - "shell.execute_reply": "2024-04-08T19:12:16.875395Z" + "iopub.execute_input": "2024-04-08T21:52:38.090513Z", + "iopub.status.busy": "2024-04-08T21:52:38.090158Z", + "iopub.status.idle": "2024-04-08T21:52:38.122158Z", + "shell.execute_reply": "2024-04-08T21:52:38.121588Z" }, "nbsphinx": "hidden" }, @@ -667,10 +667,10 @@ "id": "4c9e9030", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:16.878797Z", - "iopub.status.busy": "2024-04-08T19:12:16.878362Z", - "iopub.status.idle": "2024-04-08T19:12:16.997690Z", - "shell.execute_reply": "2024-04-08T19:12:16.997074Z" + "iopub.execute_input": "2024-04-08T21:52:38.124811Z", + "iopub.status.busy": "2024-04-08T21:52:38.124443Z", + "iopub.status.idle": "2024-04-08T21:52:38.245296Z", + "shell.execute_reply": "2024-04-08T21:52:38.244673Z" } }, "outputs": [ @@ -737,10 +737,10 @@ "id": "8751619e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:17.000317Z", - "iopub.status.busy": "2024-04-08T19:12:16.999797Z", - "iopub.status.idle": "2024-04-08T19:12:20.051499Z", - "shell.execute_reply": "2024-04-08T19:12:20.050857Z" + "iopub.execute_input": "2024-04-08T21:52:38.247939Z", + "iopub.status.busy": "2024-04-08T21:52:38.247357Z", + "iopub.status.idle": "2024-04-08T21:52:41.278115Z", + "shell.execute_reply": "2024-04-08T21:52:41.277445Z" } }, "outputs": [ @@ -826,10 +826,10 @@ "id": "623df36d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.054045Z", - "iopub.status.busy": "2024-04-08T19:12:20.053678Z", - "iopub.status.idle": "2024-04-08T19:12:20.108066Z", - "shell.execute_reply": "2024-04-08T19:12:20.107454Z" + "iopub.execute_input": "2024-04-08T21:52:41.280387Z", + "iopub.status.busy": "2024-04-08T21:52:41.280185Z", + "iopub.status.idle": "2024-04-08T21:52:41.343805Z", + "shell.execute_reply": "2024-04-08T21:52:41.343221Z" } }, "outputs": [ @@ -1285,10 +1285,10 @@ "id": "af3052ac", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.110315Z", - "iopub.status.busy": "2024-04-08T19:12:20.109981Z", - "iopub.status.idle": "2024-04-08T19:12:20.147390Z", - "shell.execute_reply": "2024-04-08T19:12:20.146954Z" + "iopub.execute_input": "2024-04-08T21:52:41.346061Z", + "iopub.status.busy": "2024-04-08T21:52:41.345637Z", + "iopub.status.idle": "2024-04-08T21:52:41.383009Z", + "shell.execute_reply": "2024-04-08T21:52:41.382423Z" } }, "outputs": [ @@ -1319,7 +1319,7 @@ }, { "cell_type": "markdown", - "id": "9da437a7", + "id": "f6b4c4bb", "metadata": {}, "source": [ "### How do I specify pre-computed data slices/clusters when detecting the Underperforming Group Issue?" @@ -1327,7 +1327,7 @@ }, { "cell_type": "markdown", - "id": "fce848ae", + "id": "60b5c209", "metadata": {}, "source": [ "When detecting underperforming groups in a dataset, Datalab provides the option for passing pre-computed\n", @@ -1340,13 +1340,13 @@ { "cell_type": "code", "execution_count": 18, - "id": "0fe990fa", + "id": "e0a5e099", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.149376Z", - "iopub.status.busy": "2024-04-08T19:12:20.149051Z", - "iopub.status.idle": "2024-04-08T19:12:20.266660Z", - "shell.execute_reply": "2024-04-08T19:12:20.266055Z" + "iopub.execute_input": "2024-04-08T21:52:41.385132Z", + "iopub.status.busy": "2024-04-08T21:52:41.384792Z", + "iopub.status.idle": "2024-04-08T21:52:41.491991Z", + "shell.execute_reply": "2024-04-08T21:52:41.491386Z" } }, "outputs": [ @@ -1354,13 +1354,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Finding underperforming_group issues ...\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "Finding underperforming_group issues ...\n", "\n", "Audit complete. 0 issues found in the dataset.\n" ] @@ -1393,7 +1387,7 @@ }, { "cell_type": "markdown", - "id": "e1f798da", + "id": "6a768b00", "metadata": {}, "source": [ "For a tabular dataset, you can alternatively use a categorical column's values as cluster IDs:" @@ -1402,13 +1396,13 @@ { "cell_type": "code", "execution_count": 19, - "id": "35842b9a", + "id": "cac3765b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.269272Z", - "iopub.status.busy": "2024-04-08T19:12:20.269030Z", - "iopub.status.idle": "2024-04-08T19:12:20.330497Z", - "shell.execute_reply": "2024-04-08T19:12:20.329977Z" + "iopub.execute_input": "2024-04-08T21:52:41.494449Z", + "iopub.status.busy": "2024-04-08T21:52:41.494203Z", + "iopub.status.idle": "2024-04-08T21:52:41.559401Z", + "shell.execute_reply": "2024-04-08T21:52:41.558627Z" } }, "outputs": [ @@ -1444,7 +1438,7 @@ }, { "cell_type": "markdown", - "id": "798d7822", + "id": "585df12a", "metadata": {}, "source": [ "### How to handle near-duplicate data identified by cleanlab?\n", @@ -1455,13 +1449,13 @@ { "cell_type": "code", "execution_count": 20, - "id": "fdfd0a78", + "id": "cbb1aa10", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.332905Z", - "iopub.status.busy": "2024-04-08T19:12:20.332706Z", - "iopub.status.idle": "2024-04-08T19:12:20.340139Z", - "shell.execute_reply": "2024-04-08T19:12:20.339592Z" + "iopub.execute_input": "2024-04-08T21:52:41.562045Z", + "iopub.status.busy": "2024-04-08T21:52:41.561642Z", + "iopub.status.idle": "2024-04-08T21:52:41.569488Z", + "shell.execute_reply": "2024-04-08T21:52:41.568981Z" } }, "outputs": [], @@ -1563,7 +1557,7 @@ }, { "cell_type": "markdown", - "id": "623406db", + "id": "6c6b923e", "metadata": {}, "source": [ "The functions above collect sets of near-duplicate examples. Within each\n", @@ -1578,13 +1572,13 @@ { "cell_type": "code", "execution_count": 21, - "id": "78a115a5", + "id": "bc9dafe6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.342036Z", - "iopub.status.busy": "2024-04-08T19:12:20.341739Z", - "iopub.status.idle": "2024-04-08T19:12:20.360239Z", - "shell.execute_reply": "2024-04-08T19:12:20.359697Z" + "iopub.execute_input": "2024-04-08T21:52:41.571656Z", + "iopub.status.busy": "2024-04-08T21:52:41.571348Z", + "iopub.status.idle": "2024-04-08T21:52:41.590454Z", + "shell.execute_reply": "2024-04-08T21:52:41.589898Z" } }, "outputs": [ @@ -1601,7 +1595,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_7838/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", + "/tmp/ipykernel_7797/1995098996.py:88: DeprecationWarning: DataFrameGroupBy.apply operated on the grouping columns. This behavior is deprecated, and in a future version of pandas the grouping columns will be excluded from the operation. Either pass `include_groups=False` to exclude the groupings or explicitly select the grouping columns after groupby to silence this warning.\n", " to_keep_indices = duplicate_rows.groupby(group_key).apply(strategy_fn, **strategy_kwargs).explode().values\n" ] } @@ -1635,13 +1629,13 @@ { "cell_type": "code", "execution_count": 22, - "id": "40dae4e0", + "id": "52a94d9d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:20.362253Z", - "iopub.status.busy": "2024-04-08T19:12:20.361948Z", - "iopub.status.idle": "2024-04-08T19:12:20.365026Z", - "shell.execute_reply": "2024-04-08T19:12:20.364516Z" + "iopub.execute_input": "2024-04-08T21:52:41.592635Z", + "iopub.status.busy": "2024-04-08T21:52:41.592232Z", + "iopub.status.idle": "2024-04-08T21:52:41.595664Z", + "shell.execute_reply": "2024-04-08T21:52:41.595126Z" } }, "outputs": [ @@ -1731,12 +1725,150 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "12810a0d31ae4f278489cceb3717deb2": { + "013780a0968343228a8306681189312c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2bc57c8c7fdb4e06aec5a4949d30f761", + "IPY_MODEL_1165f11b03ca4088885d7a97582b05e7", + "IPY_MODEL_69311b3bdcd94fedbde273b71328e325" + ], + "layout": "IPY_MODEL_cdefff66b7d94b92b4c7eb567d8996c4", + "tabbable": null, + "tooltip": null + } + }, + "1165f11b03ca4088885d7a97582b05e7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_9571b7a449884055a8a5f5d12566d4d4", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_fe61cbc444754ef5a851e3c85a8d6ad5", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "1b922a2413c948449bd6ad3e1b63a562": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_4dc164c60ecf48c68dc8589082dda989", + "max": 50.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_39fd87f1bd014ab5b765b579dfeef4f6", + "tabbable": null, + "tooltip": null, + "value": 50.0 + } + }, + "24450523053c4f4781345901f4590ee3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7c8ea3f86034416c9f89fbec6d4697ae", + "placeholder": "​", + "style": "IPY_MODEL_9e1dd7745e054495b4860450daf414ef", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1058846.81it/s]" + } + }, + "2bc57c8c7fdb4e06aec5a4949d30f761": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_7d89d1461951491588e355ee898b4555", + "placeholder": "​", + "style": "IPY_MODEL_bbaf1dc6744949398e3078caafb2b230", + "tabbable": null, + "tooltip": null, + "value": "number of examples processed for checking labels: " + } + }, + "39fd87f1bd014ab5b765b579dfeef4f6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "4dc164c60ecf48c68dc8589082dda989": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1789,7 +1921,30 @@ "width": null } }, - "21b83733b12e4ab9a8e1fc932a77b365": { + "69311b3bdcd94fedbde273b71328e325": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_bf58085c1db74f2583fcdbfa389ef57a", + "placeholder": "​", + "style": "IPY_MODEL_b9d99057a8614777918bf5ed05ae3044", + "tabbable": null, + "tooltip": null, + "value": " 10000/? [00:00<00:00, 1566851.21it/s]" + } + }, + "756095ccd0144ee799bfce748ca9f028": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1842,65 +1997,7 @@ "width": null } }, - "6566ff0f4c9545e0a8d4ac6514750721": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "68c12f7c9aa14eb596e0d4b9f346ded1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "6a6240bb0ab443d38a48eadee74f3ae2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b66e8c48cfaa46939a45c8b4440cd4a6", - "IPY_MODEL_bf86d89ad3204f18be960f57e96ccf59", - "IPY_MODEL_b765b2a3ff1d4b41a66c68404700508b" - ], - "layout": "IPY_MODEL_cfc2c60ce9954a939a633840b1c6d1f7", - "tabbable": null, - "tooltip": null - } - }, - "995b23ebdb8b4621ae697068c80e4d01": { + "7c8ea3f86034416c9f89fbec6d4697ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1953,7 +2050,7 @@ "width": null } }, - "9a847008c2cc4912b7568541c8506397": { + "7d89d1461951491588e355ee898b4555": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2006,48 +2103,7 @@ "width": null } }, - "9cca6ed55b464af5a62dfafe2ab723a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_9a847008c2cc4912b7568541c8506397", - "placeholder": "​", - "style": "IPY_MODEL_b0998f9686d34540aef7e956282bc228", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1657172.66it/s]" - } - }, - "b0998f9686d34540aef7e956282bc228": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "b37c8cc149634a1fa49852024830088d": { + "8a749f91417c480b859f56162ef4e4d6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2065,7 +2121,7 @@ "text_color": null } }, - "b66e8c48cfaa46939a45c8b4440cd4a6": { + "94024fda874a45bab218bc5bc754e581": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2080,38 +2136,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_12810a0d31ae4f278489cceb3717deb2", + "layout": "IPY_MODEL_756095ccd0144ee799bfce748ca9f028", "placeholder": "​", - "style": "IPY_MODEL_c9626b33f28a41cbb8e7ab7eaa6d20db", + "style": "IPY_MODEL_8a749f91417c480b859f56162ef4e4d6", "tabbable": null, "tooltip": null, "value": "number of examples processed for estimating thresholds: " } }, - "b765b2a3ff1d4b41a66c68404700508b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_21b83733b12e4ab9a8e1fc932a77b365", - "placeholder": "​", - "style": "IPY_MODEL_b37c8cc149634a1fa49852024830088d", - "tabbable": null, - "tooltip": null, - "value": " 10000/? [00:00<00:00, 1108870.85it/s]" - } - }, - "ba6196a4a8f546aabd03b97f4e409a2f": { + "9571b7a449884055a8a5f5d12566d4d4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2164,33 +2197,61 @@ "width": null } }, - "bf86d89ad3204f18be960f57e96ccf59": { + "9e1dd7745e054495b4860450daf414ef": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c1cb2e0cc26b4999826ac84dc19ced5c", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_6566ff0f4c9545e0a8d4ac6514750721", - "tabbable": null, - "tooltip": null, - "value": 50.0 + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "b9d99057a8614777918bf5ed05ae3044": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "bbaf1dc6744949398e3078caafb2b230": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "c1cb2e0cc26b4999826ac84dc19ced5c": { + "bf58085c1db74f2583fcdbfa389ef57a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2243,90 +2304,7 @@ "width": null } }, - "c5076875c8174d66894ad735da25ceb0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_d0bb2759b4794473a6c806fa37369c3f", - "placeholder": "​", - "style": "IPY_MODEL_68c12f7c9aa14eb596e0d4b9f346ded1", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for checking labels: " - } - }, - "c9626b33f28a41cbb8e7ab7eaa6d20db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "cabf93bc271f433bbdf492408e032d42": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "cc473ba1779244319b406315a2ad79b3": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_995b23ebdb8b4621ae697068c80e4d01", - "max": 50.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_cabf93bc271f433bbdf492408e032d42", - "tabbable": null, - "tooltip": null, - "value": 50.0 - } - }, - "cfc2c60ce9954a939a633840b1c6d1f7": { + "c2ac272d3dfc407fa79c1d7d16ab25a4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2379,7 +2357,7 @@ "width": null } }, - "d0bb2759b4794473a6c806fa37369c3f": { + "cdefff66b7d94b92b4c7eb567d8996c4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2432,7 +2410,7 @@ "width": null } }, - "f9a5120ba56d4977aa0d368fb7c66d40": { + "ee395a85c9664de6802a8e4fa965580e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2447,14 +2425,30 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_c5076875c8174d66894ad735da25ceb0", - "IPY_MODEL_cc473ba1779244319b406315a2ad79b3", - "IPY_MODEL_9cca6ed55b464af5a62dfafe2ab723a7" + "IPY_MODEL_94024fda874a45bab218bc5bc754e581", + "IPY_MODEL_1b922a2413c948449bd6ad3e1b63a562", + "IPY_MODEL_24450523053c4f4781345901f4590ee3" ], - "layout": "IPY_MODEL_ba6196a4a8f546aabd03b97f4e409a2f", + "layout": "IPY_MODEL_c2ac272d3dfc407fa79c1d7d16ab25a4", "tabbable": null, "tooltip": null } + }, + "fe61cbc444754ef5a851e3c85a8d6ad5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } } }, "version_major": 2, diff --git a/master/tutorials/indepth_overview.html b/master/tutorials/indepth_overview.html index 172bf57b3..5f7fb6834 100644 --- a/master/tutorials/indepth_overview.html +++ b/master/tutorials/indepth_overview.html @@ -831,7 +831,7 @@

    Workflow 1: Use Datalab to detect many types of issues
    -/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
    +/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.
       warnings.warn(
     
    diff --git a/master/tutorials/indepth_overview.ipynb b/master/tutorials/indepth_overview.ipynb index 319d2d3ff..5272b3a79 100644 --- a/master/tutorials/indepth_overview.ipynb +++ b/master/tutorials/indepth_overview.ipynb @@ -53,10 +53,10 @@ "execution_count": 1, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:23.385502Z", - "iopub.status.busy": "2024-04-08T19:12:23.385324Z", - "iopub.status.idle": "2024-04-08T19:12:24.500994Z", - "shell.execute_reply": "2024-04-08T19:12:24.500451Z" + "iopub.execute_input": "2024-04-08T21:52:44.848767Z", + "iopub.status.busy": "2024-04-08T21:52:44.848593Z", + "iopub.status.idle": "2024-04-08T21:52:45.969908Z", + "shell.execute_reply": "2024-04-08T21:52:45.969360Z" }, "nbsphinx": "hidden" }, @@ -68,7 +68,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -95,10 +95,10 @@ "execution_count": 2, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.503635Z", - "iopub.status.busy": "2024-04-08T19:12:24.503134Z", - "iopub.status.idle": "2024-04-08T19:12:24.674963Z", - "shell.execute_reply": "2024-04-08T19:12:24.674378Z" + "iopub.execute_input": "2024-04-08T21:52:45.972341Z", + "iopub.status.busy": "2024-04-08T21:52:45.972078Z", + "iopub.status.idle": "2024-04-08T21:52:46.149683Z", + "shell.execute_reply": "2024-04-08T21:52:46.149066Z" }, "id": "avXlHJcXjruP" }, @@ -234,10 +234,10 @@ "execution_count": 3, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.677405Z", - "iopub.status.busy": "2024-04-08T19:12:24.677010Z", - "iopub.status.idle": "2024-04-08T19:12:24.688933Z", - "shell.execute_reply": "2024-04-08T19:12:24.688406Z" + "iopub.execute_input": "2024-04-08T21:52:46.152170Z", + "iopub.status.busy": "2024-04-08T21:52:46.151975Z", + "iopub.status.idle": "2024-04-08T21:52:46.164411Z", + "shell.execute_reply": "2024-04-08T21:52:46.163825Z" }, "nbsphinx": "hidden" }, @@ -340,10 +340,10 @@ "execution_count": 4, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.690846Z", - "iopub.status.busy": "2024-04-08T19:12:24.690671Z", - "iopub.status.idle": "2024-04-08T19:12:24.894029Z", - "shell.execute_reply": "2024-04-08T19:12:24.893464Z" + "iopub.execute_input": "2024-04-08T21:52:46.166662Z", + "iopub.status.busy": "2024-04-08T21:52:46.166327Z", + "iopub.status.idle": "2024-04-08T21:52:46.399840Z", + "shell.execute_reply": "2024-04-08T21:52:46.399256Z" } }, "outputs": [ @@ -393,10 +393,10 @@ "execution_count": 5, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.896362Z", - "iopub.status.busy": "2024-04-08T19:12:24.896017Z", - "iopub.status.idle": "2024-04-08T19:12:24.922340Z", - "shell.execute_reply": "2024-04-08T19:12:24.921893Z" + "iopub.execute_input": "2024-04-08T21:52:46.402275Z", + "iopub.status.busy": "2024-04-08T21:52:46.401922Z", + "iopub.status.idle": "2024-04-08T21:52:46.427915Z", + "shell.execute_reply": "2024-04-08T21:52:46.427497Z" } }, "outputs": [], @@ -428,10 +428,10 @@ "execution_count": 6, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:24.924554Z", - "iopub.status.busy": "2024-04-08T19:12:24.924219Z", - "iopub.status.idle": "2024-04-08T19:12:26.591119Z", - "shell.execute_reply": "2024-04-08T19:12:26.590421Z" + "iopub.execute_input": "2024-04-08T21:52:46.429793Z", + "iopub.status.busy": "2024-04-08T21:52:46.429619Z", + "iopub.status.idle": "2024-04-08T21:52:48.062475Z", + "shell.execute_reply": "2024-04-08T21:52:48.061777Z" } }, "outputs": [ @@ -461,7 +461,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/opt/hostedtoolcache/Python/3.11.8/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", + "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/sklearn/neighbors/_base.py:246: EfficiencyWarning: Precomputed sparse input was not sorted by row values. Use the function sklearn.neighbors.sort_graph_by_row_values to sort the input by row values, with warn_when_not_sorted=False to remove this warning.\n", " warnings.warn(\n" ] } @@ -483,10 +483,10 @@ "execution_count": 7, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:26.593843Z", - "iopub.status.busy": "2024-04-08T19:12:26.593202Z", - "iopub.status.idle": "2024-04-08T19:12:26.611348Z", - "shell.execute_reply": "2024-04-08T19:12:26.610866Z" + "iopub.execute_input": "2024-04-08T21:52:48.065164Z", + "iopub.status.busy": "2024-04-08T21:52:48.064507Z", + "iopub.status.idle": "2024-04-08T21:52:48.083024Z", + "shell.execute_reply": "2024-04-08T21:52:48.082575Z" }, "scrolled": true }, @@ -611,10 +611,10 @@ "execution_count": 8, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:26.613273Z", - "iopub.status.busy": "2024-04-08T19:12:26.613008Z", - "iopub.status.idle": "2024-04-08T19:12:27.994069Z", - "shell.execute_reply": "2024-04-08T19:12:27.993485Z" + "iopub.execute_input": "2024-04-08T21:52:48.085104Z", + "iopub.status.busy": "2024-04-08T21:52:48.084770Z", + "iopub.status.idle": "2024-04-08T21:52:49.485791Z", + "shell.execute_reply": "2024-04-08T21:52:49.485144Z" }, "id": "AaHC5MRKjruT" }, @@ -733,10 +733,10 @@ "execution_count": 9, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:27.996963Z", - "iopub.status.busy": "2024-04-08T19:12:27.996205Z", - "iopub.status.idle": "2024-04-08T19:12:28.010313Z", - "shell.execute_reply": "2024-04-08T19:12:28.009892Z" + "iopub.execute_input": "2024-04-08T21:52:49.488462Z", + "iopub.status.busy": "2024-04-08T21:52:49.487838Z", + "iopub.status.idle": "2024-04-08T21:52:49.501790Z", + "shell.execute_reply": "2024-04-08T21:52:49.501293Z" }, "id": "Wy27rvyhjruU" }, @@ -785,10 +785,10 @@ "execution_count": 10, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.012483Z", - "iopub.status.busy": "2024-04-08T19:12:28.012148Z", - "iopub.status.idle": "2024-04-08T19:12:28.092332Z", - "shell.execute_reply": "2024-04-08T19:12:28.091737Z" + "iopub.execute_input": "2024-04-08T21:52:49.503902Z", + "iopub.status.busy": "2024-04-08T21:52:49.503714Z", + "iopub.status.idle": "2024-04-08T21:52:49.582147Z", + "shell.execute_reply": "2024-04-08T21:52:49.581522Z" }, "id": "Db8YHnyVjruU" }, @@ -895,10 +895,10 @@ "execution_count": 11, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.094848Z", - "iopub.status.busy": "2024-04-08T19:12:28.094388Z", - "iopub.status.idle": "2024-04-08T19:12:28.305015Z", - "shell.execute_reply": "2024-04-08T19:12:28.304459Z" + "iopub.execute_input": "2024-04-08T21:52:49.584402Z", + "iopub.status.busy": "2024-04-08T21:52:49.584169Z", + "iopub.status.idle": "2024-04-08T21:52:49.796625Z", + "shell.execute_reply": "2024-04-08T21:52:49.796059Z" }, "id": "iJqAHuS2jruV" }, @@ -935,10 +935,10 @@ "execution_count": 12, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.307155Z", - "iopub.status.busy": "2024-04-08T19:12:28.306977Z", - "iopub.status.idle": "2024-04-08T19:12:28.324108Z", - "shell.execute_reply": "2024-04-08T19:12:28.323676Z" + "iopub.execute_input": "2024-04-08T21:52:49.798856Z", + "iopub.status.busy": "2024-04-08T21:52:49.798482Z", + "iopub.status.idle": "2024-04-08T21:52:49.815505Z", + "shell.execute_reply": "2024-04-08T21:52:49.814993Z" }, "id": "PcPTZ_JJG3Cx" }, @@ -1404,10 +1404,10 @@ "execution_count": 13, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.326002Z", - "iopub.status.busy": "2024-04-08T19:12:28.325829Z", - "iopub.status.idle": "2024-04-08T19:12:28.335620Z", - "shell.execute_reply": "2024-04-08T19:12:28.335205Z" + "iopub.execute_input": "2024-04-08T21:52:49.817600Z", + "iopub.status.busy": "2024-04-08T21:52:49.817312Z", + "iopub.status.idle": "2024-04-08T21:52:49.827140Z", + "shell.execute_reply": "2024-04-08T21:52:49.826558Z" }, "id": "0lonvOYvjruV" }, @@ -1554,10 +1554,10 @@ "execution_count": 14, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.337624Z", - "iopub.status.busy": "2024-04-08T19:12:28.337213Z", - "iopub.status.idle": "2024-04-08T19:12:28.422599Z", - "shell.execute_reply": "2024-04-08T19:12:28.421980Z" + "iopub.execute_input": "2024-04-08T21:52:49.829179Z", + "iopub.status.busy": "2024-04-08T21:52:49.828992Z", + "iopub.status.idle": "2024-04-08T21:52:49.923999Z", + "shell.execute_reply": "2024-04-08T21:52:49.923356Z" }, "id": "MfqTCa3kjruV" }, @@ -1638,10 +1638,10 @@ "execution_count": 15, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.424970Z", - "iopub.status.busy": "2024-04-08T19:12:28.424722Z", - "iopub.status.idle": "2024-04-08T19:12:28.549007Z", - "shell.execute_reply": "2024-04-08T19:12:28.548406Z" + "iopub.execute_input": "2024-04-08T21:52:49.926359Z", + "iopub.status.busy": "2024-04-08T21:52:49.926119Z", + "iopub.status.idle": "2024-04-08T21:52:50.061779Z", + "shell.execute_reply": "2024-04-08T21:52:50.061151Z" }, "id": "9ZtWAYXqMAPL" }, @@ -1701,10 +1701,10 @@ "execution_count": 16, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.551383Z", - "iopub.status.busy": "2024-04-08T19:12:28.551092Z", - "iopub.status.idle": "2024-04-08T19:12:28.554976Z", - "shell.execute_reply": "2024-04-08T19:12:28.554255Z" + "iopub.execute_input": "2024-04-08T21:52:50.064271Z", + "iopub.status.busy": "2024-04-08T21:52:50.063910Z", + "iopub.status.idle": "2024-04-08T21:52:50.068036Z", + "shell.execute_reply": "2024-04-08T21:52:50.067504Z" }, "id": "0rXP3ZPWjruW" }, @@ -1742,10 +1742,10 @@ "execution_count": 17, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.557035Z", - "iopub.status.busy": "2024-04-08T19:12:28.556717Z", - "iopub.status.idle": "2024-04-08T19:12:28.560298Z", - "shell.execute_reply": "2024-04-08T19:12:28.559774Z" + "iopub.execute_input": "2024-04-08T21:52:50.069987Z", + "iopub.status.busy": "2024-04-08T21:52:50.069810Z", + "iopub.status.idle": "2024-04-08T21:52:50.073803Z", + "shell.execute_reply": "2024-04-08T21:52:50.073310Z" }, "id": "-iRPe8KXjruW" }, @@ -1800,10 +1800,10 @@ "execution_count": 18, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.562193Z", - "iopub.status.busy": "2024-04-08T19:12:28.561944Z", - "iopub.status.idle": "2024-04-08T19:12:28.599077Z", - "shell.execute_reply": "2024-04-08T19:12:28.598539Z" + "iopub.execute_input": "2024-04-08T21:52:50.075869Z", + "iopub.status.busy": "2024-04-08T21:52:50.075536Z", + "iopub.status.idle": "2024-04-08T21:52:50.114629Z", + "shell.execute_reply": "2024-04-08T21:52:50.113979Z" }, "id": "ZpipUliyjruW" }, @@ -1854,10 +1854,10 @@ "execution_count": 19, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.601134Z", - "iopub.status.busy": "2024-04-08T19:12:28.600813Z", - "iopub.status.idle": "2024-04-08T19:12:28.642167Z", - "shell.execute_reply": "2024-04-08T19:12:28.641727Z" + "iopub.execute_input": "2024-04-08T21:52:50.116745Z", + "iopub.status.busy": "2024-04-08T21:52:50.116541Z", + "iopub.status.idle": "2024-04-08T21:52:50.161029Z", + "shell.execute_reply": "2024-04-08T21:52:50.160389Z" }, "id": "SLq-3q4xjruX" }, @@ -1926,10 +1926,10 @@ "execution_count": 20, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.644151Z", - "iopub.status.busy": "2024-04-08T19:12:28.643835Z", - "iopub.status.idle": "2024-04-08T19:12:28.738961Z", - "shell.execute_reply": "2024-04-08T19:12:28.738341Z" + "iopub.execute_input": "2024-04-08T21:52:50.163139Z", + "iopub.status.busy": "2024-04-08T21:52:50.162940Z", + "iopub.status.idle": "2024-04-08T21:52:50.260654Z", + "shell.execute_reply": "2024-04-08T21:52:50.259955Z" }, "id": "g5LHhhuqFbXK" }, @@ -1961,10 +1961,10 @@ "execution_count": 21, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.741750Z", - "iopub.status.busy": "2024-04-08T19:12:28.741263Z", - "iopub.status.idle": "2024-04-08T19:12:28.827551Z", - "shell.execute_reply": "2024-04-08T19:12:28.826947Z" + "iopub.execute_input": "2024-04-08T21:52:50.263693Z", + "iopub.status.busy": "2024-04-08T21:52:50.263189Z", + "iopub.status.idle": "2024-04-08T21:52:50.362343Z", + "shell.execute_reply": "2024-04-08T21:52:50.361726Z" }, "id": "p7w8F8ezBcet" }, @@ -2021,10 +2021,10 @@ "execution_count": 22, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:28.829915Z", - "iopub.status.busy": "2024-04-08T19:12:28.829683Z", - "iopub.status.idle": "2024-04-08T19:12:29.038522Z", - "shell.execute_reply": "2024-04-08T19:12:29.037949Z" + "iopub.execute_input": "2024-04-08T21:52:50.364808Z", + "iopub.status.busy": "2024-04-08T21:52:50.364550Z", + "iopub.status.idle": "2024-04-08T21:52:50.577950Z", + "shell.execute_reply": "2024-04-08T21:52:50.577377Z" }, "id": "WETRL74tE_sU" }, @@ -2059,10 +2059,10 @@ "execution_count": 23, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.040910Z", - "iopub.status.busy": "2024-04-08T19:12:29.040732Z", - "iopub.status.idle": "2024-04-08T19:12:29.214576Z", - "shell.execute_reply": "2024-04-08T19:12:29.213963Z" + "iopub.execute_input": "2024-04-08T21:52:50.580188Z", + "iopub.status.busy": "2024-04-08T21:52:50.579982Z", + "iopub.status.idle": "2024-04-08T21:52:50.787401Z", + "shell.execute_reply": "2024-04-08T21:52:50.786718Z" }, "id": "kCfdx2gOLmXS" }, @@ -2224,10 +2224,10 @@ "execution_count": 24, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.217044Z", - "iopub.status.busy": "2024-04-08T19:12:29.216667Z", - "iopub.status.idle": "2024-04-08T19:12:29.222938Z", - "shell.execute_reply": "2024-04-08T19:12:29.222502Z" + "iopub.execute_input": "2024-04-08T21:52:50.790100Z", + "iopub.status.busy": "2024-04-08T21:52:50.789517Z", + "iopub.status.idle": "2024-04-08T21:52:50.795815Z", + "shell.execute_reply": "2024-04-08T21:52:50.795334Z" }, "id": "-uogYRWFYnuu" }, @@ -2281,10 +2281,10 @@ "execution_count": 25, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.224909Z", - "iopub.status.busy": "2024-04-08T19:12:29.224587Z", - "iopub.status.idle": "2024-04-08T19:12:29.437683Z", - "shell.execute_reply": "2024-04-08T19:12:29.437115Z" + "iopub.execute_input": "2024-04-08T21:52:50.797868Z", + "iopub.status.busy": "2024-04-08T21:52:50.797547Z", + "iopub.status.idle": "2024-04-08T21:52:51.023483Z", + "shell.execute_reply": "2024-04-08T21:52:51.022891Z" }, "id": "pG-ljrmcYp9Q" }, @@ -2331,10 +2331,10 @@ "execution_count": 26, "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:29.439974Z", - "iopub.status.busy": "2024-04-08T19:12:29.439567Z", - "iopub.status.idle": "2024-04-08T19:12:30.486127Z", - "shell.execute_reply": "2024-04-08T19:12:30.485508Z" + "iopub.execute_input": "2024-04-08T21:52:51.025986Z", + "iopub.status.busy": "2024-04-08T21:52:51.025556Z", + "iopub.status.idle": "2024-04-08T21:52:52.089183Z", + "shell.execute_reply": "2024-04-08T21:52:52.088531Z" }, "id": "wL3ngCnuLEWd" }, @@ -2408,7 +2408,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/multiannotator.ipynb b/master/tutorials/multiannotator.ipynb index a709c4ddc..7418b0f5b 100644 --- a/master/tutorials/multiannotator.ipynb +++ b/master/tutorials/multiannotator.ipynb @@ -89,10 +89,10 @@ "id": "a3ddc95f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:33.752421Z", - "iopub.status.busy": "2024-04-08T19:12:33.752248Z", - "iopub.status.idle": "2024-04-08T19:12:34.830539Z", - "shell.execute_reply": "2024-04-08T19:12:34.829972Z" + "iopub.execute_input": "2024-04-08T21:52:55.620820Z", + "iopub.status.busy": "2024-04-08T21:52:55.620652Z", + "iopub.status.idle": "2024-04-08T21:52:56.674841Z", + "shell.execute_reply": "2024-04-08T21:52:56.674213Z" }, "nbsphinx": "hidden" }, @@ -102,7 +102,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -136,10 +136,10 @@ "id": "c4efd119", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.833064Z", - "iopub.status.busy": "2024-04-08T19:12:34.832801Z", - "iopub.status.idle": "2024-04-08T19:12:34.835936Z", - "shell.execute_reply": "2024-04-08T19:12:34.835405Z" + "iopub.execute_input": "2024-04-08T21:52:56.677618Z", + "iopub.status.busy": "2024-04-08T21:52:56.677344Z", + "iopub.status.idle": "2024-04-08T21:52:56.680516Z", + "shell.execute_reply": "2024-04-08T21:52:56.679988Z" } }, "outputs": [], @@ -264,10 +264,10 @@ "id": "c37c0a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.837888Z", - "iopub.status.busy": "2024-04-08T19:12:34.837708Z", - "iopub.status.idle": "2024-04-08T19:12:34.845722Z", - "shell.execute_reply": "2024-04-08T19:12:34.845317Z" + "iopub.execute_input": "2024-04-08T21:52:56.682543Z", + "iopub.status.busy": "2024-04-08T21:52:56.682233Z", + "iopub.status.idle": "2024-04-08T21:52:56.690305Z", + "shell.execute_reply": "2024-04-08T21:52:56.689844Z" }, "nbsphinx": "hidden" }, @@ -351,10 +351,10 @@ "id": "99f69523", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.847573Z", - "iopub.status.busy": "2024-04-08T19:12:34.847397Z", - "iopub.status.idle": "2024-04-08T19:12:34.894104Z", - "shell.execute_reply": "2024-04-08T19:12:34.893588Z" + "iopub.execute_input": "2024-04-08T21:52:56.692135Z", + "iopub.status.busy": "2024-04-08T21:52:56.691966Z", + "iopub.status.idle": "2024-04-08T21:52:56.736891Z", + "shell.execute_reply": "2024-04-08T21:52:56.736460Z" } }, "outputs": [], @@ -380,10 +380,10 @@ "id": "8f241c16", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.896019Z", - "iopub.status.busy": "2024-04-08T19:12:34.895834Z", - "iopub.status.idle": "2024-04-08T19:12:34.912597Z", - "shell.execute_reply": "2024-04-08T19:12:34.912094Z" + "iopub.execute_input": "2024-04-08T21:52:56.738845Z", + "iopub.status.busy": "2024-04-08T21:52:56.738655Z", + "iopub.status.idle": "2024-04-08T21:52:56.755451Z", + "shell.execute_reply": "2024-04-08T21:52:56.755009Z" } }, "outputs": [ @@ -598,10 +598,10 @@ "id": "4f0819ba", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.914647Z", - "iopub.status.busy": "2024-04-08T19:12:34.914307Z", - "iopub.status.idle": "2024-04-08T19:12:34.917956Z", - "shell.execute_reply": "2024-04-08T19:12:34.917438Z" + "iopub.execute_input": "2024-04-08T21:52:56.757253Z", + "iopub.status.busy": "2024-04-08T21:52:56.757082Z", + "iopub.status.idle": "2024-04-08T21:52:56.760967Z", + "shell.execute_reply": "2024-04-08T21:52:56.760530Z" } }, "outputs": [ @@ -672,10 +672,10 @@ "id": "d009f347", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.919974Z", - "iopub.status.busy": "2024-04-08T19:12:34.919671Z", - "iopub.status.idle": "2024-04-08T19:12:34.946169Z", - "shell.execute_reply": "2024-04-08T19:12:34.945655Z" + "iopub.execute_input": "2024-04-08T21:52:56.763008Z", + "iopub.status.busy": "2024-04-08T21:52:56.762678Z", + "iopub.status.idle": "2024-04-08T21:52:56.788272Z", + "shell.execute_reply": "2024-04-08T21:52:56.787865Z" } }, "outputs": [], @@ -699,10 +699,10 @@ "id": "cbd1e415", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.948155Z", - "iopub.status.busy": "2024-04-08T19:12:34.947833Z", - "iopub.status.idle": "2024-04-08T19:12:34.973985Z", - "shell.execute_reply": "2024-04-08T19:12:34.973459Z" + "iopub.execute_input": "2024-04-08T21:52:56.790389Z", + "iopub.status.busy": "2024-04-08T21:52:56.789913Z", + "iopub.status.idle": "2024-04-08T21:52:56.816164Z", + "shell.execute_reply": "2024-04-08T21:52:56.815620Z" } }, "outputs": [], @@ -739,10 +739,10 @@ "id": "6ca92617", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:34.976074Z", - "iopub.status.busy": "2024-04-08T19:12:34.975781Z", - "iopub.status.idle": "2024-04-08T19:12:36.687655Z", - "shell.execute_reply": "2024-04-08T19:12:36.687110Z" + "iopub.execute_input": "2024-04-08T21:52:56.818430Z", + "iopub.status.busy": "2024-04-08T21:52:56.818016Z", + "iopub.status.idle": "2024-04-08T21:52:58.500444Z", + "shell.execute_reply": "2024-04-08T21:52:58.499807Z" } }, "outputs": [], @@ -772,10 +772,10 @@ "id": "bf945113", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.690165Z", - "iopub.status.busy": "2024-04-08T19:12:36.689693Z", - "iopub.status.idle": "2024-04-08T19:12:36.696336Z", - "shell.execute_reply": "2024-04-08T19:12:36.695815Z" + "iopub.execute_input": "2024-04-08T21:52:58.503086Z", + "iopub.status.busy": "2024-04-08T21:52:58.502790Z", + "iopub.status.idle": "2024-04-08T21:52:58.509423Z", + "shell.execute_reply": "2024-04-08T21:52:58.508895Z" }, "scrolled": true }, @@ -886,10 +886,10 @@ "id": "14251ee0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.698324Z", - "iopub.status.busy": "2024-04-08T19:12:36.698034Z", - "iopub.status.idle": "2024-04-08T19:12:36.710339Z", - "shell.execute_reply": "2024-04-08T19:12:36.709902Z" + "iopub.execute_input": "2024-04-08T21:52:58.511480Z", + "iopub.status.busy": "2024-04-08T21:52:58.511156Z", + "iopub.status.idle": "2024-04-08T21:52:58.523295Z", + "shell.execute_reply": "2024-04-08T21:52:58.522884Z" } }, "outputs": [ @@ -1139,10 +1139,10 @@ "id": "efe16638", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.712346Z", - "iopub.status.busy": "2024-04-08T19:12:36.711929Z", - "iopub.status.idle": "2024-04-08T19:12:36.718208Z", - "shell.execute_reply": "2024-04-08T19:12:36.717694Z" + "iopub.execute_input": "2024-04-08T21:52:58.525194Z", + "iopub.status.busy": "2024-04-08T21:52:58.524873Z", + "iopub.status.idle": "2024-04-08T21:52:58.530957Z", + "shell.execute_reply": "2024-04-08T21:52:58.530537Z" }, "scrolled": true }, @@ -1316,10 +1316,10 @@ "id": "abd0fb0b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.720257Z", - "iopub.status.busy": "2024-04-08T19:12:36.719972Z", - "iopub.status.idle": "2024-04-08T19:12:36.722551Z", - "shell.execute_reply": "2024-04-08T19:12:36.722114Z" + "iopub.execute_input": "2024-04-08T21:52:58.533065Z", + "iopub.status.busy": "2024-04-08T21:52:58.532751Z", + "iopub.status.idle": "2024-04-08T21:52:58.535247Z", + "shell.execute_reply": "2024-04-08T21:52:58.534834Z" } }, "outputs": [], @@ -1341,10 +1341,10 @@ "id": "cdf061df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.724389Z", - "iopub.status.busy": "2024-04-08T19:12:36.724098Z", - "iopub.status.idle": "2024-04-08T19:12:36.727537Z", - "shell.execute_reply": "2024-04-08T19:12:36.727025Z" + "iopub.execute_input": "2024-04-08T21:52:58.537279Z", + "iopub.status.busy": "2024-04-08T21:52:58.536970Z", + "iopub.status.idle": "2024-04-08T21:52:58.540289Z", + "shell.execute_reply": "2024-04-08T21:52:58.539787Z" }, "scrolled": true }, @@ -1396,10 +1396,10 @@ "id": "08949890", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.729415Z", - "iopub.status.busy": "2024-04-08T19:12:36.729242Z", - "iopub.status.idle": "2024-04-08T19:12:36.731642Z", - "shell.execute_reply": "2024-04-08T19:12:36.731237Z" + "iopub.execute_input": "2024-04-08T21:52:58.542327Z", + "iopub.status.busy": "2024-04-08T21:52:58.542019Z", + "iopub.status.idle": "2024-04-08T21:52:58.544475Z", + "shell.execute_reply": "2024-04-08T21:52:58.544065Z" } }, "outputs": [], @@ -1423,10 +1423,10 @@ "id": "6948b073", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.733573Z", - "iopub.status.busy": "2024-04-08T19:12:36.733257Z", - "iopub.status.idle": "2024-04-08T19:12:36.737118Z", - "shell.execute_reply": "2024-04-08T19:12:36.736613Z" + "iopub.execute_input": "2024-04-08T21:52:58.546373Z", + "iopub.status.busy": "2024-04-08T21:52:58.546075Z", + "iopub.status.idle": "2024-04-08T21:52:58.550092Z", + "shell.execute_reply": "2024-04-08T21:52:58.549576Z" } }, "outputs": [ @@ -1481,10 +1481,10 @@ "id": "6f8e6914", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.739150Z", - "iopub.status.busy": "2024-04-08T19:12:36.738829Z", - "iopub.status.idle": "2024-04-08T19:12:36.767384Z", - "shell.execute_reply": "2024-04-08T19:12:36.766867Z" + "iopub.execute_input": "2024-04-08T21:52:58.552013Z", + "iopub.status.busy": "2024-04-08T21:52:58.551809Z", + "iopub.status.idle": "2024-04-08T21:52:58.580045Z", + "shell.execute_reply": "2024-04-08T21:52:58.579619Z" } }, "outputs": [], @@ -1527,10 +1527,10 @@ "id": "b806d2ea", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:36.769379Z", - "iopub.status.busy": "2024-04-08T19:12:36.769213Z", - "iopub.status.idle": "2024-04-08T19:12:36.773887Z", - "shell.execute_reply": "2024-04-08T19:12:36.773364Z" + "iopub.execute_input": "2024-04-08T21:52:58.582104Z", + "iopub.status.busy": "2024-04-08T21:52:58.581789Z", + "iopub.status.idle": "2024-04-08T21:52:58.586064Z", + "shell.execute_reply": "2024-04-08T21:52:58.585650Z" }, "nbsphinx": "hidden" }, @@ -1572,7 +1572,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "vscode": { "interpreter": { diff --git a/master/tutorials/multilabel_classification.ipynb b/master/tutorials/multilabel_classification.ipynb index 93017979b..ccd84011a 100644 --- a/master/tutorials/multilabel_classification.ipynb +++ b/master/tutorials/multilabel_classification.ipynb @@ -64,10 +64,10 @@ "id": "7383d024-8273-4039-bccd-aab3020d331f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:39.372434Z", - "iopub.status.busy": "2024-04-08T19:12:39.372031Z", - "iopub.status.idle": "2024-04-08T19:12:40.491618Z", - "shell.execute_reply": "2024-04-08T19:12:40.491005Z" + "iopub.execute_input": "2024-04-08T21:53:01.165262Z", + "iopub.status.busy": "2024-04-08T21:53:01.165085Z", + "iopub.status.idle": "2024-04-08T21:53:02.293269Z", + "shell.execute_reply": "2024-04-08T21:53:02.292725Z" }, "nbsphinx": "hidden" }, @@ -79,7 +79,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -105,10 +105,10 @@ "id": "bf9101d8-b1a9-4305-b853-45aaf3d67a69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:40.494221Z", - "iopub.status.busy": "2024-04-08T19:12:40.493824Z", - "iopub.status.idle": "2024-04-08T19:12:40.685279Z", - "shell.execute_reply": "2024-04-08T19:12:40.684689Z" + "iopub.execute_input": "2024-04-08T21:53:02.295788Z", + "iopub.status.busy": "2024-04-08T21:53:02.295371Z", + "iopub.status.idle": "2024-04-08T21:53:02.487092Z", + "shell.execute_reply": "2024-04-08T21:53:02.486529Z" } }, "outputs": [], @@ -268,10 +268,10 @@ "id": "e8ff5c2f-bd52-44aa-b307-b2b634147c68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:40.688253Z", - "iopub.status.busy": "2024-04-08T19:12:40.687653Z", - "iopub.status.idle": "2024-04-08T19:12:40.701124Z", - "shell.execute_reply": "2024-04-08T19:12:40.700676Z" + "iopub.execute_input": "2024-04-08T21:53:02.489584Z", + "iopub.status.busy": "2024-04-08T21:53:02.489313Z", + "iopub.status.idle": "2024-04-08T21:53:02.502093Z", + "shell.execute_reply": "2024-04-08T21:53:02.501639Z" }, "nbsphinx": "hidden" }, @@ -407,10 +407,10 @@ "id": "dac65d3b-51e8-4682-b829-beab610b56d6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:40.703173Z", - "iopub.status.busy": "2024-04-08T19:12:40.702854Z", - "iopub.status.idle": "2024-04-08T19:12:43.329249Z", - "shell.execute_reply": "2024-04-08T19:12:43.328755Z" + "iopub.execute_input": "2024-04-08T21:53:02.504023Z", + "iopub.status.busy": "2024-04-08T21:53:02.503847Z", + "iopub.status.idle": "2024-04-08T21:53:05.143294Z", + "shell.execute_reply": "2024-04-08T21:53:05.142687Z" } }, "outputs": [ @@ -454,10 +454,10 @@ "id": "b5fa99a9-2583-4cd0-9d40-015f698cdb23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:43.331514Z", - "iopub.status.busy": "2024-04-08T19:12:43.331169Z", - "iopub.status.idle": "2024-04-08T19:12:44.670891Z", - "shell.execute_reply": "2024-04-08T19:12:44.670276Z" + "iopub.execute_input": "2024-04-08T21:53:05.145673Z", + "iopub.status.busy": "2024-04-08T21:53:05.145204Z", + "iopub.status.idle": "2024-04-08T21:53:06.483996Z", + "shell.execute_reply": "2024-04-08T21:53:06.483366Z" } }, "outputs": [], @@ -499,10 +499,10 @@ "id": "ac1a60df", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:44.673413Z", - "iopub.status.busy": "2024-04-08T19:12:44.673216Z", - "iopub.status.idle": "2024-04-08T19:12:44.677262Z", - "shell.execute_reply": "2024-04-08T19:12:44.676816Z" + "iopub.execute_input": "2024-04-08T21:53:06.486837Z", + "iopub.status.busy": "2024-04-08T21:53:06.486363Z", + "iopub.status.idle": "2024-04-08T21:53:06.490496Z", + "shell.execute_reply": "2024-04-08T21:53:06.490020Z" } }, "outputs": [ @@ -544,10 +544,10 @@ "id": "d09115b6-ad44-474f-9c8a-85a459586439", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:44.679281Z", - "iopub.status.busy": "2024-04-08T19:12:44.678982Z", - "iopub.status.idle": "2024-04-08T19:12:46.437869Z", - "shell.execute_reply": "2024-04-08T19:12:46.437260Z" + "iopub.execute_input": "2024-04-08T21:53:06.492516Z", + "iopub.status.busy": "2024-04-08T21:53:06.492190Z", + "iopub.status.idle": "2024-04-08T21:53:08.207836Z", + "shell.execute_reply": "2024-04-08T21:53:08.207189Z" } }, "outputs": [ @@ -594,10 +594,10 @@ "id": "c18dd83b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:46.440643Z", - "iopub.status.busy": "2024-04-08T19:12:46.440072Z", - "iopub.status.idle": "2024-04-08T19:12:46.448250Z", - "shell.execute_reply": "2024-04-08T19:12:46.447724Z" + "iopub.execute_input": "2024-04-08T21:53:08.210385Z", + "iopub.status.busy": "2024-04-08T21:53:08.209828Z", + "iopub.status.idle": "2024-04-08T21:53:08.218183Z", + "shell.execute_reply": "2024-04-08T21:53:08.217706Z" } }, "outputs": [ @@ -633,10 +633,10 @@ "id": "fffa88f6-84d7-45fe-8214-0e22079a06d1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:46.450615Z", - "iopub.status.busy": "2024-04-08T19:12:46.450220Z", - "iopub.status.idle": "2024-04-08T19:12:49.029942Z", - "shell.execute_reply": "2024-04-08T19:12:49.029325Z" + "iopub.execute_input": "2024-04-08T21:53:08.220241Z", + "iopub.status.busy": "2024-04-08T21:53:08.219969Z", + "iopub.status.idle": "2024-04-08T21:53:10.774214Z", + "shell.execute_reply": "2024-04-08T21:53:10.773690Z" } }, "outputs": [ @@ -671,10 +671,10 @@ "id": "c1198575", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:49.032160Z", - "iopub.status.busy": "2024-04-08T19:12:49.031822Z", - "iopub.status.idle": "2024-04-08T19:12:49.035518Z", - "shell.execute_reply": "2024-04-08T19:12:49.035071Z" + "iopub.execute_input": "2024-04-08T21:53:10.776575Z", + "iopub.status.busy": "2024-04-08T21:53:10.776220Z", + "iopub.status.idle": "2024-04-08T21:53:10.779510Z", + "shell.execute_reply": "2024-04-08T21:53:10.779003Z" } }, "outputs": [ @@ -721,10 +721,10 @@ "id": "49161b19-7625-4fb7-add9-607d91a7eca1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:49.037498Z", - "iopub.status.busy": "2024-04-08T19:12:49.037171Z", - "iopub.status.idle": "2024-04-08T19:12:49.041048Z", - "shell.execute_reply": "2024-04-08T19:12:49.040619Z" + "iopub.execute_input": "2024-04-08T21:53:10.781685Z", + "iopub.status.busy": "2024-04-08T21:53:10.781358Z", + "iopub.status.idle": "2024-04-08T21:53:10.785218Z", + "shell.execute_reply": "2024-04-08T21:53:10.784784Z" } }, "outputs": [], @@ -752,10 +752,10 @@ "id": "d1a2c008", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:49.042924Z", - "iopub.status.busy": "2024-04-08T19:12:49.042604Z", - "iopub.status.idle": "2024-04-08T19:12:49.045672Z", - "shell.execute_reply": "2024-04-08T19:12:49.045228Z" + "iopub.execute_input": "2024-04-08T21:53:10.787312Z", + "iopub.status.busy": "2024-04-08T21:53:10.787001Z", + "iopub.status.idle": "2024-04-08T21:53:10.789982Z", + "shell.execute_reply": "2024-04-08T21:53:10.789540Z" }, "nbsphinx": "hidden" }, @@ -787,7 +787,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/object_detection.ipynb b/master/tutorials/object_detection.ipynb index b290d6163..db57ea3b7 100644 --- a/master/tutorials/object_detection.ipynb +++ b/master/tutorials/object_detection.ipynb @@ -70,10 +70,10 @@ "id": "0ba0dc70", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:51.506697Z", - "iopub.status.busy": "2024-04-08T19:12:51.506534Z", - "iopub.status.idle": "2024-04-08T19:12:52.637000Z", - "shell.execute_reply": "2024-04-08T19:12:52.636397Z" + "iopub.execute_input": "2024-04-08T21:53:13.174563Z", + "iopub.status.busy": "2024-04-08T21:53:13.174086Z", + "iopub.status.idle": "2024-04-08T21:53:14.296401Z", + "shell.execute_reply": "2024-04-08T21:53:14.295802Z" }, "nbsphinx": "hidden" }, @@ -83,7 +83,7 @@ "dependencies = [\"cleanlab\", \"matplotlib\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -109,10 +109,10 @@ "id": "c90449c8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:52.639569Z", - "iopub.status.busy": "2024-04-08T19:12:52.639309Z", - "iopub.status.idle": "2024-04-08T19:12:55.104415Z", - "shell.execute_reply": "2024-04-08T19:12:55.103670Z" + "iopub.execute_input": "2024-04-08T21:53:14.299256Z", + "iopub.status.busy": "2024-04-08T21:53:14.298643Z", + "iopub.status.idle": "2024-04-08T21:53:15.386072Z", + "shell.execute_reply": "2024-04-08T21:53:15.385305Z" } }, "outputs": [], @@ -130,10 +130,10 @@ "id": "df8be4c6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.107140Z", - "iopub.status.busy": "2024-04-08T19:12:55.106931Z", - "iopub.status.idle": "2024-04-08T19:12:55.110341Z", - "shell.execute_reply": "2024-04-08T19:12:55.109801Z" + "iopub.execute_input": "2024-04-08T21:53:15.388879Z", + "iopub.status.busy": "2024-04-08T21:53:15.388508Z", + "iopub.status.idle": "2024-04-08T21:53:15.391840Z", + "shell.execute_reply": "2024-04-08T21:53:15.391355Z" } }, "outputs": [], @@ -169,10 +169,10 @@ "id": "2e9ffd6f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.112430Z", - "iopub.status.busy": "2024-04-08T19:12:55.112060Z", - "iopub.status.idle": "2024-04-08T19:12:55.118161Z", - "shell.execute_reply": "2024-04-08T19:12:55.117642Z" + "iopub.execute_input": "2024-04-08T21:53:15.393861Z", + "iopub.status.busy": "2024-04-08T21:53:15.393683Z", + "iopub.status.idle": "2024-04-08T21:53:15.399966Z", + "shell.execute_reply": "2024-04-08T21:53:15.399554Z" } }, "outputs": [], @@ -198,10 +198,10 @@ "id": "56705562", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.120250Z", - "iopub.status.busy": "2024-04-08T19:12:55.119951Z", - "iopub.status.idle": "2024-04-08T19:12:55.604414Z", - "shell.execute_reply": "2024-04-08T19:12:55.603862Z" + "iopub.execute_input": "2024-04-08T21:53:15.402147Z", + "iopub.status.busy": "2024-04-08T21:53:15.401739Z", + "iopub.status.idle": "2024-04-08T21:53:15.886695Z", + "shell.execute_reply": "2024-04-08T21:53:15.886105Z" }, "scrolled": true }, @@ -242,10 +242,10 @@ "id": "b08144d7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.607305Z", - "iopub.status.busy": "2024-04-08T19:12:55.606952Z", - "iopub.status.idle": "2024-04-08T19:12:55.612116Z", - "shell.execute_reply": "2024-04-08T19:12:55.611686Z" + "iopub.execute_input": "2024-04-08T21:53:15.889459Z", + "iopub.status.busy": "2024-04-08T21:53:15.889016Z", + "iopub.status.idle": "2024-04-08T21:53:15.894428Z", + "shell.execute_reply": "2024-04-08T21:53:15.893875Z" } }, "outputs": [ @@ -497,10 +497,10 @@ "id": "3d70bec6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.614134Z", - "iopub.status.busy": "2024-04-08T19:12:55.613824Z", - "iopub.status.idle": "2024-04-08T19:12:55.617419Z", - "shell.execute_reply": "2024-04-08T19:12:55.617014Z" + "iopub.execute_input": "2024-04-08T21:53:15.896540Z", + "iopub.status.busy": "2024-04-08T21:53:15.896227Z", + "iopub.status.idle": "2024-04-08T21:53:15.899892Z", + "shell.execute_reply": "2024-04-08T21:53:15.899405Z" } }, "outputs": [ @@ -557,10 +557,10 @@ "id": "4caa635d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:55.619403Z", - "iopub.status.busy": "2024-04-08T19:12:55.619145Z", - "iopub.status.idle": "2024-04-08T19:12:56.292272Z", - "shell.execute_reply": "2024-04-08T19:12:56.291640Z" + "iopub.execute_input": "2024-04-08T21:53:15.901915Z", + "iopub.status.busy": "2024-04-08T21:53:15.901600Z", + "iopub.status.idle": "2024-04-08T21:53:16.556397Z", + "shell.execute_reply": "2024-04-08T21:53:16.555811Z" } }, "outputs": [ @@ -616,10 +616,10 @@ "id": "a9b4c590", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.294743Z", - "iopub.status.busy": "2024-04-08T19:12:56.294368Z", - "iopub.status.idle": "2024-04-08T19:12:56.451834Z", - "shell.execute_reply": "2024-04-08T19:12:56.451237Z" + "iopub.execute_input": "2024-04-08T21:53:16.558843Z", + "iopub.status.busy": "2024-04-08T21:53:16.558463Z", + "iopub.status.idle": "2024-04-08T21:53:16.718885Z", + "shell.execute_reply": "2024-04-08T21:53:16.718432Z" } }, "outputs": [ @@ -660,10 +660,10 @@ "id": "ffd9ebcc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.454163Z", - "iopub.status.busy": "2024-04-08T19:12:56.453784Z", - "iopub.status.idle": "2024-04-08T19:12:56.458257Z", - "shell.execute_reply": "2024-04-08T19:12:56.457717Z" + "iopub.execute_input": "2024-04-08T21:53:16.721035Z", + "iopub.status.busy": "2024-04-08T21:53:16.720690Z", + "iopub.status.idle": "2024-04-08T21:53:16.724952Z", + "shell.execute_reply": "2024-04-08T21:53:16.724509Z" } }, "outputs": [ @@ -700,10 +700,10 @@ "id": "4dd46d67", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.460284Z", - "iopub.status.busy": "2024-04-08T19:12:56.459945Z", - "iopub.status.idle": "2024-04-08T19:12:56.918547Z", - "shell.execute_reply": "2024-04-08T19:12:56.917913Z" + "iopub.execute_input": "2024-04-08T21:53:16.727026Z", + "iopub.status.busy": "2024-04-08T21:53:16.726592Z", + "iopub.status.idle": "2024-04-08T21:53:17.171629Z", + "shell.execute_reply": "2024-04-08T21:53:17.170994Z" } }, "outputs": [ @@ -762,10 +762,10 @@ "id": "ceec2394", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:56.921651Z", - "iopub.status.busy": "2024-04-08T19:12:56.921292Z", - "iopub.status.idle": "2024-04-08T19:12:57.253473Z", - "shell.execute_reply": "2024-04-08T19:12:57.252856Z" + "iopub.execute_input": "2024-04-08T21:53:17.174738Z", + "iopub.status.busy": "2024-04-08T21:53:17.174372Z", + "iopub.status.idle": "2024-04-08T21:53:17.507767Z", + "shell.execute_reply": "2024-04-08T21:53:17.507230Z" } }, "outputs": [ @@ -812,10 +812,10 @@ "id": "94f82b0d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:57.255657Z", - "iopub.status.busy": "2024-04-08T19:12:57.255478Z", - "iopub.status.idle": "2024-04-08T19:12:57.619053Z", - "shell.execute_reply": "2024-04-08T19:12:57.618466Z" + "iopub.execute_input": "2024-04-08T21:53:17.510336Z", + "iopub.status.busy": "2024-04-08T21:53:17.510151Z", + "iopub.status.idle": "2024-04-08T21:53:17.841940Z", + "shell.execute_reply": "2024-04-08T21:53:17.841333Z" } }, "outputs": [ @@ -862,10 +862,10 @@ "id": "1ea18c5d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:57.621976Z", - "iopub.status.busy": "2024-04-08T19:12:57.621623Z", - "iopub.status.idle": "2024-04-08T19:12:58.060261Z", - "shell.execute_reply": "2024-04-08T19:12:58.059741Z" + "iopub.execute_input": "2024-04-08T21:53:17.844745Z", + "iopub.status.busy": "2024-04-08T21:53:17.844322Z", + "iopub.status.idle": "2024-04-08T21:53:18.282711Z", + "shell.execute_reply": "2024-04-08T21:53:18.282153Z" } }, "outputs": [ @@ -925,10 +925,10 @@ "id": "7e770d23", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.064403Z", - "iopub.status.busy": "2024-04-08T19:12:58.064187Z", - "iopub.status.idle": "2024-04-08T19:12:58.481716Z", - "shell.execute_reply": "2024-04-08T19:12:58.481166Z" + "iopub.execute_input": "2024-04-08T21:53:18.287057Z", + "iopub.status.busy": "2024-04-08T21:53:18.286688Z", + "iopub.status.idle": "2024-04-08T21:53:18.731778Z", + "shell.execute_reply": "2024-04-08T21:53:18.731192Z" } }, "outputs": [ @@ -971,10 +971,10 @@ "id": "57e84a27", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.484504Z", - "iopub.status.busy": "2024-04-08T19:12:58.484329Z", - "iopub.status.idle": "2024-04-08T19:12:58.698454Z", - "shell.execute_reply": "2024-04-08T19:12:58.697889Z" + "iopub.execute_input": "2024-04-08T21:53:18.734897Z", + "iopub.status.busy": "2024-04-08T21:53:18.734545Z", + "iopub.status.idle": "2024-04-08T21:53:18.946711Z", + "shell.execute_reply": "2024-04-08T21:53:18.946128Z" } }, "outputs": [ @@ -1017,10 +1017,10 @@ "id": "0302818a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.700764Z", - "iopub.status.busy": "2024-04-08T19:12:58.700331Z", - "iopub.status.idle": "2024-04-08T19:12:58.897447Z", - "shell.execute_reply": "2024-04-08T19:12:58.896906Z" + "iopub.execute_input": "2024-04-08T21:53:18.948919Z", + "iopub.status.busy": "2024-04-08T21:53:18.948578Z", + "iopub.status.idle": "2024-04-08T21:53:19.148315Z", + "shell.execute_reply": "2024-04-08T21:53:19.147722Z" } }, "outputs": [ @@ -1067,10 +1067,10 @@ "id": "5cacec81-2adf-46a8-82c5-7ec0185d4356", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.899675Z", - "iopub.status.busy": "2024-04-08T19:12:58.899273Z", - "iopub.status.idle": "2024-04-08T19:12:58.902127Z", - "shell.execute_reply": "2024-04-08T19:12:58.901613Z" + "iopub.execute_input": "2024-04-08T21:53:19.150522Z", + "iopub.status.busy": "2024-04-08T21:53:19.150172Z", + "iopub.status.idle": "2024-04-08T21:53:19.153015Z", + "shell.execute_reply": "2024-04-08T21:53:19.152594Z" } }, "outputs": [], @@ -1090,10 +1090,10 @@ "id": "3335b8a3-d0b4-415a-a97d-c203088a124e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:58.904091Z", - "iopub.status.busy": "2024-04-08T19:12:58.903780Z", - "iopub.status.idle": "2024-04-08T19:12:59.779761Z", - "shell.execute_reply": "2024-04-08T19:12:59.779165Z" + "iopub.execute_input": "2024-04-08T21:53:19.155170Z", + "iopub.status.busy": "2024-04-08T21:53:19.154723Z", + "iopub.status.idle": "2024-04-08T21:53:20.021314Z", + "shell.execute_reply": "2024-04-08T21:53:20.020786Z" } }, "outputs": [ @@ -1172,10 +1172,10 @@ "id": "9d4b7677-6ebd-447d-b0a1-76e094686628", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:59.782264Z", - "iopub.status.busy": "2024-04-08T19:12:59.781937Z", - "iopub.status.idle": "2024-04-08T19:12:59.964112Z", - "shell.execute_reply": "2024-04-08T19:12:59.963525Z" + "iopub.execute_input": "2024-04-08T21:53:20.023932Z", + "iopub.status.busy": "2024-04-08T21:53:20.023749Z", + "iopub.status.idle": "2024-04-08T21:53:20.132017Z", + "shell.execute_reply": "2024-04-08T21:53:20.131591Z" } }, "outputs": [ @@ -1214,10 +1214,10 @@ "id": "59d7ee39-3785-434b-8680-9133014851cd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:12:59.966448Z", - "iopub.status.busy": "2024-04-08T19:12:59.965968Z", - "iopub.status.idle": "2024-04-08T19:13:00.154653Z", - "shell.execute_reply": "2024-04-08T19:13:00.154036Z" + "iopub.execute_input": "2024-04-08T21:53:20.134136Z", + "iopub.status.busy": "2024-04-08T21:53:20.133814Z", + "iopub.status.idle": "2024-04-08T21:53:20.256463Z", + "shell.execute_reply": "2024-04-08T21:53:20.255994Z" } }, "outputs": [], @@ -1266,10 +1266,10 @@ "id": "47b6a8ff-7a58-4a1f-baee-e6cfe7a85a6d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:00.156712Z", - "iopub.status.busy": "2024-04-08T19:13:00.156532Z", - "iopub.status.idle": "2024-04-08T19:13:00.829599Z", - "shell.execute_reply": "2024-04-08T19:13:00.829059Z" + "iopub.execute_input": "2024-04-08T21:53:20.258386Z", + "iopub.status.busy": "2024-04-08T21:53:20.258207Z", + "iopub.status.idle": "2024-04-08T21:53:20.993801Z", + "shell.execute_reply": "2024-04-08T21:53:20.993270Z" } }, "outputs": [ @@ -1351,10 +1351,10 @@ "id": "8ce74938", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:00.832154Z", - "iopub.status.busy": "2024-04-08T19:13:00.831662Z", - "iopub.status.idle": "2024-04-08T19:13:00.835999Z", - "shell.execute_reply": "2024-04-08T19:13:00.835484Z" + "iopub.execute_input": "2024-04-08T21:53:20.995920Z", + "iopub.status.busy": "2024-04-08T21:53:20.995738Z", + "iopub.status.idle": "2024-04-08T21:53:20.999427Z", + "shell.execute_reply": "2024-04-08T21:53:20.998985Z" }, "nbsphinx": "hidden" }, @@ -1387,7 +1387,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/outliers.html b/master/tutorials/outliers.html index 5348041dc..6a95bb927 100644 --- a/master/tutorials/outliers.html +++ b/master/tutorials/outliers.html @@ -746,7 +746,7 @@

    2. Pre-process the Cifar10 dataset
    -100%|██████████| 170498071/170498071 [00:04<00:00, 37601665.95it/s]
    +100%|██████████| 170498071/170498071 [00:01<00:00, 96344932.23it/s]
     
    -
    +
    @@ -1090,7 +1090,7 @@

    4. Use cleanlab and here.

    diff --git a/master/tutorials/outliers.ipynb b/master/tutorials/outliers.ipynb index c8a250110..8ece31973 100644 --- a/master/tutorials/outliers.ipynb +++ b/master/tutorials/outliers.ipynb @@ -109,10 +109,10 @@ "id": "2bbebfc8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:03.168340Z", - "iopub.status.busy": "2024-04-08T19:13:03.168171Z", - "iopub.status.idle": "2024-04-08T19:13:05.872246Z", - "shell.execute_reply": "2024-04-08T19:13:05.871721Z" + "iopub.execute_input": "2024-04-08T21:53:23.106537Z", + "iopub.status.busy": "2024-04-08T21:53:23.106008Z", + "iopub.status.idle": "2024-04-08T21:53:25.809147Z", + "shell.execute_reply": "2024-04-08T21:53:25.808588Z" }, "nbsphinx": "hidden" }, @@ -125,7 +125,7 @@ "dependencies = [\"matplotlib\", \"torch\", \"torchvision\", \"timm\", \"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -159,10 +159,10 @@ "id": "4396f544", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:05.874860Z", - "iopub.status.busy": "2024-04-08T19:13:05.874355Z", - "iopub.status.idle": "2024-04-08T19:13:06.204418Z", - "shell.execute_reply": "2024-04-08T19:13:06.203821Z" + "iopub.execute_input": "2024-04-08T21:53:25.811952Z", + "iopub.status.busy": "2024-04-08T21:53:25.811404Z", + "iopub.status.idle": "2024-04-08T21:53:26.130631Z", + "shell.execute_reply": "2024-04-08T21:53:26.130075Z" } }, "outputs": [], @@ -188,10 +188,10 @@ "id": "3792f82e", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:06.206962Z", - "iopub.status.busy": "2024-04-08T19:13:06.206657Z", - "iopub.status.idle": "2024-04-08T19:13:06.210651Z", - "shell.execute_reply": "2024-04-08T19:13:06.210217Z" + "iopub.execute_input": "2024-04-08T21:53:26.133270Z", + "iopub.status.busy": "2024-04-08T21:53:26.132699Z", + "iopub.status.idle": "2024-04-08T21:53:26.136882Z", + "shell.execute_reply": "2024-04-08T21:53:26.136338Z" }, "nbsphinx": "hidden" }, @@ -225,10 +225,10 @@ "id": "fd853a54", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:06.212643Z", - "iopub.status.busy": "2024-04-08T19:13:06.212236Z", - "iopub.status.idle": "2024-04-08T19:13:14.211316Z", - "shell.execute_reply": "2024-04-08T19:13:14.210735Z" + "iopub.execute_input": "2024-04-08T21:53:26.139086Z", + "iopub.status.busy": "2024-04-08T21:53:26.138768Z", + "iopub.status.idle": "2024-04-08T21:53:30.505958Z", + "shell.execute_reply": "2024-04-08T21:53:30.505359Z" } }, "outputs": [ @@ -252,7 +252,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 32768/170498071 [00:00<11:46, 241421.69it/s]" + " 1%| | 1769472/170498071 [00:00<00:09, 17453386.37it/s]" ] }, { @@ -260,7 +260,7 @@ "output_type": "stream", "text": [ "\r", - " 0%| | 229376/170498071 [00:00<03:01, 939950.18it/s]" + " 7%|▋ | 12222464/170498071 [00:00<00:02, 68271540.42it/s]" ] }, { @@ -268,7 +268,7 @@ "output_type": "stream", "text": [ "\r", - " 1%| | 884736/170498071 [00:00<01:03, 2688209.96it/s]" + " 13%|█▎ | 22052864/170498071 [00:00<00:01, 81895567.19it/s]" ] }, { @@ -276,7 +276,7 @@ "output_type": "stream", "text": [ "\r", - " 2%|▏ | 3538944/170498071 [00:00<00:18, 9239543.74it/s]" + " 19%|█▊ | 31752192/170498071 [00:00<00:01, 87771939.20it/s]" ] }, { @@ -284,7 +284,7 @@ "output_type": "stream", "text": [ "\r", - " 6%|▌ | 9633792/170498071 [00:00<00:07, 21711409.29it/s]" + " 24%|██▍ | 41648128/170498071 [00:00<00:01, 91729819.79it/s]" ] }, { @@ -292,7 +292,7 @@ "output_type": "stream", "text": [ "\r", - " 9%|▉ | 15695872/170498071 [00:00<00:04, 32236184.47it/s]" + " 30%|███ | 51216384/170498071 [00:00<00:01, 93048740.90it/s]" ] }, { @@ -300,7 +300,7 @@ "output_type": "stream", "text": [ "\r", - " 11%|█▏ | 19202048/170498071 [00:00<00:04, 31213118.98it/s]" + " 36%|███▋ | 61833216/170498071 [00:00<00:01, 97261469.47it/s]" ] }, { @@ -308,7 +308,7 @@ "output_type": "stream", "text": [ "\r", - " 15%|█▍ | 25165824/170498071 [00:01<00:03, 36748958.36it/s]" + " 42%|████▏ | 71565312/170498071 [00:00<00:01, 94889041.88it/s]" ] }, { @@ -316,7 +316,7 @@ "output_type": "stream", "text": [ "\r", - " 17%|█▋ | 29196288/170498071 [00:01<00:03, 37692490.20it/s]" + " 49%|████▊ | 82771968/170498071 [00:00<00:00, 100094798.36it/s]" ] }, { @@ -324,7 +324,7 @@ "output_type": "stream", "text": [ "\r", - " 20%|██ | 34471936/170498071 [00:01<00:03, 41145514.19it/s]" + " 54%|█████▍ | 92831744/170498071 [00:01<00:00, 98265231.19it/s] " ] }, { @@ -332,7 +332,7 @@ "output_type": "stream", "text": [ "\r", - " 23%|██▎ | 38699008/170498071 [00:01<00:03, 40166399.16it/s]" + " 60%|██████ | 102727680/170498071 [00:01<00:00, 98457269.63it/s]" ] }, { @@ -340,7 +340,7 @@ "output_type": "stream", "text": [ "\r", - " 26%|██▌ | 43909120/170498071 [00:01<00:02, 43337775.10it/s]" + " 66%|██████▌ | 112656384/170498071 [00:01<00:00, 98612911.23it/s]" ] }, { @@ -348,7 +348,7 @@ "output_type": "stream", "text": [ "\r", - " 28%|██▊ | 48332800/170498071 [00:01<00:02, 41475797.12it/s]" + " 72%|███████▏ | 122552320/170498071 [00:01<00:00, 97679928.31it/s]" ] }, { @@ -356,7 +356,7 @@ "output_type": "stream", "text": [ "\r", - " 31%|███ | 52822016/170498071 [00:01<00:02, 42394898.27it/s]" + " 78%|███████▊ | 133300224/170498071 [00:01<00:00, 100524563.95it/s]" ] }, { @@ -364,7 +364,7 @@ "output_type": "stream", "text": [ "\r", - " 33%|███▎ | 57114624/170498071 [00:01<00:02, 40475978.10it/s]" + " 84%|████████▍ | 143392768/170498071 [00:01<00:00, 99316653.98it/s] " ] }, { @@ -372,7 +372,7 @@ "output_type": "stream", "text": [ "\r", - " 36%|███▌ | 61571072/170498071 [00:01<00:02, 41609620.80it/s]" + " 91%|█████████ | 154533888/170498071 [00:01<00:00, 102793983.77it/s]" ] }, { @@ -380,7 +380,7 @@ "output_type": "stream", "text": [ "\r", - " 39%|███▊ | 65863680/170498071 [00:02<00:02, 39729349.49it/s]" + " 97%|█████████▋| 165740544/170498071 [00:01<00:00, 105425982.54it/s]" ] }, { @@ -388,191 +388,7 @@ "output_type": "stream", "text": [ "\r", - " 41%|████▏ | 70418432/170498071 [00:02<00:02, 41333024.63it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 44%|████▍ | 74809344/170498071 [00:02<00:02, 42035778.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 46%|████▋ | 79069184/170498071 [00:02<00:02, 40305702.80it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 49%|████▉ | 83427328/170498071 [00:02<00:02, 41196757.42it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 51%|█████▏ | 87588864/170498071 [00:02<00:02, 39637138.62it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 54%|█████▍ | 91881472/170498071 [00:02<00:01, 40536471.23it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 56%|█████▋ | 95977472/170498071 [00:02<00:01, 39252273.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 59%|█████▉ | 100466688/170498071 [00:02<00:01, 40454041.31it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 62%|██████▏ | 104955904/170498071 [00:02<00:01, 39445045.53it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 64%|██████▍ | 109510656/170498071 [00:03<00:01, 41083281.40it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 67%|██████▋ | 113803264/170498071 [00:03<00:01, 41583370.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 69%|██████▉ | 117997568/170498071 [00:03<00:01, 40073702.55it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 72%|███████▏ | 122290176/170498071 [00:03<00:01, 40828624.13it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 74%|███████▍ | 126418944/170498071 [00:03<00:01, 39461562.96it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 77%|███████▋ | 130744320/170498071 [00:03<00:00, 40509967.30it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 79%|███████▉ | 135266304/170498071 [00:03<00:00, 41845498.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 82%|████████▏ | 139493376/170498071 [00:03<00:00, 40939532.66it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 85%|████████▍ | 144211968/170498071 [00:03<00:00, 42696106.22it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 87%|████████▋ | 148504576/170498071 [00:04<00:00, 41635041.16it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 90%|████████▉ | 152961024/170498071 [00:04<00:00, 42468713.05it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 92%|█████████▏| 157253632/170498071 [00:04<00:00, 42241843.01it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 95%|█████████▍| 161939456/170498071 [00:04<00:00, 43462412.29it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - " 98%|█████████▊| 166297600/170498071 [00:04<00:00, 43386976.71it/s]" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r", - "100%|██████████| 170498071/170498071 [00:04<00:00, 37601665.95it/s]" + "100%|██████████| 170498071/170498071 [00:01<00:00, 96344932.23it/s] " ] }, { @@ -690,10 +506,10 @@ "id": "9b64e0aa", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:14.213408Z", - "iopub.status.busy": "2024-04-08T19:13:14.213222Z", - "iopub.status.idle": "2024-04-08T19:13:14.217828Z", - "shell.execute_reply": "2024-04-08T19:13:14.217410Z" + "iopub.execute_input": "2024-04-08T21:53:30.508269Z", + "iopub.status.busy": "2024-04-08T21:53:30.507916Z", + "iopub.status.idle": "2024-04-08T21:53:30.512599Z", + "shell.execute_reply": "2024-04-08T21:53:30.512173Z" }, "nbsphinx": "hidden" }, @@ -744,10 +560,10 @@ "id": "a00aa3ed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:14.219646Z", - "iopub.status.busy": "2024-04-08T19:13:14.219474Z", - "iopub.status.idle": "2024-04-08T19:13:14.735288Z", - "shell.execute_reply": "2024-04-08T19:13:14.734716Z" + "iopub.execute_input": "2024-04-08T21:53:30.514714Z", + "iopub.status.busy": "2024-04-08T21:53:30.514383Z", + "iopub.status.idle": "2024-04-08T21:53:31.051751Z", + "shell.execute_reply": "2024-04-08T21:53:31.051165Z" } }, "outputs": [ @@ -780,10 +596,10 @@ "id": "41e5cb6b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:14.737482Z", - "iopub.status.busy": "2024-04-08T19:13:14.737170Z", - "iopub.status.idle": "2024-04-08T19:13:15.227922Z", - "shell.execute_reply": "2024-04-08T19:13:15.227323Z" + "iopub.execute_input": "2024-04-08T21:53:31.054091Z", + "iopub.status.busy": "2024-04-08T21:53:31.053743Z", + "iopub.status.idle": "2024-04-08T21:53:31.558486Z", + "shell.execute_reply": "2024-04-08T21:53:31.557907Z" } }, "outputs": [ @@ -821,10 +637,10 @@ "id": "1cf25354", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:15.229967Z", - "iopub.status.busy": "2024-04-08T19:13:15.229777Z", - "iopub.status.idle": "2024-04-08T19:13:15.233685Z", - "shell.execute_reply": "2024-04-08T19:13:15.233276Z" + "iopub.execute_input": "2024-04-08T21:53:31.560721Z", + "iopub.status.busy": "2024-04-08T21:53:31.560363Z", + "iopub.status.idle": "2024-04-08T21:53:31.563739Z", + "shell.execute_reply": "2024-04-08T21:53:31.563302Z" } }, "outputs": [], @@ -847,17 +663,17 @@ "id": "85a58d41", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:15.235578Z", - "iopub.status.busy": "2024-04-08T19:13:15.235253Z", - "iopub.status.idle": "2024-04-08T19:13:27.791114Z", - "shell.execute_reply": "2024-04-08T19:13:27.790500Z" + "iopub.execute_input": "2024-04-08T21:53:31.565838Z", + "iopub.status.busy": "2024-04-08T21:53:31.565510Z", + "iopub.status.idle": "2024-04-08T21:53:44.051763Z", + "shell.execute_reply": "2024-04-08T21:53:44.051171Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2bb5503dd8b443508a98689b99426ed1", + "model_id": "74fee4353095495d9f226fe332cc1259", "version_major": 2, "version_minor": 0 }, @@ -916,10 +732,10 @@ "id": "feb0f519", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:27.793604Z", - "iopub.status.busy": "2024-04-08T19:13:27.793211Z", - "iopub.status.idle": "2024-04-08T19:13:29.587802Z", - "shell.execute_reply": "2024-04-08T19:13:29.587253Z" + "iopub.execute_input": "2024-04-08T21:53:44.054111Z", + "iopub.status.busy": "2024-04-08T21:53:44.053732Z", + "iopub.status.idle": "2024-04-08T21:53:45.819836Z", + "shell.execute_reply": "2024-04-08T21:53:45.819254Z" } }, "outputs": [ @@ -963,10 +779,10 @@ "id": "089d5860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:29.590598Z", - "iopub.status.busy": "2024-04-08T19:13:29.590127Z", - "iopub.status.idle": "2024-04-08T19:13:29.858111Z", - "shell.execute_reply": "2024-04-08T19:13:29.857584Z" + "iopub.execute_input": "2024-04-08T21:53:45.822604Z", + "iopub.status.busy": "2024-04-08T21:53:45.822223Z", + "iopub.status.idle": "2024-04-08T21:53:46.075652Z", + "shell.execute_reply": "2024-04-08T21:53:46.074584Z" } }, "outputs": [ @@ -1002,10 +818,10 @@ "id": "78b1951c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:29.861034Z", - "iopub.status.busy": "2024-04-08T19:13:29.860632Z", - "iopub.status.idle": "2024-04-08T19:13:30.577484Z", - "shell.execute_reply": "2024-04-08T19:13:30.576958Z" + "iopub.execute_input": "2024-04-08T21:53:46.078335Z", + "iopub.status.busy": "2024-04-08T21:53:46.078108Z", + "iopub.status.idle": "2024-04-08T21:53:46.743524Z", + "shell.execute_reply": "2024-04-08T21:53:46.742932Z" } }, "outputs": [ @@ -1055,10 +871,10 @@ "id": "e9dff81b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:30.580265Z", - "iopub.status.busy": "2024-04-08T19:13:30.579691Z", - "iopub.status.idle": "2024-04-08T19:13:30.924605Z", - "shell.execute_reply": "2024-04-08T19:13:30.924026Z" + "iopub.execute_input": "2024-04-08T21:53:46.746550Z", + "iopub.status.busy": "2024-04-08T21:53:46.746222Z", + "iopub.status.idle": "2024-04-08T21:53:47.081719Z", + "shell.execute_reply": "2024-04-08T21:53:47.081148Z" } }, "outputs": [ @@ -1106,10 +922,10 @@ "id": "616769f8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:30.926999Z", - "iopub.status.busy": "2024-04-08T19:13:30.926574Z", - "iopub.status.idle": "2024-04-08T19:13:31.175317Z", - "shell.execute_reply": "2024-04-08T19:13:31.174782Z" + "iopub.execute_input": "2024-04-08T21:53:47.084022Z", + "iopub.status.busy": "2024-04-08T21:53:47.083652Z", + "iopub.status.idle": "2024-04-08T21:53:47.326888Z", + "shell.execute_reply": "2024-04-08T21:53:47.326274Z" } }, "outputs": [ @@ -1165,10 +981,10 @@ "id": "40fed4ef", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:31.177937Z", - "iopub.status.busy": "2024-04-08T19:13:31.177576Z", - "iopub.status.idle": "2024-04-08T19:13:31.272978Z", - "shell.execute_reply": "2024-04-08T19:13:31.272473Z" + "iopub.execute_input": "2024-04-08T21:53:47.329510Z", + "iopub.status.busy": "2024-04-08T21:53:47.329278Z", + "iopub.status.idle": "2024-04-08T21:53:47.413482Z", + "shell.execute_reply": "2024-04-08T21:53:47.412987Z" } }, "outputs": [], @@ -1189,10 +1005,10 @@ "id": "89f9db72", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:31.275519Z", - "iopub.status.busy": "2024-04-08T19:13:31.275167Z", - "iopub.status.idle": "2024-04-08T19:13:41.679014Z", - "shell.execute_reply": "2024-04-08T19:13:41.678397Z" + "iopub.execute_input": "2024-04-08T21:53:47.415922Z", + "iopub.status.busy": "2024-04-08T21:53:47.415575Z", + "iopub.status.idle": "2024-04-08T21:53:57.742151Z", + "shell.execute_reply": "2024-04-08T21:53:57.741544Z" } }, "outputs": [ @@ -1229,10 +1045,10 @@ "id": "874c885a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:41.681464Z", - "iopub.status.busy": "2024-04-08T19:13:41.681014Z", - "iopub.status.idle": "2024-04-08T19:13:43.393278Z", - "shell.execute_reply": "2024-04-08T19:13:43.392676Z" + "iopub.execute_input": "2024-04-08T21:53:57.744530Z", + "iopub.status.busy": "2024-04-08T21:53:57.744288Z", + "iopub.status.idle": "2024-04-08T21:53:59.488154Z", + "shell.execute_reply": "2024-04-08T21:53:59.487660Z" } }, "outputs": [ @@ -1263,10 +1079,10 @@ "id": "e110fc4b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:43.395878Z", - "iopub.status.busy": "2024-04-08T19:13:43.395510Z", - "iopub.status.idle": "2024-04-08T19:13:43.601564Z", - "shell.execute_reply": "2024-04-08T19:13:43.600964Z" + "iopub.execute_input": "2024-04-08T21:53:59.490552Z", + "iopub.status.busy": "2024-04-08T21:53:59.490160Z", + "iopub.status.idle": "2024-04-08T21:53:59.700075Z", + "shell.execute_reply": "2024-04-08T21:53:59.699559Z" } }, "outputs": [], @@ -1280,10 +1096,10 @@ "id": "85b60cbf", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:43.604043Z", - "iopub.status.busy": "2024-04-08T19:13:43.603730Z", - "iopub.status.idle": "2024-04-08T19:13:43.606880Z", - "shell.execute_reply": "2024-04-08T19:13:43.606367Z" + "iopub.execute_input": "2024-04-08T21:53:59.702595Z", + "iopub.status.busy": "2024-04-08T21:53:59.702250Z", + "iopub.status.idle": "2024-04-08T21:53:59.705307Z", + "shell.execute_reply": "2024-04-08T21:53:59.704880Z" } }, "outputs": [], @@ -1305,10 +1121,10 @@ "id": "17f96fa6", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:43.609039Z", - "iopub.status.busy": "2024-04-08T19:13:43.608752Z", - "iopub.status.idle": "2024-04-08T19:13:43.617066Z", - "shell.execute_reply": "2024-04-08T19:13:43.616668Z" + "iopub.execute_input": "2024-04-08T21:53:59.707485Z", + "iopub.status.busy": "2024-04-08T21:53:59.707155Z", + "iopub.status.idle": "2024-04-08T21:53:59.715532Z", + "shell.execute_reply": "2024-04-08T21:53:59.715087Z" }, "nbsphinx": "hidden" }, @@ -1348,12 +1164,77 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "007c6ddc44eb433e853f88ed09044f49": { + "1b929639cf644575b18de45cd7024f20": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_701253a3878e4e80bf70ce2d5107bc4a", + "placeholder": "​", + "style": "IPY_MODEL_cdb8e1ba4c3c4be787dbf71554bbd39a", + "tabbable": null, + "tooltip": null, + "value": " 102M/102M [00:00<00:00, 321MB/s]" + } + }, + "23be7ed9ccbd408da27baf5bccd9a8bb": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_613d8f0ad5b24a2cbbc7eba7165b1268", + "max": 102469840.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_44e5092b23194ea1952a474d3d786afd", + "tabbable": null, + "tooltip": null, + "value": 102469840.0 + } + }, + "44e5092b23194ea1952a474d3d786afd": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "52a04235b3b64c8db21bd301de16b3b6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1406,48 +1287,7 @@ "width": null } }, - "086fdb340ddc44499e840c6359ce1479": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "0c6902059f6d43049f050a70f2c4d5ed": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_007c6ddc44eb433e853f88ed09044f49", - "placeholder": "​", - "style": "IPY_MODEL_8e6e75da45e94500ac3664d6571c19a5", - "tabbable": null, - "tooltip": null, - "value": " 102M/102M [00:00<00:00, 261MB/s]" - } - }, - "0c87bf09ff7545318077176d0bc67dc5": { + "613d8f0ad5b24a2cbbc7eba7165b1268": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1500,31 +1340,25 @@ "width": null } }, - "2bb5503dd8b443508a98689b99426ed1": { + "6a0cb4fc0ec8441daefaec8c242c5901": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_b99b680885934cdfa31bc3a843e20724", - "IPY_MODEL_f15ac1823a7f4e549da71d08245aa9b2", - "IPY_MODEL_0c6902059f6d43049f050a70f2c4d5ed" - ], - "layout": "IPY_MODEL_0c87bf09ff7545318077176d0bc67dc5", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "3897024bcca245b1bc58655ded2b9bc5": { + "701253a3878e4e80bf70ce2d5107bc4a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1577,25 +1411,31 @@ "width": null } }, - "8e6e75da45e94500ac3664d6571c19a5": { + "74fee4353095495d9f226fe332cc1259": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_c49734db5060444fb92ed63c94ad0dcc", + "IPY_MODEL_23be7ed9ccbd408da27baf5bccd9a8bb", + "IPY_MODEL_1b929639cf644575b18de45cd7024f20" + ], + "layout": "IPY_MODEL_52a04235b3b64c8db21bd301de16b3b6", + "tabbable": null, + "tooltip": null } }, - "b99b680885934cdfa31bc3a843e20724": { + "c49734db5060444fb92ed63c94ad0dcc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1610,15 +1450,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_3897024bcca245b1bc58655ded2b9bc5", + "layout": "IPY_MODEL_d01a98a4674847ee9ceb535a10490498", "placeholder": "​", - "style": "IPY_MODEL_086fdb340ddc44499e840c6359ce1479", + "style": "IPY_MODEL_6a0cb4fc0ec8441daefaec8c242c5901", "tabbable": null, "tooltip": null, "value": "model.safetensors: 100%" } }, - "c8047222b06d47abb1cddbdcb8b6aaff": { + "cdb8e1ba4c3c4be787dbf71554bbd39a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "d01a98a4674847ee9ceb535a10490498": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1670,48 +1528,6 @@ "visibility": null, "width": null } - }, - "f15ac1823a7f4e549da71d08245aa9b2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_c8047222b06d47abb1cddbdcb8b6aaff", - "max": 102469840.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_fb1f241a35b74a80a9334872055927bc", - "tabbable": null, - "tooltip": null, - "value": 102469840.0 - } - }, - "fb1f241a35b74a80a9334872055927bc": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } } }, "version_major": 2, diff --git a/master/tutorials/regression.ipynb b/master/tutorials/regression.ipynb index 673215d3c..04d8b1fb3 100644 --- a/master/tutorials/regression.ipynb +++ b/master/tutorials/regression.ipynb @@ -102,10 +102,10 @@ "id": "2e1af7d8", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:47.803397Z", - "iopub.status.busy": "2024-04-08T19:13:47.802938Z", - "iopub.status.idle": "2024-04-08T19:13:48.925278Z", - "shell.execute_reply": "2024-04-08T19:13:48.924752Z" + "iopub.execute_input": "2024-04-08T21:54:04.047172Z", + "iopub.status.busy": "2024-04-08T21:54:04.047009Z", + "iopub.status.idle": "2024-04-08T21:54:05.165055Z", + "shell.execute_reply": "2024-04-08T21:54:05.164503Z" }, "nbsphinx": "hidden" }, @@ -117,7 +117,7 @@ "dependencies = [\"cleanlab\", \"matplotlib>=3.6.0\", \"datasets\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = \" \".join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -143,10 +143,10 @@ "id": "4fb10b8f", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:48.927915Z", - "iopub.status.busy": "2024-04-08T19:13:48.927470Z", - "iopub.status.idle": "2024-04-08T19:13:48.945021Z", - "shell.execute_reply": "2024-04-08T19:13:48.944602Z" + "iopub.execute_input": "2024-04-08T21:54:05.167726Z", + "iopub.status.busy": "2024-04-08T21:54:05.167423Z", + "iopub.status.idle": "2024-04-08T21:54:05.184913Z", + "shell.execute_reply": "2024-04-08T21:54:05.184432Z" } }, "outputs": [], @@ -165,10 +165,10 @@ "id": "284dc264", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:48.947242Z", - "iopub.status.busy": "2024-04-08T19:13:48.946736Z", - "iopub.status.idle": "2024-04-08T19:13:48.949732Z", - "shell.execute_reply": "2024-04-08T19:13:48.949294Z" + "iopub.execute_input": "2024-04-08T21:54:05.187353Z", + "iopub.status.busy": "2024-04-08T21:54:05.186846Z", + "iopub.status.idle": "2024-04-08T21:54:05.190514Z", + "shell.execute_reply": "2024-04-08T21:54:05.190045Z" }, "nbsphinx": "hidden" }, @@ -199,10 +199,10 @@ "id": "0f7450db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:48.951557Z", - "iopub.status.busy": "2024-04-08T19:13:48.951388Z", - "iopub.status.idle": "2024-04-08T19:13:49.150115Z", - "shell.execute_reply": "2024-04-08T19:13:49.149617Z" + "iopub.execute_input": "2024-04-08T21:54:05.192550Z", + "iopub.status.busy": "2024-04-08T21:54:05.192225Z", + "iopub.status.idle": "2024-04-08T21:54:05.229509Z", + "shell.execute_reply": "2024-04-08T21:54:05.229066Z" } }, "outputs": [ @@ -375,10 +375,10 @@ "id": "55513fed", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.152258Z", - "iopub.status.busy": "2024-04-08T19:13:49.151925Z", - "iopub.status.idle": "2024-04-08T19:13:49.328521Z", - "shell.execute_reply": "2024-04-08T19:13:49.328018Z" + "iopub.execute_input": "2024-04-08T21:54:05.231854Z", + "iopub.status.busy": "2024-04-08T21:54:05.231527Z", + "iopub.status.idle": "2024-04-08T21:54:05.406963Z", + "shell.execute_reply": "2024-04-08T21:54:05.406350Z" }, "nbsphinx": "hidden" }, @@ -418,10 +418,10 @@ "id": "df5a0f59", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.330913Z", - "iopub.status.busy": "2024-04-08T19:13:49.330551Z", - "iopub.status.idle": "2024-04-08T19:13:49.538644Z", - "shell.execute_reply": "2024-04-08T19:13:49.538041Z" + "iopub.execute_input": "2024-04-08T21:54:05.409559Z", + "iopub.status.busy": "2024-04-08T21:54:05.409225Z", + "iopub.status.idle": "2024-04-08T21:54:05.616720Z", + "shell.execute_reply": "2024-04-08T21:54:05.616184Z" } }, "outputs": [ @@ -457,10 +457,10 @@ "id": "7af78a8a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.540725Z", - "iopub.status.busy": "2024-04-08T19:13:49.540437Z", - "iopub.status.idle": "2024-04-08T19:13:49.544691Z", - "shell.execute_reply": "2024-04-08T19:13:49.544278Z" + "iopub.execute_input": "2024-04-08T21:54:05.618983Z", + "iopub.status.busy": "2024-04-08T21:54:05.618661Z", + "iopub.status.idle": "2024-04-08T21:54:05.623080Z", + "shell.execute_reply": "2024-04-08T21:54:05.622607Z" } }, "outputs": [], @@ -478,10 +478,10 @@ "id": "9556c624", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.546581Z", - "iopub.status.busy": "2024-04-08T19:13:49.546300Z", - "iopub.status.idle": "2024-04-08T19:13:49.552461Z", - "shell.execute_reply": "2024-04-08T19:13:49.552021Z" + "iopub.execute_input": "2024-04-08T21:54:05.624968Z", + "iopub.status.busy": "2024-04-08T21:54:05.624702Z", + "iopub.status.idle": "2024-04-08T21:54:05.630945Z", + "shell.execute_reply": "2024-04-08T21:54:05.630505Z" } }, "outputs": [], @@ -528,10 +528,10 @@ "id": "3c2f1ccc", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.554456Z", - "iopub.status.busy": "2024-04-08T19:13:49.554124Z", - "iopub.status.idle": "2024-04-08T19:13:49.556701Z", - "shell.execute_reply": "2024-04-08T19:13:49.556278Z" + "iopub.execute_input": "2024-04-08T21:54:05.632897Z", + "iopub.status.busy": "2024-04-08T21:54:05.632641Z", + "iopub.status.idle": "2024-04-08T21:54:05.635133Z", + "shell.execute_reply": "2024-04-08T21:54:05.634700Z" } }, "outputs": [], @@ -546,10 +546,10 @@ "id": "7e1b7860", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:49.558519Z", - "iopub.status.busy": "2024-04-08T19:13:49.558220Z", - "iopub.status.idle": "2024-04-08T19:13:57.783852Z", - "shell.execute_reply": "2024-04-08T19:13:57.783248Z" + "iopub.execute_input": "2024-04-08T21:54:05.637020Z", + "iopub.status.busy": "2024-04-08T21:54:05.636771Z", + "iopub.status.idle": "2024-04-08T21:54:13.976160Z", + "shell.execute_reply": "2024-04-08T21:54:13.975518Z" } }, "outputs": [], @@ -573,10 +573,10 @@ "id": "f407bd69", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.787203Z", - "iopub.status.busy": "2024-04-08T19:13:57.786649Z", - "iopub.status.idle": "2024-04-08T19:13:57.794488Z", - "shell.execute_reply": "2024-04-08T19:13:57.794042Z" + "iopub.execute_input": "2024-04-08T21:54:13.979606Z", + "iopub.status.busy": "2024-04-08T21:54:13.978675Z", + "iopub.status.idle": "2024-04-08T21:54:13.986074Z", + "shell.execute_reply": "2024-04-08T21:54:13.985520Z" } }, "outputs": [ @@ -679,10 +679,10 @@ "id": "f7385336", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.796488Z", - "iopub.status.busy": "2024-04-08T19:13:57.796215Z", - "iopub.status.idle": "2024-04-08T19:13:57.799641Z", - "shell.execute_reply": "2024-04-08T19:13:57.799235Z" + "iopub.execute_input": "2024-04-08T21:54:13.988007Z", + "iopub.status.busy": "2024-04-08T21:54:13.987835Z", + "iopub.status.idle": "2024-04-08T21:54:13.991555Z", + "shell.execute_reply": "2024-04-08T21:54:13.990998Z" } }, "outputs": [], @@ -697,10 +697,10 @@ "id": "59fc3091", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.801520Z", - "iopub.status.busy": "2024-04-08T19:13:57.801263Z", - "iopub.status.idle": "2024-04-08T19:13:57.804571Z", - "shell.execute_reply": "2024-04-08T19:13:57.804133Z" + "iopub.execute_input": "2024-04-08T21:54:13.993650Z", + "iopub.status.busy": "2024-04-08T21:54:13.993339Z", + "iopub.status.idle": "2024-04-08T21:54:13.996783Z", + "shell.execute_reply": "2024-04-08T21:54:13.996326Z" } }, "outputs": [ @@ -735,10 +735,10 @@ "id": "00949977", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.806527Z", - "iopub.status.busy": "2024-04-08T19:13:57.806223Z", - "iopub.status.idle": "2024-04-08T19:13:57.809258Z", - "shell.execute_reply": "2024-04-08T19:13:57.808725Z" + "iopub.execute_input": "2024-04-08T21:54:13.998653Z", + "iopub.status.busy": "2024-04-08T21:54:13.998482Z", + "iopub.status.idle": "2024-04-08T21:54:14.001527Z", + "shell.execute_reply": "2024-04-08T21:54:14.000998Z" } }, "outputs": [], @@ -757,10 +757,10 @@ "id": "b6c1ae3a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.811263Z", - "iopub.status.busy": "2024-04-08T19:13:57.810959Z", - "iopub.status.idle": "2024-04-08T19:13:57.818786Z", - "shell.execute_reply": "2024-04-08T19:13:57.818238Z" + "iopub.execute_input": "2024-04-08T21:54:14.003459Z", + "iopub.status.busy": "2024-04-08T21:54:14.003158Z", + "iopub.status.idle": "2024-04-08T21:54:14.011211Z", + "shell.execute_reply": "2024-04-08T21:54:14.010679Z" } }, "outputs": [ @@ -884,10 +884,10 @@ "id": "9131d82d", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.820889Z", - "iopub.status.busy": "2024-04-08T19:13:57.820509Z", - "iopub.status.idle": "2024-04-08T19:13:57.823238Z", - "shell.execute_reply": "2024-04-08T19:13:57.822711Z" + "iopub.execute_input": "2024-04-08T21:54:14.013463Z", + "iopub.status.busy": "2024-04-08T21:54:14.012963Z", + "iopub.status.idle": "2024-04-08T21:54:14.015569Z", + "shell.execute_reply": "2024-04-08T21:54:14.015153Z" }, "nbsphinx": "hidden" }, @@ -922,10 +922,10 @@ "id": "31c704e7", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.825125Z", - "iopub.status.busy": "2024-04-08T19:13:57.824848Z", - "iopub.status.idle": "2024-04-08T19:13:57.944411Z", - "shell.execute_reply": "2024-04-08T19:13:57.943830Z" + "iopub.execute_input": "2024-04-08T21:54:14.017646Z", + "iopub.status.busy": "2024-04-08T21:54:14.017253Z", + "iopub.status.idle": "2024-04-08T21:54:14.138417Z", + "shell.execute_reply": "2024-04-08T21:54:14.137851Z" } }, "outputs": [ @@ -964,10 +964,10 @@ "id": "0bcc43db", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:57.946652Z", - "iopub.status.busy": "2024-04-08T19:13:57.946416Z", - "iopub.status.idle": "2024-04-08T19:13:58.050381Z", - "shell.execute_reply": "2024-04-08T19:13:58.049796Z" + "iopub.execute_input": "2024-04-08T21:54:14.140668Z", + "iopub.status.busy": "2024-04-08T21:54:14.140489Z", + "iopub.status.idle": "2024-04-08T21:54:14.247854Z", + "shell.execute_reply": "2024-04-08T21:54:14.247268Z" } }, "outputs": [ @@ -1023,10 +1023,10 @@ "id": "7021bd68", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.052902Z", - "iopub.status.busy": "2024-04-08T19:13:58.052525Z", - "iopub.status.idle": "2024-04-08T19:13:58.541282Z", - "shell.execute_reply": "2024-04-08T19:13:58.540644Z" + "iopub.execute_input": "2024-04-08T21:54:14.250059Z", + "iopub.status.busy": "2024-04-08T21:54:14.249882Z", + "iopub.status.idle": "2024-04-08T21:54:14.748368Z", + "shell.execute_reply": "2024-04-08T21:54:14.747830Z" } }, "outputs": [], @@ -1042,10 +1042,10 @@ "id": "d49c990b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.544024Z", - "iopub.status.busy": "2024-04-08T19:13:58.543626Z", - "iopub.status.idle": "2024-04-08T19:13:58.648994Z", - "shell.execute_reply": "2024-04-08T19:13:58.648352Z" + "iopub.execute_input": "2024-04-08T21:54:14.750868Z", + "iopub.status.busy": "2024-04-08T21:54:14.750527Z", + "iopub.status.idle": "2024-04-08T21:54:14.844174Z", + "shell.execute_reply": "2024-04-08T21:54:14.843571Z" } }, "outputs": [ @@ -1080,10 +1080,10 @@ "id": "dbab6fb3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.651502Z", - "iopub.status.busy": "2024-04-08T19:13:58.651135Z", - "iopub.status.idle": "2024-04-08T19:13:58.659988Z", - "shell.execute_reply": "2024-04-08T19:13:58.659533Z" + "iopub.execute_input": "2024-04-08T21:54:14.846652Z", + "iopub.status.busy": "2024-04-08T21:54:14.846214Z", + "iopub.status.idle": "2024-04-08T21:54:14.855429Z", + "shell.execute_reply": "2024-04-08T21:54:14.854873Z" } }, "outputs": [ @@ -1190,10 +1190,10 @@ "id": "5b39b8b5", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.661959Z", - "iopub.status.busy": "2024-04-08T19:13:58.661702Z", - "iopub.status.idle": "2024-04-08T19:13:58.664433Z", - "shell.execute_reply": "2024-04-08T19:13:58.663997Z" + "iopub.execute_input": "2024-04-08T21:54:14.857732Z", + "iopub.status.busy": "2024-04-08T21:54:14.857317Z", + "iopub.status.idle": "2024-04-08T21:54:14.860277Z", + "shell.execute_reply": "2024-04-08T21:54:14.859716Z" }, "nbsphinx": "hidden" }, @@ -1218,10 +1218,10 @@ "id": "df06525b", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:13:58.666308Z", - "iopub.status.busy": "2024-04-08T19:13:58.666060Z", - "iopub.status.idle": "2024-04-08T19:14:04.108369Z", - "shell.execute_reply": "2024-04-08T19:14:04.107772Z" + "iopub.execute_input": "2024-04-08T21:54:14.862308Z", + "iopub.status.busy": "2024-04-08T21:54:14.862015Z", + "iopub.status.idle": "2024-04-08T21:54:20.339250Z", + "shell.execute_reply": "2024-04-08T21:54:20.338705Z" } }, "outputs": [ @@ -1265,10 +1265,10 @@ "id": "05282559", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:04.110851Z", - "iopub.status.busy": "2024-04-08T19:14:04.110406Z", - "iopub.status.idle": "2024-04-08T19:14:04.119270Z", - "shell.execute_reply": "2024-04-08T19:14:04.118848Z" + "iopub.execute_input": "2024-04-08T21:54:20.341510Z", + "iopub.status.busy": "2024-04-08T21:54:20.341326Z", + "iopub.status.idle": "2024-04-08T21:54:20.349878Z", + "shell.execute_reply": "2024-04-08T21:54:20.349436Z" } }, "outputs": [ @@ -1377,10 +1377,10 @@ "id": "95531cda", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:04.121410Z", - "iopub.status.busy": "2024-04-08T19:14:04.120984Z", - "iopub.status.idle": "2024-04-08T19:14:04.185861Z", - "shell.execute_reply": "2024-04-08T19:14:04.185384Z" + "iopub.execute_input": "2024-04-08T21:54:20.351726Z", + "iopub.status.busy": "2024-04-08T21:54:20.351554Z", + "iopub.status.idle": "2024-04-08T21:54:20.415427Z", + "shell.execute_reply": "2024-04-08T21:54:20.414862Z" }, "nbsphinx": "hidden" }, @@ -1437,7 +1437,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/master/tutorials/segmentation.html b/master/tutorials/segmentation.html index ed3c1520a..3676c7dec 100644 --- a/master/tutorials/segmentation.html +++ b/master/tutorials/segmentation.html @@ -766,13 +766,13 @@

    3. Use cleanlab to find label issues

    -
    +
    -
    +

    Beyond scoring the overall label quality of each image, the above method produces a (0 to 1) quality score for each pixel. We can apply a thresholding function to these scores in order to extract the same style True or False mask as find_label_issues().

    @@ -1162,7 +1162,7 @@

    Get label quality scores -{"state": {"b85f1eb5f0e64530870f6fbf949cda91": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "d7bd991e20f14b0c98dd8d679d84939c": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "365979231dd54217a8aac4a279204067": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b85f1eb5f0e64530870f6fbf949cda91", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_d7bd991e20f14b0c98dd8d679d84939c", "tabbable": null, "tooltip": null, "value": 30.0}}, "68c0ed1d2b074054bc0c083b8ccd8a71": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6249a51dbc1145c985fed7ad172f3f6f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "6b76fce815c1461d9f75cd9b932f9d87": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_68c0ed1d2b074054bc0c083b8ccd8a71", "placeholder": "\u200b", "style": "IPY_MODEL_6249a51dbc1145c985fed7ad172f3f6f", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "99e35d66f5634eb28a74eb5bfa102bde": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "773d8ea77b7443f2ade5b4c99a303fcb": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "ce77d0d3de7c4b089021754738d5ceb4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_99e35d66f5634eb28a74eb5bfa102bde", "placeholder": "\u200b", "style": "IPY_MODEL_773d8ea77b7443f2ade5b4c99a303fcb", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007405.54it/s]"}}, "5abd50f2ff82441194222375826e37c9": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f80951daaff1439bae07b22f26431578": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_6b76fce815c1461d9f75cd9b932f9d87", "IPY_MODEL_365979231dd54217a8aac4a279204067", "IPY_MODEL_ce77d0d3de7c4b089021754738d5ceb4"], "layout": "IPY_MODEL_5abd50f2ff82441194222375826e37c9", "tabbable": null, "tooltip": null}}, "010891f081ec41c1aabdc9984ea3e880": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "beb83a56568c469189a5939e700e69a4": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "83945befc2ec4271af67b93797cadd10": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_010891f081ec41c1aabdc9984ea3e880", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_beb83a56568c469189a5939e700e69a4", "tabbable": null, "tooltip": null, "value": 30.0}}, "b2e6852040e34be68af10fb4a3c2b9a7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c4adc9fb2d8c49ab9d863ff53317708d": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "d2ea6fbb7475458087e30a3aee7c2421": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2e6852040e34be68af10fb4a3c2b9a7", "placeholder": "\u200b", "style": "IPY_MODEL_c4adc9fb2d8c49ab9d863ff53317708d", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "ffe9b9351b8a4b129d0904a8757b9a46": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fc53622cc52741d8bde9b20fe8c9a3c0": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "93bd352e7edc4aac8660f540a733e80f": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_ffe9b9351b8a4b129d0904a8757b9a46", "placeholder": "\u200b", "style": "IPY_MODEL_fc53622cc52741d8bde9b20fe8c9a3c0", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:21<00:00,\u2007\u20071.44it/s]"}}, "e5304a7b2a15495792b3302840dc6164": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "4414546b77b44486a511d3a262f3937f": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_d2ea6fbb7475458087e30a3aee7c2421", "IPY_MODEL_83945befc2ec4271af67b93797cadd10", "IPY_MODEL_93bd352e7edc4aac8660f540a733e80f"], "layout": "IPY_MODEL_e5304a7b2a15495792b3302840dc6164", "tabbable": null, "tooltip": null}}, "380290952081433398d72252f55f3512": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "c158f6f873284cbaa7be7bbaebbd7763": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "e05c95cfe29749928b6771d970a5fc81": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_380290952081433398d72252f55f3512", "max": 4997817.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_c158f6f873284cbaa7be7bbaebbd7763", "tabbable": null, "tooltip": null, "value": 4997817.0}}, "f618acb94c794f1ba33254b732f3da99": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "bdd0d707ff2c40a783c34c22c644bff2": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "5ac2298939434623ab7427ecd71bb845": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f618acb94c794f1ba33254b732f3da99", "placeholder": "\u200b", "style": "IPY_MODEL_bdd0d707ff2c40a783c34c22c644bff2", "tabbable": null, "tooltip": null, "value": "100%"}}, "7388d890f96b440d9df5bb2bcf630681": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "99f6441d531f4710baa405c0d7109b5f": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "26332d6a8cc44c2e97dbf9c486f38f25": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7388d890f96b440d9df5bb2bcf630681", "placeholder": "\u200b", "style": "IPY_MODEL_99f6441d531f4710baa405c0d7109b5f", "tabbable": null, "tooltip": null, "value": "\u20074997817/4997817\u2007[00:32<00:00,\u2007154803.51it/s]"}}, "40897686e955404f91514151f240c0d0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "71098e13b4334a47bbac4b75032ea150": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_5ac2298939434623ab7427ecd71bb845", "IPY_MODEL_e05c95cfe29749928b6771d970a5fc81", "IPY_MODEL_26332d6a8cc44c2e97dbf9c486f38f25"], "layout": "IPY_MODEL_40897686e955404f91514151f240c0d0", "tabbable": null, "tooltip": null}}, "301a3fcd99094c40a1fb9f975619c430": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "332840cfdb9a451ebd2a374dae54e637": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "c68ef40a35e04fc39427a9f284523b28": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_301a3fcd99094c40a1fb9f975619c430", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_332840cfdb9a451ebd2a374dae54e637", "tabbable": null, "tooltip": null, "value": 30.0}}, "2c287de703a14c5cb0941da5922a6c41": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "1983a07fcf9348578a07d2aee3240441": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2644b4fc5fda48acb706485e94aabc6a": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_2c287de703a14c5cb0941da5922a6c41", "placeholder": "\u200b", "style": "IPY_MODEL_1983a07fcf9348578a07d2aee3240441", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "001fb5816a074024996ee285412c72e2": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "dcb3aba2d5ee498da09596d6b1189652": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "328b4d1e22fb41b9be4bc667200a34d2": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_001fb5816a074024996ee285412c72e2", "placeholder": "\u200b", "style": "IPY_MODEL_dcb3aba2d5ee498da09596d6b1189652", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.04it/s]"}}, "ef987a4e9c5445f2a1965215131e2de0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "abbf1d8d4dc4498dbba438256d734fad": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2644b4fc5fda48acb706485e94aabc6a", "IPY_MODEL_c68ef40a35e04fc39427a9f284523b28", "IPY_MODEL_328b4d1e22fb41b9be4bc667200a34d2"], "layout": "IPY_MODEL_ef987a4e9c5445f2a1965215131e2de0", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} +{"state": {"82cee37834bd4e899eab11ef0c6ec199": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "8d9f713d5fa04801b2c84af8bf3c9624": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "27723755a081454fbfef7e167c2f439d": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_82cee37834bd4e899eab11ef0c6ec199", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8d9f713d5fa04801b2c84af8bf3c9624", "tabbable": null, "tooltip": null, "value": 30.0}}, "3b6ad6f7143a48e1a6a5ba0b4ab5d207": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "15faab9c74444e5a86986dee971c8f6b": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "650512de4880455592f1a772ed3c671e": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_3b6ad6f7143a48e1a6a5ba0b4ab5d207", "placeholder": "\u200b", "style": "IPY_MODEL_15faab9c74444e5a86986dee971c8f6b", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007estimating\u2007thresholds:\u2007100%"}}, "b2b767fc7564407287c0c9bd8e93b0d6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "365700aba25f42e2a11c5d78ca475f95": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "30dd84dce5054280a1a65357f5e672b5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b2b767fc7564407287c0c9bd8e93b0d6", "placeholder": "\u200b", "style": "IPY_MODEL_365700aba25f42e2a11c5d78ca475f95", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:00<00:00,\u2007439.26it/s]"}}, "011e636f2648451da265e45984d40108": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e7391a51221d4e33b893d8334eb51840": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_650512de4880455592f1a772ed3c671e", "IPY_MODEL_27723755a081454fbfef7e167c2f439d", "IPY_MODEL_30dd84dce5054280a1a65357f5e672b5"], "layout": "IPY_MODEL_011e636f2648451da265e45984d40108", "tabbable": null, "tooltip": null}}, "4cca74c9e5be4a19a843dbe0841c27ff": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad088869a9df4edf992510316237e014": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "9beead0cd00f4d5c9481520f6369c7d2": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4cca74c9e5be4a19a843dbe0841c27ff", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ad088869a9df4edf992510316237e014", "tabbable": null, "tooltip": null, "value": 30.0}}, "4994745f1d7a46b6b09a477eb9ab37ae": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f290b7c52ff24853ab3eebfe3473fc3e": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2bd881cbafeb4f32b962e14434991322": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_4994745f1d7a46b6b09a477eb9ab37ae", "placeholder": "\u200b", "style": "IPY_MODEL_f290b7c52ff24853ab3eebfe3473fc3e", "tabbable": null, "tooltip": null, "value": "number\u2007of\u2007examples\u2007processed\u2007for\u2007checking\u2007labels:\u2007100%"}}, "70c380e4add245f2b431950b005613e4": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ad759138bef54f1991391dbe56080cd1": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "205f1f5899844e089aa6de546fc29f55": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_70c380e4add245f2b431950b005613e4", "placeholder": "\u200b", "style": "IPY_MODEL_ad759138bef54f1991391dbe56080cd1", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:20<00:00,\u2007\u20071.48it/s]"}}, "97874e692c96450790eeb013ece2edec": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "27c9ff113d204fb289aff9dcd641e406": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2bd881cbafeb4f32b962e14434991322", "IPY_MODEL_9beead0cd00f4d5c9481520f6369c7d2", "IPY_MODEL_205f1f5899844e089aa6de546fc29f55"], "layout": "IPY_MODEL_97874e692c96450790eeb013ece2edec", "tabbable": null, "tooltip": null}}, "204564b70f0c4bcbb1045bcbc684abd8": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "64cf2900bd6c4cac991a466cde5b4625": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "cc0587534da94813a45e26631f06d3d7": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_204564b70f0c4bcbb1045bcbc684abd8", "max": 4997817.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_64cf2900bd6c4cac991a466cde5b4625", "tabbable": null, "tooltip": null, "value": 4997817.0}}, "cf2c5305350947e1a649b4ed34a122c0": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "e55de78b35f047c59235e23a3293b943": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "2d1fc918526049ab819636e1f371eba3": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_cf2c5305350947e1a649b4ed34a122c0", "placeholder": "\u200b", "style": "IPY_MODEL_e55de78b35f047c59235e23a3293b943", "tabbable": null, "tooltip": null, "value": "100%"}}, "c5668d6890d047cebf512ce20945534a": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "18cb6f21e9e140a08ac3db82b8c74d68": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "02cc2ce21799413dbe7b55bf263202d5": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_c5668d6890d047cebf512ce20945534a", "placeholder": "\u200b", "style": "IPY_MODEL_18cb6f21e9e140a08ac3db82b8c74d68", "tabbable": null, "tooltip": null, "value": "\u20074997817/4997817\u2007[00:32<00:00,\u2007157227.02it/s]"}}, "184cd82ade504d9d957ef3583513e6de": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6b4acaa1a667475cb578e8ed9010c8b4": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_2d1fc918526049ab819636e1f371eba3", "IPY_MODEL_cc0587534da94813a45e26631f06d3d7", "IPY_MODEL_02cc2ce21799413dbe7b55bf263202d5"], "layout": "IPY_MODEL_184cd82ade504d9d957ef3583513e6de", "tabbable": null, "tooltip": null}}, "498994b6b09749d0b505637e583714d1": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6f41b9220dd94e9c858ab4017b492944": {"model_name": "ProgressStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": ""}}, "01867865dc5f4029b99e265031e77845": {"model_name": "FloatProgressModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_498994b6b09749d0b505637e583714d1", "max": 30.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6f41b9220dd94e9c858ab4017b492944", "tabbable": null, "tooltip": null, "value": 30.0}}, "a59cded056ec4111a33e363e26fde083": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2a830c11a9834155b1850dea81779995": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "977bc1fabc45480aacaf27627ed8fde4": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a59cded056ec4111a33e363e26fde083", "placeholder": "\u200b", "style": "IPY_MODEL_2a830c11a9834155b1850dea81779995", "tabbable": null, "tooltip": null, "value": "images\u2007processed\u2007using\u2007softmin:\u2007100%"}}, "64ec60eba1624c519353a416c211da43": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "874d4b249a9f48169f404ecf30644496": {"model_name": "HTMLStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null}}, "aa05781dd2e14e5690ca4a371d2eaa5d": {"model_name": "HTMLModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_64ec60eba1624c519353a416c211da43", "placeholder": "\u200b", "style": "IPY_MODEL_874d4b249a9f48169f404ecf30644496", "tabbable": null, "tooltip": null, "value": "\u200730/30\u2007[00:01<00:00,\u200721.81it/s]"}}, "6cf4f4d780bb4d37bb00e8adfdeab9a6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "36e71a092c2a4f218b1efff3e7d3b6b6": {"model_name": "HBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": ["IPY_MODEL_977bc1fabc45480aacaf27627ed8fde4", "IPY_MODEL_01867865dc5f4029b99e265031e77845", "IPY_MODEL_aa05781dd2e14e5690ca4a371d2eaa5d"], "layout": "IPY_MODEL_6cf4f4d780bb4d37bb00e8adfdeab9a6", "tabbable": null, "tooltip": null}}}, "version_major": 2, "version_minor": 0} diff --git a/master/tutorials/segmentation.ipynb b/master/tutorials/segmentation.ipynb index 7512e088c..25ac7a5b7 100644 --- a/master/tutorials/segmentation.ipynb +++ b/master/tutorials/segmentation.ipynb @@ -61,10 +61,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:07.395028Z", - "iopub.status.busy": "2024-04-08T19:14:07.394566Z", - "iopub.status.idle": "2024-04-08T19:14:11.485319Z", - "shell.execute_reply": "2024-04-08T19:14:11.484630Z" + "iopub.execute_input": "2024-04-08T21:54:23.122415Z", + "iopub.status.busy": "2024-04-08T21:54:23.122061Z", + "iopub.status.idle": "2024-04-08T21:54:24.416189Z", + "shell.execute_reply": "2024-04-08T21:54:24.415590Z" } }, "outputs": [], @@ -79,10 +79,10 @@ "id": "58fd4c55", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:14:11.488001Z", - "iopub.status.busy": "2024-04-08T19:14:11.487586Z", - "iopub.status.idle": "2024-04-08T19:15:03.035425Z", - "shell.execute_reply": "2024-04-08T19:15:03.034793Z" + "iopub.execute_input": "2024-04-08T21:54:24.418694Z", + "iopub.status.busy": "2024-04-08T21:54:24.418500Z", + "iopub.status.idle": "2024-04-08T21:55:07.109922Z", + "shell.execute_reply": "2024-04-08T21:55:07.109225Z" } }, "outputs": [], @@ -97,10 +97,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:03.037988Z", - "iopub.status.busy": "2024-04-08T19:15:03.037617Z", - "iopub.status.idle": "2024-04-08T19:15:04.144423Z", - "shell.execute_reply": "2024-04-08T19:15:04.143898Z" + "iopub.execute_input": "2024-04-08T21:55:07.112387Z", + "iopub.status.busy": "2024-04-08T21:55:07.112201Z", + "iopub.status.idle": "2024-04-08T21:55:08.209130Z", + "shell.execute_reply": "2024-04-08T21:55:08.208588Z" }, "nbsphinx": "hidden" }, @@ -111,7 +111,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -137,10 +137,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.146910Z", - "iopub.status.busy": "2024-04-08T19:15:04.146510Z", - "iopub.status.idle": "2024-04-08T19:15:04.149732Z", - "shell.execute_reply": "2024-04-08T19:15:04.149284Z" + "iopub.execute_input": "2024-04-08T21:55:08.212112Z", + "iopub.status.busy": "2024-04-08T21:55:08.211661Z", + "iopub.status.idle": "2024-04-08T21:55:08.215832Z", + "shell.execute_reply": "2024-04-08T21:55:08.215346Z" } }, "outputs": [], @@ -203,10 +203,10 @@ "id": "07dc5678", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.151905Z", - "iopub.status.busy": "2024-04-08T19:15:04.151503Z", - "iopub.status.idle": "2024-04-08T19:15:04.155404Z", - "shell.execute_reply": "2024-04-08T19:15:04.154966Z" + "iopub.execute_input": "2024-04-08T21:55:08.217925Z", + "iopub.status.busy": "2024-04-08T21:55:08.217749Z", + "iopub.status.idle": "2024-04-08T21:55:08.221647Z", + "shell.execute_reply": "2024-04-08T21:55:08.221188Z" } }, "outputs": [ @@ -247,10 +247,10 @@ "id": "25ebe22a", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.157319Z", - "iopub.status.busy": "2024-04-08T19:15:04.157012Z", - "iopub.status.idle": "2024-04-08T19:15:04.160392Z", - "shell.execute_reply": "2024-04-08T19:15:04.159984Z" + "iopub.execute_input": "2024-04-08T21:55:08.223541Z", + "iopub.status.busy": "2024-04-08T21:55:08.223369Z", + "iopub.status.idle": "2024-04-08T21:55:08.227045Z", + "shell.execute_reply": "2024-04-08T21:55:08.226509Z" } }, "outputs": [ @@ -290,10 +290,10 @@ "id": "3faedea9", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.162271Z", - "iopub.status.busy": "2024-04-08T19:15:04.161951Z", - "iopub.status.idle": "2024-04-08T19:15:04.164604Z", - "shell.execute_reply": "2024-04-08T19:15:04.164202Z" + "iopub.execute_input": "2024-04-08T21:55:08.229143Z", + "iopub.status.busy": "2024-04-08T21:55:08.228838Z", + "iopub.status.idle": "2024-04-08T21:55:08.231641Z", + "shell.execute_reply": "2024-04-08T21:55:08.231120Z" } }, "outputs": [], @@ -333,17 +333,17 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:15:04.166521Z", - "iopub.status.busy": "2024-04-08T19:15:04.166174Z", - "iopub.status.idle": "2024-04-08T19:16:20.073084Z", - "shell.execute_reply": "2024-04-08T19:16:20.072471Z" + "iopub.execute_input": "2024-04-08T21:55:08.233469Z", + "iopub.status.busy": "2024-04-08T21:55:08.233291Z", + "iopub.status.idle": "2024-04-08T21:56:23.144455Z", + "shell.execute_reply": "2024-04-08T21:56:23.143839Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f80951daaff1439bae07b22f26431578", + "model_id": "e7391a51221d4e33b893d8334eb51840", "version_major": 2, "version_minor": 0 }, @@ -357,7 +357,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "4414546b77b44486a511d3a262f3937f", + "model_id": "27c9ff113d204fb289aff9dcd641e406", "version_major": 2, "version_minor": 0 }, @@ -400,10 +400,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:20.075744Z", - "iopub.status.busy": "2024-04-08T19:16:20.075337Z", - "iopub.status.idle": "2024-04-08T19:16:20.750666Z", - "shell.execute_reply": "2024-04-08T19:16:20.750121Z" + "iopub.execute_input": "2024-04-08T21:56:23.147223Z", + "iopub.status.busy": "2024-04-08T21:56:23.146846Z", + "iopub.status.idle": "2024-04-08T21:56:23.815937Z", + "shell.execute_reply": "2024-04-08T21:56:23.815425Z" } }, "outputs": [ @@ -446,10 +446,10 @@ "id": "57fed473", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:20.753014Z", - "iopub.status.busy": "2024-04-08T19:16:20.752584Z", - "iopub.status.idle": "2024-04-08T19:16:23.452100Z", - "shell.execute_reply": "2024-04-08T19:16:23.451576Z" + "iopub.execute_input": "2024-04-08T21:56:23.818306Z", + "iopub.status.busy": "2024-04-08T21:56:23.817820Z", + "iopub.status.idle": "2024-04-08T21:56:26.540170Z", + "shell.execute_reply": "2024-04-08T21:56:26.539694Z" } }, "outputs": [ @@ -519,17 +519,17 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:23.454306Z", - "iopub.status.busy": "2024-04-08T19:16:23.454030Z", - "iopub.status.idle": "2024-04-08T19:16:56.036315Z", - "shell.execute_reply": "2024-04-08T19:16:56.035779Z" + "iopub.execute_input": "2024-04-08T21:56:26.542366Z", + "iopub.status.busy": "2024-04-08T21:56:26.542020Z", + "iopub.status.idle": "2024-04-08T21:56:58.765563Z", + "shell.execute_reply": "2024-04-08T21:56:58.765011Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "71098e13b4334a47bbac4b75032ea150", + "model_id": "6b4acaa1a667475cb578e8ed9010c8b4", "version_major": 2, "version_minor": 0 }, @@ -769,10 +769,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:16:56.038307Z", - "iopub.status.busy": "2024-04-08T19:16:56.038128Z", - "iopub.status.idle": "2024-04-08T19:17:10.772843Z", - "shell.execute_reply": "2024-04-08T19:17:10.772275Z" + "iopub.execute_input": "2024-04-08T21:56:58.767587Z", + "iopub.status.busy": "2024-04-08T21:56:58.767410Z", + "iopub.status.idle": "2024-04-08T21:57:13.429442Z", + "shell.execute_reply": "2024-04-08T21:57:13.428871Z" } }, "outputs": [], @@ -786,10 +786,10 @@ "id": "716c74f3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:10.775162Z", - "iopub.status.busy": "2024-04-08T19:17:10.774934Z", - "iopub.status.idle": "2024-04-08T19:17:14.602622Z", - "shell.execute_reply": "2024-04-08T19:17:14.602118Z" + "iopub.execute_input": "2024-04-08T21:57:13.431852Z", + "iopub.status.busy": "2024-04-08T21:57:13.431563Z", + "iopub.status.idle": "2024-04-08T21:57:17.251803Z", + "shell.execute_reply": "2024-04-08T21:57:17.251223Z" } }, "outputs": [ @@ -858,17 +858,17 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:14.604704Z", - "iopub.status.busy": "2024-04-08T19:17:14.604405Z", - "iopub.status.idle": "2024-04-08T19:17:16.041428Z", - "shell.execute_reply": "2024-04-08T19:17:16.040893Z" + "iopub.execute_input": "2024-04-08T21:57:17.253863Z", + "iopub.status.busy": "2024-04-08T21:57:17.253688Z", + "iopub.status.idle": "2024-04-08T21:57:18.653570Z", + "shell.execute_reply": "2024-04-08T21:57:18.653016Z" } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "abbf1d8d4dc4498dbba438256d734fad", + "model_id": "36e71a092c2a4f218b1efff3e7d3b6b6", "version_major": 2, "version_minor": 0 }, @@ -898,10 +898,10 @@ "id": "390780a1", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:16.043794Z", - "iopub.status.busy": "2024-04-08T19:17:16.043524Z", - "iopub.status.idle": "2024-04-08T19:17:16.075824Z", - "shell.execute_reply": "2024-04-08T19:17:16.075325Z" + "iopub.execute_input": "2024-04-08T21:57:18.656019Z", + "iopub.status.busy": "2024-04-08T21:57:18.655715Z", + "iopub.status.idle": "2024-04-08T21:57:18.684405Z", + "shell.execute_reply": "2024-04-08T21:57:18.683866Z" } }, "outputs": [], @@ -915,10 +915,10 @@ "id": "933d6ef0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:16.078301Z", - "iopub.status.busy": "2024-04-08T19:17:16.077923Z", - "iopub.status.idle": "2024-04-08T19:17:22.245581Z", - "shell.execute_reply": "2024-04-08T19:17:22.245090Z" + "iopub.execute_input": "2024-04-08T21:57:18.686810Z", + "iopub.status.busy": "2024-04-08T21:57:18.686431Z", + "iopub.status.idle": "2024-04-08T21:57:24.837201Z", + "shell.execute_reply": "2024-04-08T21:57:24.836601Z" } }, "outputs": [ @@ -991,10 +991,10 @@ "id": "86bac686", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:22.247739Z", - "iopub.status.busy": "2024-04-08T19:17:22.247405Z", - "iopub.status.idle": "2024-04-08T19:17:22.303831Z", - "shell.execute_reply": "2024-04-08T19:17:22.303283Z" + "iopub.execute_input": "2024-04-08T21:57:24.839321Z", + "iopub.status.busy": "2024-04-08T21:57:24.839135Z", + "iopub.status.idle": "2024-04-08T21:57:24.895201Z", + "shell.execute_reply": "2024-04-08T21:57:24.894573Z" }, "nbsphinx": "hidden" }, @@ -1033,12 +1033,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { - "001fb5816a074024996ee285412c72e2": { + "011e636f2648451da265e45984d40108": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1091,78 +1091,33 @@ "width": null } }, - "010891f081ec41c1aabdc9984ea3e880": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "1983a07fcf9348578a07d2aee3240441": { + "01867865dc5f4029b99e265031e77845": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_498994b6b09749d0b505637e583714d1", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_6f41b9220dd94e9c858ab4017b492944", + "tabbable": null, + "tooltip": null, + "value": 30.0 } }, - "26332d6a8cc44c2e97dbf9c486f38f25": { + "02cc2ce21799413dbe7b55bf263202d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1177,38 +1132,33 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_7388d890f96b440d9df5bb2bcf630681", + "layout": "IPY_MODEL_c5668d6890d047cebf512ce20945534a", "placeholder": "​", - "style": "IPY_MODEL_99f6441d531f4710baa405c0d7109b5f", + "style": "IPY_MODEL_18cb6f21e9e140a08ac3db82b8c74d68", "tabbable": null, "tooltip": null, - "value": " 4997817/4997817 [00:32<00:00, 154803.51it/s]" + "value": " 4997817/4997817 [00:32<00:00, 157227.02it/s]" } }, - "2644b4fc5fda48acb706485e94aabc6a": { + "15faab9c74444e5a86986dee971c8f6b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HTMLStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HTMLStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_2c287de703a14c5cb0941da5922a6c41", - "placeholder": "​", - "style": "IPY_MODEL_1983a07fcf9348578a07d2aee3240441", - "tabbable": null, - "tooltip": null, - "value": "images processed using softmin: 100%" + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "2c287de703a14c5cb0941da5922a6c41": { + "184cd82ade504d9d957ef3583513e6de": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1261,7 +1211,25 @@ "width": null } }, - "301a3fcd99094c40a1fb9f975619c430": { + "18cb6f21e9e140a08ac3db82b8c74d68": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "204564b70f0c4bcbb1045bcbc684abd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1314,7 +1282,7 @@ "width": null } }, - "328b4d1e22fb41b9be4bc667200a34d2": { + "205f1f5899844e089aa6de546fc29f55": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -1329,57 +1297,194 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_001fb5816a074024996ee285412c72e2", + "layout": "IPY_MODEL_70c380e4add245f2b431950b005613e4", "placeholder": "​", - "style": "IPY_MODEL_dcb3aba2d5ee498da09596d6b1189652", + "style": "IPY_MODEL_ad759138bef54f1991391dbe56080cd1", "tabbable": null, "tooltip": null, - "value": " 30/30 [00:01<00:00, 21.04it/s]" + "value": " 30/30 [00:20<00:00,  1.48it/s]" } }, - "332840cfdb9a451ebd2a374dae54e637": { + "27723755a081454fbfef7e167c2f439d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_82cee37834bd4e899eab11ef0c6ec199", + "max": 30.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_8d9f713d5fa04801b2c84af8bf3c9624", + "tabbable": null, + "tooltip": null, + "value": 30.0 + } + }, + "27c9ff113d204fb289aff9dcd641e406": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2bd881cbafeb4f32b962e14434991322", + "IPY_MODEL_9beead0cd00f4d5c9481520f6369c7d2", + "IPY_MODEL_205f1f5899844e089aa6de546fc29f55" + ], + "layout": "IPY_MODEL_97874e692c96450790eeb013ece2edec", + "tabbable": null, + "tooltip": null + } + }, + "2a830c11a9834155b1850dea81779995": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "background": null, + "description_width": "", + "font_size": null, + "text_color": null } }, - "365979231dd54217a8aac4a279204067": { + "2bd881cbafeb4f32b962e14434991322": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b85f1eb5f0e64530870f6fbf949cda91", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_d7bd991e20f14b0c98dd8d679d84939c", + "layout": "IPY_MODEL_4994745f1d7a46b6b09a477eb9ab37ae", + "placeholder": "​", + "style": "IPY_MODEL_f290b7c52ff24853ab3eebfe3473fc3e", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for checking labels: 100%" + } + }, + "2d1fc918526049ab819636e1f371eba3": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_cf2c5305350947e1a649b4ed34a122c0", + "placeholder": "​", + "style": "IPY_MODEL_e55de78b35f047c59235e23a3293b943", + "tabbable": null, + "tooltip": null, + "value": "100%" + } + }, + "30dd84dce5054280a1a65357f5e672b5": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_b2b767fc7564407287c0c9bd8e93b0d6", + "placeholder": "​", + "style": "IPY_MODEL_365700aba25f42e2a11c5d78ca475f95", + "tabbable": null, + "tooltip": null, + "value": " 30/30 [00:00<00:00, 439.26it/s]" } }, - "380290952081433398d72252f55f3512": { + "365700aba25f42e2a11c5d78ca475f95": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "36e71a092c2a4f218b1efff3e7d3b6b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_977bc1fabc45480aacaf27627ed8fde4", + "IPY_MODEL_01867865dc5f4029b99e265031e77845", + "IPY_MODEL_aa05781dd2e14e5690ca4a371d2eaa5d" + ], + "layout": "IPY_MODEL_6cf4f4d780bb4d37bb00e8adfdeab9a6", + "tabbable": null, + "tooltip": null + } + }, + "3b6ad6f7143a48e1a6a5ba0b4ab5d207": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1432,7 +1537,7 @@ "width": null } }, - "40897686e955404f91514151f240c0d0": { + "498994b6b09749d0b505637e583714d1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1485,31 +1590,7 @@ "width": null } }, - "4414546b77b44486a511d3a262f3937f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d2ea6fbb7475458087e30a3aee7c2421", - "IPY_MODEL_83945befc2ec4271af67b93797cadd10", - "IPY_MODEL_93bd352e7edc4aac8660f540a733e80f" - ], - "layout": "IPY_MODEL_e5304a7b2a15495792b3302840dc6164", - "tabbable": null, - "tooltip": null - } - }, - "5abd50f2ff82441194222375826e37c9": { + "4994745f1d7a46b6b09a477eb9ab37ae": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1562,48 +1643,7 @@ "width": null } }, - "5ac2298939434623ab7427ecd71bb845": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_f618acb94c794f1ba33254b732f3da99", - "placeholder": "​", - "style": "IPY_MODEL_bdd0d707ff2c40a783c34c22c644bff2", - "tabbable": null, - "tooltip": null, - "value": "100%" - } - }, - "6249a51dbc1145c985fed7ad172f3f6f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "68c0ed1d2b074054bc0c083b8ccd8a71": { + "4cca74c9e5be4a19a843dbe0841c27ff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1656,54 +1696,23 @@ "width": null } }, - "6b76fce815c1461d9f75cd9b932f9d87": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_68c0ed1d2b074054bc0c083b8ccd8a71", - "placeholder": "​", - "style": "IPY_MODEL_6249a51dbc1145c985fed7ad172f3f6f", - "tabbable": null, - "tooltip": null, - "value": "number of examples processed for estimating thresholds: 100%" - } - }, - "71098e13b4334a47bbac4b75032ea150": { + "64cf2900bd6c4cac991a466cde5b4625": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_5ac2298939434623ab7427ecd71bb845", - "IPY_MODEL_e05c95cfe29749928b6771d970a5fc81", - "IPY_MODEL_26332d6a8cc44c2e97dbf9c486f38f25" - ], - "layout": "IPY_MODEL_40897686e955404f91514151f240c0d0", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "7388d890f96b440d9df5bb2bcf630681": { + "64ec60eba1624c519353a416c211da43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1756,74 +1765,54 @@ "width": null } }, - "773d8ea77b7443f2ade5b4c99a303fcb": { + "650512de4880455592f1a772ed3c671e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "83945befc2ec4271af67b93797cadd10": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", + "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_010891f081ec41c1aabdc9984ea3e880", - "max": 30.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_beb83a56568c469189a5939e700e69a4", + "layout": "IPY_MODEL_3b6ad6f7143a48e1a6a5ba0b4ab5d207", + "placeholder": "​", + "style": "IPY_MODEL_15faab9c74444e5a86986dee971c8f6b", "tabbable": null, "tooltip": null, - "value": 30.0 + "value": "number of examples processed for estimating thresholds: 100%" } }, - "93bd352e7edc4aac8660f540a733e80f": { + "6b4acaa1a667475cb578e8ed9010c8b4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_ffe9b9351b8a4b129d0904a8757b9a46", - "placeholder": "​", - "style": "IPY_MODEL_fc53622cc52741d8bde9b20fe8c9a3c0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2d1fc918526049ab819636e1f371eba3", + "IPY_MODEL_cc0587534da94813a45e26631f06d3d7", + "IPY_MODEL_02cc2ce21799413dbe7b55bf263202d5" + ], + "layout": "IPY_MODEL_184cd82ade504d9d957ef3583513e6de", "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:21<00:00,  1.44it/s]" + "tooltip": null } }, - "99e35d66f5634eb28a74eb5bfa102bde": { + "6cf4f4d780bb4d37bb00e8adfdeab9a6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1876,49 +1865,23 @@ "width": null } }, - "99f6441d531f4710baa405c0d7109b5f": { + "6f41b9220dd94e9c858ab4017b492944": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null - } - }, - "abbf1d8d4dc4498dbba438256d734fad": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "HBoxModel", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "HBoxModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_2644b4fc5fda48acb706485e94aabc6a", - "IPY_MODEL_c68ef40a35e04fc39427a9f284523b28", - "IPY_MODEL_328b4d1e22fb41b9be4bc667200a34d2" - ], - "layout": "IPY_MODEL_ef987a4e9c5445f2a1965215131e2de0", - "tabbable": null, - "tooltip": null + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b2e6852040e34be68af10fb4a3c2b9a7": { + "70c380e4add245f2b431950b005613e4": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -1971,7 +1934,7 @@ "width": null } }, - "b85f1eb5f0e64530870f6fbf949cda91": { + "82cee37834bd4e899eab11ef0c6ec199": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2024,7 +1987,7 @@ "width": null } }, - "bdd0d707ff2c40a783c34c22c644bff2": { + "874d4b249a9f48169f404ecf30644496": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2042,7 +2005,7 @@ "text_color": null } }, - "beb83a56568c469189a5939e700e69a4": { + "8d9f713d5fa04801b2c84af8bf3c9624": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2058,41 +2021,83 @@ "description_width": "" } }, - "c158f6f873284cbaa7be7bbaebbd7763": { + "977bc1fabc45480aacaf27627ed8fde4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", - "model_name": "ProgressStyleModel", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", - "_model_name": "ProgressStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", + "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_name": "HTMLView", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_a59cded056ec4111a33e363e26fde083", + "placeholder": "​", + "style": "IPY_MODEL_2a830c11a9834155b1850dea81779995", + "tabbable": null, + "tooltip": null, + "value": "images processed using softmin: 100%" } }, - "c4adc9fb2d8c49ab9d863ff53317708d": { - "model_module": "@jupyter-widgets/controls", + "97874e692c96450790eeb013ece2edec": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLStyleModel", + "model_name": "LayoutModel", "state": { - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLStyleModel", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "StyleView", - "background": null, - "description_width": "", - "font_size": null, - "text_color": null + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "c68ef40a35e04fc39427a9f284523b28": { + "9beead0cd00f4d5c9481520f6369c7d2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", @@ -2108,40 +2113,70 @@ "bar_style": "success", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_301a3fcd99094c40a1fb9f975619c430", + "layout": "IPY_MODEL_4cca74c9e5be4a19a843dbe0841c27ff", "max": 30.0, "min": 0.0, "orientation": "horizontal", - "style": "IPY_MODEL_332840cfdb9a451ebd2a374dae54e637", + "style": "IPY_MODEL_ad088869a9df4edf992510316237e014", "tabbable": null, "tooltip": null, "value": 30.0 } }, - "ce77d0d3de7c4b089021754738d5ceb4": { - "model_module": "@jupyter-widgets/controls", + "a59cded056ec4111a33e363e26fde083": { + "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", - "model_name": "HTMLModel", + "model_name": "LayoutModel", "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", + "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", - "_model_name": "HTMLModel", + "_model_name": "LayoutModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", + "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", - "_view_name": "HTMLView", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_99e35d66f5634eb28a74eb5bfa102bde", - "placeholder": "​", - "style": "IPY_MODEL_773d8ea77b7443f2ade5b4c99a303fcb", - "tabbable": null, - "tooltip": null, - "value": " 30/30 [00:00<00:00, 405.54it/s]" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border_bottom": null, + "border_left": null, + "border_right": null, + "border_top": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "d2ea6fbb7475458087e30a3aee7c2421": { + "aa05781dd2e14e5690ca4a371d2eaa5d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", @@ -2156,15 +2191,15 @@ "_view_name": "HTMLView", "description": "", "description_allow_html": false, - "layout": "IPY_MODEL_b2e6852040e34be68af10fb4a3c2b9a7", + "layout": "IPY_MODEL_64ec60eba1624c519353a416c211da43", "placeholder": "​", - "style": "IPY_MODEL_c4adc9fb2d8c49ab9d863ff53317708d", + "style": "IPY_MODEL_874d4b249a9f48169f404ecf30644496", "tabbable": null, "tooltip": null, - "value": "number of examples processed for checking labels: 100%" + "value": " 30/30 [00:01<00:00, 21.81it/s]" } }, - "d7bd991e20f14b0c98dd8d679d84939c": { + "ad088869a9df4edf992510316237e014": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", @@ -2180,7 +2215,7 @@ "description_width": "" } }, - "dcb3aba2d5ee498da09596d6b1189652": { + "ad759138bef54f1991391dbe56080cd1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2198,33 +2233,7 @@ "text_color": null } }, - "e05c95cfe29749928b6771d970a5fc81": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "2.0.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "2.0.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "2.0.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_allow_html": false, - "layout": "IPY_MODEL_380290952081433398d72252f55f3512", - "max": 4997817.0, - "min": 0.0, - "orientation": "horizontal", - "style": "IPY_MODEL_c158f6f873284cbaa7be7bbaebbd7763", - "tabbable": null, - "tooltip": null, - "value": 4997817.0 - } - }, - "e5304a7b2a15495792b3302840dc6164": { + "b2b767fc7564407287c0c9bd8e93b0d6": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2277,7 +2286,7 @@ "width": null } }, - "ef987a4e9c5445f2a1965215131e2de0": { + "c5668d6890d047cebf512ce20945534a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2330,7 +2339,33 @@ "width": null } }, - "f618acb94c794f1ba33254b732f3da99": { + "cc0587534da94813a45e26631f06d3d7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "2.0.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_allow_html": false, + "layout": "IPY_MODEL_204564b70f0c4bcbb1045bcbc684abd8", + "max": 4997817.0, + "min": 0.0, + "orientation": "horizontal", + "style": "IPY_MODEL_64cf2900bd6c4cac991a466cde5b4625", + "tabbable": null, + "tooltip": null, + "value": 4997817.0 + } + }, + "cf2c5305350947e1a649b4ed34a122c0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", @@ -2383,7 +2418,25 @@ "width": null } }, - "f80951daaff1439bae07b22f26431578": { + "e55de78b35f047c59235e23a3293b943": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "2.0.0", + "model_name": "HTMLStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "2.0.0", + "_model_name": "HTMLStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "2.0.0", + "_view_name": "StyleView", + "background": null, + "description_width": "", + "font_size": null, + "text_color": null + } + }, + "e7391a51221d4e33b893d8334eb51840": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", @@ -2398,16 +2451,16 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6b76fce815c1461d9f75cd9b932f9d87", - "IPY_MODEL_365979231dd54217a8aac4a279204067", - "IPY_MODEL_ce77d0d3de7c4b089021754738d5ceb4" + "IPY_MODEL_650512de4880455592f1a772ed3c671e", + "IPY_MODEL_27723755a081454fbfef7e167c2f439d", + "IPY_MODEL_30dd84dce5054280a1a65357f5e672b5" ], - "layout": "IPY_MODEL_5abd50f2ff82441194222375826e37c9", + "layout": "IPY_MODEL_011e636f2648451da265e45984d40108", "tabbable": null, "tooltip": null } }, - "fc53622cc52741d8bde9b20fe8c9a3c0": { + "f290b7c52ff24853ab3eebfe3473fc3e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", @@ -2424,59 +2477,6 @@ "font_size": null, "text_color": null } - }, - "ffe9b9351b8a4b129d0904a8757b9a46": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "2.0.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "2.0.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "2.0.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border_bottom": null, - "border_left": null, - "border_right": null, - "border_top": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } } }, "version_major": 2, diff --git a/master/tutorials/token_classification.html b/master/tutorials/token_classification.html index 0cc09dfcf..9a05d6c30 100644 --- a/master/tutorials/token_classification.html +++ b/master/tutorials/token_classification.html @@ -676,16 +676,16 @@

    1. Install required dependencies and download data

    diff --git a/master/tutorials/token_classification.ipynb b/master/tutorials/token_classification.ipynb index 1733ede8c..fb6c01857 100644 --- a/master/tutorials/token_classification.ipynb +++ b/master/tutorials/token_classification.ipynb @@ -75,10 +75,10 @@ "id": "ae8a08e0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:24.524829Z", - "iopub.status.busy": "2024-04-08T19:17:24.524651Z", - "iopub.status.idle": "2024-04-08T19:17:26.451617Z", - "shell.execute_reply": "2024-04-08T19:17:26.450937Z" + "iopub.execute_input": "2024-04-08T21:57:27.121145Z", + "iopub.status.busy": "2024-04-08T21:57:27.120960Z", + "iopub.status.idle": "2024-04-08T21:57:28.306719Z", + "shell.execute_reply": "2024-04-08T21:57:28.306025Z" } }, "outputs": [ @@ -86,7 +86,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-08 19:17:24-- https://data.deepai.org/conll2003.zip\r\n", + "--2024-04-08 21:57:27-- https://data.deepai.org/conll2003.zip\r\n", "Resolving data.deepai.org (data.deepai.org)... " ] }, @@ -94,8 +94,14 @@ "name": "stdout", "output_type": "stream", "text": [ - "143.244.49.177, 2400:52e0:1a01::994:1\r\n", - "Connecting to data.deepai.org (data.deepai.org)|143.244.49.177|:443... connected.\r\n", + "169.150.236.97, 2400:52e0:1a00::718:1\r\n", + "Connecting to data.deepai.org (data.deepai.org)|169.150.236.97|:443... connected.\r\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ "HTTP request sent, awaiting response... " ] }, @@ -116,9 +122,9 @@ "output_type": "stream", "text": [ "\r", - "conll2003.zip 100%[===================>] 959.94K 5.49MB/s in 0.2s \r\n", + "conll2003.zip 100%[===================>] 959.94K --.-KB/s in 0.1s \r\n", "\r\n", - "2024-04-08 19:17:24 (5.49 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", + "2024-04-08 21:57:27 (7.37 MB/s) - ‘conll2003.zip’ saved [982975/982975]\r\n", "\r\n", "mkdir: cannot create directory ‘data’: File exists\r\n" ] @@ -138,22 +144,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "--2024-04-08 19:17:25-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", - "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 52.216.130.187, 54.231.165.233, 52.216.62.161, ...\r\n", - "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|52.216.130.187|:443... " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "connected.\r\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "--2024-04-08 21:57:27-- https://cleanlab-public.s3.amazonaws.com/TokenClassification/pred_probs.npz\r\n", + "Resolving cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)... 3.5.28.229, 54.231.228.217, 52.217.108.68, ...\r\n", + "Connecting to cleanlab-public.s3.amazonaws.com (cleanlab-public.s3.amazonaws.com)|3.5.28.229|:443... connected.\r\n", "HTTP request sent, awaiting response... " ] }, @@ -174,26 +167,9 @@ "output_type": "stream", "text": [ "\r", - "pred_probs.npz 1%[ ] 211.53K 926KB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 22%[===> ] 3.71M 8.12MB/s " - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\r", - "pred_probs.npz 94%[=================> ] 15.37M 22.6MB/s \r", - "pred_probs.npz 100%[===================>] 16.26M 23.5MB/s in 0.7s \r\n", + "pred_probs.npz 100%[===================>] 16.26M --.-KB/s in 0.08s \r\n", "\r\n", - "2024-04-08 19:17:26 (23.5 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", + "2024-04-08 21:57:28 (210 MB/s) - ‘pred_probs.npz’ saved [17045998/17045998]\r\n", "\r\n" ] } @@ -210,10 +186,10 @@ "id": "439b0305", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:26.454458Z", - "iopub.status.busy": "2024-04-08T19:17:26.454223Z", - "iopub.status.idle": "2024-04-08T19:17:27.676181Z", - "shell.execute_reply": "2024-04-08T19:17:27.675698Z" + "iopub.execute_input": "2024-04-08T21:57:28.309489Z", + "iopub.status.busy": "2024-04-08T21:57:28.309052Z", + "iopub.status.idle": "2024-04-08T21:57:29.535134Z", + "shell.execute_reply": "2024-04-08T21:57:29.534610Z" }, "nbsphinx": "hidden" }, @@ -224,7 +200,7 @@ "dependencies = [\"cleanlab\"]\n", "\n", "if \"google.colab\" in str(get_ipython()): # Check if it's running in Google Colab\n", - " %pip install git+https://github.com/cleanlab/cleanlab.git@cc319efea07da004d1544c0577402d71f309fa06\n", + " %pip install git+https://github.com/cleanlab/cleanlab.git@5eaeb983f10365ef634bc0cd24297f9c84eecee4\n", " cmd = ' '.join([dep for dep in dependencies if dep != \"cleanlab\"])\n", " %pip install $cmd\n", "else:\n", @@ -250,10 +226,10 @@ "id": "a1349304", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:27.678806Z", - "iopub.status.busy": "2024-04-08T19:17:27.678375Z", - "iopub.status.idle": "2024-04-08T19:17:27.681955Z", - "shell.execute_reply": "2024-04-08T19:17:27.681515Z" + "iopub.execute_input": "2024-04-08T21:57:29.537745Z", + "iopub.status.busy": "2024-04-08T21:57:29.537249Z", + "iopub.status.idle": "2024-04-08T21:57:29.540684Z", + "shell.execute_reply": "2024-04-08T21:57:29.540158Z" } }, "outputs": [], @@ -303,10 +279,10 @@ "id": "ab9d59a0", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:27.683962Z", - "iopub.status.busy": "2024-04-08T19:17:27.683699Z", - "iopub.status.idle": "2024-04-08T19:17:27.686524Z", - "shell.execute_reply": "2024-04-08T19:17:27.686095Z" + "iopub.execute_input": "2024-04-08T21:57:29.542659Z", + "iopub.status.busy": "2024-04-08T21:57:29.542362Z", + "iopub.status.idle": "2024-04-08T21:57:29.545192Z", + "shell.execute_reply": "2024-04-08T21:57:29.544763Z" }, "nbsphinx": "hidden" }, @@ -324,10 +300,10 @@ "id": "519cb80c", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:27.688377Z", - "iopub.status.busy": "2024-04-08T19:17:27.688200Z", - "iopub.status.idle": "2024-04-08T19:17:36.852616Z", - "shell.execute_reply": "2024-04-08T19:17:36.852071Z" + "iopub.execute_input": "2024-04-08T21:57:29.547108Z", + "iopub.status.busy": "2024-04-08T21:57:29.546932Z", + "iopub.status.idle": "2024-04-08T21:57:38.503471Z", + "shell.execute_reply": "2024-04-08T21:57:38.502921Z" } }, "outputs": [], @@ -401,10 +377,10 @@ "id": "202f1526", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:36.855120Z", - "iopub.status.busy": "2024-04-08T19:17:36.854821Z", - "iopub.status.idle": "2024-04-08T19:17:36.860286Z", - "shell.execute_reply": "2024-04-08T19:17:36.859865Z" + "iopub.execute_input": "2024-04-08T21:57:38.505745Z", + "iopub.status.busy": "2024-04-08T21:57:38.505533Z", + "iopub.status.idle": "2024-04-08T21:57:38.511025Z", + "shell.execute_reply": "2024-04-08T21:57:38.510480Z" }, "nbsphinx": "hidden" }, @@ -444,10 +420,10 @@ "id": "a4381f03", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:36.862236Z", - "iopub.status.busy": "2024-04-08T19:17:36.861904Z", - "iopub.status.idle": "2024-04-08T19:17:37.207147Z", - "shell.execute_reply": "2024-04-08T19:17:37.206565Z" + "iopub.execute_input": "2024-04-08T21:57:38.512954Z", + "iopub.status.busy": "2024-04-08T21:57:38.512667Z", + "iopub.status.idle": "2024-04-08T21:57:38.850937Z", + "shell.execute_reply": "2024-04-08T21:57:38.850274Z" } }, "outputs": [], @@ -484,10 +460,10 @@ "id": "7842e4a3", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:37.209618Z", - "iopub.status.busy": "2024-04-08T19:17:37.209283Z", - "iopub.status.idle": "2024-04-08T19:17:37.213376Z", - "shell.execute_reply": "2024-04-08T19:17:37.212864Z" + "iopub.execute_input": "2024-04-08T21:57:38.853325Z", + "iopub.status.busy": "2024-04-08T21:57:38.852997Z", + "iopub.status.idle": "2024-04-08T21:57:38.857421Z", + "shell.execute_reply": "2024-04-08T21:57:38.856864Z" } }, "outputs": [ @@ -559,10 +535,10 @@ "id": "2c2ad9ad", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:37.215394Z", - "iopub.status.busy": "2024-04-08T19:17:37.215083Z", - "iopub.status.idle": "2024-04-08T19:17:39.552115Z", - "shell.execute_reply": "2024-04-08T19:17:39.551400Z" + "iopub.execute_input": "2024-04-08T21:57:38.859500Z", + "iopub.status.busy": "2024-04-08T21:57:38.859081Z", + "iopub.status.idle": "2024-04-08T21:57:41.179261Z", + "shell.execute_reply": "2024-04-08T21:57:41.178473Z" } }, "outputs": [], @@ -584,10 +560,10 @@ "id": "95dc7268", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.555424Z", - "iopub.status.busy": "2024-04-08T19:17:39.554614Z", - "iopub.status.idle": "2024-04-08T19:17:39.558938Z", - "shell.execute_reply": "2024-04-08T19:17:39.558474Z" + "iopub.execute_input": "2024-04-08T21:57:41.182273Z", + "iopub.status.busy": "2024-04-08T21:57:41.181736Z", + "iopub.status.idle": "2024-04-08T21:57:41.185821Z", + "shell.execute_reply": "2024-04-08T21:57:41.185317Z" } }, "outputs": [ @@ -623,10 +599,10 @@ "id": "e13de188", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.560894Z", - "iopub.status.busy": "2024-04-08T19:17:39.560573Z", - "iopub.status.idle": "2024-04-08T19:17:39.565814Z", - "shell.execute_reply": "2024-04-08T19:17:39.565368Z" + "iopub.execute_input": "2024-04-08T21:57:41.187927Z", + "iopub.status.busy": "2024-04-08T21:57:41.187604Z", + "iopub.status.idle": "2024-04-08T21:57:41.192646Z", + "shell.execute_reply": "2024-04-08T21:57:41.192127Z" } }, "outputs": [ @@ -804,10 +780,10 @@ "id": "e4a006bd", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.567759Z", - "iopub.status.busy": "2024-04-08T19:17:39.567433Z", - "iopub.status.idle": "2024-04-08T19:17:39.593200Z", - "shell.execute_reply": "2024-04-08T19:17:39.592668Z" + "iopub.execute_input": "2024-04-08T21:57:41.194666Z", + "iopub.status.busy": "2024-04-08T21:57:41.194347Z", + "iopub.status.idle": "2024-04-08T21:57:41.220015Z", + "shell.execute_reply": "2024-04-08T21:57:41.219564Z" } }, "outputs": [ @@ -909,10 +885,10 @@ "id": "c8f4e163", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.595168Z", - "iopub.status.busy": "2024-04-08T19:17:39.594990Z", - "iopub.status.idle": "2024-04-08T19:17:39.599302Z", - "shell.execute_reply": "2024-04-08T19:17:39.598861Z" + "iopub.execute_input": "2024-04-08T21:57:41.221917Z", + "iopub.status.busy": "2024-04-08T21:57:41.221744Z", + "iopub.status.idle": "2024-04-08T21:57:41.225821Z", + "shell.execute_reply": "2024-04-08T21:57:41.225266Z" } }, "outputs": [ @@ -986,10 +962,10 @@ "id": "db0b5179", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:39.601340Z", - "iopub.status.busy": "2024-04-08T19:17:39.600975Z", - "iopub.status.idle": "2024-04-08T19:17:41.028748Z", - "shell.execute_reply": "2024-04-08T19:17:41.028272Z" + "iopub.execute_input": "2024-04-08T21:57:41.227702Z", + "iopub.status.busy": "2024-04-08T21:57:41.227531Z", + "iopub.status.idle": "2024-04-08T21:57:42.606115Z", + "shell.execute_reply": "2024-04-08T21:57:42.605555Z" } }, "outputs": [ @@ -1161,10 +1137,10 @@ "id": "a18795eb", "metadata": { "execution": { - "iopub.execute_input": "2024-04-08T19:17:41.030867Z", - "iopub.status.busy": "2024-04-08T19:17:41.030672Z", - "iopub.status.idle": "2024-04-08T19:17:41.034715Z", - "shell.execute_reply": "2024-04-08T19:17:41.034283Z" + "iopub.execute_input": "2024-04-08T21:57:42.608339Z", + "iopub.status.busy": "2024-04-08T21:57:42.608000Z", + "iopub.status.idle": "2024-04-08T21:57:42.612035Z", + "shell.execute_reply": "2024-04-08T21:57:42.611599Z" }, "nbsphinx": "hidden" }, @@ -1197,7 +1173,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" + "version": "3.11.9" } }, "nbformat": 4, diff --git a/versioning.js b/versioning.js index 4db28125d..38a85b9db 100644 --- a/versioning.js +++ b/versioning.js @@ -1,4 +1,4 @@ var Version = { version_number: "v2.6.3", - commit_hash: "cc319efea07da004d1544c0577402d71f309fa06", + commit_hash: "5eaeb983f10365ef634bc0cd24297f9c84eecee4", }; \ No newline at end of file